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Abstract

An algebra over a field (simply “algebra” for short) is an algebraic structure con-
sisting of a vector space augmented with a vector multiplication operation such
that vector addition and vector multiplication form a ring and scalar multiplica-
tion commutes with vector multiplication. Algebras are well behaved and have
notions of dimension, basis, subalgebras, algebra ideals, algebra homomorphisms,
and quotient algebras largely analogous to those of vector spaces or rings.

Algebras occur often in mathematics, for example the set of all n×n matrices
valued in a field k form an algebra Mn(k). We investigate the subalgebras of
Mn(k) and in particular which integers occur as dimensions of subalgebras and
the number of dimensions of subalgebras for a given Mn(k). We give a description
of the dimensions of simple, nilpotent, and semisimple matrix subalgebras along
with several sequences that represent various properties of matrix subalgebras.
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Chapter 1

Introduction

1.1 Vector Spaces and Algebras

Recall that a vector space V over a field k is an abelian group together with
a binary operation k × V → V called scalar multiplication that obeys certain
axioms. If we write V additively we can express the vector space axioms as:

∀a, b ∈ k u, v ∈ V

1. a(bv) = (ab)v

2. a(u+ v) = au+ av

3. (a+ b)v = av + bv

4. 1kv = v

Vector spaces are natural structures to work with due to their ubiquity and
convenient properties. Often when we work with a vector space we find that
the underlying concept, be it a vector space of functions or a vector space of
matrices, also carries a sensible ring structure–we can multiply functions and
we certainly take matrix products. We note that in both cases the vector space
structure and the ring structure seem compatible in some sense, we know that
the addition operations align and that the scalar product interacts with the ring
product in a sensible way. We call these vector space / ring objects algebras, or
more properly, algebras over a field.

Definition 1.1. An (associative) algebra over a field k is a k-vector space A
equipped with an additional binary operation × : A × A → A such that × is
associative, left and right distributive, and we have (xa)(yb) = (xy)ab for all
x, y ∈ k and a, b ∈ A.

We will also refer to algebras over a field k as k-algebras, following the
convention for vector spaces.

Algebras are very well-behaved structures and have sensible notions of subal-
gebras, ideals, homomorphisms, and quotient algebras.
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Definition 1.2. A subalgebra of an algebra A is a subset B of A that is closed
under addition, multiplication, and scalar products. In this case we write B 6 A.

Viewing C as a two-dimensional R algebra, we have R 6 C. In fact an algebra
A over a field k will always have k 6 A, and we can use this property to give an
alternative definition of an algebra.

Definition 1.3. An algebra A over a field k is a ring A together with a non-zero
homomorphism φ : k → A such that φ(k) is in the center of A.

In this definition scalar multiplication is defined by ring multiplication after
applying φ.

Definition 1.4. An algebra homomorphism is a map φ : A → B between
algebras A and B over a common field k such that φ(a1 + a2) = φ(a1) + φ(a2),
φ(a1a2) = φ(a1)φ(a2), and φ(ca1) = cφ(a1) for all a1, a2 ∈ A and c ∈ k. If φ is
bijective then we say A and B are isomorphic and that φ is an isomorphism.

Definition 1.5. Recall that a subset S of a ring R is an ideal if S is closed
under addition and “captures” multiplication from R, i.e., that

sr ∈ S and rs ∈ S ∀ r ∈ R, s ∈ S.

We can generalize this to subsets that capture multiplication from one side only.
We call L ⊆ R a left ideal if L is closed under addition and rl ∈ L ∀ r ∈ R, l ∈ L,
a right ideal is defined in the corresponding way. A normal ideal is both left and
right, or two-sided.

Example 1.6. For n ∈ N we have that nZ/Z, it is easy to see that nZ is closed
under addition and the product of a multiple of n with any integer is also a
multiple of n, i.e., it is in nZ.

We will occasionally write for a two-sided ideal I of a ring R that I / R, read
“I is an ideal of R”. For left and right ideals L and S respectively of a ring R we
can write L /L R and S /R R analogously to two-sided ideals.

Remark 1.7. An ideal I of a k-algebra A is the same as an ideal of a ring
except for the additional requirement that the subset also be closed under scalar
multiplication. However, since we consider rings, and hence algebras, to be unital
we always have k1̇ 6 A and closure under scalar multiplication follows from the
normal multiplicative property of ideals, provided I is two-sided or a left ideal,
using the convention that the scalar product is applied on the left. In the case
of a right scalar product, all two-sided or right ring ideals will also be algebra
ideals.

So we can safely focus on ring ideals without having to worry about lifting
them to algebra ideals, provided we stick to two-sided and left ideals.

As with rings algebra ideals are exactly the subsets that form kernels of
homomorphisms. With this in mind we can state the first isomorphism theorem
for algebras.
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Theorem 1.8 (First Isomorphism Theorem for Algebras). Let φ : A→ B be a
homomorphism of algebras. Then

Im (φ) ∼= A/Ker (φ) .

The proof of this version of the first isomorphism theorem is exactly analogous
to that for rings.

Matrix Algebras

As we eluded to earlier, matrices valued in a field form an algebra under the
standard addition, multiplication, and scalar product. Formally,

Definition 1.9. A matrix algebra Mn(k) over a field k is the set of all n×n ma-
trices with entries in k with the standard definitions for addition, multiplication,
and scaling by an element of k.

Our goal is to study the subalgebras of matrix algebras, specifically their
dimensions. We will investigate nilpotent, simple, semisimple, and parabolic
matrix algebras, describing first their properties and general structure and then
their possible dimensions and their densities.

Zero-Pattern Matrix Algebras

We now introduce a notation for describing matrix subalgebras that we will find
useful.

Definition 1.10. Let Z be an n×n matrix whose entries are all either 0 or ∗. We
build of subspace W of a full matrix algebra Mn(k) from Z by taking a subspace
basis consisting of all Ei,j where Zi,j is ∗. We then take the multiplicative closure
〈W 〉 (note this is a slightly different than the additive generator 〈+〉 we have
discussed before) to create a subalgebra, the zero-pattern subalgebra associated
with Z. We will, unless specifically stated, only concern ourselves with matrices
Z such that their associated W is already closed under the ring operations, that
is, that W = 〈W 〉.

With this in mind, we can describe a zero-pattern subalgebra in simpler
terms as the subalgebra of all matrices that have a 0 where Z has a zero and
any element of k where Z has a ∗. We will also generally elide the mention of
〈W 〉 itself, choosing instead to implicitly describe the resulting subalgebra by
providing Z.

One can, if they prefer, view the ∗ terms in matrices Z as each being distinct
variables allowed to range over the whole of k. Our notation merely expresses
this more succinctly.

Example 1.11. Z =

 ∗ 0 0
0 ∗ 0
0 0 ∗

 describes the subalgebra of M3(k) consisting

of diagonal matrices.
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It is important to note that not all subalgebras of a matrix algebra are
zero-pattern subalgebras, for example

A =


 0 a b

0 0 a
0 0 0

 a, b ∈ k


Can be verified to be a subalgebra of M3(k) but is not generated by a ∗
matrix, as the product of any two elements of A is of the form

MN =

 0 a b
0 0 a
0 0 0

 0 c d
0 0 c
0 0 0

 =

 0 0 ac
0 0 0
0 0 0

 a, b, c, d ∈ k
So A in this example has dimension 2 while a ∗ matrix in the same shape

would have dimension 3.
Laffey proved a structure theorem for zero-pattern matrix algebras that

contain an element with n distinct eigenvalues which states that such matrix
algebras are two-generated. The general problem of determining when a matrix
algebra is generated by a zero-pattern matrix is difficult, we pose it as a potential
future question.

1.2 Simple Algebras over an Algebraically Closed
Field

Lemma 1.12. Let Ei,j ∈Mn(F ) denote a “mask” matrix, a matrix with a one
in the i, j position and zeros elsewhere. Left multiplication by a mask matrix
Ei,i by a matrix M results in a matrix with row i of M for its ith row and zeros
elsewhere, and likewise right multiplication yields a matrix with the ith column
of M preserved. Taking the product Ei,jMEi,j will result in a matrix that is all
zeros except for entry i, j, which will be equal to the i, j entry of M .

Proof. Consider the result of left (resp. right) multiplication as the inner product
of rows of a mask matrix and columns of an arbitrary matrix (resp. columns
and rows). The result is evident. �

Remark 1.13. The Ei,j form the standard basis for Mn(k) as a vector space.

We now give a definition for our objects of interest in this section.

Definition 1.14. An algebra is simple if it has no non-trivial two-sided ideals.

Proposition 1.15. Any matrix algebra Mn(k) over a field k is simple.

Proof. Let I be a non-zero two-sided ideal of Mn(k) and let A = ai,j ∈ I be a
matrix with ar,k 6= 0 for some r, k. Then N = 1

ar,k
Er,rAEk,k is a matrix with a 1

in position r, k and zeros elsewhere. Further, N ∈ A. We can then, by applying
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left and right permutation matrices to N , obtain each of the matrices Ei,i which
are again elements of the ideal. Then we have

∑n
i=0Ei,i = I ∈ A. But then A

contains a unit and is therefore equal to the whole Mn(k), so the only non-zero
two-sided ideal of Mn(k) is itself thus Mn(k) is simple. �

We will now show the converse is also true, i.e., that all simple algebras are
(isomorphic to) matrix algebras. We will need a couple intermediary results first,
adapted from Alperin and Bell’s treatment of Wedderburn Theory [2].

Definition 1.16. For a given ring R a left R-module over an abelian group M
is a binary operation R×M →M called scalar multiplication which satisfies:

∀r, s ∈ R m,n ∈M

1. r(sm) = (rs)m

2. r(m+ n) = rm+ rn

3. (r + s)m = rm+ sm

4. 1Rm = m

We insist on the fourth condition as all the rings we will be considering have
unity. A right R-module is defined similarly by reversing the order of the binary
operation and adjusting the axioms in the same way. All modules we consider
will be left modules unless otherwise stated.

Modules are a natural generalization of vector spaces, we simply allow the
field k in a vector space to be an arbitrary ring R. Notably, all vector spaces
and hence all algebras are modules. Every ring R is also a module over itself: let
M = (R,+) as an abelian group, then we can define a natural R-module action
on M for any r ∈ R and m ∈M by r ·m = rm.

Remark 1.17. While modules naturally generalize vector spaces this general-
ization comes at the cost of losing many of the useful properties of vector spaces.
For instance, a module need not have a basis and if it has multiple bases these
need not have the same size.

Proposition 1.18. If A is a k-algebra then any A-module M is also a k-module.

Proof. By 1.3, any k-algebra A contains an isomorphic copy of k as a subalgebra.
Then we can define a k-module structure on an A-module M by restricting the
action of A on M to elements of A that lie in k. �

Note that the structure in 1.18 is not an algebra as we have no way to
multiply elements of the abelian group M (we do not know how to enrich M
with a ring structure).

Example 1.19.
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• The matrix algebra A = Mn(k) is a k−algebra and thus a k-module, but
also an A-module where the scalar product is given by matrix multiplica-
tion.

• Let L be the subset of Mn(k) consisting of matrices where only the first
column is non-zero. Then L is closed under addition, has inverses, and an
additive identity, so L is a group. L is abelian due to the commutativity
of k addition. Then L is a k-module and an A-module under scalar
multiplication and matrix multiplication respectively. However L is not an
algebra because it does not contain a multiplicative identity (L is in fact a
left ideal of Mn(k)).

Definition 1.20. A module homomorphism φ : M → N between R-modules M
and N is a group homomorphism with the additional property that φ(rm) =
rφ(m) for all r ∈ R and m ∈M .

Definition 1.21. A submodule N of a module M is a subgroup of M such that
rn ∈ N for all r ∈ R and n ∈ N . In this case we write N 6 M . A module is
simple or irreducible if its only submodules are itself and the zero module.

Proposition 1.22. If a ring R is viewed as a module over itself then the
submodules of R are exactly the left ideals of R.

Proof. Any left ideal of R is a submodule as it is closed under addition and
multiplication from the left. Now let S be a submodule of R. Then S is closed
under addition of scalar multiplication from the left, that is, S is a left ideal of
R. �

Proposition 1.23. The kernel of a module homomorphism is a submodule.

Proof. Let φ be a module homomorphism and a and b be elements of kerφ. Then
φ(a− b) = φ(a)− φ(b) = 0− 0 = 0, so (a− b) ∈ kerφ and kerφ is a subgroup.
To show it is a submodule let r ∈ R, then we have φ(ra) = rφ(a) = r0 = 0 and
kerφ is closed under multiplication. �

Because M is always an abelian group every submodule N of M is also a
normal subgroup of M , that is, we can form the quotient group M/N . We
can extend the scalar multiplication on M to act on M/N , so M/N is also a
module, the quotient module of M by N . Notable we have a first isomorphism
theorem for modules and a correspondence between submodules and kernels of
homomorphisms.

Schur’s Lemma is a basic but very useful result on simple modules over an
algebraically closed field.

Lemma 1.24 (Schur [2, p. 111]).

1. The only homomorphisms of simple modules are isomorphisms or the zero
map. That is, a non-zero homomorphism M → N of simple modules M
and N is necessarily an isomorphism.
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2. For a simple A-module S we have

EndA (S) = λI

where I is the identity map and λ ∈ k.

Proof.

1. Let φ : M → N be a module homomorphism of simple modules M and N .
Then by simplicity of M either kerφ = { 0 }, in which case φ is injective
and Imφ = N by simplicity of N , or kerφ = M in which case φ is the zero
map.

2. Let φ ∈ EndA(S) and let λ be an eigenvalue with corresponding eigenvector
v of φ (EndA(S) ⊆ Endk(S) ∼= Mn(k), so eigenvectors are sensible). Such
an eigenvalue and eigenvector exist as k is algebraically closed. Then φ−λI
is a map S → S with non-zero kernel, but since S simple this implies that
φ− λI = 0 and φ = λI.

�

Definition 1.25. For k-algebras L 6 A denote the set of L-linear endomor-
phisms of an algebraA by EndL(A). That is, EndL(A) = { φ : A→ A | φ(la) = lφ(a) } .

EndL(A) is a k-algebra, the endomorpism algebra, with addition given by
function addition, multiplication by function composition, and scalar multiplica-
tion given by linearity.

Definition 1.26. The opposite algebra Aop of an algebra A is obtained by
reversing the order of multiplication. That is, ab in Aop is equal to ba in A.

If A is commutative then Aop is identical to A, and there is a natural
isomorphism between A and Aop

op

.

Lemma 1.27. If A is an algebra then Aop ∼= EndA(A).

Proof. Let φ ∈ EndA(A). Then φ is completely determined by φ(1), for φ(a) =
aφ(1) for all a ∈ A, that is, A and EndA(A) are in bijection. Define a map
ψ : Aop → EndA(a) by ψ(a) = − × a (right multiplication). Then ψ is a
homomorphism of algebras. (We require the domain of ψ to be Aop as we have
for φa, φb ∈ EndA(A) that φaφb = − × ba = φba). Likewise, for any m ∈ A
we can construct a valid endomorphism φa = − × m, so ψ is surjective and
Aop ∼= EndA(A). �

Lemma 1.28. Let A be a simple k algebra. Then as an A module we have

A ∼=
n⊕
S

where S is a simple A-module.
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Proof. We begin by considering A as an A-module over itself. Let A′ be the
(not-necessarily direct) sum of all the simple A-sub-modules (that is, left ideals
of A as an algebra) and let S be a simple A-module. Then for a ∈ A, we have
that Sa is either 0 or a simple A-module. Then Sa ⊆ A′ and A′ is a right ideal.
But A′ is also a left ideal as it is a sum of left ideals, therefore A′ is a two sided
ideal and by the simplicity of A either 0 or A. A′ is not 0 so we conclude that
A = A′ and that A is a (not-necessarily direct) sum of simple modules.

To see that A is in fact a direct sum of simple modules, let B be a simple
submodule of A and C be a maximum submodule such that B ∩ C = { 0 }. We
want to establish that A = B + C. Suppose this is not the case. Then there is a
simple submodule S not contained in B + C. By simplicity of S, S ∩ C = { 0 }
and C ⊂ S + C.

By maximality of C the set B ∩ (S + C) is non-empty. Let b ∈ B ∩ (S + C)
such that b = s + c for some s ∈ S and c ∈ C. Then s = b − c ∈ S ∩ (B + C)
so s = 0 as S is disjoint from B + C, and b = c which implies b = 0 as B and
S are also disjoint. But then B ∩ (C + S) = { 0 } and C is not maximal, a
contradiction! So we must have A = B + C, which as B and C are disjoint
means A = B ⊕C. Applying this process to each simple submodule of A results
in the decomposition A = ⊕ni=1Si for simple submodules Si.

Finally, to show that each of the Si are isomorphic simply note that SiSj 6= 0
then the map φ : Si → Sj given by φ(si) = sis for some fixed s 6= 0 ∈ Sj is a
homomorphism, and hence by Schur’s Lemma an isomorphism.

To see that SiSj must be nonzero observe that if SiSj were to equal 0 we
would have that (SiA)(SjA) = Si(ASj)A ⊆ SiSjA = 0A = 0, but SiA and SjA
are two-sided ideals and hence by simplicity of A either 0 or A. Then one of Si
and Sj is zero as otherwise we would have for x ∈ Si x1 = x 6= 0 ∈ SiA and
likewise for Sj . So SiSj 6= 0. �

Remark 1.29. In the previous lemma the submodule S corresponds to a left
ideal of A. Specifically as S is simple it is a minimal left ideal, meaning it does
not contain another non-zero left ideal.

Lemma 1.30. Let A be a simple algebra and S be a simple A-module . Then
EndA (

⊕n
S) ∼= Mn (EndA (S)).

Proof. Consider s = si ∈ ⊕nj=1S as a n vector and let Φ = (φi,j) ∈Mn (EndA (S)).

We define a map ρ : Mn (EndA (S)) → EndA (
⊕n

S) by ρ (Φ) = Φs be the ac-
tion by the matrix product where multiplication of φi,jsi = φi,j(s) (function
application). ρ is a homomorphism by the distributivity and associativity of the
matrix product. Additionally, ker ρ = 0 as matrix algebras are simple and ρ is
not the zero map. So ρ is an injective homomorphism.

To show ρ is surjective we define a preimage for each Ψ ∈ EndA (
⊕n

S) by

Ψ−1 =

 ψ1,1 . . . ψ1,n

...
. . .

...
ψn,1 . . . ψn,n


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where ψi,j for some fixed j is defined implicitly as

Ψsi =

 ψ1,j(si)
...

ψn,j(si)


So ρ is an isomorphism of algebras. �

We can now describe the simple finite-dimensional algebras over algebraically
closed fields.

Theorem 1.31. Every finite-dimensional C-algebra is isomorphic to a matrix
algebra Mn(C) for some n ∈ N.

Proof. We have

A ∼= EndAop (Aop) By Lemma 1.27
∼= EndAop (⊕nS) By Lemma 1.28
∼= Mn (EndAop (S)) By Lemma 1.30
∼= Mn(k) By Schur’s Lemma

�

This result has a simple corollary that answers our question of what the
possible dimensions of matrix algebras are for the class of simple algebras.

Corollary 1.32. Mn(k) has simple subalgebras of dimension m2 for all 0 6
m 6 n.

Remark 1.33. Wedderburn’s Theorem can be easily generalized to fields that
are not algebraically closed, we just note that EndAop (S) is itself a division
algebra. The theorem then becomes that every simple k-algebra is isomorphic
to a matrix algebra over a division algebra of k.
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Chapter 2

Nilpotent Matrix
Subalgebras

We now wish to turn our attention to another class of matrix subalgebras–those
that are nilpotent. It is fairly straightforward to provide a description of the
dimensions of nilpotent matrix subalgebras, and we will and we will in fact find
that for a matrix algebra Mn(k) each “reasonable” dimension is realizable in a
nilpotent subalgebra. This will stand in contrast with later chapters.

2.1 Nilpotent Algebras

Definition 2.1. An element x of an algebra A is said to be nilpotent of class t
if xt = 0. The algebra itself is said to be nilpotent of class t if every product of t
or more elements is zero.

The smallest nilpotency class of an algebra is called its rank.

Note that an algebra being nilpotent of class t implies that it is nilpotent of
class t+ 1, and that every element of the algebra has nilpotency class at most t.

Example 2.2. The algebras of order n strictly upper and lower triangular
matrices are nilpotent of rank n− 1.

This can be proved with the assistance of the following lemma and definition.

Definition 2.3. An r super upper triangular matrix is a matrix where the only
non-zero entries are those above the r super diagonal (the set of entries for which
the row index plus r equals the column index), that is, the (i, j) entry of the
matrix being nonzero implies that i+ r 6 j.

Note the 1 super upper triangular matrices are equivalent to the strictly
upper triangular matrices.

We will abbreviate r super upper triangular to r-SUT for readability purposes.

Lemma 2.4. Let M be an r-SUT matrix and N be a q-SUT matrix. Then MN
is an (r + q)-SUT matrix.
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Proof. Let M = (mi,j) and N = (ni,j). From the definition of super upper
triangularity, mi,j 6= 0 only if i+ r 6 j, and likewise ni,j 6= 0 only if i+ q 6 j.
Let P = MN = (pi,j). Then pi,j =

∑n
k=1mi,knk,j . If pi,j 6= 0 then there must

exist a k such that mi,k 6= 0 and nk,j 6= 0, that is, a k such that i+ r 6 k and
k + q 6 j. Assume such a k exists. Then we have

i+ r 6 k

i+ r + q 6 k + q

i+ (r + q) 6 j

Which is exactly the same as P = MN being r+q super upper triangular. �

We can now show that the strictly upper triangular matrices are nilpotent of
rank n− 1.

Proposition 2.5. Let N < Mn(k) be the subalgebra of strictly upper triangular
matrices (that is, 1-SUT), then N has nilpotency rank n− 1.

Proof. Let N1 ∈ N be 1-SUT and Nr be r-SUT. By the previous lemma N1Nr
and NrN1 are both (r + 1)-SUT. It follows inductively that an r-fold product of
strictly upper triangular, that is, 1-SUT, matrices is r SUT.

Note that an (n− 1)-SUT matrix is the zero matrix, for there are no (i, j)
such that i+ n− 1 6 j. Thus Nn−1

1 = 0 and N1 has nilpotency class n− 1.
To show that N is in fact nilpotent of rank n− 1 we consider the product

Dn−2 where D = (di,j) is the 1 super diagonal matrix of all ones ones. D2 =∑n
k=1 di,kdk,j which has a nonzero term if and only if i+ 1 = k and k + 1 = j,

that is, if i+ 2 = j. A simple inductive argument then shows that Dr 6= 0 for
r < n− 1 and thus the strictly upper triangular matrices have nilpotency rank
n− 1. �

In fact, all nilpotent matrix algebras are conjugate to the algebra of strictly
upper triangular matrices.

Theorem 2.6 (Lie-Kolchin for Associative Algebras). A nilpotent matrix algebra
N over an algebraically closed field is conjugate to an algebra of strictly upper-
triangular matrices.

Proof. Assume there exists a counterexample N < Mn(k) and that this coun-
terexample is minimal with respect to n and nilpotency rank. We say that an
algebra is reducible if its action on itself preserves a non-trivial subspace.

Assume N is reducible. Since N preserves a subspace, under suitable basis
any element N ′ ∈ N must take the form[

N1 B
0 N2

]
.

Now since N is nilpotent both N1 and N2 must be nilpotent as well. But since
N is a minimal counterexample to the theorem, N1 and N2 must be conjugate
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to strictly upper triangular matrix algebras, so N is also conjugate to a strictly
upper triangular matrix algebra.

Assume on the other hand that N is irreducible. Fix X = A1A2...Ar−1 ∈ N
such that X 6= 0 and r is the nilpotency rank of N . Schur’s Lemma (Lemma
1.24) tells us that because N is irreducible the only elements that commute with
all of N are scalar matrices, but for any M ∈ N XM = MX = 0, so X must be
scalar. The only nilpotent scalar matrix is the zero matrix, but X 6= 0 so we
have the required contradiction. �

Remark 2.7. The Lie-Kolchin theorem is typically presented as a result on Lie
Algebras, but analogs hold for other categories of algebraic structures. Notable
it will also hold for algebras over a non-algebraically closed field, (our proof only
used algebraically closed in the invocation of Schur’s Lemma), however the proof
of this fact is more complicated than that of the algebraically closed case.

Corollary 2.8. The maximum dimension of a nilpotent matrix subalgebra is
n2−n

2 =
(
n
2

)
.

2.2 Dimensions of Nilpotent Matrix Subalgebras

In this section we wish to demonstrate that for a matrix algebra Mn(k) there

exists a nilpotent subalgebra for each dimension 0 6 m 6 n2−n
2 . We begin by

defining a total order D on the set E = { (i, j) | i < j, 0 < i, j 6 n }. Define a
sequence Dn = (r, k) on E where we denote Di

n = r and Dj
n = k by

D1 = (1, n)

Dn =

{
(1, n−Di

n−1) Dj
n−1 = n

(Di
n−1 + 1, Dj

n−1 + 1) otherwise

Then take the order D to be the order on E defined by each e ∈ E’s position
in the sequence Dn. Visually this order traces out each superdiagonal of Mn(k)
starting at the n− 1 super diagonal and working inwards, for example in M4(k):

4 2 1
5 3

6


Notable, if s < t and e1 is on the s super diagonal and e2 is on the t super

diagonal, e2 < e1 in the order D. Additionally, if the span of all Dj is taken
for 0 6 j 6 i and Di is t super diagonal, then the span contains at least the
t+ 1-SUT matrices.

Theorem 2.9. There exists a nilpotent subalgebra of Mn(k) of dimension m

for each 0 6 m 6 n2−n
2 =

(
n
2

)
.

13



Proof. Let ψ be the function that sends (i, j) to Ei,j for all 0 6 i, j 6 n. Define
an ascending chain of subspaces Ai by

Ai = { ψ(Dj) | 1 6 j 6 i }

with respect to the order D. We define A0 as the zero set.
We will show inductively each Ai is a subalgebra. Since A0 = { 0 } is clearly

a subalgebra, so assume the hypothesis holds for all Ak when k < i.
Let M and N be elements of Ai, we need to show that the product MN lies

in Ai. Let t be lowest superdiagonal containing an element of Ai. Then M and
N are both t-SUT. By Lemma 2.4, MN is 2t-sut and MN ∈ Ai. So Ai is closed
and multiplication and is a subalgebra.

Then each Ai is a subalgebra of dimension i and we have constructed nilpotent

subalgebras of dimension m for each 0 6 m 6 n2−n
2 . �

Remark 2.10. There are many ways to build the ascending chain of subalgebras,
ours was chosen simply for ease of proof. In theory any chain with the property
that under the standard basis of E′r,ks that the presence of Er,k in the basis
implied the presence of Ei,k and Er,j for 1 6 i < r and k < j 6 n would work.

2.3 Schur Subalgebras

A straightforward result attributed to Schur shows the existence of nilpotentency
class 2 subalgebras of Mn(k) of dimension m for all 0 6 m 6 bn4 c.

Definition 2.11. A Schur subalgebra of Mn(k) is a subalgebra with the property
that the product of any two elements is zero, that is, a subalgebra that is nilpotent
of rank 2.

It is easy to construct a Schur subalgebra for each 0 6 m 6 bn4 c. Start by
writing an n× n matrix in blocks.[

A B
C D

]
Such that B is a bn2 c × d

n
2 e matrix, A is bn2 c × b

n
2 c, C is dn2 e × b

n
2 c, and D

is dn2 e × d
n
2 e.

Now let Z ⊂ Mn(k) be the set of matrices that when written in this form
have A, C, and D be zero matrices. Z is clearly closed under addition and scalar
multiplication. Let M,N ∈ Z. Then we have

MN =

[
0 B
0 0

] [
0 X
0 0

]
=

[
0 0
0 0

]
So Z is closed under multiplication and hence is a subalgebra.
Note that the structure of B and X had no effect on the product of the two

matrices, meaning any subset of Z that is both additively and scalar closed is
itself a subalgebra. This means that any zero-pattern matrix whose block form
matches that of Z induces a subalgebra. This demonstrates the following result.

14



Proposition 2.12 (Schur). Let Mn(k) be a full matrix algebra. Then for

0 6 m 6 bn
2

4 c there exists an m-dimensional nilpotent subalgebra of Mn(k).

Proof. Given m simply select an bn2 c × d
n
2 e ZPM Z with exactly m ∗ entries

and the rest 0. Then [
0 Z
0 0

]
induces an m dimensional Schur subalgebra. We thus have Schur subalgebras

of each dimension 0 6 m 6 bn
2

4 c, with the upper bound being achieved when Z
generates the full bn2 c × d

n
2 e matrix. �

Example 2.13. The zero-pattern matrix

Z =


0 0 ∗ 0
0 0 ∗ ∗
0 0 0 0
0 0 0 0


generates a three dimensional Schur subalgebra of M4(k).

Mirzakhani showed that bn
2

4 c+ 1 is the maximum dimension of an abelian
matrix subalgebra [4]. (The factor of 1 is from the identity matrix, as for any
Schur matrices A and B we certainly have (I +A)(I +B) = I +A+B +AB =
I +A+B +BA = (I +B)(I +A) as AB = BA = 0). Since nilpotent rank-two
subalgebras are trivially abelian and as we established these subalgebras exist

for each dimension 0 6 m 6 bn
2

4 c we may conclude that these are in fact all the
dimensions of rank-2 nilpotent subalgebras.

Remark 2.14. Mutually-commuting is exactly the meaning of rank-two nilpo-
tent in the context of Lie Algebras.

We can extend this to nilpotent subalgebras of higher rank by taking our
block matrix and partitioning each block again into four pieces, resulting in an
overall 4× 4 block matrix.

[
0 A
0 0

]
7→


0 0 A1 A2

0 0 A3 A4

0 0 0 0
0 0 0 0


Note: at this point we will cease drawing dividing lines for the blocks in the

interest of visual clarity, the reader should keep in mind that the entries of the
matrices we consider for the remainder of this section are block matrices.

We then repeat the Schur construction on the upper and lower right 2x2
block sections, that is, we build a matrix of the form

N4 =


0 B A1 A2

0 0 A3 A4

0 0 0 C
0 0 0 0


15



Where all of the Ai, B, and C are arbitrary zero-pattern matrices and B

and C are b b
n
2 c
2 c × b

dn2 e
4 c and b d

n
2 e
4 c × b

bn2 c
2 c respectively.

Proposition 2.15. A matrix of the form N4 has nilpotency rank four.

Proof. Note that

N2
4 =


0 0 BA3 A1C +BA4

0 0 0 A3C
0 0 0 0
0 0 0 0


has nilpotency rank two, implying N4 has nilpotency rank of at most four.

To see N4 does not have nilpotency rank three simply observe

N3
4 =


0 0 0 BA3C
0 0 0 0
0 0 0 0
0 0 0 0

 6= 0

. �

This fact implies that we can always construct nilpotent class four (that is,
nilpotent rank at most four) matrix subalgebras for all dimensions

0 6 m 6 bn
2

4
c+ 2bn

2

16
c → 3

8
n2 asymptotically as n increases

.
Note that if BA3C were 0 this would be a subalgebra of nilpotency rank 3,

in particular this would occur if either B or C were zero. This gives us a lower
bound on the number of dimensions of nilpotent class three subalgebras:

0 6 m 6 bn
2

4
c+ bn

2

16
c → 5

16
n2 asymptotically as n increases

.
We can imagine continuing this construction in a fractal-like manner, dividing

the matrix next into 64 blocks and extending it by four new zero-pattern blocks,
then dividing into 256 blocks and extending by eight zero-pattern blocks, etc.
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Question:

Let Z(r, n) denote the maximum dimension of a nilpotency rank r subalgebra
of Mn(k). The results in this chapter prove that

Z(r, n) 6
n2 − n

2

Z(2, n) = bn
2

4
c

Z(3, n) > bn
2

4
c+ bn

2

16
c

Z(4, n) > bn
2

4
c+ 2bn

2

16
c

What is the behavior of
Z(r, n)

in general? Are the previously established bounds sharp?

17



2.4 Integer Sequences Associated with
Nilpotent Algebras

A nilpotent matrix subalgebra of nilpotency class r is a subalgebra of the full
matrix algebra Mn(k) such that any product of r elements equals 0.

Dimensions of Nilpotent Subalgebras

There are nilpotent subalgebras of Mn(k) of dimension m for all 0 6 m 6
n2−n

2 =
(
n
2

)
. The number of dimensions of nilpotent subalgebras of Mn(k) is

thus n2−n
2 + 1.

These are exactly the triangular numbers plus one.

Sequence of Number of Dimensions

OEIS sequence A000124. [6]

An =
n2 − n

2
+ 1

First 100 Terms

1 2 4 7 11 16 22 29 37 46
56 67 79 92 106 121 137 154 172 191
211 232 254 277 301 326 352 379 407 436
466 497 529 562 596 631 667 704 742 781
821 862 904 947 991 1036 1082 1129 1177 1226
1276 1327 1379 1432 1486 1541 1597 1654 1712 1771
1831 1892 1954 2017 2081 2146 2212 2279 2347 2416
2486 2557 2629 2702 2776 2851 2927 3004 3082 3161
3241 3322 3404 3487 3571 3656 3742 3829 3917 4006
4096 4187 4279 4372 4466 4561 4657 4754 4852 4951

Density of Dimensions of Nilpotent Subalgebras

There are n2 possible dimensions of subalgebras of Mn(k). We see that

lim
n→∞

An
n2

=
n2 − n+ 2

2n2
=

1

2

18



Dimensions of Nilpotent Rank 2 Subalgebras

The nilpotency rank of a nilpotent subalgebra is the smallest integer r such that
all length r products of elements are 0. There are rank 2 nilpotent subalgebras of

Mn(k) of dimensions m for all 0 6 m 6 bn
2

4 c. This is 1 less than the maximum
number of linearly-independent mutually-commuting square n× n matrices.

Sequence of Number of Dimensions

OEIS sequence A002620. [7]

An = bn
2

4
c

First 100 Terms

0 1 2 4 6 9 12 16 20 25
30 36 42 49 56 64 72 81 90 100
110 121 132 144 156 169 182 196 210 225
240 256 272 289 306 324 342 361 380 400
420 441 462 484 506 529 552 576 600 625
650 676 702 729 756 784 812 841 870 900
930 961 992 1024 1056 1089 1122 1156 1190 1225
1260 1296 1332 1369 1406 1444 1482 1521 1560 1600
1640 1681 1722 1764 1806 1849 1892 1936 1980 2025
2070 2116 2162 2209 2256 2304 2352 2401 2450 2500
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Chapter 3

Semisimple Matrix
Subalgebras

In this chapter we investigate the class of semisimple matrix algebras. We find
that their dimensions are elegantly modeled by a recurrence relation, but that
exact computations and bounds on the dimension set are difficult in general. We
provide a lower bound on the size of the dimension set using several simplifying
estimations.

3.1 Semisimple Algebras

Over any field, Mn(k) is a simple algebra by Proposition 1.15, and if k is
algebraically closed then any (finite dimensional) simple k-algebra is isomorphic
to some full matrix algebra over k by Theorem 1.31. It is often interesting and
useful to consider semisimple algebras, algebras which are direct sums of simple
algebras.

Definition 3.1. An algebra A is a direct sum of two subalgebras M1 and M2

if M1 ∩M2 = { 0 } and we have (m1 +m2)(m
′

1 +m
′

2) = m1m
′

1 +m2m
′

2 for all
m1,m

′

1 ∈M1 and m2,m
′

2 ∈M2.

Definition 3.2. An algebra A over a field k is said to be semisimple if it is
isomorphic to a direct sum of simple algebras. [2, p. 121]

For an algebraically closed field the semisimple algebras are exactly direct
sums of full matrix algebras by the previously mentioned results. Recall that
the direct sum of two matrices A and B over the same ring is defined as

A⊕B =

[
A 0
0 B

]
.

(That this definition of direct sum satisfies the definition given earlier follows
from the properties of block matrices.) From these facts it is easy to see that any
semisimple matrix algebra A can, up to conjugation, be expressed in the form
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A = {


A 0 . . . 0
0 B . . . 0
...

. . .
. . .

...
0 0 . . . Z

 |A ∈Mn1(k), B ∈Mn2(k), . . . , Z all zeros}

Note that A need not be of full rank due to the inclusion of Z in the direct
sum, we can think of this as an embedding of semisimple subalgebra of a smaller
matrix algebra into a larger Mn(k). In fact this is a complete description of
semisimple matrix algebras, every set of matrices in this form is a semisimple
subalgebra.

Proposition 3.3. If

A =



A 0 . . . 0
0 B . . . 0
...

. . .
. . .

...
0 0 . . . Z


∣∣∣∣∣∣∣∣∣ A ∈Mn1(k), B ∈Mn2(k), . . . , Z all zeros


then A is semisimple.

Proof. The properties of block matrices show us that A is closed under addition,
multiplication, and scalar products, so it is an algebra. Since A splits into a
direct sum of Mni

(k), each of which is simple, A is an algebra composed of a
direct sum of simple algebras and is therefore semisimple. �

Proposition 3.4. A semisimple matrix algebra A is isomorphic to a subalgebra
of Mn(k) if and only if W (A) 6 n.

Proof. Let A be a semisimple matrix algebra. If A is isomorphic to a subalgebra
of Mn(k), then W (A) is evidently no greater than n. Conversely if n >W (A)
then we can embed A into Mn(K) as a block-diagonal subalgebra. �

Theorem 3.5. Mn(k) has a semisimple subalgebra of dimension m if and only

if we can write m =
∑j
i=0 k

2
i such that

∑j
i=0 ni 6 n.

Proof. Assume Mn(k) has a semisimple subalgebra A of dimension m. Then

A = ⊕ji=0Mni(k). The sum
∑j
i=0 ni must be less than n or else the subalgebra

would not fit in Mn(k). Then as the dimension of a full matrix algebra is n2 we

have m = dimA =
∑j
i=0 n

2
i .

To show the converse, let m be expressed as m =
∑j
i=0 n

2
i such that∑j

i=0 ni 6 n. Then we can construct a semisimple algebra of Mn(k) by taking

⊕ji=0Mni
(k), which will evidently have dimension m. �

Definition 3.6. Let A =
⊕j

i=1Mni
(k) be a semisimple matrix algebra. Then

the width of A, denoted by W (A) is the sum of the orders of its direct summands,

i.e., W (A) =
∑j
i=1 ni.
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There are a few observations we can make about the width of a semisimple
matrix algebra when we consider them as subalgebras of a complete matrix
algebra Mn(K).

Definition 3.7. The commutator of two matrices A,B ∈Mn(k), written [A,B],
is the difference AB −BA.

Two matrices have a commutator of zero if and only if they commute. In
general, the commutator can be viewed as a measure of “how commutative” a
pair of matrices are.

Remark 3.8. The commutator is an example of a more general class of bilinear
maps known as Lie brackets. The study of Lie algebras is the study of vector
spaces equipped with a Lie bracket.

It will be useful to consider commutators of sets as well, in this case the
commutator should be considered as the set of all commutators of pairs of ele-
ments of each set. For example, [Mn(k),Mn(k)] = {[M1,M2] |M1,M2 ∈Mn(k)}
is the commutator of the whole algebra Mn(k). This is a useful invariant, if two
algebras have different commutators we know they are not isomorphic.

For a given dimension and width there are in general numerous non-equivalent
semisimple algebras. We have already seen that we can pad out a semisimple
algebra with zero algebras to increase the order of the matrix algebra it is
contained in without changing any of its other algebraic properties (this can be
though of as, considering the semisimple algebra as a subalgebra of a full matrix
algebra, embedding the semisimple space into a larger full algebra). We can
similarly replace any zero algebras in a semisimple algebra with M1(k) to increase
the dimension without changing the order of the matrix algebra containing it .
More generally we will find there exist non-isomorphic algebras with coinciding
dimension and width contained in the same full matrix algebra.

Example 3.9. Semisimple Matrix Algebras

• B = M3(R) =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 ∗ ∈ R is a simple algebra, and therefore is a

trivially semisimple algebra of one summand. dim(B) = 9, width((B)) = 3.
(For a simple algebra width will simply equal order).

• C = M3(F2) ⊕ M2(F2) =


∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 ∗ ∈ F2 is a semisimple

algebra of dimension 13 and width 5.
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• D = M2(C) ⊕ M2(C) ⊕ M2(C) =


∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

 ∗ ∈ C is a

semisimple algebra of dimension 12 and width 6.

• E = M3(C) ⊕M1(C) ⊕M1(C) ⊕M1(C) =


∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗

 ∗ ∈ C

is also a semisimple algebra of dimension 12 and width 6. Note that
the structure is distinct from D in a non-trivial way: the commutator
subalgebra

[E , E ] =


∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


has dimension 9 while the commutator subalgebra

[D,D] = D

has dimension 12 because the commutator subalgebra of a non-abelian
simple group S is S and thus the direct product of non-abelian simple
groups is also its own commutator subalgebra.

• F = M1(Q) ⊕ 0 =

[
∗ 0
0 0

]
∗ ∈ Q is a semisimple algebra of dimension

1 and width 2. The natural width of this algebra is 1, and it could be
equally realized as M1(Q) ∼= Q.

3.2 Dimensions of Semisimple Subalgebras

As we saw in 3.5 the dimensions of semisimple algebras correspond exactly
to sums of squares

∑l
i=1 k

2
i . Viewed as subalgebras of a full matrix algebra

Mn(k) we see that they are exactly those sums of squares such that the width∑l
i=1 ki does not exceed n. Let An denote the set of dimensions of semisimple

subalgebras that are contained in an order n full matrix algebra. The following
theorem gives a recursive description of An.
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Theorem 3.10 (Dimensions of Semisimple Subalgebras). For a fixed n there
exists a semisimple subalgebra of Mn(k) of dimension m 6 n2 if and only if
either m = n2 or there exist α and β such that m = α2 + β and there is a
semisimple subalgebra of dimension β of Mn−α(k).

Proof. Let A be a semisimple subalgebra of Mn(k). If A is simple them dimA =
n2. Assume A is not simple, then A contains a direct summand S 6= 0 such that
S is simple and dimS = α2. Then A/S is a semisimple subalgebra of Mn−α(k)
of dimension β = m− α2.

The converse is trivial.
�

The previous theorem implies that we can express the set sequence of dimen-
sions of semisimple subalgebras through the recurrence relation

A1 = { 0, 1 }

An =

n⋃
k=1

{
k2 + α

∣∣ α ∈ An−k } ∪ { 0 }

A similar result holds if we only wish to consider those semisimple subalgebras
that have their natural width, that is, do not contain zero algebras in their
direct sum nor zeros on the diagonals of their matrices (equivalently, algebras
which contain the identity I). We simply must modify the initial values of the
recurrence relation to not include zero:

B1 = { 1 }

Bn =

n⋃
k=1

{
k2 + α

∣∣ α ∈ Bn−k } ∪ { 0 }

The table below gives the values of An and Bn for small n.

n 1 2 3 4
An { 0, 1 } { 0, 1, 2, 4 } { 0, 1, 2, 3, 4, 5, 9 } { 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 16 }
Bn { 1 } { 2, 4 } { 3, 5, 9 } { 4, 6, 10, 16 }

If we inspect the table we can make a few observations. First, that for
any non-trivial n there will be integers m 6 n2 that are not the dimensions
of semisimple subalgebras of Mn(k). For example M2(k) has no semisimple
subalgebra of dimension 3. We also note that there seems to be a region of
small values for each n where each dimension 0 6 m 6 N occurs for some N
and N is maximal. We will call this the continuous region. It is easy to see that
the continuous region contains at least the dimensions 0 through n, though the
actual area is much larger, we will later show that it grows quadratically with n.

For an integer n we say that G(n) is the first dimension of a semisimple
algebra that cannot be realized as a subalgebra of Mn(k). So G(n) = N + 1
where the N is the upper bound for the continuous region.
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It is not clear how fast the sets An and Bn grow. Below is a figure of |An|
and |Bn| for small values of n along with n2 for comparison (as |An| and |Bn|
are clearly less than n2).

3.3 Density Analysis

We are interested in counting the number of dimensions of semisimple subalgebras
for each Mn(k). This is difficult in general, while we have a recurrence relation
for the set of subalgebra dimensions for each n it does not easily yield a closed
form expression or even an asymptotic bound. Our aim here is to simplify the
problem of counting the number of dimensions to a point where we can give
a lower bound for the function. To do this we will use an argument adapted
from A Note on the Symmetric Powers of the Standard Representations of Sn
by Savitt and Stanley. [5] First we need some additional notation.

Definition 3.11. Let Λm = {A ∈Mn(k) | A semisimple, dim(A) = m }, that
is, the set of all semisimple algebras of dimension m. Then W(m) = infΛm

w(A),
the smallest width of an m-dimensional algebra.

It is clear that W(m) is the smallest Mn(k) containing a m-dimensional
subalgebra by Proposition 3. W is difficult to compute in general, so we define a
function that, while not the smallest width, is a good estimate and is easy to
calculate.
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Definition 3.12. For a given m, write m as a sum of squares greedily, that
is, as m = a2

0 + ...+ a2
r where each successive aj is chosen as large as possible.

Note that this is the dimension of a semisimple algebra A =
⊕r

j=0Maj (k). The

greedy width GW(m) is the sum of the aj ’s, GW(m) =
∑r
j=0 aj .

The greedy width is not always the minimal width, but it is close. For
m 6 100 the only values where the greedy width differs from the minimal width
are m = 32 where W(32) = 8 and GW(32) = 10 (corresponding to 32 = 42 + 42

and 32 = 52 +22 +12 +12 +12 respectively) and m = 61 whereW(61) = 11 while
GW(61) = 13 (corresponding to 61 = 62 + 52 and 61 = 72 + 32 + 12 + 12 + 12

respectively).
We can now construct a lower bound for the number of dimensions of

semisimple subalgebras of Mn(k). Specifically we will bound G(n) below, which
while smaller than the true value will be significantly easier to compute. In terms
of the width function W(m), this amounts to finding the smallest m such that
W(m) > n. Since W(m) is also difficult to compute, we instead find an upper
bound for this m using the greedy width function GW(m). Since the smallest m
for which GW > n is less than or equal to the smallest mm for which W(m) > n,
this will constitute a lower bound for the number of dimensions of subalgebras.

We begin with the following propositions.

Proposition 3.13.
√
m+ 2m

1
4 6
√

2m for m > 544.

Proof. Suppose that
√
m+ 2m

1
4 6
√

2m. Then 2m
1
4 6

(√
2− 1

)√
m. Raising

both sides to the fourth power we find 16m 6
(√

2− 1
)4
m2. The quadratic(√

2− 1
)4
m2 − 16m = 0 has roots at 0 and 16

(
√

2−1)
4 ≈ 544, hence the result

follows for m > 544 as required. �

Theorem 3.14. W(m) 6
√

2m for m > 673.

Proof. First, we establish two facts we will need later on.

1. For all 1 6 m 6 673 we have W(m) 6 GW(m) 6 37.

2. For all 674 6 m 6 8000 we have W(m) 6 GW(m) 6
√

2m.

Both of these facts can be verified computationally.
Now suppose m > 8000 and that for all 8000 < t 6 m we have W(t) 6

√
2t

(we established this inequality for 674 6 t 6 8000 in (2)). Take s such that

s2 6 m 6 (s+ 1)2.

Then we have
m− s2 6 2s.

By the induction hypothesis,

W(m) 6W(s2) +W(m− s2)

6 s+ max
{√

2(m− s2), 37
}
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For m > 8000 we have s + 37 6
√

2m, so we only need to show that s +√
2(m− s2) 6

√
2m, which as m− s2 6 2s and s is less than or equal to

√
m is

equivalent to showing that

√
m+ 2

√√
m 6

√
2m,

which we proved was true for m > 544 in Lemma 3.13. �

We now establish a lower bound for the continuous region.

Proposition 3.15. There exists an m dimensional semisimple subalgebra of

Mn(k) for all 0 6 m 6 n2

2 for n > 37.

Proof. Let m be an integer such that m 6 n2

2 . By Theorem 3.14, W(m) 6√
n2 = n, hence Mn(k) has a semisimple subalgebra of dimension m. �

We can apply this result recursively to obtain a better estimate of the size
of the continuous region and therefore the number of dimensions of semisimple
subalgebras of Mn(k). Define a family of intervals

Si =

{
i2, ..., i2 +

(n− i)2

2

}
Each Si is precisely the set of dimensions obtained by fixing a k×k simple block

then invoking Theorem 3.15 to bound the continuous region of the remainder;
there is a semisimple subalgebra of Mn(k) of dimension m for each m ∈ Si.

Lemma 3.16. For i 6 n−
√

2
√

2n+ 3 + 1 we have that Si ∩ Si+1 6= ∅.

Proof. It will be sufficient to show that the upper bound of Si is less than the
lower bound of Si+1, that is

(i+ 1)2 6 i2 +
(n− i)2

2

2i2 + 4i+ 2 6 2i2 + (n− i)2

2i2 + 4i+ 2 6 2i2 + n2 − 2ni+ i2

−i2 + 4i+ 2ni− n2 + 2 6 0

Which we can solve to obtain

i 6 n−
√

2
√

2n+ 3 + 2 �

We can now prove the following result.

Theorem 3.17. For n > 40 there exists an m dimensional semisimple subalgebra
of Mn(k) for all 0 6 m 6 n2 − 4n

√
n+ 2.
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Proof. By the previous lemma we know that Si and Si+1 overlap for i 6 n −√
2
√

2n+ 3 + 2. Let k = n−
√

2
√

2n+ 3 + 2. Provided b n√
2
c 6 k we can extend

the continuous region established previously by taking the union 0, ..., n
2

2 with
the Si for i 6 k. This is possible for any n > 40, for which we obtain an extended
continuous region of

0 6 m 6 n2 − 2
√

2n
√

2n+ 3 +O(n)

The result follows. �

We can compare this bound to the true value for small n by plotting it
against the first gap in the set of dimensions of semisimple subalgbras of Mn(k).

We see that the difference between the bound and the true value seems to be
increasing, suggesting that further improvements on the bound are possible.

Corollary 3.18. Recall An is the set of dimensions of semisimple subalgebras
of Mn(k). Then by the previous theorem we have

lim
n→∞

|An|
n2

= 1
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3.4 Summary

Semisimple Matrix Subalgebras

A semisimple matrix subalgebra of Mn(k) for an algebraically closed field k is a
direct sum of Mni(k) such that

∑
ni 6 n.

Dimensions of Subalgebras

For all 0 6 k 6 n let λi be a partition of k indexed by i. Then the set of
dimensions of semisimple subalgebras of Mn(k) is the set{∑

i

λ2
i

∣∣∣∣∣ λ ` k 6 n
}
.

Sequence of Number of Dimensions

A0 = { 0, 1 }
An = { α+ β | α ∈ Aa, β ∈ Ab, a+ b = n } ∪

{
n2
}

First 100 Terms

2 4 7 11 16 22 29 39 50 60
73 88 103 120 139 160 181 203 229 256
284 313 343 377 412 448 487 528 569 610
653 699 748 797 849 904 959 1014 1070 1129
1191 1255 1321 1388 1456 1526 1598 1672 1746 1821
1899 1981 2064 2148 2235 2322 2411 2503 2597 2690
2783 2881 2982 3086 3193 3298 3403 3512 3623 3734
3847 3964 4081 4199 4321 4446 4573 4700 4830 4961
5092 5225 5359 5498 5638 5779 5922 6067 6215 6365
6518 6670 6823 6978 7134 7293 7453 7615 7780 7947

Density of Dimensions

As we proved in Theorem 3.17, |An| 6 n2 −
√

2
√

2n+ 3n. We then have

lim
n→∞

|An| 6 n2 −
√

2
√

2n+ 3n = n2

So An has density 1.
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Semisimple Matrix Subalgebras of Natural Width

A semisimple matrix subalgebra of natural width is a semisimple sublagebra of
Mn(k) for an algebraically closed field k such that the subalgebra contains the
identity or, equivalently, is not contained in a smaller Mn(k).

Dimensions of Subalgebras

Let λi be a partition of n indexed by i. Then the set of dimensions of semisimple
subalgebras of Mn(k) is the set{∑

i

λ2
i

∣∣∣∣∣ λ ` n
}
.

Sequence of Number of Dimensions

OEIS sequence A069999. [3]

B0 = { 1 }
Bn = { α+ β | α ∈ Bα, β ∈ Bβ , a+ b = n } ∪

{
n2
}

First 100 Terms

1 2 3 5 7 9 13 18 21 27
34 39 46 54 61 72 83 92 106 118
130 145 162 176 193 209 226 246 265 284
308 330 352 375 402 426 453 480 508 538
570 598 631 661 694 730 765 800 835 872
911 951 992 1030 1071 1115 1158 1203 1251 1295
1343 1392 1440 1491 1541 1590 1642 1695 1750 1806
1861 1917 1977 2033 2092 2154 2216 2276 2340 2404
2467 2535 2605 2672 2741 2812 2882 2951 3024 3096
3170 3245 3319 3394 3474 3553 3634 3716 3798 3881
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First Gap in Dimensions of
Semisimple Subalgebras of Mn(k)

Define the sequence GAPn to be the smallest integer that is not the dimension
of a semisimple subalgebra of Mn(k). This is one more than the upper endpoint
of the continuous region of Mn(k). Because when n = 1 there are no gaps this
sequence begins at n = 2.

We proved in Theorem 3.17 that GAPn > n2 − 4
√
n+ 2.

First 100 Terms

3 6 7 12 15 22 23 42 43 48
63 76 79 96 115 140 143 166 167 192
247 248 279 312 347 384 423 472 483 526
527 572 619 624 719 724 827 832 889 948
1009 1072 1087 1152 1219 1288 1359 1432 1507 1520
1597 1676 1679 1760 1843 1928 2015 2104 2287 2288
2383 2400 2497 2596 2783 2800 2905 3012 3121 3232
3345 3460 3479 3596 3715 3836 3959 4084 4211 4340
4471 4604 4739 4876 5015 5040 5181 5324 5327 5472
5767 5768 5919 6072 6227 6384 6543 6704 6867 7032
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Smallest Width of an m Dimensional Semisimple Subalge-
bra

Let Λm = {A ∈Mn(k) | A semisimple, dim(A) = m }, that is, the set of all
semisimple algebras of dimension m. Then W(m) = infΛm

w(A), the smallest
width of an m-dimensional algebra. This is the sequence of values W(m) for 1..

Sequence of Smallest Widths

OEIS sequence A138554 [1].

W(m) = inf
Λm

w(A)

where Λm = {A ∈Mn(k) | A semisimple, dim(A) = m }

First 100 Terms

1 2 3 2 3 4 5 4 3 4
5 6 5 6 7 4 5 6 7 6
7 8 9 8 5 6 7 8 7 8
9 8 9 8 9 6 7 8 9 8
9 10 11 10 9 10 11 12 7 8
9 10 9 10 11 12 11 10 11 12
11 12 13 8 9 10 11 10 11 12
13 12 11 12 13 14 13 14 15 12
9 10 11 12 11 12 13 14 13 12
13 14 15 14 15 16 13 14 15 10
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Chapter 4

Conclusion

We investigated the dimensions of simple, semisimple, and nilpotent matrix
subalgebras of Mn(K). We obtained closed form expressions for the dimension
sets of simple and nilpotent matrix algebras and a recurrence relation for the
dimensions of semisimple matrix algebras. During our work we also found several
interesting integer sequences associated with these classes of matrix algebra. The
sequences

1. A000124, number of dimensions of nilpotent subalgebras of Mn(k)

2. A002620, number of dimensions of rank 2 nilpotent matrix subalgebras

3. A069999, number of dimensions of semisimple matrix subalgebras that
contain the identity

4. A138544, smallest width of an m dimensional semisimple matrix subalgebra

were already known and included in the OEIS, while the sequences

1. |An|, number of dimensions of semisimple matrix subalgebras

2. GAPn, first integer m that is not the dimension of a semisimple subalgebra
of Mn(k)

are not located in the OEIS. We plan to submit the later list of sequences, as
well as update the entries of the former list of sequences to include their relation
to matrix subalgebras.

4.1 Further Questions

General Questions

• Which matrix subalgebras are conjugate to a zero-pattern matrix algebra?
Which ones are not conjugate by are isomorphic?
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In Relation to Nilpotent Matrix Subalgebras

Let Z(r, n) denote the maximum dimension of a nilpotency rank r subalgebra
of Mn(k). The results in this chapter prove that

Z(r, n) 6
n2 − n

2
,

Z(2, n) = bn
2

4
c,

and

Z(3, n) > bn
2

4
c+ 2bn

2

16
c.

What is the behavior of
Z(r, n)

in general? Are the previously established bounds sharp?

In Relation to Semisimple Subalgebras

What is the density of the sequence Bn of dimensions of semisimple subalgebras
of Mn(k) containing the identity?

In Relation to Parabolic Subalgebras

A parabolic matrix subalgebra is the stabilizer of a flag of subspaces (See Appendix
B). Parabolic matrix subalgebras are related to semisimple subalgebras. What
are the dimensions of the parabolic subalgebras and can these dimensions be
related to the dimensions of semisimple subalgebras?
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Appendix A

Zero-Pattern Subalgebras
as Relations

Recall that we used a matrix Z valued in S = { 0, ∗ } to describe certain matrix
subalgebras. The operations we gave for S were that ∗+ ∗ = ∗× ∗ = ∗ with zero
behaving as we expect an additive identity to. Formally as an algebraic structure,
S equipped with the operations of + and × as described is an semiring. Semirings
arise from a relaxation of the ring axioms, we simply drop the requirement that
elements have additive inverses.

Definition A.1. A semiring is a set S equipped with two associative binary
operations + and × such that:

• + is commutative.

• × is left and right-distributive over +

• There is an additive identity 0 such that s+ 0 = 0 + s = s ∀s ∈ S.

• s× 0 = 0× s = 0 ∀s ∈ S.

Note that the fourth condition is true for proper rings but can be proved
from the other ring axioms, this is not the case with semirings, as proofs that 0
annihilates the whole ring depend on the ability to take additive inverses.

Just as a ring can be considered an abelian group augmented with a multiplica-
tion operation, a semiring is an abelian monoid agumented with a multiplication
operation.

Our matrices Z then can be viewed as matrices over the semiring

({ 0, ∗ } ,+,×)

such that ∗ + ∗ = ∗ × ∗ = ∗. This semiring is called the binary semiring.
Matrices over the binary semiring are of interest because they exactly encode
binary relations on finite sets, and n × n matrix Z = zi,j defines a subset of

35



the Cartesian product of an n element set with itself. Specifically we have
R = { (i, j) | zi,j = ∗ }. That is, i j if and only if zi,j = ∗. Matrix multiplication
over the binary semiring corresponds to taking a composition of relations, and
matrix addition corresponds to taking the disjunction of relations.

This viewpoint allows us to reinterpret our zero-pattern subalgebras in terms
of relations.

• A matrix Z corresponds to a subalgebra if its corresponding relation is
transitive. Taking the multiplicative closure of a matrix Z to complete a
subaglebra is equivalent to taking the transitive closure of its corresponding
relation.

• We showed that simple algebras are isomorphic to full matrix algebras
over a division ring, these in turn correspond with universal relations.
Semisimple algebras correspond with direct sums of universal relations (up
to conjugation).

• A nilpotent algebra corresponds to a relation with the property that every
relation chain a ... c terminates. The nilpotent rank is an upper bound on
the length of relation chains.
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Appendix B

Parabolic Matrix
Subalgebras

The final class of matrix subalgebras we wish to consider are the parabolics.
Parabolic subalgebras are closely related to semisimple subalgebras, as we will
see. There are also a number of relations between their dimension sets and the
methods we can use for computing and estimating them.

B.1 Flags and Stabilizers

Definition B.1. A flag of a vector space V is an ascending series of subspaces
0 ⊂W0 ⊂ · · · ⊂ V . We sometimes say a flag of a vector space is a flag on V .

Example B.2. The family of subspaces { 0 }∪{Wi |Wi = span { e0, · · · , ei } }
is a flag on V called the standard flag where each ei is a standard basis vector.

A proper flag will terminate in the whole vector space V . For our purposes
it will be useful to relax this requirement and allow ourselves to consider “near
flags” that do not necessarily end with V . Near flags can be thought of as flags
of subspaces of V .

to-do: is this still the right definition of a near-flag?

Definition B.3. The stabilizer of a subspace W is the set

SW = { | wM ∈W ∀w ∈W, M ∈Mn(k) } .

That is, the set of matrices whose action preserves W .

Remark B.4. When considering matrices acting on a vector space we will
always assume the action to be on row vectors, that is, matrices act on vectors
on the right under the normal matrix multiplication.
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The stabilizer of a subspace is a subalgebra of Mn(k), it is closed under scalar
products (as the subspace is closed under scalar products), if M1w ∈ W and
M2w ∈W then (M1 +M2)w = M1w+M2w ∈W as subspaces are closed under
addition and M1M2w = M1(M2w) ∈W by associativity of the matrix product.

The stabilizer of a flag is simply the intersection of the stabilizers of its
subspaces, that is, the set of matrices whose action preserves each subspace of
the flag.

Definition B.5. The stabilizer of a flag is called a parabolic subalgebra. The
stabilizer of a near-flag is a near-parabolic subalgebra.

Example B.6. • The subalgebra of upper-triangular matrices is the stabi-
lizer of the standard flag, and thus a parabolic subalgebra.

• The subalgebra A =

 ∗ ∗ ∗0 0 ∗
0 0 0


is not a parabolic subalgebra, while it stabilizes a flag it is not the stabilizer
of one, only a subset of it.

• The subalgebra A =

 ∗ ∗ ∗0 ∗ ∗
0 ∗ ∗


stabilizes the flag { 0 } ⊂ { e2, e3 } ⊂ { e1, e2, e3 } = V .

Parabolic subalgebras are related to semisimple subalgebras, we can think of
constructing a parabolic subalgebra from a semisimple subalgebra by filling in
all the zeros above the diagonal of the semisimple subalgebra with ∗. (In fact
parabolic subalgebras are the normalizers of semisimple subalgebras).
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Appendix C

Code Used

Haskell code used in the proof of Theorem 5:

import Data.List

-- Find the greedy representation of a

-- natural number by a sum of squares

greedy :: Int -> [Int]

greedy 0 = []

greedy n = k : greedy (n - k^2)

where k = (floor . sqrt) (fromIntegral n)

-- Greedy weight

gw :: Int -> Int

gw = (sum . greedy)

-- Theorem 5 condition

hypothesis :: Int -> Bool

hypothesis n = (fromIntegral (gw n)) <= sqrt (2 * (fromIntegral n))

-- Find the integer x < n such that the condition

-- h holds for any value greater than x (but less than n)

holdsAfter :: (Int -> Bool) -> Int -> Int

holdsAfter h n = head $ filter (not . h) [n, (n - 1)..1]

argmax :: Ord b => (a -> b) -> [a] -> a

argmax f xs = maximumBy (\a b -> f a ‘compare‘ f b) xs

main = do

let b = holdsAfter hypothesis 7979

let g = argmax gw [1..b]
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putStrLn $ "Hypothesis holds for m >= " ++ (show b)

putStrLn $ "Maximum GW(m) for m < " ++ (show b) ++

" is GW(" ++ (show g) ++ ") = " ++ (show $ gw g)
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