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 Abstract 

 This IQP gives an overview of peak electrical demand and DSM programs in the US and suggests 

large-scale PV solar projects as a method to mitigate peak demand. New England was chosen for a 

potential case study, due the declining load capacity, and high electricity prices in the region, and because 

of the possible PV capacity growth in the next decade. The state of Massachusetts projects the addition of 

400 MW of PV solar installations between 2013 and 2021. The state also guarantees a minimum SREC 

price making renewable investments safer. A financial study in this report shows that a typical 1MW 

commercial (rooftop) project can be expected to yield 24%-30% Internal Rate of Return (IRR). 
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Executive Summary 

The main goal of this IQP is to study peak demand characteristics, demand side management, and 

suggest methods for mitigating peak electrical demands. Specifically, the New England region was 

investigated in detail due to the high price of electricity. The electricity demand in this region has been 

growing over the past decade and it is projected to do so in the future as industries grow and the region 

sees an inflow of migrants. As a result, the peak demand in the region is expected to grow at 1.5% 

annually until 2021 [1, p. 5]. 

There is a comprehensive Demand Response (DR) strategy to reduce the commercial peak load. 

By means of power cycling air conditioners, utility companies can shave peak electricity demands in real 

time. However, the same strategy does not apply to all residential customers. Firstly, because controlling 

residential loads becomes more complicated and expensive as the overall electricity usage in a household 

is scattered in smaller electrical loads. Second, surveys show that customers are unwilling to let utility 

companies take control of their appliances. The loads currently under residential demand response 

program are central air conditioners and swimming pool pumps. Power cycling a smaller load is not 

worth the cost and effort. Thus, it is difficult to expand the traditional DR strategies drastically. 

 This IQP suggests the use of solar PV technology as a means of DR, as the PV power output 

period partially coincides with the peak demands of the day. While residential solar has been hype in the 

past decade, larger commercial and utility scale PV generation has been neglected specially in 

Massachusetts. Recent renewable energy policies have generated new interest in the state of 

Massachusetts for utility scale solar, making it one of the most lucrative and secure state for renewable 

energy investment. This report provides a feasibility study and sensitivity analysis for such a project. 

Potential investors may find this report as a starting point for further investigation. 
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Introduction  

 Weather, economic activity, and demand side management programs can potentially affect the 

peak electrical load.  Thus, the actual growth in demand can only be fully realized with a weather 

normalized growth in demand is shown in figure 2. Extreme summer weather can cause up to a 5-8% 

increase in peak load, compared to a typical year [2]. The high demand peak during 2005 – 2007 shown 

in figure 1, occurred due to extreme summer temperatures. The Green label in the graph indicates 

projected data. The non-coincidental peak load is the highest peak load in a year that occurred from 

summing the loads of Regional Entities across the US. The Regional Entities are explained later in this 

chapter.  

 

Figure 1: Non Coincidental Peak Load 1999-2011 (actual) 

 Figure 2 shows the annual growth rate from 2002 to 2011. Although the overall demand 

increases, it does so at a decreasing rate. This is attributed to Energy Efficiency policies, as well as 

demand response programs. However, the 2007 recession has caused a serious decline in the annual 

energy demand growth. This is well documented in NERC’s 2012 Long Term Reliability Assessment 

(LRTA). Thus, a long term projection currently is somewhat unreliable. However, the overall demand is 

expected to grow at the usual rate past the year 2012. 
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 The peak demand is important, not only for electrical system planning purposes, but also because 

it dictates the price of electricity. Figure 3 shows the price of electricity each year on the horizontal axis, 

and the change in price from previous year on the vertical axis. The growth of peak demand from 2004 to 

2005 has led to drastic increase in average electricity price in 2005. Similarly, the decrease in demand 

growth from 2006 to 2007 and from 2008 to 2009, the two large arrows in figure 2) drastically reduced 

the rate of increase in price.  The two large arrows in figure 2 are in line with the two dips in figure 3 that 

occur in the same years. Thus, peak demand and electricity prices are closely related. 

 

Figure 2: Average annual growth of NERC-wide summer peak demand [3] 

 

Figure 3: Average price of electricity and change from previous year [4, p. 255] 
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 Until the 1970s, utilities were responsible for generating, transmitting, and distributing electricity 

to homes and businesses. These companies operated independently of each other and were regulated 

monopolies. In the early 1990s, Congress and the Federal Energy Regulatory Commission (FERC) started 

transforming the electric generation and distribution system into a competitive market. They hoped that 

the market competition would drive the key players to improve the overall system. As a result, ISOs – 

Independent System Operators were formed to ensure a functioning competitive market across North 

America. Some of the ISOs are also RTOs – regional Transmission authorities. ISO and RTOs are very 

similar; typically, RTOs operate at larger areas. The North American Electrical grid is divided into 

regional entities as shown in Figure 4. These entities account for virtually all the electricity in the United 

States, Canada, and a portion of Baja California Norte in Mexico. Each region can transmit bulk 

electricity internally and across regions, making a more flexible and dynamic overall system. Name of 

these entities are provided in table 4 in appendix. These regions have been redefined over time. For an 

older map, please refer to Figure 46 in appendix. 

 

Figure 4: NERC Interconnections between Regional Entities [5] 
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 NERC is a not-for-profit corporation, and it is the central regulatory body that can enforce 

agendas to ensure the reliable production and distribution of electricity in North America. NERC 

describes its role as “NERC develops and enforces Reliability Standards; monitors the bulk power system; 

assesses adequacy annually via a 10-year forecast and winter and summer forecasts; audits owners, 

operators, and users for preparedness; and educates and trains industry personnel.” [6]  RTOs and ISOs 

are in compliance with all applicable NERC and regional reliability standards as well as North American 

Energy Standards Board (NAESB) business standards and are regulated by the Federal Energy 

Regulatory Commission (FERC). RTOs are also responsible for the electricity spot market. This 

hierarchy in the grid system is important to explain how the peak electricity largely affects the electricity 

price, and to fully realize what demand response is. 

 

Figure 5: Inter Regional Coordinating Group (IRC) Operating Regions [7] 
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 Contrary to the widespread belief, utilities do not generate all the electricity it provides to the 

customers, although they are fully responsible for the transmission and distribution to end users. 

Electricity is bought and sold as commodity in the spot market. Here generators sell, and the customers 

(including utilities) buy retail electricity. By combining the generating resources, the spot market provides 

a platform that allows a more efficient method for managing electrical demand, and increases the overall 

system reliability. It virtually provides the benefits of vertical integration while regulating the 

monopolistic nature of the business. 

 Because the electrical load varies in time, and the load determines the cost of delivery to end 

customers, auctions are held hourly both the day ahead and in real time. Prices are higher during high 

demand periods and lower in off-peak hours. Although this demand is forecasted, some inaccuracy in 

forecast, as well as transmission congestion gives rise to uncertainty and volatility in the market. This 

uncertainty can mostly be attributed to high prices in the spot market during peak demand hours. 

 Since Electrical demand changes hourly, and even on a minute-to-minute basis, the RTOS/ISOs 

work together with power generators, utility companies, and other key players to ensure a constant supply 

of electricity. Figure 6 shows the organizations responsible for managing peak electrical demands in the 

US.  
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Figure 6: Electric System to mitigate Peak Demand [8] 

  



12 
 

CHAPTER 1: Demand Response  

Demand response can be defined as the ability of customers to reduce electricity consumption 

during high demand hours. This may be achieved through a request (may be automated) from the utility 

company or regional transmission organizations, or through variable price rates or financial incentives. 

Whatever the demand response program may be, its goal is to reduce the electrical load during peak hours 

to reduce electricity prices, and ensure grid stability. Table 1 shows some of the typical DR programs 

used by the utilities. 

Table 1: Demand Response Programs 

Time Based Pricing Incentive Based Program
Time-of-Use (TOU) Direct Load Control (DLC)

Critical Peak Rebate (CPR) Interruptible Load Control (ILC)

Critical Peak Pricing (CPP) Emergency DR Resource

Day-Ahead Real-Time Pricing (DA-RTP)  

 

 Time Based pricing gives incentives to customers to change his consumption pattern to reduce his 

electric bill. The customer is not in any contractual obligation to reduce his load in any given time, but is 

likely to consume less during peak hours due to the high electricity prices. 

 Direct Load Control (DLC) represents the loads that can be power cycled remotely during periods 

of peak demand, and the consumer is given financial benefits in return. Common DLC programs include 

air conditioning units and water pumps  connected to devices so that they can be turned on or off 

remotely. Thus by power cycling a bulk of these loads at intervals, the peak demand can be curbed 

significantly. Interruptible load Controls usually include larger commercial or industrial customers who 

can reduce their electricity consumption upon request based on a predetermined price.  
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1.1  Why demand response? 

 The amount of power generated and consumed power should be equal for two reasons. Firstly, a 

balance between the electricity produced and its consumption is needed to maintain power quality. Failure 

to meet the demand will result in voltage fluctuation, grid instability, and can even lead to a total 

brownout. Secondly, the electricity produced should not be significantly more than the electricity 

consumed. As utilities virtually have no means of storing this energy, the wasted electricity will result in 

an increased cost of production.  

 A power grid is typically designed to supply the maximum projected demand (including peak 

demand). Since the peak electricity occurs only for few months, it is a disinvestment to design a grid 

system with a much higher capacity than needed. Thus reducing the peak demand is financially more 

feasible.  

 For residential customers, low electricity price ensures a better life, providing them with 

affordable heat in winter, and much needed air conditioning in hot summer. For commercial customers it 

could mean competitive advantage. However, even a slight increase in electricity price will affect the cost 

of operation and production. Thus, the price of electricity is a determinant factor for economic 

development. 

Figure 7 shows a characteristic graph of load connected to the grid throughout the day. The 

demand peaks around noontime and starts to drop in the evening. Although the shape of the curve is 

characteristic to the 24-hour demand on the grid, this graph represents one of the highest demand days in 

the NEMA zone of the ISO control area.  The difference in this case between the lowest and highest 

demand is 2.5 GW, which is significantly large. 
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 Figure 7: 24 hour load on a very hot day in the NEMABOST Zone within the ISONE region 

(08/02/06) [9] 

   

1.2 Demand VS Electricity pricing 

1.2.1  Price elasticity  

 In most electric power systems, the consumer pays a fixed price for electricity. Even in markets 

with variable prices, the unit price itself is fixed for certain times of the day. The utility on the other hand 

sees a more dynamic and elastic price based on the load on the grid. As shown in figure 8, this price can 

increase exponentially in the event of very high demands. 

 Figure 8 shows a small reduction in demand from D1 to D2 causes a larger reduction in 

electricity price from P1 to P2. The significance of this graph is fully realized in extreme demand 
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the demand DR program is further preferred by the utility company as it reduces the price volatility in the 

energy spot market. 

 

Figure 8: Effect of DR on electricity prices 

 The wholesale electric price is known as least marginal Price (LMP). It is the least price of 

electricity that is required to transmit energy to its destination, determined each hour at the electrical spot 

market. LMPs are determined by day ahead as well in real time auctions. Figure 9 reflects the higher LMP 

that results from a high demand on the grid. The LMP can grow exponentially during high demand hours. 

 

Figure 9: LMP in ISONE spot market for the year for three days 08/01/2006 - 08/03/2006 [9] 
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 Typically, LMPs represent three price components: Energy component, Loss component, and 

Congestion component. The energy component is the same for every location. The cost of electricity 

would be the same for all locations within a region without the other two components. The loss 

component reflects the marginal cost of system losses in a location, while the congestion component is 

the cost reflected by transmission congestion in a location. Figure 10 shows this relation between 

congestion and LMP. The dotted line is the hourly energy demand, and the LMP (blue line) follows this 

demand closely. The spikes in LMP at the 21
st
 and 24

th
 points resulted from higher congestion on the grid, 

which is represented by the red line. The graph represents 34 highest demand points in three hottest 

summer days in 2006 in the ISONE region. The same three days data used to construct figure 9. 

 

 

Figure 10: Real Time LMP, demand, and congestion [9] 
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 The high electric demand is typically driven by extreme weather. The peaks occur in winter, and 

even higher peaks are experienced in hot summer days. The peaks in winter are lower as the heating 
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Figure 11: Electricity Generation: US weekly average [11, p. 16] 

 Figure 11 shows the monthly average of the total electrical energy generated in the US 

throughout the year. The demand is the greatest between July and September due to the use of air 

conditioners during summer. The winter usage peaks between December and February. Electricity usage 

is directly proportional to the extremities of weather. One may note that the 2012 winter electricity usage 

is much lower than that of the previous years as shown in the graph. This is because the 2012 winter 

temperature has been the least extreme in the decade. 

1.3 Understanding the Power Grid 

 This section discusses the structure of the grid so that the reader can appreciate the way the grid 

works and the dynamic nature of power generation that is needed to deliver reliable power at a minimum 

cost. The overall power on the grid is produced from three different power plants: base load supply, peak 

supply, and intermediate supply.  
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1.3.1 Base load supply  

 In virtually all power systems electricity is produced by the most cost-effective method first. This 

is called the base load supply. The base load supply meets the demand or load that exists on the grid 24 

hours a day.  Typically nuclear, hydro, and coal based, these power plants require higher start time and 

operate 24 hours a day, round the year with the exception of scheduled downtime or repair. Usually base 

load supply provides most of the electricity used by the grid. 

1.3.2 Peak Supply 

 As the demand for electricity varies within the day, more costly oil or gas-fired generators are 

dispatched to mitigate the higher demand. These are known as peak sources. These generators are used as 

the demand of electricity peaks.  

 

Figure 12: US gas consumption for power generation (monthly average) [11, p. 50] 

 The use of gas-fired power plants is the greatest in summer as shown in figure 12. Thus, the peak 

supply, the most expensive source has a predictable demand curve based on temperature or severity of the 
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weather, and is similar to the overall electricity demand of the country. It is important to understand that 

Demand response measures are designed to reduce the electricity produced from these sources. The peak 

supply sources are engaged on a real time basis often depending on projected electricity demands. 

1.3.3 Intermediate supply 

 Intermediate generators are used in between base and peak load. They use the same fuels as peak 

load generators, but have a higher capacity output. Renewable sources such as wind and solar are also 

considered intermediate supplies, as their output depends on weather and cannot be relied upon to meet 

peak demand periods. These sources however help reduce the use of fossil fuels for power generation. 

 

Figure 13: Example of a Conventional Power grid resource deployment [12] 

 Although PV solar power generation is considered intermediate power source, this study 

recommends utility scale solar generation as a method to complement demand response. This is because, 

historically, the solar irradiance has largely been consistent and predictable, and it coincides with the peak 

demand hours. This is further discussed in chapter 4. 

1.4 Grid structure’s relation to Marginal Cost 

 The marginal cost of electricity discussed in 2.2.2 can be fully explained with the method of 

generating the peak electricity. To visualize how each of the electricity generating sources are dispatched, 

Figure 14 shows a theoretical curve of generating cost by plant type, and the demand on the grid when 
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they are dispatched. The lower operating cost sources are dispatched first. This does not reflect an actual 

power system, but instead provides a hypothetical scenario for visualization purposes. 

 

Figure 14: hypothetical Dispatch Curve [13] 

 The yellow and red dots on in figure 14 shows the gas fired generators that are dispatched during 

the high demand periods.  One reason for these plants to be expensive is the lower energy factor. In other 

words, it costs them more money to generate the same amounts of electricity that can be generated by a 

nuclear or a coal plant. 

 However to fully understand why these “high demand’ plants have such high operating costs, the 

overall annual periods of operation needs to be accounted for. Figure 15 shows the fraction of peak power 

that each of the three - base, intermediate, and peak supply sources provide plotted against the hours in a 

year. The peak supply sources provide only a small amount of the overall electrical energy demanded by 

the grid annually. From an investment standpoint, a power plant that operates only for such a short period 

is costly, as it would have a longer pay back period. Thus, the cost of producing electricity will be much 

greater from such a plant. 
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Figure 15: Normalized Load Curve for ERCOT (2000) [14] 

 Furthermore, to supply the additional power requires grid infrastructure which is also a 

disinvestment given the short duration they are being used. Since this peak demand increases annually, 

utilities invest in demand response programs rather than investing large amounts to expand distribution 

resources.   

  

Hours in a year  
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Chapter 2: Demand Side Management in the US 

2.1 History of DSM 

 The 1973 oil crisis triggered widespread public awareness of energy conservation. In 1978, 

National Energy Conservation Policy Act (NECPA) was passed. This law required the utility companies 

to provide on-site energy audits to residential customers. The NECPA is the start of Demand response 

programs, as we know it. 

 

Figure 16: Utilities with and without demand response programs (2006) [15, p. 9] 

  The electricity production cost led the utilities to experiment with DR programs to reduce 

operational and capital costs. Electricity wholesale prices were fixed between proceedings, under the rate 

of return regulation; the utilities would lose money if the marginal cost of generation exceeds this price. 

At the same time, high interest rates created a problem for utilities to invest in new power plants. Thus, 
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the utilities initiated a number of load-control programs to reduce consumption during high demand 

periods, when the marginal cost of generation was high.   

 

Figure 17: US Annual Spending on DSM [16, p. 267] 

Figure 17 shows the annual spending by all US utilities on DSM programs. The prices are not 

adjusted for inflation. The spending reflects all direct and indirect costs associated with DSM programs.  

The major categories are customer rebates and incentives, administrative, marketing, training and 

research costs, and other indirect costs, but does not account for energy efficiency costs. The DSM 

spending gradually increased from 1989 to 1994. The reduction in spending after 1994 is attributed to 

utilities cutting back on DSM programs due to industry deregulation.  
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Figure 18: Load under DSM programs [16, p. 267] 

The deregulation is also responsible for the decline of overall load under the DSM programs in 

late 1990s and early 2000 shown in figure 18. Some state governments created new programs that 

promoted DSM followed this federal deregulation.  Examples include the "Energy $mart Loan Fund" 

initiated by the New York Energy Research and Development Authority and the "Efficiency Vermont" by 

the Vermont Public Service Board [16, p. 267]. These non-utility costs are not included accounted for in 

the figure. The actual load under DSM are loads that are enrolled in load management programs through 

DLC, ILC, or other programs that shift peak loads to off peak periods such as space heating and water 

heating storage systems. 
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Figure 19: Peak demand reduction from energy efficiency [16, p. 267] 

 Energy Efficiency in figure 20 accounts for the reduction in electricity use by specific end-used 

devices and systems, typically without affecting productivity or services provided by the devices or 

systems.  These generally include the substitution of older devices connected to the grid with more 

advanced and energy efficient versions. Examples include high efficient appliances such as air 

conditioner, lighting, heating, refrigerators, or control system, building design, and heat recovery systems. 

   

 

Figure 20: Total Peak Load Reduction [16, p. 267] 
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2.2 Demand Response Projections 

 The role of DSM programs in the US is projected to play a larger role in mitigating peak 

electrical demands. IEA estimates peak demand reduction of up to 5% by the year 2019 [17]. The 

projected peak demand reductions are shown in figure 21. The DR programs only include programs that 

allow system operators to control loads directly, and does not account for programs where customers have 

control such as Time of Use (TOU). The energy efficiency in figure 21 refers to reduction of peak load 

resulting from using more energy efficient appliances and lighting. These DSM programs have significant 

impact on peak demand, as NERC’s 2010 LRTA reported that increasing participation in DR programs is 

contributing to reducing the overall growth of peak demand [17]. Both DR programs and effects of 

incremental energy efficiency are likely to increase through 2019. 

 

Figure: 21. Peak Reduction through Energy efficiency and Demand Response [18] 
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CHAPTER 3: Target Region: New England 

3.1 Price of electricity 

 Electricity price has been gradually rising in the US for the past decade. As of Sept 2012, the 

New England region, New York, and California has some of the highest prices in the nation. On a macro 

scale, the cost of generating electricity varies depending on the market price, cost of fuel, type of fuel, 

government subsidies, regulations, and even weather. While only so much can be done about these 

factors, on a micro-scale, peak electricity largely affects the electricity cost as discussed in chapter 1. 

Thus to study DSM programs, regions with high electricity prices were looked at. 

 This IQP has found that a key driving factor between various regions is the type of fuel used. 

Average annual electricity price and fuel source data was taken from the EIA database for the six 

geographical regions: New England, Mid Atlantic, East North Central, West North Central, South 

Atlantic, East South Central, Mountain, Pacific Contiguous, and Pacific Noncontiguous. For a list of all 

states in each region, please refer to table 6 in appendix. Ten-year average of price and energy generated 

from different sources were calculated. The percentage of electricity generated from natural gas (NG), 

and from coal and hydro combined is shown in figure 22, starting with the region with highest electricity 

price at the left. The regions that produce the most electricity from coal and hydro have the cheapest 

electricity.     
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Figure 22: Percentage of Electricity generated by source 

  New England and the New York region have the highest electricity price in the Nation. The high 

electricity costs in the New England region is mostly because of their extensive use of gas generators. In 

2010, 45% of New England’s electricity was generated form natural gas generators [19, p. 7].  

 Ten year average of natural gas used of total electric generation in Rhode Island is 98% and 

Massachusetts  is 56% During the late nineties when gas prices were low, almost 100% of the power 

generators installed in the region were gas fired, totaling to almost 10 GW of installation between 1994 

and 2004 [19, p. 9]. This had the advantage of improved air quality from replacing coal power plants. 

However, the gas price hike has drastically raised the price of electricity in this region. This correlation 

between NG price and electricity price is the most apparent in the NY region. Figure 23 shows the 

average annual cost of NG and electricity in the state between 2000 and 2011.  The high cost of NG from 

2005-2008, also drove the electricity prices. 



29 
 

 

Figure 23: Gas and Electricity Price in New York [20, p. 15] 

 The high electricity price has made the New England and New York region good potential targets 

for further study. The NG price is not likely to decrease in the near future; in fact, it is likely to increase 

gradually in the next two decades as shown in figure 24.  

 

Figure 24: Projected gas price (Henry Hub spot prices) [21, p. 91] 
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 The NYISO 2010 summer peak demand forecast shows an annual average growth rate of 0.85% 

for the years 2012 through 2022 [22, p. 5] compared to 1.5% projected by ISONE for the NE region [1, p. 

5]. Furthermore, New England is projected to see tremendous growth in PV solar installation, totaling 

almost 800 MW of added nameplate capacity in the next 11 years, out of which 400 MW will be in the 

state of Massachusetts. Since this IQP proposes utility scale solar as a means to complement DSM 

programs, ISONE seems more suitable for the case study. To summarize, it is the high electricity cost, the 

annual growth of summer peak demand, and the prospective growth of PV installation that lead this study 

to select this region. 

 

Figure 25: Prospective expansion of PV in New England [1, p. 148] 
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3.2 ISONE Load and Capacity Forecast 

 ISO New England is responsible for the state of CT, MA, NH, RI, VT, and ME. ISO New 

England describes its role as: “ISO New England meets its obligation in three ways: by ensuring the day-

to-day reliable operation of New England's bulk power generation and transmission system, by 

overseeing and ensuring the fair administration of the region's wholesale electricity markets, and by 

managing comprehensive, regional planning processes” [23]. 

 “The ISO forecasts the 10-year growth rate to be 1.5% per year for the summer peak demand, 

0.6% per year for the winter peak demand, and 0.9% per year for the annual use of electric energy. The 

annual load factor (i.e., the ratio of the average hourly load during a year to peak hourly load) continues 

to decline from 57.5% in 2012 to 54.9% in 2021” [1, p. 5]. 

 According to NERC 2011 LRTA, no significant issues were raised for the ISONE region. ISONE 

has adequate reserve margin currently as shown in figure 26; the target reserve margin set by NERC is 

15%. This is a measure of generating capacity available to meet expected demand. It is calculated by 

equation 1. 

                   
                                       

                   
           [1] 

  

 Net internal demand defined by NERC is the Total Internal Demand less dispatchable, 

controllable, Capacity Demand Response used to reduce load [24]. The projected demand is based on a 

50/50 forecast, which means that the peak loads have a 50% chance of being exceeded because of weather 

conditions. 
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Figure 26: ISONE reserve margin planning [25, p. 10] 

 

 Although ISONE has adequate of reserve margin, it has been experiencing a declining load factor 

in the past decade. Load factor is a measure of how “peaky” the load on the grid is.  It is calculated by 

using equation 1. 

              
             

         
      [2] 

 

 As discussed earlier in this paper, peak electricity is expensive, because it is costly to generate, 

and the uncertainty causes a higher LMP at the spot market. Thus to reduce the cost of electricity and 

avoid expenses related to expanding grid infrastructure, ISONE needs to improve their load factor.  
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Figure 27: Actual load factor ISONE [26] 

 Since 2004, ISONE has run successful DSM programs to improve its load factor. However due to 

a rising peak demand during summer, the summer load factor still declined, and is expected to do so 

(although at a much slower rate) till 2015. The 2006 load factor was the lowest in its 10-year history 

because of the extreme summer temperatures experienced in the region. As discussed earlier in this 

report, the increased number installed of Air-conditioning units is largely responsible for the disparity 

between rising summer and winter demands. While the winter load factors have significantly increased 

because of successful DSM programs, the summer load factor continues to decline as shown in figure 27. 

The load factors discussed in here refers to actual load factors experienced annually, and does not account 

for DSM measures OP4 (Operating procedure 4) and PDR (Passive Demand Response). 
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Figure 28: ISONE Load factor (actual) [26] 

 

3.3 ISONE Overview 

 ISONE is divided into 8 Load zones (refer to figure 31). Load zones are aggregation of nodes 

within an area, and are used for wholesale billing. These eight load zones are Maine (ME), New 

Hampshire (NH), Vermont (VT), Rhode Island (RI), Connecticut (CT), Western/Central Massachusetts 

(WCMA), Northeast Massachusetts and Boston (NEMA), and Southeast Massachusetts (SEMA). 

 The pricing points on the system include individual generating units, load nodes, load zones and 

the Hub. Load zones are accumulation of load nodes within an area, while the Hub is a collection of 

locations that represents an uncongested price for electric energy, facilitate energy trading, and enhance 

transparency and liquidity in the marketplace [1, p. 26]. In the ISONE region, generators are paid the 

LMP for electric energy at their respective nodes, and the participants serving demand pay the price at 

their respective load zones [1, p. 26]. 
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 Additionally, the region is divided into 19 demand resource dispatch zones, as shown in figure 

30. These DR dispatch zones are groups of nodes used to dispatch real-time demand-response resources 

or real-time emergency generation (RTEG) resources [1, p. 24]. “These allow for a more granular 

dispatch of active demand resources at times, locations, and quantities needed to address potential system 

problems without unnecessarily calling on other active demand resources” [1, p. 24].  

 
 

 

 

 6.5 million households and 

businesses; population 
14 million 

 Over 300 generators  

 32,000 MW of total generation  

 Over 8,000 miles of transmission 
lines 

 13 interconnections to electricity 

systems in New York and 
Canada 

 Approximately 2,100 MW of 
demand resources for 2012 

 All-time peak demand of 

28,130 MW, set on August 2, 
2006 

 Approximately 500 participants 
in the marketplace (those who 
generate, buy, sell, transport, and 

use wholesale electricity and 
implement demand resources) 

 $7.63 billion total market 

value— 
$6.17 billion energy market, 
$1.35 billion capacity market, 
and approximately $0.11 billion 
for ancillary services 

 Approximately $5.0 billion in 

transmission investment since 
2002; approximately $6 billion 
planned over the next 10 years 

Figure 29: New England Demographics [1, p. 24] 
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Figure 30: ISONE DR dispatch zones [1, p. 27] 
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3.4 Target Load Zone: NEMABOSS 

 

Figure 31: ISONE Load Zones [27] 

 In the Northeast Massachusetts (NEMA)/Boston capacity zone, the amount of capacity resources 

is projected to marginally meet the resource adequacy requirements for that area. In the near future, Salem 

Harbor units #1, #2, #3, and #4 (near Boston) will retire decreasing the generating capacity of nearly 750 

MW. In Forward Capacity Auction 6 (FCA 6), the local sourcing requirement (LSR) for NEMA/Boston 

was 3,289 MW, and the resources in that area totaled 3,348 MW. [1, p. 7] Thus, any additional 

retirements in NEMA/Boston region may create the need to develop new generating resources. 

Furthermore, recent developments in NEMA/Boston associated with reduced liquefied natural gas (LNG) 

supplies further highlighted reliability concerns in this zone. [1, p. 7] Figure 32 shows the top 100 hourly 

demand for the ISONE region for the year 2011. The NEMA zone has a higher overall system load, and 

the peak demand is significantly higher than the average demand compared to other load zones. 
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Figure 32: Top 100 load hours ISONE for the Year 2011 [28] 
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CHAPTER 4: Utility Scale Solar PV Projects  

 This chapter discusses the potential of PV to complement DSM programs. This IQP advocates for 

PV solar projects to complement DSM programs. The trends in the solar PV market are discussed and a 

detail financial model and is presented for a prospective utility scale PV project in Massachusetts. 

Although This IQP advocates expansion of PV in general, larger scale is preferred to smaller residential 

one because of economies of scale as well as well as design flexibility, which allows for increased output 

for the same nameplate capacity. In addition, non-residential solar expansion distributes the financial risks 

from homeowners to other energy investors.  

4.1 Why Solar 

The growth of solar PV systems in the past 5 years has been tremendous all over the world. PV 

systems have grown annually at 60% globally and 53% the United States. In the year 2011 alone, the 

US has installed about 2 GW of the 21 GW of PV installed globally. This was a 109% increase over 

from the previous year [29, p. 1]. The increase in state and federal incentives as well as the decline in 

PV system cost is causing this rapid expansion of PV installation across the US. As discussed later in 

this chapter, the PV power output period partially coincides with the peak electricity demands of the day. 

Furthermore, more than half of the annual electricity from PV is generated in three summer months, 

which makes solar a better investment to mitigate peak electricity compared to other renewables. 

4.1.1 PV output pattern  

 This IQP has found that PV output peak hours largely coincide with peak electrical Demand 

periods both during the 24-hour period of the day as well as summer peak months. AS discussed earlier in 

this report, summer peaks are significantly higher than winter peaks both throughout the US (figure 1), as 

well as in New England. Consequently, summer capacity margin is generally less than that of winter. 

Thus from an electricity generation and distribution standpoint, summer peaks drive the capacity 
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expansion cost.    Furthermore, summer load factors are lower and electricity prices are higher compared 

to that of winter. For example in the New England region, the 2011 winter load factor was 70.9%, which 

is 15.8% more than the 55.1% summer load factor (figure 28).  

4.1.1.1 Monthly Output 

 To study the monthly solar to electrical energy pattern, 10 years data of monthly total electricity 

generated from solar resources was taken from EIA database. Each month’s contribution to the total 

energy generated was plotted for 9 years as shown in figure 33.   

 

Figure 33: Total PV solar output in the US by month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2009 7.19 30.44 78.11 99.42 110.4 103.4 121.2 116.3 94.99 68.1 40.4 21.21

2008 16.29 35.84 74.6 94.14 98.74 128.2 110.9 105.3 92.6 60.24 28.85 18.69

2007 12.84 19.24 48.49 54.46 84.19 84.46 85.79 75.16 68.21 49.23 24.3 5.402

2006 12.94 19.53 33.4 52.07 70.74 69.7 61.66 82.99 53.99 32.28 15.69 2.713

2005 8.668 13.08 38.16 58.26 81.15 88.48 72.33 75.85 61.11 37.67 12.76 2.793

2004 12.61 10.86 52.93 56.9 81.78 87.88 82.1 72.85 60.63 33.52 15.34 7.758

2003 13.22 17.83 50.03 60.31 67.96 90.68 62.41 61.99 55.86 35.44 14.03 4.251

2002 11.32 23.57 44.4 45.86 57.64 95.54 85.54 74.93 52.61 30.96 28.18 4.307
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 While the peak energy month varied each year, in all 10 years they occurred between May-

August. The month of June has produced the most energy in the 10 years total, followed by July, August, 

and May. Another significance of this plot is that the Monthly output for each year was highest during the 

hottest month of that year. For example in 2006, the highest summer temperatures were observed in 

August, the month when solar energy produced was also the highest for that year. This is important 

because the hottest days tend to show higher energy consumption as well as peak demand. 

 The total energy generated was highest in summer months. The four summer months- May, June, 

July, August accounted for more than half of the total energy produced as shown in figure 34.  

 

Figure 34: Summer PV energy accounts for more than half of annual 

  

 Since this IQP proposes the use of PV solar technology, especially in the state of Massachusetts, a 

similar analysis was done based on reported electricity generation data to IEA from three solar projects 

located in Massachusetts. Since large-scale PV projects are new in Massachusetts, only three of facilities 

have recorded data in the IEA database, and complete data for 12 months was found only for the year 

2011. The two projects: NEDC Solar Site and Haverhill Solar Power Project both have nameplate 
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capacities of 983 KW, and are rooftop PV systems located at municipality buildings. The Silver Lake 

Photovoltaic Facility has a nameplate capacity of 1.8 MW. It is a ground mount system located in 

Pittsfield MA. 

 The electricity production pattern of all three PV sites is very similar, and this pattern is 

consistent with the US annual energy production from all solar sources (figure 33). All three sites produce 

approximately half of its annual energy in the four months between May and August as shown in figure 

36. Since summer electrical demands are more concerning than winter demands, the higher energy 

produced from PV during this period makes it suitable for mitigating the summer peak demands. 

 

 

Figure 35: Actual electricity produced for the year 2011 
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Figure 36: Energy from PV in summer vs. rest of the year 

 

4.1.1.2 24-Hour PV output 

 To study how PV output coincides with hourly peak electricity demands, simulated hourly data 

was used for the Boston area. The data was generated by NREL’s “PV watts v.1” using typical 

meteorological year (TMY) weather data. Since weather patterns vary from year to year, the values 

plotted here are better indicators of long-term performance than for a particular month or year. Compared 

to long-term performance, the data shown is accurate within 10% to 12% margin [30]. The data also 

accounts for PV cell temperature. The parameters used for simulation is shown in table 2. The DC rating 

or the nameplate capacity is chosen to be 1000 KW, as this value is later used in the financial analysis in 

the next chapter. 
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Table 2: Simulation Parameters 

City: BOSTON 

State: Massachusetts 

Latitude (deg N): 42.37 

Longitude (deg W): 71.03 

Elevation (m): 5 

Array Type: Fixed Tilt 

Array Tilt (deg): 35 

Array Azimuth (deg): 178 

DC Rating (kW): 1000 

DC to AC Derate Factor: 0.770 

AC Rating (kW): 770.9 

 The AC rating shown on the table is calculated by multiplying the DC rating with the derating 

factor, to account for inversion loss. Thus, the maximum output power (AC power) that can be produced 

is 770 KW. The array tilt is chosen 35 degrees, based on optimum tilt angle calculated from solar 

insolation data from Solmetric Corporation (figure 43 in appendix).  An annual average of the 24-hour 

output power is shown in figure figure 37. The PV output is the highest at noontime, reaching about 65% 

of the rated output. The output power is over 52% for hours between 10:00 am and 2:00 pm.  

 

Figure 37: Simulated hourly PV output (KW) 
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 While the capacity factor of PV is generally much lower than other renewable resources, most of 

the energy is produced during peak electrical demand hours1. Thus, this IQP recommends the use of PV 

technology as a peak electrical demand management strategy. Figure 36 compares the simulated average 

hourly to the annual average hourly electrical load in the NEMABOST load zone. The simulated PV 

output follows the load curve, producing the maximum energy during high demand hours. 

 

 

  Figure 38: 24-Hour PV output (Boston) and ISONE Annual Average   

Hourly Load Curve (2011) 

 

4.2 Scale and Technology 

 From a peak demand standpoint, residential PV systems are promising since they typically come 

with batteries. This can be especially helpful as the batteries could be discharged during peak hours by a 

signal from the utility companies. However, from an end consumer standpoint owning, maintaining, and 

financing a PV system can be difficult. The residential PV systems also pose a financial risk on 

homeowners that they should not have to take, and currently the IRR on smaller residential PV 

                                                             
1 Capacity factor is the ratio of actual output of power compared to nameplate capacity over a period. Over a 24-hour period, PV 

technologies have relatively low capacity factors as they only produce energy during the day when sunlight is present. Refer to figure 48 
in appendix for Capacity factor of various renewable sources. 
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systems(<10KW) is much lower than bigger commercial or utility projects. Furthermore, the integration 

of small residential systems in different locations across the grid has added reliability issues that need to 

studied and addressed if done in a larger scale. Thus, this IQP proposes commercial and utility scale PV 

projects. 

4.2.1 Residential, Commercial and Utility 

 Small (residential) PV systems are more expensive than the larger systems due to economies of 

scale, as well as the added battery cost. From 2011 Q4 reported data shown in figure 39, the mean price 

for systems <5KW was can range between $5/W to $6/W, compared to $3/W to $4/W for larger 

commercial systems > 1,00KW. Although the price varies across states, the price was significantly higher 

for smaller systems everywhere in the US. This added cost can significantly affect the payback period, 

and the return on investment.   

 Small residential systems have a much higher cost than larger systems. Commercial projects 

greater than 100 KW are much cheaper due to the economies of scale. While utility scale projects have 

the same economies of scale as commercial projects, they have added construction cost for preparing the 

site for PV installation. This extra cost makes utility PV projects less profitable than commercial PV 

projects for the same nameplate capacity. Thus, the most profitable project for the least startup cost would 

be a commercial project close to 1MW of nameplate capacity.  
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Figure 39: PV system cost [29, p. 12]   

 In 2011, most Utility scale projects larger than 10 MW ranged from $2.80/W to $3.50/W, 

while projects smaller than 10 MW span a broader range, with most projects priced between $3.50/W 

and $5.00/W. [29, p. 8]  The reduced costs of larger utility scale projects undoubtedly reflect economies 

of scale. However, other factors may be at play. Site characteristics typical of smaller versus larger 

projects could affect this cost. Furthermore, large projects are more likely to be developed by more 

experienced and/or vertically integrated entities, thus further reducing the cost.  
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4.2.2 PV technology 

 The relationship between PV technology and installed is less discernible. Figure 9 shows reported 

installation cost of several utility scale projects between 2 MW to 40 MW. Among projects less than 10 

MW, the five thin film projects are at the low end of the spectrum. All the five thin film projects are 

owned by a single southwestern utility. Among projects larger than 10 MW, however, no clear differences 

in installed prices are observable either between the crystalline and thin-film systems or between the 

systems with and without tracking [29, p. 9]. The absence of visible trend does not mean that PV 

technology has no impact on price. The impact on price is simply lost in the small sample size because of 

various other factors such as regulatory compliance cost, public versus private land, leased versus owned 

land, and design requirement due to specific climate conditions [29, p. 9]. 

 

Figure 40: PV Technology and System Cost [29, p. 9] 
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Chapter 5: PV Solar Project study in Massachusetts 

 This IQP advocates the use of solar PV to complement DSM programs. ISONE region was 

chosen for further studies because of the high electricity cost, the annual growth of summer peak demand, 

and the prospective growth of PV in the region. Among the ISONE states, Massachusetts is expected to 

have the largest growth, an additional 400 MW PV capacity expansion through 2021. Thus, this chapter 

provides financial analysis of a prospective PV project  

5.1 Financial Analysis 

 This section provides a simple financial analysis for a 1MW commercial PV project in the Boston 

area. The simulation was run using NREL’s System Advisor Model (SAM) software version 2.3.3. 

Instead of using any specific model of PV technology, the PVWatts system model within SAM was used. 

Table 3 shows the parameters that were used in the simulation. 

 For simplification, it is assumed that the solar project is owned and maintained by a single entity, 

and all the electricity produced is sold through a power purchase agreement (PPA). Two analyses were 

performed. The first analysis used a fixed IRR of 15% to calculate levelized cost of electricity (LCOE) for 

variable system cost and SREC prices. The second analysis provides an estimate of required PPA price to 

achieve expected IRRs.   

 Table 3 shows the parameters used for the financial analysis. For a 1MW commercial project, a 

total system cost (including construction, permit, and other initial costs) is expected to be $3 to $4 per 

watt. For a utility scale (ground mounted), the same nameplate capacity will cost between $4 to $6 per 

watt, due to added construction costs for site preparation. Thus, the simulation includes a system cost of 

$3 to $6 per Watt to allow the simulation to be used for analysis of both ground mount systems (utility) 

and rooftop (commercial) projects. The tilt angle of 35 degree results in an annual energy production of 

1,247 MWh annually, calculated by SAM using TMY-2 data. The assumed capacity factor was calculated 
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to be 14.2%. The project life expectancy is assumed 25 years as most PV manufacturers provide a 25-year 

warranty, while the inverters need to be replaced once during this period. A debt fraction of 50% is 

assumed, although smaller companies with weak financial history should expect a lower debt fraction. A 

high interest rate of 9% is assumed. 

Table 3: PV project simulation parameters 

Parameters  Values used for Analysis 

Size  1 MW  

Capacity factor 14.2% 

Energy produced (annual) 1,246,529 KWh 

Cost  $3-6/W  

O&M costs  Fixed at $8.50/kW  

Inverter replacement  $300,000 once during project lifetime  

PV system degradation  0.5%/year  

Inflation rate  2%  

Debt fraction  50%  

Loan rate  9%  

Minimum required IRR  15%  

Real discount rate  12%  

DSCR  No minimum DSCR  

PPA escalation rate  1%/year  

Loan term  25 years  

Analysis period  25 years  

System lifetime  25 years  

Financial incentives  Federal 30% ITC  

SREC Prices  $(250-600)/MWh/year for 10 years, taxable  

Federal, state, property tax  35%, 8%, 2%, (annual) 

Depreciation  MACRS 5 years  

 

5.1.1 Sensitivity Analysis 

 A simple sensitivity analysis was simulated by varying each input parameter by 10% as shown in 

figure 39. For the base case, the parameters were used from table 3, with a conservative SREC price of 

$0.3/KWh and $5/W system cost. LCOE was found to be most sensitive to the total system cost, annual 

energy produced, debt fraction, and SREC. Albeit small, the loan interest rate also affected the LCOE. 

While project owner cannot control the annual energy output or the SREC, this analysis provides insights 

into the debt fraction and loan interest rate. Since the LCOE is more sensitive to debt fraction than loan 
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interest rate, prospective project owner will profit more by negotiating a slightly higher interest rate than a 

lower debt fraction. This is further discussed in the next section. 

 

Figure 41: Sensitivity Analysis (Inputs varied by 10%) 

 

5.1.2 Worst Case Sensitivity Analysis 

 For the base case, the parameters were used from table 3, with a conservative SREC price of 

$0.3/KWh and $5/W system cost. These are the same parameters used to calculate LCOE in figure 39. 

The calculated base case LCOE was found to be 11.68 cents/KWh. The worst-case LCOE was simulated 

by changing each parameter to a reasonable worst-case scenario as shown in figure 40. In this analysis, 

LCOE was found to be the most sensitive to debt fraction, as realistically the debt fraction could be as low 

as 35%, while the system price is not likely to be more than $6/W. An increased interest rate of 11% 

caused LCOE to increase to 12.7 cents/KWh, while a debt fraction of 35% increases the LCOE well 

above the average electricity market price of 15 cents/KWh. Thus, the prospective project owner should 

negotiate a less than 50% debt ratio with the financing institution, even if it is at a higher interest rate. 
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Figure 42: Worst-case Sensitivity Analysis 

 The SREC floor price for the state of Massachusetts is guaranteed to be $285/MWh/year. The 

state ensures this price by controlling the allocation of additional renewable generation each year. Thus, 

this floor price is used in this analysis as the lowest SREC price. 

 A likely worst-case scenario is a project with $5/W system cost, and 50% debt fraction but with 

an increased loan interest rate of 11% and the lowest SREC price of $285/MWh/year. In this case, the 

calculated LCOE was found to be 15.48 cents/KWh, which is slightly higher than the current average 

electricity price. For the given worst-case SREC price, the project could be viable with a lower system 

cost or a lower interest rate. For roof top projects, system cost of less than $5/W is easily achievable.  

5.1.3 Base case analysis 

 From the sensitivity analysis, it was determined that system cost, debt fraction, and SREC prices 

mostly dictated the LCOE. For the base case analysis, the parameters in table 3 are used. Assuming that 

the project debt ratio of 50% is acquired, the LCOE was plotted for a range of SREC prices and system 

cost as shown in figure 41. The system cost in figure 41 is the total project capital cost in dollars for each 

watt of nameplate capacity. The LCOE was calculated for a fixed IRR of 15%. The SREC range used in 

the simulation was from $250/MWh to $500/MWh. 
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Figure 43: LCOE vs. SREC 

 For a very low SREC price of $250/MWh, the system cost would have to be less than $4.5/W for 

the project to be financially feasible. If the state guaranteed minimum SREC is observed in the market, 

projects costing $5/W may be financially viable. Since residential systems <5KW can cost between $5/W 

to $6/W, residential PV projects are marginally viable, and the investment may not get a minimum 15% 

IRR, if the state fails to maintain its SREC floor price. Thus, this IQP recommends larger scale PV 

systems as opposed to smaller ones.  

 For the base case for a larger (>1MW) commercial project costing $5/W system cost and 

assuming a fixed$300/MWh SREC price, the LCOE is calculated 11.68 cents/KWh. Such a project can 

expect a 15% IRR with a PPA of 12.7 cents/KWh. The system cost is an overestimation, and a typical 

1MW project is likely to cost between $3/W to $4/W in the year 2013.  
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5.1.4 Return on Investment 

 In the previous analysis, the LCOE was calculated for different SREC and System costs to study 

project feasibiiltiy. In his subsection, the SREC price is fixed at $300/MWh, and the PPA price was 

calculated by varying the system cost for several sets of IRR as shown in figure 42. This figure allows the 

project owner to estimate the required PPA price that has to be negotiated with the buyer to achieve a 

requuired IRR. The IRR values assume  The PPA escalation is assumed to be 1% annually. 

 

Figure 44: PPA price required to meet expected IRR 

 Based on data from figure 42, PPA less than the market electricity price of 15 c/KWh, could yeild 

an IRR of 24% for projects costing $4.5/W, and as high as  36% for projects costing $3.3/W. Although, 

typically the PPA is likely to be at least 3 c/KWh to 5 c/KWh lower than the market price. Thus 
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considering a PPA of atleast 10 c/KWh, projects costing $4.5/W can expect a n IRR of 16% while 

projects costing $3.3/W can expect 30% IRR.  

 As PV system prices drop in the year 2013, vertically integrated developers could have system 

costs as low as $3/W, wchich would yeild an impressive 36% IRR. For a smaller and/or less experienced  

developer, system cost is likely to be as low as $3.3/W yeailding a 30% IRR and as high as $4/W 

resulting in 24% IRR. Projects can expect an even higher IRR depending on the decline of PV system and 

balance of system (BOS) costs. 

Conclusion 

Peak electrical demand is projected to increase in the forseeable future, despite the innovation of 

more energy efficient appliances, and an increase in DSM programs. Summer peak demands are 

cosiderably higher than winter peaks due to the use of air conditioning. According to a 2009 EIA census, 

over 80% of US homes in the south, the midwest, and  the northeast region are air conditioned, totaling to 

nearly a million homes throughout the country [31]. Peak eelctricity can considerably affect the price of 

electricity, which in turn can affect the economy, as well as quality of life. 

  Since solar power generation patterns largely coincide with peak electrical demand hours during 

the day, and almost half the energy is produced between May and August (summer), PV projects should 

be prefered over other renewable sources such as wind. Currently the IRR in the state of Massachusetts 

range between 16% to 30%. As the cost of PV solar systems decrease in the future, PV solar projects, 

especially larger commerical or utility scale projects will become more profitable. If the electricity price 

in Massachusetts keeps escalating at the current rate or higher, eventually a much lower PV system cost 

could return a 12% IRR wihtout the state incentives. 
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Appendix 

Table 4 List of present regional entities 

ERCOT ERCOT ISO

FRCC Florida Power & Light

TE Hydro Quebec, TransEnergie

ICTE Independent Coordinator Transmission - Entergy

ISONE ISO New England Inc.

MISO Midwest ISO

NBSO New Brunswick System Operator

NYIS New York Independent System Operator

ONT Ontario - Independent Electricity System Operator

PJM PJM Interconnection

SPC SaskPower

SOCO Southern Company Services, Inc.  

 

 

Figure 45 Historic Map of NERC Regional Council (Ending Dec 2005) [32] 
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Table 5 List of historic regional entites 

ECAR East Central Area Reliability Coordination Agreement 

ERCOT Electric Reliability Council of Texas 

FRCC Florida Reliability Coordinating Council 

MACC Mid-Atlantic Area Council (MAAC)

MAIN Mid-America Interconnected Network (MAIN)

MAAP Mid-Continent Area Power Pool (MAPP)

NPCC Northeast Power Coordinating Council (NPCC)

SERC Southeastern Electric Reliability Council (SERC)

SPP Southwest Power Pool (SPP)

WECC Western Energy Coordinating Council (WECC)  

 

 

 

 

 

Figure 46: Solar Insolation data [33] 
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Figure 47: capacity factor of renewable energy technologies [34, p. 17] 
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