
Abstract 
The goal of this paper is to do some basic proofs for lasso and have a deep 

understanding of linear regression. In this paper, firstly I give a review of methods in 

linear regression, and most concerns with the method of lasso. Lasso for ‘least 

absolute shrinkage and selection operator’ is a regularized version of method adds a 

constraint which uses  norm less or equal to a given value t. By doing so, some 

predictor coefficients would be shrank and some others might be set to 0. We can 

attain good interpretation and prediction accuracy by using lasso method. Secondly, I 

provide some basic proofs for lasso, which would be very helpful in understanding 

lasso. Additionally, some geometric graphs are also given and one example is 

illustrated.   
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Chapter 1 

1.1 Introduction 
 

In nowadays data analysis, the method of linear regression has been very popular. There 

are several methods and algorithms been developed these years. The most familiar one that is 

often used is least square estimation. It is used more extensively than other estimation 

procedure for building regression models and was exclusively used prior to the 1970s. It is a 

model where the sum of squared residuals has its least value. The motivation is that the data 

points will be “close” to the fitted regression line if the errors in fit are rendered small. [5] A 

residual here means the difference between a real observed data value and the value predicted 

by the model being used. As we know, in biostatistics or social sciences, sometimes, there are 

thousands of underlying predictors, which makes the linear model hard to interpret and 

communicate or may even experience the risk of over-fitting. What’s more, the average 

variability of predicted response is 2 /p nσ , then, as a result, the large models would produce 

more statistically variable predictions. [1] 

Considering the prediction accuracy and interpretability, several other methods have 

been introduced, such as ridge regression and subset regression. Ridge regression is one 

exciting research topics during 1970s and 1980s. Its popularity rose dramatically with the 

publication of the article by Hoerl and Kennard in Technometrics. It is a parameter estimation 

method to address the collinearity problem frequently arising in multiple linear regressions. 

The ridge regression methodology falls into the category of biased estimation techniques. It 

yields a class of biased estimators indexed by a scalar nonnegative parameter. The challenge 

is to determine which estimator within this class to use in the context of specific problem, 
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namely, determining a best choice for the ridge parameter. [4] In this paper, I most concerned 

about the method called LASSO for ‘least absolute shrinkage and selection operator’, 

proposed by Professor Robert Tibshirani in the year 1996. This regularized version of method 

adds a constraint which uses  norm less or equal to a given value t. By using this 

constraint, some predictor coefficients would be shrank and some others would be set to 0. 

Here the given value t will cause solution shrinkage to 0 and some coefficients may be 

exactly 0 if t is the less than the full least squares estimates

1L
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can be fixed or got by bootstrap sample and then optimize it.  
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Chapter 2 

Review of Related Literature 

2.1 Linear Regression Model 

The model                                                                        
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Namely, 

11 21 1,1 01 1

12 22 1,2 12 2

1 2 1, 1

1
1

1

p

p

n n p n pn n

x x xy
x x xy

x x xy

β ε
β ε

β ε

−

−

− −

⎛ ⎞⎛⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜⎜ ⎟ ⎜ ⎟= +⎜ ⎟⎜⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜⎜ ⎟ ⎜ ⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠⎝

L

M M MM M

⎞
⎟
⎟
⎟
⎟⎟
⎠

 

A linear regression model assumes that the relationship between the dependent variable 

 and the p-vector of regressors iy ix is approximately linear, and that the design matrix X  

has full column rank p. ε is the model error and each iε is assumed uncorrelated from 

observation to observation, with mean zero and constant variance. What’s more, each ijx is 

assumed fixed and are measured with negligible error. 

A linear model is defined as a model that is linear in the parameters, namely linear in the 

coefficients. The relation between the response variable y and predictors x can be, for 

example, polynomial in nature, yet the model would still be a linear model. In some 

regression applications we need to do the transformations on the predictor variables. Natural 

log transformation and power transformation are often performed. The response variable y is 

often involved in the transformations. 

 

2.2 The Least squares estimation  

The least squares estimator 
LSE

β
∧

for regression coefficients in  β is  the vector that 

satisfies  
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Here, the  ( ) (Ty X y Xβ β− − represents the residual sum of squares. Performing the 

partial derivative  

2 2
LSE

T TX y X X β
∧

− + = 0  
LSE

T TX X X yβ
∧

=  

So, the least squares estimation solution is  

           1( )
LSE

T TX X X Yβ
∧

−=

This estimation procedure is a good one if TX X , when in the form of correlation matrix, 

is nearly a unit matrix. However, if  TX X is not nearly a unit matrix, the least squares 

estimates are sensitive to a number of “errors”. Estimation based on the 

matrix   rather than on ,T
pX X kI k⎡ ⎤+⎣ ⎦ 0≥ TX X has been used to found to be a procedure 

that can be used to help circumvent many of the difficulties associated with the ordinary least 

squares estimates.[3] 

 

2.3 Positive definite matrix 

Suppose that we have a column vector z (n elements) and n n×   symmetric matrix A 

with typical element . Then the scalar quantity ija

           2

1 1 1,

2
n n n

T
ii i ij i j

i i j j i

z Az a z a z z
= = = >

= +∑ ∑ ∑

is called a quadratic form in z with matrix A. 

A positive definite quadratic form is on that is greater than zero for all . A positive 

definite matrix A is one for which  for all 

0z ≠

0Tz Az > 0z ≠ . A positive semi-definite matrix is 
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one for which   for all z, but0Tz Az ≥ 0Tz Az =   for some 0z ≠ . 

 

2.4 Ridge regression 

For the case of collinearity, the diagonals do not dominate. This non-dominance of the 

diagonals causes at least one eigenvalue to be small. To make TX X  behave more like the 

orthogonal case, we can increase the eigenvalues, decrease the determinant of the matrix, and 

hence decrease the elements of the inverse. 

Suppose we consider replacing the matrix TX X by the matrix ( )TX X kI+
, where k is a 

small positive quantity. The ridge regression estimator is found by solving for  Rβ   in the 

system of equations 

          ( )T T
RX X kI X yβ+ =  

where is often referred to as a shrinkage parameter. [5] The solution if given by 0k ≥

          ( ) 1T T
R X X kI X yβ

−
= +  

Ridge regression minimizes 

          
2

2
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Or equivalently, minimizes 

          
 

2

2

1
.

N

i j ij j
i j j

y x subject to tβ β
=

⎛ ⎞
− ≤⎜ ⎟

⎝ ⎠
∑ ∑ ∑

The ridge solutions are 

          1
1

LSE

jβ
γ
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+
 

where  γ  depends on λ  or t. 
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2.5 Stepwise algorithm 

1. Start with a “minimal model” that includes any covariates that must be in the model based 

on subject matter knowledge. A model with only an intercept is a possibility. 

2. Stepwise addition 

(a) Add to the model the covariate that is not currently in the model and whose estimated 

parameter would have the largest t-statistic in absolute value. Call this statistic . 

Below, we would describe how to compute the statistics using updates to the 

current fit rather than completely new fits.  

entert

entert

(b) Fit the model including the new covariate using least squares and record the 

Generalized Cross Validation value of the fit. 

3. Stepwise deletion 

Repeat until only the minimal model remains: 

(a) Delete from the current set of covariates (not including those in the minimal model) 

the covariate that has the smallest absolute t-statistic ( ). exitt

(b) Fit the model with the remaining covariates using least squares and record the GCV 

value of the fit. 

The final model is the one that has the smallest GCV value. 

Let X be the design matrix containing column vectors of the variables that are currently in the 

model and H be the associated “hat” matrix: 

              ( ) 1T TH X X X X
−

=

Let I be an n by n identity matrix. Denote the j th element of a vector by {}. j
and the j, j 

th entry of a matrix by{} ,
.

j j
. Let σ

∧

be the residual standard deviation from a fit with all of the 
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covariates in the model. Then, 
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( ){ }

1

1

,

T T

j
exit

T

j j

X X X y
t

X Xσ

−

∧ −
=  

 

Suppose that kx is the vector of covariates that is the candidate to enter. [2] Then, 

              ( )
( )

1
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2.6 Best subset algorithm 

1. Start with a model selected as “best” by the Stepwise algorithm and suppose this model 

has uses cp p≤ covariates. 

2. Fit all the 
c

p
p

⎛ ⎞
⎜
⎝ ⎠

⎟possible models with cp covariates and record the GCV statistic for 

each. 

The final model is the one that has the smallest GCV value. Variations on this algorithm 

consider all models of size and 1cp − 1cp + too, etc. [2] 

Best Subsets Regression is a method used to help determine which predictor 

(independent) variables should be included in a multiple regression model.  This method 

involves examining all of the models created from all possible combination of predictor 

variables. [2] Usually, we use prefer to use a statistical software program to do Best Subsets 

Regression.  
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2.7 Lasso 

Let ( ,i
i )x y , i=1, 2, …, N, where ( )1 2, ,...,

Ti
i i ipx x x x= are the predictors and  are the 

responses. We assume that the observations are independent or s are conditionally 

independent given 

iy

iy

ijx s. It’s also supposed that ijx are standardized so that / 0ij
i

x N =∑ , 

. Let , the lasso estimate 2 /ij
i

x N =∑ 1 ⎞
⎟1 2, ,...,

T

pβ β β β
∧ ∧ ∧ ∧⎛= ⎜

⎝ ⎠
,α β
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⎜
⎝ ⎠

⎞
⎟  is defined by [1]  
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1
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⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑ j ≤ .           (1) 

Here, the I can show that the solution for α  is yα
∧

= . 

 

Proof: 

Compute the derivative of (1) and set it to 0, then we get: 

2 0i j ij
i j
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− − =⎜ ⎟
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0 0N y Nα− − =  

yα = . 

So, here, we can assume without loss of generality that 0y =  and hence accordingly 

omitα . Here is a tuning parameter and controls the amount of shrinkage which is 

applied t the estimates. 

0t ≥

Then the simplified version of (1) can be written as: 

2

1
, arg min

N

i j ij j
i j

y x subjuct to tα β β β
∧ ∧

=

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞ = −⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑ ≤

 

8 
 



2.8 Stationary point 

A stationary point is an input to a function where the derivative is zero, where the 

function "stops" increasing or decreasing. 

For the graph of a one-dimensional function, this corresponds to a point on the graph 

where the tangent is parallel to the x-axis. For the graph of a two-dimensional function, this 

corresponds to a point on the graph where the tangent plane is parallel to the x-y plane. 

Stationary points in higher dimensions are usually referred to as critical points. Yet, 

Critical point is a more general definition: a critical point is either a stationary point or a point 

where the derivative is not defined. [6] 
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Chapter 3 

Theorem 

3.1Lagrange multipliers 

In mathematical optimization, Lagrange multipliers method provides a strategy for 

finding the maximum or minimum of a function subject to constraints. For example, if we 

want to maximize f(x, y) subject to g(x, y) = c, then we introduce a new multiplier λ a called 

Lagrange multiplier, and define the Lagrange function as: 

( ) ( ) ( )( ), , , , .L x y f x y g x y cλ λ= + −    

If there a point (x, y) is the maximum point for the original constraints，there exists a 

λ such that (x, y,λ ) is a stationary point for the Lagrange function. However, not all 

stationary points yield a solution of the original problem. As a result, the method of Lagrange 

multipliers only provides a necessary condition for optimality in constrained problems.  

A more general case, denote the objective function by ƒ(x) and let the constraints be 

given by . Here, x is a vector. The domain of ƒ should be an open set containing all 

points satisfying the constraints. Furthermore, ƒ and the 

( )kg x

( )kg x  must have continuous first 

partial derivatives and the gradients of the ( )kg x  must not be zero on the domain. Now, we 

can define the Lagrange function as: 

 

         ( ) ( ) ( )( ), .k k
k

L x f x g xλ λ= +∑  

λ is a vector with independent elements  kλ . 

Observe that both the optimization criteria and constraints  are compactly 

encoded as stationary points of the Lagrangian: 

( )kg x
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0
0

xL
Lλ

∇ =⎧
⎨∇ =⎩

 

Implies that 

          
( )

( ) 0

x k x k
k

k

f g

g x

λ⎧∇ = − ∇⎪
⎨

=⎪⎩

∑
 

Collectively, we can write above as: 

0L∇ = . 

Then, we can solve a number of equations totaling the length of x plus the length ofλ . 

 

3.2 Karush-Kuhn-Tucker Conditions 

The Karush–Kuhn–Tucker conditions, also known as the Kuhn-Tucker conditions, are 

necessary for a solution in nonlinear programming to be optimal, provided some regularity 

conditions are satisfied. It is a generalization of the method of Lagrange multipliers to 

inequality constraints. The conditions are named after William Karush, Harold W. Kuhn, and 

Albert W. Tucker. 

Let us consider the following nonlinear optimization problem: 

Minimize: ( )f x  

Subject to:   
( )
( )

0
0

i

j

g x
h x

≤⎧⎪
⎨ =⎪⎩

where  ( )ig x (i=1, … , m) are the inequality constraints and are  ( )jh x (j=1, …, l) equality 

constraints. x is a vector. 

Suppose that the objective function ( )f x is : nf R → R

.

and the constraint functions are 

and Further, suppose they are : n
ig R R→ : n

jh R R→ continuously differentiable at a point *x . 

If *x  is a local minimum that satisfies some regularity conditions, then there exist 
11 
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constraints iμ (i=1, … , m) and jλ (j=1, … , l) such that 

（1） Stationary  ( ) ( ) ( )* *

1 1

0
m l

i i j j
i j

f x g x h xμ λ
= =

∇ + ∇ + ∇ =∑ ∑ *

（2）  
( )
( )

*

*

0, 1,...,

0, 1,...,

i

j

g x i m

h x j l

⎧ ≤ =⎪
⎨

= =⎪⎩

（3） 0, 1,...,i i mμ ≥ =  

（4） Complementary slackness ( )* 0, 1,..., .i ig x i mμ = =  
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Chapter 4 

Special case of Lasso 

4.1Orthonormal Design Case 

Let X be   design matrix with  entryn p× ij th ijx ,  and suppose that .  Then 

solutions to equation (1) are:   

TX X I=

0 0

j j jsignβ β β γ
+

∧ ∧ ∧⎛ ⎞⎛ ⎞
= −⎜⎜ ⎟⎜⎝ ⎠⎝ ⎠

⎟⎟ , where 

0

j
j

t

p

β
γ

+
∧⎛ ⎞

−⎜ ⎟
⎜= ⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
⎟
⎟                                                 (3) 

We can use Lagrange multipliers method and KKT (Karush–Kuhn–Tucker conditions) 

conditions to solve it.  

Proof: 

2
2

2 1
1

min min ,
N

i j ij
i j

y x Y Xβ β
=

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∑ ∑ tβ ≤

 

Since X is orthonormal, then 

( )TT TX X I X X I= ⇒ =
 

( ) ( ) ( )

( ) ( )

222

2 2 2

2

2

20 0

2

arg min arg min arg min

arg min

arg min ,

TT T T

T TT T T T

LSE

Y X X Y X X X X Y X

X X X Y X X X X

where

β β β

β

β

β β β

β

β β β β
∧ ∧ ∧

− = − = −

= −

= − =  

( ) ( )
20

2

, , j
j

Then let f x g x tβ β β
∧

= − = − ≤∑ 0
 

( ) 20

2
, 0j

j
L x tβ β λ β λ

⎛ ⎞
= − + − ≥⎜ ⎟

⎝ ⎠
∑

 

02( ) ( ) 0j j j
j

L signβ β λ β
β
∂

= − + =
∂
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( )
0

2jj signλ
jβ β β

∧

⇒ = −
                                    （4） 

0j
j

L tβ
λ
∂

= −
∂ ∑ =

 

j
j

tβ⇒ =∑
                                             （5） 

From (4), we have  

( )
0

2j j jsignλβ β β
∧⎛ ⎞
− =⎜ ⎟

⎝ ⎠  
0

0

( ) / 2 0

( ) 0

j j j

j j

sign

sign

β β β λ

β β

∧

∧

− = ≥

⇒ ≥  

( )
0

j jsign signβ β
∧⎛ ⎞

⇒ =⎜ ⎟
⎝ ⎠  

0

,
2j jThen we have λβ β

∧

− =
 

0

*
2j j

j j

p λβ β
∧

− =∑ ∑
 

0

0
2

j
j

t

p

β
λ

∧

−
= ≥

∑

 

0

2

j
j

t

p

β
λ

+
∧⎛ ⎞

−⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
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( )

0

0

0

0 0 0

0

0 0

( )

j
j

jj j

j
j

j j j

j
j
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t
sign

p

t
sign sign

p

t
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β
β β β

β
β β β

β
β β

+
∧

∧

+
∧

∧ ∧ ∧

+
∧

∧ ∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟= − ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

∑

 

  
Another condition that needs to be satisfied is that * j

j

tλ β −∑（ ）=0  

(i)  

If
0 0 0

0
2j j jj j j
λλ β β β β β β

∧ ∧ ∧

⇒ − = = ⇒ = ⇒ = K=0 ，j=1,2, p  

It means that the solution is just OLS solution, no shrinkage.  

(ii)                                  

We need the solution satisfy that 0j
j

tβ − =∑  

0

0

0
j

j
j

j

t
t

p

β
β

+
∧

∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ =  

0

0

0
j

j
j

j

t
t

p

β
β

+
∧

∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟⇒ − − =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑                           (6) 
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t
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p

β
β

+
∧

∧

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟≥ −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑ −  

0

0 j
j

j
j j

t
t

p

β
β

+
∧

∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟= − ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ ∑ −  

0

0

0
j

j
j

j

t
p t

p

β
β

+
∧

∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟= − × −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ =  

Only when

0 0

0 0

, 1, 2,
j j

j j
j j

t t
j p

p p

β β
β β

+ +
∧ ∧

∧ ∧

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟− = − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
K , (6) is satisfied. So, 

0

0

, 1, 2,
j

j
j

t
j p

p

β
β

+
∧

∧

⎛ ⎞
−⎜ ⎟

⎜ ⎟− =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
K . 

So, the solution is
0 0

j j jsignβ β β γ
+

∧ ∧ ∧⎛ ⎞⎛ ⎞
= −⎜⎜ ⎟⎜⎝ ⎠⎝ ⎠

⎟⎟ , where

0

j
j

t

p

β
γ

+
∧⎛ ⎞

−⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

. 
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Chapter 5 

Geometry  

5.1 Geometry of Least squares 

Figure 1 Estimation picture for least squares 

 

 

Consider the picture given in Figure 1, which depicts a regression with n=3 observations 

and p=2 parameters. The three-dimensional axis system shown is in the y-observation space, 

and the vector y represents the observation vector in the observation space. The 

two-dimensional plane in the figure represents the estimation space. As we know, 

1( )T TX X X X−   is the perpendicular projection onto the column space of X. Thus, 

1( )
LSE

T TX X X X y X yβ
∧ ∧

− = = is perpendicular projection of y in the two-dimensional plane. 

We can understand it in another way. What point in the estimation space produces a y
∧

for 

which the sum of squared residuals has its least value? The squared distance from to y is *y

( ) ( )* *
T

T
y y y y y X y Xβ β

∧ ∧⎛ ⎞ ⎛− − = − −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎞
⎟ . Thus, the least squares procedure applies when we 
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choose the point in the estimation space that minimizes the squared distance. So, it is obvious 

that this request can be accomplished at the point y
∧

when we drop a perpendicular from y to 

the estimation space. The shortest distance y y
∧

−  must be such 

that . Then, it would be obvious to show that the above 

implies that 

0T TX y y X y X β
∧ ∧⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

β
∧

is solved by  T TX y X X β
∧

= which represents the ordinary least squares 

estimation. 

 

5.2 Geometry of Ridge Regression 

 

Figure 2 Estimation picture for Ridge regression 

 

For the case of p=2, Figure 2 provides the picture of ridge regression. The constraint 

produces a feasible area (gray area). There are no corners for the contours to hit and hence 

zero solutions will rarely result. So, when p is large, the number of predictors would be very 

large and accordingly hard to interpret the model.  
18 

 



5.3 Geometry of Lasso 

The criterion equals the quadratic function 

   

2

1

N

i j i
i j

y xβ
=

⎛ ⎞
−⎜

⎝ ⎠
∑ ∑ j ⎟

2

2
Y Xβ−  

( )
211

2

T TXX X X Y Xβ
−−= −  

( )
21

2

T TX X X X Y Xβ
−

= −  

20

2

X Xβ β
∧

= −  

20

2

X β β
∧⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

0 0T
TX Xβ β β

∧ ∧⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

β  

The elliptical contours of this function can show why Lasso often produces coefficients 

that are exactly 0. When p=2, the constraint region is rotated square. The Lasso solution is the 

first place that the contours touch the square, and sometimes this will happens at a corner, 

which corresponds to a zero coefficient. Figure 3 shows the picture of Lasso when p=2. 
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Figure 3 Estimation picture for lasso 

 

 

If we assume that the least squares estimates are both positive. (p=2) Then we can have the 

Lasso estimates are
0

j jβ β γ
+

∧ ∧⎛ ⎞
= −⎜⎜
⎝ ⎠

⎟⎟  where 

0

2

j
j

tβ
γ

+
∧⎛ ⎞

−⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

 

Since , then we can solve the functions and get the solutions as following: 1 2 tβ β
∧ ∧

+ =

1 2
1 2 2

t β ββ

+∧ ∧
∧ ⎛ ⎞−⎜ ⎟= +

⎜ ⎟
⎝ ⎠ , 

 1 2
2 2 2

t β ββ

+∧ ∧
∧ ⎛ ⎞−⎜ ⎟= −

⎜ ⎟
⎝ ⎠
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Chapter 6 

Standard Error of lasso 
An approximate closed form estimate may be derived by writing the penalty 

j
j

β∑ as 2 /j
j

jβ β∑ . Hence, at the Lasso estimate, we may approximate the solution by a 

ridge regression of form * ( )T 1 TX X W Xβ λ − −= + Y  where W is diagonal matrix with 

diagonal elements
~

jβ , denotes the generalized inverse of W and W − λ  is  chosen 

that *
j

j

tβ =∑ . The covariance matrix of the estimates could be approximated by 

( )( ) ( ) ( )( )1 1*( )
T

T T TCov X X W X Cov Y X X W Xβ λ λ
− −− −= + + T  

( ) ( )( )
2 11 TT T TX X W X X X X Wλ σ λ

−∧−− −= + +  

( ) ( )( )
211T T TX X W X X X X Wλ λ σ

∧−−− −= + +  

where
2

σ
∧

 is the estimate of the error variance. [1] 
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Chapter 7 

Example—Hospital manpower data 
The hospital manpower data come from Procedures and Analysis for Staffing Standards 

Development: Data/Regression Analysis Handbook. They are taken from seventeen Naval 

hospitals at various sites around the world. The goal is to produce an empirical equation that 

will estimate manpower needs for Naval hospitals. Former work was done by Raymond H. 

Myers by least squares method. I will use lasso method to do it.  

A brief description of the predictor variables and response variable are as follows: 

          expos: Monthly X-ray exposures 

          days: Monthly occupied bed days 

          pop: Eligible population in the area divided by 1000 

          length: Average length of patients’ stay in days 
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Table 1 Hospital manpower data 

load days pop length hours 

15.57 472.92 18 4.45 566.52 

44.02 1339.75 9.5 6.92 696.82 

20.42 620.25 12.8 4.28 1033.15 

18.74 568.33 36.7 3.9 1603.62 

49.2 1497.6 35.7 5.5 1611.37 

44.92 1365.83 24 4.6 1613.27 

55.48 1687 43.3 5.62 1854.17 

59.28 1639.92 46.7 5.15 2160.55 

94.39 2872.33 78.7 6.18 2305.58 

128.02 3655.08 180.5 6.15 3503.93 

96 2912 60.9 5.88 3571.89 

131.42 3921 103.7 4.88 3741.4 

127.21 3865.67 126.8 5.5 4026.52 

252.9 7684.1 157.7 7 10343.81 

409.2 12446.3 169.4 10.78 11732.17 

463.7 14098.4 331.4 7.05 15414.94 

510.22 15524 371.6 6.35 18854.45 

 

Table 2 gives the least squares method results. The R code is attached. Of course, from 

the p-values, we can see not all predictors are significant. We can use the methods stated 

before to do the model selection. 

Table 2 Least squares estimate R output 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2032.17803 942.06971 2.157 0.0520 

expos 0.05608 0.02036 2.755 0.0175 * 
days 1.08837 0.15340 7.095 1.26e-05  

pop -5.00417 5.08070 -0.985 0.3441 

length -410.08088 178.07710 -2.303 0.0400 * 

 

We can also use Lasso method to analyze this data. Figure 4 shows the lasso estimates. 
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Notice that the absolute value of standardized coefficient tends to 0 as the constraint goes to 0. 

In this example, we can also see that not all the curves decrease in a monotone fashion to 0. 

This lack of monotonicity is shared by ridge regression and subset regression. [1] We can use 

generalized cross-validation to choose the standardized bound / LSE
js t β
∧

= ∑ . For example, 

if is selected by generalized cross validation, then we can get the lasso estimate of 

predictors in table 3. 

0.8s
∧

=

Figure 4 Lasso shrinkage of coefficients in the hospital manpower data 

 

 

The lasso gave non-zero coefficients to expos, days, and length. 
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Table 3 Lasso estimates for predictors when  0.8s
∧

=

 

 
Coefficient expos days pop length 

estimate 0.05812114 0.93201364 0.00000000 -232.87973958 
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Chapter 8 

Predication error and estimation of t 
In this section we talk about two methods of choosing lasso parameter t: cross-validation 

and generalized cross-validation, and give some simple proof of the methods. These two 

methods are applicable in the ‘X-random’ case, where it is assumed that the observations (X, 

Y) are drawn from some unknown distribution. Yet, in real problems, we might choose these 

two methods in X-fixed case for convenience. [1] 

8.1 Cross-validation method 

Suppose that 

           ( )Y Xη ε= +  

where and( ) 0E ε = ( ) 2var ε σ= . The mean-squared error of an estimate is defined by ( )Xη
∧

           ( ) ( ){ }ME E X Xη η
∧

= − , 

the expected value taken over the joint distribution of X and Y, with fixed. A similar 

measure is the prediction error of given by 

( )Xη
∧

( )Xη
∧

          ( ){ }2
2PE E Y X MEη σ

∧

= − = + . 

Fivefold cross-validation is used in estimating the prediction error for lasso procedure. 

The lasso is indexed in terms of the normalized parameter / LSE
js t β
∧

= ∑  , and the prediction 

error is estimated over a grid of values of s from 0 to 1. The value yield the lowest estimated 

PE is selected. [1] 

For linear model ( )X Xη β
∧

= , the mean-squared error has the simple form 
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T

ME Vβ β β
∧ ∧⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
β  

Proof: 

( ) ( ){ }
{ }

2

2

2

2

0
T

T

ME E X X

E X X

E X

Cov X E X

V

V

η η

β β

β β

β β β β

β β β β

β β β β

∧

∧

∧

∧ ∧

∧ ∧

∧ ∧

= −

= −

⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎛ ⎞⎛ ⎞ ⎧⎛ ⎞ ⎛ ⎞= − + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎩⎝ ⎠

⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎫
⎭

 

where V is the population covariance matrix of X. 

 

8.2 Generalized cross-validation method 

We write the constraint j tβ ≤∑ as 2 /j j tβ β ≤∑ . Then, the constraint is equivalent to 

adding a Lagrangian penalty 2 /j jλ β β∑ to the residual sum of squares, with  λ depending 

on t. Then, we can write the constrained solutionβ as the ridge regression estimator 

                           ( ) 1T TX X W Xβ λ
−−= + y  

where jW diag β⎛= ⎜
⎝ ⎠

⎞
⎟and is a generalized inverse. The number of effective parameters 

in the constrained fit 

W −

β may be approximate by [1] 

                          ( ) ( ){ }1
.T Tp t tr X X X W Xλ

−−= +  

 

 
27 

 



Let rss(t) be the residual sum of squares for the constrained fit with constraint t. The 

generalized cross-validation style statistic 

           ( ) ( )
( ){ }2

1 .
1 /

rss t
GCV t

N p t N
=

−
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Chapter 9 

Summary and Conclusion 
In this paper, firstly we have a review of several linear regression methods such as least 

squares method, ridge regression method, best subset method and the nowadays very popular 

lasso method. Then, two theorems, Lagrange multipliers and KKT conditions, are introduced. 

Thirdly, some proofs of lasso also introduced. We can get an intense understanding from the 

geometry of the methods. In the later parts, an example is also given. Last but not the least, 

the methods of choosing the constraint are stated. 

 From the analysis of methods and the example, we can see the advantage of lasso 

method. It can provide very good interpretation of predictors in real problem, especially in 

problems where there is a large number of predictors. What’s more, the overall prediction 

accuracy is improved by sacrifice a little bias to reduce the variance of the predicted values.  

Some new methods in lasso area are developed nowadays such as adaptive lasso, least 

angle regression algorithm and so on. This is a very interesting area and more work needs to 

be done. Maybe as the research work gets further, some more efficient algorithms could be 

invented.  
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Appendix 
#R code 

hop <- read.table("E:/project/hospital.txt",header=T,row.names=NULL,sep=" ") 

attach(hop) 

#least squares estimation 

lm.hop<-lm(hours~expos+days+pop+length,data=hop) 

summary(lm.hop) 

x <- cbind(expos,days,pop,length) 

#lasso method 

object <- lars(x,hours,type="lasso") 

plot(object) 

fits <- predict.lars(object, x, type="fit") 

coef <- predict(object, s=0.8, type="coef", mode="fraction") 

coef 
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