
 i 

Indoor Cooperative Localization for Ultra 

Wideband Wireless Sensor Networks 

 

A Dissertation  

Submitted to the Faculty  

of the  

WORCESTER POLYTECHNIC INSTITUTE   

in partial fulfillment of the requirements for the  

Degree of Doctor of Philosophy 

in  

Electrical and Computer Engineering 

 

by 

 

 __________________________________ 

 

Nayef Alsindi 

April 2008 

APPROVED 

 

____________________ 

Prof. Kaveh Pahlavan, Advisor 

 

 

________________________ 

Prof. Fred J. Looft, Head, ECE Department 



 ii 

 

 

 

To My Wife 



 i 

Abstract 

In recent years there has been growing interest in ad-hoc and wireless sensor networks 

(WSNs) for a variety of indoor applications. Localization information in these networks 

is an enabling technology and in some applications it is the main sought after parameter. 

The cooperative localization performance of WSNs is ultimately constrained by the 

behavior of the utilized ranging technology in dense cluttered indoor environments. 

Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited 

potential due to its large bandwidth and high time resolution. However, the performance 

of its ranging and cooperative localization capabilities in dense indoor multipath 

environments needs to be further investigated. Of main concern is the high probability of 

non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes, which 

biases the TOA estimation and degrades the localization performance.  

In this dissertation, we first present the results of measurement and modeling of UWB 

TOA-based ranging in different indoor multipath environments. We provide detailed 

characterization of the spatial behavior of ranging, where we focus on the statistics of the 

ranging error in the presence and absence of the DP and evaluate the pathloss behavior in 

the former case which is important for indoor geolocation coverage characterization. 

Parameters of the ranging error probability distributions and pathloss models are 

provided for different environments: traditional office, modern office, residential and 

manufacturing floor; and different ranging scenarios: indoor-to-indoor (ITI), outdoor-to-

indoor (OTI) and roof-to-indoor (RTI). 
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Based on the developed empirical models of UWB TOA-based OTI and ITI ranging, we 

derive and analyze cooperative localization bounds for WSNs in the different indoor 

multipath environments. First, we highlight the need for cooperative localization in 

indoor applications. Then we provide comprehensive analysis of the factors affecting 

localization accuracy such as network and ranging model parameters.  

Finally we introduce a novel distributed cooperative localization algorithm for indoor 

WSNs. The Cooperative LOcalization with Quality of estimation (CLOQ) algorithm 

integrates and disseminates the quality of the TOA ranging and position information in 

order to improve the localization performance for the entire WSN. The algorithm has the 

ability to reduce the effects of the cluttered indoor environments by identifying and 

mitigating the associated ranging errors. In addition the information regarding the 

integrity of the position estimate is further incorporated in the iterative distributed 

localization process which further reduces error escalation in the network. The simulation 

results of CLOQ algorithm are then compared against the derived G-CRLB, which shows 

substantial improvements in the localization performance.   
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Chapter 1 Introduction  

1.1. Localization in Wireless Sensor Networks  

In recent years there has been growing interest in ad-hoc and wireless sensor networks 

(WSNs) for a variety of applications. The development of microelectromechanical 

systems (MEMS) technology as well as the advancement in digital electronics and 

wireless communications has made it possible to design small size, low-cost energy 

efficient sensor nodes that could be deployed in different environments for a variety of 

applications [Aky02]. Node localization is an enabling technology for WSNs because 

sensor nodes deployed in an area of interest usually need position information for routing 

and application-specific tasks, such as temperature and pressure monitoring [Pat05].  In 

many applications, a WSN is deployed to help improve localization accuracy in 

environments where the channel condition poses a challenge to range estimation [Pah06]. 

In such environments, cooperative localization provides a potential for many applications 

in the commercial, public safety and military sectors [Pah06, Pah02]. In commercial 

applications, there is a need for localizing and tracking inventory items in warehouses, 

materials and equipment in manufacturing floors, elderly in nursing homes, medical 

equipment in hospitals, and objects in residential homes. In public safety and military 

applications, however, indoor localization systems are needed to track inmates in prisons 

and navigate policemen, fire fighters and soldiers to complete their missions inside 

buildings [Pah02].  Node localization plays an important role in all these WSN 

applications. 
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In certain vital indoor cooperative localization applications, such as fire-fighting and 

military operations, a small number of sensors called anchors are deployed outside 

surrounding a building where they obtain their location information via GPS or are pre-

programmed during setup. The un-localized sensor nodes are then deployed inside the 

building, e.g. carried by firefighters or soldiers entering a hostile building, who with the 

help of the anchors attempt to obtain their own location information. In traditional 

approaches, such as trilateration (triangulation) techniques, the exterior anchor nodes 

usually fail to cover a large building, which makes localization ineffective. In addition, 

the problems of indoor multipath and non-line-of-sight (NLOS) channel conditions 

further degrade the range estimates, yielding unreliable localization performance [Pah02]. 

Implementation of the cooperative localization approach extends the coverage of the 

outside anchors to the inside nodes and has the ability to enhance localization accuracy 

through the availability of more range measurements between the sensor nodes.  

Effective cooperative localization in indoor WSNs does however hinge on the ranging 

technology. Among the emerging techniques, Ultra Wideband (UWB) Time of Arrival 

(TOA)-based ranging has recently received considerable attention [Gez05, Gha04, 

Opp04]. In addition to its high data rate communications, it has been selected as a viable 

candidate for precise ranging and localization. This is mainly due to its large system 

bandwidth which offers high resolution and signaling that allows for centimeter 

accuracies, low-power and low-cost implementation [Por03, Gez05]. The performance of 

this technique, nevertheless, depends on the availability of the direct path (DP) signal 

between a pair of sensor nodes [Lee02, Pah98]. In the presence of the DP, i.e. short 

distance line-of-sight (LOS) conditions, accurate UWB TOA estimates in the range of 
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centimeters are feasible due to the high time-domain resolution [Fon02, Chu03, Ala06, 

Tar06]. However, the challenge is UWB ranging in indoor NLOS conditions, which can 

be characterized as dense multipath environments [Lee02, Pah98].  In these conditions 

the DP between a pair of nodes can be blocked with high probability, substantially 

degrading the range and localization accuracy. Therefore, there is a need to analyze the 

impact of these channel limitations on the performance of cooperative localization in 

indoor WSNs. 

This dissertation is concerned with the evaluation of cooperative localization in indoor 

WSNs from the radio propagation channel perspective. We intend to provide detailed 

analysis on the impact of the indoor multipath and NLOS conditions on the UWB TOA-

based ranging and cooperative localization in WSNs. Next we provide detailed 

description of the motivation and contributions of the dissertation.  

1.2. Background and Motivation  

Indoor localization is one of the newly emerging technologies having potential for 

numerous applications in the commercial and public safety fields. The enabling of robust 

and accurate localization in harsh indoor environment faces real physical challenges, 

especially for TOA-based systems where the probability of NLOS and blockage of the 

DP between mobile nodes is very high [Pah98, Pah02]. The main challenges in these 

environments are multipath, NLOS propagation, DP blockage and insufficient signal 

coverage. Several techniques have been proposed to combat multipath for low bandwidth 

systems [Dum94, Li04]. These techniques have the potential to increase the time-domain 

resolution of the received waveform, mitigate multipath in indoor environments and 
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improve TOA ranging accuracy. Recently, UWB signals have showed promising 

potential for accurate TOA-based ranging and localization due to the available excess 

system bandwidth [Fon02, Lee02, Mol05]. However, these algorithms and techniques 

still suffer in harsh NLOS propagation and DP blockage environments where the 

degradation of the DP signal causes substantial ranging errors [Pah06]. Fortunately, the 

majority of the current research thrust in NLOS localization has been towards NLOS or 

DP blockage identification and mitigation [Che99, Wei05, Gev07, Hei07, Ven07a, 

Ven07b, Als08c]. The localization performance using these techniques have showed 

promising potential, where the channel statistics and signal information are incorporated 

in a decision theoretic framework to mitigate “bad” estimates before incorporation into 

localization algorithms.  

Although these algorithms and techniques can improve the localization performance, 

they still face further physical limitations specific to the indoor environment. In outdoor 

GPS applications the accuracy is directly related to the Geometric Dilution of Precision 

(GDOP) where the number of satellites in view and their locations relative to the mobile 

user can have significant impact on the performance [Kap96]. Similarly, in indoor 

environments a large number of Reference Points (RPs) or anchors are needed in order to 

achieve acceptable levels of accuracy [Pah06]. For the majority of indoor applications the 

limited radio coverage of RPs/anchors in large buildings implies that there exists a high 

probability of insufficient coverage to enable effective localization [Pah06]. More 

importantly for the outdoor-indoor applications such as the firefighting or military 

operations the radio coverage is further diminished due to the signal having to penetrate 
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external building structures. This then poses questions as to the reliability and accuracy of 

TOA-based localization systems under these constraints.  

One promising alternative to these challenges in indoor environments is UWB TOA-

based cooperative localization using WSNs [Pah06, Gez05]. Unlike traditional 

localization techniques, cooperative localization in WSNs allows for ranging information 

to be exchanged between nodes and anchors as well as nodes and other nodes in the 

network. Coupled with UWB TOA-based ranging, cooperative localization has the 

potential to remedy many of the problems and challenges plaguing indoor localization 

applications. The UWB signals will allow for high resolution and thus very accurate 

ranging capability. In addition, cooperative localization will provide the ability to combat 

the NLOS/DP-blockage and limited coverage problems due to the redundancy in TOA-

range information connecting the network.  

In 2005, the Center for Wireless Information Network Studies (CWINS) at WPI with 

Innovative Wireless Technologies (IWT) were awarded a research fund sponsored by 

DARPA/DoD SBIR: BAA 03-029 entitled: “Innovative Methods for Geolocation and 

Communication with Ultra Wideband Mobile Radio Networks”. The project spanned 

different aspects of UWB localization. IWT were responsible for the design and 

implementation of the UWB radios while CWINS took charge of characterizing the 

empirical behavior of TOA-based ranging using UWB. As a result the foundation of this 

dissertation is the UWB measurement campaign that was conducted in the summer of 

2005. The measurements provided a platform for evaluating the behavior of the UWB 

TOA-based ranging in different indoor environments.  
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In order to asses the potential of UWB cooperative localization in indoor 

environments, however, it is important to develop an analytical framework that addresses 

the different layers of the problem. At the ranging layer, understanding the behavior of 

UWB TOA-based ranging in indoor environments is essential. This can be accomplished 

by conducting UWB measurements and modeling of the TOA-based ranging. Several 

indoor propagation experiments with a focus on indoor ranging, be it UWB or otherwise, 

have been reported in the literature [Fon02, Lee02, Pah98, Ala03a, Tar06, Den04, Fal06, 

Ala06, Pat03, Hat06, Ala05, Low05]. These experiments have usually been limited to a 

floor or several rooms but do not address modeling the spatial statistics of NLOS ranging 

nor ranging coverage. The only available ranging error models were provided in [Den04, 

Ala06] but are based on limited measurement data sets, and only the latter focuses on 

characterization of errors according to the availability of the DP. As a result, a 

comprehensive measurement and modeling of UWB TOA-based ranging in different 

indoor environments and scenarios is needed but is not available in the literature.  

At the localization layer, these ranging models should be used to evaluate the impact 

of the radio propagation channel on cooperative localization in indoor WSNs. In turn this 

could be achieved by integrating the empirical models in developing theoretical 

performance bounds (e.g. CRLB-type bounds) and assessing the accuracy of cooperative 

localization algorithms. In the literature, localization bounds in multi-hop WSNs have 

been examined extensively [Lar04, Sav05, Cha06], where the focus has been on 

analyzing the impact of network parameters such as the number of anchors, node density 

and deployment topology affecting localization accuracy, etc. However, these 

localization bounds have been analyzed with unbiased generic ranging assumptions 
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between sensor nodes. In [Koo98, Bot04] the impact of biased TOA range measurements 

on the accuracy of location estimates is investigated for cellular network applications. 

Their approach assumes NLOS induced errors as small perturbations, which clearly is not 

the case in indoor environments. A comprehensive treatment of the impact of biases on 

the traditional wireless geolocation accuracy in NLOS environments is reported in 

[Qi06]. Recently, position error bounds for dense cluttered indoor environments have 

been reported in [Jou06a, Jou06b] where the impact of the channel condition on the 

localization error is further verified in traditional localization. As a result there is a need 

for the derivation and analysis of the theoretical performance bounds for UWB 

cooperative localization in indoor-specific WSNs.  

Another important research direction in this emerging field is the development of 

cooperative localization algorithms for WSNs. Unfortunately, most of the algorithms in 

the literature are generic and they do not address the impact of the indoor propagation 

channel on the ranging and localization performance [Savr01, Savr02, Alb01, Nic01]. 

Although those algorithms might yield unacceptable performance in indoor 

environments, they provide practical ideas for localizing nodes in large sensor networks. 

Therefore, there is a need for novel cooperative localization algorithms that are 

specifically designed for the harsh indoor environment.    

The principle goal of this research work is to develop an analytical framework for 

assessing the impact of the indoor propagation channel on the performance of UWB 

TOA-based cooperative localization in WSNs. Specifically we define three major 

objectives of this research work. The first is to conduct large-scale measurements and 

modeling of the UWB TOA-based ranging in indoor multipath environments. The second 
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is to incorporate these empirical measurements and models into an analytical framework 

that can be used to assess the impact of indoor ranging on cooperative localization. The 

third objective of this work is to develop a novel cooperative localization algorithm that 

has the ability to improve localization accuracy by incorporating the channel statistics in 

the estimation process. The algorithm takes advantage of the models and attempts to 

quantify the quality of ranging and localization in order to improve the performance.  

1.3. Contributions of the Dissertation 

In this dissertation we first provide an overview of the basics of cooperative 

localization and the challenges facing this emerging technology where the impact of the 

channel on the localization performance is highlighted and the major cooperative 

localization bounds and algorithms are discussed. This work is presented in Chapter 2 

and has been published in [Als08d]. Then we present the research work which focuses on 

three contributions to the field of WSN localization:  

• Analysis, measurement and modeling of UWB TOA-based ranging in indoor 

multipath environments. The work presents empirical results of the measurement 

campaign in four different building environments: residential, traditional office, 

modern office and a manufacturing floor; and three different ranging scenarios: 

Indoor-to-Indoor (ITI), Outdoor-to-Indoor (OTI) and Roof-to-Indoor (RTI) using 

two different UWB system bandwidths. These empirical measurements are used 

to develop novel models that characterize TOA-based ranging coverage and error. 

Specifically the former model provides a characterization for the feasible ranging 

distance in indoor environments; while the latter provides statistical 
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characterization of ranging error in the different conditions such as LOS, NLOS 

and DP blocked NLOS. This work is presented in Chapter 3 of the dissertation 

and has been published in [Als07a, Als07b, Als08a]. 

• Analytical derivation and performance evaluation of the cooperative localization 

in WSNs through the Generalized Cramer Rao Lower Bound (G-CRLB) in dense 

cluttered indoor environments. Using the empirical TOA-based ranging models, 

we provide a novel framework for analyzing the performance of cooperative 

localization for WSNs in different indoor environments using two different 

systems bandwidths, 500 MHz and 3 GHz. The work focuses on analyzing the 

impact of node density, anchor density, building dimension and probability of 

NLOS and probability of DP blockage on the cooperative localization 

performance. This research work is presented in Chapter 4 and has been published 

in [Als08b]. 

• Development of a novel cooperative localization algorithm for indoor WSNs. We 

introduce Cooperative LOcalization with Quality of estimation (CLOQ) which is 

a novel algorithm that integrates the quality of the range (channel information) 

and node position (anchor confidence) in a weighted least square technique to 

provide accurate location information. This work is presented in Chapter 5 and 

has been published in [Als06a, Als06b]. 

1.4. Outline of the Dissertation 

This dissertation focuses on node localization in UWB WSNs. First we will introduce 

the fundamental concepts related to node localization, discuss the major challenges for 
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node localization in WSNs, and present the major node localization techniques proposed 

for WSNs. In Chapter 3 we discuss the basics of UWB TOA-based ranging and their 

application to ranging and localization. We then introduce a comprehensive measurement 

campaign to evaluate the UWB TOA based ranging in four different indoor building 

environments and three different ranging scenarios: ITI, OTI and RTI. Using these 

measurements we develop and introduce novel models that characterize empirically the 

behavior of ranging coverage and error in dense cluttered indoor environments. In 

Chapter 4, we derive and evaluate the G-CRLB for UWB TOA-based cooperative 

localization in indoor WSNs using the empirical models. We then analyze and compare 

the localization performance in different indoor environments. In Chapter 5, we introduce 

the novel cooperative localization algorithm (CLOQ) and evaluate its performance 

against the G-CRLB. Finally we conclude the dissertation in Chapter 6, where we 

provide the major conclusions and suggest future work. 
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Chapter 2 Node Localization in Indoor 

Environments: Concepts and Challenges 

In this chapter, we first introduce the evolution of localization technologies, and then 

we describe the basics of localization in traditional network settings. Finally, we 

introduce the main approaches to cooperative localization in WSNs and discuss the major 

challenges affecting their performance. 

2.1. Evolution of Localization Techniques  

The problem of locating mobile radios originated with military operations during 

World War II, where it was critical to locate soldiers in emergency situations.  About 

twenty years later, during the Vietnam conflict, the US Department of Defense launched 

a series of Global Positioning System (GPS) satellites to support military operations in 

combat areas. In 1990, the signals from GPS satellites were made accessible to the 

private sector for commercial applications such as fleet management, navigation, and 

emergency assistance. Today, GPS technology is widely available in the civilian market 

for personal navigation applications. Despite its success, however, the accuracy of GPS 

positioning is significantly impaired in urban and indoor areas, where received signals 

can suffer from blockage and multipath effects.    

In 1996, the Federal Communications Commission (FCC) introduced regulations 

requiring wireless service providers to be able to locate mobile callers in emergency 

situations with specified accuracy, namely 100 meters accuracy 67% of the time. Such 
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emergency service is called E-911 in the U.S. and E-112 in many other countries. In a 

manner similar to the release of the ISM bands and subsequent emergence of the wireless 

local area network (WLAN) industry, the FCC mandate for E-911 services quickly gave 

rise to the development of the wireless geolocation industry. In time, technologies have 

been developed to implement the E-911 mandate [Caf98, McG02] including GPS assisted 

techniques, a variety of Time of Arrival (TOA), Angle of Arrival (AOA), and Received 

Signal Strength (RSS) techniques. A variety of TOA, time differential (TDOA) or 

extension of time differential (EOTD) techniques require special location-measurement 

hardware integrated in the base stations and in some cases accurate synchronization 

between the mobile terminals and base stations (for cellular applications). In contrast 

with those approaches, RSS systems provide a lower-cost solution that can avoid 

additional hardware installation but does require incorporating training functions into the 

system. 

In the late 1990s, at about the same time that E-911 technologies were emerging, 

another initiative for accurate indoor geolocation began independently. It was motivated 

by a variety of envisioned applications for indoor location-sensing in commercial, public 

safety, and military settings [Pah02, Kos00, Pot00].  In commercial applications for 

residences and nursing homes, there is an increasing need for indoor location-sensing 

systems to track people with special needs, e.g., the elderly, as well as children who are 

away from visual supervision. In public safety and military applications, indoor location 

sensing systems are needed to track inmates in prisons and to guide policemen, fire-

fighters, and soldiers in accomplishing their missions inside buildings.  More recently, 

location sensing has found its applications in location-based handoffs in wireless 
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networks [Pah00], location-based ad-hoc network routing [Ko98, Jai01], and location-

based authentication and security [Sma00]. These and other applications have stimulated 

interests in modeling the propagation environment to assess the accuracy of different 

sensing techniques [Pah98, Kri99] as well as in developing novel technologies to 

implement the systems [Fon02, Bah00a, Bah00b]. The implementation of the first 

generation of indoor positioning products using a variety of technologies has been 

reported in [Wer98, Roo02a, Roo02b].  

The natural evolution of these ranging and localization technologies makes their 

integration into WSN applications possible. Understanding the fundamental concepts and 

challenges of these technologies in traditional localization is a necessary bridge to WSN 

localization. 

2.2. Localization Systems  

In general, a localization system incorporates range measurements to determine the 

location estimate. Figure 2.1 illustrates a block diagram of the main components in a 

traditional localization system. 
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Figure 2.1: Localization block diagram. 

 

The process for obtaining a location estimate involves different levels of 

complexities. At the physical layer, the mobile terminal (MT) or the sensor node receives 

a waveform from Reference Points (RP) or anchors. In the context of traditional 

localization an MT listens to ranging signals from at least 3 different RPs for 2-

dimensinoal position. In WSNs cooperative localization MTs are usually referred to as 

nodes or blind nodes, while RPs are referred to as anchors. From this RF waveform, it is 

possible to extract the relevant range measurements.  

In RSS systems, for example, the total signal energy that a node/MT receives from an 

anchor/RP can be used to estimate the distance. For a given received power, it is possible 

to estimate the corresponding distance with some certainty. The RSS technique is usually 

simple to implement but suffers from inaccuracies, especially in multipath rich 

environments. On the other hand, for TOA-based systems, the distance is estimated by 
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sending an RF signal and recording the time it takes to receive it. This approach is more 

accurate because the arrival time corresponds to the direct path distance.  

Once 3(4) range measurements are obtained from different anchors/RPs, the node/MT 

passes this information to a positioning algorithm, where the 2(3)-dimensional position is 

then estimated. The range measurements essentially constrain the possible location of the 

MT. The area of uncertainty of a location estimate decreases as the accuracy of range 

measurements improves. Figure 2.2 shows an example of 2-dimensional localization, 

where a node/MT has 3 range measurements to different anchors/RPs. The positioning 

error, as will be described later in more detail, is affected by the accuracy of the range 

measurements, the number of anchors/RPs and their relative geometry to the sensor 

node/MT. Finally, the estimate of the location is displayed to the user with information 

regarding its quality or accuracy.  

 

Anchor 1 Anchor 2 

Anchor 3 

Node 

(x1, y1) (x2, y2) 

(x3, y3) 

(x0, y0) 

 

Figure 2.2: Localization with 3 anchors. 
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WSN localization is a general case of the traditional localization but it is fundamentally 

dependant on the building blocks in Figure 2.1.  As a result, we will dedicate the first part 

of this chapter to ranging and localization techniques in traditional network settings and 

the second part to localization in WSNs. Understanding of ranging techniques and 

localization algorithms is essential in building a fundamental basis for WSN cooperative 

localization. First, we describe the two most popular ranging techniques that are used 

traditionally in wireless networks, which have a great potential for WSNs. Specifically, 

we show that the ranging accuracy and localization performance is directly related to the 

complexity of the wireless channel. Then we discuss popular localization algorithms 

commonly implemented in systems such as GPS and cellular geolocation. Finally, we 

relate these concepts to cooperative localization in WSNs, and describe some of the 

emerging centralized and distributed solutions to the problem. 

2.3. Popular Ranging Techniques 

2.3.1. TOA-based Ranging 

In TOA-based ranging, a sensor node measures the distance to another node by 

estimating the signal propagation delay in free space, where radio signals travel at the 

constant speed of light. Figure 2.3 shows an example of TOA-based ranging between two 

sensors.  
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Figure 2.3: TOA ranging between sensors. The TOA can be measured by recording the time 

it takes to transmit and receive a packet between two nodes. If however, the direct path 

signal is block then the time delay or distance estimation is biased which can cause 

significant errors in the localization process. 

 

The performance of TOA-based ranging depends on the availability of the DP signal 

[Pah98, Pah02]. In its presence, such as short distance LOS conditions, accurate estimates 

are feasible (see Figure 2.4).  

1τ  

2τ  

LOS 

NLOS/UDP 
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Figure 2.4: TOA estimation in the presence of DP. The accuracy of TOA estimation 

depends on the availability of the DP signal. In this case, the DP signal power is well above 

the detection threshold and thus can provide accurate distance estimation. 

 

However, the challenge is ranging in NLOS conditions, which can be characterized as 

site-specific and dense multipath environments [Pah98, Lee02].  These environments 

introduce several challenges. The first, also present in LOS conditions, corrupts the TOA 

estimates due to the multipath components (MPCs). MPCs are delayed and attenuated 

replicas of the original signal, arriving and combining at the receiver thus shifting the 

estimate. The second is the propagation delay caused by the signal traveling through 

obstacles, which adds a positive bias to the TOA estimates. The third is the absence of the 

DP due to blockage, also known as Undetected Direct Path (UDP) [Pah98].  The bias 

imposed by this type of error is usually much larger than the first two and has a 

significant probability of occurrence due to cabinets, elevator shafts, or doors that are 
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usually cluttering the indoor environment. A sample measurement profile of this 

condition is illustrated in Figure 2.5 which illustrates TOA ranging in the absence of the 

DP. 

 

Figure 2.5:  TOA estimation in the absence of the DP. In this condition, the DP signal power 

is attenuated and cannot be detected. As a result the first arriving path is used for TOA 

ranging instead causing significant estimation errors. 

As a result for effective TOA-based ranging and localization it is important for a node 

to be able to distinguish between these two cases. Although TOA-based systems are more 

accurate compared to RSS or AOA systems, their implementation is usually more 

complex and they suffer severely in impaired indoor environments. 
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2.3.2. RSS-based Ranging 

Ranging through RSS is accomplished by sensing the received signal and measuring 

the total received power, which can provide a distance estimate between the target object 

and the location sensor.  The average RSS at a certain distance is given by 

2

1

| ( ) |
i

L
d

d

i

RSS tα
=

=∑ ,                                                    (2.1) 

where α  is the amplitude of the arriving paths.  Figure 2.6 shows a ranging example 

using the RSS-based technique. The measurement of the average RSS is independent of 

the bandwidth of the measurement device. 

 

Figure 2.6:  Ranging using RSS is implemented by estimating the distance from the signal 

power. A sensor node measures the received power from another node and translates that 

into an estimated distance. The distance estimates using this technique lack accuracy due to 

the method’s reliance on pathloss models and the indirect relationship between power and 

distance. 

 

In wideband measurements, the effect of multipath fading is averaged over the spectrum 

of the signal. This is done through measuring the strength of each arriving path and using 

Eq. (2.1) to compute the RSS.  According to the multipath fading characteristics, only 

one arriving pulse with fluctuating amplitude is received. As a result, averaging the signal 

over a longer period can effectively eliminate multipath. In addition to the independence 

dRSS (dBm) 

d̂  dRSS  
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of the ranging error in RSS to the system bandwidth, this technique is relatively simple 

and reliable. Nonetheless, the relationship between the measured RSS and the distance is 

complex and diversified. Therefore, the performance of these techniques depends on the 

accuracy of the model used for estimation of the RSS.   

A number of statistical models relating the behavior of the RSS to the distance 

between a transmitter and a receiver in indoor areas have been developed for wireless 

communications [Pah02].  These models can be used for estimating the ranging distance 

between two nodes. The common principle behind all statistical models for calculation of 

the RSS in a distance d is given by 

10 10 1010log 10log 10 log
d r t

RSS P P d Xγ= = − + ,                     (2.2) 

where Pt is the transmitted power, d is the distance between the transmitter and the 

receiver, γ is the so-called distance-power gradient of the environment, and X is a 

lognormal random variable representing the shadow fading component. Since the 

location sensor using RSS does not know the exact value of γ and X, the distance 

calculated from these models is not as reliable as its TOA counterpart.  

2.4. Wireless Localization Algorithms 

2.4.1. Background 

Using range estimates from multiple anchors, it is possible to employ simple 

geometrical triangulation techniques to estimate the location of a sensor.  Due to 

estimation errors in the acquired TOA ranges, for example, the geometrical triangulation 

technique can only provide a region of uncertainty, instead of a single position fix for a 
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sensor node. To obtain an estimate of the location coordinates, a variety of direct and 

iterative statistical positioning algorithms have been developed to solve the problem by 

formulating it into a set of non-linear iterative equations. In some wireless geolocation 

applications, the purpose of the positioning systems is to provide a visualization of the 

possible mobile locations instead of an estimate of the location coordinates. In either 

case, the position accuracy is not constant across the area of coverage and poor geometry 

of relative position of the mobile terminal and RPs can lead to high geometric dilution of 

precision (GDOP). Further, geometric and statistical triangulation algorithms are used 

when both the region of uncertainty and the estimate of the location are required [Kap96]. 

Localization algorithms with well-defined properties, such as the least squares (LS) 

algorithm and maximum-likelihood algorithm, are available for satellite-based GPS 

systems. In addition, there are various types of sequential filters, including formulations, 

which adaptively estimate some unknown parameters of the noise processes [Mis02, 

Kap96]. In particular, GPS has focused a great deal of attention on positioning algorithms 

based on TOA with considerable success. GPS can provide positioning accuracy ranging 

from tens of meters to centimeters in real time depending upon a user’s resources 

[Mis02].  In essence, these techniques are readily applicable to indoor location sensing 

systems. However, indoor location sensing involves quasi-stationary applications and a 

number of unreliable reference points for which the existing GPS algorithms, designed 

for mobile systems with a few reliable reference points, do not provide the optimum 

solution. 

Geometrical techniques are based on iterative algorithms that estimate the node 

position by formulating and solving a set of non-linear equations. When the statistics of 
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the ranging error, be it TOA or RSS, are not available a priori, the LS algorithms can 

provide the best solution. However, if the statistics of the ranging error are available, a 

WLS algorithm can be implemented, which weighs the range measurements with the 

variance of the respective error distributions. Thus the availability of the range error 

information can substantially improve the accuracy of the localization process. Again, it 

is important to realize that the distribution of the ranging error is directly related to the 

RF wireless propagation channel.  

2.4.2. Least Squares (LS) Algorithm  

Estimating a node’s position in 2(3) dimensions requires range information to at least 

3(4) anchors/RPs. For the sake of simplicity, we will provide an analysis for 2-

dimensional localization and an extension to higher dimensions can be easily obtained. 

Let [ ],x y=θ  be the sensor node’s x- and y-coordinates and let ,a a

i i i
x y =  φ  denote the 

coordinates of the ith anchor, where { }1, ,i M∈ … . The range estimate between the ith 

anchor and the sensor node is then given by 

( ) ( )2 2ˆ a a a

i i i i i i i id z x x y y zε ε= − + + = − + − + +θ φ ɶ ɶ ,                          (2.3) 

where 
i

ε  is the ranging error and 
i

zɶ  is additive measurement noise. Note that the 

statistics of 
i

ε  are not necessarily identically distributed. In indoor environments, the 

ranging error will experience different means and variances depending on the distances 

between the nodes and the blockage condition. Also for the sake of simplicity and noting 

that the errors induced by the channel are substantially more significant than 

synchronization errors, we assume that the nodes involved in localization are 

synchronized. Given M noisy measurements to respective anchors, it is possible to obtain 
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an estimate of the sensor node location θ̂ . Figure 2.2 shows an example of 2-dimensional 

localization with 3 noisy measurements from the respective anchors.  

The problem of LS localization is essentially to obtain a solution from a set of 

nonlinear equations given by [Kay93] 

( )
( ) ( )

( ) ( )

2 2

1 1

2 2

a a

a a

M M

x x y y

x x y y

 − + − 
 =  
 

− + −  

F θ ⋮ ,                                       (2.4) 

where the nonlinear problem in (2.4) requires minimizing the cost function given by 

[Kay93] 

( ) ( )ˆ ˆ ˆ
T

E      = − −     
θ d F θ d F θ ,                               (2.5)  

where T denotes the transpose of a matrix. In order to obtain a LS solution, we first 

linearize the set of nonlinear equations around 0θ . Linearizing ( )F θ  can be achieved by 

using first-order Taylor series expansion around 0θ  and retaining the first two terms, i.e., 

( ) ( ) ( )0 0≈ + −F θ F θ H θ θ ,                                       (2.6) 

where H is the Jacobian of F given by  
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For the 3-anchor example in Figure 2.2, the Jacobian is evaluated by computing the 

partial derivatives in (2.7), i.e., [Kay93] 
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The linearized LS solution is then given by [Kay93] 

1

0 0
ˆ ( ) [ ( )]T T−= + −θ θ H H H d F θ .                                      (2.9) 

This algorithm introduces errors when the linearized function does not accurately 

approximate the original nonlinear function.  Also, it requires an initial estimate of the 

unknown parameters, i.e., the initial estimate of the node location coordinates.  With a 

random initial estimate of the unknown parameters, this algorithm may converge to a 

local optimum, instead of a global optimum.  This problem can be somewhat alleviated 

by performing this algorithm iteratively with each successive estimate being closer to the 

optimum estimate, i.e., [Kay93] 

1
1

ˆ ˆ ˆ( ) [ ( )]T T
i i i

−
+ = + −θ θ H H H d F θ .                              (2.10) 

The iteration can be stopped when some criterion is met.  For example, for a given small 

tolerance σ , the iterative algorithm must stop if σ<−+ |)ˆ()ˆ(| 1 ii EE θθ . Alternatively, the 

algorithm can terminate after a maximum number of iterations has been performed. 



 26 

2.4.3. Weighted Least Squares (WLS) Algorithms 

In the case that the statistics of the ranging error are available, localization performance 

can be improved by applying a WLS technique. The WLS algorithm solution is formed 

as the vector θ̂  that minimizes the cost function [Kay93] 

ˆ ˆ ˆ( ) [ ( )] [ ( )]T
wE = − −θ d F θ W d F θ ,                                     (2.11) 

where }...{diag 1 Nww=W  is a diagonal weighting matrix with positive elements.  

Usually we choose small weights, where errors are expected to be large, and vice versa.  

Minimization of wE  yields the WLS estimator given by [Kay93] 

1
0 0

ˆ ( ) [ ( )]T T−= + −θ θ H WH H W d F θ ,                              (2.12) 

where it is assumed that the inverse of the matrix TH WH  exists. If the distance 

estimation error vector has a zero mean, i.e., 0e =}{E , we can obtain the minimum 

variance (MV) or Markov estimator, which is the best linear unbiased estimator (BLUE) 

by choosing 1−= eRW , where eR  is the correlation matrix of the distance estimation 

error vector [Kay93]. 

2.5. Practical Performance Considerations 

If the range measurements are corrupted by zero-mean normally-distributed random 

noise, the unbiased CRLB can be achieved through the use of WLS algorithms for 

identically and non-identically distributed errors, respectively. However, in the case that 

those measurements are biased, e.g., in indoor TOA estimation, applying WLS 

techniques can provide a sub-optimal solution. In order to implement these algorithms in 
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the indoor environments, the statistics of the bias must be incorporated. Obtaining the 

statistics of the bias in indoor environments requires extensive TOA-based ranging 

measurements and modeling campaigns [Als07b]. In addition, identification of NLOS on 

specific range measurements must be integrated with mitigation techniques that adjust the 

weights in WLS to improve the localization accuracy [Che99].  

Another factor affecting the quality of location estimation is the geometry of the 

anchors relative to the sensor node. GDOP is commonly used in localization applications 

to quantify the geometrical impact on precision. The GDOP expression has many 

different forms [Kap96], but a simple expression in terms of the angles between the 

anchors and the sensor node is given by [Spi01] 

( )
( ) 2

,

sin iji jj i

M
GDOP M φ

φ
>

=
∑ ∑

,                              (2.11) 

where M is the number of anchors involved in the localization process and φ  is the angle 

between each pair of anchors. An example illustrating the impact of geometry on the 

precision of localization is given in Figure 2.7. In this simulation example, the statistics 

of the ranging error between the node and the anchors are identical.  
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Figure 2.7: Effect of geometry on sensor node position estimation: (a) Good geometry – the 

anchors evenly surround the sensor node. As a result, the location accuracy is high since the 

GDOP is minimized according to eq (2.11) (b) Bad geometry – when the anchors are very 

close to each other GDOP is high and that results in lower location accuracy characterized 

by the “smearing” of the location estimates. 

 

In Figure 2.7 (a), the anchors are at 120
o
 relative to each other. While in Figure 2.7 (b), 

they are 20
o
 apart. The figure highlights the impact of geometry on the precision, where 

the effect of sensor node and anchor geometry can be clearly seen. The spreading of the 

ranging error in the 20
o
 case results in higher uncertainty. 

2.6. Cooperative Localization in WSNs  

2.6.1. Background 

The previous sections provided an understanding of the different traditional 

approaches to the localization problem. It is evident that the localization accuracy 

(a) (b) 
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depends on the ranging technique employed, deployment environment (which affects the 

ranging error statistics), and the relative geometry of the sensor node to the anchors. The 

major difference between traditional localization and WSN localization is cooperative 

localization. Cooperative localization refers to the collaboration between sensor nodes to 

estimate their location information. In traditional wireless networks, nodes can only range 

to anchors, as shown in Figure 2.8 (a). As a result, nodes that are beyond the coverage of 

sufficient anchors fail to obtain a location estimate. However in a cooperative WSN 

nodes do not need to have a single-hop connection to anchors in order to localize. 

Cooperative localization makes propagating range information throughout the network 

possible. Note that due to random deployment in a WSN some parts of the network may 

still be isolated or ill-connected, which further introduces limitations in position 

estimation, e.g., node (x1, y1) in Figure 2.8 (b). Obviously, increasing the sensor node 

density can reduce the probability of isolated sub-networks, but this approach has its own 

limitations. Note that with increased ranging information cooperative localization has the 

following advantages. The first is that the coverage of the anchor nodes to the sensor 

nodes increases substantially relative to the traditional counterpart. This is because in 

addition to node-anchor measurement, node-node measurements further propagate 

information across the network and makes localization possible. Second, the increased 

range information exchange between the nodes allows for improvements in localization 

accuracy. For example in situations where TOA-based ranging suffers in indoor 

environments, WSN introduce redundancy in range information and as a result the 

channel impairments can be effectively mitigated.  
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Figure 2.8: Cooperative localization concept in WSN. (a) Traditional wireless networks. (b) 

WSNs. Black circles are anchor nodes and white circles are “blind” sensor nodes. In WSNs 

the cooperation between the sensor nodes allows for increased information sharing. This 

specifically provides enhanced coverage and improvement in localization accuracy.  
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2.6.2. Cooperative Localization Techniques 

In general, there are two main approaches to node localization in WSNs. The first is 

centralized and the second is distributed. In both approaches absolute and relative 

localization is possible. Unlike relative localization, in absolute localization anchor nodes 

are needed in order to provide a global frame of reference. Anchors or beacons are sensor 

nodes that are aware of their locations (usually through GPS or pre-programmed during 

setup) and they are necessary for WSN applications that require localization with respect 

to an absolute global frame of reference, e.g., GPS. Depending on the desired application, 

either relative or absolute cooperative localization is possible. In this section we briefly 

provide an overview and highlight the differences between centralized and cooperative 

localization techniques.  

In centralized localization, information of each node in the network is determined 

centrally through a computer usually at one edge of the network. The range estimates 

between all node pairs in the network are forwarded to the processing unit, where a 

complex centralized algorithm estimates the location of each node in the network. Figure 

2.9 (a) illustrates the centralized approach. The advantage of this technique is that all 

ranging information between node pairs is available to the central processor. As a result, 

the processor has a top-level view of the connectivity of the network. The amount of 

information allows the centralized algorithm to generate more accurate localization 

results. The drawbacks, on the other hand, include traffic congestion and computational 

complexities, especially for larger sensor networks. In the former, the possibility of 

congestion that occurs close to the central processing unit due to information going back 

and forth can reduce the effectiveness of this approach. Similarly, the latter drawback 
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imposes constraints on the computation time needed to handle estimating the node 

positions in a large WSN.  

 

Figure 2.9: WSN localization: (a) centralized, (b) distributed. 

 

The second approach used in WSN localization is distributed in nature (see Figure 2.9 

(b)). The process is usually iterative, where sensor nodes attempt to localize themselves 

first and then aid the reminder of the nodes in the localization process. Distributed 

positioning algorithms provide the best alternatives so far in their approach. The 

algorithms are self-organizing and energy efficient.  

2.6.3. Challenges Facing Distributed Localization Algorithms 

In this dissertation, we will focus on distributed localization algorithms, mainly due to 

their simplicity in implementation and to their robustness to TOA-based ranging errors. 

In this subsection we briefly overview the major challenges facing WSN localization. 

These challenges can be categorized into network and channel parameters.  
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When considering network parameters, localization is mainly constrained by the size 

(i.e., the number of nodes and anchors), the topology, and the connectivity of the 

network. Network connectivity is determined by node density, which is usually defined 

as the number of nodes per square meter (nodes/m
2
). A network with a high node density 

exhibits improved localization performance compared to a sparse networks. Further, in 

sparse WSNs there is a high probability of ill-connected or isolated nodes and in such 

cases localization accuracy can be degraded substantially. Therefore, it is always 

desirable to increase the node density (higher connectivity information means a lower 

probability of ill-connected networks) to improve the accuracy of localization. However, 

with increased sensor nodes, the error can substantially propagate from one hop to the 

next, which can be a serious problem in WSN distributed localization algorithms. This 

phenomenon is known as error propagation and it is caused by the iterative nature of 

these distributed algorithms. When a node transforms into an anchor, the error in the 

range estimates used in the localization process impacts its position estimate. When other 

nodes in the network use this newly transformed anchor, the position error will propagate 

to the new node’s position estimate. Therefore, in several iterative steps, error 

propagation can substantially degrade the localization performance.  

The second and most limiting factor affecting WSN localization is the wireless RF 

channel. Effective cooperative localization hinges on the RF ranging technology and its 

behavior in the deployed environment. The TOA techniques have been widely accepted 

as the most accurate but their behavior varies significantly in different deployment 

environments. For example, deploying hundreds of nodes in outdoor environments 

presents different challenges relative to trying to locate sensors inside a building. In 



 34 

particular, WSNs in indoor areas face severe multipath fading and harsh radio 

propagation, causing large ranging estimation errors that impact localization performance 

directly. To develop practical and accurate cooperative localization algorithms, the 

behavior of the wireless channel must be first investigated and then integrated into the 

algorithm. Specifically, the localization algorithms must assess the quality of the ranging 

estimates and integrate that information into the localization process to further provide 

robust iterative performance. 
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Chapter 3 UWB TOA-based Ranging: 

Concepts, Measurements & Modeling 

3.1. Background 

Recently, UWB technology has been one of the major developments in the wireless 

industry with potential for high data-rate communication and precise TOA based ranging 

[Por03, Ghav04, Opp04]. Large bandwidth offers high resolution and signaling which 

allows for centimeter accuracies, low-power and low-cost implementation [Gez05]. 

Numerous potential applications have been identified for indoor localization in general 

and for UWB localization in particular [Gez05, Pah02, Fon02]. Depending on the nature 

of the application different ranging scenarios will be necessary for both traditional and 

WSNs. This means that scenarios will not be limited to indoor-to-indoor (ITI) ranging. 

Indeed for a variety of applications (e.g. firefighters, soldiers in hostile buildings) rapid 

deployment of beacon infrastructure surrounding and on top of buildings will be 

necessary. In these situations outdoor-to-indoor (OTI) and roof-to-indoor (RTI) will 

impose different challenges to UWB ranging (see Figure 3.1). 
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Figure 3.1: Indoor Ranging Scenarios. In many of the potential indoor geolocation 

applications sensor nodes will be deployed inside, outside and on top of buildings. As a 

result understanding the impact of those scenarios on TOA-based ranging is very important 

for accurate and reliable localization.  

The performance of TOA-based UWB ranging systems depends on the availability of 

the DP signal [Lee02, Pah98]. In indoor environments the DP can be detected in both 

LOS and NLOS. Similar to wireless communications terminology, NLOS refers to the 

absence of a physical LOS between the transmitter and receiver and not the absence of 

the DP. This means that in these situations the DP can be detected, albeit attenuated. In 

short distance LOS, the DP is always detectible and accurate UWB TOA estimates in the 

range of centimeters are feasible due to the high time-domain resolution [Chu03], 

[Ala03a]. The challenge is UWB ranging in indoor NLOS conditions, which can be 

characterized as dense multipath environments [Lee02, Pah98].  In these conditions, 

depending on the presence or absence of the DP, the ranging errors can vary significantly. 

Specifically in the presence of the DP, the dominant sources of error are multipath and 

propagation delay. Multipath error corrupts the TOA estimates due to the multipath 

components (MPC), which are delayed and attenuated replicas of the original signal, 
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arriving and combining at the receiver shifting the estimate. Propagation delay, caused by 

the signal traveling through obstacles, can further add a positive bias to the TOA 

estimates. Although UWB can mitigate multipath with the availability of excess 

bandwidth [Ala03a, Tar06] its ability to perform in the absence of the DP needs to be 

further investigated. In the absence of the DP, also referred to as Undetected Direct Path 

(UDP) in [Pah98, Pah06], Type 1 and Type 2 NLOS in [Den04] and late errors in 

[Lee06], range estimates are corrupted by larger positive biases which have a significant 

probability of occurrence due to cabinets, elevator shafts, or doors that are usually 

cluttering the indoor environment. Furthermore, mitigation of this problem through 

increasing the system bandwidth alone has its limitation [Pah06].  

Characterization of the UWB channels for ranging applications is different from 

communications [Pah02]. For the latter, the focus is on data rate and communication 

coverage through characterization of the delay spread and the pathloss of the total signal 

energy. However, the former requires special attention on the ranging accuracy, i.e. 

statistics of the ranging error, and ranging coverage. Characterizing the probability of DP 

blockage and the statistics of the error in the presence and absence of the DP provides an 

understanding of the challenges and limitations imposed by the multipath environment. 

For the ranging coverage, characterizing the pathloss-distance dependence of the DP in a 

given scenario and environment can provide practical indications of the maximum 

possible ranging distance [Als07a].  

UWB indoor propagation experiments have been carried out extensively [Mol05, 

Gha04, Muq06, Cho05], but these efforts focus mainly on the communication aspects of 

UWB. Several indoor propagation experiments with a focus on indoor ranging, be it 
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UWB or otherwise, have been reported in [Fon02, Lee02, Pah98, Ala03a, Tar06, Den04, 

Fal06, Ala06, Pat03, Hat06, Ala05, Low05], where experiments are usually limited to a 

floor or several rooms but do not address modeling the spatial statistics of NLOS ranging 

or ranging coverage. The only available ranging error models were provided in [Den04, 

Ala06] but are based on limited measurement data sets, and only the latter focuses on 

characterization of errors according to the availability of the DP. As a result a 

comprehensive measurement and modeling of the UWB TOA-based ranging in different 

indoor environments and scenarios is not available in the literature. These models are 

needed to provide a realistic platform for algorithm performance analysis. More 

importantly, they are necessary for determining localization performance bounds in 

NLOS cluttered environments [Qi06], [Jou06a] which can provide insight into the 

fundamental limitations facing indoor UWB localization in both traditional wireless 

networks and sensor networks. 

3.2. UWB TOA-based Ranging Concepts 

UWB TOA-based ranging can be achieved through different technologies. There are, 

however, two promising solutions, namely, Multi-band Orthogonal Division 

Multiplexing (MBOFDM) and single pulse transmission. In the former, the OFDM 

modulated signal contains parallel transmissions of signals that are modulated at 

orthogonally spaced frequency carriers. Specifically in the 802.15.3a MB-OFDM 

standard, the UWB band is divided into 14-sub-bands. Each sub-band provides ranging 

with 528 MHz bandwidth capability [Bet04]. In the latter technique very narrow time-

domain pulses have bandwidths in excess of 1 GHz provide even better time-domain 
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resolution [Lee02]. In this dissertation we will focus on the TOA-based ranging 

capabilities of these two promising systems. Specifically our results and analysis will be 

focused on two different system bandwidths 500MHz and 3 GHz resembling the MB-

OFDM and pulse-based respectively.  

One of the major factors determining the quality of TOA-based ranging in indoor 

geolocation is the ability to detect the DP between a RP and a MT in the presence of 

dense multipath. For the indoor multipath channel, the impulse response is usually 

modeled as, 
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where pL  is the number of MPCs, and kα , kφ and kτ  are amplitude, phase and 

propagation delay of the k
th

 path, respectively [Pah05].  When the DP is detected 
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τ  denote the DP amplitude and propagation 

delay, respectively.  Figures 2.4 and 2.5 provide sample measured channel profile and the 

relative amplitude and delay of the MPCs. The distance between the MT and the RP is 

DP DP
d v τ= × , where v  is the speed of signal propagation. In the absence of the DP, 

ranging can be achieved using the amplitude and propagation delay of the first Non-

Direct Path (NDP) component given by 
NDP
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must be less than the receiver dynamic range ρ  and the power of the DP must be greater 

than the receiver sensitivity ϕ  [Kri99]. These constraints are given by,  

1ρ ρ≤       (3.3a) 

ϕ>DPP       (3.3b) 

where ( )1020log
DP DP

P α= . 

3.2.1. Ranging Coverage 

The performance of UWB TOA-based ranging is then constrained by the maximum 

feasible distance where 
DP

P  can satisfy (3.3a) and (3.3b). This is analogous to the 

dependence of a communication system’s performance on the distance relationship of the 

total signal energy of all the detectable MPCs, or ( )10 1
20log

pL

T kk
P α

=
= ∑ .  In indoor 

environments, the distance-dependence of 
T

P , which determines the limitations of 

communication coverage, is usually predicted from experimental pathloss models of the 

total signal energy in different environments and scenarios [Dur98, Mol05, Gha04]. 

Similarly, the distance-dependence behavior of 
DP

P  is important in analyzing the physical 

limitations facing UWB TOA-based ranging. These indoor radio wave propagation 

measurements have focused mainly on determining the radio coverage in different 

environments. However, the reported results and models are not adequate for predicting 

the coverage of TOA-based UWB indoor geolocation systems because the performance 

in multipath rich indoor environments depends on the signal-to-noise (SNR) of the DP 

between the transmitter and the receiver. Unlike communication coverage which is 

related to the received power of all the MPCs in a given distance, ranging coverage is 
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related to the received power of the DP component. For a given system dynamic range, 

ρ , we define ranging coverage, cR , as the distance in which the maximum tolerable 

average pathloss of the DP is within ρ [Als07a]. This is represented by  

{ } 10max 10 log ( )
DP c

PL Rγ ρ= ≤      (3.4) 

where DPPL  is the average pathloss of the DP and γ  is the pathloss exponent. The 

pathloss behavior of the DP is distance-dependant but because of attenuation and energy 

removed by scattering its intensity decreases more rapidly with distance compared with 

the total signal energy [Siw03]. This means that for typical indoor multipath scattering 

environment communication coverage is greater than ranging coverage, 
c c

C R> . 

Operating out of ranging coverage causes large TOA estimation errors and performance 

degradation.  

In general, ranging coverage in indoor multipath environments depends on the 

channel condition between a pair of nodes. The channel condition is physically 

constrained by the environment and the scenario. The environment refers to the type of 

building such as residential, manufacturing or office. The scenario refers to the relative 

location of the node-node or anchor-node pair which can be grouped into the following: 

ITI, OTI, and RTI. In ITI ranging the pathloss behavior varies significantly between LOS 

and NLOS channel conditions. In the latter, ranging coverage is reduced due to 

penetration loss caused by the interior wall structures, which results in a higher DP 

pathloss exponent. Similarly OTI and RTI ranging imposes harsher constraints on the 

pathloss, due to the DP having to penetrate the outside walls and roof respectively, which 
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means that ITI OTI RTI

c c c
R R R> > [Als07a]. This poses a challenge specifically for indoor 

localization in ad-hoc and WSN applications. 

3.2.2. Ranging Error 

Ranging and localization are further constrained by the statistics of the ranging error. 

Ranging error is defined as the difference between the estimated and the actual distance 

or 

ˆ
DP

d dε = − .     (3.5)   

where d̂  is the estimated distance and 
DP

d  is the actual distance. In an indoor 

environment the MT experiences varying ranging error behavior depending on the 

relative location of the MT to that of the RP. More specifically it depends on the 

availability of the DP and in the case of its absence on the characteristics of the blockage. 

In this dissertation we categorize the error based on the following ranging states. In the 

presence of the DP, both (3.3a) and (3.3b) are met and the distance estimate is very 

accurate yielding 

ˆ
DP DP DP

d d nε= + +      (3.6a) 
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    (3.6b) 

where ( )mb ω is the bias induced by the multipath that dominates when the DP is present  

and it is a function of the system’s bandwidth, ω [Ala03a, Tar06]. 
pd

b  is the propagation 

delay imposed by the NLOS condition. n  is zero mean Gaussian measurement noise. 

Similar to wireless communications terminology, we will use the NLOS term to denote 
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the absence of a physical LOS between the transmitter and receiver and not the absence 

of the DP. This means that in these situations the DP can be detected, albeit attenuated.  

When the MT is within ranging coverage but experiences sudden blockage of the DP, 

also known as UDP [Pah98], (3.3a) is not met and the DP is shadowed by some obstacle 

burying its power under the dynamic range of the receiver. In this situation, the ranging 

estimate experiences a larger bias error compared to (3.6).  Emphasizing that ranging is 

achieved through NDP component, the estimate is then given by 

ˆ
NDP DP NDP

d d nε= + +      (3.7a) 

( ) ( )NDP m pd Bb b bε ω ω= + +     (3.7b) 

where ( )Bb ω  is positive, additive bias representing the nature of the blockage, and it 

dominates the error compared to measurement noise. Its dependence on bandwidth is 

through its impact on the energy per MPC. Higher bandwidth results in lower energy per 

MPC which increases the probability of DP blockage. Finally, when the user operates 

outside of the ranging coverage neither (3.3a) nor (3.3b) is met and large errors occur 

with high probability.  

Formally, these ranging states can be defined as follows, 

{ }cDP Rddd ≤== |ˆˆ
1ζ      (3.8a) 

{ }cNDP Rddd ≤== |ˆˆ
2ζ      (3.8b) 

{ }cNDP Rddd >== |ˆˆ
3ζ      (3.8c) 

{ }cDP Rddd >== |ˆˆ
4ζ      (3.8d) 
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In this dissertation we will focus on modeling the error statistics within the ranging 

coverage. The performance in 3ζ  is dominated by large measurement noise variations 

which means the significance of (3.6b) and (3.7b) diminishes [Jou06a]. We further 

assume that 0)( 4 ≈ζp  since from our definition in (3.4) the DP cannot be detected after 

the ranging coverage.  

3.2.3. Factors Affecting Ranging Coverage and Accuracy 

Both ranging coverage and accuracy are functions of system dynamic range, 

bandwidth, physical building environment and ranging scenario. Physical environment 

refers to the type of the building: residential, office or manufacturing floor. Ranging 

scenario refers to the location of the transmitter with respect to the receiver. Several 

scenarios are common in potential indoor geolocation applications. Figure 3.1 shows a 

typical multi-story building with three main ranging scenarios: ITI, OTI and RTI where 

the last two can be primarily used in firefighter or military applications where ad-hoc 

deployments are more practical. Ranging coverage is affected directly through the 

attenuation induced on the DP which is dependent on the environment and scenario. For 

example, residential environments, primarily composed of wooden structures, pose 

different attenuation characteristics compared to office buildings which are composed of 

concrete and metallic beam structures. In addition penetration loss due to exterior walls is 

higher than interior walls which mean that ITI, OTI and RTI must impose different 

physical constraints on the ranging performance. The impact of ranging environment and 

scenarios on the accuracy, however, can be attributed to multipath and probability of DP 

blockage. The harsher the indoor environment the higher the multipath error and the more 

likely the DP would be shadowed by obstacles. Changes in system bandwidth affect 
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multipath and probability of DP blockage but increasing the system bandwidth arbitrarily 

might reduce the former but emphasize the impact of the latter. Finally the impact of 

SNR or dynamic range is rather intuitive but in reality UWB systems, due to FCC 

regulations, face power constraints which make ranging under these conditions 

challenging. 

3.3. UWB Measurement Campaign 

3.3.1. Background 

Frequency domain measurement techniques have been previously employed to 

characterize the channel impulse response [Gha04, Cho05, Pah05, How90]. The 

measurements provided characterization of communication parameters such as the RMS 

delay spread and power-distance relationship. In this dissertation we follow the same 

techniques but measure the large-scale, spatial characteristics of the DP, mainly ˆ
DP

α  and 

ˆ
DP

τ  which can be used to examine the ranging coverage (pathloss characterization) and 

accuracy, respectively. In the absence of the DP we measure the first detected path, ˆ
NDP

τ  

and analyze the probability of blockage and the error statistics in this condition. 

3.3.2. Measurement System 

The measurement system, similar to [Gha04, Cho05, How90], employs a 40GHz 

Agilent E8363B vector network analyzer (VNA) that is used to sweep the frequency 

spectrum of 3-8 GHz with 312.5 KHz sampling interval (16001 sampling points). The 

VNA measures the S21 S-parameter which is the transfer function of the channel.  The 

transmitter and the receiver are a pair of disc-cone UWB antennas which are connected to 
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the VNA by low-loss, high quality doubly shielded cables. On the receiver side a low-

noise amplifier (LNA) is connected between the antenna and the VNA. Figure 3.2 

illustrates the measurement system. On the transmitter side a 30 dB power amplifier with 

the frequency range of 3-8GHz further improves the dynamic range. 

 

Figure 3.2: UWB frequency domain measurement system. 

 

 The transmitter and receiver heights were fixed to 1.5 meters. The overall measurement 

system has a dynamic range of 120 dB. The undesirable effects of the cables, LNA, and 

antennas are removed through system calibration. 

3.3.3. Measurement Locations and Procedure 

A comprehensive UWB propagation campaign was performed in 4 buildings: 17 

Schussler Road - residential house, Fuller Laboratory - modern office, Norton Company - 

manufacturing floor and Atwater Kent (AK) - old office; all in Worcester, MA.  

17 Schussler Road is a fairly big house with wooden exterior walls and sheetrock interior 

walls. Rooms have dimensions on the order of a few meters and contain furniture such as 
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couches, tables, chairs, etc. Fuller Laboratories is a modern building characterized by 

brick external walls with some aluminum siding on two sides, metallic window frames 

and doors.   

Table 3.1: Summary of the measurement database  

Environment Scenario 
TX or RX 

Location 
Description of the scenarios 

Max. 

meas. 

range 

(m) 

Number of 

Meas. 

Entrance I/II Multi-floor – close to the door 336 
OTI 

Arbitrary  Multi-floor – away from door 
45 

150 

LOS Open area around entrance 24 120 

Inter-floor – open area 72 

Office (Fuller 

Laboratories) 
ITI 

NLOS 
Inter-floor – close area 

23 
54 

Entrance I Multi-floor – front 186 
OTI 

Entrance II Multi-floor – side 
15 

186 

Same-floor 108 

Residential 

(17 Schussler 

Rd.) ITI NLOS 
Inter-floor 

10 
66 

Entrance I Same-floor – close to the door 120 
OTI 

Entrance II Same-floor –  away from door 
38 

126 

LOS I Open area with machinery 120 

Factory 

(Norton 

Company) ITI 
LOS II Straight walkway 

40 
126 

OTI Entrance I /II Same-floor – main& side  27 132 

ITI NLOS Rooms/corridors of 3
rd

 floor 26 90 

AK3C Corridors of 3
rd

 floor 306 

offices Small rooms 204 

Office 

(Atwater Kent 

Laboratories) RTI 

labs Large room 

17 

528 

Total number of Measurements 3030 

 

The dimension of the building is on the order of a few tens of meters and contains 

several computer labs, department offices and lecture halls. Norton Company is a 

manufacturer of welding equipment and abrasives for grinding machines with building 

dimensions on the order of a few hundred meters and the floor is cluttered with machines, 

equipment and metallic beams. The AK laboratory is a three floor building which has a 

traditional office structure consisting of rooms that have dimensions in the order of few 
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meters. This building particularly has been used for measurements from the roof due to 

ease of accessibility.  

In the campaign, three ranging scenarios were measured: ITI, OTI and RTI. Table 3.1 

describes the details of the measurement locations. ITI and OTI measurements were 

conducted in all buildings. While RTI measurements were only conducted in AK 

building. Figure 3.3 shows sample floor plans with the measurement locations. In each 

measurement the location of the transmitter was fixed while the receiver was moved 

along certain grid points.   

 

Figure 3.3: Sample measurement floor plans. (a) Fuller OTI/ITI (b) Schussler OTI/ITI (c) 

Norton ITI (d) AK RTI. Squares are Tx locations and dots are Rx locations 

 

(b) 
(a) 

(c) 
(d) 
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Care was taken to conduct the measurements in a variety of indoor NLOS conditions 

ranging from harsh obstacles such as elevator shafts, metallic doors and concrete walls to 

other lighter wall structures as this would provide a wide variety of performance 

conditions.  

Measuring the behavior of the DP requires accurate a priori knowledge of the 

transmitter-receiver distances. In the variety of locations we measured, this proved to be a 

challenging task since there was no direct LOS. In order to cope with this problem we 

devised a practical method to grid the building floor with transmitter and receiver 

locations.  We created a 3 dimensional Cartesian coordinate system with 1 meter as its 

unit.  Then we placed grid points on the floor in the positions that we were interested to 

measure, and assigned x-, y-, and z-coordinates to each point. An extensive amount of 

time and effort was placed in planning and carrying out this procedure in order to 

minimize the error incurred from physically measuring the distance. For example, if the 

coordinates of the transmitter and the receiver are given by ),,( AAA zyx  and ),,( BBB zyx , 

respectively then the distance can be easily found using the Euclidian relation 

222 )()()( BABABAAB zzyyxxd −+−+−= .   (3.9) 

3.3.4. Post-Processing 

In the post-processing of channel measurement data, the time-domain channel 

impulse response is obtained by first passing the frequency domain measurements 

through a Hanning window in order to reduce the noise side lobes. Even though some 

other window functions such as the Kaiser window provides higher dynamic range, the 

Hanning window is selected for its much faster decaying side-lobes which significantly 
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reduces the interfering effect of strong multipath components in peak detection. The 

windowed frequency response is then converted to time-domain through the inverse 

Fourier transform (IFT). For the analysis in this dissertation, 500 MHz and 3 GHz 

bandwidths were parsed out of the measured frequency domain data with a center 

frequency of 4.5 GHz. The channel transfer function was divided into these frequency 

bands in order to reflect different potential UWB systems, namely, MBOFDM and single 

pulse transmission. In addition, the impact of bandwidth on the pathloss exponent of the 

DP component and the ranging accuracy can be evaluated. Specifically, 500MHz of 

bandwidth provides time-domain resolution in the order of 500 2 0.6
MHz

t ns m∆ = ≈ , while 

3 GHz provides 3 0.3 0.1
GHz

t ns m∆ = ≈ . The desired parameters ˆ
DP

α  and ˆ
DP

τ are detected 

from the time-domain channel profile using a peak detection algorithm. The threshold for 

peak detection is set to -120 dB which is the system’s noise threshold. Identifying the 

presence or absence of the DP required analyzing the power in the bin of the expected 

TOA of the DP which is related to the time-domain resolution, t∆ , for that bandwidth. If 

a peak is detected within the bin, DP is declared present. Otherwise, DP is declared 

absent. 

3.4. Modeling the Pathloss 

Using the same established pathloss modeling approach used in the literature, 

[Gha04, How90, Pah05], we attempt to characterize the distance-power dependance of 

the measured DP which we believe is important in assessing the ranging coverage and the 

performance of UWB indoor geolocation systems [Als07a]. The distance-power gradient 



 51 

is determined from measurement data through least-square (LS) linear regression 

[Pah05]. The pathloss expression in decibels at some distance d is given by,  

0

0

100 ,log10)( dd
d

d
PLdPL ≥+








+= χγ     (3.10) 

where 0PL  is the pathloss at 10 =d m, ( )010 /log10 ddγ  is the average pathloss with 

reference to 0d  and γ  is the pathloss exponent which is a function of the measured 

scenario, building environment and bandwidth; χ  is the log-normal shadow fading. 

We present our results by grouping different ranging scenarios and environments.  

For both ITI and OTI we provide models for Norton, Fuller, Schussler and AK buildings. 

For RTI we have only modeled AK building. Figures 3.4 to 3.6 show sample measured 

scatter plots of the pathloss as a function of TX-RX separation for different buildings and 

ranging scenarios.  

 

Figure 3.4: Pathloss scatter plots in Fuller ITI at 3 GHz bandwidth 
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Figure 3.5: Pathloss scatter plots in Norton OTI at 500 MHz bandwidth. 

 

 

Figure 3.6: Pathloss scatter plots in AK RTI at 500 MHz 
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For each figure, the straight line is the best-fit LS linear regression. Like many other 

models in the literature, the value of 0PL  is found through fitting the data to (3.10). We 

observed that the intercept value changed according to the ranging scenarios and building 

environments. Therefore, we measured 0PL  at 1 m in free space to be around 42 dB and 

added another parameter to compensate for the penetration loss. Therefore the 

modification to the model in (3.10) is given by,  

0 10 0

0

( ) 10 log ,p

d
PL d PL PL d d

d
γ χ

 
= + + + ≥ 

 
   (3.11) 

 where 
p

PL  is the penetration loss and it varies according to the measurement condition. 

Table 3.2 provides summary of the pathloss results. Several observations can be made 

from the table and the figures.  

 

Table 3.2: Pathloss parameters 

Direct Path 

500 MHz 3 GHz 

Total Signal 
Scenario Environment PLp(dB) 

γ χ (dB) γ χ (dB) γ χ (dB) 

Fuller (LOS) 0 3.2 8.9 3.3 7.1 2.4 5.5 

Norton (Mixed) 0 3.5 8.5 4.5 9.1 2.6 3.4 

Schussler (NLOS) 6 3.4 7.9 4.0 8.4 3.0 4.6 
ITI 

AK (NLOS) 7.5 5.4 6.2 5.6 8.5 3.6 6.2 

Fuller 14.3 3.4 13.7 3.7 14.1 2.2 7.7 

Norton 8.7 3.9 7.8 5.0 10.1 3.3 4.4 

Schussler 7.6 4.1 10.5 4.2 11.1 3.2 6.1 

OTI 

AK 10 4.6 8.7 5.1 8.9 3.1 3.2 

RTI AK 24.5 4.3 7.6 5.3 8.8 2.9 1.7 

 

The first is that for all the measurement data the pathloss exponent is higher for the 

DP relative to the total signal power, which justifies our modeling approach. Second, the 

DP power experiences greater fluctuations around the mean pathloss as compared with 
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the total signal counterpart. This observation makes sense because small variations on the 

transmitter location affect the DP power more than the total power. Third, 
p

PL  changes 

for the different penetration scenarios. In ITI scenarios Schussler NLOS suffers 6 dB 

penetration loss due to the walls compared to 7.5 in AK. Norton ITI measurements are a 

mixture of LOS/NLOS because the manufacturing floor contained scattered machines 

and the impact can be clearly seen on the pathloss exponent when the bandwidth 

increases, hence higher attenuation. Results of OTI measurements show that Fuller and 

AK exhibit the largest penetration loss mainly because the signal had to penetrate a 

heavier building construction when compared with Norton and Schussler. In addition the 

pathloss exponents in AK are large mainly because the measurement locations were 

conducted inside a metal shop on the edge of the building and between concrete corridors 

and rooms. AK in general imposes a very challenging environment for ranging because 

of the building material and dense cluttering. RTI measurements experienced the largest 

penetration loss and high pathloss exponent. Finally, note that the harsher the indoor 

environment the higher the pathloss exponent difference when moving to a higher system 

bandwidth. This is mainly due to the fact that larger system bandwidths provide better 

time domain resolution at the cost of reduced power per multipath component. This 

implies that the advantage of higher time-domain resolution comes at a cost of shorter 

ranging coverage. 
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3.5. Modeling the Ranging Error 

3.5.1. Spatial Characterization 

The goal of our modeling efforts is to provide tools to simulate the spatial ranging 

error behavior in indoor environments for two popular UWB system bandwidths. 

Ranging errors have been modeled using different approaches. In [Ala03b] and [Den04] 

they were modeled as a combination of Gaussian and exponential distributions using 

Ray-Tracing (RT) simulation software and through measurements, respectively. The 

latter refined the technique of the former and added an additional classification of 

extreme NLOS. The main problem with this approach is that it is not based on any 

system model, thereby lacking physical significance. Alternatively, our modeling 

approach will focus on the behavior of errors in presence and absence of DP similar to 

[Ala06]. 

The spatial characteristics of the ranging errors are determined by the behavior of the 

biases which are random due to the unknown structure of the indoor environment and the 

relative location of the user to them. Since the errors are highly dependent on the absence 

or the presence of the DP, we will model it according to the error classification in Section 

3.2. Further, in order to model and compare the behavior in different building 

environments and scenarios, the normalized ranging error will be modeled instead, this is 

given by  

( )d̂ d

d d

εψ
−

= = .          (3.12) 

The range error experienced in an indoor environment can then be modeled by combining 

the conditions in (3.6) and (3.7) through the following expression 
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      ( )m pd B
G Xψ ψ ψ ψ= + + ,       (3.13) 

where 
m

ψ  is the normalized multipath error that exists in both the presence and absence 

of the DP. 
pd

ψ  is the normalized propagation delay induced error. 
B

ψ  is the normalized 

error due to DP blockage. In order to distinguish between the error behavior in LOS and 

NLOS we use a Bernoulli random variable, G . That is, 

0,

1,

LOS
G

NLOS


= 


,       (3.14) 

where ( ) ( )0p G p LOS= =  is the probability of being in LOS and ( ) ( )1p G p NLOS= =  

is the probability of being in NLOS. Similarly X  is a Bernoulli random variable that 

models the occurrence of DP blockage given by 

1

2

0,

1,
X

ζ
ζ


= 


     (3.15) 

where ( ) 21 ( )p X p ζ= =  denotes the probability of the occurrence of blockage, while 

( ) 10 ( )p X p ζ= = denote the probability of detecting a DP. Again we clarify that our 

modeling approach specifically focuses on the DP and not the traditional definition of 

NLOS used for communications. This means that a MT and a RP separated by a wall, for 

instance, is considered NLOS, but does not necessarily mean absence of the DP. In the 

remainder of the dissertation, ranging error, bias and normalized error will be used 

interchangeably and it will refer to (3.13). 

3.5.2. Probability of DP Blockage 

The probability of a MT within the ranging coverage of a RP to experience DP 

blockage depends on the system SNR, bandwidth, building environment, ranging 
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scenario and the relative location and density of scattering objects. Table 3.3 shows the 

measured blockage probabilities, )( 2ζp .  

Table 3.3 Probabilities of the presence and absence of the DP 

Scenario Environment 500 MHz 3 GHz 

  % 1ζ  % 2ζ  % 1ζ  % 2ζ  

Fuller 10 90 2 98 

Norton 96 4 83 17 

Schussler 89 11 87 13 
ITI 

AK 39 61 32 68 

Fuller 42 58 39 61 

Norton 57 43 24 76 

Schussler 77 23 60 40 
OTI 

AK 40 60 22 78 

RTI AK 58 42 37 63 

 

Several observations can be concluded. First, a positive correlation between the 

system bandwidth and the blockage probability )( 2ζp  exists due to lower energy per 

MPCs in higher system bandwidth. Secondly, as expected, DP blockage increases from 

ITI, to OTI and RTI. Attenuation due to penetration from exterior walls and ceiling 

results in higher )( 2ζp . Third, blockage is highly correlated with the building type. In 

residential environments blockage probability is low since the interior is composed of 

wooden structures with few metallic objects (e.g. a fridge, laundry room, etc.). Office 

buildings, however, pose harsher conditions with thicker walls, metallic beams, vending 

machines, metallic cabinets, shelves and elevator shafts resulting in a substantial 

blockage up to 90%, see Fuller and AK (ITI/OTI). Also ITI measurements in the 

manufacturing floor highlight the impact of occasional clutter of machineries. Finally it is 

worth mentioning that these results were measured using a 120 dB dynamic range 

provided by the external amplifiers and LNA extending the measured range. In realistic 
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UWB systems, unfortunately, this is truly not the case, which means that the results in 

here can be seen as a lower bound. 

3.5.3. Behavior in the Presence of DP 

Ranging in the presence of the DP occurs in LOS and NLOS environments. In the 

former the experienced errors are small and mainly due to the multipath. In the latter 

however, the impact of multipath is further emphasize through scattering (diffractions) 

and DP attenuation. Furthermore propagation delays, albeit a nuisance parameter in some 

instances can in some situations cause further degradation on the ranging estimate. The 

measurement results of the ranging error in LOS scenarios revealed that the impact of the 

multipath can be modeled through a normal distribution since the DP is available and the 

error deviates in both directions relative to the actual distance. In addition normality of 

the ranging error in this condition has been reported in [Ala03b, Ala06]. The error 

distribution can then be explicitly given by,  

( ) ( )
2

2

2

1
| 0 exp

22

m

m
m

f G
ψ µ

ψ
σπσ

 −
= = − 

  

,  (3.16) 

with mean 
m

µ  and standard deviation 
m

σ  specific to the LOS multipath induced errors. 

Figure 3.7 further confirms the normality of errors in this condition.  
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Figure 3.7: Norton ITI at 500 MHz bandwidth: confirming the normality of the biases in 

LOS conditions 

 

A similar observation of the multipath effect in indoor LOS environments has been 

reported through measurements [Ala06]. In NLOS scenarios, when the DP is present, the 

amount of propagation delay and multipath due to obstructing objects such as wooden 

walls causes the biases to be more positive. The results show, see Figure 3.8, that the 

spatial characteristics retain the statistics of the LOS counterpart but with a higher mean 

and standard deviation.  
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Figure 3.8: Schussler ITI NLOS: mean of biases is larger than LOS 

 

According to these results we model the normalized ranging error similar to (3.16) but 

with emphasis on the condition. This is given by,  

( ) ( )
2

2

,

2

,
,

1
| 1, 0 exp

22

m pd

m pd
m pd

f G X
ψ µ

ψ
σπσ

 −
 = = = −
 
 

.  (3.17) 

The subscripts in (3.17) specify the contributing error factors. Table 3.4 provides the 

modeling parameters of all the scenarios and environments in the presence of the DP. 
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 Table 3.4:  DP normal distribution modeling parameters for normalized ranging error 

Scenario Environment 500 MHz 3 GHz 

  mµ  
mσ  

mµ  
mσ  

Fuller (LOS) 0 0.028 0 0.006 

Norton (LOS) 0 0.022 0 0.007 

 ,m pdµ  
,m pdσ  

,m pdµ  
,m pdσ  

Fuller (NLOS) 0.058 0.028 0.003 0.01 

Schussler (NLOS) 0.029 0.047 0.014 0.016 

ITI 

AK (NLOS) 0.023 0.020 0.009 0.004 

Fuller 0.015 0.017 0.002 0.011 

Norton 0.019 0.029 0.002 0.015 

Schussler 0.041 0.045 0.011 0.013 
OTI 

AK 0.034 0.023 0.012 0.004 

RTI AK 0.029 0.041 0.012 0.012 

 

The results show a positive correlation between the statistics of the normal distribution 

with the complexity of environment and/or ranging scenario. Negative correlation can be 

seen between the statistics and the system bandwidth due to reduction of multipath error 

in higher bandwidths. 

3.5.4. Behavior in the Absence of DP 

The shadowing of the DP impacts the error behavior in several ways. First, only 

positive errors occur, since the blockage induces a higher positive bias that dominates 

compared to the multipath counterpart. Second, there are occasionally large positive 

range errors that occur due to heavier indoor constructions such as elevator shafts, 

clustering of cabinets or even metallic doors. Third, the diversity of blocking material in 

indoor environments means that the spatial distribution of errors will in general exhibit a 

heavier positive tail. By examining the PDF of the errors in this condition, we observed 

that different subsets of the data showed varying tail behavior. The “heaviness” of the tail 

depended on the ranging environment and scenario. Thus harsher blockage conditions, 
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i.e. higher number of blocked MPCs, exhibited heavier tails. This critical observation led 

us to consider distributions with different tail characteristics.  

In order to model the measurement data accurately we select distributions that are 

known to have the ability to fit data with different tail behavior. Among them are 

exponential, lognormal, Weibull and Generalized Extreme Value (GEV). The class of 

GEV distributions is very flexible with a specific tail parameter that controls the shape 

and size of the tail in addition to the location and scale parameters. It has been applied to 

model extreme events in hydrology, climatology, finance and insurance industries 

[Mar05], [Ber04].  

In order to determine the goodness-of-fit of these different distributions to the data we 

apply the Kolmogorov-Smirnov (K-S) hypothesis test at 5% significance level. In 

addition we fit the data to the normal distribution to verify its lack of suitability in 

characterizing the spatial distribution of the ranging error in this condition. This is 

specifically important since normality is usually assumed as a model for the ranging error 

in localization performance analysis. Table 3.5 compares the passing rates of the K-S test 

for the mentioned distributions. 

Table 3.5: Passing rate of K-S hypothesis test at 5% significance level 

Scenario Normal Exponential GEV Lognormal Weibull 

 
500 

MHz 

3 

GHz 

500 

MHz 

3 

GHz 

500 

MHz 

3 

GHz 

500 

MHz 

3 

GHz 

500 

MHz 

3 

GHz 

ITI Fuller 70.8 68.8 85.1 83.3 91.7 86.4 90.7 88.1 85.1 85.3 

ITI Norton 76.3 75.9 70.7 62.7 88.1 86.3 87.3 82.4 83.2 79.8 

ITI Schussler 83.2 72.3 67.8 66.5 85.7 82.8 84.7 78.7 85.1 74.8 

ITI AK 84.4 75.5 67.7 74.6 91.6 84.7 91.7 76.2 92.8 76.9 

OTI Fuller 80.8 79.2 85.2 88.5 92.9 90.8 94.0 92.7 89.8 91.4 

OTI Norton 80.2 83.1 75.9 71.4 92.1 93.9 91.6 90.5 86.5 88.1 

OTI Schussler 77.3 86.9 68.7 71.2 91.9 94.5 89.0 93.4 82.7 89.7 

OTI AK 80.1 78.1 69.1 76.2 89.1 84.5 88.3 89.4 83.1 85.5 

RTI AK 85.4 87.6 72.3 76.3 96.9 94.0 93.9 95.4 89.8 91.6 
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The results show that both the normal and exponential distributions are not valid models 

for the ranging error in the absence of the DP because they are consistently poor in 

passing the K-S test, below 80% for most data sets. Similarly for the Weibull distribution 

most of the passing rate is below 90%. Comparing these results to GEV and lognormal, it 

is possible to see that their passing rate is above 90% for most of the data sets. Only in 

ITI Schussler is their performance similar to the Weibull and normal distributions; which 

is mainly due to the lightness of the tail. In addition, GEV distribution passing rates are 

close to the lognormal. For some data sets, the difference between their passing rates is 

less than 2%. As a result these two distributions are the best candidates for modeling the 

tail behavior of errors in the absence of the DP. The GEV distribution models the tail 

behavior with three degrees of freedom, compared with two in the lognormal distribution, 

providing enhanced flexibility in capturing the error statistics in a variety of 

circumstances. It is defined as 

ξ
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for 0/)(1 >−+ σµξ x ; where µ , σ  and ξ  are the location, scale and shape parameters, 

respectively. GEV combines three simpler distributions in the form given in (3.18). The 

value of the shape parameter specifies the type of the distribution. Type I, also known as 

Gumbel, corresponds to 0=ξ . Type II, Frechet, corresponds to 0>ξ . Type III, Weibull, 

corresponds to 0<ξ . The Gumbel and Weibull in the GEV sense correspond to the 

mirror images of the usual distributions [Cas88]. The normalized error data in all the 

measurement sets in the absence of the DP fit the Frechet type of the GEV. Although this 

is a candidate fit to our data we choose lognormal instead for the following reasons. First 
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the K-S test performance of the lognormal distribution is close to the GEV, which attests 

to the ability of the former in modeling the data with two degrees of freedom compared to 

three in the latter. Second the simplicity of the lognormal model compared to the GEV 

makes its application in performance bounds analysis, e.g. Generalized-CRLB, 

analytically more feasible, see [Qi06]. 

The lognormal model is then given by,  

( ) ( )2

, ,

22
, ,, ,

ln1
| 1, 1 exp

22

m pd B

m pd Bm pd B

f G X
ψ µ

ψ
σψ πσ

 −
 = = = −
 
 

  (3.19) 

where , ,m pd B
µ and , ,m pd B

σ are the mean and standard deviation of the ranging error’s 

logarithm. The subscripts emphasize the contributing factors. Figure 3.9-3.11 provides 

sample measurement results confirming the lognormal behavior of the error.  

 

Figure 3.9: Schussler OTI at 3 GHz bandwidth: confirming the lognormality of the 

measured normalized ranging error 
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Figure 3.10: Fuller OTI at 500 MHz bandwidth: confirming the lognormality of the 

measured normalized ranging error 

 

Figure 3.11: AK RTI at 3 GHz bandwidth: confirming the lognormality of the measured 

normalized ranging error 



 66 

 

The estimated parameters of the lognormal distribution, obtained using Maximum 

Likelihood (ML) estimation techniques, for different ranging scenarios and environments 

are given in Table 3.6. Similar observations compared with earlier models can be 

observed for the correlation between the error statistics with bandwidth and ranging 

conditions.  

 

Table 3.6: Lognormal distribution modeling parameters of the normalized ranging error in the 

absence of the direct path 

Scenario Environment 500 MHz 3 GHz 

  , ,m pd Bµ  
, ,m pd Bσ  

, ,m pd Bµ  
, ,m pd Bσ  

Norton (NLOS) -3.13 0.62 -4.29 0.45 

Fuller (NLOS) -1.68 0.88 -1.90 1.13 

Schussler 

(NLOS) 
-1.59 0.49 -2.72 0.53 

ITI 

AK (NLOS) -2.17 0.45 -2.89 0.81 

Fuller -2.33 0.75 -2.99 1.17 

Norton -2.78 0.65 -3.82 0.52 

Schussler -2.03 0.58 -3.16 0.45 
OTI 

AK -2.32 0.51 -3.11 0.77 

RTI AK -1.99 0.54 -3.01 0.61 

 

However there are several scenarios where the extent of the correlation diminishes. For 

example Fuller OTI and ITI contain measurements in dense cluttered environments and 

increase in system bandwidth has limited impact on the parameters of the model. This is 

mainly due to ranging conditions that induce large blockage errors that are effectively 

insensitive to bandwidth changes, e.g. elevator shafts. 
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3.6. Simulation Results 

3.6.1. Predicting Ranging Coverage 

In order to predict the ranging coverage for different environments and scenarios we 

simulated the average DP pathloss using (3.11) according the model parameters in Table 

3.2  and calculated 
c

R  according to the definition in (3.4) for different values of system 

dynamic range, ρ . Figure 3.12 provides results of ranging coverage simulations against 

different system dynamic ranges for 500 MHz and 3 GHz system bandwidths.  
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Figure 3.12: Simulating ranging coverage for system bandwidths (a) 500 MHz (b) 3 GHz. 

The increase in bandwidth decreases ranging coverage due to lower energy per MPC.   

 

(a) 

(b) 
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As reflected in the measurement results, RTI faces the toughest constraint for ranging. 

The simulation reveals that for a dynamic range of around 100 dB and 500 MHz 

bandwidth, ranging coverage for AK RTI and OTI is less than 10 meters. For other OTI 

environments it is around 15 m; while ITI varies between 25-60 m depending on the LOS 

or NLOS conditions. Another observation from the simulation results is that the change 

in system bandwidth reduces the coverage substantially. This is less the case for pure 

LOS scenarios where the coverage is almost the same for both bandwidths, see ITI Fuller. 

The other ITI environments, however, are mixed LOS/NLOS for Norton and pure NLOS 

for Schussler and AK and that can be clearly observed in the change of their coverage 

between the bandwidths. 

3.6.2. Ranging Error Simulation 

The models presented in section 3.5, provide a very simple, yet realistic and flexible 

approach to statistically characterizing ranging errors experienced in typical indoor 

environments. The model parameters G  and X  provide control over the LOS/NLOS and 

the presence/absence of the DP conditions, respectively. The model distribution 

parameters then provide control over the error experienced in each condition. In order to 

further validate our modeling approach we simulate the normalized ranging error 

according to the models in section 3.5 and compare them with the measurements. For 

each ranging condition and scenario we run Monte Carlo simulations with 10,000 

normalized range error samples. We focus on NLOS conditions since performance in 

LOS is intuitive and has been addressed sufficiently in the literature. Therefore we set 

( )1 1p G = =  and for each sample, we run a Bernoulli trial with ( ) ( )21p X p ζ= = , from 

Table 3.3, where the outcome determines the distribution, (3.17) or (3.19). The simulated 
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samples are stacked in a vector and their CDF is compared to the measurement data set in 

that specific scenario and environment. Figure 3.13 and 3.14 provide several examples 

comparing the results of simulation to the measurements.  
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Figure 3.13: CDF of normalized ranging error: simulation vs. measurements. (a) Schussler 

OTI (b) AK RTI  

 

(a) 

(b) 
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Figure 3.14: CDF of normalized ranging error: simulation vs. measurements. (a) Norton 

OTI (b) Fuller OTI 

(a) 

(b) 
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The models show close agreement with the measurements. This is mainly because the 

model has the ability to statistically describe the error in 1ζ  and 2ζ  independently. This 

approach provides flexibility in modeling the factors contributing to the error, which will 

be different depending on the ranging situation. For instance, if several MTs are scattered 

in an indoor environment and RPs are fixed in different locations in and surrounding the 

building then the ranging error PDF of all the ranging estimates can be described 

according to these models. The distribution will vary from heavy-tailed to normally 

distributed as the range conditions change from extreme NLOS to LOS. 

3.7. Conclusion 

In this chapter we have described a comprehensive UWB measurement and modeling 

campaign that was aimed at characterizing the spatial behavior of indoor TOA-based 

ranging. Spatial characterization involved analyzing and modeling the coverage and 

accuracy of ranging in indoor environments. The measurement involved four different 

building environments: residential, traditional office, modern office and manufacturing 

floor and three different ranging scenarios ITI, OTI and RTI. We showed that ranging 

coverage is inversely related to the bandwidth of the system and the harshness of the 

ranging scenario and environment. In addition, ranging error can be modeled as normal 

or lognormal in the presence or the absence of the DP, respectively. Furthermore, the 

modeling parameters are affected by the ranging scenario, environment and system 

bandwidth. 

The modeling results in this dissertation provide an experimental analysis of the 

physical constraints imposed by the dense cluttered indoor environments on TOA-based 
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UWB ranging. In addition the models should help researchers obtain localization bounds 

specific to indoor environments, which are important in assessing and evaluating the 

limitations facing different localization algorithms. 
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Chapter 4 Cooperative Localization Bounds 

for Indoor UWB WSNs  

4.1. Introduction 

  As we have seen from chapter 3, TOA-based ranging in indoor environments is 

constrained by ranging coverage and error. In addition the indoor boiling environment 

can cause limitation to OTI and RTI ranging due to signal penetration through the wall 

and roof, respectively. This can be a major challenge for firefighter or military 

applications. In these indoor cooperative localization applications, a small number (M) of 

sensors called anchors are deployed outside surrounding a building where they obtain 

their location information via GPS or are pre-programmed during setup. The N un-

localized sensor nodes are then deployed inside the building, e.g. fire fighters or soldiers 

entering a hostile building, who with the help of the M anchors attempt to obtain their 

own location information. In traditional approaches, such as geometrical triangulation 

techniques, the exterior anchor nodes usually fail to cover a large building which makes 

localization ineffective. In addition, the problems of indoor multipath and NLOS channel 

conditions further degrade the range estimates yielding unreliable localization 

performance [Pah02]. Implementation of the cooperative localization approach, as seen in 

Figure 4.1, extends the coverage of the outside anchors to the inside nodes and has the 

ability to enhance localization accuracy through the availability of more range 

measurements between the sensor nodes.  
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Figure 4.1: Indoor cooperative localization application. Squares are anchor nodes and 

circles are sensor nodes. Connectivity based on Fuller models at 500 MHz. 

 

Effective cooperative localization in indoor WSNs does however hinge on the 

ranging technology. Among the emerging techniques, UWB TOA-based ranging has 

recently received considerable attention [Gez05, Gha04, Opp04]. In addition to its high 

data rate communications, it has been selected as a viable candidate for precise ranging 

and localization. This is mainly due to its large system bandwidth which offers high 

resolution and signaling that allows for centimeter accuracies, low-power and low-cost 

implementation [Por03, Gez05, Gha04, Opp04]. As highlight earlier in the dissertation, 

the performance of this technique depends on the availability of the DP signal between a 

pair of sensor nodes [Pah08, Lee02]. In the presence of the DP, i.e. short distance LOS 

conditions, accurate UWB TOA estimates in the range of centimeters are feasible due to 
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the high time-domain resolution [Fon02, Chu03, Ala06, Tar06]. The challenge, however, 

is UWB ranging in indoor NLOS conditions which can be characterized as dense 

multipath environments [Lee02, Pah98].  In these conditions the DP between a pair of 

nodes can be blocked with high probability, substantially degrading the range and 

localization accuracy. Therefore, there is a need to analyze the impact of these channel 

limitations on the performance of cooperative localization in indoor WSNs.  

Evaluation of localization bounds in multi-hop WSNs have been examined 

extensively [Lar04, Sav05, Cha06], where the focus has been on analyzing the impact of 

network parameters such as the number of anchors, node density and deployment 

topology affecting localization accuracy. These localization bounds, however, have been 

analyzed with unbiased ranging assumptions between sensor nodes. In [Koo98, Bot04] 

the impact of biased TOA range measurements on the accuracy of location estimates is 

investigated for cellular network applications. Their approach assumes NLOS induced 

errors as small perturbations, which clearly is not the case in indoor environments. A 

comprehensive treatment of the impact of biases on the wireless geolocation accuracy in 

NLOS environments is reported in [Qi06]. Recently, position error bounds for dense 

cluttered indoor environments have been reported in [Jou06a, Jou06b] where the impact 

of the channel condition on the localization error is further verified in traditional 

localization. 

In this chapter, based on empirical UWB TOA-based OTI and ITI ranging models in 

different indoor building environments reported in [Als07a, Als07b, Als08a] and 

presented in chapter 3, we extend the analysis of localization bounds in NLOS 

environments [Qi06] to cooperative localization in indoor multi-hop WSNs. We focus on 
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firefighter or military operation applications where we analyze the fundamental 

limitations imposed by the indoor dense cluttered environment. Specifically we analyze 

the impact of the channel modeling parameters such as ranging coverage, statistics of the 

ranging error, probability of NLOS and probability of DP blockage on localization 

accuracy. This modeling framework is necessary since OTI channel behavior affects 

anchor-node range estimation while ITI affects the node-node ranges. We first show that 

for the aforementioned indoor localization application, where traditional multi-lateration 

fails, cooperative localization, besides providing localization for the entire network, has 

the potential to further enhance the accuracy. We then evaluate the factors affecting 

localization accuracy, namely network and channel modeling parameters in different 

indoor environments: residential, manufacturing floor, traditional and modern office 

buildings. Indoor channel ranging model-specific cooperative localization bounds in 

WSNs are novel and provide comprehensive insight into the fundamental limitations 

facing indoor UWB TOA-based localization in both traditional and sensor networks. 

The organization of this chapter is as follows. In section 4.2 we review the classification 

of UWB TOA-based ranging in indoor environments.  In section 4.3, we present the 

problem formulation. In section 4.4 we derive the Generalized Cramer-Rao Lower Bound 

(G-CRLB) for cooperative localization in indoor multi-hop WSNs.  In section 4.5 we 

provide results of simulation which highlight the network and ranging channel modeling 

parameters that affect the localization accuracy. Finally, we conclude the chapter in 

section 4.6. 
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4.2. UWB TOA-based Ranging Overview 

Before proceeding with derivation of the theoretic limits of cooperative localization 

in indoor environments, it is necessary to review the behavior of UWB TOA-based 

ranging coverage and errors for the purpose of clarity. In addition to ranging coverage, 

localization bounds in indoor multipath channels are further constrained by the statistics 

of ranging error. The behavior of ranging error between a pair of nodes depends on the 

availability of the DP and in the case of its absence, on the statistics of the blockage. As 

seen in the earlier chapter the ranging error experienced in an indoor environment can 

then be modeled by combining the conditions in (3.6) and (3.7) through the following 

expression, 

  ( ) ( )( )m pd B
b G b X bε ω ω= + ⋅ + ⋅ ,     (4.1) 

In order to facilitate the notations for the G-CRLB derivations we assign specific 

variables for each of the channel conditions in (4.1) that is,  

, 0, 0

, 1, 0

, 1, 1

G X

G X

G X

λ
ε η

β

= =
= = =
 = =

.    (4.2) 

The probability density functions (PDFs) of these conditions, ( )f λλ , ( )f ηη  and ( )f ββ , 

have been experimentally obtained through comprehensive UWB channel measurements 

for the different ranging environments and scenarios [Als07b, Als08a] and their distance 

normalized distribution were introduced in chapter 3. Figure 4.2 further illustrates the 

different ranging conditions that are possible in a given indoor WSN.  
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Figure 4.2: OTI/ITI ranging coverage and the associated ranging error conditions. I: 

λ (LOS), II: η (NLOS – DP), III: β  (NLOS – NDP). 

 

For the LOS channel, the ranging error was modeled as a normal distribution,  
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with mean λµ  and standard deviation λσ  specific to the LOS multipath induced errors. 

In NLOS scenarios when the DP is present the amount of propagation delay and 

multipath due to obstructing objects, such as wooden walls, causes the biases to be more 

positive. Accordingly, the ranging error in this condition was modeled with a normal 

distribution similar to (4.3) but with higher mean and variance,  

( ) ( )
2

2

2

1
exp

22
f

η

ηη

η µ
η

σπσ

 −
 = −
 
 

η
.    (4.4) 
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Finally in the absence of the DP the error was best modeled by the lognormal distribution 

since only positive errors are possible in this condition as seen from chapter 3. The PDF 

in this condition is given by,  

( ) ( )2

22

ln1
exp

22
f

β

ββ

β µ
β

σβ πσ

 −
 = −
 
 

β
   (4.5) 

where βµ  and βσ  are the mean and standard deviation of the ranging error’s logarithm.  

The probability of DP blockage, ( )1p X = , and the parameters of the normalized ranging 

error PDFs were reported in [Als07b, Als08a] and are reproduced in Tables 3.3, 3.4 and 

3.6. The UWB ranging coverage and error models will provide a realistic platform in 

which to analyze the G-CRLB and the localization accuracy in different indoor multipath 

environments. 

4.3. Problem Formulation 

Based on the ranging models of chapter 3 we derive the G-CRLB for cooperative 

localization in indoor WSNs. The scenario we consider is as follows. M anchor nodes are 

placed outside surrounding the building with coordinates given by ( ),
T

A m m
x y=θθθθ , where 

[ ],0m M∈ −  and T  is the transpose operation. These anchors are GPS-equipped where 

they have knowledge of their position. We assume that they are synchronized and that 

their position errors are negligible (or even calibrated). The problem then is to localize N 

sensor nodes with unknown coordinates that are randomly scattered in the indoor 

environment, see Figure 4.1. The coordinates of the nodes to be estimated are given by 

( ),
T

n n
x y=θθθθ  where [ ]1,n N∈ . A 2-dimensional analysis will be provided, as extension 
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to 3-dimensions is rather straight-forward. Furthermore, connectivity between node-node 

and anchor-node is assumed if the range measurements are within ITI and OTI ranging 

coverage, ITI

c
R  and OTI

c
R  respectively. Estimates beyond the ranging coverage will not be 

considered connected.  

The range estimate between the ith and jth sensor node can then be given by 

ˆ
ij ij ijd d z′= +       (4.6) 

where  
ij

d ′  is biased by one of the ranging conditions given in (4.2) or 

,

, /

, /

ij

ij ij ij ij c

ij

LOS

d d NLOS DP d R

NLOS NDP

λ
η
β


′ = + ≤



  (4.7) 

and 
ij

z  is the zero mean measurement noise between the sensors. 
ij

d  is the actual distance 

between the sensor nodes and it is given by, 

( ) ( )2 2

ij i j i j
d x x y y= − + − ,    (4.8) 

where x  and y  are the x- and y-coordinates respectively. In the general case, an indoor 

WSN will be connected through R biased range measurements. Each [ ]1,r R∈  range 

measurement from node i to node j can be represented by ( ),r i j↔ . The range 

measurements are then stacked into a vector ( )1
ˆ ˆˆ , ,

T

R
d d=d …  where ˆ = + +d d ε z  and the 

corresponding bias vector is ( )1, ,
T

R
ε ε=ε … . ε  can be further decomposed into three 

subsets: L LOS, P NLOS/DP and  Q NLOS/NDP or  

( )1, ,
T

L
λ λ=λ …      (4.9a) 
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( )1, ,
T

P
η η=η …      (4.9b) 

( )1, ,
T

Q
β β=β …      (4.9c) 

where R L P Q= + + . We further assume that it is possible to distinguish between these 

different ranging conditions through NLOS and DP blockage identification algorithms 

[Hei07, Guv07]. Note that even in LOS our modeling assumption maintains the existence 

of bias due to multipath. This is usually neglected in LOS analysis, since single-path 

propagation is assumed [Qi06]. The statistics of the multipath biases, obtained from 

measurements, are incorporated into the analysis to provide a realistic evaluation of the 

problem. 

4.4. The Generalized Cramer-Rao Lower Bound 

The unknown vector of parameters to be estimated is then obtained by combining the 

coordinates of the unknown nodes’ positions with the bias vector, or 

 ( )1 1 1 1 1, , , , , , , , , , ,
T

N N L P Q
x y x y λ λ η η β β= … … … …θθθθ .   (4.10) 

The CRLB provides a lower bound on the variance of any unbiased estimate of the 

unknown parameters [Van68]. In the case the estimates are biased it is possible to obtain 

the G-CRLB given that the statistics of the biases are available a priori [Qi06, Van68]. 

The empirical PDFs of λ , η  and β  or ( )f λλ , ( )f ηη  and ( )f ββ  respectively were  

introduced in chapter 3 and their distance-normalized parameters are presented in Tables 

3.4 and 3.6.  

The G-CRLB is then given by [Van68], 
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( )( ) 1ˆ ˆ
T

E
− − − ≥

  
Jθ θ θ θθ θ θ θθ θ θ θθ θ θ θ ,    (4.11) 

where [ ]E ⋅  is the expectation operation and J  is the information matrix that consists of 

two parts,  

= +J J Jθθθθ P .     (4.12) 

Jθθθθ  is the Fisher information matrix (FIM) which represents the data and JP  represents 

the a priori information that reflects the statistics of the biases. Specifically, the data FIM 

can be obtained by evaluating,  

( ) ( )ˆ ˆln | ln |

T

E f f
 ∂ ∂ = ⋅  ∂ ∂   

Jθ θθ θθ θθ θ θ θθ θθ θθ θ
θ θθ θθ θθ θ

d d    (4.13) 

where ( )ˆ |f θθθθd  is the joint PDF of the range measurement vector ( )ˆ ˆˆ ,
T

1 R
d , d…d =  

conditioned on  θθθθ . Since the measurement noise is usually assumed zero mean Gaussian, 

the joint PDF can be given by,  

( ) ( ) ( )1ˆ ˆ ˆ| exp
2

T

f
 ′ ′∝ − − − 
 

Λθθθθd d d d d          (4.14) 

where Λ  is the inverse of the measurements’ covariance matrix or 

( )( )1 ˆ ˆ
T

E
−  ′ ′= − −

  
Λ d d d d  and ′d  is the biased vector of the range measurements. 

Assuming that the measurements are uncorrelated, Λ  is then diagonal with the elements 

given by ( )
1

2 2, ,
Rz z

diag σ σ− −=Λ … . Since ( )ˆ |f θθθθd  is a function of ′d  which is in turn a 

function of θθθθ , Jθθθθ  can be obtained by application of the chain rule or, 
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 ( ) ( )ˆ ˆln | ln |

T T

E f f′

 ′ ′∂ ∂ ∂ ∂      ′ ′= ⋅ ⋅       ′ ′∂ ∂ ∂ ∂        
Jθθθθ θ θθ θθ θθ θd

d d
d d d d

d d
  (4.15a) 

T

′= ⋅ ⋅J H J Hθθθθ d         (4.15b) 

where ′Jd is the FIM but conditioned on ′d  and it is given by 

( ) ( )ˆ ˆln | ln |

T

E f f′ ′

 ∂ ∂ ′ ′= ⋅  ′ ′∂ ∂   
Jd d d d d d

d d
.      (4.16) 

The H  matrix contains information regarding the geometry of the WSN connectivity and 

the condition of the biased range measurements. As a result, it can be decomposed into 

the three ranging conditions λ , η , and β  given by 

1 1 1

N N N

λ η β

λ η β

λ

η

β

 
 
 
 

=  
 
 
 
 
 

H H H

H H H
H

I 0 0

0 I 0

0 0 I

⋮ ⋮ ⋮

,              (4.17) 

and it is a ( )2 N R R× + ×  matrix. The sub-matrix components are then given by 

1

1

L

L

n nn

n n

d x d x

d y d y

λ λ
λ

λ λ

′ ′∂ ∂ ∂ ∂ 
=   ′ ′∂ ∂ ∂ ∂ 

H
⋯

⋯
         (4.18a) 

1

1

P

P

n nn

n n

d x d x

d y d y

η η
η

η η

′ ′∂ ∂ ∂ ∂ 
=   ′ ′∂ ∂ ∂ ∂ 

H
⋯

⋯
       (4.18b) 

1

1

Q

Q

n n
n

n n

d x d x

d y d y

β β

β
β β

′ ′∂ ∂ ∂ ∂ 
 =
 ′ ′∂ ∂ ∂ ∂ 

H
⋯

⋯
       (4.18c) 
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for [ ]1,n N∈  and their respective dimensions are ( )2 L× , ( )2 P×  and ( )2 Q× . λI , ηI , 

and βI  are the identity matrices of order L, P and Q, respectively. Elements of (4.18) will 

be non-zero when a range measurement is connected to node ( ),
T

n n
x y  and zero 

otherwise. For example if node 1 with coordinates ( )1 1,
T

x y  is connected to node 2 with 

coordinates ( )2 2,
T

x y  by the LOS range ( ) ( )
1

2 2

1 2 1 2 1d x x y yλ λ′ = − + − +  then the 

respective element in (4.18a) is  

 
( ) ( ) ( )

( ) ( ) ( )
1

1

2 2

1 2 1 2 1 21

2 2
1

1 2 1 2 1 2

x x x x y yd x

d y
y y x x y y

λ

λ

 ′ − − + −∂ ∂   =    ′∂ ∂    − − + − 

.   (4.19) 

Similarly, ′Jd  can be decomposed according to the ranging conditions where 

λ

η

β

′

 
 =  
 
 

Λ 0 0

J 0 Λ 0

0 0 Λ

d     (4.20) 

is an R R×  matrix. Specifically, ( )
1

2 2,
Lz z

diagλ σ σ− −=Λ … , ( )
1

2 2,
Pz z

diagη σ σ− −=Λ …  and 

( )
1

2 2,
Qz z

diagβ σ σ− −=Λ … . In this dissertation our focus is on analyzing the impact of the 

biases due to multipath and DP blockage and in reality, the measurement noise time 

variations in these different ranging conditions might not differ significantly for a high 

system dynamic range [Alj04]. As a result we will assume equal noise variance, that is 

λ η β= =Λ Λ Λ . Jθθθθ  can then be obtained by substituting (4.17) and (4.20) into (4.15b) or,  
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1 1 1 1 1 1
T

N N N N N N

λ η β λ η β

λ
λ η β λ η β

η
λ λ

β
η η

β β

   
   
    
    = ⋅ ⋅ =    
    

    
   
   
   

H H H H H H

Λ 0 0
H H H H H H

J 0 Λ 0
I 0 0 I 0 0

0 0 Λ
0 I 0 0 I 0

0 0 I 0 0 I

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θθθθ   (4.21) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

T T T T T T
N N N

T T T T T T
N N N N N N N N N

T T
N

T T
N

T
N

λ λ λ η η η β β β λ λ λ η η η β β β λ λ η η β β

λ λ λ η η η β β β λ λ λ η η η β β β λ λ η η β β

λ λ λ λ λ

η η η η η

β β β β

+ + + +

+ + + +

H Λ H H Λ H H Λ H H Λ H H Λ H H Λ H H Λ H Λ H Λ

H Λ H H Λ H H Λ H H Λ H H Λ H H Λ H H Λ H Λ H Λ

Λ H Λ H Λ 0 0

Λ H Λ H 0 Λ 0

Λ H Λ H

⋯

⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯

⋯

⋯

⋯
T

β

 
 
 
 
 
 
 
 
 
 
 
 
 0 0 Λ

 

and it is a ( ) ( )2 2N R N R× + × × +  matrix.  

JP , which contains the a priori statistics of the biases in (4.2), can be similarly obtained 

by 

( ) ( )ln ln

T

E p p
 ∂ ∂ = ⋅  ∂ ∂   

ε εJ ε εε εε εε ε
θ θθ θθ θθ θP    (4.22) 

and can be decomposed into the respective ranging conditions,  

λ

η

β

 
 
 =
 
  
 

0 0 0 0

0 Ω 0 0
J

0 0 Ω 0

0 0 0 Ω

P     (4.23) 

where JP  has the same order as Jθθθθ . Since the biases caused by scattering and DP 

blockage are dependant on the indoor architecture and the range estimates between 

different node pairs, the elements of (4.23) can be assumed independent. With this 
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assumption the elements of (4.23) are ( )2 2

1 , ,
L

diagλ ϑ ϑ− −=Ω …  , ( )2 2

1 , ,
P

diagη ϑ ϑ− −=Ω … , 

and ( )2 2

1 , ,
Q

diagβ ϑ ϑ− −=Ω … , where 2

r
ϑ− is given by,  

( )
2

2

2
ln

rr r

r

d
E p

d
εϑ ε

ε
−  

= −  
 

,   [ ]1,r R∈ .   (4.24) 

From chapter 3, λ  and η  were modeled with Gaussian distributions which means that 

2

r
ϑ  is the variance in the strict sense. However, β  is lognormally distributed, see (4.5) 

and chapter 3, and evaluation of (4.24) is non-trivial but it can be shown to be,  

2 2

2

1
exp 2 2 1q q q

q

ϑ µ σ
σ

−
 

 = − + × +    
 

 ,  [ ]1,q Q∈   (4.25) 

where µ  and σ  are the mean and standard deviation of the ranging error’s logarithm. 

The G-CRLB for the N sensor nodes can then be obtained by computing 
( ) ( )

1

2 2N N

−

× × ×
  J  

from (4.12) which is the first ( ) ( )2 2N N× × × diagonal sub-matrix of 1−  J . 

4.5. Simulation Results 

4.5.1. Setup 

The simulation setup is based on the application of fire-fighters or soldiers requiring 

localization in indoor environments. M anchors are distributed evenly around the building 

where they are placed 1 m away from the exterior wall, see Fig. 4.1. N sensor nodes are 

then uniformly distributed inside the building. Connectivity is assumed between node-

node and anchor-node if the respective TOA range measurements are within ITI and OTI 

ranging coverage, ITI

c
R  and OTI

c
R , respectively. The simulations were carried out for four 
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different building environments: Fuller-modern office, Schussler-residential, Norton-

manufacturing floor and Atwater Kent (AK)-traditional office. All these buildings are in 

Worcester, MA. The UWB modeling parameters of these buildings were reported in 

[Als07a, Als07b, Als08a] for two system bandwidths 500 MHz and 3 GHz and they are 

reproduced in Tables 3.2, 3.3, 3.4, and 3.6. The dynamic range of the system, ρ , is set to 

90 dB and this parameter controls the ranging coverage and the number of inter-node 

range measurements in the WSN.  For example at 500 MHz bandwidth and 90 dB 

dynamic range, ITI

c
R  will correspond roughly to 15-30 m depending on the LOS or NLOS 

condition and building environment. Similarly, OTI

c
R  will be around 5-10 m depending on 

the building type. We set the measurement noise 
z

σ  equal to 20 mm. For most 

simulations, unless otherwise stated, the probability of NLOS, ( )1p G = , was set to 0.5. 

The probability of blockage, ( ) ( )21p X p ζ= = , however, was obtained from the 

measurement results in Table 3.3. The ranging conditions and the WSN inter-node 

connectivity are ultimately governed by the random variables G  and X , see (4.1). 

The models in Tables 3.4 and 3.6 are based on normalized ranging error dψ ε= . In 

order to compute JP , the de-normalized distributions, ( )fε ε  must first be obtained, 

where { }, ,ε λ η β∈ . Thus for a given distance, d ,  the de-normalized distribution for one 

of the ranging conditions in (4.2) can be obtained by ( )( )f f d dε ψε ε =   . 

For the analysis of the simulations we compute the average RMS of the location error 

of each WSN topology. For a given WSN topology, the RMSE is computed by 
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( ) ( )( ) 2 21

2 2 1
i i

N

x y
N N

i

tr

RMSE
N N

σ σ−

× × × =

+  
= =

∑J

,    (4.26)  

where ( )tr ⋅  is the trace operation. 2

ixσ  and 2

iyσ  are the diagonal elements of the ith 

diagonal sub-matrix of 
( ) ( )

1

2 2N N

−

× × ×
  J . The average RMSE is obtained by averaging 

(4.26) over the total number of topologies and simulations. 

4.5.2. Traditional VS Cooperative Localization  

In traditional triangulation only node-anchor range measurements are used and 

reliable 2-dimensional location information can be obtained only if a node is covered by 

at least 3 anchors. In the outdoor-indoor application, for a fixed OTI

c
R , the dimension of 

the building will dictate the fraction of nodes that can be localized. Calculation of G-

CRLB in traditional localization uses the same formulation in section 4.3 but only node-

anchor range measurements are used. In order to verify the necessity and effectiveness of 

cooperative localization we carried out 5000 Monte Carlo simulations with 100 different 

topologies and 50 simulations per topology for different OTI

c
D R  values. 500 MHz Fuller 

models were used with 4 anchors and 40 sensor nodes. We also assumed a square 

building with dimensions ( ),
T

D D . Figure 4.3 provides the results of this simulation 

where the percentage of un-localized nodes is plotted as function of OTI

c
D R . Figure 4.4 

shows the average RMSE results.  
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Figure 4.3: Percentage of un-localized sensor nodes as a function of
OTI

c
D R . 

 

As expected, starting around 1OTI

c
D R = , 10% of the nodes are un-localized in traditional 

localization. As the size of the building increases more nodes lose direct coverage to at 

least 3 of the outside anchors. By 1.8OTI

c
D R = , triangulation is no longer possible. In 

comparison, cooperative localization is effective and provides position estimates for all 

the nodes.  
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Figure 4.4: Traditional triangulation vs. cooperative localization performance. 

 

Moreover, Figure 4.4 shows that cooperative localization substantially outperforms the 

traditional counterpart. This means that for firefighter/military applications, localization 

in indoor environments, especially in large buildings, cannot be achieved with 

triangulation alone. Cooperative localization will not only extend the coverage of the 

outside anchors to the inside nodes but enhance localization accuracy substantially. 

Further, for large building scenarios 2OTI

c
D R >  more sensor nodes (i.e. greater node 

density) need to be deployed to maintain sufficient connectivity for effective cooperative 

localization. 

4.5.3. Network Parameters 

In this subsection we evaluate the impact of network parameters on localization 

accuracy. In the first experiment we investigate the impact of node density. For the 
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simulation we fixed the number of anchors to be 4 and the dimension of the building to 

be 25D =  m and increased the number of nodes, i.e. node density which is defined by 

2S N D= . 5000 Monte Carlo simulations were carried out (50 different topologies and 

100 simulations per topology). The latter is needed, since the ranging conditions and 

WSN connectivity are governed by Bernoulli random variables G  and X . Figure 4.5 

shows the simulated results for 500 MHz modeling parameters.  

 

Figure 4.5: Localization performance as a function of node density in different indoor 

environments using 500 MHz models. 

 

Office buildings, AK and Fuller, exhibit the worst performance especially in sparse 

densities. Norton, a manufacturing floor, shows the best localization accuracy among the 

different buildings. This is expected since the manufacturing building’s interior is an 

open-space with cluttered machines and metallic beams which is reflected in the ranging 
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coverage and error models. Further, the localizaiton bounds clearly indicate that 

performance is dependant on ranging coverage, ITI

c
R  and OTI

c
R , probability of DP 

blockage, ( )1p X =  and the respective error distributions ( )fε ε , see Tables 3.2, 3.3, 3.4 

and 3.6. Although AK has a lower ITI ( )1p X =  than Fuller, the performance in the 

former is worse due to shorter ITI ranging coverage. This can be seen by the difference in 

the pathloss exponents in Table 3.2. Shorter ITI

c
R  means less inter-node range information 

and thus higher localization error. Another important observation that can be concluded 

from this simulation is that the disadvantages of the indoor channel condition, ranging 

coverage and error, can be minimized by increasing node density. For instance, at 0.1 

node/m
2 

the difference in localization performance between the buildings diminishes 

significantly.  

 

Figure 4.6: Localization performance as a function of number of anchors in different indoor 

environments using 500 MHz models. 
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The impact of anchors on the localization accuracy is investigated in Figure. 4.6. In this 

experiment, 5000 simulations were carried out with 30D = m, 0.03S =  node/m
2 

and the 

number of anchors were varied from 4 to 16 (anchors per side varies from 1 to 4). The 

results show that the effect of increasing the number of anchors is higher in the office 

buildings compared to the residential and manufacturing floor. This means that building 

environments with harsher indoor multipath channels (lower ITI

c
R and higher ( )1p G =  

and ( )1p X = ) require more anchors around the building for a fixed amount of sensor 

nodes to achieve similar localization performance as environments with “lighter” 

multipath channels. Finally, comparing both Figs. 4.5 and 4.6 it is apparent that node 

density has a higher impact on the localization accuracy compared with the number of 

anchors. A similar observation was reported in [Sav05] where localization error exhibited 

less sensitivity to the number of anchors. 

4.5.4. Ranging Model Parameters 

In this sub-section we investigate the impact of the ranging model parameters: system 

dynamic range, ρ , ( )1p G =  and ( )1p X =  for 500 MHz and 3 GHz system bandwidths.  

First we evaluate the localization bounds for different values of ρ  which controls both 

the ITI

c
R  and OTI

c
R . In this experiment, the number of anchors is 4, 0.04S =  node/m

2 
and 

the building dimension is 30D =  m. We ran 5000 Monte Carlo simulations (100 

topologies and 50 simulations per topology). Figure 4.7 shows the simulated localization 

results as a function of dynamic range for different building environments and ranging 

models.  
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Figure 4.7: Localization Performance as a function of dynamic range, ρ  for 500 MHz and 

3 GHz models. 

 

The localization performance in office buildings at 500 MHz is in general worse than in 

residential and manufacturing buildings. However, at 3GHz, the difference diminishes. 

Another interesting observation is that the impact of increasing the dynamic range 

eventually saturates. This means that after a certain dynamic range value all the nodes are 

connected to each other and no further gain can be achieved. The performance in 

buildings with higher ranging coverage tends to saturate earlier as seen when comparing 

AK with Norton or Schussler buildings.  

The second experiment focuses on the impact of the probability of NLOS on the 

localization bounds where we varied ( )1p G =  experienced by the ITI ranges from 0 to 1. 

This doesn’t affect OTI since it is always considered NLOS. ( )1p X = , however, was 

obtained from Table 3.3 and the respective ranging error distribution parameters from 
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Tables 3.4 and 3.6. We ran 5000 Monte Carlo simulations (50 topologies and 100 

simulations per topology). The number of anchors is 4,  0.03S =  node/m
2 

and 30D = m 

which means N is around 34. The results are presented in Figure 4.8.  

 

Figure 4.8: Localization performance as a function of ( )1p G = for 500 MHz and 3 GHz 

models. 

 

The impact of multipath on localization error can be clearly seen for ( )1 0p G = = . 

Although the variance of the multipath bias models is dependant on the measurement 

campaign, it is important nonetheless to see that an average RMSE between 0.14-0.2 m 

can be caused by multipath alone for 500 MHz models. The effect of multipath however 

decreases substantially for the 3 GHz system bandwidth. As expected, increasing 

( )1p G =  further degrades the localization performance in an indoor environment. The 

effect will be greater in buildings where ( )1p X =  is high. For example, both Fuller and 
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AK NLOS channel models, see Table 3.3, exhibit rather high probabilities of DP 

blockage and this is reflected in the localization performance. Finally Norton building is 

least impacted by NLOS because the blockage probability is low and the error statistics 

are significantly smaller than the other buildings. 

Lastly, we investigate the impact of DP blockage probability. For the ranging error 

distributions given in Tables 3.4 and 3.6 we fix ( )1 1p G = =  and vary ( )1p X =  between 

0 and 1. We ran 5000 Monte Carlo simulations (50 topologies and 100 simulations per 

topology). The number of anchors is 4,  0.04S =  node/m
2 

and 30D = m. The results are 

presented in Figure 4.9.  

 

Figure 4.9: Localization performance as a function of  DP blockage probability, ( )1p X =  

for 500 MHz and 3 GHz models. 
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For this specific experiment, results for AK were not available because ( )1 1p G = = , 

which means that the ITI ranges are always NLOS and thus shorter ranging coverage. In 

AK’s case, the WSNs in all the simulations were ill-connected. Nonetheless, the results in 

the other buildings show that increasing ( )1p X =  worsens the localization error. Norton 

is an exception, since the statistics of the ranging error in the presence and absence of the 

DP are close to each other (see Tables 3.4 & 3.6). The impact of blockage probability on 

office buildings is the highest, since the statistical distribution of the lognormal biases 

exhibits a higher “variance” compared to manufacturing or residential buildings. This can 

be seen in the Fuller model in Table 3.6 where such an environment exhibits a heavier 

tailed distribution of the spatial ranging errors [Als07b, Als08a]. For these conditions, 

when the DP blockage occurs, larger number of MPCs are lost causing higher ranging 

error. Finally it is interesting to note that the impact of system bandwidth has limitations 

in areas where heavier construction and obstacles separate sensor nodes. This can be seen 

by comparing the impact of bandwidth on the localization performance in Schussler and 

Fuller. 

4.6. Conclusion 

In this chapter we provided an analysis of cooperative localization bounds for WSNs 

based on empirical models of UWB TOA-based OTI and ITI ranging in indoor multipath 

environments. We verified the need for cooperative localization in applications where 

indoor sensor nodes lack sufficient coverage to outdoor anchor nodes. We also verified 

that in addition to extending coverage, cooperative localization has potential for 

improving accuracy. In addition we provided a comprehensive evaluation of the 
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limitations imposed by the indoor multipath environment on cooperative localization 

performance in multi-hop WSNs.  

Simulation results showed that increasing node density improves localization 

accuracy and can improve performance on indoor multipath channels. Increasing the 

number of anchors however has greater impact on harsh indoor environments such as 

office buildings due to shorter ranging coverage, i.e. less inter-node connectivity. For the 

ranging model parameters, localization is constrained by the ranging coverage, statistics 

of ranging error, probability of NLOS, probability of DP blockage and bandwidth. In 

general, office building structures introduce higher probability of NLOS/DP blockage 

and shorter ranging coverage (higher DP penetration loss and pathloss exponent) which 

means higher localization error. Manufacturing floors and residential buildings on the 

other hand exhibit better performance due to “lighter” indoor channel conditions. Also, 

increasing the system bandwidth has the effect of improving accuracy although reduces 

ranging coverage. The localization performance in office buildings exhibited less 

sensitivity to changes in bandwidth because the range measurements faced harsher 

obstacles such as metallic doors, vending machines and elevators. 

As for the cooperative localization application for firefighter or military operations, it 

is clear that in order to improve accuracy numerous nodes must be deployed in the indoor 

environment alongside those attached to the personnel. In addition to providing the 

necessary network density required for effective localization, these stationary nodes can 

constantly provide ranging/localization information which further improves performance 

in dense cluttered environments.  
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Future work in this area should aim to extend the analysis to 3-dimensions where RTI 

ranging can provide coverage extension to multi-floor buildings. Further measurements 

and modeling are needed to analyze the ranging error beyond ranging coverage. 

Specifically the behavior of the biases and measurement time variations with distance 

must be evaluated for different ranging scenarios and environments. Finally, research in 

localization algorithms for indoor-specific WSNs is needed to identify and mitigate 

NLOS biased range measurements in order to achieve acceptable localization 

performance. 
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Chapter 5 A Cooperative Localization 

Algorithm for Indoor WSNs 

5.1. Background 

Distributed localization algorithms iteratively achieve an estimate through the sharing 

of the range and location information. They can be further sub-divided into two branches: 

direct ranging (DR) based or extended ranging (ER) based. The DR-based algorithms are 

usually referred to as Recursive Position Estimation (RPE), while the ER-based 

algorithms are usually referred to as Multi-hop Network Localization (MNL). Most of the 

proposed algorithms in the literature are derivatives of these two and the distinction is 

based on the method by which a distance between a pair of nodes is obtained. In DR, a 

node only obtains range estimates to anchors. Once the node has range measurements to 

3(4) anchors, it is possible to obtain the 2(3)-dimension position estimate. The node then 

joins the existing anchors and helps the remaining nodes in the localization process. 

Figure 5.1 illustrates the DR-RPE distributed algorithm. 
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Figure 5.1: Direct Ranging - Recursive Position Estimation Distributed Localization 

 

In this example, node A is the only node in the network that has DR measurements to 

three other anchors. As a result, it obtains a position estimate through the LS or WLS 

algorithm described earlier. In step 2, node B, with the help of newly transformed A, 

obtains a position estimate. Node B upgrades to an anchor in step 3. The process repeats 

and node C becomes an anchor in step 4. Note that one drawback of this algorithm is that 
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it is possible that some nodes on the edge of the network lack sufficient direct 

connectivity anchors and thus are unable to localize themselves.  

In the case of ER, however, nodes attempt to estimate the distances between 

themselves and a fixed pool of anchors. The nodes will obtain the distance estimate 

through a variety of methods, including counting the number of hops to an anchor, 

measuring the distance to the anchor (adding all distances in the path) or more accurately 

trying to obtain a geometric estimate of the distance by relying on the relative location of 

nodes surrounding it. In other words, nodes extend their range to anchors by measuring 

and cooperating to provide an estimate of their distances to an anchor, which is beyond 

their coverage. Figure 5.2 provides an example of ER distributed localization.  
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Figure 5.2: Extended Ranging - Multi-hop Distributed Localization 

 

In this example, nodes A, B and C attempt to estimate their distances to the fixed 

anchors. Once they have that information, they localize themselves.  In this fashion, 

nodes that are not in the direct range of the anchors get a best-effort estimate of the range. 

Intuitively, DR-based algorithms are more accurate because there is no error 
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accumulation in the range information. The major draw-back of DR-based algorithms, 

however, is the requirement for a certain node and anchor densities. The advantages 

include very accurate localization and substantially less error propagation. DR-based 

algorithms have been reported in [Alb01, Als06a, Als06b]. ER-based algorithms, on the 

other hand, have less reliable error characteristics because the distance to an anchor is not 

measured. Instead, it is estimated by either the number of hops or geometric estimation. 

Although ER-based algorithms have less stringent requirements on the densities of 

anchors and nodes, they exhibit substantial error propagation characteristics, which 

explain the divergence problems that some of the algorithms in the literature have 

reported. ER-based algorithms have been used in N-hop multilateration [Savr01], Robust 

Positioning Algorithm [Savr01, Savr02], and Ad-hoc Positioning Algorithm (APS) 

[Nic01].  

The ER-MNL algorithm is easier to implement than the DR-RPE because the multi-

hop positioning algorithm requires a minimum of three reference nodes within the whole 

operational field, assuming mobile nodes can communicate with all reference nodes 

through multi-hop communications, while the RPE algorithm has a stricter requirement 

on the deployment density of reference nodes and mobile nodes. For example, when the 

deployment density of reference nodes or mobile nodes is low, in some situations, the 

iterative process may not be able to continue due to the lack of nodes in the close 

neighborhood. 

In this chapter we introduce a novel DR-RPE distributed algorithm that incorporates a 

mechanism for robust iterative node-anchor transformation. The algorithm named 

Cooperative LOcalization with Quality of Estimation (CLOQ) essentially relies on its 
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ability to estimates the quality of the channel condition between sensor nodes and 

incorporate that information in the localization process. In addition in order to mitigate 

the effects of error propagation, the algorithm also estimates the quality of anchor 

position estimates which can then be utilized in order to safely update the pool of 

available anchors. This algorithm is specifically needed in indoor environments in order 

to allow for effective cooperative localization. Simulation results have showed that 

CLOQ is capable of providing substantial localization performance improvements.  

In this chapter we first introduce the details of CLOQ algorithm and show how the 

channel and position information can improve performance. Then in section 5.3 we 

provide simulation results highlighting the impact of node density, anchor density and 

network parameters on the performance of localization. Specifically we show that CLOQ 

algorithm can get closer to the G-CRLB when compared to traditional RPE algorithms. 

Finally we will conclude the chapter with section 5.4. 

5.2. Cooperative LOcalization with Quality of estimation 

(CLOQ) 

5.2.1. Overview 

As evident from the earlier chapters, the most fundamental challenges to node 

localization in indoor WSNs are the effects of the RF propagation channel on TOA 

estimation. The problem becomes even more challenging for iterative algorithms such as 

RPE where the biased range errors affecting single node localization, directly impacts the 

localization performance in the entire WSN. As a result, in order to improve localization 

in WSNs, distributed algorithms must address the following: 
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• The quality of TOA-based range measurements must be assessed and integrated 

into the position estimation. 

• The quality of the estimated node position must be assessed and integrated into 

the iterative node-anchor transformation procedure. 

The incorporation of these two major points is necessary in order to mitigate the effects 

of the indoor channel, reduce the divergence in the solution and control error 

propagation. These will ultimately provide enhanced localization accuracy which can 

enable effective WSNs communication and localization in indoor environments.  

In order to clarify these estimation criteria we refer to Figure 5.3 which provides an 

illustrative explanation of the concept of quality.  

 

Figure 5.3: Quality of range measurements & position estimates. (a) Bad geometry but 

acceptable range measurements. (b) Good geometry but unreliable measurements. 

 

In Figure 5.3 (a), node 1 has two LOS range measurements and one DP blocked range 

measurements but its geometrical configuration results in a bad GDOP. On the other 

hand, although node 2 in Figure 5.3 (b) has a better GDOP, its range measurements to the 
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anchors are not reliable. Specifically it has three NLOS ranges with two of them the DP 

is blocked. It would be therefore desirable from a performance point of view to be able to 

quantify the impact of these propagation and network constraints on the localization 

accuracy of nodes 1 and 2.  

CLOQ is an iterative distributed algorithm that addresses these two issues by 

incorporating the range measurement information and the confidence of the position 

estimates. The algorithm has 4 stages: 

1. Channel Identification & Mitigation: sensor nodes perform TOA ranging to 

available anchor nodes and identify the channel conditions. The channel 

conditions can be either λ (LOS), η (NLOS – DP) or β  (NLOS – NDP). Please 

refer to Figure 4.2 for further clarifications. 

2. Position Estimation: Once a node receives range information from at least 3 

anchors (for 2-dimensional localization) it performs localization using WLS 

algorithm described earlier. The weights in WLS algorithm are created by 

combining the ranging weights with the position confidence weights of the 

selected anchors. The node then computes its own position and confidence index 

and enters into anchor nominee phase. 

3. Anchor Nomination: the potential anchor nominees then compare their position 

confidence by broadcasting their information to other direct-hop nominees and the 

node with highest variation from the norm withdraws from the process. The 

remaining nominees move on to the next stage. 

4. New Anchor Incorporation: anchor nominees transform into anchor nodes and 

start transmitting anchor range packets to the remainder of the WSN. 
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5.2.2. Step I: Channel Identification  

The statistical relationship between the RF channel and the TOA ranging error are 

essential in the identification process. In [Guv07] the kurtosis of the channel was used to 

distinguish between LOS and NLOS. In [Hei07], on the other hand, the statistics of the 

propagation channel such as RMS delay spread, mean excess delay, total signal power 

and their combination were used in order to identify between the presence and absence of 

the DP. In this dissertation we use the first path power (FPP) and the total signal power 

(TP) in order to identify between LOS, NLOS/DP and NLOS/NDP. As a result a sensor 

node would examine the measured FPP and TP and attempt to identify the channel 

condition. This is then used to weigh the TOA range measurements to the respective 

anchors in order to further improve the localization performance.  

Using the measurement database introduced in chapter 3, we can analyze the statistical 

relationship between the power and the channel condition. Accordingly we divide the 

database into OTI and ITI and their respective ranging conditions such as illustrated in 

Figure 5.4. Instead of analyzing the FPP or TP individually we decide to examine their 

ratio. Therefore we define the following ratio 

1

1

pL

kk

α
δ

α
=

=
∑

      (5.1) 

where pL  is the number of MPCs, and kα  is the amplitude of the k
th

 path.  In (5.1), 1α  

refers to the first path power. In the case the first path power is the DP then 1DP
α α= . 
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Figure 5.4: Database classification for channel identification 

 

We are then interested in examining the conditional PDFs given by ( )|fδ δ λ , ( )|fδ δ η  

and ( )|fδ δ β  in ITI; and ( )|fδ δ η  and ( )|fδ δ β  in OTI. This distinction is both 

physically sound and necessary since the characteristics of the signal propagating on an 

ITI range are different from those propagating on an OTI. Specifically for the latter, all 

the MPCs must penetrate the exterior of the building in order to reach the indoor sensor 

node. In practical implementation sensor nodes can identify ITI from OTI ranges by 

examining the node ID in the transmitted packet. We assume here that OTI anchors will 

have unique IDs that can be easily identified from the interior sensor nodes. 

 First we provide the statistical analysis of the ITI measurements.  Figure 5.5 provides the 

results for ITI data at 500 MHz and 3 GHz. 
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Figure 5.5: Probability plots of ITI data and their distribution fits at (a) 500 MHz and (b) 3 

GHz. 

 

(a) 

(b) 
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The results of the distribution fitting showed that in the presence of the DP (LOS or 

NLOS) the ratio is best modeled by the Weibull distribution or 
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In the absence of the DP the ratio is best modeled by the normal distribution or 
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In order to identify the channel condition based on the ratio we implement a tertiary 

hypothesis testing with hard decision using the following hypotheses: 
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In order to select the decision thresholds we refer to Figure 5.6 which illustrates the best 

fit distributions and the respective thresholds. 



 113 

 

Figure 5.6: Distribution fits and the respective thresholds. (a) 500 MHz and (b) 3 GHz. 
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A similar analysis and decision framework can be followed for OTI ranges. The 

probability plots are provided in Figure 5.7. The data are best modeled by the Weibull 

distribution in the presence of the DP and normal in the absence and they can also be 

represented by (5.2b) and (5.3).  
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Figure 5.7: Probability plots of OTI data and their distribution fits at (a) 500 MHz and (b) 3 

GHz. 

 

(a) 
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In order to identify the OTI channel condition based on the ratio we implement a binary 

hypothesis testing with hard decision using the following hypotheses: 
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In order to select the decision thresholds we refer to Figure 5.8 which illustrates the best 

fit distributions and the respective thresholds. 
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Figure 5.8: Distribution fits and the respective thresholds. (a) 500 MHz and (b) 3 GHz. 

 

Tables 5.1 and 5.2 provide the parameters of the distributions and the respective 

threshold values. 
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 Table 5.1: Distribution parameters for δ . 

Scenario Ranging Scenario 500 MHz 3 GHz 

  a  b  a  b  

LOS - λ (Weibull) 0.9 13.6 0.9 14.8 

NLOS - η  (Weibull) 0.87 11.3 0.85 9.94 

 µ  σ  µ  σ  
ITI 

NLOS - β  (Normal) 0.68 0.078 0.64 0.075 

 a  b  a  b  

NLOS - η  (Weibull) 0.019 0.029 0.002 0.015 

 µ  σ  µ  σ  
OTI 

NLOS - β  (Normal) 0.79 0.07 0.75 0.07 

 

Table 5.2: ITI and OTI decision thresholds 

Scenario Thresholds 500 MHz 3 GHz 

1th  0.87 0.83 
ITI 

2th  0.77 0.73 

OTI th  0.85 0.81 

 

 

5.2.3. Step II: Position Estimation 

Once a sensor node receives ranging measurements to at least 3 anchors (2-Dimensional 

positioning), the node extracts the channel parameters such as the first path power and the 

total signal power, distinguishes between ITI and OTI ranges, computes the ratio δ  and 

identifies the channel conditions to each link. This information is essentially used to asses 

the quality of the range measurement to each anchor which is needed to adjust the 

ranging weights in the WLS which can mitigate these ranging errors associated to the 

ranging conditions. These ranging weights will then be combined with the anchors’ 

position weights to create the final weights which get incorporated into the WLS 

algorithm.  
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In general, at a given instant in the distributed localization process, a sensor node with 

the coordinates ( ),
T

n n n
x y=θθθθ  can be connected to M exterior anchors with coordinates 

( ),
TOTI

m m m
x y=θθθθ  and U interior newly transformed anchors with coordinates 

( ),
TITI

u u u
x y=θθθθ  , where [ ]0,n N∈  and [ ],0m M∈ −  and [ ]0,u U∈ , respectively. The 

node will receive range measurements from the respective anchors and form a range 

measurement vector given by ( )1 1
ˆ ˆ ˆ ˆˆ , , , , ,

T

n nM n nU
d d d d=d ⋯ ⋯ . Associated with this vector 

the node extracts the first path and total signal power from the ranging signals and forms 

the ratio vector ( )1 1, , , , ,
T

n nM n nU
δ δ δ δ=δ ⋯ ⋯  according to (5.1). By comparing the ratio 

vector to the thresholds in Table 5.1 the sensor node identifies the condition of the 

channel be it λ (LOS), η (NLOS – DP) or β  (NLOS – NDP). Once the channel is 

identified, the node uses the available ranging error models presented in chapter 3 to 

generate the de-normalized weights. In both λ (LOS) and η (NLOS – DP), the ranging 

error is normally distributed and as a result the weights can be obtained by the inverse of 

the de-normalized variance or,  

( )/ 2

1

ˆ
w

d
λ η

σ
= ,      (5.6) 

where σ  is the standard deviation of the normalized ranging error and d̂  is the biased 

range measurement. In the case the ranging condition is β  (NLOS – NDP), the ranging 

error is lognormally distributed and the weight can then be obtained by the following, 

( ) 2

2

1ˆexp 2 log 2 1w dβ µ σ
σ

  = − + + × +    
   (5.7) 
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where µ  and σ  are the mean and standard deviation of the normalized ranging error’s 

logarithm and the values are presented in chapter 3.  

The position weights on the other hand are obtained by the inverse of the position 

variance of the anchors. Original anchors (which are located outside) are assumed to have 

no position errors and thus zero variance. Newly transformed anchors on the other hand 

compute their position variance from the error covariance given by [Shi01],  

( ) 1
1T

−−=C H W H      (5.8) 

and the position variance is then ( )2

p traceσ = C . In actual implementation (5.8) needs to 

be re-orientated and thus singular value decomposition (SVD) is usually performed 

before extracting 2

x
σ  and 2

yσ  of the position error covariance. 

The weighting matrix W  that is used in the WLS algorithm and (5.8) is given by 

( )1 1, , , , ,M Udiag w w w w=W ⋯ ⋯ , where 
i

w  is a combination of the range measurement 

weight 
g

w  and the position weight 
p

w or formally given by 

( ) ( )
1

1/ 1/
i

g p

w
w w

=
+

.    (5.9) 

This weighting method implies that the higher the error position variance the smaller the 

weight (less contribution in the overall weight and thus WLS localization). Similarly, the 

higher the ranging error variance the lower is the ranging weight 
g

w  and thus the lower 

the weight in (5.9). This ensures that range or position incorporated into the WLS is 

weighed according to their respective quality.  
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In order to clarify the weighting procedure it is best to resort to a simple example. Figure 

5.9 provides a localization example where node 6 is trying to obtain its localization 

information at the i
th

 iteration of the algorithm. 

 

Figure 5.9: CLOQ Algorithm – Stage II position estimation. Black circles are anchors, grey 

circles are newly transformed anchors and white circles are un-localized sensor nodes. 

 

In Figure 5.9, external anchors have identification numbers that are distinct from indoor 

nodes. Specifically, ( )1 1 8 8, , , ,
TOTI

x y x y− − − −=θ …  while the interior nodes have positive 

IDs. In addition note that due to initial setup we assume that the exterior anchors have a 

knowledge of their coordinates without any position errors, that is 2 ( ) 0p mσ =  where 
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[ ]8, 1m ∈ − − . At any given instant during the localization process nodes can be connected 

to a combination of original and newly formed anchors. In the example provided in 

Figure 5.9, node 6 is connected to original anchors with IDs: -8 and -1; and to newly 

transformed anchors with IDs: 10 and 2. CLOQ algorithm provides a mechanism to 

estimate the location information by incorporating the statistical uncertainties of the 

range measurements and the anchors’ position errors. According to the signal powers the 

node receives from the anchors (not shown here), an identification of the channel 

conditions leads to two LOS, one NLOS DP and one NLOS NDP. Node 6 then forms a 

table of this information in order to create the weights necessary for the WLS algorithm. 

Table 5.3 provides an overview of the connectivity information node 6 observes. 

 

Table 5.3: Connectivity information that node 6 gathers about surrounding anchors. 

Range Channel  Range Weight Anchor Position Weight Final Weight 

Position Weight 
6, 1d̂ −

 NLOS-NDP wβ  21/p pw σ= = ∞  ( )6, 1

1

1/
w

wβ
− =  

6, 8d̂ −
 LOS wλ  21/p pw σ= = ∞  ( )6, 8

1

1/
w

wλ
− =  

6,10d̂  NLOS-DP wη  21/ 10p pw σ= =  ( ) ( )6,10

1

1/ 1/ p

w
w wη

=
+

 

6,2d̂  LOS wλ  21/ 1.67p pw σ= =  ( ) ( )6,2

1

1/ 1/ p

w
w wλ

=
+

 

 

The range weights in Table 5.3 can be obtained from (5.6) and (5.7). Also note that in 

this example, node 6 is connected to two original anchors (-1 and -8) and this is reflected 

in the final weights. Node 6 uses the weights ( )6, 1 6, 8 6,10 6,2, , ,diag w w w w− −=W  in the 

WLS to estimate its own position. For more details about the WLS algorithm please refer 

to chapter 2. Finally node 6 uses (5.9) to compute the covariance of the position error and 
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thus the position variance 2 (6)pσ . The estimated position ( )6 6
ˆ ˆ,x y  and the position 

variance 2 (6)pσ  are then broadcast to entire WSN in order to aid the remaining sensor 

node in the localization process.  

5.2.4. Step III: Anchor Nomination 

Once a node has estimated its position coordinate and its position variance it enters 

into anchor nominee stage where it broadcasts and listens to nominee packets. The main 

purpose for this stage is to ensure that nominees with  a very bad position estimate do not 

transform into anchors and thus reduce error propagation. In addition only anchor 

nominees broadcast, receive and forward nominee packets. Thus the other sensor nodes 

do not forward nominee packets. This ensures the prevention of excessive flooding of 

messages which can cause performance degradation. For further clarification we refer to 

Figure 5.10 where we assume the network is at a jth iteration where several anchor 

nominees are comparing their position variance. 
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Figure 5.10: CLOQ Algorithm – Stage III Anchor Nomination. Black circles are anchor 

nodes, grey circles are anchor nominees and white circles are un-localized sensor nodes. 

 

In this example, after broadcasting and forwarding, nominees 1, 2, 3 and 4 will be able to 

compare their quality of position estimate. Only anchor nominee 4 withdraws from the 

anchor transformation process, since its position variance is substantially higher than the 

rest. It thus has to wait for future iterations in order to transform. In addition, note that 

anchor nominee 5 is not connected to any other nominees. In this case it assumes it’s the 

only one in the network and proceeds in the transformation. This approach ensures that 

isolated parts of the WSN will be able to localize effectively. 

2(1) : 0.4pσ =  

2(2) : 0.1pσ =  

2(3) : 0.01pσ =  
2(4) : 5.3pσ =  

2(5) : 1.2pσ =  
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5.2.5. Step IV: New Anchor Incorporation 

In the final stage of CLOQ algorithm all the nominees that passed stage 3 are now 

ready to transform into anchors. They modify the status flag into anchor flag in the 

transmitted packet and include their newly estimated node position and position variance 

information. The process then repeats until the entire network is localized. Figure 5.11 

shows a diagram that summarizes the execution of CLOQ algorithm in each sensor node. 



 126 

 

Figure 5.11: CLOQ Algorithm flow diagram 

Range Measurements/Packets 

to at least 3  

Range Quality 

 ( )1, , Kδ δ…  

 

Extract Info 

 Position Variance 

( )2 2

1, ,
p pK

σ σ…  

 

K ranges to anchors 

Generate Ranging 

Weights 

Generate Anchor 

Weights 
WLS     

Algorithm 

( )2ˆ ˆ, ,
ii i p

x y σ  

Anchor Position 

( )1 1, , , ,K Kx y x y…  

 

Yes 

Anchor Nominee: 

Compare 
2

ipσ  with 

other nominees 

Large Deviation 

from Mean 

Anchor 

Transformation 

Broadcast Anchor 

Packets 

No 

Node Mode 

No 
Yes 



 127 

5.3. Performance Analysis 

5.3.1. Simulation Setup 

The simulation setup is based on the application of firefighters or soldiers requiring 

localization in indoor environments. M anchors are distributed evenly around the building 

where they are placed 1 m away from the exterior wall, see Fig. 4.1. N sensor nodes are 

then uniformly distributed inside the building. Connectivity is assumed between node-

node and anchor-node if the respective TOA range measurements are within ITI and OTI 

ranging coverage, ITI

c
R  and OTI

c
R , respectively. The simulations were carried out using 

the models from chapter 3. The dynamic range of the system, ρ , is set to 90 dB and this 

parameter controls the ranging coverage and the number of inter-node range 

measurements in the WSN.  For example at 500 MHz bandwidth and 90 dB dynamic 

range, ITI

c
R  will correspond roughly to 15-30 m depending on the LOS or NLOS 

condition and building environment. Similarly, OTI

c
R  will be around 5-10 m depending on 

the building type. We set the measurement noise 
z

σ  equal to 20 mm. For most 

simulations, unless otherwise stated, the probability of NLOS, ( )1p G = , was set to 0.5. 

The probability of blockage, ( ) ( )21p X p ζ= = , however, was obtained from the 

measurement results in Table 3.3. The ranging conditions and the WSN inter-node 

connectivity are ultimately governed by the random variables G  and X , see (4.1). The 

first path power and total signal power were simulated from the empirical pathloss 

models. 
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For the analysis of the simulations we compute the average RMS of the location error of 

each WSN topology. The RMSE is computed by 

( ) ( )( ) 2 21

2 2 1
i i

N

x y
N N

i

tr

RMSE
N N

σ σ−

× × × =

+  
= =

∑J

,    (5.10)  

where ( )tr ⋅  is the trace operation. 2

ixσ  and 2

iyσ  are the diagonal elements of the ith 

diagonal sub-matrix of 
( ) ( )

1

2 2N N

−

× × ×
  J . The average RMSE is obtained by averaging 

(5.10) over the total number of topologies and simulations. 

5.3.2. Node Density 

In the first experiment we investigate the impact of node density. For the simulation 

we fixed the number of anchors to 8 and the dimension of the building to 20D =  m and 

increased the number of nodes, i.e. node density which is defined by 2S N D= . 5000 

Monte Carlo simulations were carried out (100 different topologies and 50 simulations 

per topology). The latter is needed, since the ranging conditions and WSN connectivity 

are governed by Bernoulli random variables G  and X . 

Figure 5.12 shows the results for fuller building using 3 GHz models. We have 

chosen one of the worst indoor building environments in order to test the ability of 

CLOQ in improving performance. The comparative performance of the buildings is 

provided in chapter 4. In addition to the CLOQ algorithm, we have simulated a typical 

LS distributed algorithm that doesn’t have any channel or position quality incorporation. 

It is clear from the figure that the CLOQ algorithm mitigates ranging errors in indoor 

environments, improves the performance and approaches the lower bound. 
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Figure 5.12: Localization Performance in Fuller Building at 3 GHz. 

 

5.3.3. Anchor Density 

In this experiment, 5000 simulations were carried out with 20D = m
 
and 20 nodes. 

The number of anchors were varied from 4 to 16 (anchors per side varies from 1 to 4). 

The results are presented in Figure 5.13. 



 130 

 

Figure 5.13: Localization Performance as a function of number of anchors. 

 

It is evident that having only 4 anchors results in unacceptable localization performance. 

As the number increases to 16 anchors, 90% of the time the MSE is less than 1. This is 

very promising especially that the simulation results reflect the performance in Fuller 

building which is a harsh indoor environment. The increased number of anchors reduces 

the error in the initial nodes that transform into anchors and thus reduce error 

propagation. 

Another important criterion for this type of cooperative localization scenario is the 

impact of large buildings on performance. In the next experiment 20 sensor nodes were 

deployed in an indoor environment and the building dimension was changed from 10 

meters to 100 meters. In addition the number of anchors was changed from 4 to 16. 5000 

Monte Carlo simulations were conducted with 100 topologies and 50 simulations per 
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topology. Figure 5.14 shows the percentage of un-localized nodes as a function of 

building dimension with different number of anchors.  

 

Figure 5.14: CLOQ – % of un-localized nodes as a function of building dimension. 

A brief discussion regarding the practicality of CLOQ algorithm is necessary. There is 

a design consideration between convergence time and localization error, where the 

former refers to the time it takes the entire network to localize. The convergence time is 

essentially controlled by the method in which nodes transform into anchors. As 

mentioned earlier in CLOQ algorithm, anchors nominees that have large variation from 

the 1-hop neighbors withdraw from the localization process. An alternative method could 

be that only anchor nominees with the best position variance transform into anchors. 

Although this seems like a positive direction in controlling error propagation, simulation 

studies have shown that if in each iteration only one anchor nominee becomes an anchor 

both the convergence time and final location error increases. This occurs mainly because 

it takes more time to localize the entire network since a minimum number of anchor 
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nodes are transformed in each iteration. The increase in localization error is due to the 

enhanced impact of geometry induced errors on the localization process. Less anchors at 

each stage means a higher chance of nodes having “bad” geometry according to the 

GDOP mentioned earlier. This means that in each iteration it is important to maximize 

the number of node-anchor transformation. Even newly transformed anchors with high 

position variance can help to reduce geometry errors and overall position errors through 

the WLS approach. 
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Chapter 6 Conclusion & Future Work 

6.1. Conclusion 

In this dissertation we have described a comprehensive UWB measurement and 

modeling campaign that was aimed to characterize the spatial behavior of indoor TOA-

based ranging. In addition we provided an analysis of cooperative localization bounds for 

WSNs based on empirical models of UWB TOA-based OTI and ITI ranging in indoor 

multipath environments. Finally we integrated the channel information and developed a 

novel cooperative localization algorithm CLOQ that is specifically suitable for the indoor 

WSNs.  

The measurement and modeling involved spatial characterization. This involved 

analyzing and modeling the coverage and accuracy of ranging in indoor environments. 

The measurement involved four different building environments: residential, old office, 

modern office and manufacturing floor and three different ranging scenarios ITI, OTI and 

RTI. We showed that ranging coverage is inversely related to the bandwidth of the 

system and the harshness of the ranging scenario and environment. In addition, ranging 

error can be modeled as normal and lognormal in the presence and the absence of the DP, 

respectively. Furthermore, the modeling parameters are affected by the ranging scenario, 

environment and system bandwidth. The modeling results in this dissertation provide an 

experimental analysis of the physical constraints imposed by the dense cluttered indoor 

environments on TOA-based UWB ranging. In addition the models should help 
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researchers obtain localization bounds specific to indoor environments which are 

important to assess and evaluate the limitations facing different localization algorithms. 

As for cooperative localization we verified the need for such technology in applications 

where indoor sensor nodes lack sufficient coverage to outdoor anchor nodes. We also 

verified that in addition to extending coverage, cooperative localization has potential for 

improving accuracy. In addition we provided a comprehensive evaluation of the 

limitations imposed by the indoor multipath environment on cooperative localization 

performance in multi-hop WSNs.  

Simulation results showed that increasing node density improves localization 

accuracy and can improve performance in indoor multipath channels. Increasing the 

number of anchors however has greater impact in harsh indoor environments such as 

office buildings due to shorter ranging coverage, i.e. less inter-node connectivity. For the 

ranging model parameters, localization is constrained by the ranging coverage, statistics 

of ranging error, probability of NLOS, probability of DP blockage and bandwidth. In 

general, office building structures introduce higher probability of NLOS/DP blockage 

and shorter ranging coverage (higher DP penetration loss and pathloss exponent) which 

means higher localization error. Manufacturing floors and residential buildings on the 

other hand exhibit better performance due to “lighter” indoor channel conditions. Also, 

increasing the system bandwidth, although reduces ranging coverage, has the effect of 

improving accuracy. The localization performance in office buildings exhibited less 

sensitivity to changes in bandwidth because the range measurements faced harsher 

obstacles such as metallic doors, vending machines and elevators. As for the cooperative 

localization application for firefighter or military operations, it is clear that in order to 
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improve accuracy numerous nodes must be deployed in the indoor environment alongside 

those attached to the personnel. In addition to providing the necessary network density 

required for effective localization, these stationary nodes can constantly provide 

ranging/localization information which further improves performance in dense cluttered 

environments.  

Finally simulation results of the CLOQ algorithm showed that incorporating the 

quality of the range and position estimation can substantially improve the localization 

performance in WSNs.  

6.2. Future Work 

As we have seen throughout the dissertation, TOA-based ranging and localization 

face many challenges in indoor environments. Potential applications that require high 

localization accuracy need novel techniques in localization. One of the most promising 

alternatives is cooperative localization in WSNs using UWB signals. The UWB signals 

have shown to be able to combat multipath error in indoor environments, while 

cooperative localization mitigates the channel impairments and further extends the 

coverage of the anchor nodes.  

Future work in this area should continue the measurements and modeling in order to 

analyze the ranging error beyond ranging coverage. Specifically the behavior of the 

biases and measurement time variations with distance must be evaluated for different 

ranging scenarios and environments. In addition the analysis of cooperative localization 

must extend the analysis to 3-dimensions where RTI ranging can provide coverage 

extension to multi-floor buildings.  
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Also research in localization algorithms for indoor-specific WSNs is needed to 

identify and mitigate NLOS biased range measurements in order to achieve acceptable 

localization performance. It would be therefore pertinent for nodes to be able to range 

and localize with precise information regarding the channel conditions.  

Another important research direction is analyzing and characterizing error 

propagation in WSN localization. One of the major problems to accurate localization in 

iterative distributed algorithms is error propagation. Algorithms must therefore be able to 

incorporate methodologies which can help in controlling or even reducing error 

propagation so that nodes on the edge of networks do estimate reliable position 

information.  
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