

__

Developing Models to
Visualize & Analyze User Interaction for

Financial Technology Websites
__

Project Team
Amanda Ezeobiejesi Computer Science

Guy Katz Industrial Engineering
Alissa Ostapenko Computer Science and

Mathematical Sciences

Project Advisor
Professor Michael Ginzberg

Foisie Business School

Project Co-Advisors
Professor Rodica Neamtu

Department of Computer Science

Professor Sara Saberi
Foisie Business School

Professor Jon Abraham

Department of Mathematical Sciences

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without editorial

or peer review. For more information about the projects program at WPI, please see:
http://www.wpi.edu/academics/ugradstudies/project-learning.html

1

Abstract

Vestigo Ventures manually processes website traffic data to analyze the business performance of
financial technology companies. By analyzing how people navigate through company websites,
Vestigo aims to understand different customer activity patterns. Our team designed and
implemented a tool that automatically processes clickstream data to visualize different customer
activity within a website and compute statistics about user activity. This tool will provide Vestigo
insight on the effectiveness of their clients’ website structures and help them make
recommendations to their clients.

2

Acknowledgements

Our team would like to extend our sincere gratitude to the individuals mentioned below, from
Vestigo Ventures, Cogo Labs, and Link Ventures, as well as our advisors for their support and
encouragement throughout the duration of this project:

Vestigo Ventures
Ian Sheridan, a managing director and co-founder of Vestigo Ventures, who made this project
possible. He established the initial connection with WPI and checked in on us from time to time.

Frazer Anderson, a data-driven strategist, an investment analyst at Vestigo Ventures, and our
project sponsor. He provided us with the resources needed and support, enabling our project’s
success.

Cogo Labs
Rob Fisher, the newly appointed Chief Executive Officer at Cogo Labs, was the mastermind
behind our project. His thoughts, guidance, and consistent feedback were vital to the success of
this project.

Daniel Brady, an analytics manager at Cogo Labs, helped us to fully understand the competitive
intel database and user interface that held the company’s various databases.

Link Ventures
Todd Federman and D’Mitri Joseph, technical fellow and software engineer, respectively, at Link
Ventures helped us integrate our API into the existing business analysis tool, making our project
a fully functioning application that anyone with proper access to the tool can use.

Our Advisors
Professor Michael Ginzberg, the advisor for the Fintech/Wall Street Project Center, ensured that
the project was conducted smoothly by giving us access to the resources we needed prior to and
during the project.

We thank our major project advisors, Professors Rodica Neamtu (Computer Science), Sara Saberi
(Industrial Engineering), and Jon Abraham (Mathematical Science) who supported our team
throughout the entire duration of the project. Their enthusiasm, kind attention, and diligent
guidance increased our passion for the project and allowed the MQP to be as impactful as possible.

3

Executive Summary

Introduction
Vestigo Ventures, a venture capital firm investing in financial technology companies, aims to
understand the different ways that people interact with their clients’ websites and how many
visitors make a purchase. However, Vestigo’s clients have diverse website structures and varying
definitions of what a purchase is, making it difficult for the firm to use a generalized visualization
technique. Our goal was to create an easy-to-use tool that automatically processes internet traffic
data to provide Vestigo, and similar companies interested in website performance analysis, insight
into the effectiveness of a company website. We developed the Website Private Investigator
(WPI), an Application Programming Interface (API) that builds an interactive graph illustrating
how people navigate through a given website. Moreover, our tool calculates statistics about
customer interaction, such as the percentage of visits that start or end at a certain page within the
company’s website, allowing Vestigo analysts to understand customer activity patterns in depth.

In the following subsections, we discuss our project management approach, highlight the
architecture, features, and performance analysis of our tool. In addition, we provide
recommendations and takeaways from our project experience.

Methodology
We organized our work in four sprints, each two weeks long. Each sprint comprised of multiple
meetings within the team and with our faculty advisors. Moreover, we consulted our company
sponsor, and other knowledgeable employees from Vestigo’s partnering company, Cogo Labs.
Cogo is an incubator of internet companies and provided the internet traffic data we worked with
to develop the WPI. We used the feedback from our meetings to guide our project work and to
iteratively develop our tool in four phases:

(1) understand the dataset and experiment with visualization techniques using Python
libraries,
(2) develop the API using Python and Github for version control,
(3) document our API, and
(4) deploy the API into production with a user interface (UI).

At the conclusion of our project, we produced a command-line interface (API) version of the WPI,
as well as a deployed version complete with a graphical UI. To better visualize the components of
our tool, we present our work in its deployed form.

4

Website Private Investigator - Architecture and Features

Phase 1: Gathering Data
To use our tool, an analyst must first query Cogo’s internet traffic database with a company website
and start date of interest. We provided a query template that Vestigo can follow to easily gather
the data in the format that the WPI expects. After running the query, an analyst needs to download
the results to a file, producing a dataset of Uniform Resource Locators (URLs) people visited while
browsing a company website during an input date range.

Phase 2: Building the Graph
Starting a Job
As illustrated in Figure 1, The Website Private
Investigator expects an input data file, company
website name, and a data range within the dataset
for processing. The start date must be specified,
however, the end date is optional; by default, WPI
will process all of the data present in the data file
from the start date. Clicking “Execute Now” starts
a job to build an interactive graph.

Processing the Data
Cleaning the Data
To remove user-specific information while
retaining general activity patterns, we reduce each
URL to only the company domain name and the
website path. For example, if given the URL https://www.wpi.edu/admissions/graduate/how-to-
apply?itemId=item-27, we simplified this to www.wpi.edu/admissions/graduate/how-to-apply.

Building User Paths
Our tool uses pandas to separate the dataset by unique visits to build user flow paths. A visit is
defined by a unique combination of user ID and tabdate, and each flow path is a list of URLs. To
better understand which pages people start and end their browsing activity, we group URLs into
start pages, intermediate pages, and exit pages.

Clustering Similar URLs and Computing Statistics
To further summarize the different browsing information within the dataset, we use difflib to
cluster start, intermediate, and exit URLs by string similarity. Finally, using Python packages scipy
and math, we calculate the percentage of visits that landed on each start, intermediate, and end
page.

5

Interacting with the Graph
After several minutes, an interactive
graph will load in the browser, as
shown in Figure 2. We developed the
graph using Plotly (Python 3 and
JavaScript) and NetworkX (Python 3),
open-source graph visualization
packages. Each cluster in the start,
intermediate, and exit groups is a node
in the graph, and edges connect nodes
according to the paths built during the
preprocessing step. Start web pages
are colored green and placed at the top
of the graph, exit web pages are red
and placed at the bottom, and intermediate webpages are blue, placed between start and exit pages,
to better visualize the different components of the different user flow paths.

Hovering
As illustrated in Figure 2, hovering over any node will show the webpages represented by the
node, as well as the percentage of visits that pass through these webpages.

Website Private Investigator Special Features

Displaying the graph in Three Dimensions
The two-dimensional graph often has many
overlapping nodes. For an analyst to view the graph
from different angles, we added a 3D toggle which
visualizes the data in three dimensions, as
illustrated in Figure 3.

Highlighting Adjacent Nodes
An analyst may want to see which pages a
user went to immediately before or after a
particular page, especially if this is an exit page
(such as a purchase page) or an entry page (such as
a login page). The highlighting features allows an
analyst to click on a node of interest to see the

6

nodes immediately connected to it. Figure 4 illustrates the possible pages of people went to
immediately after checking their account pages on Geico.com.

Highlighting User Paths
Moreover, it may be useful to see all pages that people viewed if they passed through a particular
webpage. As with Highlighting Adjacent Nodes, an analyst can click on a node to highlight all
potential pages on a path containing this page. This way, the analyst can identify possible entry,
intermediate, and exit points that people
could have traveled to before, for
example, confirming a purchase.

Keyword Search
Clustering is not a precise technique, and
a webpage of interest may be clustered
together with less relevant pages. To
isolate visit statistics for particular pages
of interest, an analyst can use the WPI’s
keyword search functionality to search
for webpages containing a particular
term, such as confirm. Figure 5
illustrates the keyword search
functionality.

Experimental Analysis
To evaluate our clustering methods, as
well as explore financial technology
website statistics more in-depth, we used
techniques from mathematics and
industrial engineering.

Clustering Evaluation
There are many techniques for grouping text data, however, we focus our analysis on
Agglomerative Clustering and Gestalt Pattern Matching. Table 1 details our approaches to these
techniques.

7

Table 1: Clustering techniques

To evaluate our methods, we manually labeled URLs collected from four websites, one of which
is geico.com. We compared the outputs of the agglomerative clustering and gestalt pattern
matching to our labels by computing Adjusted Rand Index (RI) and V-measure, which are defined
in Table 2.

Adjusted Rand Index V-measure

Rand Index (RI)
a: same cluster, same label
b: same cluster, different label
c: different cluster, same label
d: different cluster and label

Adjusted Rand Index (ARI):

h: homogeneity (a cluster should have only
members of the same class)
c: completeness (all class samples should be in
the same clusters)
β: beta, harmonic mean weight of h and c

Table 2: Clustering evaluation metrics

In general, Gestalt pattern matching with a
threshold around 0.70 and 0.75 outperforms
agglomerative clustering for URL grouping in
financial technology websites. We programmed
the tool to use a threshold of 0.75 based on our
experimental results. Figure 6 illustrates the
ARI and V-measure of clustering URLs in
Geico.com user traffic data.

Agglomerative Clustering Gestalt Pattern Matching

To capture local character-to-character differences
between URLs, we compute the edit distances
between each pair of URLs in a dataset. We used
scikit-learn’s implementation of agglomerative
clustering to group URLs.

We use difflib to compute the Gestalt ratio between
URL pairs and grouped together URLs above a
threshold ratio. The Gestalt ratio ranges from 0 to
1, where 1.0 indicates a perfect match. We
experimented with different ratios between 0.6 and
1.0. The Gestalt ratio reflects sequence-level
comparisons between URLs.

8

Linear Regression
Vestigo requested to find ways to calculate the
customer conversion rate of a website, or the
percentage of visits that end in a customer purchase.
Although it is difficult to compute exact conversion
rates, we used the WPI tool to approximate the
statistics. Using the financial company Wells Fargo as
an example, we created a multiple linear regression of
the conversion rate. The data we used had been
collected over a period of 50 week. The statistical
information for each week was collected from the WPI
along with an approximated conversion rate, which
was the percentage of visits that traveled through a
web page with the keyword ‘billpay.’
Plotted in Figure 7 is the multiple linear regression
conversion rate compared to the approximated
conversion. We can solve for Wells Fargo’s
conversion rate using the following equation:

Conversion Rate = -0.06*(unique visits) + 0.09*(unique users) + 0.15*(percent return
 users) - 0.66*(average pages in a visit) + 4.49

The equation is not accurate, with an r squared value of only 0.12. However, the general trend of
the week to week customer conversion rate is similar to that of the approximated conversion.

Recommendations & Conclusions
Our tool works best for small data sizes. We recommend that users of the tool use at most 50 MB
of data to ensure graph creation under one hour. On average, WPI will process datasets of
approximately 10,000 rows in under 60 seconds. Furthermore, having at least 500 rows of data
will ensure a good quality of the graph. While this might limit collecting data for time series
regression models, it will ensure that the graph has enough data to provide useful information.
Overall, the project allowed the team to apply interdisciplinary knowledge gained from classroom
study to real-world data. The team learned how to work win a business setting, with diverse groups
of people, and how to create business focused applications which can be used by analysts now and
in the future.

9

Table of Contents

ABSTRACT………………………………………………………………………………..
ACKNOWLEDGEMENTS……………………………………………………………….
EXECUTIVE SUMMARY………………………………………………………………..
TABLE OF CONTENTS………………………………………………………………….
LIST OF FIGURES……………………………………………………………………….
LIST OF TABLES…………………………………………………………………………

*** Sections 1 – 8 have been redacted per the request of our project sponsor. ***
REFERENCES…………………………………………………………………………….

APPENDIX A: Redacted
APPENDIX B: A Hitchhiker’s Guide to the Clustering Galaxy……………………….

1
2
3
9

10
11

13

17

10

List of Figures
Figure 1 - Specifying Input Arguments to the Website Private Investigator……………....
Figure 2 - Interactive Graph Showing User Traffic Flow for geico.com…………………..
Figure 3 - User Traffic Graph in Three Dimensions ……………………………………....
Figure 4 - Highlighting Pages Immediately Adjacent to Insurance Related Pages ………..
Figure 5 - Keyword Search of geico.com for ‘confirm’ …………………………………...
Figure 6 - Clustering Evaluation Comparison ……………………………………………..
Figure 7 - Time Series Linear Conversion vs. Approximated Conversion ………………..

4
5
5
6
6
7
8

11

List of Tables
Table 1 - Clustering Techniques …………………………………………………………...
Table 2 - Clustering Evaluation Methods ………………………………………………….

7
7

12

The rest of the paper is removed by request from the sponsoring
company.

13

References
“About-Cogo Labs.” Cogo Labs, https://www.cogolabs.com/about.

Albert, Bill, and Donna Tedesco. “Clickstream Data.” Clickstream Data - an Overview |
ScienceDirect Topics, https://www.sciencedirect.com/topics/computer-science/clickstream-data.

Allahyari, Mehdi, et al. “A Brief Survey of Text Mining: Classification, Clustering and
Extraction Techniques.” ArXiv.org, Cornell University, 28 July 2017,
https://arxiv.org/abs/1707.02919v2.

Anderson, Frazer. Personal Interview. 9 Sept. 2019.

Black, Paul E. "Ratcliff/Obershelp pattern recognition." Dictionary of algorithms and data
structures 17, 2004.

Bonaccorso, Giuseppe. Mastering Machine Learning Algorithms. Packt Publishing Limited,
2018.

Bonnin, Rodolfo, and Claudio Delrieux. Machine Learning for Developers: Uplift Your Regular
Applications with the Power of Statistics, Analytics, and Machine Learning. Packt, 2017.

Brady, Daniel. Personal Interview. 22 October 2019.

Chen, James. “Venture Capital Definition.” Investopedia, Investopedia, 29 Sept. 2019,
https://www.investopedia.com/terms/v/venturecapital.asp.

“Conversion Funnel.” Wikipedia, Wikimedia Foundation, 11 Oct. 2019,
en.wikipedia.org/wiki/Conversion_funnel.

“Data Analysis.” Data Analysis - Pearson's Correlation Coefficient, University of the West of
England, Bristol, 2019, http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1442.

Desai, Falguni. “The Evolution Of Fintech.” Forbes, Forbes Magazine, 9 Feb. 2016,
 https://www.forbes.com/sites/falgunidesai/2015/12/13/the-evolution-of-fintech/.

Fisher, Robert. Personal Interview. 2 Oct. 2019.

“GEICO At A Glance.” GEICO, https://www.geico.com/about/corporate/at-a-glance/.

Gilleland, Michael. “Levenshtein Distance, in Three Flavors.” Levenshtein Distance, in Three
Favors, Merriam Park Software,

14

https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein
Distance.htm.

Han, Jiawei, et al. Data Mining: Concepts and Techniques. Elsevier, 2012.

“Home-Vestigo.” Vestigo Ventures, https://www.vestigoventures.com/.

Hunter, John, et al. “Installation.” Matplotlib, 2019, https://matplotlib.org/.

“Hypertext Transfer Protocol (HTTP) Status Code Registry.” Hypertext Transfer Protocol
(HTTP) Status Code Registry, www.iana.org/assignments/http-status-codes/http-status-
codes.xhtml.

Jinka, Preetam. “Slow Queries? Move Fast to Fix Them.” Database Monitoring Tools from
VividCortex, www.vividcortex.com/blog/slow-queries-move-fast-fix-them.

Kaushik, Avinash. “Web Analytics 2.0: The Art of Online Accountability and Science of
Customer Centricity.” O'Reilly | Safari, Sybex, https://learning.oreilly.com/library/view/web-
analytics-20/9780470529393/ch08.html.

Keohane, Dennis. “David Blundin's Cogo Labs' Formula for Startup Success.” VentureFizz, 13
July 2018, https://venturefizz.com/stories/boston/david-blundins-cogo-labs-formula-startup-
success.

Markus, Justas. “What Is Conversion Funnel? - Learn How to Optimize Your Conversions.”
Oberlo, Oberlo Dropshipping App., 30 Oct. 2019, www.oberlo.com/ecommerce-
wiki/conversion-funnel.

“NetworkX.” NetworkX, 2019, https://networkx.github.io/.

“Mission of NumFOCUS.” NumFOCUS, 2019, https://numfocus.org/community/mission.

“NumPy.” NumPy, 2019, https://numpy.org/.

“Python Data Analysis Library.” Pandas, 2019, https://pandas.pydata.org/.

“Getting Started with Plotly.” Getting Started with Plotly | Python | Plotly,
https://plot.ly/python/getting-started/.

15

Robinson, Edward, and Julie Verhage. “Quicktake: Fintech.” Bloomberg.com, Bloomberg,
https://www.bloomberg.com/quicktake/financial-technology-companies-disrupt-comfy-banks-
quicktake.

“Learn.” Scikit, https://scikit-learn.org/stable/.

Sheil, Humphrey, et al. “Predicting Purchasing Intent: Automatic Feature Learning Using
Recurrent Neural Networks.” 21 July 2018, doi:arXiv.1807.08207.

“Sklearn.metrics.v_measure_score.” Scikit, https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html.

Sraders, Anne. “What Is Fintech? Uses and Examples in 2019.” TheStreet, 8 Mar. 2019,
https://www.thestreet.com/technology/what-is-fintech-14885154.

“Assumptions of Linear Regression.” Statistics Solutions, Statistics Solutions, 2019,
https://www.statisticssolutions.com/assumptions-of-linear-regression/.

“Techniques for Improving the Performance of SQL Queries under Workspaces in the Data
Service Layer.” IBM Knowledge Center,
www.ibm.com/support/knowledgecenter/en/SSZLC2_9.0.0/com.ibm.commerce.developer.doc/re
fs/rsdperformanceworkspaces.htm.

“The Consumer Decision Journey.” McKinsey & Company, www.mckinsey.com/business-
functions/marketing-and-sales/our-insights/the-consumer-decision-journey.

“URL Components Explained.” URL Components Explained - Tealium Learning Community,
18 Oct. 2016, community.tealiumiq.com/t5/iQ-Tag-Management/URL-Components-
Explained/ta-p/5573.

“VC Vestigo Ventures.” Massinvestor Venture Capital and Private Equity Database,
https://massinvestordatabase.com/publicfirm.php?name=Vestigo+Ventures.

“Vestigo Ventures Closes $58.9 Million Funding Round.” PR Newswire: Press Release
Distribution, Targeting, Monitoring and Marketing, 23 Aug. 2018,
https://www.prnewswire.com/news-releases/vestigo-ventures-closes-58-9-million-funding-
round-300701332.html.

“Vestigo Ventures Investments.” CB Insights, https://www.cbinsights.com/investor/vestigo-
ventures-investments.

16

Vieira, Armando. “Predicting Online User Behaviour Using Deep Learning Algorithms.” 27
May 2016, doi:arXiv.1511.06247.

Wang, Gang, et al. “Unsupervised Clickstream Clustering for User Behavior Analysis.”
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI 16,
2016, doi:10.1145/2858036.2858107.

“What Is SEM? PPC & Paid Search Marketing Explained.” Search Engine Land,
 https://searchengineland.com/guide/what-is-paid-search.

“What Is SEO / Search Engine Optimization?” Search Engine Land, 2019,
 https://searchengineland.com/guide/what-is-seo.

Wooldridge, Jeffrey M. Introductory Econometrics: a Modern Approach. Cengage Learning,
 2016.

Yeung, Ka Yee and Walter L. Ruzzo. “Details of the Adjusted Rand index and Clustering
algorithms Supplement to the paper” An empirical study on Principal Component Analysis for
clustering gene expression data ” (to appear in Bioinformatics).” 2001.

Zider, Bob. “How Venture Capital Works.” Harvard Business Review, 1 Aug. 2014,
https://hbr.org/1998/11/how-venture-capital-works.

17

Appendices

B. A Hitchhiker's Guide to the Clustering Galaxy

Introduction

Using data mining techniques, people can process large volumes of data to understand underlying
patterns and trends present in datasets. Clustering is an example of an unsupervised learning
technique; it aims to find natural groupings of elements in a dataset without knowing how they
should be grouped. Supervised algorithms, on the other hand, use labeled data to learn how to best
group objects into pre-determined classes (Akman et al, 2019).

The objective of clustering is to group similar objects in the same cluster while keeping dissimilar
objects in different clusters. To compare elements in a dataset, there must be a precise way to
define closeness or similarity between elements (Xue and Tian, 2015). For numerical data, we can
use a distance metric to define similarity between datapoints. Datapoints that are alike have small
distances between them, while dissimilar datapoints are far away from each other.

In the following sections, we illustrate the concept of clustering through a straightforward
numerical example on the two-dimensional Cartesian plane. We then discuss different clustering
methods, evaluation techniques, and clustering applied to other datatypes, providing a
comprehensive introduction to this popular data mining technique.

Introduction and Motivational Example

Figure 1 illustrates 75 points on an X-Y plane. Observing the distances between points, it is easy
to see that the data is distributed into five groups, or clusters. After choosing five arbitrary, spaced
out center points, 15 points were generated within a fixed radius around each of these central
points.

Figure 1: Simple numerical example with five well-separated clusters

18

Mathematically, there are several distance metrics that can be used to compare the closeness
between two points 𝑥" and 𝑥# in 𝑛–dimensional space. For simplicity, we will use Euclidean
distance or straight-line distance. In 𝑛 dimensions, the Euclidean distance 𝐷"# between two points
𝑥" and 𝑥# is defined as:

𝐷"# = '()𝑥*" − 𝑥*#,
-

.

*/0

1
0/-

where 𝑣 is one of 𝑛 dimensions of the points 𝑥" and 𝑥#. In our example, there are only two
dimensions to consider (Halabisky, 2012). If 𝑥" = (𝑎", 𝑏") and 𝑥# = (𝑎#, 𝑏#), then the pairwise
distance between them is defined as:

𝐷"# = 	'()𝑥*" − 𝑥*#,
-

-

*/0

1

0/-

= :)𝑎" − 𝑎#,
- +)𝑏" − 𝑏#,

-

Applying k-Means Clustering

Now that we have chosen a distance metric (Euclidean distance), there are many different
algorithms we can use to identify the natural groups present in the data illustrated in Figure 1. A
common approach for clustering numeric data is the k-Means algorithm. k-Means is a partitioning
algorithm which groups data by computing centroids or center points for each cluster of data points
(Xue and Tian, 2015). A cluster centroid is simply the average of the points in a cluster. Given a
distance metric and a specified number of clusters k, the algorithm iteratively recomputes centroids
to minimize the sum of squared distances between each cluster’s center and the data points in the
cluster. This ensures data points in close proximity to one another are grouped into the same
cluster.
To define the k-Means algorithm more precisely, let 𝑋 = {𝑥0, 𝑥-, 𝑥>, …	𝑥@} represent the set of N
datapoints to cluster, and let 𝑀C = {𝜇0	C , 𝜇-C , 𝜇>C , …	𝜇EC } represent the k cluster centroids computed at
each timestep t of the k-Means algorithm (Bonaccorso 2018). In Figure 1, N = 75, while k = 5.
Initially, choose k random points, not necessarily within the dataset 𝑋, as cluster centroids. Using
Euclidean distance as our distance metric, for each timestep t of the algorithm:

1. Separate each datapoint 𝑥" into one of the k clusters: place 𝑥" into cluster 𝐶# whose centroid
has the smallest Euclidean distance to 𝑥":

𝐶C(𝑥") = 𝑎𝑟𝑔𝑚𝑖𝑛#	𝑑(𝑥", 𝜇#	C),
where 𝑖 = 1…𝑁 and 𝑗 = 1…𝑘.

2. For 𝑗 = 1…𝑘, updated cluster centroid 𝜇#C	by computing the mean point in each new
cluster:

𝜇#	CP0 =
1
𝑁Q#

(𝑥R	
R∈QT

where 𝑁Q# represents the number of datapoints in Cluster 𝐶#	.

3. Repeat Steps 1-2 until no data points are reassigned to new clusters.
This algorithm is also known as Lloyd’s Algorithm (Bonaccorso 2018).

19

k-Means: Important Considerations

k-Means is computationally inexpensive (Rodriguez et al 2019), and it performs well for tasks
such as anomaly detection and data segmentation. However, the algorithm is sensitive to initial
conditions. Clustering performance depends on the number of clusters specified, the distance
metric used, as well as the initial choices for centroid clusters (Singh et al, 2013). Thus, k-Means
results may be difficult to reproduce. Moreover, k-Means is not recommended for datasets with
outliers, high dimensionality, or in which clusters vary greatly in size and density (k-Means
Advantages & Disadvantages, 2020). k-Medoids and k-Means++ are slight modifications of the
k-Means algorithm which optimize the choice of initial centroids. Points within the dataset are
used as initial centroids, improving the algorithm’s computational efficiency and final cluster
quality (MATLAB Documentation: kmeans).

Figure 2 shows the result of k-Means clustering applied to the data in Figure 1 using MATLAB,
with 𝑘 = 5 clusters specified. The algorithm successfully separates the points into distinct clusters,
as indicated by the cluster colors. The centroids (mean points of each cluster) are indicated with a
black x. To optimize the algorithm, MATLAB employs the k-Means++ technique to choose cluster
centers and uses squared Euclidean distance (similar to Euclidean distance but without a square
root) for the distance metric (MATLAB Documentation: kmeans).

Figure 2: k-Means clustering with MATLAB

Hierarchical Clustering: A Different Kind of Approach

k-Means is an example of a partitional clustering method, grouping datapoints into non-
overlapping subsets. Each object is in exactly one subset. Hierarchical approaches use similarity
metrics to produce nested subsets of objects, so that each cluster of objects can contain a sub-

20

cluster of objects within it (Tan et al, 2008). Common similarity metrics used for hierarchical
clustering include single linkage, complete linkage, and average linkage:

• Single linkage defines the distance between two clusters as the distance between the two

closest members
• Complete linkage computes the distance between the two farthest members.
• Average linkage forms sub-clusters using the average distance between all members.

The pairwise distance between points can be computed using Euclidean distance.

There are two types of hierarchical methods (Akman et al, 2019), agglomerative and divisive
clustering. Agglomerative clustering is a “bottom-up” method that starts with each data point as
its own set (cluster). At each time step, sets (sub-clusters) are merged based on a similarity metric.
The algorithm terminates when all points are merged into one set, or super-cluster. The divisive
technique is a “top down” approach that begins with all data points in the same set. The algorithm
repeatedly splits subsets of points until each data point is in its own set (sub-cluster).

A dendrogram (Akman et al, 2019) is a diagram that visualizes the hierarchy of sets generated by
the hierarchical clustering approach. Figure 4 shows a dendrogram generated in MATLAB by
using single linkage with agglomerative clustering, although divisive clustering would generate
the same plot. The vertical axis shows the distance between clusters, while the horizontal axis
shows the data points corresponding to each leaf on the dendrogram. Each leaf corresponds to
several datapoints. Note that hierarchical clustering can be viewed as a sequence of partitional
clusterings. Cutting the tree at a certain height produces a partitional clustering of the datapoints
(Tan et al, 2008). Cutting the dendrogram in Figure 4 at 𝑦 = 3 yields five clusters of points; for
any cluster, the distance between each datapoint and the cluster center, 𝑑, satisfies 𝑑 ≤ 3 (Ryan
Tibshirani 2013). At this height, we ensure that intra-cluster similarity is high since the Euclidean
distance between each datapoint is at most 3.

21

Figure 4: Dendrogram for Hierarchical Clustering

Choosing the Optimal Number of Clusters, k

k-Means clustering requires a priori knowledge of 𝑘, the number of clusters, to group data points
into. However, when working with new, large datasets, the number of clusters may not be known.
What is the optimal k, and how do we choose it?

An optimal 𝑘 for k-Means clustering is one that generates clusters which satisfy two important
criteria. One criterion to consider is the within-cluster variation, W, generated by using k clusters
(Ryan Tibshirani 2013). We would like similar objects to be in the same cluster; thus, the distances
(variation) between objects in a cluster should be small. Mathematically, W is the Sum of Squared
Errors (SSE) between all data points 𝑥R and their respective cluster centroids 𝜇#:

𝑊 = 𝑆𝑆𝐸 = 	((\𝑥R − 𝜇#\
-

	

]^∈	QT

		E

#/0

	

where 𝐶# represents the jth cluster, 𝜇# is the centroid for that cluster, and 𝑥R is a datapoint in that
same cluster.
Ideally, we would like to choose a 𝑘 that not only minimizes within-cluster variation, but it also
ensures that similar data points are not grouped in different clusters. In other words, we would like
to ensure that between-cluster variation, 𝐵, is high while 𝑊 is low. Between-cluster variation is
defined as follows:

𝐵 = 	(𝑁	QT	\𝑥	̀ − 𝜇#\
-		

E

#/0

	

(5
.7

85
8,

 2
2.

42
69

)

(4
.7

15
7,

 2
1.

96
11

)

(4
.1

61
8,

 2
0.

48
77

)
(5

.0
73

6,
 2

4.
52

9)

(1
.6

34
9,

 2
4.

56
69

)

(3
.1

08
8,

 2
4.

57
87

)

(2
.3

92
5,

 2
2.

73
44

)

(1
0.

53
02

, 3
5.

15
92

)

(1
1.

75
11

, 3
5.

17
22

)

(7
.4

85
7,

 3
9.

11
73

)

(1
1.

79
87

, 3
6.

70
19

)

(1
0.

82
76

, 3
8.

97
6)

(8
.3

84
6,

 3
5.

23
09

)

(5
.7

87
5,

 2
4.

82
44

)
(4

.9
61

, 2
4.

79
75

)
(1

.7
88

1,
 2

4.
85

3)

(5
.0

01
4,

 2
0.

70
94

)
(5

.2
45

6,
 2

4.
67

)

(4
.2

78
7,

 2
0.

17
86

)

(1
0.

54
68

, 3
8.

77
34

)

(1
0.

27
55

, 3
5.

81
31

)

(9
.9

26
3,

 3
6.

11
91

)

(8
.3

80
1,

 3
8.

39
85

)
(7

.5
95

, 3
7.

49
18

)

(4
.3

93
7,

 2
3.

78
87

)

(9
.1

93
7,

 3
6.

90
78

)

(7
.9

34
4,

 3
7.

44
88

)

(4
.2

77
4,

 2
0.

85
59

)

(9
.2

27
9,

 3
8.

23
16

)

(1
0.

47
41

, 3
6.

58
55

)

Data Point

2

4

6

8

10

12

14

Tr
ee

 H
ei

gh
t

Dendrogram for Numerical Data Example, Single Linkage

Height = 3

22

where 𝑁Q# is the number of data points in the 𝑗th cluster, 𝜇# is the centroid of the 𝑗th cluster, and
𝑥	̀ is the mean data point of the entire dataset:

�̅� =
1
𝑁(𝑥"

@

"/0

A relatively common, although imprecise, method that considers both 𝐵 and 𝑊 to approximate
the optimal 𝑘 is the “elbow method.” After plotting SSE against increasing 𝑘 values, the ideal 𝑘 is
found at the “elbow” of the plot. The “elbow” is not precisely defined. It is the point at which the
SSE drops most as the number of clusters increases from 𝑘 − 1 to 𝑘 (Dangeti, 2017). At this 𝑘,
there is an elbow-like point on the graph. Thus, the elbow method is a simple heuristic; it may be
used as a quick, but possibly inaccurate, approximation when clustering a small dataset.

Figure 5 illustrates a plot generated by computing the SSE for values of 𝑘 ranging from 𝑘 = 1
clusters to an arbitrary maximum of 𝑘 = 10	clusters; each 𝑘 value is plotted against its SSE. As
the number of clusters increases, the SSE (and thus the value of 𝑊) decreases, indicating that our
within-cluster variation decreases. We cannot choose a 𝑘 which minimizes 𝑊 alone, because 𝑊
is smallest when each data point is in its own cluster. Thus, we choose a k at the “elbow” of the
graph. We know the optimal 𝑘 is 𝑘 = 5. Looking at the graph, however, it is unclear if we should
choose 𝑘 = 2, instead (the SSE decreases most rapidly between 𝑘 = 1 and 𝑘 = 2, forming a sharp
elbow-like corner on the graph). The elbow method is thus a “quick and dirty” approach to finding
the optimal k, and as Figure 5 illustrates, it may not be very reliable.

Figure 5: Plotting SSE against 𝑘 values in the elbow method.

There are more precise approaches for identifying 𝑘, namely the Calinski and Harabasz (CH) Index
and the Gap statistic. The CH Index (Calinski & Harabasz, 2007) is the same as the F-statistic or
F-ratio. applied to cluster analysis, measuring the ratio of between-cluster variance to within-
cluster variance:

1 2 3 4 5 6 7 8 9 10
k, Number of Clusters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Su
m

 o
f S

qu
ar

ed
 E

rro
r (

SS
E)

104 Finding Optimal Clusters Using the Elbow Method

Ideal elbow
point at 𝑘 = 5

Potential elbow point
at 𝑘 = 2

23

𝐶𝐻(𝑘) =
𝐵(𝑘)
𝑘 − 1
𝑊(𝑘)
𝑁 − 𝑘

The numerator, e(E)
Ef0

 is simply the between-cluster variance divided by its degrees of freedom, the
number of independent values which are free to vary when computing 𝐵(𝑘). Degrees of freedom
are computed as Sample Size – 1. To visualize this, imagine four students choosing one of four
differently colored pens. The last student’s pen choice depends on the choices of the three previous
students, because there is only pen left to choose. Thus, we can vary how the first three students
choose a colored pen, and the degrees of freedom would be three (Degrees of Freedom). Since
𝐵(𝑘) involves computing the distances between k centroids and the overall dataset mean, the
degrees of freedom are 𝑘	 − 1. Similarly, the denominator, g(E)

@fE
 is the within-cluster variation

divided by its degrees of freedom. To compute 𝑊(𝑘), we consider each cluster’s points
independently; thus, the total degrees of freedom is the sum of the degrees of freedom of each
cluster. There are 𝑘	 clusters, so the overall degrees of freedom are 𝑁 − 𝑘, where 𝑁 is the total
number of points in our sample (Stats: One-Way ANOVA, 1996).

If the datapoints do not fall in natural clusters and are instead distributed equally, we would expect
the between-cluster variation to be similar to the within-cluster variation. In this case, the CH index
is 1. Otherwise, we would like to find the optimal 𝑘 which maximizes 𝐵 while minimizing 𝑊.
After choosing a maximal number of clusters to consider, 𝐾, the CH index computes 𝐵 and 𝑊 for
values of 𝑘 from 𝑘 = 2 to 𝑘 = 𝐾 (note that we CH Index is undefined at k=1). The optimal cluster
number is the 𝑘 = 𝑥 that maximizes CH(k). Figure 6 plots the CH Index against different 𝑘 values
from 2 to 10. Clearly, the index is highest when 𝑘 = 5, which equals the number of clusters in our
dataset.

Figure 6: Plotting Calinski Harabasz Index against 𝑘

2 3 4 5 6 7 8 9 10
k, Number of Clusters

0

200

400

600

800

1000

1200

C
H

(k
),

C
H

 In
de

x

Finding Optimal Clusters Using Calinski Harabasz Metric

Optimal cluster
number is 𝑘 = 5

24

One of the most popular techniques for determining the optimal cluster number is the Gap statistic.
Outperforming many other techniques include the CH Index (Mohajer et al, 2011), the Gap statistic
was developed to formalize the heuristic “elbow” using statistical concepts (Tibshirani et al, 2000).
Instead of considering only raw within-cluster variation 𝑊E, or the 𝑆𝑆𝐸, the Gap statistic compares
the logl(𝑊E)	 with the expected value of the logl(𝑊E)		of a dataset of points sampled from a
uniform distribution on [0,1]. The uniform distribution is also called the reference distribution.
For a given value of 𝑘 the Gap statistic is computed as:

𝐺𝑎𝑝(𝑘) = 𝐸.∗{𝑙𝑜𝑔(𝑊E)} − 𝑙𝑜𝑔	(𝑊E(𝐾))
where 𝐸.∗{𝑙𝑜𝑔(𝑊E)} is the expected (average) value of the reference distribution. 𝐸.∗{𝑙𝑜𝑔(𝑊E)} is
obtained by averaging the results of randomly sampling points from the reference distribution
using Monte Carlo simulations. Why are logarithms used? Using logarithms was an empirical
choice; logarithms are typically used in statistical analysis to make likelihood computations easier
(Mohajer et al, 2011).

The smallest 𝑘 which maximizes the gap between the expected log	(𝑊E) and the measured
log	(𝑊E) is the optimal one. Formally, this occurs when

𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠EP0
where 𝑠EP0 is the simulation error resulting from consecutive Monte Carlo simulations. At this
point, the measured log	(𝑊E) is farthest below its expected value.

Figure 7 illustrates a plot of Gap statistics computed at 𝑘 values from 1 to 10. The plot in Figure 7
peaks at 𝑘 = 5, clearly indicating that the optimal 𝑘 for our dataset is 𝑘 = 5 (Ryan Tibshirani
2013).

Figure 7: Plotting Gap statistic against 𝑘

1 2 3 4 5 6 7 8 9 10
k, Number of Clusters

-0.5

0

0.5

1

1.5

2

G
ap

(k
),

G
ap

 S
ta

tis
tic

Finding Optimal Clusters Using Gap Statistic

Optimal cluster
number is 𝑘 = 5

25

Figure 8 illustrates the intuition behind the Gap statistic. The expected log	(𝑊E) of the uniform
distribution is shown in red, and the measured log	(𝑊E) is in blue. We can see that between
𝑘 = 4 and 𝑘 = 5, the measured log(𝑊E) decreases rapidly and falls far below the log	(𝑊E) of the
reference distribution. At 𝑘 = 5, the gap between the two distributions is maximized. For 𝑘 > 5,
the log(𝑊E) begins to decrease at a slower rate than that of the expected distribution because
unnecessary clusters are added (Tibshirani et al, 2000).Thus, the ideal cluster number is 𝑘 = 5, as
we expect.

Beyond Euclidean Distance

Although we focused on Euclidean distance in our example, any numerical distance metric may
be used for clustering. One common distance metric is the Manhattan or taxicab distance (Craw
2011). Mathematically, the Manhattan distance between two points 𝑥" and 𝑥# in 𝑛-dimensional
space is:

𝐷"# = (|𝑥*" − 𝑥*#|
.

*/0

where |𝑥*" − 𝑥*#| is the distance between 𝑥" and 𝑥# in the 𝑣th dimension. The distance is called
the Manhattan distance in reference to Manhattan, New York, where streets are laid in a grid at
right angles to each other. Thus, the Manhattan distance reflects how far a car would have to drive
to get from point A and point B on the grid.

Figure 8: Intuition behind the Gap statistic

Beyond Exclusive (Hard) Clustering

In our simple numerical example, each datapoint belongs to only one cluster. However, exclusive
or hard clustering may not suit messy, real-world datasets with outliers or complex patterns.

1 2 3 4 5 6 7 8 9 10
k, Number of Clusters

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Lo
g(

W
k)

Plotting log(Wk) against k

log(Wk)
log(Wunif)

𝑘 = 5		is the minimum
k for which the “gap”
between log)𝑊w."x, and
log	(𝑊E) is greater than
the gap at 𝑘 + 1 (6).

26

Overlapping or soft clustering (Tan et al, 2008) allows a single datapoint to belong to multiple
clusters and is often used for analyzing trends in financial, medical, and scientific datasets.

The fuzzy c-Means (FCM) technique (Akman et al, 2019) is a popular extension to the k-Means
algorithm, and it often outperforms k-Means clustering on real-world datasets. FCM uses fuzzy
logic to produce overlapping clusters. Each object has a particular weight ranging between [0, 1]
of belonging to a cluster; the sum of an object’s membership weights must sum to 1. Similarly to
the k-Means algorithm, each iteration of FCM computes optimal cluster centroids. However, each
data point has a membership weight of belonging to each centroid; a smaller distance to a centroid
yields a higher membership weight. Each centroid is the mean of all points weighted by their
membership weights.

Beyond Numeric Data

Distance is clearly defined for numerical data; however, it is more difficult to define the distance
between categorical data or text data. In a categorical dataset, each datapoint is described by a set
of attributes; the values within each attribute are not inherently comparable (for example, object
types). Text data includes strings and text documents. For both data types, the distance metric is
problem-dependent, and it should correspond to how people would intuitively group elements in
a dataset (Andritsos et al, 2017). After defining and then computing distances, any hard or soft
clustering algorithm may be used to find natural groupings and trends in the data.
In a categorical dataset, the distance between points may be represented with the number of
overlapping attributes. More overlap in attributes indicates greater similarity between datapoints.
Instead of comparing the value of each attribute or character in a string, context-based methods
identify groups of attribute values or words that appear together, or “contexts”. In a categorical
dataset, we can use contexts to compare values of other attributes not in the context; attributes are
similar if they appear in similar contexts (Andritsos et al, 2017).

For text data, we can compare two strings at the character level or at the word (sequence) level. A
simple character-based distance is Levenshtein or edit distance (Cohen et al, 2003). The edit
distance between two strings is the total number of additions, substitutions, and deletions necessary
to transform the first string into the second. A smaller distance indicates more similarity.
Character-based distances are best for comparing short strings, such as first and last names. For
longer string sequences, such as sentences or phrases, it is more meaningful to compare the words
or tokens that appear in two strings (Cohen et al, 2003). Strings with common words or groups of
words (also called n-grams) are more similar to one another.

Extrinsic Techniques for Evaluating Clustering Performance

Although clustering is typically unsupervised, with correct classes unknown, we can sometimes
intuitively cluster data to produce ground truth (correct) labels for evaluation. By comparing the
outputs of clustering algorithms to the groupings we expect, we can choose the algorithm that
performs best for our dataset.

Several scoring functions can be used to assess algorithm clustering performance based on the
ground truth labels, including Homogeneity, Completeness, V-Measure (probability-based

27

methods), and Adjusted Rand Index (a type of pairwise counting method). In the sections below,
clusters are groups predicted by a clustering algorithm, while ground-truth classes are the desired
groupings that algorithms are evaluated against.

Evaluating Clusters based on Conditional Entropy (Class Distributions)

Suppose we have N datapoints, each assigned to one of G ground truth classes. Our clustering
algorithm will assign each datapoint to one of K predicted clusters. Note that the number of classes
may not equal the number of clusters. We will use 𝑛yE to indicate the number of datapoints in class
g assigned to cluster k (Rosenberg and Hirschberg, 2007).

In each predicted cluster, we would like the class distribution to be skewed to one class (clustered
datapoints to belong to a single ground truth class). Likewise, given a class, we would like all
points to belong to the same cluster. First, consider the overall class distribution in our dataset,
given by the entropy (measure of variation) across all of our classes:

𝐻(𝐺) = 	−(
𝑛y
𝑁 ∗ log	(

𝑛y
𝑁)

z

y/0

where 𝑛y is the total number of datapoints in class g and N is the total number of datapoints.
Similarly, the overall distribution of datapoints across clusters can be expressed as:

𝐻(𝐾) = 	−(
𝑛E
𝑁 ∗ log	(

𝑛E
𝑁)

{

E/0

To compute the distribution of classes in a given cluster, we can use conditional entropy:

𝐻(𝐺|𝐾) = 	−((
𝑛yE
𝑁 log	(

𝑛yE
𝑛E
)

z

y/0

{

E/0

Where 𝑛yE is the number of datapoints of class g in cluster k, 𝑛E	is the number of datapoints in
cluster k, and .|}

@
 weighs the term proportionally to the total number of points. Mathematically,

.|}
@

 is the probability of a datapoint of class g belonging to cluster k, while .|}
.}

 is the probability
that a datapoint in cluster k will be of ground truth class g. If all points in the cluster are in the
same ground truth class, .|}

.}
 is 1 and log	(.|}

.}
) = 0.

If each cluster contains only datapoints of a single class, 𝐻(𝐺|𝐾) = 0 and we have a perfectly
homogenous clustering. Homogeneity, the measure of uniformity within a cluster, is computed as
follows:

ℎ = �
1	

1 −
𝐻(𝐺|𝐾)
𝐻(𝐺)

							

When 𝐻(𝐺) = 0, we have only one class, so homogeneity is defined to be 1. Otherwise,
homogeneity ranges from 0 to 1. Homogeneity is zero when 𝐻(𝐺|𝐾) = 𝐻(𝐺); this occurs when

𝑖𝑓	𝐻(𝐺) = 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

28

we have very “messy” clusters and the class distribution within each cluster matches the overall
class distribution.
Grouping each point into its own cluster results in a perfectly homogeneous clustering; however,
we would like datapoints of the same class to be in the same cluster.

Completeness is symmetric to homogeneity and assesses whether or not the datapoints within a
class are grouped into the same cluster. Completeness is maximized when all datapoints of a class
belong in one cluster, and it is computed as follows:

𝑐 = �
1	

1 −
𝐻(𝐾|𝐺)
𝐻(𝐾)

							

where 𝐻(𝐾|𝐺) represents the spread of each class’s datapoints across all of the predicted clusters.
When all datapoints of each class are in the same cluster, 𝐻(𝐾|𝐺) = 0 and the clustering is perfectly
complete. If there is only one predicted cluster, 𝐻(𝐾) = 0 and completeness is defined to be 1.
Similarly to homogeneity, completeness ranges on a scale from 0 to 1.

Ideally, we would like our clusters to be homogenous and complete. V-measure is the weighted
harmonic mean of homogeneity and completeness:

𝑉 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐
(𝛽 ∗ ℎ) + 𝑐

where 𝛽 is the weighting parameter used to give more importance to homogeneity or completeness.
Note that 𝛽 = 1 yields the unweighted harmonic mean of homogeneity and completeness:

𝑉 =
(1 + 1) ∗ ℎ ∗ 𝑐
(1 ∗ ℎ) + 𝑐 =

2 ∗ ℎ ∗ 𝑐
ℎ + 𝑐	 =

2
ℎ + 𝑐
ℎ ∗ 𝑐

=
2

1
ℎ +

1
𝑐

In general, we have:

𝑉 =
(1 + 𝛽) ∗ ℎ ∗ 𝑐
(𝛽 ∗ ℎ) + 𝑐 =

(1 + 𝛽)
(𝛽 ∗ ℎ) + 𝑐

ℎ𝑐

= 	
(1 + 𝛽)
𝛽 ∗ ℎ
ℎ𝑐 + 𝑐

ℎ𝑐

= 	
(1 + 𝛽)
𝛽
𝑐 +

1
ℎ

If we would like to give more importance to homogeneity, we would set 𝛽 < 1 to decrease the
value of �

�
. However, if we would like to weigh completeness more, we would set 𝛽 > 1 to increase

the value of �
�
.

Homogeneity, completeness, and V-measure can be calculated for any clustering setup, regardless
of the dataset size, the number of clusters and classes, and the algorithm used.

Evaluating Clusters Using Pairs of Datapoints

Instead of considering the variability of datapoints within each class and cluster, we can use all
possible pairs of datapoints to compare our predicted clusters against the ground truth classes. The
predicted clusters agree with the ground truth classes when either the two points are clustered
together in both groupings or the two points are in different clusters in both groupings. Otherwise,

𝑖𝑓	𝐻(𝐾) = 0
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

29

there is disagreement: the points may be clustered together in one grouping, but clustered
separately in the other.

One type of clustering evaluation metric based on this idea is the Rand Index (Rand 1971), which
simply takes the ratio of agreements to all possible pairs of datapoints:

𝑛00 + 𝑛��
)@-,

where N is the number of datapoints in our dataset (𝑁 ≥ 2), 𝑛00is the number of agreeing pairs in
which datapoints are clustered together, 𝑛�� is the number of agreeing pairs in which datapoints
are split into separate clusters, and)@-, represents the total number of possible pairs of datapoints.

Rand Index can be viewed as the probability of extracting an agreeing pair from all pairs of
datapoints, and it ranges from 0 to 1. However, notice that Rand Index is only zero when the
number of agreements, 𝑛00 + 𝑛��, is zero (Vinh et al, 2009). This occurs in the extreme case when
every datapoint is in its own cluster in one grouping, while in the other grouping, all datapoints
are in a single cluster. If we had a random grouping for our ground truth and another random
grouping generated by our algorithm, we would like our scoring metric to output a consistent, low
value. However, the Rand Index does not have a constant value in the case of random partitions.

To account for chance partitioning, the Adjusted Rand Index (ARI) was developed based on the
expected value of 𝑛00 + 𝑛�� (Vinh et al, 2009). The adjusted index is expressed as follows:

𝐴𝑅𝐼 =
𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑥	𝐼𝑛𝑑𝑒𝑥 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐼𝑛𝑑𝑒𝑥		

where Index is 𝑛00 + 𝑛��. The Expected Index is based on the worst-case scenario, occurring when
the ground truth labels are completely independent of the predicted clustering.

Define 𝑐"# as the number of objects that are in both class 𝑖 and cluster j. Then the number of pairs
of agreeing objects in class 𝑖 and cluster j is)��T- , . Moreover, define the number of objects in class
𝑖 as 𝑎" and the number of objects in cluster 𝑗 as 𝑏#. Then the ARI, above, becomes:

𝐴𝑅𝐼 =
∑)��T- ,",# − ∑)��- ," ∑)�T- ,# /)@-,

1
2 [∑)

��
- ," + ∑)�T- ,#] − ∑)��- ," ∑)�T- ,# /)@-,

where ∑)��T- ,",# = 𝑛00 + 𝑛�� (the number of agreeing pairs) and ∑)��- ," ∑)�T- ,# /)@-, is the expected
(worst) case if each clustering is independent (random).
The maximum value of agreements, 0

-
[∑)��- ," + ∑)�T- ,#], occurs when we have a perfect

clustering: all class objects are grouped into the same cluster.

Thus, when we have two random clustering assignments, the Index equals the Expected Index, and
ARI takes on a constant value of 0. In the best case, the Index is at its maximum value, ARI is 1,
and we have a perfect clustering.

30

Although these methods are useful ways to evaluate clustering techniques, they require labeled
data. V-measure and ARI are also called external indices because they evaluate clustering
performance using “answers” given by another source. When labels are not available, internal
indices must be used. Internal indices include Sum of Square Errors and the Calinski-Harabasz
Index, which we also used to find the optimal number of clusters.

Conclusion

Clustering is a very active area of research that is continuously evolving, especially as more and
more data is collected each day. Illustrating the intuition of clustering through numerical data, we
provide a comprehensive overview of methods for optimizing, evaluating, and extending
numerical clustering techniques. This appendix provides a foundation for further exploration of
clustering algorithms on diverse, real-world datasets.

31

References (Appendix B)

Akman, Olcay, et al. "Data Clustering and Self-Organizing Maps in Biology." Algebraic and
Combinatorial Computational Biology. Academic Press, 2019. 351-374.

Andritsos P., Tsaparas P. Categorical Data Clustering. In: Sammut C., Webb G.I. (eds)
Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA, 2017.

Bonaccorso, Giuseppe. Mastering Machine Learning Algorithms: Expert Techniques to
Implement Popular Machine Learning Algorithms and Fine-Tune Your Models. PACKT
Publishing, 2018.

Caliński, Tadeusz, and Jerzy Harabasz. "A dendrite method for cluster analysis."
Communications in Statistics-theory and Methods 3.1 (1974): 1-27.

Cohen, William W., Pradeep Ravikumar, and Stephen E. Fienberg. "A Comparison of String
Distance Metrics for Name-Matching Tasks." IIWeb. Vol. 2003. 2003.

Craw S. Manhattan Distance. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine
Learning. Springer, Boston, MA, 2011.

Dangeti, Pratap. Statistics for Machine Learning. PACKT Publishing, 2017.

“Degrees of Freedom.” UT Austin Statistics Online Support,
sites.utexas.edu/sos/degreesfreedom/. Accessed 3 February 2020.

Halabisky, Brian. Euclidean Distance in 'n'-Dimensional Space. 2012. Stanford HLab.

“k-Means Advantages and Disadvantages.” Google Developers,
developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages.
Accessed 29 January 2020.

“MATLAB Documentation: kmeans.” MathWorks Help Center.
www.mathworks.com/help/stats/kmeans.html. Accessed 5 February 2020.

Mohajer, Mojgan, Karl-Hans Englmeier, and Volker J. Schmid. "A comparison of Gap statistic
definitions with and without logarithm function." arXiv preprint arXiv:1103.4767, 2011.

Rand, William M. “Objective Criteria for the Evaluation of Clustering Methods.” Journal of the
American Statistical Association, vol. 66, no. 336, 1971, pp. 846–850. JSTOR,
www.jstor.org/stable/2284239. Accessed 12 Feb. 2020.

Rosenberg, Andrew, and Julia Hirschberg. "V-measure: A conditional entropy-based external
cluster evaluation measure." Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computational natural language learning

32

(EMNLP-CoNLL). 2007.

Rodriguez, Mayra Z., et al. "Clustering algorithms: A comparative approach." PloS one 14.1,
2019.

Singh, Archana, Avantika Yadav, and Ajay Rana. "K-means with Three different Distance
Metrics." International Journal of Computer Applications 67.10, 2013.

“Stats: One-Way ANOVA.” Math-130: Introduction to Statistics Lecture Notes. University of
Richland, 1996. people.richland.edu/james/lecture/m170/ch13-1wy.html

Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. "Cluster analysis: basic concepts and
algorithms." Introduction to data mining 8 (2006): 487-568.

Tibshirani, Robert, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a
data set via the gap statistic." Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63.2 (2001): 411-423.

Tibshirani, Ryan. "Clustering 3: Hierarchical clustering (continued): Choosing the number of
clusters," 2013.

Vinh, Nguyen Xuan, Julien Epps, and James Bailey. "Information theoretic measures for
clusterings comparison: is a correction for chance necessary?." Proceedings of the 26th
annual international conference on machine learning. 2009.

Xu, Dongkuan, and Yingjie Tian. "A comprehensive survey of clustering algorithms." Annals of
Data Science 2.2 (2015): 165-193.

