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ABSTRACT

V isualizations on the web are used to communicate information to a wide range of audiences.
However, there exists no widely accepted method for visualization creators to understand
how an audience engages with their work. To address this, we propose using passive

evaluation, where user interaction with visualizations is logged, and later explored by the creator.
ReVisIt is a tool that captures user interactions with a visualization, processes them, and displays
them in a dashboard. To evaluate ReVisIt, we conducted several interviews with visualization
creators. We concluded that a tool like ReVisIt would be valuable to creators, and there are
several opportunities for future work in this area.
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1
INTRODUCTION

Interactive visualizations are becoming increasingly prevalent on the web. The growing popularity

of JavaScript, and the active development of tools for visualization creation, such as D3, makes

it easier than ever for people to publish visualizations on the web. Visualization creators range

from professional designers at news organizations, to hobbyists, and have diverse goals. They

may wish to communicate a particular message through their visualizations, or they may want

to enable users to freely explore data sets to reach their own insights. Nevertheless, visualization

creators currently do not have an effective method of collecting feedback from their audiences

once their visualization is published. This makes it hard to determine if they are meeting their

goals. Some existing tools, like Google Analytics, capture user information at the webpage level,

but they do not capture any user interaction data relating to the visualization. Visualization

creators can survey their audience manually to gather feedback, but surveys require a great deal

of time and effort to set up. Additionally, due to possible bias, these surveys may yield results

that are not representative of the entire audience. Visualization creators can also ask their peers

for feedback, but these peers are often experts in their respective fields, have similar knowledge

as the creator, and therefore may have very different perspectives than the target audience.

Passive evaluation is a more ideal alternative to these options, and consist of two parts. The

first involves directly capturing and logging users’ interactions with visualizations. This can be

done automatically, and does not require extra effort on the part of the creator or audience. The

second part of passive evaluation involves processing the logged interactions and presenting

the data so visualization creators can gain insights about their audience. The main issue with

passive evaluation is that there are no widely-accepted tools suitable for capturing interactions

at the visualization level.

This project focused on addressing this unmet need of visualization creators. We researched

ways to enable passive evaluation of visualizations published on the web. Specifically, we had

1



CHAPTER 1. INTRODUCTION

three research questions:

1. What are the current goals and working contexts of visualization creators?

2. How can valuable data regarding audience interactions with visualizations be captured

efficiently?

3. How can user interaction data be visualized to help visualization creators understand their

audience?

To answer these questions, we took three steps. First, a thorough literature review provided

background on similar work. Next, through an iterative design process we developed a prototype

tool, ReVisIt, which logs and re-visualizes users’ interactions with visualizations on the web.

Finally, we conducted interviews with visualization creators to learn about their goals, and how a

tool like ReVisIt might be able to help them achieve these goals. These actions led to three main

contributions:

1. A flexible logging system that can easily be added to a visualization on the web to capture

user interactions with individual visualization elements.

2. A dashboard for visualization creators that re-visualizes logged interaction data with

interactive, exploratory charts.

3. Feedback from interviews with visualization creators, an understanding of their goals in

creating visualizations, and how re-visualizing users’ interactions could help them achieve

their goals.

2
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2
BACKGROUND

Data visualizations have become a vital part of communicating information to a large audience.

Over the years, they have become more complex and unique than ever. Nevertheless, the means

by which creators and visualization audience members interact has remained the same. Currently,

after a creator makes a visualization, they have no knowledge as to how an audience interacts

with their work, as shown in Figure 2.1. Bridging the gap between a creator and the visualization

audience members is important so that creators can examine how audience members are engaging

with the visualization and can identify ways to improve the visualization to fit audience needs.

As an example, when developing PROACT (PROgnosis Assessment for Conservative Treatment)

[1], a personalized health risk communication tool, the development team looked to its users

when determining how to best design the product. Given the complexity of the subject matter,

tailoring the visualizations of the tool to fit the audience of prostate cancer patients and doctors

was difficult without examining feedback from them. Just as PROACT required user data to

evaluate the visualizations of the product, similar tools used to communicate information to an

audience require evaluation to produce the best end result.

Figure 2.1: Currently, interactive visualization creators create a visualization, audience members
then interact with said visualization, and there is no further connection between the creator and
the audience. The creator has no way of understanding how an audience engages with their work.

3



CHAPTER 2. BACKGROUND

2.1 Evaluation of Visualizations

When designing a visualization, or a system that uses visualizations, evaluation is pertinent in

determining its validity. However, due to the complexity of many visualizations, evaluation can

become difficult. For this reason, models and techniques have been created to break down this

intricate problem and help designers identify issues and create methods of assessing and solving

said issues.

One way to evaluate a visualization design’s validity is to look at different parts of the system

and how they interact with each other. Tamara Munzner’s evaluation technique, the Nested

Model, explores four different layers of a system: domain problem characterization, data/operation

abstraction design, encoding/interaction technique design, and algorithm design. Issues within

each layer inevitably cascade into layers downstream, as indicated by the arrows in Figure 2.2.

The potential threat to the validity of the system, as well as how to validate this problem, of each

layer is shown in Figure 2.3. This model highlights key points of interest designers should look to

when evaluating their data visualization [2].

Figure 2.2: The Nested Model by Tamara Munzner shows that a visualization’s design’s validity
can be evaluated by examining different parts of the system. Issues within each layer of the system
affect other layers [2].

Munzner’s model works to explain a method for evaluating a visualization, this can then be

applied to specific scenarios for understanding visualizations. Lam et al. lay out three scenarios

for understanding visualizations. They are as follows: Evaluating User Performance, Evaluating

User Experience, and Evaluating Visualization Algorithms. Each scenario has a different goal

to assist practitioners in properly evaluating the different parts of a visualization. For example,

Evaluating User Performance looks to assess how certain features affect the performance of

system users. Methods within this scenario could include controlled experiments, or simply field

logs that capture user’s interactions behind the scenes. Field logs provide value through the large

number of interactions and observations that can be collected, and the ability for users to use the,

system in a natural environment rather than in a lab [3].

There have been several attempts of using this method of field logs to evaluate a user’s

interactions [4][5][6]. One specific example is the logging of analyst interactions with a data set

to determine the analyst’s interactions. In this study, researchers tasked participants with a text

4



2.2. CONTEMPORARY EVALUATION SYSTEMS

Figure 2.3: The possible issues in each layer of Munzner’s model are shown above. The validations
which can prevent these problems are listed under the corresponding threats within the layers.
These threats and validations should be considered with evaluating a visualization. [2].

analysis task and recorded their interaction logs. These interaction logs were then processed

to create visualizations the represent the participants’ actions. Through these visualizations

of participant interaction logs, researchers were able to understand participant’s interests and

strategies when they analyzed text[7]. While this was a closed study with controlled user tasks,

it provides evidence that similar interaction logging tools can aid in the understanding of an

audience of a visualization.

2.2 Contemporary Evaluation Systems

While there are systems in use today that provide analytics on user behavior on the web, they

are not without their shortcomings. One of the most popular of these systems is Google Analytics.

Google Analytics provides developers with statistics on the users who visit their sites, with

information including device, operating system, and location. It also provides an overview of

the pages users visit, and visualizations of how users navigate between pages. With just a few

lines of code developers can integrate Google Analytics into their site, providing them with this

page and site level data on user interactions, visualized in many different interactive charts.

Google Analytics also allows developers to specify events to track, such as users selecting certain

elements on the page. However, this requires extra coding for each event, making it unsuitable

for collecting large amounts of interaction data at a visualization specific level.

5



CHAPTER 2. BACKGROUND

Figure 2.4: Google Analytics provides a detailed audience overview.

Two other popular systems include Adobe Analytics and Chartbeat. While they have slightly

different features, they share the same purpose of capturing and displaying user interaction data

at mainly a site or page level. While they could be used to collect data on user interactions with

specific items of a page, just as a visualization, this would require substantially more coding on

the part of the developer.

Figure 2.5: Adobe Analytics provides details on audience behavior.

6



2.3. PASSIVE/IMPLICIT EVALUATION

Figure 2.6: Chartbeat provides details on different user segments.

Overall, these are very useful platforms for capturing how users interact with a website, and

can help web designers develop meaningful insights about their audience [8][9][10]. However,

they are too general for visualization creators. Configuring either of these tools to capture user

interaction data with potentially hundreds of small chart elements on a page would be impractical,

and these tools would likely not be able to summarize the data collected in a way that produces

meaningful insights.

2.3 Passive/Implicit Evaluation

As explained by Lam et al., tracking a user’s interactions with a system allows the assessment of

how certain features affect user performance. One efficient way to gather this data is through field

logs, which allow the user to use the system in a natural environment while their interaction data

is tracked behind the scenes [3]. Once the information regarding the user’s session is recorded,

a developer can analyze the data and assess any changes that should be made to improve the

system. The passive form of evaluating the user can be informed by Human-Computer Interaction

technology.

2.3.1 Logging Interactions in Human-Computer Interaction

There are several systems that have been developed in attempt to capture user interaction data

and visualize it in a way that makes it simple for creators to gain insights on user behavior.

One is UsaProxy [11][12][13]. UsaProxy, as shown in Figure 2.7, sits in between the developer’s

server and the client, and modifies the HTML pages served to capture user interaction data.

This includes events for page loading and unloading, resizing, changes to focus, mouse clicks,

mouse movements, scrolling, and key presses. While this system does not require the developer

to write code to track these interactions, or require the client to run any specific software, the

7



CHAPTER 2. BACKGROUND

amount of data collected is very large and cannot be well tailored to the analyst’s needs. With

UsaProxy, analysts would manually have to filter the data after it is collected based on what

they are interested in learning. UsaProxy also does not provide any way to visualize the data it

collects, making it difficult for creators to explore the data and draw insights without already

having an idea of what to look for. While collecting user interaction data is simple with UsaProxy,

analyzing and visualizing it is not.

Figure 2.7: UsaProxy modifies HTML pages requested by the client, in order to capture and log
interactions on those pages. Processing of those logs must be done manually [12].

One system that visualizes click stream data is WebQuilt [14]. Like UsaProxy, WebQuilt uses

a proxy-based approach to collecting user interaction data. WebQuilt goes beyond just logging the

data and constructs a graph where nodes are pages users visit, and edges represent transitions

between pages. The graph utilizes size and color to indicate the frequency a path was taken and

how long users spent on a page between transitioning. An example of this is shown in Figure

2.8. With this type of data display, analysts are able to view this data at an aggregate level,

or filter it to look at a specific group or individual users. The graph allows analysts to easily

discover navigation patterns, and identify areas of interest, such as which pages most captured

user’s attention. While these are meaningful insights, WebQuilt only captures page-level data.

Developers are unable to track user interactions with specific elements on the page, which would

allow for a more detailed analysis of user behavior.

8



2.3. PASSIVE/IMPLICIT EVALUATION

Figure 2.8: WebQuilt processes interaction logs to visualize how users navigate between webpages.
It does not reveal anything about how users interact with each individual page [14].

2.3.2 Re-Visualizing Logged Interactions with Visualizations

In order to understand how a user interacts with their work, a visualization designer must

first be able to analyze the interactions directly related between the user and the visualization

interface. This can be achieved by logging the user’s interactions, such as mouse movements

or keyboard presses through a proxy-based approach to logging a users interactions [12][14].

However, when creating said logger, the needs of the designer must be taken into account.

Han et al. worked to determine what interaction logs should include in order to provide

designers with the best tool to understand logging data surrounding their work. They found

that a system must meet certain requirements. First, the system needs to be able to capture

events and organize the most relevant of said events. The system must provide visualizations

that can be configured to fit the designer and their work, since all visualizations are not the

same. Additionally, the system should have the ability to be applied to a variety of visualization

engines [15]. A system with these tools is a powerful asset to any visualization designer. Given

that visualizations are becoming more complex than ever, understanding users interactions

and gathering feedback from the interactions is a key part in refining the wide scope that is

visualization implementations to fit a target audience.

9
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METHODOLOGY

The current process surrounding data visualizations includes the creation by the creator and the

interactions by an audience. As shown in Figure 3.1 in black, once visualizations are made, the

creator has no association with the audience of their visualization. This current process denies a

creator the ability to gather feedback from their audience to allow for improvements on future

work. With ReVisIt, a passive evaluation visualizer, a creator is able to learn from their audience

by viewing how they interact with their work. Indicated in red in Figure 3.1, ReVisIt connects

the creator to their audience by logging the audiences’ interactions with the visualization and

then visualizing this data in a dashboard.

Figure 3.1: The current cycle of visualization creation is limited to the audience interacting with
the visualization and the creator creating said visualization. There is currently no widely accepted
mechanism for the creator to see how user interact with that visualization. The addition of the
ReVisIt system, in red, would close this gap and enhance the cycle.

10



3.1. REVISIT LOGGER

3.1 ReVisIt Logger

As stated by our first research question (What are the current goals and working contexts

of visualization creators?), visualization creators have goals they set to achieve through their

visualizations. However, as stated above, there is currently no association between the audience

and creator of a visualization, thus making these goals nearly impossible to achieve. In order to

close this gap, we propose logging the interactions the audience has with a visualization to be

later analyzed by the creator. ReVisIt would be a system that could track user’s interactions with

a visualization and present this data to the creator is a comprehensive way. Figure 3.2 illustrates

the process by which the audience and creator use ReVisIt. This section covers the basic technical

knowledge of how the audience interacts with the visualization, how that interaction will be

logged, and how that data will be analyzed.

Figure 3.2: The interactions users have with a visualization can be tracked and logged. The
ReVisIt Logger captures these interactions and looks to answer our second research question (How
can valuable data regarding audience interactions with visualizations be captured efficiently?).

3.1.1 Tracking User Interaction with the HTML Tree and Webpage Event
System

The modern web, Web 2.0, is reliant on user interaction and uses an event based system to permit

and respond to these interactions. Each click, key-press, and mouse movement is referred to

as an event. Events by a user can be recorded and logged through JavaScript code [16]. Event

listeners, also known as event handlers, detect when specific events occur and run a block of

code at the time the event occurs [17]. Using this event system present in all modern browsers

with JavaScript event listeners, particular user interactions surrounding specific elements of a

webpage can be logged.

An event listener contains information regarding the type of event that has occurred, and the

element of the webpage with which it is associated. This information allows one to only record

11



CHAPTER 3. METHODOLOGY

predefined user events with specific webpage elements. This information can be logged as a data

entry to learn how the user is interacting with the webpage [13]. While this is not the only way

to log user interactions,[18] it can provide sufficient data with low associated time and resource

costs.

To track interactions with specific elements of a webpage, we use the element tree structure

that is present in each webpage. The HTML code that is run to create a webpage can be considered

a text document that defines a set of elements that the browser then interprets to display the

visual content of the webpage as seen by the user. In HTML, each element defined belongs to

a parent element, thus forming a tree-like structure. At the root of the tree is the Document

element. Event listener, as described above, can be assigned to one or several of these elements.

Using this tree structure, we can assigned an event listener to an element and its corresponding

children thus allowing us to create multiple listeners on an entire branch of the tree with minimal

code.

3.1.2 Interaction Event Stream Data Organization

Logging the interaction of a user through event listeners provides a collection of individual

data points which is meaningless without the context provided by each other. An event stream

data structure and techniques for analyzing and sorting that structure allow for a meaningful

conclusion to be drawn from these data.

Figure 3.3: Two events are captured, mouse-enter and mouse-leave. These are combined with the
time between them to make a single hover event.

The data generated when logging events through event listeners are data points gathered at

the time an event takes place. These data points can be organized in chronological order to form

an event stream. An event stream gives more meaning to the data by putting them in context of

each other to inform the reader. For example, look at Figure 3.3. Two event listeners are placed

on Element1. One is triggered when the user moves the mouse onto Element1 and the other is

triggered when the mouse is moved away from Element1. Analyzing these log entries separately

would not be as insightful as viewing them in chronological order relevant to each other. By

viewing them together, one can infer more about the user’s actions. In this example, an analyst

could infer that the time between the user moving the mouse to and from Element1 was spent

hovering it. This not only gives the action of the user at that time, but the user’s location on the
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webpage as well. Using this logic, one can find patterns in the log data to better understand user

behavior surrounding certain elements.

Once data is collected into an event stream it must be analyzed and organized to make make

the information readable and valuable to a human user. Many methods have been proposed to

make this process both effective and efficient. Most involve using a computer to sift through the

large data sets created by logging event-based data and combining known information about the

data set with data mining and pattern finding to process and analyze the data. Several previous

works will help inform decisions in this area of the project, including: what types of patterns and

sequences are important [19], dealing with the noise and inconsistency of real-world generated

data [20][21], categorizing and ranking event importance to understand user interactions [22],

and techniques to visualize the large data sets [23] [19] [22] [24].

3.1.3 Using Node.js to Build the Logger

We implemented the client-side logger as a Node.js module. Node.js is a run-time environment

that allows JavaScript to be run on any platform [25]. A node module is a JavaScript library

that can be imported into any Node.js program [26]. Node modules can be easily published to

NPM, the world’s largest software registry, containing over 800,000 JavaScript packages [27].

This allows code to be easily distributed to developers all over the world. In our case, if ReVisIt

evolves into a stable platform and we decide to publish it, visualization creators would be able

to install our logger in a simple, standard way. We also used the Node.js library Browserify [28]

to compile our Node.js logger and create a second version that is a standard JavaScript library,

compatible with all web browsers. This allows our logger to be included in any webpage.

3.1.4 Code to Log Events

One of our goals when creating the ReVisIt was to make the client-side logger simple to set up and

flexible for visualization creators. It takes a few lines of code to add our logger to a visualization:

1 // any code required to create the visualization should be placed first
2 var logger = new RevisitLogger('96858 cd7-b4b4-44a3-b654-727f6cc7714b ');
3 logger.logEvents('vis', ['vis-element ']);

Once any code used to create the visualization finishes executing, a logger object is instanti-

ated. 96858cd7-b4b4-44a3-b654-727f6cc7714b is the unique id of the visualization, generated

on the server side. The logEvents method is then called to attach event listeners to visualization

elements. The first argument, vis, is the id of the root visualization element. The second argu-

ment is an array of classes of elements to log events for. The full code that shows how the logger

logs events is in Appendix A.
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3.1.5 Scalability and Cost of the ReVisIt Logger

The logging module of the ReVisIt system that is used to collect user interactions was built

with scalability and cost in mind. Rather than tailor this logger to certain visualization types,

we decided to give ReVisIt the ability to be applied to a range of different visualizations. This

logger was designed to work with any HTML system by taking advantage of events, classes, and

recursion down the HTML element tree to combat scalability issues. We also worked to reduce

the cost of ReVisIt. The term ‘cost’ in this case would include network bandwidth, resources

cost on the client browser, and resource cost of the collection system. While these factors can be

controlled for the closed ReVisIt system, the unknown environmental factors of ReVisIt users,

such as client browsers and network bandwidths, could limit the amount and type of data the

logger could collect. Due to these potential restrictions, the ReVisIt logger only collected a limited

set of data for each user event when logging user interactions. Included in this collected data

is the timing and type of each event. While this set of raw data is limited, further analysis and

engineering allow for these data points to inform deep analysis of user interaction with almost

any HTML-based visualization.

3.2 ReVisIt Server

Once the user interaction data has been logged, it must be stored, analyzed, and sent to the

dashboard where it will be presented to the creator. This part of the ReVisIt process is shown in

red in Figure 3.4. This section discusses the process by which the server was created and how it

analyzes the data captured by the logger.

Figure 3.4: The data collected by the Logger must analyzed and saved before it can be presented
in the dashboard. The ReVisIt Server processes the Logger data and saves it to be presented in the
dashboard.
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3.2.1 Node.js Server

We used Node.js for our server that processes logged data and serves it to the visualization

dashboard. Using Node.js provides several advantages. First, it can perform input/output (I/O)

asynchronously, which allows for data to be read and written without blocking the execution of the

rest of the program [25][29]. Second, it is flexible in that there is no single right or preferred way

of implementing functionality [29]. Node.js servers can be deployed on many different platforms,

connect to any type of database, and be heavily customized according to requirements. This allows

the ReVisIt server to be modified as needed to scale effectively and handle larger number of users

and data. Lastly, due to the popularity of NPM, there are thousands of libraries available to us

to simplify our development process. For example, we used the library Express, a lightweight,

extendable server framework [30], when creating the ReVisIt server. Express is among the most

popular node modules, and greatly reduces the amount of repeated code required to set up a

functional server and RESTful API [31].

3.2.2 Storing Data

The ReVisIt server saves data in JSON schema, as this is a standard format for storing and

transferring data. JSON is also easy to work with and manipulate with JavaScript. Since this

project is a prototype, we did not use any formal database and simply saved this data in JSON

files. In order to scale ReVisIt effectively, a database service would need to be incorporated, but

this aspect was not necessary to evaluate the value of our system with a limited number of

users. When deciding to store data in JSON files rather then a database, we recognized that

future developers on this project would have more time to research the pros and cons of different

services. We did not want to implement a feature that would restrict future decisions. For these

reasons we concluded that using a database was currently outside the scope of our project.

3.2.3 Server-side Processing

The ReVisIt server processes the raw interaction logs of a visualization’s audience. This processing

includes calculating metrics based on the interactions of each audience member, and formatting

the data so that it can be displayed in a concise way in the ReVisIt Dashboard. These metrics

include calculating overall summary statistics, such as number of sessions, number of events,

total duration of all interactions, and the averages for number of interactions per user and

interaction duration. Additionally, the counts of sessions based on device type: mobile, tablet, or

desktop are calculated. These statistics give visualization creators a general overview of their

audience, and give them baseline metrics that they can use to compare different visualizations

they create.

1 {
2 "numSessions": 8,
3 "totalNumEvents": 2097,
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4 "totalDuration": 631415 ,
5 "averageNumEvents": 262.125 ,
6 "averageDuration": 78926.875 ,
7 "stdDevNumEvents": 137.67086785933637 ,
8 "stdDevDuration": 53362.77582316695 ,
9 "devices": [

10 { "type": "mobile", "count": 0 },
11 { "type": "tablet", "count": 0 },
12 { "type": "desktop", "count": 8 }
13 ]
14 }

Listing 3.1: Summary statistics give an overview of the audience. In this example, 8 users

interacted with the visualization, all on desktop, for approximately 1.5 minutes on average.

To help a visualization creator understand what parts of their visualization captured their

audience’s attention, the server calculates element-based statistics, including the number of

interactions and duration of interactions for each individual element. These computed statistics

are then attached to the element information captured by the logger, including the HTML element

type, and any id or classes the visualization creator assigned to it. With meaningful id names for

each elements, these statistics allow a creator to easily identify what parts of the visualization

the audience interacts with.

1 [
2 {
3 "elementId": "element227",
4 "id": "Worcester Polytechnic Institute",
5 "className": "college",
6 "nodeName": "circle",
7 "numInteractions": 23,
8 "interactionDuration": 64875
9 },

10 {
11 "elementId": "element1",
12 "id": "Stanford University",
13 "className": "college",
14 "nodeName": "circle",
15 "numInteractions": 17,
16 "interactionDuration": 6636
17 },
18 {
19 "elementId": "element4",
20 "id": "Columbia University in the City of New York",
21 "className": "college",
22 "nodeName": "circle",
23 "numInteractions": 15,
24 "interactionDuration": 108163
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25 },
26 ...
27 ]

Listing 3.2: Element statistics allow creators to see what pieces of the visualization users

interacted with most. In this example, more users interacted with the element representing

Worcester Polytechnic Institute than the elements representing Stanford or Columbia.

The most in depth statistics calculated are user session statistics. For each session, the

number of interactions, duration, device type, and the processed event log is recorded. This

log is mostly the same as the raw event log, but we take into account that mouse-enter and

mouse-leave events are really just start and ends to a hover interaction, as described in 3.1.2,

therefore the duration between these types of events is calculated and considered a hovering

event. Additionally, we use a Node.js library, node-random-name [32], to generate unique but

random names to assign each user session. While not necessary, we believe it allows visualization

creators to more easily identify, compare, and discuss different users of interest when analyzing

the information presented in the dashboard.

1 [
2 {
3 "session": "6b593c37-4688-4ee6-a927-853a4955aeee",
4 "userName": "Abraham Samyn",
5 "uniqueness": 0.6862184966321876 ,
6 "percentile": 25,
7 "numEvents": 296,
8 "startTime": 1549492518000 ,
9 "endTime": 1549492641407 ,

10 "duration": 123407 ,
11 "device": "desktop",
12 "events": [
13 {
14 "type": "hover",
15 "timeStamp": 3496.400000003632 ,
16 "endTimeStamp": 3512.9000000306405 ,
17 "absoluteTime": 1549492518000 ,
18 "endAbsoluteTime": 1549492518013 ,
19 "element": {
20 "id": "Chamberlain College of Nursing-Florida",
21 "className": "college",
22 "nodeName": "circle",
23 "elementId": "element213"
24 },
25 "x": 360,
26 "y": 146,
27 "duration": 16.500000027008355
28 },
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29 ...
30 ]
31 },
32 ...
33 ]

Listing 3.3: User session statistics allow creators to compare the interaction patterns of

different users.

Session statistics also include a metric we call Uniqueness, a number that represents how

unique that session is compared to all the others. This metric is based on which elements a

user interacts with, and for how long. A low value, close to 0, indicates the interaction pattern

is similar to the members of the audience, while a high value indicates the pattern is atypical.

The process for calculating uniqueness is published in “Patterns and Pace” by Feng, Peck, &

Harrison [33], and is derived from the TF-IDF algorithm. The code can be found in Appendix B.

A Uniqueness score per audience member allows visualization creators to select and view the

interaction sequence of a session based on how similar or different it was to others. Creators can

then begin to develop an idea of what the interaction pattern of a typical user looks like, as well

as identify what interaction patterns can be considered outliers.

Finally, with the ReVisIt server also calculates binned session statistics. For three statistics

(uniqueness, number of interactions, and duration of interactions) we group sessions into equally

sized bins, and record the count of sessions that fall within each bin. This allows visualization

creators to see how sessions are distributed with regard to these three metrics and whether the

users are distributed normally, or skewed in some way.

1 {
2 "uniquenessDistribution": [
3 {
4 "numSessions": 3,
5 "values": [
6 0.6726970117321406 ,
7 0.6862184966321876 ,
8 0.7153233679496417
9 ],

10 "lowerBound": 0.6726 ,
11 "upperBound": 0.724 ,
12 "name": "0.6726 -0.724"
13 },
14 ...
15 {
16 "numSessions": 2,
17 "values": [
18 1.0351445704974225 ,
19 1.0835451657652708
20 ],
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21 "lowerBound": 1.0322 ,
22 "upperBound": 1.0836 ,
23 "name": "1.0322 -1.0836"
24 }
25 ],
26 "numInteractionsDistribution": [
27 {
28 "numSessions": 2,
29 "values": [
30 106,
31 117
32 ],
33 "lowerBound": 106,
34 "upperBound": 159,
35 "name": "106 -159"
36 },
37 ...
38 {
39 "numSessions": 1,
40 "values": [
41 537
42 ],
43 "lowerBound": 484,
44 "upperBound": 537,
45 "name": "484 -537"
46 }
47 ],
48 "interactionDurationDistribution": [
49 {
50 "numSessions": 2,
51 "values": [
52 24411,
53 30703
54 ],
55 "lowerBound": 24411 ,
56 "upperBound": 43864 ,
57 "name": "24411 -43864"
58 },
59 ...
60 {
61 "numSessions": 1,
62 "values": [
63 180041
64 ],
65 "lowerBound": 160587 ,
66 "upperBound": 180041 ,
67 "name": "160587 -180041"
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68 }
69 ]
70 }

Listing 3.4: Binned session statistics allow creators how visualizations are distributed with

regard to uniqueness, number of interactions, and duration of interactions.

3.3 ReVisIt Frontend Design

Creators that use ReVisIt will interact with the dashboard. This is considered the frontend of the

product since it is the part of the system that the user will interact with directly. The dashboard,

as shown in red in Figure 3.5, will host the information collected and processed by the ReVisIt

server. It is here that the visualization creator can view how their audience interacted with their

visualization. Through the use of this dashboard, visualization creators can attempt to determine

if their visualizations have achieved the goals of said visualization.

Figure 3.5: The final part of the Enhanced User Interaction Cycle is the ReVisIt Dashboard. This
dashboard hosts the logged interactions collected with the Logger so that interactive visualization
creators can analyze how their audience interacted with their visualization.

3.3.1 Using Five Design Sheets to Determine User Interface and
Visualization Designs

To plan out the interface and visualizations of ReVisIt we used the Five Design Sheet (FdS)

methodology. FdS uses low-fidelity prototyping to harness the rapid creation of ideas and designs.

The process is simple, first, write down ideas and filter, categorize, combine and refine, and then

question. This makes up the first sheet. The second, third, and fourth sheets are for sketching

out three different layout designs and focusing on alternative features. The fifth, and final, sheet

is the realization design, or the final concept [34].
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Throughout our design process, we completed several iterations of FdS. First, we completed

the activity individually to create possible designs for the ReVisIt user interface (UI). We first

used FdS to design the user interface, and then again to design the visualizations within the

interface. For the first sheet of our modified FdS, each team member individually sketched out

simple ideas. The first sheet results from the interface FdS session are shown in Figure 3.6. After

going through our individual ideas, we grouped similar concepts together and made another

"first sheet" as a group, as shown in Figure 3.7. As a group, we determined the interface design

should allow users to switch between their different visualizations within ReVisIt, organize their

visualization users, and it should display a main visualization with other visualizations available

to view.

Figure 3.6: For the first page of the Five Design Sheet process, team members independently
brainstormed features to include in the ReVisIt user interface (UI). These features included a
timeline of logged interactions, a menu displaying different visualizations to analyze, and multiple
visualizations displaying logged data.

Figure 3.7: After individual brainstorming, the group came together and aggregated similar
ideas for the ReVisIt UI. We determined the necessary features for the ReVisIt UI includes the
ability to switch between analyzed visualization, organization of visualization users, and one main
visualization with other visualizations displaying more data surrounding it.
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After identifying the main features that should be included in the interface, we proceeded

to Sheet 2. For this sheet we drew an interface design on a white board as a team. This design

consisted of a side panel listing the different projects a user may have in ReVisIt. The main

panel contained different visualizations displaying data regarding users of a ReVisIt user’s

visualizations. These would be displayed in a card format. This is shown in Figure 3.8.

Figure 3.8: The second sheet of the Five Design Sheet process is to begin sketching the design of
the layout which includes the key features from Sheet 1. For this design, the group sketched a side
menu containing different ReVisIt projects, and then multiple cards next to the menu containing
different visualizations that would display logged data.

The third, and final, sheet for designing the UI is shown in Figure 3.9. This design features a

large, main visualization in the middle of the dashboard and key performance indicators (KPIs)

surrounding it. These KPI’s would contain smaller visualizations or key numbers relating to the

users of a visualization. In the upper corner is a hamburger menu that would expand into a list

of other ReVisIt projects of the user.

After establishing the UI of the dashboard, we used the Five Design Sheet methodology

to determine the design of the main visualization and content of the KPI’s. Similar to the

process used when designing the UI, we first drew out the first design sheet individually and

then combined our shared ideas. The results are shown in Figure 3.10 and 3.11. As a team we

agreed that the KPI’s should contain information regarding the number of visits to elements

of a visualization, which elements were visited first and last, the duration of each visit, the

total number of users, and the uniqueness of the users. Here, a "visit" would be considered a

mouse-over or click of the user. The duration would be determined by the time between a mouse-in

and mouse-out of the element.

Once the information that should be presented by the visualizations was established, we

moved to FdS Sheet 2. The results are shown in Figure 3.12. The main visualization features a

timeline with different rows for each element of the analyzed visualization. Every time a user

interacts with an element, it is represented by a symbol in the specified row. The longer the event,

the larger the symbol. These user sessions would be organized by their uniqueness and filtered

by a drop-down menu above the visualization. Below the visualization there is a scroll bar that
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Figure 3.9: Similar to Sheet 2, Sheet 3 focuses on the design of the ReVisIt UI. this design includes
the side menu from Sheet 2, but can be collapsed on the side. The remaining UI space includes a
main visualization in the center with smaller, Key Performance Indicators (KPI) surrounding it.
We determined this was the best design to use fot the ReVisIt UI.

Figure 3.10: Another round of Five Design Sheets (FdS) was completed to determine the design of
the visualization of the ReVisIt frontend. Again, for the first sheet, each team member individually
brainstormed features to include. Some of these brainstormed features were a chart to display the
amount of time users spent on elements of the visualization, a timeline of interaction events of
users, and filters based on the device the visualization was viewed on and interaction event types.

would be used to show more events. The KPI’s of this design contain the most visited element,

the element with the longest visit duration, the element with the most first visits and element

with the most last visits, and the total number of user sessions.

Unlike the first FdS for designing the dashboard UI, the third sheet of this FdS set was built

upon the design from the second sheet with some minor additions. As shown in Figure 3.13, many

of the features from the second design sheet were kept in the third design sheet. For example, the
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Figure 3.11: After comparing ideas generated in the individual Sheet 1’s, the group came together
to narrow down features to be included in the visualizations of ReVisIt. These features included
Key Performance indicators to display information about what elements of the visualization users
visited, a list of user sessions, and a central visualization in the middle displaying a timeline of
user interactions.

Figure 3.12: Sheet 2 included a sketch of the ReVisIt visualization designs. The main visualization
included a timeline of user interactions with different elements of the analyzed visualization.
A ReVisIt user could choose which user session to view from a drop down above the timeline.
Surrounding the timeline were different KPIs that displayed different information such as the
most visited element, the element that was visited first the most, and the total amount of user
sessions.

main visualization is the same, as are the original KPI’s. Differences between the two designs

include a rearrangement of the KPI’s to group element information and user information, the

addition of a KPI to display the distribution of user uniqueness, and the addition of a way to filter

the data of the main visualization by device used.
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Figure 3.13: The final sheet for the ReVisIt visualizations designs was based off of Sheet 2, but
includes more details about user sessions and more flexibility for the ReVisIt user when analyzing
the data. Some of these new features are the distribution of uniqueness score of user sessions, and
filters that would change what user sessions are displayed in the timeline based off of what device
the user used to interact with the visualization.

3.3.2 Creating Prototypes for the ReVisIt User Interface

Figure 3.14: To provide a better idea of the potential final product of ReVisIt’s frontend, we created
a digital mock-up of the design from the Five Design Sheets. This mock-up incorporated features
from Sheet 3 of both FdS sessions. The differences include making the devices used by users a KPI
instead of a filter for the timeline, and displaying all of the user sessions on the timeline rather
than only showing on session at a time.

Prior to implementing the results of our FdS sessions, we needed to finalize the designs. To do

this, we created a digital mock-up of the ReVisIt UI. Since hand-drawn renditions of a design can

be difficult to fully envision, we decided to create a digital rendition of our drawings. This allowed

us to not only see a more realistic interpretation of the design, but also allowed us to easily make

changes and edit the design. With the power to quickly produce and examine multiple versions of
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the design, we were able to determine the best layout for the UI. An example of one iteration of

our digital mock-up is shown in Figure 3.14. While the final rendition of the ReVisIt dashboard

does not implement this color scheme or exact visualizations, having a digital rendition of what

the product should look like before implementing it was helpful during implementation. With

digital mock-ups created, we were ready to select what frameworks and libraries to use to start

coding and build the actual dashboard. Three of the main ones we used are React, D3, and

Semiotic.

3.3.3 Using React to Frame the ReVisIt Dashboard

React is a web development framework which was created by Facebook and released in 2013. It

was used as the framework for the [dashboard platform] of ReVisIt because it allowed for quick

development. React uses simple components, state restrictions, and its innovative life cycle to

allow for webpages to auto-update when given new information. This, along with continued active

support and improvements have allowed it to become a standard for UI in web development

in the past few years. Experience using the platform is becoming common, future development

easily possible. The quick development is helped by the quick setup for react and large amounts

of support modules available, including React Router. We used this package to allow our react app

to have different link locations and allow the user to use the back button. React made frontend

development quick and easy and provided consistency and support for future development [35].

3.3.4 Using D3 to Create the Main Dashboard Visualization

D3 is a JavaScript-based library for editing DOM elements. While it can be used to directly edit

DOM elements, its strength is binding data to functions to create visualizations on a webpage.

This gives developers and data scientists a powerful ability to create custom visualizations and

to adapt existing visualizations to new data sets. D3 is the core technology behind the main

visualization in the ReVisIt dashboard. It allows for custom visualizations to be paired to almost

any data-set. This flexibility allowed us to create powerful and adaptive visualizations with

plenty of room for further development and improvement. D3 has a large community and is still

receiving active support and development [36].

3.3.5 Using Semiotic Library to Implement Side Visualizations

Semiotic is another JavaScript visualization library, made specifically for React. It provides a few

standard chart components, providing an abstraction over how data is bound to visualization

elements. This makes it easier to work with than D3 when creating simple chart types. This is

also its main disadvantage; It makes it more difficult to customize visualizations. It is also a

newer library and does not have as large of a community as D3. Semiotic is used for the side
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visualizations of the ReVisIt dashboard, as those are standard bar charts and histograms, and do

not require as much customization as the main visualization [37].
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RESULTS

The resulting ReVisIt system features three components: the logger, the server, and the dashboard.

The features of these components and how they relate to the user and the analyze interactive

visualization are shown in Figure 4.1. The features of the ReVisIt dashboard, as well as the

evaluation of these features are discussed in this chapter.

Figure 4.1: Each component of the ReVisIt system key features that allow ReVisIt to be a passive
evaluation tool for interactive visualization users to use when analyzing the interactions of their
visualization’s audience.

4.1 ReVisIt Dashboard

The dashboard we created for ReVisIt aggregates the interaction data of a visualization’s audience

and presents it in a central event timeline with detailed information on user interaction sequences,

and smaller side visualizations that provide summaries of the data. This dashboard, shown in

Figure 4.2 also includes features such as filtering and highlighting items in the main visualization.
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The figures for this section include snapshots of a ReVisIt project that analyses the user sessions

of the Video Game visualization, shown in Figure 4.12.

Figure 4.2: The ReVisIt dashboard includes an event timeline of user sessions in the middle, user
and element summary charts on the side, key summary statistics, and an overlay visualization
that shows the location of elements that users interacted with on the analyzed visualization.

4.1.1 Timeline of User Interaction

The main visualization in the middle of the ReVisIt dashboard is the timeline. This visualization

is what creators will primarily interact with. As shown in Figure 4.3, this visualization aggregates

individual interaction events into an event timeline. Each rectangle represents an interaction of

a user on the analyzed visualization. Clicks are shown as orange bars and are given a minimum

width so that they are visible despite them being an instantaneous moment. The left side of

the bar is located at the actual time of the event. Hovers, shown in purple are comprised of two

events captured by the logger, mouse enter and mouse leave. These events are inherently tied

together and are therefore combined on the timeline to show as a single hover event over the

time that the hover occurred. Hovering over a rectangle of the event timeline displays a tooltip

with detailed information about that interaction, including the element interacted with, when

the interaction occurred, and how long it lasted. Figure 4.3 shows a ReVisIt user hovering their

mouse over an event on the event timeline. This specific event is a user hovering over element22

which represents the Wii Sports (2006) Wii data point of the analyzed visualization, as displayed

in the tooltip. In addition to the tooltip appearing upon hovering over this event, supplementary

events involving this element are highlighted in the event timeline by an increase in size. This

feature allows ReVisIt users to identify commonly interacted with elements between users of

the analyzed visualization. The y-axis of the timeline is used to show the two different modes

of the visualization. This first, as seen in 4.3, shows a single session, with each row a different
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Figure 4.3: The main feature of the ReVisIt dashboard is an event timeline that includes every
user session of users that interacted with the analyzed visualization. When an event on the timeline
is hovered over, more information regarding that event is shown.

element of the visualization. This views allows for easier views of a single user’s interaction with

the visualization. Analysis at this level can help identify problems and patterns that cannot be

seen from a wider view. This leads to the second timeline view shown in 4.4, where all sessions

for the visualization are shown. Each session is given its own row in the visualization and the

row label can be clicked on to show that session in greater detail. Individual users of the analyzed

visualization are listed with a randomly-generated name and their uniqueness score sorted from

most to least unique. This allows visualization creators to see what the interaction pattern looks

like for the average user, as well as atypical ones, and compare and contrast them. The randomly

generated names of each user are for identification purposes. As the timeline is meant to be

an exploratory visualization it will not provide easy answers out of the box. However, because

ReVisIt is targeted at visualization creators, some amount of experience with data exploration

can be assumed in the target users. There is a vast amount of information regarding the audience

of the analyzed visualizations and the timeline gives ReVisIt users the flexibility to find insights
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Figure 4.4: Each user session detailed on the main event timeline can be further analyzed after
clicking on the user’s randomly-assigned name.

from that data that are most relevant to them and their visualizations. A more rigid visualization

might be easier to use but would give less valuable insights.

4.1.2 Overlay Visualization to Show the Location of a User Interaction

A visualization that augments the data displayed in the main visualization is the overlay. This is

a screenshot of the original visualization created. When the visualization creator hovers over an

interaction in the main visualization, a point is rendered over the overlay visualization, showing

where that interaction occurred on the original visualization. This allows visualization creators

to see a more visual representation of a user’s interaction sequence. By hovering over a row of

interactions in the main visualization, they can see how those interactions occurred spatially in

the overlay visualization.

There are a couple limitations of the overlay visualization. First, there is no automatic way to

capture the screenshot of the original visualization. This is not something our Logger is able to

do. We had to manually take a screenshots and save them in a particular location on our server.

While our Logger is simple to add to any webpage and configure, unless we could figure out how

to incorporate screenshot capturing into our logger, uploading a screenshot would be more work

on the part of the visualization creator.

Second, the overlay visualization was only possible because all the users we collected data

from interacted with our visualizations on a single computer, so the screen size was constant. We

31



CHAPTER 4. RESULTS

knew the visualizations would be a constant size, so we were able to use logged mouse x and y

position to calculate where over the visualization the interaction occurred. With different devices

and screen sizes, the visualizations will not always be the same size or look the same. More work

will have to be done to figure out a robust solution for this that will work on any visualization

across devices. We discuss this further in Future Work.

Figure 4.5: In the bottom-right corner of the dashboard is the overlay visualization (shown on
the left). When a user event is hovered over on the timeline visualization (shown on the right), the
location in which the event occurred is highlighted in blue on the analyzed visualization.

4.1.3 User Summary Charts

To the left of the main visualization we have four user summary charts, shown in Figure 4.6. The

first, User Interaction Duration Distribution, is a histogram of how long users spent interacting

with the analyzed visualization. The second, User Uniqueness Distribution, is a histogram of

user uniqueness scores. The third, User Num Interactions Distribution, is a histogram of the

number of interactions each user did. The Last chart, Devices Used, is a bar chart showing

the number of users by device type, whether they were on a phone, tablet, or computer. These

charts allow visualization creators to get a general overview of their audience see how they are

distributed. In addition, the charts provide filtering functionality in the main visualization. When

the visualization creator clicks a bin or bar, the user sessions in the main visualization are filtered

to only include users that fall within that bin or bar. This is a useful feature, because it allows

visualization creators to compare how different segments of their audience interacted with their

visualization.
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Figure 4.6: To the left of the main event timeline are charts that summarize the different users of
the analyzed visualization. Hovering over a chart will reveal more information.

4.1.4 Element Summary Charts

On the right of the main visualization there are two element summary charts. The first, Most

Interacted with Elements, is a bar chart showing the top five elements that users interacted

with the most. The second, Longest Interacted with Elements, is a bar chart showing the top five

elements that users spent the longest time interacting with. These charts allow visualization

creators to understand which elements of their visualization most caught people’s attention. Also,
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when they hover over a bar representing one of the elements, that element is also highlighted in

the main visualization. This way, they can easily see which users interacted with it.

Figure 4.7: To the right of the ReVisIt dashboard’s main visualization are more charts that
summarize the interactions with elements of the analyzed visualization.

4.1.5 Summary Values

Underneath the element charts are some summary statistics, shown in Figure 4.8. These include

the number of users who interacted with the visualization, the total and average number of

interactions per user, and the total and average amount of time each user spend interacting.

These statistics give visualization creators a general overview of how users interacted, and gives

them a baseline which they can compare individual users to.

Figure 4.8: Below the element summary charts are key statistics regarding the audience of the
analyzed visualization and their interactions.
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4.2 ReVisIt Evaluation

To evaluate ReVisIt, we interviewed four data visualization creators. In the interviews, each

creator answered questions regarding their work and then was given a chance to interact with

ReVisIt and give their feedback. This section explains how we went about preparing for the

interviews and the results we obtained from them.

4.2.1 Collecting Sample User Interaction Data

In order to evaluate the value of our dashboard, we had to collect interaction data to process

and display in the ReVisIt dashboard. To do this, we first selected four different interactive

visualizations to have users interact with. The first, 255 Charts, displays 255 small line charts

showing the growth of various industries following the Great Recession. When users hover over

one of the lines, as shown in Figure 4.9, a graph pops up with more detailed information about

that industry and it’s growth at various points in time [38].

Figure 4.9: This visualization, 255 Charts, was used to collect sample user interactions to display
in the ReVisIt dashboard. 255 Charts is an interactive visualization that shows 255 small line
charts. When a user hovers over one of these lines, a graph appears next to the cursor that shows
more detailed information.

The second visualization, shown in Figure 4.10, we selected is called Metafilter, and displays

20 line graphs to visualize data from a social media site. Each graph shows the annual number of

blog posts that were written in a certain category on that site, an how it changes over time. By
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hovering over a point in any of the charts, users can compare the number of posts written in that

category at that specific time to that of all the other categories [39].

Figure 4.10: Another interactive visualization used to collect sample user interactions is referred
to as the Metafilter Visualization. This visualization shows 20 line graphs . When a user hovers
over one graph, the corresponding locations on the other graphs are also highlighted.

The third visualization we selected is called Colleges. As shown in Figure 4.11, it displays a

bubble chart, where each bubble represents a college. Hovering over an college shows information

about it, including its admission rate, annual cost, and median of earnings. The data displayed in

this visualization was taken from collegescorecard.ed.gov [40].

Figure 4.11: This interactive visualization, referred to as the Colleges Visualization, was also
used to collect sample user interactions. When a user hovers over a bubble of the bubble chart,
more information appears in a tooltip.
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The fourth visualization we selected is called Video Games, shown in Figure 4.12. It displays

a bar chart of the top 50 best selling video games ordered by year of release. Hovering over a bar

shows detailed information about the video game, including the exact number of units sold, year

of release, genre, platform, developer, publisher, and ratings [41].

Figure 4.12: The last interactive visualization used to collect sample user data is referred to as
the Video Games Visualization. When a user hovers over a bar of the bar chart, more information
regarding the specific data point appears in a tooltip.

We selected these four visualizations for a few reasons. First, 255 Charts, Metafilter, and

Colleges have been used in previous experiments, including ones that logged user interaction and

collected data that produced insightful results. Second, none of the visualizations are particularly

interesting or informative from a user perspective unless they interact with them to view more

specific information. This increases the chance that users we select to participate will interact

with the visualizations enough to produce a sufficient quantity and variety of data. Lastly, we

believed the subject of the visualizations, especially colleges and video games, would be interesting

to our participants, who are mainly college students. Again, we believed this would increase the

amount of interaction.

With our visualizations selected, we created a webpage for each, with our Logger library

included. We configured our logger to track interactions with the main elements of interest on

each visualization. In order to get accurate results, we decided to run the websites and server

to process the data locally on a single computer. All participants would use that computer to

interact with the visualizations. The participants we selected were all WPI students, as it was

easiest to get a large number of participants from this population. We ended up getting between
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eight and nine students to participate for each visualization. In the process of collecting data, we

realized students were not interested enough in Metafilter to interact with it enough to produce

useful data, so for the remainder of our evaluation we focused on the other three.

4.2.2 Interviews with Professional Interactive Visualization Creators

To answer our third research question (How can tools like ReVisIt help interactive visualization

creators understand their audience through visualized user interactions?), and evaluate ReVisIt’s

potential to be a passive evaluation tool for creators, we conducted four interviews with visualiza-

tion creators. These interviews consisted of questions regarding the interviewee’s current work

and evaluation processes, a demo of the ReVisIt interface, task-based questions regarding the

interface, and questions about their impression of ReVisIt. These questions were based off of our

research questions. The full interview protocol can be found in Appendix C.

4.2.2.1 Most Creators Have No Information About Their Audience

The first portion of the interview consisted of understanding the current goals and working

contexts of the interactive visualization creators we interviewed. Once we understood their work

and how they approach creating visualizations, we looked to understand how they were evaluating

their work. To do this, we asked questions such as "How do you currently measure whether your

visualization was successful in achieving your goals?" and "Are you currently tracking any data

regarding your visualizations after they are published?". The answers to these questions were

mixed among the interviewed creators. Half of the creators said they have Google Analytics,

but admitted that they barely use the service. The other half said they have no information

regarding their work once it is published. These answers show that there is no widely-accepted

mechanism for visualization creators to understand how users are reacting to their visualizations.

One consensus that all of the interviewees shred was that having more information about the

users and how they are interacting with the visualizations would be helpful.

4.2.2.2 Creators are Attracted to the Main Timeline Visualization

The next portion of the interview included an overview of the ReVisIt interface, a guided tour, and

task-based questions regarding the information presented in the interface. Using the data we

had collected from our sample visualizations, we set up a public version of the ReVisIt dashboard.

This allowed us to give our interviewees remote access to the ReVisIt frontend and understand

how it would work with realistic data. After the interviewee was familiar with the interface, we

asked them the following task-based questions to gauge how intuitive the ReVisIt interface is

and if new users would be able to use its features to properly analyze the data presented. The

purpose of these questions, shown in Table 4.1, were to mimic the types of tasks that ReVisIt

users would complete when analyzing user interactions through ReVisIt. Questions 1 and 5 are
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identifying tasks while Question 2 is comparing, Question 3 is summarizing, and Question 4

is finding similarities between attributes. How interviewees respond to these tasks helped us

understand the effectiveness of the ReVisIt interface.

Task-Based Question Interviewees’ Responses Summary

Q1 Can you identify which user had
the most interactions?

Half of the creator interviewees figured out
how to use the filter feature of the user sum-
mary charts

Q2

Can you describe the similarities
and differences of two users in
how they interacted with the vi-
sualization?

Most interviewees looked at how long users
spent interacting in total and how long on
each element of the visualization

Q3
Disregarding the uniqueness
scores, which user session ap-
pears to be the most unique?

Interviewees noted how long each users
spent interacting with the visualization in
total - usually they determined the shortest
user session was the most unique

Q4

When viewing all of the user ses-
sions in the main visualization,
how would you begin to describe
how this audience is interacting
with this visualization?

Interviewees tried to see what the users
were looking for and if they were just scan-
ning the visualization elements or taking in
the information presented

Q5 Which college was hovered over
the most?

All interviewees had a lot of difficulty an-
swering this question - they did not use the
side visualizations, or used the incorrect side
visualization to find the answer, or tried to
count the number of interactions for each
element on the main visualization timeline

Table 4.1: Task-based questions regarding the ReVisIt interface were given to visualization
creators during interviews. The responses of the interviewees when asked these questions in an
interview are shown next to each question.

How the visualization creators went about using the ReVisIt interface to answer these

questions led to important discoveries regarding the interface’s design. It became clear that

the creators were mainly focused on the main timeline visualization. Interviewees were able to

correctly interpret the information presented. It also became clear that the side visualizations

were not as easy to understand. Interviewees had a difficult time understanding how to use these

visualizations and were reluctant to utilize them when completing identifying tasks. This result

was unexpected and the team determined that improving these features should be top priority

for future ReVisIt iterations.
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4.2.2.3 Creators Believe ReVisIt Could Be Helpful, but It Is Not Intuitive

The final portion of the interviews involved getting the creator’s feedback concerning the practi-

cality of ReVisIt and their overall impression of the tool. One question we asked each creator was

“Would the data presented in ReVisIt be valuable to your work?". The overwhelming consensus

from the interviewees was that being able to see how the users interacted with visualizations

would be helpful. One creator even said “I would buy this product". While this reaction is op-

timistic for the future of ReVisIt and similar tools, the creators recognized that there are still

improvements to be made. When asked “What features of ReVisIt require improvement?", their

responses were mainly concerned with the user experience of the interface. It was clear from

the responses to the task-based questions that the interface of ReVisIt was not intuitive with-

out explanation. One creator suggested adding icons to better help ReVisIt users navigate the

dashboard features while another suggested having a key for the different colors used on the

visualizations. All of these recommendations were noted by the team and will be suggested to

future ReVisIt developers.

Overall, these interviews were extremely helpful for evaluating ReVisIt. Through them we

were able to recognize what features were most helpful to and identify what improvements

should be made to improve the user experience. Most importantly, the results of these interviews

highlighted the importance of a tool like ReVisIt to interactive visualization creators. Each of

the creators interviewed mentioned that being able to see the user interactions of their audience

would be valuable to their work because currently, there is no system that provides them that

capability.
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DISCUSSION

The interviews with visualization creators revealed that there is usefulness in a system like

ReVisIt. The interviewees had a mostly positive take on the prototype system. One of the common

themes of the interviews was that visualization creators currently do not have a system that can

track user interaction with visualizations at the level of ReVisIt. They may track how many users

see their visualizations, but this reveals nothing about how those users interacted with them.

The interviewees believed that the data collected by ReVisIt would be interesting to explore if

it was used in their own work. The feedback gathered in the interviews was not only helpful in

identifying the effective aspects of ReVisIt, but also the areas that have room for improvement,

and possible future additions that could enhance the system even more.

5.1 Important Aspects of ReVisIt

The interviews suggest that the ReVisIt dashboard displays data in a useful format for visual-

ization creators. When asking the interviewees questions about ReVisIt, and allowing them to

explore features of the dashboard in order to answer, we found that the two parts they tended to

look at were the center user interaction timeline visualization, and the overlay visualization. With

some explanation they seemed to be able to understand what the center visualization showed

regarding the users. They thought it was interesting to see how user interaction sequences

differed, as this is data they never had access to in their own work. They believed the overlay

visualization was an important piece of ReVisIt as well, as it allowed them to visualize how any

user interacted with the original visualization in an intuitive manner. The interviewees were

excited at the possibility of collecting this sort of data about their audience, and exploring how

they could use it to understand their audience and make more informed decisions when designing

visualizations.
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5.2 Areas of Improvement

While the visualization creators interviewees had mostly positive experiences with ReVisIt, the

interviews revealed some areas that could use improvement. The interviewees for the most part

did not interact with the side visualizations that showed key performance indicators. There

could be a few reasons for this. First, since the center visualization is much larger and more

detailed, it draws the most attention, as it should. Second, the data the side visualizations show

is not explained as clearly as it could be. Due to space constraints, not all the chart elements

are labeled clearly. The creator has to interact with the chart to see tooltips that display the full

information. Lastly, how the side visualizations connect to the center visualization is not the

most intuitive. As ReVisIt is a relatively new concept, the interviewees did not have experience

using similar systems or enough time in the interviews to fully understand ReVisIt’s features.

Although we believe using the side charts to filter users based on different metrics or highlight

particular elements is an important functionality, the visualization creators were not aware of

that functionality, and due to time constraints, did not learn it. These observations indicate a

couple things. While the data shown by ReVisIt and the functionality of ReVisIt are useful, the

interface could be redesigned to better draw visualization creators’ attention to those important

aspects. Additionally, more research could be done to obtain visualization creators’ ideas on each

specific piece or feature of ReVisIt, as opposed to the system as a whole.

5.3 Limitations

The interviews provided useful feedback on ReVisIt. However, as ReVisIt is just a prototype, and

these were just preliminary interviews, there are limitations to how much the interviews could

reveal. They revealed that there is potential in a system like ReVisIt, but this is based on the

visualization creator’s opinions. If the visualization creators were actually able to use ReVisIt in

their work, we would be able to obtain much more interesting data from how the visualization

creators actually used ReVisIt and what conclusions they made from that experience. This,

however, was outside the scope of our project. These interviews were a necessary precursor to

that type of process since they revealed useful information regarding what aspects of ReVisIt

were useful and what aspects could be improved. This information will be incorporated when

building the next version of the system. Overall, the interviews provided us with verification that

visualization creators would find the data collected by ReVisIt useful.

5.4 Future Work

As the development of ReVisIt is an ongoing process, there are several points of interest we

suggest should be worked on to further enhance the system.
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5.4.1 Improved Method of Generating the Overlay Visualization

With a couple lines of code, the ReVisIt Logger is able to automatically capture user interaction

with a visualization. The Server automatically processes that data, and the Dashboard uses it

to generate all the visualizations, with the exception of the overlay visualization. The reason

we cannot create the overlay visualization automatically is because the visualization the users

interact with could look different depending on what device they are using to view it with.

Depending on the size of the device, the x and y coordinates of the different elements could be

different for different users. We avoided this discrepancy when collecting data by having users

only interact using the same computer, and manually taking screenshots of the visualizations

to act as a background of the overlay visualization. More work should be done to find a better

solution for this. One possible solution is to take a screenshot of the visualization for each user

who interacts with it. Another would be to capture the HTML elements that make up the original

visualization, as opposed to just taking a screenshot. This approach would make it possible to

visualize a user’s interaction without needing the x and y coordinates of the interaction on the

webpage. However, this opens up the possible problem of taking too much bandwidth and client

performance. The overlay visualization represents a major project in itself in both research and

coding effort to find and implement the correct solution.

5.4.2 Improved KPIs and Side Visualizations

As explained before, the interviewed visualization creators did not interact with the side vi-

sualizations as frequently as expected. More research should be done to figure out what key

performance indicators would be the most useful for visualization creators to determine what

charts should be included in the dashboard. Additionally, more work should be done to make it

more obvious what each chart is showing and how they interact with the other visualizations. The

charts can be remade with D3 instead of Semiotic to allow for more customization and labelling.

5.4.3 Improved User Experience and Functionality

The interviews revealed that the user experience (UX) of ReVisIt could be more intuitive. It is

important to make the interface and UX comprehensive to new users since visualization creators

will have never used a tool with ReVisIt capabilities before. We suggest for more research to

be done into making the ReVisIt UX more intuitive for new users and redesign the interface

accordingly. Features such as more advanced filtering and sorting of users would likely be useful

for visualization creators, so long as the controls are intuitive.

5.4.4 Scalability

The current ReVisIt system is simply a prototype. It is suitable for demonstration purposes, but

far from being production ready. There are several things that need to be done before it can reach
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this level. The first thing would be storing the data in an actual database as opposed to JSON

files on the server. This would involve selecting a service or platform to host the server, as well as

what database service to use. Another feature that needs to be completed is adding support for

multiple accounts, so that many different visualization creators can use the platform, and have

access to only their own data. This would require user authentication to be set up, and research

into best security practices.

5.4.5 Security and Privacy

Lastly, privacy for users is key. The data collected by ReVisIt must not be sensitive or have the

potential to identify users, or be used in a way they do not consent to. The ReVisIt logger does

not purposefully gather identifying information. However, further study is required on whether

anything in the interaction tracking itself could potentially be used to identify users.
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CONCLUSION

Our goal with ReVisIt was to develop a prototype of a system that could provide visualization

creators with meaningful information on how audiences interacted with their visualizations on

the web. We believe we were successful with this goal. ReVisIt is able to capture user interactions,

process them, and display that information in a dashboard for visualization creators to explore.

Based on our interviews, visualization creators generally seem interested in the type of data

collected and displayed by ReVisIt. They currently do not have access to that type of information

in their work, and believe it could be useful to better understand their audience and develop

better visualizations. We also learned that ReVisIt still requires some improvements before it

can be launched for public use. These improvements include improved overlay visualization, side

visualizations, user experience, and scalability of the system. While there is still work to be done

to refine ReVisIt, the lack of a tool to analyze user interactions with visualizations is prominent

and the continued work on such a system is encouraged.
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The code the ReVisIt logger uses to log events is explained here. Adding the logger to a webpage

with a visualization only requires a few lines of code:

1 // any code required to create the visualization should be placed first
2 var logger = new RevisitLogger('96858 cd7-b4b4-44a3-b654-727f6cc7714b ');

First, any code used to create the visualization must finish executing, so that event listeners

can be added to the elements. Once the visualization is created, a logger object is instanti-

ated. 96858cd7-b4b4-44a3-b654-727f6cc7714b is the unique id of the visualization, generated

server side. In the logger, this is the code that is executed:

1 function Logger(visId) {
2 this.visId = visId
3 this.sessionId = uuidv4 ();
4 this.elementNum = 0;
5 }

The logger keeps track of the unique visualization ID. It calculates a unique session ID used

to identify the user session. It also sets a counter to 0 for the number of elements that have event

listeners attached. After the logger object has been instantiated, the logEvents method would be

called like so:

1 logger.logEvents('vis', ['vis-element ']);

The first argument is the ID of the root visualization element. The second is an array of

classes of elements to log events for. The logEvents method is shown here:

1 this.logEvents = function(rootElementId , singleItemClasses ,
recursiveClasses) {

2 var rootElement = document.getElementById(rootElementId);
3 if (singleItemClasses) {
4 for (var i = 0; i < singleItemClasses.length; i++) {
5 this.logItem(rootElement , singleItemClasses[i]);
6 }
7 }
8 if (recursiveClasses) {
9 for (var i = 0; i < recursiveClasses.length; i++) {

10 this.logItemWithChildren(rootElement , recursiveClasses[i]);
11 }

i
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12 }
13 }

For each class specified in the second parameter, the logItem method is called:

1 this.logItem = function(rootElement , singleItemClass) {
2 var trackedElements = rootElement.getElementsByClassName(singleItemClass)

;
3 for (var j = 0; j < trackedElements.length; j++) {
4 this.createEvents(trackedElements[j]);
5 }
6 }

This method gets all elements with the specified class, and passes each one to the createEvents

method.

1 this.createEvents = function(element) {
2 const that = this;
3 this.elementNum ++;
4 // add custom attribute to uniquely identify this element
5 element.setAttribute('data-elementid ', `element${this.elementNum }`);
6
7 // add event listeners
8 element.addEventListener('mouseenter ', function(e) {
9 that.recordEvent(e, element);

10 });
11 element.addEventListener('mouseleave ', function(e) {
12 that.recordEvent(e, element);
13 });
14 element.addEventListener('click', function(e) {
15 that.recordEvent(e, element);
16 });
17 }

This method first increments the counter of elements with attached event listeners. Elements

will always appear in the same order each time the page loads and this code is executed, so

the logger uses this counter to give each element a unique element ID. This method then adds

event listeners for events of types mouseenter, mouseleave, and click. These listeners call the

method recordEvent, passing the event, and the element that triggered the event.

1 this.recordEvent = function(event , element) {
2 var className = element.className;
3 if (className instanceof SVGAnimatedString) {
4 className = className.baseVal;
5 }
6
7 const data = {
8 sessionId: this.sessionId ,
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9 browser: window.navigator.appName ,
10 platform: window.navigator.platform ,
11 windowWidth: window.innerWidth ,
12 windowHeight: window.innerHeight ,
13 screenWidth: window.screen.width ,
14 screenHeight: window.screen.height ,
15 type: event.type ,
16 timeStamp: event.timeStamp ,
17 absoluteTime: Date.now (),
18 element: {
19 id: element.id ,
20 className: className ,
21 nodeName: element.nodeName ,
22 elementId: element.dataset.elementid
23 },
24 position: {
25 // x and y coordinates within the application 's client area
26 clientX: event.clientX ,
27 clientY: event.clientY ,
28 // x and y coordinates relative to the padding edge of the target

node
29 offsetX: event.offsetX ,
30 offsetY: event.offsetY ,
31 // x and y coordinates within the html page (accounts for scrolling)
32 pageX: event.pageX ,
33 pageY: event.pageY ,
34 // x and y coordinates within the client 's screen area
35 screenX: event.screenX ,
36 screenY: event.screenY ,
37 },
38 };
39
40 const request = new XMLHttpRequest ();
41 request.open('POST', 'http:// localhost:3001/visualizations/' + this.visId

+ '/recordEvent '); // use hard coded url for now
42 request.setRequestHeader('Content-type ', 'application/json');
43 request.withCredentials = true;
44 request.onreadystatechange = function () {
45 if (request.readyState === 4) {
46 console.log(request.responseText);
47 }
48 };
49 request.send(JSON.stringify(data));
50 }

This method gets all relevant data about the user session, event, and element, and sends a

POST request to the ReVisIt server, where the event is added to the log of events for that session.
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The code we used to calculate uniqueness is displayed below, with explanations of each step in

the process. The visualization in this example is of colleges. The process starts with the raw log

that looks like the following:

1 {
2 "6b593c37-4688-4ee6-a927-853a4955aeee": [
3 {
4 "type": "mouseenter",
5 "absoluteTime": 1549492518000 ,
6 "element": {
7 "id": "Chamberlain College of Nursing-Florida",
8 "className": "college",
9 "nodeName": "circle",

10 "elementId": "element213"
11 },
12 },
13 {
14 "type": "mouseleave",
15 "absoluteTime": 1549492518013 ,
16 "element": {
17 "id": "Chamberlain College of Nursing-Florida",
18 "className": "college",
19 "nodeName": "circle",
20 "elementId": "element213"
21 },
22 },
23 ...
24 ],
25 "59 ad92ed-c7e1-4194-a2de-1050499bbaff": [
26 ...
27 ]
28 }

Each array in the log represents a user session. Each object in the array is an interaction,

of type "mouseenter", "mouseleave", or "click". The object also contains "absoluteTime", the

timestamp of when it occurred, and the element.

The first part of the process is to calculate the interaction matrix, a 2D matrix between
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user sessions and elements, where each value is the duration a user spent interacting with the

element.

1 const path = require('path');
2 const _ = require('lodash ');
3
4 const calculateInteractionMatrix = (log) => {
5 const interactionMatrix = {};
6 // list of all elements interacted with
7 const elements = {};
8
9 for (const sessionId in log) {

10 for (let i = 0; i < log[sessionId ]. length; i++) {
11 const event = log[sessionId ][i];
12
13 // element.elementId is assigned by our logger and is

guaranteed to be unique
14 // element.nodeName is the type of element
15 // element.id and element.className are assigned by the vis

creator and may be undefined
16 const elementId = event.element.elementId;
17 const elementName = `${elementId}_${event.element.nodeName}_${

event.element.id}_${event.element.className }`;
18
19 // if the event type is mouseenter , search for the

corresponding mouseleave
20 if (event.type === 'mouseenter ') {
21 // find the next mouseleave event with same elementId , or

use the last event in the session
22 const endEvent = _.find(
23 log[sessionId],
24 (e) => e.element.elementId === elementId && e.type ===

'mouseleave ',
25 i + 1
26 ) || log[sessionId ][log[sessionId ]. length - 1];
27
28 // calculate duration of this interaction
29 const duration = endEvent.absoluteTime -

event.absoluteTime;
30
31 // initialize matrix row if needed
32 if (! interactionMatrix[sessionId ]) {
33 interactionMatrix[sessionId] = {}
34 }
35
36 // increment time the user interacted with the element by

duration
37 if (interactionMatrix[sessionId ][ elementName ]) {
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38 interactionMatrix[sessionId ][ elementName] += duration;
39 } else {
40 interactionMatrix[sessionId ][ elementName] = duration;
41 }
42
43 // if this is a new element , add it to the list of elements
44 // elements will only include elements that at least 1 user

interacted with
45 if (! elements[elementName ]) {
46 elements[elementName] = true;
47 }
48 }
49 }
50 }
51
52 // fill in empty spaces of the matrix
53 for (const sessionId in log) {
54 for (const element in elements) {
55 if (! interactionMatrix[sessionId ][ element ]) {
56 interactionMatrix[sessionId ][ element] = 0;
57 }
58 }
59 }
60
61 return interactionMatrix;
62 };

We then have a matrix that looks like the following:

1 {
2 "6b593c37-4688-4ee6-a927-853a4955aeee": {
3 "element213_circle_Chamberlain College of Nursing-Florida_college": 13,
4 "element117_circle_San Diego State University_college": 16,
5 "element71_circle_Emory University_college": 166,
6 "element36_circle_University of Southern California_college": 1183,
7 "element25_circle_Rice University_college": 2156,
8 ...
9 },

10 "59 ad92ed-c7e1-4194-a2de-1050499bbaff": {
11 "element284_circle_Silver Lake College of the Holy Family_college": 29,
12 "element167_circle_University of Arkansas at Pine Bluff_college": 17,
13 "element93_circle_Hope International University_college": 16,
14 "element53_circle_Virginia Union University_college": 16,
15 "element25_circle_Rice University_college": 32,
16 ...
17 },
18 ...
19 }
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The second step is to calculate the TFIDF Matrix from the interaction matrix. This is also a

2D matrix between user sessions and elements, but the value is a TFIDF value:

1 const calculateTFIDFMatrix = (interactionMatrix) => {
2 // initialize matrix and count the number of sessions
3 TFIDFMatrix = {}
4 const numSessions = _.size(interactionMatrix);
5
6 for (const session in interactionMatrix) {
7 TFIDFMatrix[session] = {}
8
9 // calculate total time user spent interacting with all elements

10 const totalInteractionTime = _.reduce(interactionMatrix[session], (
sum , value , key) => {

11 sum += value;
12 return sum;
13 }, 0);
14
15 for (const element in interactionMatrix[session ]) {
16 const interactionTime = interactionMatrix[session ][ element ];
17 // calculate the number of users who interacted with the given

element
18 const numSessionsWithElement = _.reduce(interactionMatrix , (sum

, value , key) => {
19 if (value[element ]) {
20 sum ++;
21 }
22 return sum;
23 }, 0);
24
25 // calculate TFIDF value for the given session and element
26 const TFIDFval = (interactionTime / totalInteractionTime) *

Math.log(numSessions / numSessionsWithElement);
27 TFIDFMatrix[session ][ element] = TFIDFval;
28 }
29 }
30 return TFIDFMatrix;
31 };

This produces a matrix like the following:

1 {
2 "6b593c37-4688-4ee6-a927-853a4955aeee": {
3 "element213_circle_Chamberlain College of Nursing-Florida_college":

0.00017392060194901203 ,
4 "element117_circle_San Diego State University_college":

0.0003210841882135607 ,
5 "element71_circle_Emory University_college": 0.001571280493335777 ,
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6 "element36_circle_University of Southern California_college":
0.005365845662536602 ,

7 "element25_circle_Rice University_college": 0.02040771532308395 ,
8 ...
9 },

10 "59 ad92ed-c7e1-4194-a2de-1050499bbaff": {
11 "element284_circle_Silver Lake College of the Holy Family_college":

0.00013250435952456182 ,
12 "element167_circle_University of Arkansas at Pine Bluff_college":

0.00016467754971027977 ,
13 "element93_circle_Hope International University_college":

0.0001033270900142932 ,
14 "element53_circle_Virginia Union University_college":

0.0001033270900142932 ,
15 "element25_circle_Rice University_college": 0.00014621170706158543 ,
16 ...
17 },
18 ...
19 }

The last step is to sum the TFIDF values for each session. This sum is the uniqueness score

of that session:

1 const calculateUniqueness = (TFIDFMatrix) => {
2 const uniquenessScores = {};
3 // sum TFIDF values for each session
4 for (const session in TFIDFMatrix) {
5 uniquenessScores[session] = 0;
6 for (const element in TFIDFMatrix[session ]) {
7 uniquenessScores[session] += TFIDFMatrix[session ][ element ];
8 }
9 }

10 return uniquenessScores;
11 };

The resulting uniqueness scores look like the following:

1 {
2 "6b593c37-4688-4ee6-a927-853a4955aeee": 0.6862184966321876 ,
3 "59 ad92ed-c7e1-4194-a2de-1050499bbaff": 0.833274496524168 ,
4 ...
5 }
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APPENDIX C: INTERVIEW PROTOCOL

"We are working to create a product that would help interactive visualization creators analyze

the audience that uses their creations. First, I have some questions about your work and then I

can go through and show you what we have been working on. Before we begin, would it be okay if

I recorded this interview to make sure we don’t miss any important details later?"

RQ1) What are the current goals and working contexts of interactive visualization
creators?

• Could you provide some examples of the visualizations you have created? If they are online

can you pull them up?

Choose one of their works to use as the example vis for the questions regarding their goals (if

they don’t have any good ones, give them the 255 Charts example). Then ask them to explain

their visualization (or explain what 255 Charts is about).

• What are some of the foals that you were aiming to achieve through your visualization?

– Were you trying to ‘tell’ your audience something?

– Do you aim to get users to interact with every aspect of your visualization or just part

of it?

– Do you estimate how long you believe users will interact with your visualization?

– Do you envision how a user should interact with the visualization?

– How many users do you typically anticipate will interact with a visualization you

produce?

• Are these goals similar across other visualizations you have created?

• How do you currently measure whether your visualization was successful in achieving your

goals?

– How do you measure the success of the goals you mentioned before?

– Do you complete user testing with any of your visualizations? If so, can you describe

the process?
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* Do you think user testing improves the quality of your visualizations? Or improves

your process in creating them?

– Do you currently track visitor counts in any way?

* Are you currently tracking any other data regarding your visualizations after

they are published? If so, what data and how?

RQ2) How can tools like ReVisIt help interactive visualization creators under-
stand their audience through visualized user interactions?

Present Colleges visualization and have them assume they are the creator of said visualization.

Explain what the visualization is of. Then allow them to interact with the visualization to

familiarize themselves with it

• What are some questions you have regarding the audience of this visualization and how

they react/interpret it?

• If you were to observe a user interacting with this visualization, what are somethings that

you would take note of?

• How do you believe understanding how users interact with your visualization could be

helpful in the creation of future visualizations or improving this visualization?

Show pictures of single user event timeline and overlay

“You just interacted with this visualization, your interaction log would look similar to this”

Landing Page Run Through

“Now I will go through and show you the additional features of ReVisIt”
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• Overview

• Multiple, customizable projects

– Can upload new projects

– Customizable aggregation

– Switch between project

• Main Vis

– Event timeline of the interactions of all the users

– Each row is a different user - labelled by their uniqueness score that ReVisIt has

calculated based on the different elements that user interacted with, the higher the

uniqueness score, the most unique the user is compared to the rest of the audience

– Purple rectangles represent a user hovering over an element of the visualization, and

the orange rectangles represent when a user clicks on an element

– Can view the breakdown of each user’s interactions

• KPIs

– On either side are audience summary statistics

– Histograms of duration frequencies, interaction count frequencies, most visited ele-

ment, and a preview of the visualization being analyzed by ReVisIt

ReVisIt Demo - College visualization

• Login

• Open Colleges Project

Allow them to freely explore ReVisIt- guide them through the features with the following

training points (lead them through how to get to the Colleges project first)

• Try zooming and panning on the main vis

• Click on one of the green histograms

– Do you see how it filters the data shown in the main vis to only show the users that

would fall into the category selected?

• Reset the filters by clicking on the button at the top of the main vis

• Hover over the blue histograms to see how it affects the main vis
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• Try viewing a specific user session

Once they are comfortable with the interface, prompt them with the following task-based

questions

• Can you identify which user had the most interactions?

– See if they use filter

• Compare 2 users - can you describe their similarities and differences in how they interacted

with the visualization?

– Possible features to compare:

* Placements and order of elements they visited

* How long each interacted for

* Timing between elements visited

• Disregarding the uniqueness scores, which user session appears to be the most unique?

• When viewing all of the user sessions in the main vis, how would you begin to describe how

this audience is interacting with this visualization?

• Which college was hovered over the most?

– See if they use filters

Follow Up Questions

• Through ReVisIt, were you able to answer those questions that you had before about the

user interactions? What questions could not be answered?

• Do you think the visualizations presented in the ReVisIt dashboard capture the information

you would look for if you were analyzing the audience of a visualization?

– Do you find it easy to understand how users were interacting with this visualization

when you look through the information presented by ReVisIt?

• What features of ReVisIt did you find helpful? Were there any that were not helpful?

• What features could we add to ReVisIt to help you learn more about your visualization

audience?

• Now that you have seen that logging user interactions for a visualization like this is possible,

how do you think this could help you in your projects?
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