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Abstract 

Vestigo Ventures manually processes website traffic data to analyze the business performance of 
financial technology companies. By analyzing how people navigate through company websites, 
Vestigo aims to understand different customer activity patterns. Our team designed and 
implemented a tool that automatically processes clickstream data to visualize different customer 
activity within a website and compute statistics about user activity. This tool will provide Vestigo 
insight on the effectiveness of their clients’ website structures and help them make 
recommendations to their clients.  
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Executive Summary 

Introduction   
Vestigo Ventures, a venture capital firm investing in financial technology companies, aims to 
understand the different ways that people interact with their clients’ websites and how many 
visitors make a purchase. However, Vestigo’s clients have diverse website structures and varying 
definitions of what a purchase is, making it difficult for the firm to use a generalized visualization 
technique. Our goal was to create an easy-to-use tool that automatically processes internet traffic 
data to provide Vestigo, and similar companies interested in website performance analysis, insight 
into the effectiveness of a company website. We developed the Website Private Investigator 
(WPI), an Application Programming Interface (API) that builds an interactive graph illustrating 
how people navigate through a given website. Moreover, our tool calculates statistics about 
customer interaction, such as the percentage of visits that start or end at a certain page within the 
company’s website, allowing Vestigo analysts to understand customer activity patterns in depth.  
 
In the following subsections, we discuss our project management approach, highlight the 
architecture, features, and performance analysis of our tool. In addition, we provide 
recommendations and takeaways from our project experience. 
 
Methodology  
We organized our work in four sprints, each two weeks long. Each sprint comprised of multiple 
meetings within the team and with our faculty advisors. Moreover, we consulted our company 
sponsor, and other knowledgeable employees from Vestigo’s partnering company, Cogo Labs. 
Cogo is an incubator of internet companies and provided the internet traffic data we worked with 
to develop the WPI. We used the feedback from our meetings to guide our project work and to 
iteratively develop our tool in four phases:  

(1) understand the dataset and experiment with visualization techniques using Python 
libraries,   
(2) develop the API using Python and Github for version control,  
(3) document our API, and  
(4) deploy the API into production with a user interface (UI).  

 
At the conclusion of our project, we produced a command-line interface (API) version of the WPI, 
as well as a deployed version complete with a graphical UI. To better visualize the components of 
our tool, we present our work in its deployed form.  
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Website Private Investigator - Architecture and Features   

Phase 1: Gathering Data  
To use our tool, an analyst must first query Cogo’s internet traffic database with a company website 
and start date of interest. We provided a query template that Vestigo can follow to easily gather 
the data in the format that the WPI expects. After running the query, an analyst needs to download 
the results to a file, producing a dataset of Uniform Resource Locators (URLs) people visited while 
browsing a company website during an input date range. 
 
Phase 2: Building the Graph  
Starting a Job 
As illustrated in Figure 1, The Website Private 
Investigator expects an input data file, company 
website name, and a data range within the dataset 
for processing. The start date must be specified, 
however, the end date is optional; by default, WPI 
will process all of the data present in the data file 
from the start date. Clicking “Execute Now” starts 
a job to build an interactive graph.  
 
Processing the Data  
Cleaning the Data                                                                 
To remove user-specific information while 
retaining general activity patterns, we reduce each 
URL to only the company domain name and the 
website path. For example, if given the URL https://www.wpi.edu/admissions/graduate/how-to-
apply?itemId=item-27, we simplified this to www.wpi.edu/admissions/graduate/how-to-apply.  
 
Building User Paths 
Our tool uses pandas to separate the dataset by unique visits to build user flow paths. A visit is 
defined by a unique combination of user ID and tabdate, and each flow path is a list of URLs. To 
better understand which pages people start and end their browsing activity, we group URLs into 
start pages, intermediate pages, and exit pages.  
 
Clustering Similar URLs and Computing Statistics  
To further summarize the different browsing information within the dataset, we use difflib to 
cluster start, intermediate, and exit URLs by string similarity. Finally, using Python packages scipy 
and math, we calculate the percentage of visits that landed on each start, intermediate, and end 
page.  
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Interacting with the Graph  
After several minutes, an interactive 
graph will load in the browser, as 
shown in Figure 2.  We developed the 
graph using Plotly (Python 3 and 
JavaScript) and NetworkX (Python 3), 
open-source graph visualization 
packages. Each cluster in the start, 
intermediate, and exit groups is a node 
in the graph, and edges connect nodes 
according to the paths built during the 
preprocessing step. Start web pages 
are colored green and placed at the top 
of the graph, exit web pages are red 
and placed at the bottom, and intermediate webpages are blue, placed between start and exit pages, 
to better visualize the different components of the different user flow paths.  
 
Hovering  
As illustrated in Figure 2, hovering over any node will show the webpages represented by the 
node, as well as the percentage of visits that pass through these webpages.  
 
Website Private Investigator Special Features 

Displaying the graph in Three Dimensions 
The two-dimensional graph often has many 
overlapping nodes. For an analyst to view the graph 
from different angles, we added a 3D toggle which 
visualizes the data in three dimensions, as 
illustrated in Figure 3.  
 
Highlighting Adjacent Nodes                                                                                 
An analyst may want to see which pages a                                                          
user went to immediately before or after  a 
particular page, especially if this is an exit page 
(such as a purchase page) or an entry page (such as 
a login page). The highlighting features allows an 
analyst to click on a node of interest to see the 
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nodes immediately connected to it. Figure 4 illustrates the possible pages of people went to 
immediately after checking their account pages on  Geico.com.                                       
 
Highlighting User Paths 
Moreover, it may be useful to see all pages that people viewed if they passed through a particular 
webpage. As with Highlighting Adjacent Nodes, an analyst can click on a node to highlight all 
potential pages on a path containing this page. This way, the analyst can identify possible entry, 
intermediate, and exit points that people 
could have traveled to before, for 
example, confirming a purchase.  
 
Keyword Search 
Clustering is not a precise technique, and 
a webpage of interest may be clustered 
together with less relevant pages. To 
isolate visit statistics for particular pages 
of interest, an analyst can use the WPI’s 
keyword search functionality to search 
for webpages containing a particular 
term, such as confirm. Figure 5 
illustrates the keyword search 
functionality.  
    
Experimental Analysis  
To evaluate our clustering methods, as 
well as explore financial technology 
website statistics more in-depth, we used 
techniques from mathematics and 
industrial engineering.  
 
Clustering Evaluation  
There are many techniques for grouping text data, however, we focus our analysis on 
Agglomerative Clustering and Gestalt Pattern Matching. Table 1 details our approaches to these 
techniques.   
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Table 1: Clustering techniques 

To evaluate our methods, we manually labeled URLs collected from four websites, one of which 
is geico.com. We compared the outputs of the agglomerative clustering and gestalt pattern 
matching to our labels by computing Adjusted Rand Index (RI)  and V-measure, which are defined 
in Table 2. 
 

Adjusted Rand Index V-measure 

Rand Index (RI)         
a: same cluster, same label 
b: same cluster, different label 
c: different cluster, same label 
d: different cluster and label  

 
Adjusted Rand Index (ARI): 

                                               

 
h: homogeneity (a cluster should have only 
members of the same class) 
c: completeness (all class samples should be in 
the same clusters) 
β: beta, harmonic mean weight of h and c  

 
Table 2: Clustering evaluation metrics 

 
In general, Gestalt pattern matching with a 
threshold around 0.70 and 0.75 outperforms 
agglomerative clustering for URL grouping in 
financial technology websites. We programmed 
the tool to use a threshold of 0.75 based on our 
experimental results. Figure 6 illustrates the 
ARI and V-measure of clustering URLs in 
Geico.com user traffic data. 
 
 

Agglomerative Clustering  Gestalt Pattern Matching 

To capture local character-to-character differences 
between URLs, we compute the edit distances 
between each pair of URLs in a dataset. We used 
scikit-learn’s implementation of agglomerative 
clustering to group URLs.  

We use difflib to compute the Gestalt ratio between 
URL pairs and grouped together URLs above a 
threshold ratio. The Gestalt ratio ranges from 0 to 
1, where 1.0 indicates a perfect match. We 
experimented with different ratios between 0.6 and 
1.0. The Gestalt ratio reflects sequence-level 
comparisons between URLs.  
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Linear Regression  
Vestigo requested to find ways to calculate the 
customer conversion rate of a website, or the 
percentage of visits that end in a customer purchase. 
Although it is difficult to compute exact conversion 
rates, we used the WPI tool to approximate the 
statistics. Using the financial company Wells Fargo as 
an example, we created a multiple linear regression of 
the conversion rate. The data we used had been 
collected over a period of 50 week. The statistical 
information for each week was collected from the WPI 
along with an approximated conversion rate, which 
was the percentage of visits that traveled through a 
web page with the keyword ‘billpay.’ 
Plotted in Figure 7 is the multiple linear regression 
conversion rate compared to the approximated 
conversion. We can solve for Wells Fargo’s 
conversion rate using the following equation: 
    

Conversion Rate = -0.06*(unique visits) + 0.09*(unique users) + 0.15*(percent return  
        users) - 0.66*(average pages in a visit) + 4.49 
 

The equation is not accurate, with an r squared value of only 0.12. However, the general trend of 
the week to week customer conversion rate is similar to that of the approximated conversion. 
 
 
Recommendations & Conclusions  
Our tool works best for small data sizes. We recommend that users of the tool use at most 50 MB 
of data to ensure graph creation under one hour. On average, WPI will process datasets of 
approximately 10,000 rows in under 60 seconds. Furthermore, having at least 500 rows of data 
will ensure a good quality of the graph. While this might limit collecting data for time series 
regression models, it will ensure that the graph has enough data to provide useful information. 
Overall, the project allowed the team to apply interdisciplinary knowledge gained from classroom 
study to real-world data. The team learned how to work win a business setting, with diverse groups 
of people, and how to create business focused applications which can be used by analysts now and 
in the future.  
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Appendices 
 
B. A Hitchhiker's Guide to the Clustering Galaxy 
 
Introduction  
 
Using data mining techniques, people can process large volumes of data to understand underlying 
patterns and trends present in datasets. Clustering is an example of an unsupervised learning 
technique; it aims to find natural groupings of elements in a dataset without knowing how they 
should be grouped. Supervised algorithms, on the other hand, use labeled data to learn how to best 
group objects into pre-determined classes (Akman et al, 2019).  
 
The objective of clustering is to group similar objects in the same cluster while keeping dissimilar 
objects in different clusters. To compare elements in a dataset, there must be a precise way to 
define closeness or similarity between elements (Xue and Tian, 2015). For numerical data, we can 
use a distance metric to define similarity between datapoints. Datapoints that are alike have small 
distances between them, while dissimilar datapoints are far away from each other. 
 
In the following sections, we illustrate the concept of clustering through a straightforward 
numerical example on the two-dimensional Cartesian plane. We then discuss different clustering 
methods, evaluation techniques, and clustering applied to other datatypes, providing a 
comprehensive introduction to this popular data mining technique.  
 
Introduction and Motivational Example 
 
Figure 1 illustrates 75 points on an X-Y plane. Observing the distances between points, it is easy 
to see that the data is distributed into five groups, or clusters. After choosing five arbitrary, spaced 
out center points, 15 points were generated within a fixed radius around each of these central 
points. 

 
Figure 1: Simple numerical example with five well-separated clusters 
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Mathematically, there are several distance metrics that can be used to compare the closeness 
between two points 𝑥" and 𝑥# in 𝑛–dimensional space. For simplicity, we will use Euclidean 
distance or straight-line distance. In 𝑛 dimensions, the Euclidean distance 𝐷"# between two points 
𝑥" and 𝑥# is defined as:  

𝐷"# = '()𝑥*" − 𝑥*#,
-

.

*/0

1
0/-

 

where 𝑣 is one of 𝑛 dimensions of the points 𝑥" and 𝑥#. In our example, there are only two 
dimensions to consider (Halabisky, 2012). If 𝑥" = (𝑎", 𝑏") and 𝑥# = (𝑎#, 𝑏#), then the pairwise 
distance between them is defined as:     

𝐷"# = 	'()𝑥*" − 𝑥*#,
-

-

*/0

1

0/-

= :)𝑎" − 𝑎#,
- + )𝑏" − 𝑏#,

- 

 
Applying k-Means Clustering  
 
Now that we have chosen a distance metric (Euclidean distance), there are many different 
algorithms we can use to identify the natural groups present in the data illustrated in Figure 1. A 
common approach for clustering numeric data is the k-Means algorithm. k-Means is a partitioning 
algorithm which groups data by computing centroids or center points for each cluster of data points 
(Xue and Tian, 2015). A cluster centroid is simply the average of the points in a cluster. Given a 
distance metric and a specified number of clusters k, the algorithm iteratively recomputes centroids 
to minimize the sum of squared distances between each cluster’s center and the data points in the 
cluster. This ensures data points in close proximity to one another are grouped into the same 
cluster. 
To define the k-Means algorithm more precisely, let 𝑋 = {𝑥0, 𝑥-, 𝑥>, …	𝑥@} represent the set of N 
datapoints to cluster, and let 𝑀C = {𝜇0	C , 𝜇-C , 𝜇>C , …	𝜇EC } represent the k cluster centroids computed at 
each timestep t of the k-Means algorithm (Bonaccorso 2018). In Figure 1, N = 75, while k = 5. 
Initially, choose k random points, not necessarily within the dataset 𝑋, as cluster centroids. Using 
Euclidean distance as our distance metric, for each timestep t of the algorithm:  

1. Separate each datapoint 𝑥" into one of the k clusters: place 𝑥" into cluster 𝐶# whose centroid 
has the smallest Euclidean distance to 𝑥": 

𝐶C(𝑥") = 𝑎𝑟𝑔𝑚𝑖𝑛#	𝑑(𝑥", 𝜇#	C ), 
where 𝑖 = 1…𝑁 and 𝑗 = 1…𝑘. 

2. For 𝑗 = 1…𝑘, updated cluster centroid 𝜇#C	by computing the mean point in each new 
cluster:  

𝜇#	CP0 =
1
𝑁Q#

( 𝑥R	
R∈QT

 

 
where 𝑁Q#  represents the number of datapoints in Cluster 𝐶#	. 
 

3. Repeat Steps 1-2 until no data points are reassigned to new clusters.  
This algorithm is also known as Lloyd’s Algorithm (Bonaccorso 2018). 
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k-Means: Important Considerations  
 
k-Means is computationally inexpensive (Rodriguez et al 2019), and it performs well for tasks 
such as anomaly detection and data segmentation. However, the algorithm is sensitive to initial 
conditions. Clustering performance depends on the number of clusters specified, the distance 
metric used, as well as the initial choices for centroid clusters (Singh et al, 2013). Thus, k-Means 
results may be difficult to reproduce. Moreover, k-Means is not recommended for datasets with 
outliers, high dimensionality, or in which clusters vary greatly in size and density (k-Means 
Advantages & Disadvantages, 2020). k-Medoids and k-Means++ are slight modifications of the 
k-Means algorithm which optimize the choice of initial centroids. Points within the dataset are 
used as initial centroids, improving the algorithm’s computational efficiency and final cluster 
quality (MATLAB Documentation: kmeans). 
 
Figure 2 shows the result of k-Means clustering applied to the data in Figure 1 using MATLAB, 
with 𝑘 = 5 clusters specified. The algorithm successfully separates the points into distinct clusters, 
as indicated by the cluster colors. The centroids (mean points of each cluster) are indicated with a 
black x. To optimize the algorithm, MATLAB employs the k-Means++ technique to choose cluster 
centers and uses squared Euclidean distance (similar to Euclidean distance but without a square 
root) for the distance metric (MATLAB Documentation: kmeans). 

 
Figure 2: k-Means clustering with MATLAB 

 
Hierarchical Clustering: A Different Kind of Approach 
 
k-Means is an example of a partitional clustering method, grouping datapoints into non-
overlapping subsets. Each object is in exactly one subset. Hierarchical approaches use similarity 
metrics to produce nested subsets of objects, so that each cluster of objects can contain a sub-
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cluster of objects within it (Tan et al, 2008). Common similarity metrics used for hierarchical 
clustering include single linkage, complete linkage, and average linkage: 
 
• Single linkage defines the distance between two clusters as the distance between the two 

closest members 
• Complete linkage computes the distance between the two farthest members.  
• Average linkage forms sub-clusters using the average distance between all members. 

 
The pairwise distance between points can be computed using Euclidean distance.  
 
There are two types of hierarchical methods (Akman et al, 2019), agglomerative and divisive 
clustering. Agglomerative clustering is a “bottom-up” method that starts with each data point as 
its own set (cluster). At each time step, sets (sub-clusters) are merged based on a similarity metric. 
The algorithm terminates when all points are merged into one set, or super-cluster. The divisive 
technique is a “top down” approach that begins with all data points in the same set. The algorithm 
repeatedly splits subsets of points until each data point is in its own set (sub-cluster).  
 
A dendrogram (Akman et al, 2019) is a diagram that visualizes the hierarchy of sets generated by 
the hierarchical clustering approach. Figure 4 shows a dendrogram generated in MATLAB by 
using single linkage with agglomerative clustering, although divisive clustering would generate 
the same plot. The vertical axis shows the distance between clusters, while the horizontal axis 
shows the data points corresponding to each leaf on the dendrogram. Each leaf corresponds to 
several datapoints. Note that hierarchical clustering can be viewed as a sequence of partitional 
clusterings. Cutting the tree at a certain height produces a partitional clustering of the datapoints 
(Tan et al, 2008). Cutting the dendrogram in Figure 4 at 𝑦 = 3 yields five clusters of points; for 
any cluster, the distance between each datapoint and the cluster center, 𝑑, satisfies 𝑑 ≤ 3 (Ryan 
Tibshirani 2013). At this height, we ensure that intra-cluster similarity is high since the Euclidean 
distance between each datapoint is at most 3.  
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Figure 4: Dendrogram for Hierarchical Clustering 

 
Choosing the Optimal Number of Clusters, k 
 
k-Means clustering requires a priori knowledge of 𝑘, the number of clusters, to group data points 
into. However, when working with new, large datasets, the number of clusters may not be known. 
What is the optimal k, and how do we choose it?  
 
An optimal 𝑘 for k-Means clustering is one that generates clusters which satisfy two important 
criteria. One criterion to consider is the within-cluster variation, W, generated by using k clusters 
(Ryan Tibshirani 2013). We would like similar objects to be in the same cluster; thus, the distances 
(variation) between objects in a cluster should be small. Mathematically, W is the Sum of Squared 
Errors (SSE) between all data points 𝑥R and their respective cluster centroids 𝜇#: 

𝑊 = 𝑆𝑆𝐸 = 	( 	 ( \𝑥R − 𝜇#\
-

	

]^∈	QT

		E

#/0

	 

where 𝐶# represents the jth cluster, 𝜇# is the centroid for that cluster, and 𝑥R is a datapoint in that 
same cluster. 
Ideally, we would like to choose a 𝑘 that not only minimizes within-cluster variation, but it also 
ensures that similar data points are not grouped in different clusters. In other words, we would like 
to ensure that between-cluster variation, 𝐵, is high while 𝑊 is low.  Between-cluster variation is 
defined as follows:  

𝐵 = 	(𝑁	QT	\𝑥	̀ − 𝜇#\
-		

E

#/0
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where 𝑁Q#  is the number of data points in the 𝑗th cluster, 𝜇# is the centroid of the 𝑗th cluster, and 
𝑥	̀ is the mean data point of the entire dataset:  

�̅� =
1
𝑁(𝑥"

@

"/0

 

 
A relatively common, although imprecise, method that considers both 𝐵 and 𝑊 to approximate 
the optimal 𝑘 is the “elbow method.” After plotting SSE against increasing 𝑘 values, the ideal 𝑘 is 
found at the “elbow” of the plot. The “elbow” is not precisely defined. It is the point at which the 
SSE drops most as the number of clusters increases from  𝑘 − 1 to 𝑘 (Dangeti, 2017). At this 𝑘, 
there is an elbow-like point on the graph. Thus, the elbow method is a simple heuristic; it may be 
used as a quick, but possibly inaccurate, approximation when clustering a small dataset.  
 
Figure 5 illustrates a plot generated by computing the SSE for values of 𝑘 ranging from 𝑘 = 1 
clusters to an arbitrary maximum of 𝑘 = 10	clusters; each 𝑘 value is plotted against its SSE. As 
the number of clusters increases, the SSE (and thus the value of 𝑊) decreases, indicating that our 
within-cluster variation decreases. We cannot choose a 𝑘 which minimizes 𝑊 alone, because 𝑊 
is smallest when each data point is in its own cluster. Thus, we choose a k at the “elbow” of the 
graph. We know the optimal 𝑘 is 𝑘 = 5. Looking at the graph, however, it is unclear if we should 
choose 𝑘 = 2, instead (the SSE decreases most rapidly between 𝑘 = 1  and 𝑘 = 2, forming a sharp 
elbow-like corner on the graph). The elbow method is thus a “quick and dirty” approach to finding 
the optimal k, and as Figure 5 illustrates, it may not be very reliable.  

 
Figure 5: Plotting SSE against 𝑘 values in the elbow method.  

 
There are more precise approaches for identifying 𝑘, namely the Calinski and Harabasz (CH) Index 
and the Gap statistic. The CH Index (Calinski & Harabasz, 2007) is the same as the F-statistic or 
F-ratio. applied to cluster analysis, measuring the ratio of between-cluster variance to within-
cluster variance:  

1 2 3 4 5 6 7 8 9 10
k, Number of Clusters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Su
m

 o
f S

qu
ar

ed
 E

rro
r (

SS
E)

104 Finding Optimal Clusters Using the Elbow Method

Ideal elbow 
point at 𝑘 = 5 

Potential elbow point 
at 𝑘 = 2 



 

23 

𝐶𝐻(𝑘	) =
𝐵(𝑘	)
𝑘 − 1
𝑊(𝑘)
𝑁 − 𝑘

 

The numerator, e(E	)
Ef0

 is simply the between-cluster variance divided by its degrees of freedom, the 
number of independent values which are free to vary when computing 𝐵(𝑘	). Degrees of freedom 
are computed as Sample Size – 1. To visualize this, imagine four students choosing one of four 
differently colored pens. The last student’s pen choice depends on the choices of the three previous 
students, because there is only pen left to choose. Thus, we can vary how the first three students 
choose a colored pen, and the degrees of freedom would be three (Degrees of Freedom). Since 
𝐵(𝑘	) involves computing the distances between k centroids and the overall dataset mean, the 
degrees of freedom are 𝑘	 − 1. Similarly, the denominator, g(E)

@fE
 is the within-cluster variation 

divided by its degrees of freedom. To compute 𝑊(𝑘	), we consider each cluster’s points 
independently; thus, the total degrees of freedom is the sum of the degrees of freedom of each 
cluster. There are 𝑘	 clusters, so the overall degrees of freedom are 𝑁 − 𝑘, where 𝑁 is the total 
number of points in our sample (Stats: One-Way ANOVA, 1996). 
 
If the datapoints do not fall in natural clusters and are instead distributed equally, we would expect 
the between-cluster variation to be similar to the within-cluster variation. In this case, the CH index 
is 1. Otherwise, we would like to find the optimal 𝑘 which maximizes 𝐵 while minimizing 𝑊. 
After choosing a maximal number of clusters to consider, 𝐾, the CH index computes 𝐵 and 𝑊 for 
values of 𝑘 from 𝑘 = 2 to 𝑘 = 𝐾 (note that we CH Index is undefined at k=1). The optimal cluster 
number is the 𝑘 = 𝑥 that maximizes CH(k). Figure 6 plots the CH Index against different 𝑘 values 
from 2 to 10. Clearly, the index is highest when 𝑘 = 5, which equals the number of clusters in our 
dataset.  
 

 
Figure 6: Plotting Calinski Harabasz Index against 𝑘 
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One of the most popular techniques for determining the optimal cluster number is the Gap statistic. 
Outperforming many other techniques include the CH Index (Mohajer et al, 2011), the Gap statistic 
was developed to formalize the heuristic “elbow” using statistical concepts (Tibshirani et al, 2000).  
Instead of considering only raw within-cluster variation 𝑊E, or the 𝑆𝑆𝐸, the Gap statistic compares 
the logl(𝑊E)	 with the expected value of the logl(𝑊E)		of a dataset of points sampled from a 
uniform distribution on [0,1]. The uniform distribution is also called the reference distribution. 
For a given value of 𝑘 the Gap statistic is computed as:  

𝐺𝑎𝑝(𝑘) = 𝐸.∗{𝑙𝑜𝑔(𝑊E)} − 𝑙𝑜𝑔	(𝑊E(𝐾)) 
where 𝐸.∗{𝑙𝑜𝑔(𝑊E)} is the expected (average) value of the reference distribution. 𝐸.∗{𝑙𝑜𝑔(𝑊E)} is 
obtained by averaging the results of randomly sampling points from the reference distribution 
using Monte Carlo simulations. Why are logarithms used? Using logarithms was an empirical 
choice; logarithms are typically used in statistical analysis to make likelihood computations easier 
(Mohajer et al, 2011).    
 
The smallest 𝑘 which maximizes the gap between the expected log	(𝑊E) and the measured 
log	(𝑊E) is the optimal one. Formally, this occurs when 

𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠EP0 
where 𝑠EP0 is the simulation error resulting from consecutive Monte Carlo simulations. At this 
point, the measured log	(𝑊E) is farthest below its expected value.    
 
Figure 7 illustrates a plot of Gap statistics computed at 𝑘 values from 1 to 10. The plot in Figure 7 
peaks at 𝑘 = 5, clearly indicating that the optimal 𝑘 for our dataset is 𝑘 = 5 (Ryan Tibshirani 
2013). 

 

 
Figure 7: Plotting Gap statistic against 𝑘 
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Figure 8 illustrates the intuition behind the Gap statistic. The expected log	(𝑊E) of the uniform 
distribution is shown in red, and the measured log	(𝑊E) is in blue. We can see that between  
𝑘 = 4 and 𝑘 = 5, the measured log(𝑊E) decreases rapidly and falls far below the log	(𝑊E)  of the 
reference distribution. At 𝑘 = 5, the gap between the two distributions is maximized. For 𝑘 > 5, 
the log(𝑊E) begins to decrease at a slower rate than that of the expected distribution because 
unnecessary clusters are added (Tibshirani et al, 2000).Thus, the ideal cluster number is 𝑘 = 5, as 
we expect.  
 
Beyond Euclidean Distance  
 
Although we focused on Euclidean distance in our example, any numerical distance metric may 
be used for clustering. One common distance metric is the Manhattan or taxicab distance (Craw 
2011). Mathematically, the Manhattan distance between two points 𝑥" and 𝑥# in 𝑛-dimensional 
space is: 

𝐷"# = (|𝑥*" − 𝑥*#|
.

*/0

 

where |𝑥*" − 𝑥*#| is the distance between 𝑥" and 𝑥# in the 𝑣th dimension. The distance is called 
the Manhattan distance in reference to Manhattan, New York, where streets are laid in a grid at 
right angles to each other. Thus, the Manhattan distance reflects how far a car would have to drive 
to get from point A and point B on the grid.   
 

 
Figure 8: Intuition behind the Gap statistic 

 
 
Beyond Exclusive (Hard) Clustering  
 
In our simple numerical example, each datapoint belongs to only one cluster. However, exclusive 
or hard clustering may not suit messy, real-world datasets with outliers or complex patterns. 
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Overlapping or soft clustering (Tan et al, 2008) allows a single datapoint to belong to multiple 
clusters and is often used for analyzing trends in financial, medical, and scientific datasets.  
 
The fuzzy c-Means (FCM) technique (Akman et al, 2019) is a popular extension to the k-Means 
algorithm, and it often outperforms k-Means clustering on real-world datasets. FCM uses fuzzy 
logic to produce overlapping clusters. Each object has a particular weight ranging between [0, 1] 
of belonging to a cluster; the sum of an object’s membership weights must sum to 1. Similarly to 
the k-Means algorithm, each iteration of FCM computes optimal cluster centroids. However, each 
data point has a membership weight of belonging to each centroid; a smaller distance to a centroid 
yields a higher membership weight. Each centroid is the mean of all points weighted by their 
membership weights.  
 
Beyond Numeric Data  
 
Distance is clearly defined for numerical data; however, it is more difficult to define the distance 
between categorical data or text data. In a categorical dataset, each datapoint is described by a set 
of attributes; the values within each attribute are not inherently comparable (for example, object 
types). Text data includes strings and text documents. For both data types, the distance metric is 
problem-dependent, and it should correspond to how people would intuitively group elements in 
a dataset (Andritsos et al, 2017). After defining and then computing distances, any hard or soft 
clustering algorithm may be used to find natural groupings and trends in the data.  
In a categorical dataset, the distance between points may be represented with the number of 
overlapping attributes. More overlap in attributes indicates greater similarity between datapoints.  
Instead of comparing the value of each attribute or character in a string, context-based methods 
identify groups of attribute values or words that appear together, or “contexts”. In a categorical 
dataset, we can use contexts to compare values of other attributes not in the context; attributes are 
similar if they appear in similar contexts (Andritsos et al, 2017). 
 
For text data, we can compare two strings at the character level or at the word (sequence) level. A 
simple character-based distance is Levenshtein or edit distance (Cohen et al, 2003). The edit 
distance between two strings is the total number of additions, substitutions, and deletions necessary 
to transform the first string into the second. A smaller distance indicates more similarity. 
Character-based distances are best for comparing short strings, such as first and last names. For 
longer string sequences, such as sentences or phrases, it is more meaningful to compare the words 
or tokens that appear in two strings (Cohen et al, 2003). Strings with common words or groups of 
words (also called n-grams) are more similar to one another.  
 
Extrinsic Techniques for Evaluating Clustering Performance   
 
Although clustering is typically unsupervised, with correct classes unknown, we can sometimes 
intuitively cluster data to produce ground truth (correct) labels for evaluation. By comparing the 
outputs of clustering algorithms to the groupings we expect, we can choose the algorithm that 
performs best for our dataset.  
 
Several scoring functions can be used to assess algorithm clustering performance based on the 
ground truth labels, including Homogeneity, Completeness, V-Measure (probability-based 
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methods), and Adjusted Rand Index (a type of pairwise counting method). In the sections below, 
clusters are groups predicted by a clustering algorithm, while ground-truth classes are the desired 
groupings that algorithms are evaluated against.  
 
Evaluating Clusters based on Conditional Entropy (Class Distributions)  
 
Suppose we have N datapoints, each assigned to one of G ground truth classes. Our clustering 
algorithm will assign each datapoint to one of K predicted clusters. Note that the number of classes 
may not equal the number of clusters. We will use 𝑛yE to indicate the number of datapoints in class 
g assigned to cluster k (Rosenberg and Hirschberg, 2007). 
 
In each predicted cluster, we would like the class distribution to be skewed to one class (clustered 
datapoints to belong to a single ground truth class). Likewise, given a class, we would like all 
points to belong to the same cluster. First, consider the overall class distribution in our dataset, 
given by the entropy (measure of variation) across all of our classes: 

𝐻(𝐺) = 	−(
𝑛y
𝑁 ∗ log	(

𝑛y
𝑁 )

z

y/0

 

where 𝑛y is the total number of datapoints in class g and N is the total number of datapoints.  
Similarly, the overall distribution of datapoints across clusters can be expressed as:   

𝐻(𝐾) = 	−(
𝑛E
𝑁 ∗ log	(

𝑛E
𝑁 )

{

E/0

 

 
To compute the distribution of classes in a given cluster, we can use conditional entropy:  

𝐻(𝐺|𝐾) = 	−( 	(
𝑛yE
𝑁 log	(

𝑛yE
𝑛E
)

z

y/0

{

E/0

 

Where 𝑛yE is the number of datapoints of class g in cluster k, 𝑛E	is the number of datapoints in 
cluster k, and .|}

@
 weighs the term proportionally to the total number of points. Mathematically, 

.|}
@

 is the probability of a datapoint of class g belonging to cluster k, while .|}
.}

 is the probability 
that a datapoint in cluster k will be of ground truth class g. If all points in the cluster are in the 
same ground truth class, .|}

.}
 is 1 and log	(.|}

.}
) = 0.  

If each cluster contains only datapoints of a single class, 𝐻(𝐺|𝐾) = 0 and we have a perfectly 
homogenous clustering. Homogeneity, the measure of uniformity within a cluster, is computed as 
follows:  
 

ℎ = �
1	

1 −
𝐻(𝐺|𝐾)
𝐻(𝐺)

							 

              
When 𝐻(𝐺) = 0, we have only one class, so homogeneity is defined to be 1. Otherwise, 
homogeneity ranges from 0 to 1. Homogeneity is zero when 𝐻(𝐺|𝐾) = 𝐻(𝐺); this occurs when 

𝑖𝑓	𝐻(𝐺) = 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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we have very “messy” clusters and the class distribution within each cluster matches the overall 
class distribution.  
Grouping each point into its own cluster results in a perfectly homogeneous clustering; however, 
we would like datapoints of the same class to be in the same cluster.   
 
Completeness is symmetric to homogeneity and assesses whether or not the datapoints within a 
class are grouped into the same cluster. Completeness is maximized when all datapoints of a class 
belong in one cluster, and it is computed as follows:  

𝑐 = �
1	

1 −
𝐻(𝐾|𝐺)
𝐻(𝐾)

							 

 
where 𝐻(𝐾|𝐺) represents the spread of each class’s datapoints across all of the predicted clusters. 
When all datapoints of each class are in the same cluster, 𝐻(𝐾|𝐺) = 0 and the clustering is perfectly 
complete. If there is only one predicted cluster, 𝐻(𝐾) = 0 and completeness is defined to be 1. 
Similarly to homogeneity, completeness ranges on a scale from 0 to 1.  
 
Ideally, we would like our clusters to be homogenous and complete. V-measure is the weighted 
harmonic mean of homogeneity and completeness:  

𝑉 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐
(𝛽 ∗ ℎ) + 𝑐  

where 𝛽 is the weighting parameter used to give more importance to homogeneity or completeness. 
Note that 𝛽 = 1 yields the unweighted harmonic mean of homogeneity and completeness:  

𝑉 =
(1 + 1) ∗ ℎ ∗ 𝑐
(1 ∗ ℎ) + 𝑐 =

2 ∗ ℎ ∗ 𝑐
ℎ + 𝑐	 =

2
ℎ + 𝑐
ℎ ∗ 𝑐

=
2

1
ℎ +

1
𝑐

 

In general, we have:  

𝑉 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐
(𝛽 ∗ ℎ) + 𝑐 =

(1 + 𝛽)
(𝛽 ∗ ℎ) + 𝑐

ℎ𝑐

= 	
(1 + 𝛽)
𝛽 ∗ ℎ
ℎ𝑐 + 𝑐

ℎ𝑐

= 	
(1 + 𝛽)
𝛽
𝑐 +

1
ℎ

 

If we would like to give more importance to homogeneity, we would set 𝛽 < 1 to decrease the 
value of �

�
. However, if we would like to weigh completeness more, we would set 𝛽 > 1 to increase 

the value of �
�
.  

 
Homogeneity, completeness, and V-measure can be calculated for any clustering setup, regardless 
of the dataset size, the number of clusters and classes, and the algorithm used.  
 
 
Evaluating Clusters Using Pairs of Datapoints  
 
Instead of considering the variability of datapoints within each class and cluster, we can use all 
possible pairs of datapoints to compare our predicted clusters against the ground truth classes. The 
predicted clusters agree with the ground truth classes when either the two points are clustered 
together in both groupings or the two points are in different clusters in both groupings. Otherwise, 

𝑖𝑓	𝐻(𝐾) = 0 
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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there is disagreement: the points may be clustered together in one grouping, but clustered 
separately in the other.  
 
One type of clustering evaluation metric based on this idea is the Rand Index (Rand 1971), which 
simply takes the ratio of agreements to all possible pairs of datapoints:  

𝑛00 + 𝑛��
)@-,

 

where N is the number of datapoints in our dataset (𝑁 ≥ 2), 𝑛00is the number of agreeing pairs in 
which datapoints are clustered together, 𝑛�� is the number of agreeing pairs in which datapoints 
are split into separate clusters, and )@-, represents the total number of possible pairs of datapoints.  
 
Rand Index can be viewed as the probability of extracting an agreeing pair from all pairs of 
datapoints, and it ranges from 0 to 1. However, notice that Rand Index is only zero when the 
number of agreements, 𝑛00 + 𝑛��, is zero (Vinh et al, 2009). This occurs in the extreme case when 
every datapoint is in its own cluster in one grouping, while in the other grouping, all datapoints 
are in a single cluster. If we had a random grouping for our ground truth and another random 
grouping generated by our algorithm, we would like our scoring metric to output a consistent, low 
value. However, the Rand Index does not have a constant value in the case of random partitions.  
 
To account for chance partitioning, the Adjusted Rand Index (ARI) was developed based on the 
expected value of 𝑛00 + 𝑛�� (Vinh et al, 2009). The adjusted index is expressed as follows: 

𝐴𝑅𝐼 =
𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥	𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐼𝑛𝑑𝑒𝑥		 

 
where Index is 𝑛00 + 𝑛��. The Expected Index is based on the worst-case scenario, occurring when 
the ground truth labels are completely independent of the predicted clustering.  
 
Define 𝑐"# as the number of objects that are in both class 𝑖 and cluster j. Then the number of pairs 
of agreeing objects in class 𝑖 and cluster j is		)��T- , . Moreover, define the number of objects in class 
𝑖 as 𝑎" and the number of objects in cluster 𝑗 as 𝑏#. Then the ARI, above, becomes:  
 

𝐴𝑅𝐼 =
∑ )��T- ,",# − ∑ )��- ," ∑ )�T- ,# /)@-,

1
2 [∑ )

��
- ," + ∑ )�T- ,# ] − ∑ )��- ," ∑ )�T- ,# /)@-,

 

 
 
where ∑ )��T- ,",# = 𝑛00 + 𝑛�� (the number of agreeing pairs) and ∑ )��- ," ∑ )�T- ,# /)@-, is the expected 
(worst) case if each clustering is independent (random).  
The maximum value of agreements,  0

-
[∑ )��- ," + ∑ )�T- ,# ], occurs when we have a perfect 

clustering: all class objects are grouped into the same cluster.  
 
Thus, when we have two random clustering assignments, the Index equals the Expected Index, and 
ARI takes on a constant value of 0. In the best case, the Index is at its maximum value, ARI is 1, 
and we have a perfect clustering.  
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Although these methods are useful ways to evaluate clustering techniques, they require labeled 
data. V-measure and ARI are also called external indices because they evaluate clustering 
performance using “answers” given by another source. When labels are not available, internal 
indices must be used. Internal indices include Sum of Square Errors and the Calinski-Harabasz 
Index, which we also used to find the optimal number of clusters.  
 
Conclusion  
 
Clustering is a very active area of research that is continuously evolving, especially as more and 
more data is collected each day. Illustrating the intuition of clustering through numerical data, we 
provide a comprehensive overview of methods for optimizing, evaluating, and extending 
numerical clustering techniques. This appendix provides a foundation for further exploration of 
clustering algorithms on diverse, real-world datasets.  
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