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Abstract 
 
This project explores the intersection of robotics and technology with music. The study looks 
specifically at the expressive aspects of a human performer and how to translate and represent 
that in a robotic system. By analyzing live performances of multiple performers and talking with 
professional performers, the team built an understanding of human gesture in performance. This 
was demonstrated by the creation of a robotic piano-playing system, including an industrial arm 
and custom-built hand. To fully understand the interpretation and performance of music, the 
team implemented a set of machine learning techniques, which included training a recurrent 
neural network (RNN) to analyze audio signals and reproduce musical input.   
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1. Introduction 

To what extent can robotics mirror human motion and expression? How “human” can robotic 
behavior get? We can address these issues by studying musical performance, and applying 
robotics to emulate human music production. Musical performance often demands a level of 
depth in its emotional expressivity. Producing a performance that matches a human level of 
sophistication will help us understand how far robotics can go to emulate true human behavior. 
Such a challenge covers three domains: 1) the physical construction of a robotic arm that is 
anthropomorphic enough to mimic human gestures, and 2) the software is complex enough to 
mimic human behavior in decision-making, and 3) the outputted musical performance is 
composed of physical gestures that add to the expressivity of the performanCe. The human arm 
playing a piano keyboard is a good model to study, for it gives us a good amount of freedom in 
terms of expressivity. A human arm playing the violin, for example, would be more difficult to 
study due to the extremely subtle nuances in positioning and motion in the fingers. The piano is a 
relatively simple interface for creating music. The only action required to produce a note is to 
depress a key. However, we still have access to a full range of human expressivity, as we can 
manipulate a note’s volume, articulation, etc. Therefore, the piano offers us a good interface that 
is not too complex for a robot to realistically use, but still requires specific human technique in 
terms of motion and expression. We are looking specifically to explore the physical gesture used 
to add emotion to a performance while playing the piano. 
 
We constructed an anthropomorphic robotic hand that is capable of playing the piano in a 
human-like manner while coupled with an industrial robotic arm. We demonstrated the arms 
ability to play piano through a variety of pieces. We started with nursery songs like twinkle 
twinkle little star and progressed to passages from Mozart and Chopin. In addition, we verified 
sonic timing by playing a duet of Heart and Soul with the arm. We looked at the decisions that 
humans make when interpreting a piece of music, and built an algorithm that can mirror the 
emotionally expressive nature of human musical performance as realistically as possible. 
 
In order to validate the success of our project, we planned on hosting a concert in which the 
robotic arm performs a number of pieces for an audience. We would then have polled the 
audience on multiple parameters, based on how realistic, expressive, and entertaining the 
performance is. These questions were intended to not only help us evaluate the efficacy of our 
solution, but it would guide possible further work on the project. Not all of these categories need 
to be fully satisfied, but we are aiming to at least give a realistic humanoid performance. 
Ultimately, if it is entertaining, then we have succeeded in building a robot arm that can please a 
crowd like a real performer.   

 



2. Background 
Here we introduce our existing hardware and software, along with an analysis of prior art. We 
also will be using various methods of data collection, including motion capture, to help us with 
our design.  
 
2.1 The Robot 
Our focus lies in the anthropomorphic aspects of the robotic hand. In order to delve deeper into 
this we decided to use an existing arm. The first one we gained access to was an industrial-grade 
FANUC arm in the WPI Washburn Shops as a starting point in our construction. This arm will 
support a smaller unit (the “hand”) with the means to play notes on a piano. The robot has an 
approximate linear operating space, inside its total operating arc, of 1m. The American standard 
for piano key sizes, for all instruments made in the 20th century, is an octave span of 165 mm. 
This means white keys are about 23.5 mm wide at the base and black keys are around 13.7 mm. 
An 88 key keyboard, therefore, is approximately 1.47 m. This means that without additional 
reach from the actuator, the arm cannot reach the full width of an 88 key keyboard. With the 
aforementioned 165 mm octaves, the robot can effectively reach 6.06 octaves or 48.5 keys 
without an actuator attached as seen in the operating arcs in Figure 2.1.1. With the smallest 
standard digital keyboard, outside a two octave midi board, being 61 keys, the arm would have to 
focus on a smaller range of playing. This is acceptable in a musical aspect as most melodic lines 
in a piece stay within three to five octaves of playing space.  
 

 
Fig. 2.1.1 - FANUC LR Mate 200iB robotic arm schematic 

 



 
 
Unfortunately, due to multiple factors, we ended up having to change arms twice. We moved 
from the small Fanuc arm to the large Fanuc arm once it was found that the interfacing protocols 
were outdated and overly complicated. We moved from the large Fanuc arm to the ABB IRB 
1600-6/1.45. This arm was an intermediate size between the two Fanuc arms and had more than 
enough reach to play the piano keyboard that we acquired. The ABB arm has a position 
repeatability of 0.02mm and a path repeatability of 0.13 mm, allowing for consistent and precise 
inter-note motions and finger placement. ABB’s robust robot studio software also allows us to 
run and test our code in a virtual environment before running it on the real arm. WPI’s extensive 
work and full class with this arm greatly helped our efforts and programming process. 

 
The arm is a ABB IRB 1600-6/1.45. Each joint has a different maximum movement angle and 
angular velocity, based off the specific motor and physical limitations. The rotations of each 
Axis, as seen in Table 2.1.1. The arm has a horizontal reach, the distance from base to wrist at 
full extension, of 1450 mm (57.08 in) as seen in Figure 2.1.2. The arm, as stated above, has a 
very precise repeatability factor with a 6.00 kg (13.2277 lbs) payload meaning it is highly 
accurate and precise, well within the desired needs for the project.  In addition, the link speeds 1

allow the robot to move quickly from position to position. When running in manual mode the 
robot has a speed limit of 250 mm/s which is safe to be near and play alongside. However, in 
automatic mode the robot moves at up to 5000 mm/s which requires operators to be outside the 
safe operating zone guarded by a laser sensor gate. When moving in manual mode there may be 
some sonic delays or discrepancies. However, when in automatic mode the arm can move more 
than fast enough to be in place by the required times. 
 

Table 2.1.1 

Axis Axis 1 
(Rotation) 

Axis 2 
(Arm) 

Axis 3 
(Arm) 

Axis 4 
(Rotation) 

Axis 5 
(Bend) 

Axis 6 
(Turn) 

Range (°) +180° to 
-180° 

+120° to 
-90° 

+65° to 
-245° 

+200° to 
-200°  

+115° to 
-115° 

+400° to 
-400°  

Speed (°/s) 180°/s 180°/s 185°/s 385°/s 400°/s 460°/s 

 
 

1Technical data for the IRB 1600 industrial robot&nbsp; [cited April 28, 2019]. Available from 
https://new.abb.com/products/robotics/industrial-robots/irb-1600/irb-1600-data (accessed April 28, 2019). 
 
 

 



 
Figure 2.1.2: Reach Ranges of the ABB IRB 1600/ 1.45 

 
The range of motion of the ABB arm is more than necessary for the keyboard we acquired. We 
did not get a full 88 key keyboard but instead got a 49 key midi controller. This was more than 
enough to represent the capabilities of the arm as a 49 key keyboard spans four octaves, allowing 
us to show large drastic jumps in contrast to smaller intricate motions. 
  

 



2.2 Human Gesture and Musical Performance 

We also must explore the nature of human music performance and human gesture. Much 
research exists on the nature of human movement and decision-making in music. This work will 
be critical in how to design a system that accurately mimics human actions.  
 
Hadjakos discusses the various aspects of motion in human piano playing, particularly the effect 
of using weight from the elbow. Researchers took two separate samples of pianists, one playing 
with elbow motion and one playing without such motion. They used a set of goniometers to 
assess the angle of the pianist’s elbow. It was found that in the time before striking a key, the 
angle of the elbow changes at a rather consistent rate . As seen here in Figure 2.3.1, the angle 2

decreases at a steady rate. Given this motion, it can be possible for us to generate a model for 
playing a note with our robot.  

 
Fig 2.2.1: Visualization of Elbow Touch vs. Non-Elbow Touch 

 
The complexity of motion will rely on joints in both the elbow and wrist, where the wrist must 
be flexible with at least 3 degrees of freedom to allow for the elbow to move freely before a note 
is actually struck. Human motion heavily relies on the supple motion in the wrists to apply 
weight to a piano keyboard from the elbows, which is what contributes to the force applied to the 
keys. The fingers themselves do not actually apply much force at all. The finger joints are 
involved in decide which keys will receive the force, so they act more as a filter than a means of 
pressing the keys. This kind of motion is very different than simply attaching actuators to a set of 
rods that resembles a hand — the fingers are simply transferring force. 
 
Thompson delves into the relations between expressive body movement in piano performance 
and the desired expressive intentions. The desired amount of expressivity shows up in a linear 
relation to how much the performer moves. By using motion capture systems they were able to 
analyze three different pianists in their expressive movements while playing the same few 
measures of music. Expressivity is relatable in a quantitative way, and certain gestures are more 

2 Hadjakos, Aristotelis, Erwin Aitenbichler, and Max Mühlhäuser. "The Elbow Piano: Sonification of Piano Playing 
Movements." In NIME, pp. 285-288. 2008. 

 



expressive than others. The gesture was analyzed both qualitatively and quantitatively through 
visual analysis and by comparing variations in the motion tracking results . 3

 
Figure 2.2.2: Gestural Analysis for Glenn Gould’s performance of Goldberg Variations 

 
When watching Martha Argerich, widely considered one of the greatest living pianists, play 
piano, not only does expression come from her arms but it also comes greatly from her torso and 
face. While motion of the arm and hand can be linear along movements such as a glissando, the 
torso and head moves down and back in a circular pattern. This begs the question, does the 
motion of arms actual portray expression if not moved extraneously outside the path of motion? 
In what ways does variations of linear or simplistic motion of the arm convey expresion? If 
working as a full system the human body portrays expressive emotion, how will isolating one 
system affect the perceived effects? While working with the ABB arm it must be determined if 
the motion planning is just for mimicking an arm or for mimicking a whole torso and arm 
system. If mimicking a full system, how would that limit or affect range of motion? 
 
 
 
  

3 Thompson, Marc R., (June 2007) University of Jyväskylä. EXPRESSIVE GESTURES IN PIANO 
PERFORMANCE. Master’s Thesis, Music, Mind & Technology 
https://jyx.jyu.fi/bitstream/handle/123456789/13593/URN_NBN_fi_jyu-2007468.pdf?sequence=1 

 



2.3 Existing Robotic Systems 
We begin by looking at prior art in the realm of robotic prosthetic appendages, which will give 
us insight into how to construct an anthropomorphic arm and hand. The human hand is a 
complex system. Its dexterity and nuances present a number of challenges when replicating it 
with robotics. Many designs are possible, but in our case, we are trying to make this hand as 
human as possible, so there are many constraints involved. Here are a few existing designs that 
best achieve human-like qualities: 
 
A previous MQP developed a biomechanically accurate prosthetic hand  as seen in figure 2.3.1. 4

This hand is capable of three distinct grip styles, pinch, hook, and point. This arm was controlled 
through an EEG reader to form the different grips. The hand was designed around a tendon 
system to mimic the human hand. It used tendons on the front side of the finger, to pull it into a 
curve, and springs on the back to return it to a straight configuration. This system allows for a 
uniform curve and force across the entire finger instead of isolated forces and bending. While 
being able to give a clean and humanlike reaction of motion, the lack of isolation in the joints is 
detrimental for playing piano. If a single line tendon system was used to actuate the final joint of 
the finger, the base of the finger would have to be held rigid and actuated separately, instead of 
just relying on a spring. This tendon method was also able to produce 3.5 lbs of articulation 
force; more than enough to actuate the keys of a piano. We can certainly mimic designs in this 
research.  
 

 
Fig 2.3.1: MQP for an Accurate Prosthetic Hand          Fig 2.3.2: IRIS Hand -- Smart Robotic Prosthesis 

 
 

4 Mervyn A. Larrier, Jr., Elina Saint-Elme, Casey Kracinovich, Dylan Renshaw, Major Qualifying Project Accurate 
Prosthetic Hand 

 



Another MQP developed a robotic hand to grasp objects and determine their shape based on 
finger positioning . The fingers they designed had the same range of motion as an average 5

human american male and the same degrees of freedom. Their design for a compound thumb 
also allowed a full range of opposability and rotation of the digit. The finger actuation control for 
this hand used a four-bar linkage system. This gave them more rigidity in the finger but only 
gave a full curling arc, no partial extension of certain joints. This allowed a higher rigidity of the 
finger and a better assumption of the tip’s location after the motion. The thumb’s rotation was 
able to be isolated from the bending but it meant the rotation also had to carry the system 
responsible for actuating the bend. This lead to a bulky base joint similar to a human thumb so it 
was inconsequential to design aesthetics as seen in figure 2.3.2 above. 
 
Other research has explored replicating human motion of the fingers and palm as precisely as 
possible. One such project by Zhe Xu and Emanuel Todorov utilized an exterior rubber hood and 
a series of 10 internal servos to achieve the numerous degrees of freedom in a human hand. They 
examined each joint inside a human hand and replicated the DOF for each location. Some had 
one, bending only in one direction, while others had two, allowing for more complex motions. 
The combination of these carefully planned joints, 10 servos, and the external rubber housing 
allowed the hand to bend and replicate complex human motions.  6

 

 

5 Ozgoren, Deniz Berk, Jardim, Adam Sebastian, Choopojcharoen, Thanacha, Casley, Sean Vincent, Önal, Çağdaş 
Denizel, and Padir, Taskin. IRIS Hand -- Smart Robotic Prosthesis. Worcester, MA: Worcester Polytechnic 
Institute, 2014. , 
https://web.wpi.edu/Pubs/E-project/Available/E-project-043014-213851/unrestricted/IRIS_HAND_MQP_REPORT.
pdf.  
6 Zhe Xu, and Emanuel Todorov. May 2016. Design of a highly biomimetic anthropomorphic robotic hand towards 
artificial limb regeneration. , https://ieeexplore.ieee.org/document/7487528. 

 

https://web.wpi.edu/Pubs/E-project/Available/E-project-043014-213851/unrestricted/IRIS_HAND_MQP_REPORT.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-043014-213851/unrestricted/IRIS_HAND_MQP_REPORT.pdf
https://ieeexplore.ieee.org/document/7487528


Figure 2.2.3: Rubber Hooded Hand 
 
While this hand focused on the complex motions of the human hand, others strove to replicate 
the durability and strength of a human hand. A group of researchers from Germany built a hand 
that can endure multiple collisions and strikes from hard objects without breaking. They utilize a 
counter stressed tendon system. Instead of just a single cable for each finger or joint they used 
multiple cables per joint, as seen in Figure 2.3.4, with a total of 38 tendons. This allowed the 
hand to absorb violent shocks such as those from a baseball bat. The team wanted to build a hand 
that could perform as a human hand could in terms of dexterity and resilience. The hand had a 
total of 19 DOF, one short of a real hand, with the ability to exert a force of up to 30 newtons at 
the tip. The hand was also designed with a unique spring system connected to each tendon. This 
allows the hand to rotate joints at 2000 degrees a second by tensioning and releasing the springs, 
giving it the capability to do things like snapping.   7

 

 
Figure 2.3.4: The Multiple Cables for Each Joint 

  

7 Guizzo, Erico. 2011. Building a super robust robot hand. IEEE Spectrum (January 25,), 
https://spectrum.ieee.org/automaton/robotics/humanoids/dlr-super-robust-robot-hand. 

 

https://spectrum.ieee.org/automaton/robotics/humanoids/dlr-super-robust-robot-hand


2.4 Musical Robotic Systems 
Now we delve further into robotic architecture that is specifically designed to produce music. We 
analyze various designs of the physical construction as well as the software behind it. We must 
consider advanced motion planning, control over motor force, and decision-making. Many kinds 
of music-playing robots exist, but not many are aimed at replicating an anthropomorphic model. 
We must examine prior work in the realms of force control and how motion planning ties into 
playing music. Musical interpretation is affected by so many small factors, all which must come 
together in the right manner to be effective.  
 
Much attention must be paid to the nature of robotic fingers. The tips must be able to respond to 
various amounts of pressure, so our design perhaps should consider a tip that can undergo 
deformation. Jen-Chang’s work focused on the design of a humanoid robotic hand for playing 
the piano, including this kind of deforming finger. Their work describes the nature of the finger 
design and the placement of motors in the assembly to most effectively control the fingers. But 
most importantly, this research focuses on the aspects of touch sensitivity. It describes the nature 
of the rated torque control. They describe two different theories for the construction — one is 
with motors and one is with a pneumatic cylinder. Both feature steel wires that run to the joint in 
the finger and control the amount of force at the end point that contacts the key. The finger is 
made of an aluminum alloy, which is extremely light— thus the impact of additional weight 
from the finger itself is not as much a factor in the amount of force applied to a key. The fingers 
are incredibly thin aluminum, and undergo slight deformation in playing. The stress analysis on 
the finger is seen in fig . As a key is depressed, the finger slightly deforms at the tip, which 
allows it to give way to some pressure as a key is pressed .  8

 

 
Fig. 2.4.1: Deforming Fingertip, Stress and Strain Analysis 

 
Li’s first paper, Intelligent algorithm for music playing robot, contains many aspects of 
producing music, but in particular addresses the issue of motion planning and placement of an 
arm-like appendage along a piano keyboard. Some issues these researchers faced included how 
to decide what notes to play, when the algorithm is given too many notes to physically play at 

8 Jen-Chang, Lin, Hsin-Cheng Li, Kuo-Cheng Huang, and Shu-Wei Lin. "Design of Piano-playing Robotic Hand." 
IAES International Journal of Robotics and Automation 3, no. 2 (2014): 118. 

 



once. This robot could still produce polyphony, but had to understand the physical limitations of 
the arm. This is a perfect source to help us understand what is needed in making real-time 
decisions on arm placement, and how to omit notes that are not possible to play at a given time. 
They minimized movement for the hands and fingers to most optimize and “anthropomorphize” 
the robot. We will definitely need to address these exact same issues, and will be using a very 
similar algorithm. However, we will be modifying it slightly, as we are not necessarily looking to 
minimize motion all the time. We still want to limit unnecessary movements across the 
keyboard, but we want to incorporate human-like expressive gestures in our arm motion .  9

 
In Li’s second work, Force control for the fingers of the piano playing robot, researchers 
focused on the precise manipulation of force to strike piano keys using a robotic hand. Using a 
gain switched controller that drives a cylindrical linear motor, they were able to produce notes of 
different volumes. Most importantly, however, they were able to ensure that these notes were 
played at the right time. When using greater force, the motor would move more quickly, and thus 
a software-controlled variable timing-offset was needed to ensure that the musical rhythm was 
still respected. Such a level of precision is exactly what we need when considering the nuances 
in how to produce musical dynamics. So many factors come into play, especially with regards to 
timing, that a simple change in force and speed can cause other aspects of the music to fall apart. 
For both the physical construction and the software architecture these factors will need to be 
considered from the start . 10

 
Human choices in music are quite complex, and we should understand why humans choose to 
make certain gestures and not others. Hoffman discusses a robotic marimba playing robot that 
can improvise melodic lines alongside a human performer in real-time. The robot creates a 
melodic in a call-and-response manner, responding to lines in a human jazz solo. Several factors 
are taken into account in the algorithm here, the most of important of which is the musical 
synchronization. A musician naturally has a steady internal clock which keeps the tempo, and 
that ultimately dictates how they play. When listening to lines of a jazz solo, however, the meter 
can be hard to determine. They started with being able to read a simple known chord progression 
to listen for. They incorporate a simultaneous “sequence spotter” and “beat estimator” algorithm 
given the known chord information, which can in turn give the robot a BPM of the passage 
played by the human. Then they generate an “opportunistic overlay improvisation” which 
consists of a method of generating a melody based on tones in the detected chord. It also 
generates a set of note durations and note intensities it has heard from the human playing as a 

9 Li, Yen-Fang, and Chi-Yi Lai. "Intelligent algorithm for music playing robot—Applied to the anthropomorphic 
piano robot control." In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1538-1543. 
IEEE, 2014. 
10 Li, Yen-Fang, and Chun-Wei Huang. "Force control for the fingers of the piano playing robot—A gain switched 
approach." In 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, pp. 265-270. 
IEEE, 2015. 

 



base set from which to choose random melodies, each with a probabilistic weight attached. Also, 
much of the sophistication herein lies in the real-time DSP involved in detecting what harmonies 
are present at a given time and being able to discern a melodic line from the underlying 
harmonies. The human ear can pick up on this easily, but given the complexity of overtones in an 
instrument’s timbre, this can sometimes be very difficult. They look for the strongest frequencies 
and assume these are fundamental for all the actual tones present .  11

 
Our goal is specifically to mimic the gesture of human piano playing with robotics, which is the 
biggest existing gap in prior art. Research has covered human gesture, and robotic human-like 
musical performance. Both of these fields will help us construct a robot that can help us 
understand the nuances in human expression, both visually and musically. 
 

  

11 Hoffman, Guy, and Gil Weinberg. "Interactive improvisation with a robotic marimba player." Autonomous Robots 
31, no. 2-3 (2011): 133-153. 

 



2.5. Software Systems 

2.5.1. Recurrent Neural Networks 
A recurrent neural network (RNN) is a machine learning method that preserves data in its hidden 
layers as it is trained. In modern applications, it often uses a technique known as long short term 
memory (LSTM), in which information is saved each time a new set of data is entered into the 
network. The network is organized into a series of cells, each having its own cell state. This cell 
state is kept whenever new data is entered, and is slightly modified using linear transformations. 
This is known as the hidden state. With these hidden states, the network can build on all 
previously accumulated information. Such a model is superior to other methods, such as hidden 
Markov models (HMM), for the processing of continuous musical auditory input.  
 
Each cell in the LSTM is comprised of three gates: an input, output, and forget gate. The input 
regulates data coming into the cell, and likewise the output does that for data out of the cell. The 
forget gate is what regulates to what extent the current value remains in the cell. These gates use 
an activation function, commonly a logistic function, to make decisions in the network .  12

 
Figure 2.5.1 shows the structure of the network, with inputs X(T) contributing to the output layers 
z(T), and hidden states h(T) in between. The dashed lines represent the predictions being passed to 
the output layer, while the dotted lines represent temporal smoothing being applied to further 
hidden layers. An RNN alone without this kind of smoothing is not as effective in a larger-sale 
spatio-temporal setting. In the case of audio recognition, this feature is not as particularly 
important, for the dimensionality is not as high as in other domains .  13

 
Fig 2.5.1: A Generic RNN Structure 

 

12 Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent. "Audio Chord Recognition with 
Recurrent Neural Networks." In ISMIR, pp. 335-340. 2013. 
 
13 Jain, Ashesh, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. "Structural-RNN: Deep learning on 
spatio-temporal graphs." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
5308-5317. 2016. 

 



The LSTM structure reduces the likelihood of a “vanishing gradient” in which the network 
prematurely reaches a point where it can no longer be trained. The value weights in the network 
can no longer be altered once this issue has occurred during a training session. The error 
gradient, coming from the partial derivatives of the error function, can be vanishingly small on 
certain iterations. Many small values are multiplied, leading the final result to become nearly 
zero. With LSTM, however, the hidden state is retained throughout a session and thus creates a 
connection between the forget gate activations and computing the gradient. Thus the weights can 
be updated on each iteration, even given low values in the partial derivatives from the error 
function .  14

 
 
2.5.2. Preventing Overfitting with Dropout 
In supervised machine learning, a prediction model is fitted to a training data set, which includes 
input and output data. In some cases, the model can become “overfitted” to the training set. It is 
too accustomed to the features and nuances of the training set. When predicting based on 
completely new input data, it may not properly extrapolate information and relies too heavily on 
exactly what appeared in the training set. Artifacts such as noise may skew results in an 
unnecessarily complex and irrelevant manner. This completely defeats the purpose of machine 
learning.  
 
In the case of a deep neural network, there are multiple nonlinear hidden layers, which are 
connected in complex ways. These connections can be easily prone to noise. Researchers at the 
University of Toronto proposed a solution known as “dropout.” It randomly selects units, both in 
the hidden and visible layers, and completely drops them from the network. All ingoing and 
outgoing connections for these units thus disappear. The “thinned” network is then less prone to 
being thrown off by artifacts in the data .  15

 

  

14 Hochreiter, Sepp. "The vanishing gradient problem during learning recurrent neural nets and problem solutions." 
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6, no. 02 (1998): 107-116. 
15 Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. "Dropout: a 
simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15, no. 1 
(2014): 1929-1958. 

 



3. Methodology 

3.1. Objectives 

The overall objective of this project is to create a cohesive robotic system that can recreate 
human gesture while playing piano, for the purpose of better understanding how music is 
connected with gesture. This includes the creation of many subcomponents, such as a method for 
interpreting musical input and various mechanical means to produce musical output. For the 
creation of the robotic system, we define our objectives in a tiered fashion, starting with the 
simple ability to play notes on the piano.  
 
3.1.1. Objective I 
Our robotic system can physically play piano keys in a software-defined temporal and 
melodic manner 
 
3.1.2. Objective II 
Our robotic system can produce motions that are connected to the music and add to the 
emotional expressivity of the performance.  
 
3.1.3. Objective III 
Our robotic system can reproduce a musical line based purely on auditory input, and 
interpret expressive factors, such that it can give a compelling and entertaining 
performance of the given line. 

  

 



3.2. Design Specifications and Requirements 

Our robotic design must meet a set of specifications, including simply playing the piano, and 
replicating human motion while doing so. The basic requirements to play a piano already 
involves a set of design challenges. Thus, we are focusing on the most intricate part of the whole 
model of a pianist’s arm, the hand. We already have an existing industrial arm that can move 
with many degrees of freedom and with great speed. We are focusing on the motion of the wrist 
and fingers, which is where most of the sophistication in human piano-playing comes in.  
 
3.2.1. Requirements for Objective I 

a. Given an existing industrial robotic arm, we will construct an appendage that resembles a 
human hand. This hand ought to be able to play keys on a standard piano keyboard, being 
able to span 61-keys (given the industrial arm we are using, this is the maximum span we 
can achieve), such that it can play high melodic lines as well as low bass lines.  

b. Our robotic arm and hand can play notes on a piano keyboard based on a given musical 
data as input (e.g. MIDI data). This means that it must be able to reproduce rhythms and 
notes accurately, and adequately plan on how to move along the keyboard when needed. 
Motion planning work in a similar manner is described by Li & Lai, taking into account 
the timing offsets needed when shifting the arm to a new position .  16

c. Our robot should be able to play up to 5 notes at the same time, as the human hand has 5 
fingers and can play 5 notes in that manner. Therefore, it need not be able to play every 
single note on the keyboard at the same time. Similar to a human arm, it is limited in the 
number of notes it can play simultaneously. Thus, we will be able to effectively filter out 
notes that we cannot play at a given time, and decide which notes to prioritize. 

d. Our robot should be able to play passages that are fast in nature, meaning it can play 
notes in rapid succession. Humans can play certain passages with great speed and 
precision, so we should be able to at least match the dexterity of human motion. Franz 
Liszt’s La Campanella Etude is known for its incredibly fast and animated character. This 
piece features 64th-note runs at an Allegretto tempo. If we consider this tempo to be 
roughly 120 beats-per-minute, there are 1,920 fast notes per minute, which is 32 per 
second. It is reasonable to assume that a concert pianist would not be asked to play faster 
than this. Such repertoire is known for being at the edge of human capability. Thus it is 
reasonable for us to say that our robot should be able to play at a rate of 32 notes per 
second, given that it remains in one position. Of course jumping to other areas of the 
keyboard will yield a slight delay, so this requirement need not hold in that case. 

16 Li, Yen-Fang, and Chi-Yi Lai. "Intelligent algorithm for music playing robot—Applied to the anthropomorphic 
piano robot control." In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1538-1543. 
IEEE, 2014. 

 



e. We need to be able to control the exact placement of the finger, such that it plays the 
correct key, and travels the correct vertical depth into the key. We also need control over 
the velocity at which this occurs, so that we can alter the volume of the notes we play. 

 
3.2.2. Requirements for Objective II 

a. The robotic arm can replicate motion of a human pianist using the robotic arm in a 
manner that is expressive and accurate with respect to the gestures of a pianist. If 
performing alongside a human, there should be a rough correspondence in what kinds of 
physical gestures are produced. Even though there would be differences between any two 
human interpretations, there are a number of common patterns that human pianists will 
tend to follow when playing a passage, as found by Hadjakos et al .  17

b. The robot’s physical gesture should correspond with its musical expressivity. The robot 
can vary this motion based on the velocity/duration/articulation of notes, along with 
anticipating motions it should make to play upcoming notes. This means that if we ask 
the robot to play a certain note with a certain volume, it would adjust its physical 
approach to playing that note differently than if we asked for a different volume. This 
includes the motion before and after that note is played.  

c. The robot can make decisions regarding its physical motions, and the parameters of each 
note (such as volume, duration, etc.) even if it is given very limited information on what 
to play. If we limit the amount of information we provide, such as omitting the specific 
information on how loud each note should be, the robot can actively make decisions on 
how loud each note should be. This will be based on musical convention, but also contain 
a certain level of freedom and unpredictability that would come from a human 
performance. Specifically, we are looking at the volume/velocity at which we play each 
notes, and the duration of each note/articulation of the music.  

 
3.2.2. Requirements for Objective III 

a. The robotic system can respond to auditory musical input with a reliable pipeline. The 
master controller software for the arm and hand system can be called from another 
software component. The musical input can therefore cause the robotic system to make 
changes in its motion planning and gesture. 

b. The processing software can extract musically expressive information from an incoming 
audio signal by analyzing changes in the frequency spectrum, which include dynamics 
and vowel shapes 

c. The software can translate extracted expressive information into meaningful gestures in 
the robotic system.  

17 Hadjakos, Aristotelis, Erwin Aitenbichler, and Max Mühlhäuser. "The Elbow Piano: Sonification of Piano Playing 
Movements." In NIME, pp. 285-288. 2008. 

 



3.3. Analysis from a Humanities Perspective 

When we started to examine physical characteristics of human performers in order to bring their 
expressions into the robotic system, as stated in objective II, we first analyzed video recordings 
of performers in concert. We took scores of the music and compared them side by side with the 
videos. By looking at specific passages we started to analyze how the performer related their 
physical gesture to the sonic production. As we went through these recordings there were many 
moments that were cut or panned away from the performer. This left out important information 
about idle posture, or gesture, when the performer was not the focus of the piece. In order to help 
combat this we started attending and analyzing live performances. This allowed us to see the 
performers gestures throughout the entire piece. 
 
At these performances we started to also look at other types of instrumentalists and how their 
gesture differed or related to that of a pianist. For example, looking how a cellist reacts to an 
ascending line and if that is different than how a pianist does. We took this information and drew 
parallels between different gestural styles and examined how everyday human body language 
played into performance. 
 
During this process we also conducted interviews with a couple of performers to examine their 
views on gesture in performance. We talked formally to an organist and harpsichordist and a 
cellist, and informally to multiple pianists. We started with a series of guiding questions and then 
let the conversation go wherever they guided it. Each person has a slightly different view on it 
and a different focus, so by letting them guide the conversation we could delve deeper into areas 
they thought more about. 
 
Through all of this research, we continued to pair and examine how physical gesture related to 
sonic production; how people moved with certain phrases and passages and how that was 
impacted by and how it impacted the sound. This drove our focus on auditory analysis with 
software, looking at how a sung phrase could be interpreted and converted into forms of physical 
gesture.  

 



3.4. Software System Design 

Design objective III focused on the processing of audio input. Various factors of the sound were 
meant to influence the motion of the robot. To start off simply, our first goal was to determine 
the musical pitches that were being produced in an audio signal. We then added other features on 
top of that, including a more complex analysis of overtones to understand the nuances of the 
musical performance.  
 
Our design approach focused on machine learning that would be able to understand the subtle 
details the audio. Given a multitude of methods, we decided to use a time-dependent recurrent 
neural network (RNN) to perform supervised machine learning. For this kind of application, 
other techniques such as convolutional neural networks or simple feedforward neural networks 
do not properly handle the time dimension.  
 
How good is this method at analyzing musical input? How can it determine changes in a 
performer’s musical tone over time? How can it recognize the contour of a musical phrase? This 
is certainly not the first time an RNN has been applied to audio, but here we are looking to 
determine how well it works for subtleties in musical audio input.  
 
We began with a model for feeding data to the neural network. The “X” data, which came from 
the audio input source, contained a series of frequency vectors for each moment in time. Each 
frequency vector was computed using an FFT, given a certain window size, using a sliding 
window across the audio signal. For example, given an FFT window size of NFFT, we would 
start a t = 0 and compute the FFT from t = 0 to t = NFFT. Then, for the next vector, we would 
compute the FFT for t = 1  to  t = 1 + NFFT. 
 
Each window was smoothed with a Hanning function. This allows for a more accurate view of 
the signal at a given time, and prevents spectral leakage with small window sizes. When taking 
an FFT of a small segment of a signal, it is not guaranteed that either end of the segment is 0. 
Thus, the interpretation of the signal can be altered to include higher frequencies when seeing the 
clipped end of the segment. See figure 3.4.1 for an example of a clipped signal that would cause 
this issue. A smoothing window function, such as the Hanning function, can be applied to 
smooth the ends of the signal and prevents the introduction of leaked frequencies. We used this 
technique to produce the most accurate series of frequency vectors.  

 

 



 
 

Figure 3.4.1: Signal segment without windowing 
 
Next, we collected corresponding “Y” data, which was our ground truth information for 
performing the supervised learning. This was gathered from a MIDI keyboard, which would be 
played alongside the inputted musical performance. We collected basic information, such as note 
onsets and releases, but also the velocities of each note, changes of the mod wheel, and 
after-touch on the keys. All of this MIDI information was consolidated into a sequence of 
time-stamped changes in state. Then, using these changes in state, a state vector was constructed 
for each moment in time,  t = 0, 1, 2, etc.. This complete set of time-dependent vectors was then 
our complete “Y” vector.  
All the MIDI was gathered using PyGame’s MIDI API, as the library is easy to use and can 
collect all kinds of MIDI state changes, including those from the mod wheel and after-touch. 
 
For the construction of the network itself, there were many possible configurations that were 
tried. We used the Keras API from TensorFlow, which includes a variety of tools to easily 
construct a machine learning architecture. We started with a simple “Sequential” model, meaning 
that the network had a simple sequence of layers, each of which would feed data into the next. 
We began with a simple LSTM cell, which function as our RNN. To train the network, we used 
the Adam optimization algorithm, which worked best in terms of performance. 
 
We also wanted to experiment with more layers, in order for the network to gain a deeper 
understanding of the data. These layers included more LSTM cells, but also we experimented 
with other kinds of layers as well. We used some “dense” layers, which are standard 
fully-connected feedforward network layers. These layers did not retain information across 
samples, and thus was not “recurrent” in nature. Instead, these layers were meant to prevent 
longer-term dependencies from overfitting the network to the training data. Consider the simple 
example of a three-note musical phrase. If most of the training data consists of ascending notes, 
or a certain musical contour that gets louder as the notes ascend, then the model would become 
used to seeing notes and volumes that increase. For longer phrases, it is common to have a 
melody that starts low, and then rises in pitch and volume, and then comes back down. However, 
what if we are looking to analyze the contour of a phrase that only descends? What if there are 
notes that are atypical for a musical phrase? The time-dependent nature of an RNN can cause the 
information at the beginning of the sample to influence how the network learns about the end of 

 



the sample. Of course, this is the entire goal of using an RNN, but it can be too good at fitting 
this time-dependent data and can easily overfit. Especially in the case of music, two different 
melodies can start the same way and end completely differently. Thus, we wanted to have the 
option to introduce some layers that do not feature LSTM and can learn more “local” 
information about what is going on at a single instant in time.  
 
However, these dense layers can also become overfitted in their own way. This is not a 
time-dependent overfitting, but overfitting at each independent moment in time. The network can 
get too used to a certain series of overtones, which may correspond to different notes with 
different kinds of tone quality. Thus, we used a method known as “dropout” to randomly remove 
a set of nodes from the dense network. This method has been known to help reduce overfitting in 
a fully-connected network (source?).  
 
For the final output layer, we trained based on multiple components in the “Y” vectors. This 
included both classification and regression. A subset of Y contained information about what note 
was being played at a given time. This subset was a simple one-hot vector, where each value in 
the vector corresponded to a possible pitch. The active note at a given time would be represented 
with a 1, and all other positions would be filled with 0. As all our melodies were monophonic, 
we only dealt with one note at a time, and therefore only one slot being equal to 1 at a time. For 
this kind of classification, an activation function is applied to the output of the neural network in 
order to produce a single result. The one-hot Y vector is essentially a probabilistic model — in 
the given ground truth data, an active note has a probability of 1, and all others have a probability 
of 0. A “Softmax” activation function was best at dealing with this output. It produced a 
probability for each “category,” or each possible pitch at a given time.  
 
For the regression outputs, the Y vector also contained some plain numerical values, each of 
which was a different expressive factor in the inputted MIDI data. For these outputs, no 
activation function was used, and the network produced a single numerical result, with an output 
vector size of 1. We set up a series of different configurations that could then be used for training 
and testing.  
 

 

 

3.5. Robot Controller Design 

The robot controller software consisted of multiple independent components that all were 
coordinated by a master controller. There were two primary interfaces: the hand controller and 

 



arm controller. The hand controller communicated over serial to the Arduino, and the arm 
controller sent commands over a network socket to the ABB arm. Figure 3.5.1 shows how data 
flowed to these components.  
 

 
Fig 3.5.1: Controller Data Flow Architecture 

 
3.5.1. Master Controller 
The master controller issues all the high-level instructions to the arm and hand controllers, and 
coordinates all movement between this two disjoint components. It must incorporate complicated 
timing information in order to accurately play notes at the correct time with the correct rhythm. It 
operates using a main thread, which continuously loops and listens for new instructions. It uses 
an abstraction we call a NoteStream to process a sequence of Note objects, each of which is a 
musical note with corresponding metadata and a timestamp. When new notes are appended to the 
NoteStream, we then construct a series of RobotAction objects to appropriately handle the new 
data. Each RobotAction consists of command and timing information. The command itself has a 
command type and arguments, information of which can be seen in table 3.5.1. These could 
consist of information for simple movement of the arm, or to depress a finger on the hand. The 
timing information can then be defined in many possible ways. It could be a simple delay given 
in milliseconds, or it could be a defined using a function that returns when the command is ready 
for execution. The latter is useful when waiting for commands to finish executing in the arm 
controller.  
 
Upon receiving a new Note in the NoteStream, the master controller evaluates whether or not the 
arm must be shifted into a new position to reach the note. A NoteRange object defines a certain 
range which the hand can reach given the current position of the arm. If the Note at a certain time 
lies outside of this range, the arm must be shifted. This shift takes a certain amount of time.  
 

 
Table 3.5.1: RobotAction Commands for the Master Controller 

 

Command Type Description Arguments 

 



noop  No operation: controller will do nothing None 

move_arm_j  Moves the arm in a joint-wise manner to a 
given (X, Y, Z) coordinate 

3 float values: X, Y, Z 

move_arm_c  Moves the arm in a circular path to a 
given (X1, Y1, Z1) coordinate given an 
intermediate point (X2, Y2, Z2) 

6 float values:  
X1, Y1, Z1,  X2, Y2, Z2 

finger_down  Depresses a finger at index i 1 integer: i 

finger_up  Releases a finger at index i 1 integer: i 

finger_up_all  Releases all fingers simultaneously None 

 
 

 
 
 

 
Fig 3.5.2: Timing Graph for Motion Planning in Master Controller 

 
 
Each action takes a certain amount of time to complete. In order to ensure rhythmic accuracy in 
the output, preemptive planning of motion must be applied. See figure 3.5.2 for an example of 

 



three notes that must be played in sequence, with a given rhythm. tN0, tN1, and tN2 are the durations 
of the three notes. Multiple factors must be taken into account — first is the tf, time it takes for 
the finger to be depressed onto the key. We must also consider the time it takes the arm to move 
to a new position. In figure 3.5.2, the second note is outside the range of where the hand can 
reach, and thus the arm must shift. This shift is tA0-A1 for arbitrary arm positions 0 to 1. However, 
before the arm can begin to move, the finger must be raised, otherwise it will get caught in 
between keys and cause damage. Thus, the entire system must begin transitioning to the next 
note for a duration of tf + t A0-A1 + tf before the next note is played, allowing for the finger to be 
raised, arm to move, and for the finger to be depressed again for the next note. For the third note, 
it is only necessary to start considering motion tf ahead of time, as the note is within the range 
that the hand can reach. Thus it is only necessary to depress a new finger.  
 
When the robot is not moving, it is possible to use a “noop” command, or “no-operation” 
command, to simply wait for further instruction. This occurs in figure 3.5.2 during the time a 
note is held and nothing is needed to be done, such as during tN0. This is important in ensuring 
rhythmic accuracy in the musical performance.  
 
3.5.2. Hand Controller 
In order to control the servos we ran a function in arduino called pwm.setPWM which was from 
the reference library of the controller. This function took in three values, the pin, the low to high 
trigger, and the high to low trigger. This would determine the pin that the command was set to 
and then the PWM percentages. We used a low to high trigger of 0 always in order to simplify 
the code. Then, all that had to be changed was the high to low trigger in order to adjust the pulse 
length. In order to ensure the servos were not overdriven we did a sweep with them individually 
to find the max and mins. From this, we took the last value before any of the servos were 
overdriven. This resulted in a servomin value of 250 and a servomax of 550. By storing these 
values, we could adjust all of the servos together if something changed. We also then had to just 
call the servomin and servomax values when we wanted a key pressed. 
 
3.5.3. Arm Controller 
The controller for the arm uses a simple high-level ASCII-based communication protocol to talk 
with the ABB arm. The arm controller itself acts as a server, and binds to a port on its internal 
network. Any other machine on its network can thus send commands to it. Each command is sent 
as a sequence of numerical ASCII values separated by spaces, terminated with a pound (‘#’) 
character. Because the protocol is simple and text-based, it is easy to parse on the robot’s end. 
The sequence of values in each command begins with a command type, then is followed by a 
sequence number, and then a list of arguments. The command types and their arguments can be 
seen in table 3.5.1. The server responds with a status character and a corresponding sequence 
number.  

 



 
The sequence number is used for acknowledgements of command completion. For example, if a 
command of type = 1 with seq = 5 is issued, the robot will move using a joint-based translation 
to a certain location in a certain amount of time. The server running on the controller will send 
back a response indicating the status of the command. If it returns a status of 0 for seq = 5, then 
the command with sequence number 5 will be acknowledged as successfully completed. This 
helps coordinate motion in the arm. Certain motions are hard to precisely estimate, due to small 
network delays or small motor errors. Also, this allows us to see if there was an error in 
executing a certain command, in which case a nonzero status is returned.  
 

  

 



3.6. Hand design  

When designing the hand the design of the finger itself went through a number of revisions, 
updates, and modifications throughout the course of this project. The initial finger, seen in Figure 
3.6.1, used top mounted cable housing and a push system to push the finger downwards. When 
testing, it was determined that a pushing motion would allow the cable to bunch and fold over on 
itself when outside of the sleeving both on the finger end and the motor end. This would not 
allow efficient or accurate motion and cause the maximum force to be determined by the 
flexibility of the steel internal cabling.  
 

 
Figure 3.6.1: Version 1 of the Finger 

 
  

 



Because of these discovered issues, the second version had the cable clips on the underside of the 
finger. Placing the cable clips on the underside fixed push cable issue but introduced a new issue. 
With the cabling hanging off the bottom of the finger, there is interference with the keys when 
moving around. We attempted a solution by trying to hold the cables up from the keys by 
mounting them to the bottom of the hand. This, unfortunately, did not allow enough flexibility in 
the finger joints as the cable sleeving was too stiff to bend over a short distance. In addition, as 
seen in Figure 3.6.2, the clips are lined up very close to each other. When the cables were 
attached here they had issues clearing each other. The force application in this edition, using a 
pulling motion, was much improved from the previous pushing methods. 
 

 
Figure 3.6.2: Version 2 of the Finger 

 
  

 



Finally, the third version of the finger used a passthrough method. The cable entered through the 
top of the finger, through the holes seen in Figure 3.6.3, and then passed out through the bottom 
where it connected to the next finger to actuate it. This allowed the cables to be up and out of the 
way while ensuring a pull stroke for the force application.  

 
Figure 3.6.3: Version 3 of the Finger 

 
This method, while better, is still not perfect as the cable housing for the second joint has to 
move with the entire finger when the first joint moves. This adds an effective spring resisting 
keystrokes and return motion. The servos could not overcome this if the mounting plate was too 
far away. We needed to mount the motor bar closer to the arm, inducing a large arc in the 
cabling. This arc, as seen in Figure 3.6.4, pushed down slightly on the final link and allowed it to 
bend easily and fully. 
 

 



 
Figure 3.6.4: The Hand Mounted on the Arm 

 
The palm also followed a number of design phases. The original plan was to use a traditional five 
finger approach, four forward facing fingers and a thumb. The second idea was to use a six 
finger system, with a thumb on either side, allowing the hand to act as both a left and right hand 
while playing. However, both of these ideas were scrapped before we even moved on to the 
modeling phase. It was decided that the complications of the thumb, such as a ball joint or cross 
under motions, were too great for the scope of this project. While we lost some aspects of piano 
technique by removing the thumb, we were able to focus more on other aspects to improve them. 
The first modeled design of the hand used a four finger system with cable pass throughs for 
controlling left and right rotational motion of the fingers to line them up with the keys. These are 
the holes seen just below the row of posts in Figure 3.6.5. 

 



 
Figure 3.6.5: Version 1 of the palm 

 
However, when placing the palm into the pneumatic gripper on the arm it rotated left and right 
too much even from just the force of the bowden cables themselves rotating. This lead to our 
second design iteration. For this one we added another finger, to have five forward facing 
fingers, and a slot to mount around the gripper base. We kept the cable pass throughs for all but 
the middle finger. If the middle finger remained straight then we could index the arms location 
off of it. After mounting it on the arm and attaching the servos and bowden cables we realized it 
was far more practical to just lock all of the fingers in place since they all settled naturally over 
the series of keys. This allowed us to focus on the motion planning in the arm in order to cover 
the distances instead of rotating the finger to move small ranges. The hand itself was printed 
before we made this decision so the holes for the cables in the palm are still present, just left 
empty as seen in Figure 3.6.6. If reprinted we would have removed the holes entirely. However, 
there was no structural issues with the hand and a reprint was not necessary. 
 

 
Figure 3.6.6: Version 2 of the Palm 

 



 
 

The servos were mounted in their own holder grouped by finger. Each finger had a servo board 
with three slots in it and a corresponding clip for cable termination, as illustrated in Figure 3.6.7. 
This allowed the whole board to pivot as needed by each finger. Each board was then mounted 
onto a piece of wood to hold them all equidistant from the hand. The board then had a 1/4-20 
threaded bolt mount pressed into the bottom of it. This allowed us to attach a small tripod to the 
board. The tripod was then attached to the last link of the arm with electrical tape in order to 
minimize slipping. Other attachment methods were tested but did not provide a stable enough 
grip when the arm was in motion. 
 

 

Figure 3.6.7: Servo Board 

 

 
 

  

 



3.7. System Wiring 

The fingers were controlled by bowden cables attached to servos. These servos were then all 
wired into an Adafruit PCA9685 servo controller board. This board is a 16-channel 12-bit PWM 
servo driver. This board also has its own built in clock, allowing a signal to be sent once and it 
will continue with the pwm signal on its own. This means it doesn’t have to be continuously sent 
and is never blocking. This allows the command for multiple fingers to move to be sent 
simultaneously without worry about continuous signalling. The board itself only required four 
connections to our arduino in order to run. It took 5V VCC pin, to set the logic level to use, 
GND, for grounding, SCL,  I2C clock pin, and SDA, an I2C data pin. The first three pins 
handled assigning certain constants to the board itself. The SDA pin then handled all of the 
signalling and control of all the servos. This was connected to the controller board by means of a 
length of cat 5 cabling. This cable was attached to the arduino next to the laptop and run through 
cable loops up the side of the arm. In addition to this, we had to supply the board with additional 
external power, as the arduino 5V port could not pull enough current to move all the servos. This 
was accomplished with a 120V AC to 5V DC 20 amp power supply. This was attached to the 
controller through a long cable threaded up the side of the arm alongside the data cable. 
 

 
 

Figure 3.7.1: Wiring for the Arduino and Servos 
 
  

 



4. Results 

4.1. Musical Performance of the Hand 

A video sample of a performance of the hand can be seen at: 
http://static.anthonytopper.com/piano-arm-mqp/demo-video.mp4 
  
The arm can move and press keys to create a sonic performance. We had the keyboard connected 
to Ableton Live to record as a midi instrument. Through this we could view the midi data from 
the notes. Figure 4.1.1 shows the resultant midi data from playing a duet with the arm . The 18

highlighted notes are from the arm and the others are from the human performer. 
 

 
Figure 4.1.1: Midi Output from a Duet 

 
When analysing the resultant midi data we saw variations in the velocities and timings of the 
notes. Some of these results were accidental but we found it to be reminiscent of a human 
performance. There are certain fingers on the human hand that press harder or are stronger than 
others naturally. This creates variations in velocity when trying to keep the same note velocity in 
a passage. This could also then be modified manually through the arm. If we intended for a 
certain not to have a greater velocity we would lower the arm a few millimeters while the note 
was being pressed, assisting the finger and emulating the motion of a pianists elbow as they lean 

18 http://static.anthonytopper.com/piano-arm-mqp/demo-video.mp4 
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into the keys. This allowed us to emphasize certain notes or moments in the music such as the 
highest note and the subsequent downward run. It can be seen in the velocity data at the bottom 
that the highest was a little softer with the run down getting louder and then softer as it went. 
 
When moving from place to place the arm followed an arched path, this is not reminiscent of a 
human player as they cannot follow perfectly round paths, just close imitations. These paths, 
however, could then be varied in height to create differences in the gesture. These variations 
came not only from the distance between the keys but also the importance of phrasing or moment 
in a passage. These gestural plans were mostly hard-coded into the passages when we gave it the 
midi data to play. These pieces and passages also could then be modified by the arm’s approach 
and departure by changing the approach vector and starting location and the return home position 
at the end. How it started the passage and placed itself on the keys could indicate a difference in 
intent. If it placed itself gently on the keys it could show a softer passage, where if it landed 
firmly in preparation it indicated passion, anger, or more aggressive passages. Finally, in its 
departure it could leave itself on the keys, letting the not linger, or it could lift off and move 
away, as a dramatic final lift. All of these factors combined lead to a more engaging performance 
than a simple pressing of the keys. However, it is not yet sophisticated enough to emulate or 
evoke human performance and emotions. 
 

  

 



4.2. Human Motion in Performance 

4.2.1 Overview 
 
When looking at expression many people may assume that the more expression means more 
motion. However, it seems like it is often the exact opposite. Lack of general motion and smaller 
specific motion allow for clearer transmission of intention and emotion. When watching 
professional musicians or performers their motions are subdued aside from their specific gesture. 
If they are moving freely and randomly during their general performance, then when they try and 
indicate something specific, it is lost on the observers.  
 
When talking to Simon Halsey in Berlin during a master class on conducting he targeted areas of 
extraneous motion such as the knees, second arm, and even the mouth. He said that if you 
continuously move these areas then when you intentionally want to show something by doing 
something it will have less importance. For example, when always mouthing the lyrics with a 
choir, when you indicate a breath to them it appears to be just another part of the words instead 
of an indication of an entrance. Same with something like your knees. If you bounce to the beat 
as you conduct, when you want to indicate a drop in dynamics, by lowering your stance and 
dropping your posture, it can come across as just another beat in the piece. 
 
4.2.2 Analysis of Live Performances 
 
Through my attendance to a number of classical music performances in person I observed 
different instrumentalists and performers playing in a professional setting. When playing piano, 
in order to indicate certain sections the performer leaned into chord progressions of importance. 
Leaning toward the piano showed intent of intensity when flowing into and digging into a chord 
or a complex section. When showing ease or comfort, he leans back and away from the keys 
with the body and lets the head fall back. In addition to adding physical gesture without 
modification of the auditory output there are times where the two are paired together to make a 
more dramatic effect. Near the end of the piece, in order to show emphasis he not only leaned in 
but also slowed down the run of notes, pairing physical gesture with modification of auditory 
gesture to create a more powerful experience. Throw shoulders forward and into certain lines of 
music. 
 
When playing cello, as the hands need to be precisely placed and any extraneous motion can 
cause detrimental effects on the performance, nearly all of gesture is done with the head, neck, 
and upper torso. For violins, violas, and other smaller string instruments however, their size 
allows motion of the full body and instrument, forming gesture with the scroll of the instrument 

 



in the air as movement of the neck would dislodge the chin rest from its proper positioning. 
However, with proper placement on the shoulder, some violinists can motion with their head 
independently of the scroll, allowing for extra indication of gesture. I saw this primarily in the 
concert-master of the ensemble as she was able to separate scroll gesture intended for the 
ensemble and head or body gesture intended for the audience. 
 

 
Figure 4.2.1: Passage of Vivaldi’s Cello Concerto 418 

 
Through the above passage of Vivaldi’s cello concerto 418, in the fifth line down, Joshua Rohde 
indicated every measure based run with a movement of the head. Starting out away from the 
neck of the instrument at the beginning of the passage, moving towards the neck, and then a little 
away at the end. This followed the melodic flow of each measure.  
 

 
Figure 4.2.2: Passage of Prelude of Bach’s Cello Suite No 1 

 

 



When coming to the end of the passage for the Prelude of Bach’s Cello Suite No 1. Joshua 
Rohde started with his head down, leaning over the cello as he played the series of sixteen note 
arpeggios and jumps. He leaned back slightly during each of the slurred sections indicating 
smoothness rather than the almost aggressive jumps from before. Finally, when he pulled the 
bow for the last chord he leaned out away from the instrument and then back in a circular motion 
leaving his body spaced away from the body of the cello for the final ringing note in the 
cathedral. 

 
Figure 4.2.3: Later Passage of Vivaldi’s Cello Concerto 418 

 
In this later passage from the Vivaldi, Rohde punctuated each quarter note with a small 
movement of the head. As he was not the primary cellist (on the top line) he did not want to draw 
too much attention away. Then, during the rests he froze and kept his body very still. The 
contrast between these periods of silence and punctuated quarters draw contrast in the 
background as the primary cellist has a flowing and fast passage over the top. 
 
When observing Wesley Hall play piano in a style that is looser and more sporadic than his 
formal classical performance, such as a ragtime beat, his hands rise high off the keys in order to 
accentuate the jaunty nature of the piece. In this situation his body stayed still while his hands 
moved more. Isolation of gesture seems to be important to indicate the expression clearly. If it is 
too spread across the body it can become confusing to what is intended. By isolating the motion 
to one location, either arms or torso, it is easier to show specific areas of significance and draw 
the viewer into one style of cueing gestures. 
 

 



4.2.3 Analysis of Recorded Performances 
 
When watching Martha Argerich play Ravel’s Piano Concerto in G Major,  much of her 19

expression throughout this piece is shown in her head and torso. Her hands are very methodical 
and precise, rarely making large gestures in between phrases close together. Her only larger 
gestures are large arcs when she finishes a section of the piece. Her hands remain close to the 
keyboard, as this piece has many fast passages, and move between them efficiently. Her accents 
and energy comes mainly from her head, moving with the beat and marking certain areas as 
unique. 
 
In her first solo section, starting at 0:54 in the video and matching up with rehearsal number 4 in 
the music as seen below in Figure 4.2.4, she starts each passage with her hands close to the keys 
and then lifts off as she reaches peaks of phrases. Specifically her left hand takes a little arc into 
the air after the downstroke final note of the left hand phrases. It can be seen in the second line of 
her solo below the pedaled phrases with the rising phrase with a drop. She moves in an arc from 
the top to the bottom note and then adds an additional flourish to the end of the phrase each time. 
As soon as her solo starts you see her lean in a little bit towards the piano. Adopting a more 
engaged body position as opposed to her more relaxed position at the beginning of the piece with 
the full orchestra. 
 

 
Figure 4.2.4: Rehearsal 4 of Ravel’s Piano Concerto in G Major 

19 https://www.youtube.com/watch?v=cJOW5mlhH_Y&ab_channel=EuroArtsChannel 

 

https://www.youtube.com/watch?v=cJOW5mlhH_Y&ab_channel=EuroArtsChannel


While her arms maintain a clean and normal position for the most of her performance, she still 
exudes expression in the endings and beginnings of phrases with her arms, and the entire time 
with her torso. Creating the difference between and neutral upright positioning and a leaned in 
“engaged” posture can indicate certain sections importance or flow. The position analysis, 
forward kinematics, and path planning for the robot could then be based off the initial link’s 
angled position. This would effectively remove one degree of freedom when planning how the 
arm moves as that position would be “determined.” 
 
While this lean is one part of Martha’s movements, the other main part is her swaying. She 
exemplifies this trait even more in another one of her performances of Shumann’s Piano 
Concerto . This back and forth sway may be difficult to implement into the robot as it would 20

require a large amount of additional kinematic planning to keep the fingers steady while the arm 
moves independently.  
 
When looking at Yeol Eum Son play piano she followed a similar gestural pattern. In her 
performance of Motzart’s Piano Concerto No. 21, K.467  she uses primarily her head to gesture 21

the flow of the passage, keeping the hands and fingers basically set on the keys and not lifting off 
at all. Throughout much of her performance the extraneous motions and gestures are avoided for 
efficiency and expression is added dynamically, melodically, and with small motions of her 
body. 
 
Evgeny Kissin is a classical pianist from Russia, widely known for his virtuosic interpretations 
of Romantic piano repertoire. In this recording , starting at 2:30, he plays Brahms’s Intermezzo 22

in A, Op. 118 No. 2, regarded as one of Brahms’s most beautiful piano works. To analyze his 
gestures throughout this performance, it is important to understand why each of the gestures is 
made. There are, in general, two categories of these movements: 1) for utility to help make 
certain articulations/tone/etc. more effective, and 2) for emotionally expressing the music, 
whether it be to help the performer themselves feel the music more strongly, or to help convey 
such feelings to the audience.  
 
Measure 1, video 2:03 
He begins in a relatively “neutral” position, with a straight back and hands comfortable resting 
on the keyboard. The distance from his chest to the keys is roughly the length of his forearm, so 
his elbows are bent at around at 90-degree angle. This is a common stance for pianists to assume 
when adjusting themselves to the piano bench and preparing to perform.  

20 https://www.youtube.com/watch?v=8Z3LHX38y78&ab_channel=CristianRadu 
21 https://www.youtube.com/watch?v=fNU-XAZjhzA&ab_channel=taky_classic  
22 https://www.youtube.com/watch?v=8Y3MypevjcA  

 

https://www.youtube.com/watch?v=8Z3LHX38y78&ab_channel=CristianRadu
https://www.youtube.com/watch?v=fNU-XAZjhzA&ab_channel=taky_classic
https://www.youtube.com/watch?v=8Y3MypevjcA


 
Fig 4.2.5. Brahms Op.118 Intermezzo No. 2, measures 1-4 

 
Measure 3, video 2:10 
Kissin brings out the broad sweep in the crescendo leading into the third measure, moving his 
torso out and extending his right arm. His motion is directly proportional the volume, as he 
reclaims his “balance” when leaning back in during the subsequent diminuendo.  
 
Measure 8, video 2:30 
Kissin lifts his right hand slightly to accommodate the new phrase beginning on the third beat of 
measure 8. While physically subtle, it brings out a profound change in the sound produced — 
there is a clear break as the main theme is introduced a second time. There is a “breath,” just as a 
vocalist or one playing a wind-instrument would need to breathe before beginning a legato 
phrase. This gesture thus is made not only for an abstract expressive purpose, but to aid in 
achieving the sound Kissin is looking for. 

 
Fig 4.2.6. Brahms Op.118 Intermezzo No. 2, measures 5-9 

 
Measure 19, video 3:08 
Kissin begins circular motions with his torso, as Brahms introduces a continuous 4-3 suspension. 
This leads to other melodic lines, such as those during measure 19, where Kissin increases the 
radius of his circular motions to match the crescendo, bringing the movement to a peak in 
measure 23, alongside the peak of the melody in terms of pitch and volume.  
 

 



 
Fig 4.2.7. Brahms Op.118 Intermezzo No. 2, measures 10-14 

 
It becomes clear how the movements are affecting the performance — some affect sound 
directly, others are purely emotional outlets and seem subconscious. 
 
Stefan Müller and Guerino Mazzola explore the nature of expressive gesture in a more discrete 
and mathematical sense, taking events during a performance to generate a “performance vector 
field” to represent various expressive notions. However, as they acknowledge in their analysis, 
techniques such as the “Chopin Rubato” incorporate a wide variety of factors, including general 
tempo changes, such as an improvised rallentando, along with agogic delays and other 
expressive interpretations, that it becomes too difficult to tie a single expressive feature to a 
single justification.  
 
  

 



4.2.4 Physical Gesture as Discussed with Professor Joshua Rohde 
 
According to Joshua Rohde, music itself is a physical activity that manifests an outward 
expression of inward emotions when playing. It is only natural that these inward emotions or 
feelings in the music itself manifest themselves in an exterior manner. Often these gestures go 
beyond the physical motions required mechanically to create the music, either through an 
instrument or the performers body. Sometimes the physical gesture can relate directly to the 
musical expression such as a sharp bow stroke representing a punch or a strike, allowing it to add 
to the musical story of the piece. Sometimes, however, these extraneous gestures can get in the 
way of the music as it can force bad technique and methods of playing. The choice to make these 
extraneous gestures, however, are more than just what is on the page. It relates to spirit of the 
music, showing the spirit and story of a piece when it may not be fully expressed otherwise. 
 
When choosing to emphasize certain passages or moments in the music a number of factors are 
taken into account. Both the musical background of the piece, based off the performers 
understanding and musical analysis of the piece, and certain tonal and musical aspects. Some key 
factors to consider are those like pitch and height of notes, with higher notes and peaks of 
phrases carrying importance, duration, dynamics, rhythm, and accents in the music itself. Also, 
certain addition gestures can be attached to notes that are outliers to the expected tonality set, 
giving a focus or a drive to these additional moments of color or contrast.  
 
When making these gestures paired with the music, much of the knowledge and understanding 
come through a developed sense of what works and what doesn’t over time while you have 
played. Each instrument and even instrumentalist on the same instrument can express themselves 
in a different way. However, general body language cues are easily read and can be translated 
across many instruments such as a slouched or slumped positioning or a smile. Utilizing these 
attributes allow for easy expression on a universal level and can be built off of to express 
different things through the music. 
 
While gesture is often viewed as a key piece of musical performance and expression it is possible 
to have an expressive performance without any physical gesture outside of required mechanical 
motions. Someone who is blind, has a performer hidden from sight, or is listening to a recording 
can still be moved by music. Therefore, gesture is not needed to complete the experience of a 
piece of music but it can greatly impact it. However, since music is a personification of emotions 
and art its is beneficial for the performer to use whatever capacities, including movement, that 
they have in order to express the music and emotions. While not seeing gesture can still allow 
someone to experience the music fully, lack of gesture, in deadpan or no motion, can negatively 
impact a viewer's experience. There is a balance and a proper level of gesture that benefits the 
performance, with no gesture degrading from the viewing experience and too much possible 

 



messing with the mechanical requirements and perception of the performance as it can be overly 
distracting. 
 
While it is easy for a human to use body language to express themselves, it is difficult to 
replicate these motions in a robotic system. When a robot it moving, sometimes people can place 
similarity to certain body parts onto the robot, humanizing it and anthropomorphizing it in order 
to better understand the system in their mind. When programming motions into a system the goal 
is to move in such a way that similar ideas and associations are formed in multiple viewers, 
allowing replication and repetition of certain emotional gestures. This is the hardest part of 
making a robotic system expressive as you are working with a single factor, the motion of a 
single limb. When a performer functions they are using their multiple limbs, body, face, or other 
extraneous factors such as clothing in order to augment their expression. According to Professor 
Rohde it is hard to replicate or describe definitively as it is an innate or observable known 
ingrained in humans through social interactions. 
 
When making gesture, while humans can utilize their entire body to add to their performance, it 
is actually beneficial to isolate these gestures to specific locations allowing for a clearer transfer 
of messages and what the performer is trying to portray. Isolating this motion cuts out extra 
movement that may not necessarily mean anything and draws the focus to the specific location 
that is giving or guiding the expression. However, if a performer plans it out and coordinates it, 
they can use multiple body parts to indicate gesture, using the combination to their advantage, 
However, it must be deliberate and used together instead of random or unique movement in 
different locations. Another benefit a human performer has over a robotic arm is that they can 
vary the location of their expression throughout a performance, using their face for one thing 
during one passage and their torso in another, while a robot can only use the motion of its limb in 
order to indicate these gestures and expressions. 
  

 



4.2.5 Physical Gesture as Discussed with Organist Wesley Hall 
 
Wesley Hall holds a very different view of expression in performance than some other 
instrumentalists. To him, music is sound that is organized by a human and intended to be music. 
This stems heavily from his training as an organist. When playing the organ, every extraneous 
motion is wasteful, detracting from the technique and process required to create the music. When 
moving across a piano there are motions of sometimes multiple feet to cover and if there is extra 
motion in these situations your accuracy and precision suffers. These gestural aspects are just 
how people perceive the required mechanics of playing the instrument. When playing the piano 
it is additional mechanical requirements that often drive the differences in gestures. You must 
use the weight of your arm, the positioning and motion of your wrists, and the fluidity of your 
hands in order to create and modify the sound of the hammers on the strings. While an audience 
may perceive this as additional and added gesture, it is in fact just the motion required to create 
the correct sonic signature. To him, since there are ways to input variables digitally drawn into 
midi that will output in the exact same way as a quantized performance, physical performance 
itself is unimportant to the creation of music. He still believes that it is possible for these motions 
to augment a performance but only if it is worked up to so that it doesn't take away from the 
sonic performance.  
 
When looking at how an organist moves during their performance, a lateral movement vs an 
arced one can be determined by the type of organ. These motions are efficient and only move in 
the direction they need to in order to cover the distance. These motions are all introduced purely 
in order to create the music itself and not to add expression to the piece. It is possible that this 
motion can show the audience more of what is happening than if they had no visual, like the 
experience of listening to a recording. In addition, Wesley is a trained Harpsichord player. When 
playing harpsichord you must be light and still, as adding any additional arm weight can have a 
negative effect on the resulting sound. 
 
 
 
  

 



4.3. Software Accuracy 

A major component of the entire musical analysis pipeline is the audio processing engine. It is 
also a potential source of error and can skew the results of our robotic system. The engine itself 
is trained using audio and MIDI data, consisting of changes in pitch, volume, and tone. In order 
for the project to fulfill objective III, this system must be able to properly recognize features in 
the audio and tell the robot how to interpret them.  
 
We collected training data in 30-second chunks, each of which consisted of an independent 
musical melody. These were recorded using a Blue Snowball condenser microphone and 
corresponding MIDI data was recorded on an M-Audio Keystation-49. The audio and MIDI 
information were gathered simultaneously.  
 
The audio input was all produced by a vocalist, who sang while simultaneously playing the same 
melody on the MIDI keyboard. Singing is not as discrete and strict as other means  of producing 
music, and thus was used for our audio samples. The singer could change their vowel shape or 
volume very easily to reflect expressive changes in the music. And these changes were clear such 
that the layman could understand them, for example changing from an “AH” sound to an “OOH” 
sound. 
 
Changes in pitch are the most obvious and easiest to interpret in an audio signal. See fig 4.3.1 for 
a spectrogram, in which there are 5 distinct pitches played one at a time. The entire series of 
frequencies shifts up for higher pitches and down for lower pitches at each moment in time. On 
the other hand, some changes are more subtle. See fig 4.3.2 for a spectrogram of changing vowel 
shapes. The pitch does not change, but the structure of the overtones does. This kind of analysis 
becomes more complicated and is where the RNN comes into play. 
 

 
Fig 4.3.1: Spectrogram for Changes in Pitch 

 
Fig 4.3.2: Spectrogram for Changes in Vowel 

 



 
We ran multiple trials with varying configurations and parameter values for the RNN. First, we 
began by modifying the number of epochs the fitting algorithm would use for training the 
network. This number represents how many times the entire dataset is iterated when training. See 
table 4.3.1 for a list of trials and accuracies for various numbers of epochs.  
 

Table 4.3.1: Accuracies for Number of Epochs 
 

Number of Epochs Model Accuracy 

epochs = 3 Training: 0.3792 
Testing: 0.5816 

epochs = 4 Training: 0.4307 
Testing: 0.5707 

epochs = 5 Training: 0.4587 
Testing: 0.6534 (Best) 

epochs = 6 Training: 0.4607 
Testing: 0.5991 

epochs = 10 Training: 0.4738 
Testing: 0.5818 

epochs = 20 Training: 0.5598 
Testing: 0.4185 

epochs = 30 Training: 0.6070 
Testing: 0.4024 

 
 

 
 
We also experimented with various architectures to process the audio data. Some of these 
included adding extra layers or filters — each emphasized a different kind of data processing. 
For example, adding more dense layers would make the network better at understanding the 
nature of overtones in the frequencies at a given instant in time, but may introduce some 
overfitting. For all code samples below, the following environment in Python was used:  
 
 

 



from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Dropout, LSTM, TimeDistributed 
 
model = Sequential() 
 
First, we considered the simple classifier for determining pitch. We first tried a simple model for 
the network, using a single LSTM layer and a single dense layer. 
  
model.add(LSTM(255, input_shape=input_shape, return_sequences=True)) 
model.add(TimeDistributed(Dense(30, activation='softmax'))) 

 
Training accuracy: 0.5315 
Testing accuracy: 0.5817 
 
 
Then we start over, but add more dense layers to the configuration: 
 
model.add(LSTM(255, input_shape=input_shape, return_sequences=True)) 
model.add(TimeDistributed(Dense(30)))   
model.add(TimeDistributed(Dense(30))) 
model.add(TimeDistributed(Dense(30, activation='softmax'))) 

 
Training accuracy: 0.5956 
Testing accuracy: 0.5247 
 
 
With more dense layers, there is a slight amount of overfitting, as the training accuracy is a bit 
higher than the testing accuracy. 
 
With more dimensions between the dense cells, there is even more overfitting: 
 
model.add(LSTM(255, input_shape=input_shape, return_sequences=True)) 
model.add(TimeDistributed(Dense(255)))   
model.add(TimeDistributed(Dense(100))) 
model.add(TimeDistributed(Dense(30, activation='softmax'))) 

 
Training accuracy: 0.5495 
Testing accuracy: 0.4533 
 
We then tried adding more LSTM layers rather than dense layers 
 
model.add(LSTM(255, input_shape=input_shape, return_sequences=True)) 

 



model.add(LSTM(30, input_shape=input_shape, return_sequences=True)) 
model.add(TimeDistributed(Dense(30, activation='softmax'))) 

 
Training accuracy: 0.5315 
Testing accuracy: 0.5817 
With a very simple model, with only two LSTM layers and one dense layer, the results are the 
most accurate. Due to the time-dependent nature of the samples, the LSTM layers are able to 
pick up on features that the dense layers cannot. 
 
With the same model used for the regression analysis, the results were similar. Multiple 
regressions were used: one for volume, which was trained using the velocities of the MIDI notes 
played. Another was trained using the data collected from the MIDI mod wheel, and was 
associated with the vowel shape of the audio input. This vowel shape was performed as a smooth 
gradient between the vowel “OOH” and “AAH” with a clear and consistent shape to the mouth 
and lips for each. These values were both bounded to 0-127, with 0 being mapped to a very 
closed “OOH” sound and 127 being mapped to a very open and tall “AAH” sound. Values 
produced by the regression that fell outside of these bounds were clipped (i.e. anything less than 
zero would become zero) to ensure the range would remain consistent. The regression for 
volume was less accurate, with an overall testing accuracy of 46% for the primary dataset, using 
one minus the normalized root-mean-square deviation to calculate accuracy. The same data 
yielded 68% accuracy for the vowel shape detection regression. The measurement of volume was 
harder to determine from the spectral information alone, as the only factor that changed was the 
amplitude. The actual nature of the overtones did not change much. On the other hand, the vowel 
shape led to clear changes in the overtone structure.  
 
 
 
 

  

 



5. Conclusion & Future Recommendations 
Music, while it is considered by some to be a human creation, can be replicated and presented by 
autonomous systems. Humanistic and musical characteristics can be analyzed and transferred to 
robotic systems in multiple ways, both sonicly and physically. There are many small nuances 
that can affect a performance in various ways. We successfully built the software and hardware 
for the robot to play piano. Despite certain limitations of its mechanisms, the system was able to 
produce an expressive musical performance based on audio input.  
 
For further work, it would be great to explore a means to make the finger actuation quicker. 
Some pieces of piano repertoire, which would be fascinating to study, demand a rather quick 
tempo and complicated changes in hand and finger placement. Many works by romantic 
composers, such as Liszt or Chopin, are quite expressive but also demand this caliber of 
precision and timing. This would allow for more quick and complex melodic lines to be played. 
Additionally, it would be great to collect more data for training the audio processing neural 
network. More factors of the music, such as tempo, timbre, etc. would be possible to explore 
given a larger dataset, with the inclusion of more samples and more features.  
 
Future research in the areas of human robotic interaction can explore not only the gesture of a 
robotic performer but how a robotic performer can interpret and react to a human co-performer 
or conductor’s motions. Looking deeper into how humans guide and indicate their desired 
gestural output and how they vary from person to person. Given more time, and deeper analysis 
through motion capture technology, these gestures can not only be further analyzed but 
quantitatively analyzed. 
 
 

 

 

 

  

 



Appendix A: Robot Controller Source Code 

Source for controller.py 

from .arm_controller import ArmController 
from .hand_controller import HandController 
 

from cmd import Cmd 
 

import time 
import json 
import threading 
 

NOTES_BLACK = 

[126,None,123,121,None,118,116,114,None,111,109,None,106,104,102,None,99,97,None,94,92,90,None,87,85,Non
e,82,80,78,None,75,73,None,70,68,66,None,63,61,None,58,56,54,None,51,49,None,46,44,42,None,39,37,None,34
,32,30,None,27,25,None,22] 
 

def get_white_notes(): 
result = [] 

for i in range(127): 
if i not in NOTES_BLACK: 

result.append(i) 

 

return result 
 

NOTES_WHITE = get_white_notes() 

 

 

finger_motion_full_delay = .300 # milliseconds 
min_note_duration = .100 
 

class MasterController(): 
def __init__(self,hand_serial,hand_baud,arm_ip,arm_port): 

 

self.hand = HandController(hand_serial,hand_baud) 

# self.hand.listen(pt) 

 

self.arm = ArmController(arm_ip,arm_port) 

self.arm.connect() 

 

self.thread = threading.Thread(target=self.loop) 

self.action_queue = [] 

self.finger_states = [False,False,False,False,False] 
 

def play_note_simple(self,note): 
finger = 0 
state = True 
self.hand.cmd_raw(finger,state) 

self.arm.move_j([200,0,100]) 
 

 

 



def play_stream(self,stream): 
self.stream = stream 

self.start_thread() 

 

 

def start_thread(self): 
self.thread.start() 

 

def execute_action(self,action): 
 

 

print('executing',action) 
 

 

 

if action.type == 'noop': 
pass 

 

if action.type == 'move': 
action.is_done = self.arm.move_c_auto(action.args[0:3]).is_complete 

 

if action.type == 'finger_down': 
self.finger_set(action.args[0],True) 

 

if action.type == 'finger_up_all': 
self.fingers_reset() 

 

 

def execute_action_queue(self,time=0): 
while len(self.action_queue) > 0 and self.action_queue[0].is_ready(time): 

print('Executing at t='+str(time)) 
self.execute_action(self.action_queue.pop(0)) 

 

 

def add_action(self,action): 
self.action_queue.append(action) 

if action.delay == 'wait_prev': 
action.delay = 'wait_cond' 
action.ready_condition = self.action_queue[-2] 

print('wait_cond',self.action_queue,self.action_queue[-2],self.action_queue[-2].is_done) 
 

def arm_pos_for_range(self,r): 
if r.type == HandRange.TYPE_BLACK: 

index = NOTES_BLACK.index(r.start.pitch) - 38 
return [10 + index * 23.5, 40, -70] 

 

index = NOTES_WHITE.index(r.start.pitch) - 44 
return [index * 23.5,0,-85] 

 

def loop(self): 
 

window_size = 5 
 

predelay = 0 
 

 



current_range = HandRange.range_from_notes(self.stream.notes) 

print('range start',current_range.start) 
 

self.arm.move_j(self.arm_pos_for_range(current_range)) 

time.sleep(1) 
 

prev_note = None 
 

start = time.time() 

 

 

while True: 
now = time.time() - start - predelay 

focus = now + window_size 

 

self.execute_action_queue(now) 

 

 

current_stream = self.stream.notes_in_window(now,focus) 

next_note = current_stream.next_unprocessed() 

 

 

 

 

if not next_note: 
if len(self.stream.notes_after(now).notes) > 0: 

continue 

break 

 

time_until_note = next_note.time - now 

 

next_note.processed = True 
 

 

if next_note in current_range: 
# Move the right finger at the right predelay 

 

inter_delay = 0 
if prev_note and next_note.pitch == prev_note.pitch: 

inter_delay = 0.5 
 

 

self.add_action(RobotAction('noop',time=now,delay=time_until_note-inter_delay)) 
self.add_action(RobotAction('finger_up_all')) 

self.add_action(RobotAction('noop',time=next_note.time-inter_delay,delay=inter_delay)) 

self.add_action(RobotAction('finger_down',args=[current_range.get_index(next_note)])) 

self.add_action(RobotAction('noop',time=next_note.time,delay=finger_motion_full_delay)) 
 

print('action simple',time_until_note) 
 

else: 
 

 



new_range = 

HandRange.range_from_notes(current_stream.notes_starting_at(next_note).notes) 

 

if next_note not in new_range: 
print('not in new range') 
print(new_range.start.pitch,[n.pitch for n in 

current_stream.notes],now,next_note.pitch) 

# We are looking too far ahead 

continue 

 

 

estimated_delay = 0 
 

# Finger must go up from current position, and down at new position 

estimated_delay += finger_motion_full_delay 

estimated_delay += finger_motion_full_delay 

 

new_pos = self.arm_pos_for_range(new_range) # BIG TODO WTF 
 

arm_delay = self.arm.time_move_j(new_pos,250) 
 

# How long will the arm take to move? 

estimated_delay += arm_delay 

 

 

 

 

# It takes too long to move to the next note - we should delay 

everything 

if estimated_delay > time_until_note: 
predelay += estimated_delay - time_until_note + 

min_note_duration 

# self.stream.add_delay(estimated_delay - time_until_note + 

min_note_duration) 

self.add_action(RobotAction('noop',time=next_note.time-estimated_delay-min_note_duration,delay=min_note_
duration)) 

else: 

self.add_action(RobotAction('noop',time=now,delay=time_until_note-estimated_delay)) 
 

self.add_action(RobotAction('finger_up_all')) 

self.add_action(RobotAction('noop',time=next_note.time-estimated_delay,delay=finger_motion_full_delay)) 

self.add_action(RobotAction('move',args=new_pos))#+[next_note.velocity/127.0])) 

self.add_action(RobotAction('noop',time=next_note.time-estimated_delay+finger_motion_full_delay,delay='w
ait_prev'))#delay=arm_delay)) 

self.add_action(RobotAction('finger_down',args=[new_range.get_index(next_note)])) 

self.add_action(RobotAction('noop',time=next_note.time-finger_motion_full_delay,delay=finger_motion_full
_delay)) 

 

print('action big',estimated_delay,new_pos) 

 



print('gonna play finger',new_range.get_index(next_note)) 
 

 

current_range = new_range 

print('range start',current_range.start) 
 

prev_note = next_note 

 

def arm_move_j(self,pos): 
self.arm.move_j(pos) 

 

def finger_set(self,finger,state): 
self.finger_states[finger] = state 

self.hand.cmd_raw(finger,state) 

# self.arm.move_j([200,0,100]) 

def fingers_reset(self): 
for i in range(len(self.finger_states)): 

if self.finger_states[i]: 
self.finger_set(i,False) 

 

class RobotAction(object): 
 

 

def __init__(self, type, **kwargs): 
self.type = type 

self.time = kwargs.get('time',None) 
self.args = kwargs.get('args',None) 
self.delay = kwargs.get('delay',None) 
self.is_done = kwargs.get('is_done',None) 
self.prev_action = kwargs.get('prev_action',None) 
self.ready_condition = kwargs.get('ready_condition',None) 
self.delay_start = 1e12 
self.arm_cmd = None 

 

def __str__(self): 
s = 'RobotAction '+self.type+' ' 
if self.args: 

if list(self.args): 
s += ' '.join([str(x) for x in list(self.args)]) +' ' 

 

if hasattr(self,'time'): 
s += 'time='+str(self.time) + ' ' 

 

if hasattr(self,'delay'): 
s += 'delay='+str(self.delay) + ' ' 

return s 
 

 

def is_ready(self,time): 
 

ready = True 
 

if self.type == 'noop': 
if self.delay == 'wait_cond': 

if callable(self.ready_condition): 
return self.ready_condition() 

 



 

if isinstance(self.ready_condition,RobotAction): 
return self.ready_condition.is_done() 

 

return False 
 

return time > self.time + self.delay 
 

if self.type == 'waitfor': 
return self.ready_condition() 

 

return ready 
 

 

 

if hasattr(self,'ready_condition') and self.ready_condition != None: 
ready = self.ready_condition() 

if not ready: 
return False 

self.delay_start = time 

self.ready_condition = None 
 

if hasattr(self,'prev_action') and self.prev_action != None: 
ready = self.prev_action.is_ready() 

if not ready: 
return False 

self.delay_start = time 

self.prev_action = None 
 

# DELAY after above conditions met 

if hasattr(self,'delay') and self.delay != None: 
ready = time - self.delay_start > self.delay 

 

# FIXED time 

if hasattr(self,'time') and self.time != None: 
ready = ready or self.time > time 

 

 

 

 

 

return ready 
 

 

 

PITCH_MAX = 90 
PITCH_MIN = 30 
 

class NoteStream(): 
 

@classmethod 

def load_file(self,filename): 
with open(filename,'r') as f: 

notes = [] 

line = f.readline() 

while line != '': 

 



data = json.loads(line) 

notes.append(Note(data['note'],data['time'])) 
line = f.readline() 

 

return NoteStream(notes) 
 

def __init__(self, notes=[]): 
self.notes = [] 

for n in notes: 
self.add_note(n) 

 

def add_note(self, note): 
self.notes.append(note) 

self.notes.sort(key=lambda n: n.time) 
 

def notes_in_window(self, start, end): 
result = [] 

for n in self.notes: 
if n.time > start and n.time < end: 

result.append(n) 

 

return NoteStream(result) 
 

def notes_after(self, time): 
result = [] 

for n in self.notes: 
if n.time > time: 

result.append(n) 

 

return NoteStream(result) 
 

def notes_starting_at(self, note): 
result = [] 

for n in self.notes: 
if n.time >= note.time: 

result.append(n) 

 

return NoteStream(result) 
 

 

def next_unprocessed(self): 
notes = [n for n in self.notes if not n.processed] 
if len(notes) == 0: 

return None 
return notes[0] 

 

def add_delay(self,delay): 
for n in self.notes: 

n.time += delay 

 

def multiply_time(self,mul): 
for n in self.notes: 

n.time *= mul 

 

def min_pitch(self): 
val = PITCH_MAX 

 



for n in self.notes: 
val = min(val,n.pitch) 

return val 
 

def max_pitch(self): 
val = PITCH_MIN 

for n in self.notes: 
val = max(val,n.pitch) 

return val 
 

 

 

class HandRange(): 
TYPE_BLACK = "black" 
TYPE_WHITE = "white" 

 

def __init__(self, start): 
self.start = start 

self.type = self.note_type(start) 

 

@classmethod 

def range_from_notes(cls,notes): 
if len(notes) == 1: 

return HandRange(notes[0]) 
 

subarr = notes[:-1] 
last = notes[-1] 
r = cls.range_from_notes(subarr) 

r2 = HandRange(last) 

 

if subarr in r2: 
return r2 

 

return r 
 

 

def __contains__(self,note): 
if isinstance(note,list): 

return self.are_inside(note) 
 

return self.is_inside(note) 
 

def get_index(self,note): 
if note not in self: return None 
 

try: 
result = self.get_span().index(note.pitch) 

return result 
except: 

return None 
 

def is_inside(self,note): 
if self.type != self.note_type(note): 

return False 
 

return note.pitch in self.get_span() 

 



 

def are_inside(self,notes): 
for n  in notes: 

if not self.is_inside(n): 
return False 

return True 
 

def get_span(self,size=5): 
space = self.get_space() 

start_index = space.index(self.start.pitch) 

 

return space[start_index:start_index + size] 
 

 

def get_space(self): 
 

if self.type == self.TYPE_BLACK: 
return NOTES_BLACK 

return NOTES_WHITE 
 

def note_type(self,note): 
if note.pitch in NOTES_BLACK: 

return self.TYPE_BLACK 
return self.TYPE_WHITE 

 

 

 

 

class Note(): 
def __init__(self, pitch, time, velocity=100): 

self.pitch = pitch 

self.time = time 

self.processed = False 
self.velocity = velocity 

 

 

 

def pt(data): 
print(str(data) + " -- " + ", ".join([str(a) for a in data]))  

 

  

class ControllerPrompt(Cmd): 
prompt = 'ROBOT> ' 

 

 

def set_controller(self,controller): 
self.controller = controller 

 

def do_exit(self, inp): 
print('Exiting') 
return True 

 

def do_armmove(self, inp): 
tok = inp.split(' ') 
if len(tok) == 4: 

print('Need exactly 3 arguments for position X, Y, and Z') 

 



return False 
 

pos = [float(n) for n in tok] 
self.controller.arm_move_j(pos) 

 

def do_armmarc(self, inp): 
tok = inp.split(' ') 
if len(tok) == 7: 

print('Need exactly 6 arguments for 2 positions, each X, Y, and Z') 
return False 

 

pos = [float(n) for n in tok] 
self.controller.arm_move_c(pos[1:4],pos[5:7]) 

 

 

def do_armzero(self, inp): 
self.controller.arm.move_zero() 

 

def do_fingerdown(self, inp): 
finger = int(inp) 

self.controller.finger_set(finger,True) 
 

def do_fingerup(self, inp): 
finger = int(inp) 

self.controller.finger_set(finger,False) 
 

do_EOF = do_exit 

 

 

 

 

cmd1 = 0 
cmd2 = 0 
def loop(): 

global cmd1 
global cmd2 
c = 1 
d = 1e9 
e = 1e9 
start = time.time() 

while True: 
now = time.time() - start 

if c == 1: 
cmd1 = controller.arm.move_j([0,0,0]) 
c = 2 

 

if cmd1 != 0 and cmd1.complete and c == 2: 
controller.finger_set(0,True) 
c = 3 

 

if c == 3: 
time.sleep(0.5) 
controller.finger_set(0,False) 
c = 4 
time.sleep(0.1) # finger motion full delay 

 

 



if c == 4: 
d = now 

cmd2 = controller.arm.move_j([400,0,0]) 
e = time.time()-start 

c = 5 
 

if cmd2 != 0 and cmd2.complete and c == 5: 
controller.finger_set(4,True) 
time.sleep(0.5) 
controller.finger_set(4,False) 
c = 6 

 

if now - d >= 1.6: 
d = 1e9 

 

if now - e >= 1.6: 
e = 1e9 

 

 

 
Source for arm_controller.py 

 

import socket 
import time 
import threading 
import fcntl, os 
import errno 
import math 
 

SPEED_DEFAULT = 5000 
DELAY_NETWORK = 0.1 
 

class ArmController(): 
 

def __init__(self, host='localhost', port=3000): 
self.host = host 

self.port = port 

self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

self.sock.settimeout(20) 
 

fcntl.fcntl(self.sock, fcntl.F_SETFL, os.O_NONBLOCK) 

 

self.seq_num = 1 
self.commands = [] 

 

self.current_pos = None 
 

def connect(self): 
server_address = (self.host, self.port) 

print ('Connecting on %s port %s' % server_address) 
 

self.sock.connect(server_address) 

 

print('Connected!') 

 



print('') 
 

threading.Thread(target=self.listen).start() 

 

def listen(self): 
while True: 

 

try: 
msg = self.sock.recv(4) 

except socket.error as e: 
err = e.args[0] 
if err == errno.EAGAIN or err == errno.EWOULDBLOCK: 

time.sleep(1) 
print('No data available') 
continue 

else: 
# a "real" error occurred 

print(e) 

return 

else: 
# got a message, do something :) 

print("GOT",msg) 
seq_num = int(msg[0]) - 48 
print("GOOTTA",seq_num) 

 

for c in self.commands: 
if c.seq_num == seq_num: 

c.complete = True 
self.current_pos = c.args[0:3] 

 

 

def move_default(): 
pass 

 

def move_zero(self): 
print('CMD: Reset zeros') 
return self.cmd_raw(2) 

 

def move_j(self,pos,speed=-1): 
print('CMD: MoveJ') 
if speed < 0: speed = SPEED_DEFAULT 

 

self.bounds_check(pos) 

 

return self.cmd_raw(1,pos+[speed]) 
 

def move_c(self,pos_c,pos_d,speed=-1): 
print('CMD: MoveC') 
if speed < 0: speed = SPEED_DEFAULT 

 

self.bounds_check(pos_c) 

self.bounds_check(pos_d) 

 

return self.cmd_raw(4,pos_c+pos_d+[speed]) 
 

def move_c_auto(self,pos,speed=-1): 

 



if not self.current_pos: 
raise Exception("Cannot move_c_auto without knowing current position") 

 

if dist(pos,self.current_pos) < 15: 
return self.move_j(pos,speed) 

 

pos_c = [ 

(self.current_pos[0] + pos[0])/2, 
(self.current_pos[1] + pos[1])/2, 
pos[2]+abs(self.current_pos[0] - pos[0])/2 

] 

print('auto circle',self.current_pos,pos_c,pos) 
return self.move_c(pos_c,pos,speed) 

 

def move_c_h(self,pos,height,speed=-1): 
if not self.current_pos: 

raise Exception("Cannot move_c_auto without knowing current position") 
 

 

pos_c = [ 

(self.current_pos[0] + pos[0])/2, 
(self.current_pos[1] + pos[1])/2, 
pos[2]+ abs(self.current_pos[0] - pos[0]) * height/2 

] 

return self.move_c(pos_c,pos,speed) 
 

def time_move_j(self,pos,speed): 
if not self.current_pos: 

return None 
 

cp = self.current_pos 

np = pos 

dx = cp[0]-np[0] 
dy = cp[1]-np[1] 
dz = cp[2]-np[2] 

 

return math.sqrt(dx*dx + dy*dy + dz*dz) / speed + DELAY_NETWORK  # + 1 for network 
delay 

 

 

def bounds_check(self,pos): 
if pos[0] < -200 or pos[0] > 600: 

raise Exception('Safety warning: Position out of bounds') 
if pos[1] < -200 or pos[1] > 100: 

raise Exception('Safety warning: Position out of bounds') 
if pos[2] < -100 or pos[2] > 100: 

raise Exception('Safety warning: Position out of bounds') 
 

def cmd_raw(self,cmd,args=[]): 
payload = " ".join([str(cmd),str(self.seq_num)] + [str(a) for a in args] + ["#"]) 

 

 

self.sock.send(bytes(payload,"utf-8")) 
 

print('Sending command type = '+str(cmd)+' with payload = '+payload) 
 

 



 

command = ArmCommand(self.seq_num,args) 

self.commands.append(command) 

 

self.seq_num = (self.seq_num + 1) % 10 
 

return command 
 

def disconnect(self): 
self.sock.close() 

 

def dist(p1,p2): 
d0 = p1[0] - p2[0] 
d1 = p1[1] - p2[1] 
d2 = p1[2] - p2[2] 

 

return math.sqrt(d0*d0 + d1*d1 + d2*d2) 
 

class ArmCommand(): 
def __init__(self,seq_num,args): 

self.complete = False 
self.seq_num = seq_num 

self.args = args 

 

def is_complete(self): 
return self.complete 

 

 

Source for hand_controller.py 

import serial 
import time 
import threading 
 

class HandController(): 
    def __init__(self, port, baud=9600): 
        self.port = port 

        self.baud = baud 

        self.arduino = serial.Serial(port,9600,timeout=5) 
  

        time.sleep(2)  # Must wait for setup to complete 
 

 

    def cmd_raw(self,finger,state): 
  

        if finger < 0 or finger > 4: 
            raise Exception("Invalid finger ID: "+str(finger)) 
 

        finger_byte = finger 

        state_byte = 1 if state else 0 
 

        cmd_string = chr(finger_byte+1) + chr(state_byte+1) 
 

        print(", ".join([str(a) for a in cmd_string])) 
 

        self.arduino.write(cmd_string.encode()) 

 



 

        print(cmd_string.encode()) 

 

        time.sleep(0.01) 
 

    def force_relax_all(self): 
        self.hand.cmd_raw(0,False) 
        self.hand.cmd_raw(1,False) 
        self.hand.cmd_raw(2,False) 
        self.hand.cmd_raw(3,False) 
        self.hand.cmd_raw(4,False) 
 

 

    def listen(self,callback): 
        self.listen_thread = threading.Thread(target=self.read, args=(callback,)) 

        self.listen_thread.start() 

 

    def read(self,callback,n=-1): 
        c = 0 
        while True: 
            line = self.arduino.readline() 

            callback(line) 

            time.sleep(0.01) 
            c = c + 1 
            if c >= n and n > 0: 
                break  

 

 

 

 

 

 

  

 



Appendix B: Source Code for Auditory Analysis 

Source for load_sample.py 

import matplotlib 
matplotlib.use('Agg') 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.fftpack import fft 
from scipy.io import wavfile 
import json  
import tensorflow as tf 
import math 
 

 

BLOCK_SIZE = 400 
 

midi_min = 60 
midi_max = 90 
midi_span = midi_max - midi_min 

 

def midi_sample_make(note,vel): 
    note = int(note) 

    arr = np.zeros(midi_span) 

    if note - midi_min < 0: 
        return arr 
 

    arr[note - midi_min] = vel 

    return arr 
 

def load(sample_id): 
 

    fs, data = wavfile.read(sample_id+'.wav') # load the data 
    b = [(e/2**8.)*2-1 for e in data] # normalized on [-1,1) 
 

 

 

    freq_boxes = [] 

 

    sample_step = 10 
    sample_rate = 8000 
    NFFT = 512 
    duration = len(b) / sample_rate # seconds 
    window = np.hanning(NFFT) 

 

    for i in range(0,len(b)-NFFT,sample_step): 
        block = b[i:i+NFFT] 

        block = np.multiply(block,window) 

        freq = fft(block) 

        freq = freq[:(math.floor(len(freq)/2))] 
        freq = np.real(freq) 

 



        freq_boxes.append(freq) 

  

    # Save the spectrogram for confirmation 
    plt.specgram(b,NFFT=512, Fs=2, Fc=0) 
    plt.savefig(sample_id+'-specgram.png') 
 

    midi_samples = [] 

    midi_mod = [] 

    try: 
        with open(sample_id+'.log','r') as f: 
            line = f.readline() 

            time = 0 
            while line != '': 
  

                data = json.loads(line)  

                if data['velocity'] != 0: 
                    while time < data['time']: 
                        time += 1./sample_rate * sample_step 
                        midi_samples.append(midi_sample_make(data['note'],data['velocity'])) 
                        midi_mod.append(data.get('mod',0)) 
  

                line = f.readline() 

 

    except FileNotFoundError: 
        result = { 

            'x':freq_boxes 
        } 

        result['blocks'] = blockize(result,BLOCK_SIZE) 
        return result 
 

    n_input_total = len(freq_boxes) 

    n_output_total = len(midi_samples) 

 

    n_total = min(n_input_total,n_output_total) 

 

    # n_input_train = math.floor(n_total*0.7) 
    # n_output_train = math.floor(n_total*0.7) 
 

 

 

    mod_max = np.max(midi_mod[0:n_total]) 
 

    result = { 

        'x':freq_boxes[0:n_total], 
        'y':[tf.keras.utils.to_categorical(np.argmax(m),30) for m in midi_samples[0:n_total]], 
        'y2':[[x/mod_max] for x in midi_mod[0:n_total]] 
    } 

    result['blocks'] = blockize(result,BLOCK_SIZE) 
    return result 
 

 

def blockize(obj,blocksize): 
    result = {} 

 

    for i in obj: 
        arr = np.array(obj[i]) 

 



        result[i] = np.array_split(arr,len(arr)/blocksize+1) 
 

    return result 
 

 

 

Source for train.py 

 

#!/usr/bin/env python 

# coding: utf-8 

 

SAMPLES_TRAIN = ['r110','r112','r113','r114','r115','r116','r117','r118','r119','r120']; 
SAMPLES_TEST = ['r111']; 
MODEL_ID = 'm005'; 
 

 

import numpy as np 
import tensorflow as tf 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Dropout, LSTM, CuDNNLSTM, TimeDistributed, Activation 
from tensorflow.keras import backend as K 
from tempfile import TemporaryFile 
 

import load_sample 
 

 

 

def zeropad(input,size): 
    x = input['x'] 
    y = input['y'] 
    result = {} 

    result['x'] = np.pad(x,((0,size-len(x)),(0,0)),'constant') 
    result['y'] = np.pad(y,((0,size-len(y)),(0,0)),'constant') 
    return result 
 

samples_train = [load_sample.load(s) for s in SAMPLES_TRAIN] 
samples_test = [load_sample.load(s) for s in SAMPLES_TEST] 
 

# Maximum size for all samples 

max_size = max([len(s['x']) for s in (samples_train+samples_test)]) 
 

samples_train = [zeropad(s,max_size) for s in samples_train] 
samples_test = [zeropad(s,max_size) for s in samples_test] 
 

 

tf.reset_default_graph() 

K.clear_session() 

 

#np.array([[next(([i] for i, x in enumerate(m) if x), None) for m in midi_samples[20000:23657]]]) 

 

# [samples, time steps, features] 

 

x_train = np.array([s['x'] for s in samples_train]) 
y_train = np.array([s['y'] for s in samples_train]) 
 

 



x_test = np.array([s['x'] for s in samples_test]) 
y_test = np.array([s['y'] for s in samples_test]) 
 

 

 

print('pt',x_train.shape,x_test.shape,y_train.shape,y_test.shape) 
input_shape = (None,x_train.shape[2]) 
 

model = Sequential() 

model.add(CuDNNLSTM(255, input_shape=input_shape, return_sequences=True)) 
model.add(CuDNNLSTM(30, input_shape=input_shape, return_sequences=True)) 
model.add(TimeDistributed(Dense(30, activation='softmax'))) 
 

 

opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6) 
print(model.summary())  

model.compile( 

    loss='categorical_crossentropy', 
    optimizer=opt, 

    metrics=['categorical_accuracy'], 
) 

 

 

print('done compiling') 
print(model.fit(x_train, 

          y_train, 

          verbose=2, 
          epochs=5)) 
 

print('done fitting') 
print(model.evaluate(x_test,y_test)) 

print('done evaluating') 
 

model.save(MODEL_ID+'.h5') 
 

 

 


