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Abstract

Current state-of-the-art walking controllers for humanoid robots use simple models, such as

Linear Inverted Pendulum Mode (LIPM), to approximate Center of Mass(CoM) dynamics

of a robot. These models are then used to generate CoM trajectories that keep the robot

balanced while walking. Such controllers need prior information of foot placements, which

is generated by a walking pattern generator. While the robot is walking, any change in the

goal position leads to aborting the existing foot placement plan and re-planning footsteps,

followed by CoM trajectory generation. This thesis proposes a tightly coupled walking

pattern generator and a reactive balancing controller to plan and execute one step at a time.

Walking is an emergent behavior from such a controller which is achieved by applying a

virtual force in the direction of the goal. This virtual force, along with external forces acting

on the robot, is used to compute desired CoM acceleration and the footstep parameters for

only the next step. Step location is selected based on the capture point, which is a point on

the ground at which the robot should step to stay balanced. Because each footstep location

is derived as needed based on the capture point, it is not necessary to compute a complete

set of footsteps. Experiments show that this approach allows for simpler inputs, results in

faster operation, and is inherently immune to external perturbing and other reaction forces

from the environment. Experiments are performed on Boston Dynamic’s Atlas robot and

NASA’s Valkyrie R5 robot in simulation, and on Atlas hardware.
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Chapter 1

Introduction

One of the major motivations for robotics research is to pass on dangerous or unpleas-

ant tasks from humans to robots. Given that these situations appear in environments that

cannot always be traversed on wheels, there arises a need for legged locomotion. Several

different types of legged robots exist and a majority of them are bio-inspired. Legged robots

allow smaller footprint on ground at the cost of increased complexity in the controller de-

sign. Walking of these legged robots is achieved by planning and executing trajectories for

each leg. In many cases, the same trajectory is phase shifted and executed on different legs.

A special type of these legged robots that are inspired from humans are the biped humanoid

robots. The world that we live in is built for humans. The infrastructures, machines, tools,

vehicles, etc. are all built for use by humans. For robots to perform tasks in this environ-

ment, either they should be able to use existing tools or we must develop specialized tools

for such robots. Redesigning every single tool or machine for use by robots is not practical,

so exploring the first option seems more logical for a general purpose robot. One can argue

that the control of inherently balanced robot can be less complex and the robot could be

similarly able. However, to traverse any kind of terrain, climb ladders, climb stairs, open

doors, etc. there is a need for active balancing for some or most part of the task. Humanoid

robotics provide the starting point required for such kind of walking and balancing require-

ments. The earliest research on humanoid robots dates back to the 1970s when Wabot-1,

a full-scale anthropomorphic robot, was developed[31]. Wabot-1 could communicate in
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Japanese, measure distances to objects, grasp objects, and walk. In the 40 years following

development of Wabot-1, several other humanoid robots were developed in different research

labs with motivation to build personal assistants, entertainment robots, and understanding

balancing/walking of humans. However, these robots significantly lacked good locomotion

capabilities. PETMAN[41], developed in 2012, was the first biped robot that walked dy-

namically like human beings. In the same year, the Defense Advanced Research Projects

Agency (DARPA) organized DARPA Robotics Challenge (DRC)[46] catapulting the hu-

manoid robotics research for real world applications like disaster response in dangerous,

degraded, and human-engineered environments. This competition exposed the challenges

in humanoid balancing and walking to the world. One of the most viewed videos from this

competition is a compilation of falling robots during the competition1. There has been

a steady progress in research and development of humanoid walking and balancing con-

trollers since the competition, leading to more advanced balancing and walking controllers

for humanoid robots.

Figure 1.1: Projection of feet on ground when the robot is standing with feet next to each
other (left) and during double support while walking (right). Orange border shows the
support polygon

Most of the current walking controllers for humanoid robots use simple models like

Linear Inverted Pendulum Mode (LIPM) to generate motion trajectories for the Center

of Mass (CoM) of the robot. The controller minimizes error between desired and actual

1https://www.youtube.com/watch?v=g0TaYhjpOfo
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values of certain ground reference points which results in minimizing error of CoM position

or velocity while following these trajectories. As the robot has high degrees of freedom

(DOF), there are infinite values for joint positions to get a specific desired position of

CoM. The joint positions, velocities, and/or acceleration are selected using optimization

techniques like quadratic solvers, optimal control, or reinforcement learning and sent to the

robot. In this method, one controls either the position and velocity of the CoM or the

centroidal momentum acting on the CoM or both. The robot is balanced as long as the

projection of CoM is inside support polygon formed by joining all the contacts of the robot

with the environment as shown in Figure 1.1 and the total momentum acting on centroid

of the robot is zero. These controllers require footstep to be planned before generating the

desired CoM trajectories. The footstep planners run at a lower frequency than the control

loop and need re-planning in dynamic environments[5][34] [24]. The footsteps provided by

the planners are validated and used for planning the robot trajectories[15] [2] [10].

In the approach mentioned above, the robot tracks desired footsteps with high accuracy

at the cost of time required to plan these steps. The requirement of desired footstep comes

from the system dynamics which helps in deciding current commands to the robot based

on the future position/velocity of CoM2. However, if we can control the robot such that

decisions based on future of CoM position and velocity can be relaxed, we can build reactive

controllers for humanoid robots. These reactive controllers can be used to make a robot

walk, but the operator would lose control on positioning the steps exactly at the desired

location. It is acceptable to lose precision in footstep planning as humanoid robots have a

very large taskspace as seen in Figure 1.2. The green cubes in the figure can be reached

in any orientation by the 7 DOF arm whereas the red cubes represent the space where all

orientations of hand are not possible. When we use 10 DOF kinematic chain by adding 3

DOF of pelvis along with the arm, the reachable area increases further. Hence the standing

pose of the robot need not be precise for most tasks. On most terrains, the footstep

positions of robot can be approximate as long as object to be manipulated is reachable and

arm manipulation is performed with required precision.

2More details on this are provided in following chapters.



4

Figure 1.2: Taskspace of 7-DOF left arm of Valkyrie robot. Green cubes can be reached in
any orientation and red cubes can be reached with limited orientations.

1.1 Problem Statement

In the current state, humanoid robots plan footsteps before walking. This approach is

offline, where a planner uses knowledge of robot kinematics to plan footsteps from start to

goal. Once planned, the low-level controller follows the steps. Minor online step adjustment

is performed for a stable walk. However, the planned steps are inflexible.

This thesis proposes a novel method for humanoid robots to walk one step at a time

using “Virtual Force”. The virtual force is used for generating desired footstep parameters

using the same dynamics that is used by the low-level controller. This allows us to move the
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robot such that its CoM velocity would reach the required value for stepping in the desired

direction. As the dynamics of the robot is used for generating the desired footstep, it ensures

that the low-level controller would be able to execute the footstep trajectory. This provides a

tight coupling between the walking pattern generator and the walking controllers as opposed

to footstep planners where only kinematics is used for planning footsteps. In this entire

process, the desired state is generated based on virtual force alone. The location of footstep

cannot be precisely defined by the control input in this method, but the computation can

be executed with real time constraints.

1.2 Related Work

For humanoid robots to walk stable, the resultant of external forces on the robot has

to pass through the support polygon. Hence the traditional tracking control of multiplying

gains with errors computed using desired and actual position, velocity, or acceleration of

CoM to generate control input cannot be used. Those controllers do not allow adding con-

straints to position external forces inside the support polygon. To add on to the complexity,

the CoM follows a non-linear trajectory and its dynamics is reset with every step the robot

walks. Different control strategies exist depending on the type of actuation of the robot as

explained in subsections below.

1.2.1 Passive Walkers

Passive (biped) walkers are mechanisms with open-loop control that produce walking

behaviour by utilizing the forces on the system due to gravity or system state. Passive

walkers rely on the mechanical design of the robot to generate a basin of attraction such

that the robot stays stable. The dynamics of such mechanisms is explored in [37]. Coleman

et.al. [7] proposed one such mechanism which used only gravity to walk down a slope. This

toy-like mechanism is stable near a statically unstable configuration but does not depend on

spinning parts. Collins et. al. [9] built a 3-dimensional passive walker with knee joints. An

efficient 3D walker was later presented in [8] that had actuators to trigger different states in

a finite-state-machine. These mechanisms provide an insight into passive dynamics of the
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system, however they are limited to simple walking behaviours.

1.2.2 Underactuated Biped Robots

A steady walking cycle is a non-trivial periodic motion with non-linear hybrid dynamics.

The continuous portion of the dynamics is underactuated [59]. Approaches that store energy

when the leg touches the ground and use the stored energy for underactuated motion when

the robot swings its leg have been explored in [19] [45]. Stable gait using hybrid zero

dynamics is explored in [1]. These systems can be formally verified to stay stable and be

highly efficient, however they lack complex behavior.

1.2.3 Fully Actuated Humanoid Robots

One of the solutions to generate stable walking using fully actuated robots, is using

simplified models for the system dynamics (explained later in Chapter 2). This approach

controls the trajectory of Zero Moment Point (ZMP) or Center of Pressure (CoP), which

can be approximated to be linear with few specific assumptions proposed by Kajita et. al.

[29] in Linear Inverted Pendulum Mode (LIPM) for biped walking. Now the controllers

can be designed to stabilize CoM along the planned ZMP trajectory. LIPM paved a path

for walking controllers that track a desired walking pattern by stabilizing ZMP trajectory

using various methods like - preview control [28], Model Predictive Control (MPC) [51] [36],

Receding Horizon Control [14]. In [60] ZMP tracking is done using a linearly constrained

quadratic program for a Model Predictive Control. Tedrake et. al. [56] has proposed

a closed-form solution for ZMP gait generation and feedback stabilization using linear-

quadratic regulator (LQR). [27] [48] proposes online modification of a generated trajectory

for walking. All of these methods require a pre-planned trajectory using a walking pattern

generator. The generated trajectory is stabilized online using ZMP stabilizer.

Planning and executing a single step has been explored in various fall recovery strategies

as seen in [52], [62], and [39]. A Model Predictive Control approach has been proposed in

[53] for fall recovery by stepping. [11] proposes a method for push-recovery using Divergent

Component of Motion(DCM). These approaches are intended for push recovery and do not

focus on continued walking. Capture points [47] use the orbital energy of LIPM to find a
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stepping location in order to stop. This is extended by [13] to design walking controllers

using capture points.

The approach described in this thesis does not require a walking pattern generator.

When commanding a robot to walk, only the next step is decided based on the virtual force

provided to the controller. The robot walks one step at a time until the virtual force is

acting on the robot. When walking multiple steps, every subsequent step is decided such

that the existing momentum of the robot assists the movement, if it is in the same direction.

1.3 Assumptions

1. We will assume the terrain to be flat. However, this approach can be extended to

slopes, stairs, and different leveled planes, as discussed in the last chapter.

2. We will assume constant height constraint as required by the LIPM model for gener-

ating footsteps. This is discussed in more details in chapter 2.

3. The robot is assumed to be in bent knee configuration as opposed to straight knee

configuration. This serves two purposes 1) Avoid control complexities arising due to

singular configuration of the legs, 2) Avoids non-linearity in the system dynamics.

The low-level controllers proposed in [18] overcome this limitation.

1.4 Contributions

1. Novel approach to walking using Virtual Force for footstep generation and captura-

bility based low-level controller for executing the planned step.Chapter 3 explains the

math and intuition behind computing the next footstep for a humanoid robot. It also

discusses design of a capture point based controller that is used for experiments in

chapter 5.

• A journal paper titled “One Step at a Time: Biped Walking with Virtual Force”,

is submitted to RA-L and International Conference of Robotics and Automation

2020 that describes the footstep generation using virtual forces.
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2. Transportable Opensourse API & UI for Generic Humanoids (TOUGH): This library

is built for developing ‘high level controllers’ and ‘state machines for complex tasks’

using humanoid robots. It provides interfaces for perception, manipulation, motion

planning, and walking capabilities of a humanoid robot. Chapter 4 explains the

design and use of TOUGH. The code repository is available at https://github.com/

WPI-Humanoid-Robotics-Lab/tough

• A journal paper describing TOUGH library is currently under review at Inter-

national Journal of Advanced Robotic Systems.

• A conference paper titled “Extended State Machines for Robust Robot Perfor-

mance in Complex Tasks”, which is published at 2018 IEEE-RAS 18th Interna-

tional Conference on Humanoid Robots.

1.5 Structure of Thesis

The next chapter provides a quick overview of important concepts and requirements for

balancing and walking of a humanoid robot along with the dynamics for simplified models

used for controlling fully actuated humanoid robots. Chapter 3 provides derivation of a

reactive controller using capture point followed by the desired capture point generator. It

also presents the derivation of walking parameters for a humanoid robot based on virtual

force and dynamics of the robot. Chapter 4 explains the software library – TOUGH, devel-

oped for integrating controls, manipulation, perception, and motion planning of humanoid

robots. Chapter 5 presents the experiments performed in simulation and on the hardware

with analysis of the results. The last chapter discusses the conclusions, applications, and

the future work.

https://github.com/WPI-Humanoid-Robotics-Lab/tough
https://github.com/WPI-Humanoid-Robotics-Lab/tough
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Chapter 2

Background

2.1 Balancing

Humanoid robots are inherently unbalanced. If there is no control input to the robot,

the robot would fall. Worse yet, most humanoid robots cannot stand up by themselves

from the fallen state. Due to this fact, any task for these robots is secondary. The primary

task is to maintain its balance. At any given instant, the robot is balanced if the projection

of its center of mass falls inside the convex hull of the foot-support area[40], also known

as support polygon or base of support. Few more ground reference points are useful for

understanding and controlling the balance of a humanoid robot, viz., 1. Zero Moment Point

(ZMP), 2. Center of Pressure (CoP), and 3. Centroidal Momentum Pivot (CMP) point.

2.1.1 Zero Moment Point

When a robot is standing, the resultant force of all the inertial and gravitational forces

of the robot can be assumed to be acting on the ankle. The horizontal components of this

force are balanced by the static friction between the feet and the ground. The vertical

component of the force can be balanced by positioning the reaction force such that net

moment in vertical planes is zero. Under these conditions, the point at which reaction force

is acting is defined as the Zero Moment Point(ZMP)[58]. It should be noted that there can

be other links on the robot where the resultant moment is zero. However, for the balancing
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of humanoid robots, we are only interested in the ZMP located inside the support polygon.

If the forces don’t balance out, ZMP ceases to exist.

Figure 2.1: Biped mechanism and forces acting on its sole[58]

When a humanoid robot is balanced on one foot during walking, the forces acting on

the sole of the robot are shown in Figure 2.1. FA : (FAx, FAy, FAz) is the resultant of all the

inertial and gravitational forces of the robot acting at the ankle joint A. Ground reaction

force on foot is shown as R : (Rx, Ry, Rz) acting on point P . The mass of the foot is ms,

and the weight of the foot is acting at point G. The static equilibrium condition for the

robot is given by equations 2.1 and 2.2,

R+ FA +msg = 0 (2.1)
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#    »

OP ×R+
#    »

OG×msg +MA +M +
#    »

OA× FA = 0 (2.2)

(
#    »

OP ×R)XY +
#    »

OG×msg +MXY
A + (

#    »

OA× FA)XY = 0 (2.3)

#    »

OP ,
#    »

OG, and
#    »

OA are radius vectors from the origin of the coordinate system O. MA is

the resultant moment acting at the ankle joint. M : (Mx,My,Mz) is the ground reaction

moment. Horizontal components of ground reaction forces (frictional forces) are balanced

by horizontal components of FA and the vertical ground reaction moment Mz is balanced by

the vertical component of MA. This is under no-slip condition. The horizontal components

of MA can be reduced to zero by positioning the point P such that moments Mx and

My balances the corresponding components of MA. Under these conditions, the resultant

moments acting on point P are zero, and point P is the Zero Moment Point (ZMP). Equation

2.3 is the projection of Equation 2.2 on XY plane. It is the basis for positioning R such

that ZMP exists inside the support polygon.

2.1.2 Center of Pressure

The pressure applied on the robot’s foot(or feet) by the ground can be replaced by a

force acting at a single point, known as Center of Pressure (CoP)[50]. On a flat surface,

if this force balances out all the forces acting on the robot during the motion and the net

moment is zero, it coincides with ZMP, and the robot is balanced. If there is a non-zero

net moment acting around the CoP, in that case, ZMP does not exist, and the robot is not

balanced[58]. It should be noted that in both balanced and unbalanced conditions, CoP

always lies inside the support polygon.

2.1.3 Centroidal Momentum Pivot Point

For the angular momentum of the system to be conserved, the resultant external moment

on a humanoid robot must be equal to the rate of change of its angular momentum. In

Figure 2.2, point P is the CoP and Fg is the ground reaction force acting on the robot.

In the left figure, the rate of change of angular momentum (Ḣ) is zero, as the resultant

external force pass through C, the Center of Mass (CoM). In the figure on the right, the

rate of change of angular momentum is non-zero. If we move the resultant external force
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on the ground plane such that it intersects the CoM, we get the point A on the ground.

This is the CMP point[44][20]. Ḣ is proportional to the distance between CoP and CMP.

It is essential to regulate the angular momentum while balancing.

Figure 2.2: a) Rate of change of angular momentum acting on the CoM is zero b) Rate of
change of angular momentum acting on the CoM is greater than zero

The CMP point(A) is always on the ground and can be computed if CoM location in

ground plane (Cx, Cy, Cz) and the ground reaction force (Fg) is known using the equations

below,

Ax =Cx −
Fgx

Fgz
Cz (2.4)

Ay =Cy −
Fgy

Fgz
Cz (2.5)

(2.6)
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2.2 Walking

Oxford dictionary defines walking as ”Moving at a regular pace by lifting and setting

down each foot in turn, never having both feet off the ground at once.” While walking, the

leg that is on the ground is referred to as stance leg, support leg, or anchor leg. The foot

that is off the ground is called the swing leg. The maximum height a swing leg reaches is

called the swing height and the heel to heel distance between two feet when they both are

touching the ground while walking is called step length. Thus, walking can be split into 4

phases, as shown in Figure 2.3.

1. Liftoff: In this phase, the robot lifts the swing leg and balances on the stance leg.

The liftoff can be instantaneous, if the entire foot is lifted at once, or it can be over

an extended period if the toe is kept in contact with the ground as seen in the figure

to allow bigger support polygon for a longer time.

2. Swing: In this phase, the robot moves its swing leg in a trajectory reaching swing

height and also moving the body forward in the process.

3. Touch down: In this phase, the robot touches the swing leg on the ground and thus

increasing the size of the support polygon.

4. Transfer: In this phase, the robot transfers its weight from one leg to the other, the

swing and stance legs switch roles. The robot body keeps moving forward in this

phase.

To maintain balance while walking, the ZMP should stay in the support polygon. In

statically stable poses, the ZMP and the projection of CoM on the ground is the same

point. Immediately after the liftoff phase, the size of support polygon shrinks to less than

50%, as seen in Figure 2.3. Hence, the entire weight of the robot must be transferred on

the stance leg before liftoff. The transfer of weight ensures that the ZMP is inside support

polygon, and the robot stays balanced. During the swing phase, the ZMP and the CoM

move from one edge of the stance foot to the other. The time for which the support polygon

is the same as the area of one foot is called swing time. The touchdown phase is triggered
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Figure 2.3: Walking phases. Upper part of the image is the side view and the lower part is
the top view. The maroon circle is the CoM, the support polygon is shown in green, and
the blue line is the CoM trajectory for a statically stable walk.

such that the support polygon grows before ZMP leaves the stance foot projection on the

ground. During the transfer phase, the legs switch roles, and the ZMP and CoM move

towards the new stance foot. The time required to move the weight from one stance foot to

the other as the legs switch roles is called transfer time. Another common terminology used

for walking is – single-support and double-support phase. In the single-support phase, the

robot is balanced with just one foot on the ground, and in the double-support phase, both

the feet are touching the ground. Hence, the stance foot is also referred to as support foot

in literature. With this terminology, the swing time is the duration of the single-support

phase, and the transfer time is the duration of the double-support phase.

Walking can be classified into two types – static walk, and dynamic walk. As the name

suggests, the robot is in static equilibrium during a static walk. The projection of CoM on
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Figure 2.4: ZMP-Based Walking Controllers

the ground plane is always inside the support polygon. In a dynamic walk, the CoM might

leave the support polygon momentarily, but the motion of the robot brings it back into the

support polygon. ZMP always stays in the support polygon.

With the notion of ZMP, dynamic walking controllers can be designed by isolating walk-

ing pattern generation and stabilization around it. This is done by planning footsteps from

a starting location to goal, generating CoM trajectories for those footsteps, and modifying

the trajectories to ensure ZMP stays inside the support polygon before sending it to the

robot. The process of modifying CoM trajectories to stabilize ZMP is known as stabiliza-

tion. Simplest form of walking controller, as shown in Figure 2.4, solves forward kinematics

for the desired joint angles(q) and velocities(q̇) to compute the desired CoM (Cd). Then,

use the desired CoM position to determine the desired ZMP (Pd) location. Update the

desired CoM based on stable ZMP (P ∗d) position computed using a simplified model, and

then solving inverse kinematics to get the joint angles (q∗d) and velocities (q̇∗d) for stable

trajectory.

There is another class of biped walker called ”Passive walkers”[9][8][59]. Passive walkers

assume that walking pattern generation and stabilization are closely coupled and should
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not be isolated. Rather, the design of the robot should generate a basin of attraction such

that the robot walks instead of falling when a force is acting on it. In this thesis, we aim

for a middle ground where the walking pattern generation and stabilizer run with real-time

constraints, and the walking pattern generator is a function of stabilizer.

2.3 Modelling System Dynamics For Walking

At a higher level, there are two approaches for generating walking trajectories for a

humanoid robot. The first one is using the exact model of the robot to generate CoM

trajectories for walking. This requires precise knowledge of the robot’s physical properties

and external forces that will act on the robot during operation[22][61][42][25][43]. This

approach provides good control over the robot, but it is of little use when the robot’s exact

model is unknown. The second approach uses a simplified model to generate the CoM

trajectories and then controls the robot to follow those trajectories. This approach is useful

when the robot’s physical properties cannot be precisely known, computed, or modeled. It

is also robust to changes in the environment and external forces acting on the robot, as long

as there are corresponding sensors to provide feedback to the controller. In this research,

we focus on the latter case.

2.3.1 Linear Inverted Pendulum Mode (LIPM)

Walking dynamics of a humanoid robot can be modeled similar to a linear inverted

pendulum by assuming that the entire mass of the robot is concentrated at the CoM position

and it is balanced on the ZMP with a torque-free joint. The legs are assumed to be massless

and extensible. Constant height CoM trajectories can then be generated using the dynamics

of LIPM[30][28]. As seen in Figure 2.5, the force due to gravity (mg) on the CoM of an

inverted pendulum is balanced by the vertical component of the ground reaction force (Fg)

acting on the inverted pendulum. The inertial force of the pendulum (mC̈x) is balanced by

the horizontal component of Fg. The horizontal component of Fg corresponds to the friction

force on the ground. The resultant dynamic equations are linear and decoupled. Thus, it

can be derived for one dimension as given by Equation 2.7 and can be used independently
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for both x and y dimensions.

Figure 2.5: 2D Inverted Pendulum in Equilibrium

C̈x =
g

Cz
(Cx − Px) (2.7)

Let C be the 2D coordinates of CoM (Cx, Cy) in XY-Plane, P be the 2D coordinates of

ZMP, ω =
√
g/Cz and σ = [C, Ċ]T , where σ is the system state consisting of position and

velocity of CoM in XY-plane. Then the complete system dynamics of LIPM is given by,

σ̇ =

 0 1

ω2 0

σ +

 0

−ω2

P (2.8)
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If σ0 is the initial state of the system, then the explicit solution for LIPM dynamics in

Equation 2.8 is given by,

σ(t) =

 cosh(ωt) 1
ωsinh(ωt)

ωsinh(ωt) cosh(ωt)

σ0 +

1− cosh(ωt)

−ωsinh(ωt)

P (2.9)

The above equations assume CoM is at a constant height and provides its position and

velocity at time t. This can also be imagined as the extension of the leg required to maintain

a constant height of CoM. It is obvious that the leg cannot extend beyond its kinematic

limits. This provides the maximum step a robot can take for a specific pelvis height. As

the robot touches the other foot on the ground, the dynamics is reset to the initial state.

Figure 2.6: Trajectories of CoM when X-direction position is plotted against its velocity

Figure 2.6 shows the trajectories of CoM when the position of CoM is plotted against

its velocity. In the first quadrant, CoM is ahead of its ZMP, and its velocity is increasing.

This is the unstable region and always results in an ever-increasing velocity of CoM. Taking

a step past ZMP in this state moves the system state to the second quadrant. In the second

quadrant, the CoM is behind ZMP and is moving towards ZMP. During the motion, CoM

velocity decreases, and if the velocity of the CoM is enough to cross the ZMP, it will pass

ZMP and start accelerating after crossing it. If the velocity of CoM is not enough to reach

ZMP, it will start accelerating in the opposite direction after reaching zero velocity. If
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however, the system state lies on the eigenvector shown in a bold black diagonal line in

the second quadrant, the pendulum will reach equilibrium state with CoM exactly above

the ZMP, and the velocity would approach zero. The third quadrant is similar to the first

quadrant with different directions for velocity and position. Forth quadrant is similar to

the second, where the pendulum can reach equilibrium if the state lies on the eigenvector;

otherwise, the CoM either overshoots the equilibrium or undershoots. At every step, the

dynamics of the pendulum is reset.

2.3.2 Linear Inverted Pendulum Plus Flywheel

LIPM assumes that the entire mass of the robot is concentrated at CoM, and this point

mass lacks rotational inertia. However, many human motions use angular momentum to

maintain balance. In this model, the angular momentum is modeled using a flywheel that

replaces the point mass of LIPM, as shown in Figure 2.7. This model allows acceleration of

the CoM by changing the angular momentum stored in the flywheel[47]. A similar model

for compensating angular momentum of the robot is used in Reaction Mass Pendulum[35].

The dynamics of the LIP with flywheel is given by,

C̈x = ω2Cx −
1

mCz
τh (2.10)

θ̈b =
1

J
τh (2.11)

where, m is the mass of the flywheel, J is the rotational inertia of the flywheel, Cx and

Cz are the coordinates of CoM, θb is the flywheel angle with respect to the vertical axis,

and τh is the motor torque on the flywheel.
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Figure 2.7: Abstract model of a biped in the single support phase with a flywheel body and
massless legs. The swing leg is not shown. Two actuators of the biped are located at the
flywheel center (also the CoM of the biped) and the leg.
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Chapter 3

Stepping with Virtual Forces

We seek a region for stepping such that if a robot in a steady-state or moving, places

its swing leg in that region, the robot will stay balanced and can stop if required. Various

push recovery strategies already rely on a similar concept. Capture points and capture

regions[47] provide an orbital energy-based approach to bring a robot to complete rest with

N-Step Capturability. The same capture points are derived using the natural dynamics of

LIPM in[13]. [52] shows a comparison of CoP based recovery, CMP based recovery, and

stepping based recovery. The velocity of the CoM is used to determine step length for

push recovery in this research. A passive model of a rimless wheel with two spokes is used

in[62] to determine stepping location for a complete stop. A significant difference between

existing push recovery mechanisms and the proposed method is the impact of swing foot.

During push recovery, the impact of swing foot on the ground helps the robot to stop

quickly, whereas this impact is not desirable while walking. The presented approach is an

extension to the biped walking proposed in[13], and it obviates the entire footstep planning

component. The commands for the robot to move in the direction of interest are expressed

as a virtual force vector(Fv) that pushes the robot in the desired direction.

3.1 Capture Points and Capture Region

A capture point is a reference point on the ground, where the robot has to step to come

to a complete stop. At this point, the total orbital energy of the robot is zero. External
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Figure 3.1: Trajectories of CoM. A stable region, shown in gray, can be achieved if we
replace point foot with foot of width w

forces acting on the robot can move the capture point away from the robot. As a robot

always have reaction mass and feet, one can adjust the CoP in support polygon to keep the

robot stable. As the robot can use its mass to move the CoP position, there exist multiple

capture points for a given state of the robot. Set of all the capture points in a given state is

known as Capture region. Capture point lies on the eigenvector of the phase plot shown in

Figure 2.6 and hence, it is guaranteed to reach equilibrium. With the addition of feet to the

LIPM, that phase plot changes to Figure 3.1 allowing more states to reach equilibrium and

thus expanding the capture point to capture region. Any point inside of the blue shaded

region in the figure can be brought to zero velocity. Figure 3.2 shows three cases where

the capture region can lie based on the forces acting on the robot. If the capture region

is within the support polygon, the robot need not take any step. If the capture region is

outside the support polygon but within the kinematic range of the robot, the robot needs

just one step to come to a stop. If the capture region is outside the kinematic range, capture

points can be found for multiple steps such that every step takes the robot closer to the

1-step capture region. Koolean et. al. [33] provides analysis of N-step capture regions with

a conclusion that only the 4-step capture region is sufficient as long as every next step is

(N-1)-step capturable.
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Figure 3.2: Capture region: a) No step needed as the capture region is inside support
polygon. b) stepping in the capture region can bring the robot to complete stop. c) capture
region is outside of kinematic limits, hence more than one step is required for the robot to
stop.

3.2 Capture Point Dynamics

A capture point is a reference point on the ground, where the robot has to step to come

to a complete stop. For LIPM, this implies that the CoM is located exactly over the ankle

or Cx = Px in Equation 2.7. Location of capture point can be found by solving Equation

2.9 such that Cx tends to Px as time tends to infinity. The Capture Point ξx is given by,

ξx = Cx +
Ċx

ω
(3.1)

Once we have the above equation, the CoM velocity(Ċx) can now be represented in terms

of capture point.

Ċx = −ω(Cx − ξx) (3.2)

Equation 3.2 shows that Cx has a stable first-order open loop dynamics with time

constant 1
ω . Also knowing that the same equation applies to both x and y dimensions,

we can assume ξ = [ξx ξy]T , C = [Cx Cy]T , and P = [Px Py]T . The dynamics of the

capture point can be derived by differentiating Equation 3.1 as follows,
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ξ̇ = Ċ +
C̈

ω

ξ̇ = −ω(C − ξ) +
ω2(C − P )

ω

ξ̇ = ω(ξ − P ) (3.3)

This shows that ξ has unstable first-order open-loop dynamics. As the CoM has a stable

first-order dynamics, we can ignore it and use only the Capture Point dynamics to formulate

a control law. CoM will follow the Capture Point, and when we stabilize the Capture Point,

the entire system will be stable. In Figure 3.3, we can see that ξ moves in a straight line

away from P , it’s velocity ξ̇ is proportional to the distance between P and ξ. The projection

of CoM on the ground, C, moves towards ξ with a velocity proportional to the distance

between ξ and C.

Figure 3.3: Capture point dynamics

For a constant ZMP position, P , the solution of equation 3.3 is given by,
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ξ(t) = eωtξ0 + (1− eωt)P (3.4)

P =
ξd − eωdT ξ
1− eωdT

(3.5)

P =
1

1− eωdT
ξd −

eωdT

1− eωdT
ξ (3.6)

In the above equation, dT is the desired time to reach the desired capture point ξd.

Using this control law, we can set the desired capture point as the location of the next step

to reach in time dT . If the desired value of the capture point changes when the robot is in

motion, it tries to reach the new point in the remaining time dT and hence it can be used for

writing reactive controllers. The point P used here is ZMP. However, the equations remain

unchanged if CoP is used instead of ZMP [47]. As the CoP always lies inside the support

polygon and can be controlled by shifting robots weight, it is convenient to consider CoP

instead of ZMP. Figure 3.4 provides the complete picture of computing CoM coordinates C

based on the desired capture point ξd. The desired capture point generator takes in a force

vector to compute ξd. More details on the generator are presented in the next section.

Figure 3.4: Controlling CoM based on desired Capture Point
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3.3 Desired Capture Point Generator

As seen in the previous section, a biped robot can walk stably if it always steps inside

the capture region by controlling the instantaneous capture point trajectory. The ability to

step in the capture region is constrained by the kinematic limits of the robot’s leg. In the

following subsections related to LIPM with flywheel model, the kinematic limits are ignored

for simplicity. However, these limits are added back in later subsections for completeness.

3.3.1 LIPM with Flywheel

For the LIPM model, only a single capture point exists, and hence it is of little value while

generating the desired capture point. When a flywheel is added to LIPM, the capture point

grows into a capture region. Figure 3.5 shows side view (XZ-plane) and top view(XY-plane)

of a stable inverted pendulum with flywheel. The ground reaction forces (Fg) compensate

for the frictional forces and weight of the pendulum. CoP (P ) and CMP (A0) are located

at the ankle of the pendulum. When a virtual force (Fv) is applied at the CoM (C), the

desired CMP (Ad) is computed using equations 3.7 and 3.8. Fv is assumed to be constrained

in XY-plane. The virtual ground reaction forces under application of Fv are shown as F ′g.

The blue circle in the XY-plane shows the capture region of the model. If Ad is inside the

capture region, the next step should be at the point Ad; otherwise, the next step should be

at the intersection of capture region perimeter and the line connecting A0 and Ad as shown

in Figure 3.5.

Each of the reference points used in this description have three coordinates. The vector

form of these points is given below:

Center of mass: C = [Cx Cy Cz]
T

Ground reaction force : Fg = [Fgx Fgy Fgz]
T

Center of pressure : P = [Px Py 0]T

Initial centroidal moment pivot : A0 = [A0x A0y 0]T

Virtual force : Fv = [Fvx Fvy 0]T

Desired centroidal moment pivot : Ad = [Adx Ady 0]T

Desired capture point : ξd = [ξdx ξdy 0]T
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Figure 3.5: Virtual force Fv moves the initial CMP A0 to desired CMP Ad. ξd is bounded
by the capture region shown in blue circle in the XY-plane and lies on the line connecting
A0 and desired CMP Ad.

Adx = Cx −
Fgx − Fvx

Fgz
Cz (3.7)

Ady = Cy −
Fgy − Fvy

Fgz
Cz (3.8)

While walking, a robot spends non-zero time in double-support phase. As soon as the

swing foot touches the ground, the next desired capture point is generated and sent to the

robot. This happens before the robot has finished transferring its mass on both feet. In
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Figure 3.6, CoM is already in motion after the first step such that the force in X-direction

on the CoM is given by mC̈x. The support foot before the touch down is not shown in the

image. If the virtual force (Fv) is still acting on the CoM, the desired CMP is computed by

using both the current acceleration and the virtual force. This approach results in the first

step always being shorter than the following steps. This is expected behavior as the robot is

stationary for the first step; however, the momentum generated while taking the step moves

the capture region forward, allowing longer steps. At the last step, the flywheel absorbs

additional energy to bring the robot to a complete stop. Acceleration in Y-direction would

move ξd along Y-axis, and the stepping direction would change accordingly. As the capture

point dynamics are decoupled and linear, the equations for both axes are similar.

3.3.2 Multibody Model

Leg Workspace

Figure 3.7 shows the top view of the ground plane with left foot anchored on the ground.

The workspace of the right foot is bordered with a blue curve. This workspace includes

safety margins to avoid self collisions of the robot. In (a), the pelvis is centered between

the feet in top view. The pelvis can move in X or Y direction by moving the hip joints of

the left leg, expanding the workspace of the right leg as seen in (b). We assume that the

pelvis height stays constant and the knees of the robot are bent to avoid singular position

of the legs. The expanded workspace in X-direction is shown in (c). The blue filled circles

denote end position of the pelvis in top view. The workspace of one foot in the reference

frame of other is always constant for a constant pelvis height. Hence it can pre-computed

for a given robot. Pelvis movement in Y-direction is not accounted for; however, similar

calculations would apply for Y-axis movement of the pelvis. Given the robot is standing

with bent knees, the workspace can be computed by tracing the part of the circle on the

ground formed by the ankle joint by extending the knees and moving the hip joints. Even

though we consider completely stretched legs in computing the workspace, reaching of that

singular position of the leg is not required as joints of the other leg can be actuated to move

pelvis in the required direction.
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Figure 3.6: Desired CMP (Ad) is computed using current acceleration (cC̈x) and the virtual
force (Fv)

Capture Region

The dynamics of Linear Inverted Pendulum with Flywheel is given by equations 2.10

and 2.11. In these equations, τh is a variable that we can choose. This variable is bounded

by the position, velocity, and acceleration limits of the upper body joints of the robot. If

the value of τh is zero, it represents the LIPM dynamics. In this condition, only one capture

point exists, and it is given by Equation 3.1. With an increase in the value of τh, this point

expands to an area as described by the dynamics of LIP with flywheel model. Figure 3.8

shows the intersection of the Capture Region and foot workspace when external forces are

acting on the robot. This area is computed under the application of virtual force Fv. The
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(a) Pelvis is fixed. (b) Pelvis can move to minimum and maximum values

in X-axis.

(c) Complete workspace, when pelvis can move in X

axis.

Figure 3.7: Workspace of right foot with respect to left foot

capture region shown in the figure is circular and in front of the support foot for ease of

understanding. With the upper body mass of the robot and support foot with area ¿ 0, the

capture region is much bigger than what is portrayed in this figure.

Desired CMP and Desired Capture Point

The user provides a virtual force (Fv) as an input to the controller. This force is assumed

to be acting at the height of CoM in X-Y (horizontal) plane. The force is positioned at the

midpoint of the two feet frames in XY-plane. Current CMP (A0) of the robot is computed

using Equation 2.4. For computing desired CMP (Ad), the virtual force is subtracted from

ground reaction forces (Fg) and the resultant force (F ′g) is used in 2.4. If Ad lies inside

the safe region to step, as shown in Figure 3.9 (a), then that point is considered as desired
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(a) Workspace and Capture Region Superimposed (b) Safe Region to Step.

Figure 3.8: Intersection of Foot Workspace and Capture Region

capture point. If Ad lies outside of the safe region as shown in (b), then the desired capture

point lies on the farthest intersection of the vector (Ad −A0) and the safe region.

Foot Separation & Orientation

The derivations using LIPM can provide both X and Y coordinates for foot placement,

however for a more natural-looking gait, the foot separation can be kept constant if the

modified footstep lies in the safe step region. For the Atlas robot, the foot separation

distance is set to 0.32m. This distance comes from the zero configuration of the robot.

For the Valkyrie robot, it is 0.25m in simulation. Figure 3.10 shows 3 possible cases of

application of virtual force. The center of a planned footstep, which coincides with the foot

frame, is planned on the dotted line that marks the foot separation distance in a direction

parallel to the applied virtual force.

The orientation of the footstep is based on the direction of the virtual force. If Fvx and

Fvy are the x and y components of the virtual force (Fv), then the yaw(φ) of the foot frame

can be calculated as:

φ = arctan
Fvx

Fvy
(3.9)

We use arctan instead of arctan2 as that would guarantee the steps generated behind

the robot are also feasible. When a virtual force is applied to the robot in the negative x-
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(a) Desired CMP is inside safe region. (b) Desired CMP is outside safe region.

Figure 3.9: Computing desired Capture Point ξd

direction, the robot will plan a step such that it walks backward instead of turning around.

In the current implementation, the angle φ is rounded to nearest 5 degrees to avoid minor

rotations of feet, while calculating the angle of a footstep. To adhere to the kinematic limits

of Atlas robot, the foot rotation is modified to maintain positive angle for the right foot

and negative angle for the left foot. This constraint does not apply to Valkyrie.

Frame of Application for the Virtual Force

The CoM of the robot follows a non-linear path when the robot is walking, as shown

in Figure 3.11. If we apply a virtual force at the CoM, it will not allow the robot to walk

straight as the CoM continuously moves in a non-linear path between both the feet. In order

to avoid this situation, a new frame is created at the midway of both feet. The rotation of
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(a) Virtual force is inclined to-

wards left.

(b) Virtual force is aligned

with X axis.

(c) Virtual force is inclined to-

wards left.

Figure 3.10: Foot Orientation when virtual force is applied in different direction. w is the
foot separation distance.

the new frame is average of rotations of both the foot frames. This new frame is at the same

height as that of CoM. If L, R, and C are the vectors representing x, y, and z coordinates

of the left foot frame, right foot frame, and the CoM respectively, the coordinates of new

frame C ′ are given by equation 3.10.

C ′ =


1 0 0

0 1 0

0 0 0

 (L+R)

2
+


0 0 0

0 0 0

0 0 1

C (3.10)

The rotation of this frame is the average of rotations of left foot frame Rl and right

foot frame Rr. Rotations are expressed as SO3 rotation matrices. Hence these cannot be

averaged directly. In order to get the average, SO3 matrix is converted into its tangential

plane denoted by so3. so3 is the Lie algebra of the Lie bracket SO3. so3 can now be

divided by two and converted back to SO3. This process of averaging 3D rotations is

known as “Spherical Linear Interpolation” or Slerp. Equation 3.11 shows the computation.

The exponent and logarithm functions used in this equation are matrix functions, and the
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Figure 3.11: CoM trajectory as seen in the top view

values are derived using Taylor’s series.

Rc′ = exp
(
Rl

ln (RT
l Rr)

2

)
(3.11)

This approach ensures that the virtual force is always applied at the center of both feet.

As the desired footstep is computed when both feet are on the ground, the position or

orientation of the foot frames while walking do not impact the calculation of the desired

capture point. Y-coordinate of the generated footstep is adjusted to maintain a constant

distance between both the feet.
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3.4 Walking Parameters

The low-level controller expects the following walking parameter to generate leg trajec-

tories and execute walking motion:

1. Step length

2. Swing height

3. Swing time

4. Transfer time

3.4.1 Step Length

Step Length is the heel to heel distance between feet. When the robot is standing in

zero-configuration, the first step usually is around half the length of the maximum step

length, as seen in Figure 3.5. The smaller footstep is because the velocity of the CoM is

zero at time t = 0. When the robot starts walking, the step length is longer due to the

acceleration of the CoM. The step length is maximum for every next step if Fv is high

enough to move the desired CMP outside of the safe region to step. The foot separation

distance is adjusted in the final position before sending it to the controller, such that the

distance in y-axis between the 2 feet stays nearly constant, except for when the robot is

turning. This modification allows for the steps to look more natural and human-like.

3.4.2 Swing Height

Swing height is the maximum height that the swing foot reaches while executing the leg

trajectory. Swing height is always referred in the plane that contains the center of current

footstep and the center of next footstep. Hence, we can use a constant swing height for flat

ground, slopes, or steps. However, if there are obstacles that are to be stepped over, swing

height must be increased. A constant swing height of 0.18m is found to be working well for

the Atlas robot in both the simulation and on the real robot.
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(a) Flat Ground (b) Slope

(c) Step

Figure 3.12: Swing height on different terrains

3.4.3 Swing Time

Swing time is the time required for executing swing trajectory. During this time, the

robot is in single support phase. Swing time can be computed by rearranging Equation 3.4

and solving for t when ξ(t) = ξd where ξd is the desired capture point. Let t = Ts when

ξ(t) = ξd,

ξd − P = (ξ0 − P )eωTs (3.12)

Ts = − 1

ω
ln

(
ξ0 − P
ξd − P

)
(3.13)

In Equation 3.13, the fraction inside ln is inverted to avoid divide by zero error at

runtime. The lower bound of Ts is defined by the achievable acceleration of the actuators

of the robot. On Atlas robot, it is experimentally found out to be 1.2 seconds. If the

value of Ts is high, the instantaneous capture point will move further away than the desired

location, and ideally, the robot would need multiple steps to come to a stop. However, in

this approach, we only use the capture point dynamics to generate walking parameters, and

the low-level controllers execute the trajectory by planning for the desired values. Hence,

the increase in swing time results in a static walk instead of unstability in the system.
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3.4.4 Transfer Time

Transfer time is the time for which the robot stays in double support phase while walk-

ing. This time is required for transferring the weight of the robot from one foot to the other.

While writing the dynamics equations for a simplified model, we often consider an instan-

taneous switch of the swing foot and the support foot. In reality, however, when switching

the support foot, we have to wait until CMP enters the convex hull of the support leg and

the dynamics of the robot is such that the acceleration of CoM would stay in the forward

direction even after lifting the other foot. The CoP can be controlled to move from heel to

toe during a walk resulting in smooth transition in-to and out-of transfer phase. On Atlas

robot, this was found to be 0.8 seconds, for the existing controllers.
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Chapter 4

Transportable Opensource API &

UI for Generic Humanoids

Humanoid robotics is a complex and highly diverse field. Most humanoid robots have

more than 20 degrees of freedom and may have up to several dozen sensors. Developing soft-

ware for such robots is challenging because one needs to correctly integrate all the actuators

and sensors to operate in a highly coordinated manner. TOUGH solves this problem for two

state-of-the-art humanoid robots — Boston Dynamics’ Atlas V5 and NASA’s Valkyrie R5

(henceforth referred to simply as “Atlas” and “Valkyrie” by extending software provided by

the Florida Institute for Human & Machine Cognition (IHMC)[54] and integrating several

ROS libraries. Most humanoid robot tasks require the integration of perception, manip-

ulation, and locomotion realized through planning and control subject to constraints that

are specific to each type of humanoid robot. For example, a humanoid manipulation task

may require the planning of arm motions while ensuring that the robot remains balanced;

footstep planning should consider robot-specific limitations; perception algorithms should

be robust to vision sensor vibration. To successfully integrate these modules, they must be

developed by considering their impact on each other.

TOUGH uses the legged locomotion algorithms and optimization based momentum con-

troller framework provided by IHMC Open Robotics Software [54]. The algorithms are

generic to several humanoids and quadrupeds. The controllers are written in Java with
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a network interface supporting ROS-Java integration through defined messages. ROS [49]

is one of the most widely used middleware for research and education in robotics. The

TOUGH APIs discussed in this chapter communicate with the software mentioned above

using ROS topics to read robot state, sensor data, and send custom commands to the robot.

Algorithms developed to work on one robot can be tested on another with great ease to

make comparisons. The minimal setup and independent modules of TOUGH are designed

to help new researchers and students focus on specific tasks without losing the impact of

other modules on the task in hand. This framework attempts to provide a generic and

integrated software stack which would aid new researchers, educational programs and the

robotics community get started with humanoid robotics.

Using TOUGH, users can focus on high-level algorithms without worrying about robot

specific configuration, system setup, message generation, and communication. IHMC pro-

vides open-source access to their low-level controllers along with several robotics libraries;

however their mission control repository, which is used for operating the robot is closed

source. TOUGH utilizes most of the features provided by IHMC software and abstracts

overwhelming details required by the low-level controller. It also adds customizable GUI,

ease of use, and several examples.

The next section talks about the existing open-source libraries commonly used in hu-

manoid robotics, followed by the design of TOUGH. Getting Started section provides an

example task highlighting the ease of use followed by performance comparison. The section

after that explains available Docker images. The last section presents three use cases of the

APIs.

4.1 Related Work

There are several open-source libraries for control of legged robots. Pinocchio[4] spe-

cializes with fast rigid body dynamics algorithms used for robotics, computer animation,

and biomechanical applications. OpenSoT[23] allows rapid prototyping of controllers for

high degrees of freedom (DoF) robots. It can be used for computing inverse kinematics, in-

verse dynamics, or contact force optimization, which is commonly used while controlling hu-
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Figure 4.1: Packages in TOUGH APIs

manoid robots. The iDyntree[43] library was designed specifically for control of free-floating

robot as part of the iCub project. Drake[57] provides tools to analyze the dynamics, design

control systems, navigation, and planning algorithms for all kinds of robots. Controlit[16]

provides a software framework for whole-body operational space control. These libraries

provide a particular set of tools for dynamics and control of legged robots.

On the contrary, TOUGH is designed to provide seamless integration of manipulation,

navigation, perception, and control. There is a heavy emphasis on high-level user experience

and effectively managing low-level control for complex robots. TOUGH allows novice users

to control the robot at a higher level by abstracting low-level details. More advanced users,

on the other hand, can write algorithms for control, motion planning, or perception based

on sensor feedback from the robot and send the control input at joint level.

4.2 Design

TOUGH uses ROS as middleware to communicate with the momentum-based controller[32]

running on the robot or simulator. At a higher level, TOUGH takes input from user con-

verts it into appropriate ROS messages and sends it to the robot. TOUGH APIs consists

of five modules and two ROS packages, as shown in Figure 4.1. The modules inside the
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dotted lines form the core of TOUGH. These modules communicate directly with the robot.

tough examples provide examples of using the core module, and tough gui provides a graph-

ical user interface (GUI) for operating the robot. Tough common contains classes that are

required by all the other packages. Tough control allows sending joint level commands to

different parts of the robot. Tough perception provides utilities for data processing of vi-

sion sensors. Tough motion planners allows planning of taskspace trajectories which can

be executed using the controller interfaces. Though the motion planners are not directly

dependent on Tough control, a user would generally need to make use of Tough control for

sending planned trajectories to the robot. Tough navigation is used for sending leg trajec-

tories to the robot. Although a user can move the legs in the desired position in taskspace

using this package, it is most commonly used for sending either footsteps or goal to which

footsteps should be planned and executed by the robot.

TOUGH acts as an abstraction layer to hide details required by the low-level controller

that does not concern the user. For example, to change the pelvis height of the robot to

0.8m in 1s using ROS message, a user has to send the following values as a ROS message:

t a s k s p a c e t r a j e c t o r y p o i n t s :

− time : 1 . 0

p o s i t i o n :{ x : 0 . 0 , y : 0 . 0 , z : 0 . 8 }

l i n e a r v e l o c i t y :{ x : 0 . 0 , y : 0 . 0 , z : 0 . 0 }

un ique id : 0

f rame in fo rmat ion :

{ t r a j e c t o r y r e f e r e n c e f r a m e i d :−102 ,

d a t a r e f e r e n c e f r a m e i d : −102}

use cus tom cont ro l f r ame : f a l s e

c o n t r o l f r a m e p o s e :

t r a n s l a t i o n : {x : 0 . 0 , y : 0 . 0 , z : 0 .0}
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r o t a t i o n : {x : 0 . 0 , y : 0 . 0 , z : 0 . 0 , w: 0 . 0 }

execution mode : 0

p r ev i ou s mes sage id : 0

un ique id : 1

Listing 4.1: ROS Message to Change Pelvis Height

The above snippet is an example of ROS message to set pelvis height. It has some vari-

ables whose values are essential for the user to know, like that of time and position in

taskspace trajectory points. However, there are some variables whose values are not re-

quired or could be computed without user input in most cases. For example, the reference

frame IDs in frame information mentioned as -102 is a hash for world frame, which need

not be known to the user. Same is the case with the last variable, unique id, if its value

is 0, then the message is discarded by the controller. The above message is reduced to the

following two lines using TOUGH

/∗ nh i s a ros nodehandle ∗/

P e l v i s C o n t r o l I n t e r f a c e pc (nh) ;

pc . c o n t r o l P e l v i s H e i g h t ( 0 . 8 , 1 . 0 ) ;

Listing 4.2: TOUGH example

4.2.1 Tough Common

Tough Common module is used for fetching details of robot model and robot state.

It consists of two classes – RobotDescription and RobotStateInformer. Both the classes

follow the singleton pattern. Singleton implementation allows the creation of only one

object which is shared with all the classes that access information through these classes.

RobotDescription provides information about robot model, like the frame names, joint

names, joint limits, etc. RobotStateInformer provides the current robot state, i.e., values of

the robot’s joint angles, velocities, and efforts. It also provides functions to get the external

forces from force sensors and the accelerations from the Inertial Measurement Unit (IMU)
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sensor. The robot state is updated at 1KHz. It also provides methods for querying current

pose of frames and transforming points or frames between different base frames. Figure 4.2

shows the class diagram of tough common package. In the figure, RobotState is a struct

with a joint name, position, velocity, and effort of a joint. RobotSide is an enum with

two values, LEFT and RIGHT. It is used to specify the side of the robot when sending

commands to arms, grippers, or legs.

Figure 4.2: Overview of Tough Common module. This module uses ROS to fetch sensor data
from robot/simulator and makes it available to the user via functions from tough common
library.

4.2.2 Tough Perception

Tough Perception module is an interface to access Multisense SL sensor using two classes,

MultisenseImage and MultisensePointCloud. It also provides a few utility nodes that can be

used with any other sensor. Figure 4.3 shows an overview of tough perception. Multisense
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SL, has a stereo camera and a spinning Hokuyo lidar. The right camera of the stereo

camera pair provides Monochrome image, and the left camera is RGB. Using images from

both cameras, we can determine depth information. MultisenseImage class provides images

from the stereo camera along with organized RGBD pointcloud which can be used to find

world coordinates of a pixel in the image.

Lidar sensor provides laser scan, which consists of range and intensity, of points in a

single plane. The Lidar spins about an axis parallel to the ground, to provide laserscan in all

planes that can be assembled to form a 3D pointcloud representation. MultisensePointCloud

class provides access to the lidar data. As the Lidar needs to spin to gather 3D data, it

takes about 3 seconds to generate an assembled 3D pointcloud. On the other hand, the

stereo camera provides a stereo pointcloud at higher update rates and lower data size but

with the cost of less accuracy.

Figure 4.3: Overview of Tough Perception. The libraries shown on the left provide access
to the Multisense SL sensor and the nodes shown on the right provides pre-configured
pointclouds.

This package includes utilities that assemble pointcloud, provide registered pointcloud,
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and provide a ground plane. Laserscan assembler assembles all laserscans within a set

time to form a pointcloud. This assembled pointcloud is merged with previously assembled

pointcloud to provide a registered pointcloud. The registered pointcloud has all the detected

points filtered to a density of 1 point per 5cm voxel. The ground plane is detected based

on the lowest foot height of the robot and surface normals from the detected plane. Aru-

coDetector class provides detection of objects using ArUco markers[17]. This class detects

and provides pose of registered ArUco markers in the field of view of the robot.

Figure 4.4: Class Diagram of Tough Controller Interface.

4.2.3 Tough Control

Tough Control module provides classes to interface with robot controllers using ROS.

Figure 4.4 shows class diagram of the tough controller interface package. Each of the body

parts has a controller interface class associated with it. These interface classes allow a user to

send commands to the required part of the robot body. Each class provides functions for that

specific part. For example, Chest controller interface allows rotation of torso about x, y, or z

axes whereas pelvis controller interface allows setting pelvis height of the robot. Commands

to multiple controller interfaces can be sent simultaneously, and the robot executes the most

feasible trajectory that keeps the robot balanced. If planners are used for generating whole-

body trajectories, these trajectories can be sent to the robot using wholebody controller

interface. All the controllers accept only joint level trajectories; however, motion planners

explained in the next subsection can be used for taskspace planning.
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4.2.4 Tough Motion Planners

Tough Motion Planners provides planning capabilities using MoveIt[6] configuration for

four predefined planning groups. Two groups for 7 degrees of freedom (DOF) planning of

each side, starting from the shoulder until hand and two groups for 10 DOF planning of each

side that include roll, pitch and yaw of the chest along with 7 DOF arms. TaskspacePlanner

class provides methods to generate joint trajectories for a given 6D point in taskspace. It

can also be used for generating trajectories to follow a set of waypoints in taskspace. These

joint trajectories can then be executed on the robot using tough controller interface. It also

provides an inverse kinematics solution using TracIK[3] for any of the planning groups.

4.2.5 Tough Navigation

Tough Navigation module provides RobotWalker class that can be used to send footstep

locations to the robot. It allows the user to customize footstep parameters like the step

length, swing height, swing time, and transfer time. Footsteps can be generated based on

either fixed offset that user provides or based on a goal location. Search based footstep

planner[24] is configured for Atlas and Valkyrie based on the configuration of each robot.

The footstep planner needs a 2D occupancy map which is generated by map generator node

in this same module. It uses the ground plane filtered by Tough Perception module to create

a map.

This module also provides a class FrameTracker, that can be used to track motion

between 2 frames. This class is useful in cases where one needs to programmatically check

if the robot is walking. Though the FrameTracker class is developed in the context of

walking, it can be used for tracking motion between any two frames. Another utility class

in this package is FallDetector. FallDetector provides a way of knowing if the robot is

standing on its feet or has fallen down. This is useful in scenarios where an operator cannot

see the robot or in cases where the robot is working in complete autonomy.
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4.2.6 tough examples

tough examples are split into four categories, namely control, manipulation, navigation,

and perception. Each of these categories provides a comprehensive set of examples which

describe the proper usage of the APIs. The examples provided here are also used for sending

any quick commands to the robot, like reset robot to its default position or rotate the neck

to see around or walk a few steps. All of these examples take arguments and perform one

specific task.

4.2.7 Tough GUI

Tough GUI provides the necessary information required for operating a humanoid robot

along with a view of current joint angles, the current pose of the robot, and buttons to send

different commands to the robot. If required, RViz[21] can be used along with the GUI for

visualizing the data from different angles. A default configuration file for RViz is included

in tough gui package. As seen in Figure 4.5, Tough GUI provides RViz based render panel

and other visualization tools. The robot model is displayed in either 3D or 2D view in

the central panel. The lower left widget provides a view of the robot’s camera. The lower

central widget displays the current values of various joint angles and the current position

of the robot. The widget on the lower right consists of different tabs to control each of the

body parts. These tabs are

• Nudge - allows nudging either right or left hand by 5cm in task space using direction

buttons.

• Arm/Chest/Neck/Gripper - provides sliders to move individual joints to move into a

specific configuration.

• Walk - provides an interface to move a fixed number of steps by a fixed offset, change

walking parameters, and to change the pelvis height.

The top toolbar has RViz tools that can be used to fetch the coordinates of a clicked

point in the render panel, measure the distance between 2 points, send a 2D navigation goal

for the robot to walk. When 2D Nav Goal tool is used to send a goal location, the footstep
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Figure 4.5: TOUGH GUI connects to the robot or simulator to show a 3D rendered display
of the robot-state and pointcloud. It also has several widgets to control different body parts.

planner generates a set of footsteps for the robot to follow. This planner takes care of robot

specific constraints, like the kinematic limits of the robot. For example, Atlas robot cannot

place its foot such that the toe is pointing inwards; the footstep planner is configured to

consider that. Once a plan is ready, those footsteps are seen in GUI and the user must click

on “Approve Steps” button for the robot to start walking.

4.3 Getting Started

This section provides code snippets to perform a pick and place task using TOUGH

APIs. The task is to detect an object, navigate to it, pick it up, navigate to delivery

location, and place the object.
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4.3.1 Initialization

First step is to initialize all the required objects as shown in Listing 4.3.

/∗ I n i t i a l i z e a ros node ∗/

ros : : i n i t ( argc , argv , ” example node ” ) ;

ro s : : NodeHandle nh ;

ro s : : AsyncSpinner sp inner (1 ) ;

sp inner . s t a r t ( ) ;

/∗ Get p o i n t e r s to the o b j e c t s o f RobotDescr ipt ion and

RobotStateInformer ∗/

RobotStateInformer ∗ r s i ;

r s i=RobotStateInformer : : getRobotStateInformer (nh) ;

RobotDescr ipt ion ∗ rd ;

rd =RobotDescr ipt ion : : getRobotDescr ipt ion (nh) ;

/∗ C o n t r o l l e r s ∗/

ArmContro l Inter face armCont (nh) ;

HeadContro l Inter face headCont (nh) ;

WholebodyControl Inter face wbCont(nh) ;

Gr ippe rCont ro l In t e r f a c e gripCont (nh) ;

RobotWalker walkCont (nh) ;

/∗ Planner ∗/

TaskspacePlanner planner (nh) ;

/∗ Object Detect ion ∗/
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ArucoDetector de t e c t o r (nh) ;

Listing 4.3: Initialization

4.3.2 Object Detection

The next step is to detect the object of interest. Assuming the object has an ArUco

marker with id 15, we can check the presence of the object in the field of view using the

code snippet below

/∗ Detector updates an e x i s t i n g map o f s t r i n g and PoseStampedPtr .

So c r e a t e an empty map f i r s t .

∗/

std : : map<std : : s t r i ng ,

geometry msgs : : PoseStampedPtr> d e t e c t e d o b j e c t s ;

/∗ Fetch a l l the detec ted o b j e c t s us ing de t e c t o r

∗/

de t e c t o r . getDetectedObjects ( d e t e c t e d o b j e c t s ) ;

// Check i f the ob j e c t i s detected , p r i n t i t s pose

geometry msgs : : PoseStampedPtr objectPose ;

i f ( d e t e c t e d o b j e c t s . count ( ”15” ) > 0 )

{

objectPose= d e t e c t e d o b j e c t s [ ”15” ] ;

s td : : cout<< ” Pos i t i on o f the ob j e c t i s : ”

<< objectPose . pose . p o s i t i o n . x

<< objectPose . pose . p o s i t i o n . y

<< objectPose . pose . p o s i t i o n . z ;
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// pose v a r i a b l e a l s o conta in s the o r i e n t a t i o n and f i x e d frame

in fo rmat ion

}

Listing 4.4: Object Detection

In case the object is not in visible range, HeadControlInterface can be used to turn the

vision sensor as shown in code snippet below

/∗ d e f i n e the r equ i r ed r o l l p i t ch and yaw in rad ians ∗/

f l o a t r o l l = 0 ;

f l o a t p i t ch = 0 ;

f l o a t yaw = M PI 4 ;

headCont . moveHead( r o l l , p itch , yaw) ;

Listing 4.5: Move Head to Look Around

4.3.3 Navigation

Assuming a walking goal is computed based on the detected object pose, such that the

robot stands near the object, we can plan footsteps and make the robot walk to the goal

position using the following code snippet:

// goa l i s geometry msgs : : Pose2D ob j e c t computed based on ob j e c t

pose

bool b l o ck ingCa l l = true ;

walkCont . walkToGoal ( goal , b l o ck ingCa l l ) ;

Listing 4.6: Navigate to a Goal Pose
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4.3.4 Motion Planning and Manipulation

Let us assume that the object is on the right side of the robot and it is in reachable space

of right arm after the robot completed its walk. The pose of the object is stored in objectPose

variable. We can then compute a trajectory to go to the desired pose. Assuming the desired

pose is same as objectPose. In a real application, it can be different and computed based

on object shape and placement of the marker on the object.

// c r e a t e a blank t r a j e c t o r y message to be populated with va lue s

moveit msgs : : RobotTrajectory tra jMessage ;

/∗ Ava i l ab l e planning groups are

1 . TOUGHCOMMONNAMES: : RIGHT ARM 10DOF GROUP;

2 . TOUGHCOMMONNAMES: : RIGHT ARM 7DOF GROUP;

3 . TOUGHCOMMONNAMES: : LEFT ARM 10DOF GROUP;

4 . TOUGHCOMMONNAMES: : LEFT ARM 7DOF GROUP;

∗/

std : : s t r i n g planner group = TOUGHCOMMONNAMES: :

RIGHT ARM 10DOF GROUP;

// Al lowable t o l e r a n c e s f o r the planner can be modi f i ed be f o r e

planning

i f ( p lanner . g e tTra j e c to ry ( objectPose , p lanner group , tra jMessage ) )

{

// execute the computed t r a j e c t o r y

wbCont . executeTra j e c to ry ( tra jMessage ) ;

}

e l s e

{

// planning f a i l e d
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}

Listing 4.7: Trajectory Planning and Execution

Once the trajectory is executed, we can confirm that the end effector pose has reached

the required location.

// f e t c h r i g h t hand end e f f e c t o r frame name

std : : s t r i n g rEndEffFrame = rd−>getRightEEFrame ( ) ;

// l e t s assume we want to query the pose wrt p e l v i s frame .

std : : s t r i n g pelvisFrame = rd−>getPelvisFrame ( ) ;

// c r e a t e a pose ob j e c t to s t o r e the pose o f end e f f e c t o r

geometry msgs : : Pose rEndEffPose ;

r s i−>getCurrentPose ( rEndEffFrame , rEndEffPose , pelvisFrame ) ;

// now eEndEffPose can be compared with objectPose to conf i rm

that the end e f f e c t o r has reached the d e s i r e d pose .

Listing 4.8: Query Pose of End-Effector

Grasping can be performed using gripper controller as shown below

// c l o s i n g r i g h t g r ippe r

gripCont . c l o s eGr ippe r ( RobotSide : : RIGHT) ;

// opening r i g h t g r ippe r

gripCont . openGripper ( RobotSide : : RIGHT) ;

Listing 4.9: Operating Grippers

Placing of the object can be performed similarly using object detection to locate the pose

for placing object, then navigating to it, planning hand motion to place the object, and
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placing it.

4.4 Performance Comparison

The primary purpose of TOUGH is to act as an abstraction layer between the low-level

controller implementation and the user input. It allows achieving more by writing less code.

For most algorithms, the APIs depend on other open-source libraries, as mentioned above.

It does not add any overhead on time complexity to the existing algorithms. Hence, it is

apt to use “Lines of Code per Command” to compare the programs written using TOUGH

APIs with direct ROS-based nodes. Figure 4.6 provides a comparison of executables using

TOUGH APIs and basic ROS nodes for performing the same task. The code used for

comparison is available in tough examples package. The examples are elementary, and yet

we see code reduction by ∼75%. When compared with more significant tasks like writing

high-level controllers or executing required motion trajectories, the overall code reduction

would reach more than 80% as seen in a more complex example like “Walk N Steps” in the

chart.

Figure 4.6: TOUGH APIs vs ROS nodes
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4.5 Docker Container Images

A Docker container image is a lightweight, standalone, executable package of software

that includes everything needed to run an application [38]. Docker images for Atlas and

Valkyrie are created which help in quick configuration and set up of the entire system. These

images are self-contained and run the simulator in headless mode, i.e., without graphical

front end. User can connect to the simulation server from the local machine and visualize

the robot with data from its sensors or send commands to the robot. Using docker images

allows us to separate the entire simulation with controllers from the TOUGH APIs or other

code written using those APIs. Docker container can be replaced by the robot to execute

the code on the robot.

Generally, docker images are independent of the operating system on which they are

running. However, due to specific requirements of controllers, ROS, and Gazebo simula-

tor, the current version only supports the use of docker images on Ubuntu 16.04. The

host computer must also have a dedicated graphics card for simulation and processing of

vision sensor data. Following docker images are made available on github account of WPI

Humanoid Robotics Lab (WHRL). https://github.com/WPI-Humanoid-Robotics-Lab

• Repository name : drcsim docker

- provides Atlas simulation in Gazebo.

• Repository name : srcsim docker

- provides Valkyrie simulation in Gazebo.

The repositories are named based on the original simulation software names which were

created for DARPA Robotics Challenge (DRC) and NASA Space Robotics Challenge (SRC)

by Open Robotics, Inc. The original simulation software has been modified to work on

Ubuntu 16.04 and ROS kinetic. The controllers used in the original simulation software for

atlas has been replaced with the momentum-based controllers[32].

https://github.com/WPI-Humanoid-Robotics-Lab
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4.6 Use Cases

4.6.1 NASA Space Robotics Challenge

NASA Space Robotics Challenge, organized in 2016-17, focused on developing software

that would allow increasing autonomy of humanoid robots. TOUGH APIs are an outcome

of that competition and provides a complete suite for developing autonomous solutions for

known tasks. The premise of the competition was, some time in future a sand storm on mars

has misaligned communication dish, disconnected power, and caused a leak in the habitat.

A Valkyrie R5 robot that is present onsite should fix the alignment of the communication

dish, fix the solar array by deploying a solar panel and plugging the power cable into it,

finding and fixing an air leak inside a habitat. The restrictions on bandwidth and latency

made it extremely difficult to control the robot manually. Jagtap et al. [26] designed

extended state machine to complete two of these tasks autonomously. The state machine

used TOUGH APIs which were specific to Valkyrie R5 at that time and have been modified

and tested to work on Atlas robot since.

4.6.2 Humanoid Robotics Course

For the very first offering of a graduate-level special topic course on Humanoid Robotics

at Worcester Polytechnic Institute, a virtual server was used, where all the students could

log in and use atlas simulation for assignments and course projects.

The virtual system is set up in a unique way to allow multiple users to access the system

simultaneously. ROS uses random ports for different ROS executables, known as nodes,

and all these nodes communicate with a single roscore. For multiple users, we needed

multiple roscores configured. Moreover, the robot controllers use a fixed set of ports for

real-time communication. Docker images explained in the previous section are used to

avoid crosstalk between nodes of different users. Each user has his docker container with

a unique IP address. This set up allows running roscore and controllers on ports that are

user-specific and present in their docker containers. The complete setup is shown in Figure

4.7. Any command that needs graphics driver is run using Virtual GL. Such commands are

shown with green blocks in the figure. Users can now execute their nodes by setting ROS
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related environment variables to talk to the roscore running inside the docker container.

Running the docker container and setting correct environment variables requires knowledge

of docker and running various commands. To simply user experience, intuitive aliases for

the commands and scripts are provided. The user can thus stay oblivious of the gritty

details and yet efficiently use the simulation using these aliases.

Figure 4.7: Multiuser Setup for Humanoid Robotics Course. Each user session is represented
by the encapsulating rectangle. Every session has a Docker container that runs the robot
controllers and gazebo simulator. Green boxes are commands that need graphics card access
via Virtual GL for visualization.

4.6.3 Research in Humanoid Robotics

In WPI Humanoid Robotics Lab, TOUGH APIs are used for research projects related

to perception, manipulation, motion planning, and locomotion. Use of TOUGH eliminates

the inter-dependencies of these projects. Though in real-world, manipulation or motion

planning is dependent on perception, it can be entirely ignored by using registered point-

cloud provided by TOUGH for collision avoidance or ArUco markers for pose detection.

Similarly, perception projects can test out their algorithms when the robot is walking or

performing other motions and stay assured that the robot will be stable. There are minor

differences in simulation compared to the actual robot, and the user should be wary of those.
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However, these differences are due to simulators in general and not specific to TOUGH. For

example, the robot can walk much faster and perform faster motions in simulations, but

those trajectories had to be slowed down when executing on a real robot.
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Chapter 5

Experiments

The experiments are split into two sections. In the first section, the robot reacts to

external forces by stepping in the direction of the force. The external force is applied by

pulling the robot with a rope or pushing the robot with a wooden stud. The second section

uses virtual force instead of pulling or pushing the robot. This method allows an exact

amount of force to be applied to the robot. Accompanying videos for these experiments are

available at https://youtu.be/DxSJrTB3cAQ and https://youtu.be/ilbqVM9fLwI.

5.1 Reacting to External Forces by Stepping

When external forces are applied to the robot, these forces are estimated using the

measurements of joint torque sensors, foot force sensors, and the Inertial Measurement Unit

(IMU) sensor. The state estimator implementation from [55] was used in the experiments to

adjust ground reaction forces based on the applied force. In the first experiment, the robot

reads the ground reaction forces at a rate of 250Hz and steps in the direction of applied

force. A rope is tied to the robot and pulled to exert a pulling force. Figure 5.1 shows

the robot stepping in the direction in which the rope is pulled. As the force is manually

exerted, it was not possible to precisely measure the applied force.

The same controller works as expected when the robot is pushed instead of pulled. This

is seen in Figure 5.2. When the robot is pushed back with a wooden stud, it steps back to

balance the forces. The applied force can be any direction, and the controller computes the

https://youtu.be/DxSJrTB3cAQ
https://youtu.be/ilbqVM9fLwI
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(a) Pulling straight forward (b) Pulling at an angle

(c) Pulling at an angle (d) Pulling in a different direction when robot is

walking

Figure 5.1: Atlas reacting to the pulling force by walking in the direction of applied force
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required footstep online.

(a) Pushing backwards (b) Pushing backwards

(c) Pushing sideways (d) Pushing sideways

Figure 5.2: Atlas reacting to the pushing force by walking in the direction of applied force

5.2 Walking with Virtual Force

The reactive controller explained in Section 5.1 allows the robot to walk in the direction

of applied force; however, the magnitude and direction of the applied force cannot be

precisely regulated. To allow better control over where the robot moves and how long or

short the step is, we use virtual force explained in Chapter 3. This virtual force can be

applied precisely in the desired direction. When the robot is in double support such that

both the feet are aligned and the robot is standing, the step length varies linearly with force

in the forward direction as shown in Figure 5.3. The robot does not take any step if the

desired CMP lies inside the support polygon. This is the lower limit of the required virtual

force. When the desired CMP is outside the intersection of leg workspace and the capture
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region, the step length is maximum. This is the upper limit on the virtual force. As seen

in Figure 5.3, the virtual force should be more than 140N for the robot to start moving,

and if it exceeds 660N, the step length stays constant at 0.45m. When the robot is walking,

based on external forces on each of the legs, the lower bound and the upper bound of the

virtual force change as the size of support polygon and capture region changes during each

phase of the walk.

Figure 5.3: Virtual Force vs Step Length in double-support standing pose of Atlas

5.2.1 Simulation

In this experiment, a constant virtual force is applied to the robot in simulation to walk

20 steps forward and 20 steps backward. The workspace of each leg is kept at the maximum

allowable per the joint limits, which allows aggressive stepping resulting in instability of the

robot. The Virtual force is increased from 300N to 650N in steps of 50N. Figure 5.4 shows

the plot of virtual force vs. step length for the forwards steps in every 50N increment of

virtual force. The step length variation is due to the ground reaction forces acting on the

robot while walking. When a computed step is too long or too short, the next step is

adjusted based on the external forces acting on the robot. As seen in the plot, the variation
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in step length is higher for the virtual force values of 600N and 650N. When a higher force

is applied to the robot, the robot tries to take longer steps that are feasible, and as the

workspace is maximum possible, the robot opts for steps that are at the border of the

feasible region. This results in a less stable step; however, the next step is shortened to

balance out the effects of the current step.

Figure 5.4: Virtual Force vs. Step Length

5.2.2 Atlas

On Atlas hardware, a constant virtual force of 575N is applied. Figure 5.5 shows the

capture point trajectories for the 5 planned steps of approximately 0.3m in length. In

this figure, capture points are of two types, end of step capture points shown as black

diamonds and intermediate capture points shown as blue diamonds. The curves in the

figure are capture point trajectories, and the yellow triangles are points when the next step

is planned. Vertical dotted lines separate the Single Support (SS) and Double Support (DS)

phases.

In the initial state, the robot is standing with both feet aligned. The capture point is at
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Figure 5.5: Desired and actual Capture Point (CP) trajectories by the low-level controller
and the desired capture point generator when a constantvirtual force of 575N is applied.
DS = double support, SS = single support.

the center of the support polygon, which approximately coincides with the origin, shown as

capture point 0. The first step generates two capture points, one for transferring the weight

of the robot to the right foot at capture point 1 (black diamond) and another intermediate

capture point at 2’ shown in blue. Point 2’ is the center of support polygon when the robot

places its left foot on capture point 2. The capture point 2 is also referred to as the End of

Step capture point. At every yellow triangle, two more capture points are computed, one

for transferring the weight on support leg at the previous end of step capture point and the

other intermediate point occurring at the center of support polygon due to the current step

sent to the robot. For example, at the yellow triangle after capture point 1, the intermediate

point 2’ moves to capture point 2 and a new intermediate point 3’ is created. If no force is

acting on the robot when the yellow triangle on the trajectory is reached, the intermediate

capture point becomes the last capture point, and the robot stops walking with both feet

touching the ground. This is seen at the last point where 6 and 6’ coincides. The controller

creates a trajectory for instantaneous capture point and follows that trajectory to achieve

the desired capture point. The trajectories of the actual and the desired capture points by
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the controller are shown in blue and orange lines. The ones generated by the capture point

generator are shown in green.

The next step is planned as soon as the robot enters the double support phase, and the

virtual force is still acting on the robot. This is shown by yellow triangle in Figure 5.5.

Delay in planning the next step reduces the horizontal components of the ground reaction

forces. This results in loss of momentum as the robot tries to stop after reaching the double

support phase causing jerks by sudden deceleration and acceleration of CoM. This is avoided

by planning the next step as soon as the robot enters the double support phase.
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Chapter 6

Conclusions

Use of virtual force for generating the next footstep and controlling the robot using

the same dynamics used for footstep generation provides a tight coupling between walking

pattern generator and the walking controller. This is possible because of the capture regions

and end of step capture point control. Experiments show that the robot can plan only one

step at a time and execute multiple steps in the desired direction. The first step takes

typically an additional 0.3 to 0.5 seconds as the robot has to transfer its weight to one

of the legs before starting the computed step. All the footstep parameters are computed

based on the direction and magnitude of the applied virtual force. This thesis provides

the implementation on flat ground, which is tested in both the simulation and on real

hardware. Simulation results are shown for Atlas and Valkyrie robots, whereas the hardware

experiments are done on the Atlas robot.

Simpler Input for Teleoperation: Virtual force is the only input required to make

the robot walk. It is a 2D vector compared to a series of footsteps required by most other

methods. For teleoperation, the operator can command the robot to move in the desired

direction using a virtual force as an input to the controller, and the robot starts walking

immediately.

Always Execute a Feasible Step: In this approach, we computed a safe region to

step before sending the walk command to the robot. As the safe step region is always a

subset of capture region, the robot can stop after completion of any given step. The planned
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step is still feasible as both kinematic and dynamic constraints are used while computing

the safe step region. If a step is not feasible, the robot does not walk and comes to a

complete stop at the end of the transfer phase in walking. The controller can resist external

forces to keep the robot balanced because the step parameters are generated outside of the

controller. For example, if the robot is pushed moderately, the robot resists the push to

maintain its balance, but if a virtual force of similar magnitude is applied, it starts walking

in the desired direction.

Inherent Immunity to External Forces: Next step is generated based on the forces

that are acting on the robot along with the virtual force. If there is any additional force

acting on the robot at any given state, it is taken into account before planning the next step.

The low-level controller handles the unexpected forces during the step execution, whereas

the impact of those forces is taken care of by the footstep generator while planning the next

step. This makes the robot immune to external forces.

6.1 Future Work

6.1.1 Integrate perception

The method presented in this thesis can be integrated with perception, to limit the

safe region to step based on detected planes. In order to achieve this, we can compute an

intersection of the leg workspace and the capture region as seen in 3.3.2 with the planes

detected from the perception module. For low-level control of the robot in those situations,

Divergent Component of Motion (DCM) [12] would be required instead of the capture points

as the steps would be planned in a 3D space. This integration would allow walking on slopes

or different leveled planes like stairs. Integrating perception relies heavily on availability of

enough sensor data to detect planes when the robot is already in motion.

6.1.2 Virtual Wrench

The concept of “Virtual Force” can be extended to “Virtual Torque”. In the current

implementation, the robot cannot turn in place with any orientation or magnitude of the

virtual force. To overcome this behavior, a combination of force and torque can be expressed
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as a ”Virtual Wrench”. The desired footstep position and orientation can then be computed

based on the effect of the virtual wrench.
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