Building the Bio-CS Bridge: Expanding
High School Curriculum that Integrates
Biology and Computer Science

An Interactive Qualifying Project Proposal

Submitted to:
The Faculty of Worcester Polytechnic Institute
in Partial Fulfillment of
the Bachelor of Science Degree
Project Advisor: Doctor Elizabeth F. Ryder
Submitted by:
Jacob Bernard

Date Submitted: 28 May 2022

This report represents the work of one or more WPI undergraduate students submitted to the faculty
as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web
site without editorial or peer review.

Abstract

Computer science teaching in high school must increase to meet the demand of graduates in
the subject and should incorporate material from different subjects. The Bio-CS Bridge curriculum uses
agent-based modeling of biological systems to address CS and Biology standards. Existing curriculum
using the block-based language Starlogo Nova was expanded and improved, and new activities and
simulations were added using the text-based language NetLogo. These resources will allow students
with a variety of CS backgrounds to learn from the curriculum.

Table of Contents
Abstract 1
1. Introduction 3
2. Literature Review 4
2.1. Teaching Computer Science 4
2.1.1. High School Computer Science Standards 4
2.1.2. Problems With CS Education 6
2.2. Teaching Biology 7
2.2.1. High School Biology Standards 7
2.2.2. Past and Present Biology Teaching 7
2.3. Combined Biology-CS Teaching 7
2.3.1. Pedagogy 7
2.3.2. Benefits 8
2.3.3. Challenges 8
24. Agent-based modeling 9
24.1. Overview 9
24.2. StarLogo Nova 9
24.3. NetLogo Language 10
244, Block vs. Text-Based Modeling 11
2.5. Bio-CS Bridge and Beecology Projects 11
3. Methodology 13
3.1. Standards and Practices 13
3.2. Improving Existing Curriculum 13
3.3. Creation of the NetLogo Simulations and Tutorials 15
4, Results 16
4.1. Unit 1 Organization 16
42. NetlLogo Simulations 17
4.3. Lesson 1 Tutorial 18
44. Lesson 2a Tutorial 18
4.5. Lesson 2b Tutorial 19
4.6. Procedure Tutorial 20
5. Conclusion 21
5.1. Future Work 21
6. References 22

1. Introduction

There is an increasing need for cross-disciplinary education at all levels. For computer science,
it could be argued that it is even more important since there is rarely a computer science task that
does not exist withing the context of one or more additional disciplines (CSforAll). Additionally, there
is a need for biologists with competencies in disciplines like CS (Labov, Reid, & Yamamoto, 2017).
Education at the high school level in the U.S. in particular can grow in these areas.

The Bio-CS Bridge project consists of a transdisciplinary group of university specialists,
graduate and undergraduate students, and high school teachers and students (About the Bio-CS
Bridge Project). This team is developing modular curriculum for high school biology and computer
science classes. The Bio-CS Bridge project stems from a need to teach computer science concepts with
real world contexts. Computing is a tool that can be used in many different disciplines and integration
with biology concepts in a great example of this.

The CS unit one Bio-CS Bridge Curriculum uses agent-based modeling to simulate different
biological systems. Agent-based modeling can simulate real phenomena by programming the actions
of individual agents. By building and using simulations of biological systems, students learn the
biology of individual organisms while learning computer science concepts. This project sought to
further increase the reach and effectiveness of the current curriculum. The CS curriculum was
expanded and improved to better suit a diverse range of students.

2. Literature Review

2.1.

Teaching Computer Science

2.1.1. High School Computer Science Standards

Unlike English language and mathematics, there is currently no common CS curriculum

among all states in the US. The Digital Literacy and Computer Science framework (DLCS), which is used

as a basis for CS curriculum in Massachusetts, is organized into four strands, as seen in figure 1
(Massachusetts Department of Elementary and Secondary Education, 2016). A strand is a discipline
within a general learning area (International Bureau of Education UNESCO). Each strand is further

divided into topics that each comprise groups of standards. Practices are skills students should be able

to use. These standards and practices were developed in conjunction with the Massachusetts

Computing Attainment Network beginning in June of 2014. The development of the standards ended

and formal adoption of the standards by the Board of Elementary and Secondary Education (BESE)
began in June of 2016.

Learning Progression

Grade

Strands
Spans

Computing and Digital Tools and Computing Computational
K-2 Society [CAS] Collaboration [DTC] | Systems [CS] Thinking [CT]

a. Safety and a. Digital Tools a. Computing a. Abstraction
3.5 Security b. Collaboration and Devices b. Algorithms

b. Ethics and Laws Communication b. Human and c. Data

Computer

c. Interpersonal ¢. Research P . d. Programming

6-8 and Societal Partnerships and
Impact c. Networks Development

9-12 d. Services e. Modeling and

Simulation

Practices

Connecting, Creating, Abstracting, Analyzing, Communicating, Collaborating, Research

Figure 1: The strands and practices of the Massachusetts Digital Literacy Framework (Massachusetts Department of Elementary

and Secondary Education, 2016,).

Concepts Practices
1. Computing Systems 1. Fostering an Inclusive Computing 4. Eevelopmcg and US‘,ng A‘\bstr?ct\ons
2. Networks and the Internet Culture > rea't\ng cj)mpj:ttat\ona At act[s |
3. Data and Analysis 2. Collaborating Around Computing 6. Tes_tmg and Refining Computationa
. . . - Artifacts
4. Algorithms and Programming 3. Recognizing and Defining . icating Ab .
5. Impacts of Computing Computational Problems + Communicating About Computing

Figure 2: The CSTA concepts and practices (CSTA, CS Standards).

The Computer Science Teachers Association (CSTA) has created standards that many states
use to develop their own, and which are slightly different from those of the Digital Literacy and
Computer Science Framework. The Computer Science Teachers Association released their K-12
standards in 2017 (CSTA, About CSTA's K-12 Standards). The standards have 3 levels. Level 1 is for
students between ages 5 and 11, level 2 for ages 11 through 14, and level 3A for ages 14 through 16.
Level 3B covers ages 16 to 18 to finish the coverage of high school standards. The level 3A and 3B
standards cover 5 main concepts: Computing Systems, Network and the Internet, Data and Analysis,
Algorithms and Programming, and Impact of Computing (CSTA, CS Standards). The biggest difference
between these standards is the organization and ordering, one example of which is the
Computational Thinking strand in the DLCS framework, which lacks a direct comparison in the CSTA
standards. Additionally, there is slightly more importance placed on inclusivity in the CSTA standards
than the DLCS standards. Figure 2 shows the CSTA concepts and practices in more detail.

%5 Computational Thinking One additional part of
Practices: Skills computer science education in high

schools is AP curriculum. 39% of high

Practice 1 Practice 2 Practice 3 Practice 4 Practice 5 Practice 6 . .
actice ce e actice e actiee school seniors in the US took at least

Computational Algorithms Abstraction Code Computing Responsible)
Solution and Program in Program Analysis 4 Innovations B Computing I one AP examin 2018 (Co"ege Board).
Design ER Development gn Development X "g' o ‘tgﬂ ; ;i puting G«I by Ea’man

algonthms and programs. Innovations. inclusive, L, H H .
R P amreramca 10Ee AP Computer Science Principles
for a purpose. computing culture.

course has a multiple-choice exam at

= SKILLS .
the end of the course and a project-
m EXY Represent B G &R Explain how [Explain [Collaborate in .
the situation, algorithmic data sources acode segment how computin the development
context, or task. pr_gecesses. through variables. or urc.wgrang1 systems Eﬂork.g of so\ulionz Ilke taSk that mUSt be Completed
B3 Detemine progmeng EX1 Use funetions [0 Explinbow X1 Use sofe during the course. There is significant
and design an language abstraction 4B Determine knowledgecanbe and secure .
appropriate to manage) the result of code generated from mn?thodswhel? overlap Wlth the AP CSP Standa rds
method or EX1 Implement complexity ina segments. data. I.ISII'!Q computing
i ioarr gt v - e ceriyana £ Descrbe "mm 5 and many of the standards found at
urpose. xplain correct errors the impact o nowledge .
pup hcwvanzlram:iun in algorithms acnmsu[ing the intellectual ? the h|gh School Ievel. The
m Expla.\n how manages. and pr_ngrams, innovation. property of others.
::f‘rl:a:tl.z:::-on complexicy. ‘dn\:rs;grgy‘-‘l:?c:ugh I:hﬂ Descr\btrz Com putatlonal Thlnklng PI’aCtICGS
ing. the impact o .

oo e gatnerng s that are found in the AP CSP class
o Baste e et e also correspond to and mirror the

based on legal and . .

ctticalfactors practices found in both the CSTA and

Digital Literacy Framework standards.
*NOTE: All computational thinking practices except Computational Thinking Practice 6 are
assessed in the multiple-choice section of the AP Exam.

Figure 3: The Computational Thinking Practices for the AP Computer Science
Principles exam (College Board, 2020).

2.1.2. Problems With CS Education

Computer science teaching first started in 1946 at Columbia University (IBM). Although that
was over 70 years ago, computer science teaching in high schools continues to lag the overall surge in
importance of computer science-related fields. For instance, in 2010, only 14 states had adopted
computer science instructional standards that included more than 50% of the CSTA standards (Wilson,
Sudol, Stephenson, & Stehlik, 2010). In contrast, 95% of the 2010 Carnegie Melon University computer
science graduates had jobs waiting after graduation (Hoffmann, 2010). This problem still persists
today with more jobs being created than students graduating with degrees in computer science
(Bauer-Wolf, 2017).

In 2018 there were 16,001 bachelor’s degrees in computer science awarded to women. During
the same year, there were 64,270 awarded to men (National Center for Science and Engineering
Statistics). This significant gap in representation is also observed in minority populations, with only
6,558 of the total 80,271 bachelor’s degrees in computer science awarded to Black or African American
students. Without specific guidelines of inclusivity as are included with the CSTA standards, it will be
harder for schools to close these gaps. CSTA standard 2-1C-21 Discuss issues of bias and accessibility in
the design of existing technologies is an example of an inclusivity standard that discusses how bias can
be introduced into new technologies like facial recognition. There is not an equivalent standard in the
DLCS framework; instead, bias is only discussed in the context of how information is presented in the
context of research. Weaving concepts of equity into standards in this way allows teachers to include
them in lessons more easily.

In addition to the already damaging problems with inclusivity, inequality with teaching
computer science is further exacerbated by funding issues of high schools. High schools, especially
those with high minority populations, can be forced to go into debt to purchase computers. For
example, in 2008 the San Diego Unified School District sold bonds to support construction,
maintenance, and technology needed to support teaching of computer science. The 21,000 iPads that
were bought for around $400 each may end up costing the district more than $4,000 over the course
of paying them off (Diallo, 2019).

Although there are problems with the current state of computer science education in the US,
there are also strategies that have been implemented that are very effective in teaching computer
science concepts. One particular idea that is increasingly important to teach computer science is how
to collaborate and work effectively in a team (Barkataki, 2011). This practice is found in both the Digital
Literacy Framework and the CSTA standards. Additionally, an increased focus on teaching computer
science in the context of other ideas is becoming more relevant and needed (Cooper & Cunningham,
2010). Computer science and programming aren’t practiced in a vacuum and therefore shouldn't be
taughtin one.

2.2. Teaching Biology

2.2.1. High School Biology Standards

The Next Generation Science Standards (NGSS) have been adopted by 20 states and 24
additional states have adopted their own standards based on the NGSS (National Science Teaching
Association). The NGSS include Life Science, Earth and Space Science, and Physical Science standards.
These standards cover a wide range of topics for grades K-12. Massachusetts has implemented its own
version of the NGSS that has changes to better tailor the standards for Massachusetts students
(Massachusetts Department of Elementary and Secondary Education, 2014).

2.2.2. Past and Present Biology Teaching

The NGSS were created based on the idea that science needs to be more inquiry-based with
more outside concepts integrated rather than memorization of facts (National Science Teaching
Association). At the college level, a report from the American Association for the Advancement of
Science describes how biology education must show students how to work with other disciplines and
should reflect the scientific practices used in biologists’ careers, such as quantitative reasoning,
interdisciplinarity, modeling, and simulation (AAAS, 2009), and these ideas are also present in the
NGSS.

An additional way that biology learning is expanding is with the introduction of cooperative
learning. Cooperative learning is contrasted with competitive learning which can be seen in high
schools and colleges where students work individually, have classroom-wide goals and tasks, and are
graded on a curve. Competitive learning pits students against each other instead of viewing other
students as a valuable resource in their learning experience. Cooperative learning allows students to
work with fewer classmates with more similar goals and to use each other’s strengths to complete a
project or task (Tanner, Chatman, & Allen, 2017). Cooperative learning is a valuable idea to incorporate
into biology in particular because of the interaction between biologists and other specialists like
computer scientists and physicists in solving problems in the real world. Without showing students
how to work collaboratively in school environments, collaborating in the real world can prove
challenging.

2.3. Combined Biology-CS Teaching
2.3.1. Pedagogy

Computational thinking is a core part of the integration of biology and computer science.
Computational thinking is the process of solving problems in a way that lends itself to computing
solutions. With computers being more and more commonly used as tools to solve problems that
would otherwise be too complex, being able to effectively use a computer to process data and output
valuable information about a problem is extremely relevant (Jona, Wilensky, Trouille, Horn, & Orton,
2014). Focusing on computational thinking when teaching biology and computer science concepts
can help bridge the gap between computer science ideas and their real-world implementations
(Weintrop, et al., 2016).

In addition to focusing on computational thinking to better ready students for post-secondary
study or work with computer science, there are specific strategies that help underrepresented
students learn computer science concepts. Pedagogy that includes 3 specific ideas was found to
support engagement of underrepresented students. Pedagogy should demystify computer science by

connecting computer science to real life, demonstrate how computer science can address social issues
impacting students’ social lives and communities, and welcome student’s perspectives and input in
the problem-solving process (Ryoo, 2019). To make effective and inclusive curriculum, these three
ideas should be followed.

2.3.2. Benefits

The first major benefit of integrating computer science concepts into biology curriculum is
that biology is a required topic in most U.S. high schools. Computer science, as discussed above, is still
being integrated into high school curriculum and is not likely to be required for graduation for most
students in the near future. By integrating it into biology courses that are currently being taught,
students can have begin having CS instruction before independent CS classes are set up. High schools
with large minority populations have reduced access to computer science courses (Goode, 2007). By
integrating CS standards into biology classes, high schools will be able to expand learning
opportunities to minority students when they would otherwise be unable to. Additionally, allowing
computer science classes to be elective-only may exacerbate the low participation women and
minorities (Wilensky, Brady, & Horn, 2014).

Teaching computer science isn't limited to writing code. Research into a problem and analysis
of the best solution are needed to use programming tools effectively. The process of integrating
computing concepts into a biology classroom helps motivate students to take a more active role in
learning (Garraway-Lashley, 2014). Computer science topics have been found to be enriched when
taught within the context of other connected ideas (Cooper & Cunningham, 2010). In addition to the
benefits of increasing the variety of CS topics that are available to students, teaching biology and CS
together can be mutually reinforcing. For instance, building and using simulations to test hypotheses
helps students to understand both biological systems and the CS used to model them. (Wilensky &
Reisman, 2006). The Bio-CS Bridge Curriculum combines the following two standards: HS-LS2-1
Ecosystems: Interactions, Energy, and Dynamics: Use mathematical and/or computational
representations to support explanations of factors that affect carrying capacity of ecosystems at different
scales from the Next Generation Science Standards and 9-12.CT.e.1 Create models and simulations to
help formulate, test, and refine hypotheses from the Massachusetts DLCS. Creating a simulation of an
ecosystem that allows hypothesis testing satisfies both the biology and the CS standards. By including
these additional topics, both biology and CS concepts are expanded upon and made more relevant.

2.3.3. Challenges

Finding computer science teachers who have the relevant background to discuss biological
processes and biology teachers who are able to instruct in programming concepts may prove to be
challenging. High schools in the U.S. are historically underfunded and if teachers with additional
qualifications must be hired for new courses, this curriculum may not be realistic (Leachman,
Masterson, & Figueroa, 2017). High schools may not be able to integrate the curriculum or may
attempt to integrate it without sufficient teacher training, both of which would negatively impact
students.

In addition to the general problems with expanding the curriculum in schools, there are many
different ways in which schools may have trouble integrating computer science classes into the
present school environment. One potential problem is the software required to run certain programs.
Schools in the US have a wide range of devices, from Chromebooks and iPads to Mac and Windows

laptops, and software is not always available for these different operating systems. Chromebooks,
which are best used with web-based software, have been increasingly found in high schools, with over
40 million Chromebooks used in education worldwide (Thurrott, 2020). To ensure students have equal
access to computer science education, online materials, programs, and programming environments
should be used whenever possible instead of software that must be installed on a machine. Since
web-based programming environments can be used on any operating system with a web browser,
they may be easier to implement in schools than downloaded programming environments with
specific operating system requirements. The main concern that arises from moving to web-based
programs is the need for high-speed and high-bandwidth internet. Although this could be a problem,
higher quality internet is being found in more and more schools across the nation with 99% of schools
in the US on scalable fiber optic connections (Education Super Highway, 2019)

24. Agent-based modeling

2.4.1. Overview

Computational modeling is a tool used by teachers, researchers, and other professionals to
test theories on a variety of topics (The Center for Connected Learning and Computer-Based
Modeling). Modeling can be seen as a quick and inexpensive way to validate theories before funding
more expensive research on a subject. There are a variety of different ways that modeling can be done
including mathematical and agent-based modeling (Bodine, Panoff, Voit, & Weisstein, 2020).
Mathematical modeling can be done with differential equations to simulate changes in populations
over time and space, such as the transmission of disease in an epidemic, or diffusion of a substance in
a solvent. Agent-based modeling, in contrast, is done by programming individual agents to follow
behavioral rules that allow them to act like their real-life counterparts in a simplified way. In addition
to this being simpler to understand for a student with little mathematical or computer science
background, individual variability, as is found in real biological systems, can be easily implemented.
Students learning agent-based modeling find themselves thinking as the animal or organism they are
attempting to model, which can be beneficial from an educational standpoint (Wilensky, Brady, &
Horn, 2014).

Agent-based modeling allows students to ask questions like, “What would a wolf do when it needs to
eat food?” and others that allow the student to put themselves in the agent’s footsteps. This thinking
in particular is one reason why agent-based modeling has been shown to be an effective way to teach
biology concepts within a computer science curriculum. This questioning thinking challenges
students to research specific phenomena and abstract the biological rules necessary to create
computational models (Wilensky & Reisman, 2006). Thus, students not only think deeply about a
biological system, but they learn computer science practices such as abstraction and decomposition.

2.4.2. StarLogo Nova

StarLogo Nova is a block-based programming language that originated from Logo which was
developed in the mid-1960s in the MIT Artificial Intelligence Laboratory. Logo introduced many
concepts; the most notable was the “turtle” that can be controlled to move in an environment.
StarLogo further expanded on this and introduced the idea of independent turtles that can interact
with each other (LOGO FOUNDATION).

10

Starlogo Nova is one of the two agent-based platforms utilized in the Bio-CS Bridge
curriculum. Block-based languages substitute the textual commands in traditional languages with

“blocks” that can be combined in
pre-determined ways to
represent traditional structures.
Figure 4 shows two examples of
“blocks” of code in block-based
languages.

Block-based
programming languages have

\while R tog gled)

iy [}7 bee-getting-reward v 55@]]
o
@‘éﬁw bee-getting-reward v @1 7 bee-getting-reward v i | ‘

s
lifd @y bee-getting-reward v E

SEkgy color v (@ @Y bee-pollen-color ~
left by ™ random| ﬂ to) ﬂ | degs
forward BEJ}

a

el<e]
been used as introductory left by Manaormea o] degs
forward Bl

programming languages in the :

past but have recently gained ') —]
popularity in introductory high
school courses. Block-based
languages are perceived as
“easier” than text-based ones by students and have additional features that students find helpful
(Weintrop & Wilensky, 2015). One feature that is not as easily found in text-based programming
languages is the library of components that users can scroll through to find what tools they need.
Additionally, the limited nature of block-based languages stops many different syntax errors from
being made. For example, figure 4 shows the StarLogo Nova code block with an if-statement on the
right. A student can only put a conditional block in the correct spot of the if-block. This structuring can
dramatically reduce the number of syntax errors and increase the time spent on learning concepts.
While the format is thus easier for beginners, the language is complex enough to allow for the
introduction of important computer science concepts, such as logic statements, variables, and
structured code using procedures. Another advantage of StarLogo Nova is that the platform is web-
based. This allows students who may not have home computers to access programs and to learn from
school computers that have access to the internet. Additionally, since the platform is web-based, it is
not necessary for the computers running StarLogo Nova to be as powerful.

Figure 4: A "block” of code in scratch (left) and StarLogo Nova (right).

24.3. NetLogo Language

The NetLogo language was created in 1999 by Uri Wilensky (Wilensky, NetLogo Frequently
Asked Questions, 2021). One of the main differences between NetLogo and StarLogo Nova is the fact
that NetLogo is a text-based programming language. NetLogo’s text-based nature allows for more
powerful simulations that could otherwise be limited by StarLogo Nova'’s block library (Wilensky,
NetLogo). NetLogo has a downloaded platform and a web-based platform which provides flexibility to
teachers who wish to use the language. Schools that have computers that can install Windows-based
programs can use the more advanced downloadable version while schools with Chromebooks or
computers that cannot have additional software installed can use the web version.

NetLogo has 3 main parts, the observer, turtles, and patches. The observer oversees the whole
environment and can ask patches or turtles to perform commands. Turtles are individual agents that
can perform commands or ask other turtles or patches to perform commands. Patches are squares
that make up the background of the simulation environment and can ask other patches or turtles to
perform commands as well (Wilensky, NetLogo). With all of these available interactions, models can be

11

created with the interactions between agents in mind that can help validate hypotheses in a
controlled environment.

One often cited NetLogo model is the Wolf Sheep
Predation model found in the biology section of the NetLogo
model library (Wilensky, Wolf Sheep Predation). Seen in
figure 5, this model simulates the interactions between
sheep, wolves, and grass and can show how the populations
fluctuate over time based on changes to the interactions.
The model includes easy-to-use sliders for adjusting the
amount of energy gained from eating for both sheep and
wolves, the frequency at which they reproduce, and the time
each patch of grass takes to regrow. By adjusting any of
these properties, the model will behave differently, and
different population outcomes will occur.

2.4.4. Block vs. Text-Based Modeling ; ’
For the purposes of teaching agent-based modeling, Figure 5: A screenshot of the interface of The Wolf
there is no one language or system that is perfect in every Sheep Predation model from the Netlogo model
Alth h ad d student find block-based library. This simulation includes the grass regrow
way. ough advanced students may fin Ock-base element which helps to stabilize the populations of
languages limit creativity, less advanced students may find sheep and wolves. The green is grass, and the brown is
text-based programming languages confusing to start with ~ where thegrass was previously eaten. The black
. figures represent wolves, and the white are sheep.
due to syntax errors that are common when learning (Plaza,
et al., 2020). To combat this issue, the use of multiple
languages could be used, following the same curriculum. Both NetLogo and StarLogo Nova have
agents, some area that the agents are placed in, interactions between agents and a similar
programming setup with buttons that can be set to run procedures created in the program. This can
be seen in figure 6 with the two interfaces shown together. Because of the significant similarities, they
are ideal candidates for the parallel teaching strategy that will be discussed further in the
methodology section.

2.5. Bio-CS Bridge and Beecology Projects
The Bio-CS Bridge Project team develops, tests, and implements modular computer science and
biology curricula that each incorporate aspects of the other to enrich learning (About the Bio-CS
Bridge Project). As discussed previously, combining scientific practices with computational thinking
ideas while teaching can more effectively teach students both ideas. The Bio-CS Bridge Curriculum is
motivated by the Beecology Project, which is a citizen science project that aims to increase the
ecological information available to researchers looking to address recent pollinator decline (Beecology
Project). Part of the project are the simulations that are used to test new hypotheses that would
otherwise take years to address. The simulations and data that the Beecology Project uses are used
extensively in the Bio-CS Bridge project as a real-world context to the biology and computer science
lessons.

12

total seeds
setup

forever

Populations

10

number red flowers

0 gy 20

Papulations

number blue flowers

a m 200

Red Seeds
Blue Seeds [

numberOiBees 100
numberCiRadFlowers 100 R
—
riimberOiBlueF lowars 10() *2e
populations =
g
time
— Red Flowers Red Seeds — Blun Flowers
Blue Seads

<otk Tatal Flawers Tatal Seods
o 200 o

Figure 6: The interface for StarLogo Nova (top) and NetLogo (bottom). Both feature sliders that can control the simulation,
displays that can show numbers while the simulation runs, and graphs.

13

3. Methodology

The three research questions that guided this project were:

1. Which biology and computer science standards would align well with combined teaching?
2. How can existing curricula be improved to better integrate the two separate subjects?
3. How can existing curricula be expanded to better serve the diverse needs of students?

These research questions guided the research of the project and the creation of resources for
the Bio-CS Bridge CS curriculum. The first and second research question helped focus the project on
the integration between the two subject areas. The third research question helped guide the
expansion of the curriculum to better fit the diverse needs of students. Cumulatively, the questions
helped focus the project on adapting the curriculum for use teaching many different students at
different knowledge levels. The following sections illustrate the methodology followed to complete
this.

3.1. Standards and Practices

Following the research questions, biology and computer science standards were found that
could be incorporated more heavily into the current curriculum. The new tutorials that were created
followed the original standards and practices of the curriculum with one major exception. A new
tutorial was created that guides the students through the creation of procedures to abstract the code
and remove duplicate lines from the simulation. This tutorial covers standards 9-12.CT.a.1: Discuss and
give an example of the value of generalizing and decomposing aspects of a problem in order to solve it
more effectively and 9-12.CT.d.2: Decompose a problem by defining functions, which accept parameters
and produce return values. Students were guided through how to make a singular function to make
both the hawks and mice move in the SimBeecology simulation.

In addition to the creation of the procedure tutorial, the existing StarLogo Nova tutorials were
recreated in NetLogo. The simulations had to be created in NetLogo, which will be explained below.
After the simulations were created, the original style of the tutorials was followed. Students were
given instructions on how to complete a task with pictures to aid when necessary. Whenever possible,
students were guided to find the answer to problems on their own instead of providing the answers
to copy into their own programs.

3.2. Improving Existing Curriculum
The existing SimBeecology simulation, written with the Starlogo Nova language, uses a food
web to illustrate the importance of bees as a keystone species in an ecosystem. The bees pollinate the
flowers in the simulation which, in turn, produce seeds. The seeds that are not eaten by mice grow
into new flowers that further sustain the mouse population. Lastly, hawks are included in the
simulation that eat the mice. This simulation is used as the basis of three lessons that form the core of
the CS Unit 1 Curriculum.

The original StarLogo Nova tutorials were
reordered and expanded to better fit with the
lesson plans and suit the new material that was
created. An introduction tutorial, separate from
any lesson plan, was originally part of the overall
curriculum. This introduction tutorial was
modified and added to the lesson 1 tutorial to
ensure that students would have the necessary
background to complete the rest of the tutorial.
Additionally, a code tracing activity, where
students read through sections of code and were
asked to figure out the meaning of them, was
moved to the lesson 1 tutorial instead of the
lesson 3 tutorial where it was originally found.
Finally, part of the lesson was modified and
repurposed as an extension rather than required
material. The lesson 2 tutorial stayed mostly
intact with an extension added that guided
students through the addition of a new species to
the simulation. The lesson 3 tutorial was only
modified cosmetically to match the new tutorial
template.

The curriculum was also expanded to

UmBlo-cs
UBRIDGE

Bio-CS Bridge Curriculum

Explore SimBeecology

Name Date: Period:

Partner's name

Activity #1:
Activity #1 Name
For each activity below:
means to complete this task

means to write an answer here

[Add a description for the activity here]
1) First part of the activity:

a Step A

b. EstepB

[Question that should be answered
2) Second part of the activity:

a Step A

b Esteps

c Question that should be answered

14

Figure 7: A template for tutorials. Included are activity titles,
section title, and markers for students to either complete an

action or write an answer.

include a tutorial that addressed procedures. This tutorial was created with feedback from the
teachers that more abstraction could be included in the curriculum. Students were first guided

through how to identify areas of a program that could be abstracted into a procedure, then guided

through the creation of a procedure. The tutorial also included parameters in the procedure to ensure

that future examples of procedures with parameters wouldn’t need to be re-explained significantly.

A tutorial template was created in order to reconcile the multiple different formats used in the
original tutorials. The new template was based on the colors in the Bio-CS Bridge logo and the activity

and extension structure that was created (Figure 7). Also added to the template was the copyright
statement explaining the share alike license that is present on all Bio-CS Bridge curriculum. Lastly,
icons to signal that students must answer a question or complete a task were added to decrease the
likelihood that a student misses a section. According to the Bio-CS Bridge teachers, these icons are

especially helpful to students with learning differences.

15

3.3. Creation of the NetLogo Simulations and Tutorials

The NetLogo simulations that needed to be created were breed [Flower flowers]

based on the StarLogo Nova simulations that are in the original flower-own [
curriculum. For the beginning of Unit 1, this was the SimBeecology flower-occupied

successful-pellination
simulation with various stages of completeness.]

The NetLogo simulations were not only created to provide a :"eed [bee bees]
simulation, but also to give examples of proper programming EEEE\fEEEting_reward
practices. Comments were used frequently in the code to explain bee-pallen-calor
procedures or specific lines. Additionally, the code was organized to]
make the addition of more species to the simulation easier for breed [mouse mice]
students by grouping the similar statements into blocks that could E:::j E ::‘:g ::‘:;2 }
be used for reference. Turtles-own [

energy
To create the initial simulations with only the bees and age

flowers, the StarLogo Nova code was studied and used as a baseline :

for implementation. Most commands in StarLogo Nova had a direct to iEt“P I
clear-a

NetLogo equivalent. The NetLogo simulation was started with the create-bees

creation of the flower and bee breeds. Next, the setup procedure was CFEEtE-fiWEES
ask patches

created that spawned the bees and flowers, and the go procedure set pcolor green
was created with helper functions that created the movement of the 1 .
bees and the pollination and seed generation interactions. Figure 8 ::stht:Eis

shows the beginning of the NetLogo code. The complete code and end
all tutorials are uploaded as part of this report. They will be published Figure 8: The beginning of the

on the Bio-CS Bridge Curriculum webpage in Summer 2022. SimBeecology simulation code that
defines the agent breeds and the

After the initial simulation was created for the first tutorial, the ~ €up procedure.

subsequent levels of the simulation were made. The next major

addition was to limit the growth of flowers so that the population did not grow exponentially. After
that, procedures were created to allow mice to eat the seeds, and then hawks to eat the mice. Lastly,
the simulation was modified to incorporate a procedure with parameters. These simulations built off
the first simulation and followed their corresponding StarLogo Nova equivalents except for the
procedure simulation.

The simulation for the procedure activity was created from the SimBeecology tutorial with the
motivation of being able to use the NetLogo curriculum for the AP Computer Science Principles class.
With that in mind, the procedure simulation incorporated parameters to generalize the movement of
the mice and hawks. The procedure activity was one tutorial that included significant input from
teachers involved with the Bio-CS Bridge project. After an initial meeting that created the idea for a
tutorial to cover this subject matter, a follow-up meeting was used to improve the tutorial’s wording
and organization.

16

4. Results

Following the research questions, biology and computer science standards were found that
could be incorporated more heavily into the current curriculum. For example, the Massachusetts
Digital Literacy Framework standard 9-12.CT.d.2 Decompose a problem by defining functions, which
accept parameters and produce return values was identified as one standard that could be incorporated
into the unit 1 curriculum. Additionally, entirely new tutorials and simulations were developed using
the NetLogo language to give teachers and students more flexibility in their choice of language. The
existing StarLogo Nova curriculum was also improved to better communicate learning objectives.

4.1. Unit 1 Organization
The Computer Science Unit 1 curriculum includes a tutorial for each lesson plan. This tutorial is

what students are given to complete to help enforce the lesson they are currently working on. The
existing Lesson 1 explored the basic SimBeecology simulation in StarLogo Nova (described in the
Methodology section) and assumed a quick orientation had been done to familiarize the students
with the interface for StarLogo Nova. Lesson 2a explored adding new trophic levels like adding mice
to eat the seeds and hawks to eat the mice. Lastly, lesson 2b showed how to make hypotheses and
test them with the simulation. The overall ordering of the lessons stayed the same with the new
versions completed during this project, with only slight differences. The orientation was included in
the lesson 1 tutorial, the code tracing activity was moved to the first tutorial, and some extra material
was added. In addition, an entirely new activity was created to introduce the use of Procedures to
make code more modular and less prone to errors.

One of the significant changes to the initial tutorials was done through the addition of
extensions. Extensions are additions onto the tutorials that can be completed by students who finish
the required work early. These extensions were added to provide additional learning to students who
can understand the concepts presented quickly. The extensions expanded on learning that was done
in the tutorial, often giving the student more freedom to make additions to the code. The presence of
extensions serves to differentiate the curriculum, allowing teachers to engage the varied learners they
may have in a single classroom. The last, less technical, major change to the curriculum was the
formatting of the tutorials shown in figure 7. The color scheme of headings and drawings was
changed to match the Bio-CS Bridge colors, the fonts were standardized to a more easily readable
font, and the tutorials were broken up into smaller sections with headings to allow for easier use
between class periods. Another addition was the use of icons that show the students tasks that must
be completed and questions that must be answered. Although some of these features were present in
some of the original tutorials, there was not a consistent formatting among all the tutorials.

17

4.2. NetLogo Simulations
The main goal of the project

was to introduce NetLogo as a —
language for the Bio-CS Bridge CS
Unit 1 curriculum. The was done for
multiple reasons, the first being to
make the unit more advanced for
classrooms that may be able to learn
using a text-based language. The next
reason was to make the language
more suited for the AP Computer
Science Principles class, which
requires some capabilities not
currently implemented in Starlogo

Nova, including the use of data
structured as lists. To be able to use Figure 9: The NetLogo SimBeecology simulation with hawks and mice added.
The buttons, sliders, graph, and count boxes can be found on the left while the
simulated environment can be found on the right.

£

NetLogo for the curriculum, the
existing StarLogo Nova Simulations
had to be re-created in NetLogo. Figure 9 shows the NetLogo SimBeecology simulation.

The NetLogo simulations that were made corresponded to the different versions of the
Starlogo Nova SimBeecology simulation that are required by the tutorials, including a baseline version
that students modify as they follow the tutorials, and a completed version that will be made available
to teachers. Although the Netlogo simulations were designed to function in the same way as the
Starlogo Nova ones overall, there were some improvements made, as well as some modifications
necessitated by the NetLogo platform. One improvement was the tuning of the simulation to more
accurately represent a balanced ecosystem. To keep the populations of various species in the
simulation realistic, , values like how quickly agents move or reproduce or how much energy is gained
by eating prey must be balanced appropriately. Additionally, they must be balanced realistically
where the population of a higher trophic level must be lower than the ones below it. For example,
there must be more mice than hawks in a simulation, and there shouldn’t be spikes where the
population of hawks rises above the mouse population at any time. With these ideas in mind,
balancing was done to ensure that the simulation was representing the biology accurately.

The specific modifications that had to be made between the StarLogo Nova and NetLogo
simulations mostly consisted of strategies to complete the same task. For example, NetLogo allows
one agent to ask another agent to run a command while StarLogo Nova does not. Because of this
feature, the bee pollination code and killing of prey for hawks was more complicated in StarLogo
Nova. In NetLogo, the hawk eating the mouse simply told the mouse to delete itself when it was
eaten.

18

4.3. Lesson 1 Tutorial
After consultation with the teachers, the first lesson was reorganized to include an Orientation
to the Starlogo or NetLogo platforms. This was done after receiving feedback from the teachers
explaining that without the orientation included in the curriculum itself, as opposed to as a separate
activity, it might be skipped due to time constraints or on accident since it may not be clearly shown
as necessary.

Additionally, the code tracing activity that was initially found in the lesson 2a tutorial was
moved to the lesson 1 tutorial. This change was done to add more interaction with the code in the first
tutorial and to give the students more time to familiarize themselves with the SimBeecology code
before they were asked to modify it in the next tutorial. The NetLogo version of the code tracing
activity can be seen in figure 10.

The last major change that ~ a[] .55t) A
was done to the Lesson 1 tutorial | s
was changing the flower explosion - [e -
work to an optional extension. In the : Enieset-mks
initial tUtoriaII the StUdentS Were : 3 ALL SETUP HELPER FUNCTIONS ARE BELOW HERE-
walked through how to limit the B Bl *°createoriouen nusierotnedeiovens [B
population growth of the flowers so [o R
that they would not expand = et B8

exponentially. This was changed to Figure 10: Part of the code tracing activity found in the lesson 1 tutorial. Students
an optional extension to save the are shown the code on the left and asked to describe the use of the code on the

. . e right.
time added with the addition of the
orientation and code tracing
activities. The students were provided with new code for the next tutorial that implemented this
change so that future learning was not dependent on this optional activity.

44. Lesson 2a Tutorial
The tutorial for Lesson 2a centered

around the addition of trophic levels to the ? ﬁ‘,f,?.‘;;‘?:;?ﬁ;‘;’ use up energy whensver it moves. How would you
simulation. Mice were added to the
simulation and ate seeds dropped by the
flowers. Hawks were then added which ate
mice. Students were guided through the
process of creating the mice in the simulation

e After a mouse moves, its energy should decrease by 0.1
e |[fthe mouse’s energy is less than 0:
o Delete this mouse

Try to figure out how to implement this before using the code on the next page.

Figure 11: The guide for students that explains the problem and asks

. for their own solution. The layout of the lesson was planned such that
and slowly given fewer answers and more the code for the function is found on the next page so that the
direction to come up with their own code. students can attempt to solve the problem on their own before they

For the hawks, the students were told to refer aregiven the answer.

mostly to the code they implemented for the

mice breed and fall back on the instructions, if needed. Then, for the extension for this tutorial,
students were asked to find another organism that could be added to the simulation by using a food
web. The students were given open-ended questions to guide their creation of the new animal breed
in the simulation as shown in figure 11.

19

4.5. Lesson 2b Tutorial
The lesson 2b tutorial guided the students through testing of hypotheses with the
SimBeecology simulation. Students were asked to generate hypotheses relating to bees as a keystone
species and test their hypotheses with multiple runs of the simulation, recording the data from each
one. Figures 12 and 13 show a table that students are asked to fill out and the data that students use
to fill out the tables.

This tutorial serves as one of the major sources |—

number-of-bees 100

of biology education for the beginning of the unit. e
number-of-red-flowers 100| setup

After creating biological rules when programming the ﬁﬁl
go

mice and hawks in the first tutorials, students are then pomber;ofbloc fower g “’"hﬁn 2|
populations

asked to use the simulation to draw conclusions about 2 ERed R
. . . Red Seeds

the interactions between these organisms. f_/—/// W Blue Flowers
O Blue Seeds

@

.g I E mice
® f_/—/_/_/_(M hanks
=
[= 1
S
o
Run #1 - Baseline — N
Hivsge 9 4 e
Starting |Bees |Red |Blue |Red |Blue |Mice |Hawks) A WA e
Numbers Flowers |Flowers | Seeds |Seeds 0 f’
AL
Run 1 0 time 5360
Run 2 clock Total Flowers | Total Seeds
0 996 227
Run 3
Ending Bees |Red Blue Red Blue Mice Hawks add-mice count hawk
Numbers Flowers |Flowers |Seeds |Seeds [— 6
mice-to-add 20
Run 1 count mouse
Run 2 add-hawks 119
Run 3 o I —— count seed
hawks-to-add 6 227
Average
Figure 13: The first table that students are asked to fill when Figure 12: The data from NetLogo that students are asked

testing their hypotheses in the lesson 2b tutorial. to use to fill out the tables within the tutorial.

20

4.6. Procedure Tutorial
An additional tutorial was created to show the students how to use procedures in NetLogo

and StarLogo Nova. This tutorial was created to begin to adapt the curriculum for use in an Advanced
Placement Computer Science Principles course. For curriculum to be used in an AP CSP course, it must
be approved by the College Board and must include specific topics. The topics necessary include
procedures, lists, loops, conditionals, and more. The
procedure tutorial was created with the future goal in mind of ~to mouse-move

. . . rt random 3@ - 15
making the curriculum usable for this class.

fd 8.4
Figure 14 shows the procedures that the procedure EHEEt =nergy energy - 0.1
tutorial is based off. The starting code had the two to hawk-move
procedures on the top for moving the mice and hawks. The rt random 3@ - 15
bottom procedure was made in the tutorial and is used in fd 1
place of the two above. The tutorial walked students through EHEEt Enerey Enerey - 0.3

the abstraction of the movement of the mice and hawks in

the SimBeecology simulation. After identifying the similarities ~©° meve [move-distance energy-loss]

rt random 38 - 15

and differences between the different sections of code, the £d move-distance

students were given the opportunity to create their own set energy energy - energy-loss
procedure with some direction and then shown one example ="

of a procedure that could be used. The fact that multiple Figure 14: The original movement code for the

mouse and hawk (top) and the new procedure for

solutions are possible for a given problem was explained moving both the hawks and mice (bottorn).

and students were encouraged to test their own function
in the code before using the one given to them.

21

5. Conclusion

The goal of the Bio-CS Bridge project is to develop, test, and implement curriculum for high
school biology and computer science classrooms. The following three research questions guided the
work on this project: 1) Which biology and computer science standards would align well with
combined teaching? 2) How can existing curricula be improved to better integrate the two separate
subjects? 3) How can existing curricula be expanded to better serve the diverse needs of students?
Standards that could be more heavily emphasized in the curriculum were identified and a specific
procedure tutorial was made to fill that gap. The unit 1 curriculum was modified heavily to include
both NetLogo and StarLogo Nova as languages that could be taught, and to make the overall
organization easier for students and teachers. Lastly, between the addition of the new tutorial, the
creation of the NetLogo tutorials and simulations, and the addition of optional extensions to the
tutorials, the curriculum was expanded to fit the needs of a wide range of students.

The new tutorials that were made for the unit 1 curriculum were created with constant
feedback from teachers that are currently using the original curriculum in classes. The feedback was
collected through virtual meetings with teachers that use the current Bio-CS Bridge material. This
feedback was critical in identifying the necessary changes that had to be made to the original
curriculum and identifying new areas that the curriculum could be expanded. The best example of this
is the procedure tutorial that was created to introduce abstraction in the Unit 1 CS curriculum.

5.1. Future Work

Through the creation of the new tutorials and the answering of the research questions, more
opportunities for growth in the current curriculum were naturally found. One of the major areas for
potential future work is the further expansion of the NetLogo curriculum to allow for its use in the AP
Computer Science Principles class. The AP CSP class has strict standards on what must be taught for
the curriculum to be approved for use including but not limited to procedures, loops, lists, and
conditionals. The procedure tutorial was an important first step in this direction. In addition to other
requirements that must be met, tutorials should be added that cover lists and looping. This could be
implemented by adding memory to bees in the form of a list of the previously visited flowers. Bees
could then loop through the list to find ones that it has visited in the past and either avoid or seek
them out. This behavior is consistent with known bee behavior from field studies.

Another potential area for future work is in the expansion of biology topics in which the
computer science curriculum is taught. In an early meeting with some of the teachers that use the Bio-
CS Bridge curriculum the idea of each lesson having a different biology topic was presented and
discussed. It was decided that presenting a new biology topic with a new computer science topic
could easily confuse students and that a single biology topic should be presented for as much of the
unit as possible. Although switching topics within a unit could be confusing, further work could be
done to create multiple versions of the same computer science unit, each with a different biology
context in it. This could be done to help teach a biology concept that students are learning
concurrently or to follow up learning that has been done in the past.

22

6. References

AAAS. (2009). Vision and Change in Undergraduate Biology Education. Washington: American
Association for the Advancement of Science.

About the Bio-CS Bridge Project. (n.d.). Retrieved from Bio-CS Bridge:
https://biocsbridge.wpi.edu/website/home

Barkataki, R. L. (2011). Teaching teamwork in engineering and computer science. 2011 Frontiers in
Education Conference (FIE), pp. F1C-1-F1C-5.

Bauer-Wolf, J. (2017, October 27). Falling Behind. Retrieved from Inside Higher Ed:
https://www.insidehighered.com/news/2017/10/27/even-booms-student-enrollment-not-
enough-degrees-keep-jobs-computer-science

Beecology Project. (n.d.). About the Beecology Project. Retrieved from Beecology Project:
https://beecology.wpi.edu/website/home#page-title

Bodine, E., Panoff, R., Voit, E., & Weisstein, A. (2020). Agent-Based Modeling and Simulation in
Mathematics and Biology Education. Mathematical Biology Education.

Boytchev, P. (2009, January). Logo Tree Project. Retrieved from Elica:
https://web.archive.org/web/20090306084150/http://elica.net/download/papers/LogoTreePr
oject.pdf

Code.org. (n.d.). Advocate for computer science education. Retrieved from Code.org:
https://advocacy.code.org/

College Board. (2020). AP Computer Science Principles Course and Exam Description.

College Board. (n.d.). AP Program Results: Class of 2018. Retrieved from College Board:
https://reports.collegeboard.org/archive/2018/ap-program-results/class-2018-
data#:~:text=ap%2Dcohort%2Dresults%2DAP%2DParticipation.&text=The%20class%200f%?2
02018%20to0k,in%20the%20class%200f%202008.

CollegeBoard. (n.d.). AP COMPUTER SCIENCE PRINCIPLES: The Course. Retrieved from CollegeBoard:
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/course

Cooper, S., & Cunningham, S. (2010). Teaching Computer Science in Context. Association for Computing
Machinery, 5-8.

CSforAll. (n.d.). About CSforAll. Retrieved from CSforAll: https://www.csforall.org/about/

CSTA. (n.d.). About CSTA's K-12 Standards. Retrieved from Computer Science Teachers Association:
https://csteachers.org/page/about-csta-s-k-12-nbsp-standards

CSTA. (n.d.). CS Standards. Retrieved from Computer Science Teachers Association:
https://csteachers.org/Page/standards

23

Diallo, A. (2019, April 22). School districts are going into debt to keep up with technology. Retrieved from
The Hechinger Report: https://hechingerreport.org/school-districts-are-going-into-debt-to-
keep-up-with-technology/

Education Super Highway. (2019). 2019 State of the States. Retrieved from Education Super Highway:
https://stateofthestates.educationsuperhighway.org/?utm_source=release&utm_medium=ne
wsroom&utm_campaign=SotS18#national

Egger, D., Elsenbaumer, S., & Hubwieser, P. (2012). Comparing CSTA K-12 Computer Science Standards.
WIPSCE '12: Proceedings of the 7th Workshop in Primary and Secondary Computing Education,
125-132.

Garraway-Lashley, Y. (2014). Integrating computer technology in the. International Journal of Biology
Education, 13-30.

Goode, J. (2007). If You Build Teachers, Will Students Come? The Role of Teachers in Broadening
Computer Science Learning for Urban Youth. J. Educational Computing Research, 65-88.

Hoffmann, L. (2010). Career Opportunities. Communications of the ACM, 19-21.

IBM. (n.d.). The Origins of Computer Science. Retrieved from IBM:
https://www.ibm.com/ibm/history/ibm100/us/en/icons/compsci/

International Bureau of Education UNESCO. (n.d.). Curriculum strands. Retrieved from International
Bureau of Education UNESCO: http://www.ibe.unesco.org/en/glossary-curriculum-
terminology/c/curriculum-strands

Jona, K., Wilensky, U., Trouille, L., Horn, M., & Orton, K. (2014). Embedding Computational Thinking in
Science, Technology,.

Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2017, October13). Integrated Biology and Undergraduate
Science Education: A New Biology Education for the Twenty-First Century? CBE—Life Sciences
Education, 9(1).

Leachman, M., Masterson, K., & Figueroa, E. (2017). A Punishing Decade for School Funding. Center on
Budger and Policy Priorities.

LOGO FOUNDATION. (n.d.). Logo History. Retrieved from Logo Foundation:
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html

Massachusetts Department of Elementary and Secondary Education. (2014, January 9). Massachusetts'
Adaptation of Next Generation Science Standards. Retrieved from Massachusetts Department of
Elementary and Secondary Education: https://www.doe.mass.edu/stem/standards/ngss-
maacomparison.html

Massachusetts Department of Elementary and Secondary Education. (2016, October). Massachusetts
Digital Literacy and Computer Science Standards Panel. Retrieved from Massachusetts
Department of Elementary and Secondary Education:
https://www.doe.mass.edu/stem/standards.html

24

National Center for Science and Engineering Statistics. (n.d.). Women, Minorities, and Persons with
Disabilities in Science and Engineering. Retrieved from National Center for Science and
Engineering Statistics: https://ncses.nsf.gov/pubs/nsf21321/data-tables

National Science Teaching Association. (n.d.). About the Next Generation Science Standards. Retrieved
from National Science Teaching Association: https://ngss.nsta.org/about.aspx

Odadzi¢, V., Miljanovi¢, T., Mandi¢, D., Pribicevi¢, T., & Zupanec, V. (2017). Effectiveness of the Use of
Educational Software in Teaching Biology. Croatian Journal of Education, 11-43.

Plaza, P., Peixoto, A., Sancristobal, E., Castro, M., Blazquez, M., Menacho, A, ... Lopez-Rey, A. (2020).
Visual block programming languages and their use in educational robotics. 2020 IEEE Global
Engineering Education Conference (EDUCON), pp. 457-464.
doi:10.1109/EDUCON45650.2020.9125219

Ryoo0, J. (2019). Pedagogy that Supports Computer Science for All. ACM Transactions on Computing
Education, 1-23.

Tanner, K,, Chatman, L., & Allen, D. (2017). Approaches to Cell Biology Teaching: Cooperative Learning
in the Science Classroom—Beyond Students Working in Groups. Cell Biology Education, 1-72.

The Center for Connected Learning and Computer-Based Modeling. (n.d.). Software Tools. Retrieved
from The Center for Connected Learning and Computer-Based Modeling:
http://ccl.northwestern.edu/tools.shtml

Thurrott, P. (2020, January 21). Google: 40 Million Chromebooks in Use in Education. Retrieved from
Thurrott: https://www.thurrott.com/mobile/chrome-os/chromebook/228534/google-40-
million-chromebooks-in-use-in-education

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students' perceptions
of blocks-based programming. Proceedings of the 14th International Conference on Interaction
Design and Children, 199-208.

Weintrop, D., Beheshti, E., Horn, M. O., Jona, K,, Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education
and Technology, 127-147.

Wilensky, U. (2021, April 20). NetLogo Frequently Asked Questions. Retrieved from Netlogo:
https://ccl.northwestern.edu/netlogo/fag.html

Wilensky, U. (n.d.). NetLogo. Retrieved from NetLogo: https://ccl.northwestern.edu/netlogo/

Wilensky, U. (n.d.). Wolf Sheep Predation. Retrieved from NetLogo:
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation

Wilensky, U., & Reisman, K. (2006). Thinking Like a Wolf, a Sheep, or a Firefly: Learning Biology Through
Constructing and Testing Computational Theories—An Embodied Modeling Approach.
Cognition and Instruction, 171-209.

Wilensky, U., Brady, C., & Horn, M. (2014). Fostering Computational Literacy in Science Classrooms.
Commun. ACM, 24-28.

25

Wilson, C, Sudol, L. A., Stephenson, C,, & Stehlik, M. (2010). Running On Empty: The Failure to Teach K-12
Computer Science in the Digital Age. Association for Computing Machinery.

