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1 Abstract 

 Our society faces impending issues concerning both availability and cost of electrical 

energy.  Currently, large portions of electrical energy are based on costly nonrenewable and 

polluting sources such as oil, natural gas, and coal.  Additionally, sources of these resources 

are dwindling at an increasing rate as worldwide consumption continues to grow.  We propose 

to mitigate the adverse effects of these two major issues through the use of tidal power.  

Through the use of tidal power, we could reduce the general cost of electrical energy in 

Massachusetts by supplementing current costly nonrenewable power sources, and provide 

energy stability through a renewable source significantly more consistent than those of solar 

and wind.  To determine if this power source is feasible in Massachusetts, we will analyze 

tidal data to estimate the power we could generate from tidal sources. 

 

2 Tidal Power 

 In this section, tidal power theory is described and two major methods of generation 

are discussed.  Using known tidal data around the Massachusetts coastline, calculations are 

performed with both methods of generation to estimate the potential power each system 

could offer to Massachusetts’s power grid. 

2.1  Introduction 

 Tidal power is a type of hydroelectric power that uses the energy of the oceans tides 

to generate electricity.  It is a renewable energy source similar to that of solar or wind; 

however, dissimilar to the former sources, tidal power is a predictable and thus more reliable 

source of electricity.  The tides are influenced by both the Earth’s rotation and gravitational 

field of the sun and moon.  There are three types of tides, semidiurnal, mixed, and diurnal.  

As shown in Figure 1-1, semidiurnal tides consist of two almost equal high and low tides a 

day.  Diurnal tides consist of only one high and low tide a day while mixed tides can be a 
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combination of both, typically consisting of two uneven high and low tides in a day. 

 

Figure 2-1: Different Types of Tides [1] 

 Since tidal power generation occurs as water currents flow between tide levels, 

semidiurnal tides are the most effective tidal pattern, assuming constant tide water levels, 

because they occur twice a day at the same peak levels.  Figure 2-2 is a map of the world’s 

tidal patterns. It can be observed that Massachusetts is in a semidiurnal tide zone. 

 

Figure 2-2: Global Tidal Distribution [1] 

 There are currently two primary technologies for tidal power generation, tidal barrage 

and tidal stream.  To determine the most effective method of generation, the power output 
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capabilities of both technologies will be analyzed in numerous locations along the coast of 

Massachusetts.  Through the use of theoretical equations and tidal data the most effective 

method and location for a tidal power generation system will be determined.  This data will 

then be used to predict the effect on the cost of electricity. 

2.2  Tidal Barrage 

 Tidal barrage generation is an electricity generating method similar to that of 

hydroelectric dams.  During high tide sluice gates are opened, allowing water to flow from 

the ocean into a holding basin.  The water flows through a turbine, generating electrical 

current.  At the peak of high tide the sluice gates are closed.  When the tide recedes the 

gates are reopened allowing the water to travel through a turbine from basin to ocean, once 

again generating electrical current.  Tidal barrage systems are best suited in areas where 

there is a relatively large tide differential. 

 

Figure 2-3: Tidal Barrage During Low Tide [2] 
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Figure 2-4: Tidal Barrage During High Tide 

 In the semidiurnal tides of Massachusetts, power would be generated twice a day, 

once at the high to low tide transition, and again at the low to high tide transition.  This 

characteristic significantly limits the effect tidal barrage has on the price of electricity.  

Since power generation only can occur after tidal transitions, this method can only be used as 

a supplemental source.  Other issues with tidal barrages include startup costs and effects on 

marine life, which will be discussed later. 
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2.2.1   Tidal Barrage Generation Analysis 

 To determine the amount of power generated through a tidal barrage we used the 

following theoretical Equation (1) to determine the potential energy contained in a body of 

water. [3] 

   
 

 
                      (1) 

Where: 
E = energy in joules 
A = the horizontal area of the barrage basin in m 
ρ = the density of water = 1025 kg/m3 
g = the acceleration due to Earth’s gravity = 9.81 m/s 
h = the vertical tidal range in m 
 
 Using this equation, we determined the amount of energy that could be gathered in a 

single tide transition.  To determine the amount of power we could generate in a day, the 

energy given by this formula was multiplied by a factor of two to account for both tide 

transitions.  We then divided the theoretical energy generation by 86400 seconds (1 day) to 

determine the mean power generation potential.  Lastly, we multiplied the average daily 

power generated by a power conversion efficiency factor.  For our calculations we assumed 

turbines with an efficiency of 30%.  The resulting Equation (2) used to determine power 

generated was: 

   
         

     
                (2) 

 To determine the power potential in the surrounding waters of Massachusetts, we 

gathered tidal data from the National Oceanic and Atmospheric Administration, NOAA.  The 

NOAA is a federal agency within the United States Department of Commerce that focuses 

research on the conditions of the oceans and atmosphere.  For our tidal barrage analysis, we 

compiled high and low tide data of 43 of the NOAA sites over their entire year (See Appendix 

H for map of stations).  For our calculations, we used the average of all high and low tide 

values over the course of the year.  Table 1 summarizes the top 10 average tide differential 

results out of the 43 stations analyzed.  For tables of stations analyzed sorted by relative area 

see Appendix A.  For the full table of all 43 sites see Appendix B.  An excerpt of the raw data 

used to calculate these values is listed in Appendix C. 
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Table 1: Top 10 Tide Differential Stations 

Station Name Tide Differential (m) 
Wellfleet 3.1378455 

Sesuit Harbor, East Dennis 3.1113819 

Boston 2.9879092 

Hingham 2.9878243 

Duxbury, Duxbury Harbor 2.9837136 

Weymouth Fore River 2.9777462 

Amelia Earhart Dam 2.9596314 

Nantasket Beach, Weir River 2.9584124 

Plymouth 2.9573774 

Provincetown 2.9445499 
Table 1: Top 10 Tide Differential Stations 

 Using this data and the derived power equation we estimated the total power we 

could generate at each site.  For these calculations we assumed a 1kilometer long barrage.  

Using the tide differentials we calculated the average power that would be generated each 

day.  The results are shown in Table 2. 

Table 2: Top 10 Tide Differential Stations Estimated Average Power 

Station Name Average Daily Power 
(W) 

Estimated Yearly Power 
(kW) 

Wellfleet 343.766456 125.4747565 

Sesuit Harbor, East Dennis 337.992493 123.3672599 

Boston 311.698850 113.7700804 

Hingham 311.681106 113.7636039 

Duxbury, Duxbury Harbor 310.824093 113.4507941 

Weymouth Fore River 309.582046 112.9974468 

Amelia Earhart Dam 305.826882 111.6268119 

Nantasket Beach, Weir River 305.575010 111.5348787 

Plymouth 305.361293 111.4568720 

Provincetown 302.717997 110.4920689 
Table 2: Top 10 Tide Differential Stations Estimated Average Power 

 The results from the possible tidal barrage sites show that theoretically, there could 

be at most 125kW of power extracted from the Wellfleet site a year. 
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2.3  Tidal Stream 

 Tidal stream generation extracts energy from moving water with a turbine that is 

rotated by the water current.  This power generation method is similar to that of a wind will; 

however, tidal power has many more advantages.  One advantage is the predictability of the 

tides versus that of wind.  In addition water is a significantly more dense fluid than air, 

allowing for a greater power potential, given the same size turbine.  Tidal stream systems are 

best suited where the natural water current is relatively fast.  

 
 

Figure 2-5: Tidal Stream [4] 
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2.3.1   Tidal Stream Generation Analysis 

 To determine the energy that could be gathered from the kinetic system of the 

turbine and water the following theoretical Equation (3) was used. [3] 

   
 

 
                      (3) 

Where: 
P = the power generated in watts 
ξ = the turbine efficiency, assumed to be 30% 
ρ = the density of water = 1025 kg/m3 
A = the sweep area of the turbine in m2 

V = the velocity of the water flow in m/s 
 

 By adding a shroud to a turbine, the power output could be increased by a factor of up 

to 4; however, this adds increased engineering and manufacturing costs.  For our analysis we 

will be assuming no shroud.  To determine the velocity of the water, we compiled historical 

current data sites from the NOAA.  A total of 25 sites were used from the Boston and Cape 

Cod areas.  See Appendix G for maps showing site locations on the coastline.  

 The sweep area of the turbine was calculated using the area of a circle.  To estimate 

the ideal turbine size, we chose to have a radius equal to 45% of the depth of the station 

location.  This value was used because it is the halfway point of ideally useable water flow.  

Only the upper 90% of the water depth is useful for tidal stream generation due to the low 

speed benthic boundary layer.  Turbine size was limited to 10m radius.  This value was chosen 

because it is the currently the largest turbine in use for tidal stream generation.  The current 

data we analyzed was also at the 45% total depth point of the station.  Turbine efficiency was 

once again assumed to be 30% as previously in tidal barrage analysis. 

 The dataset for our analysis of each station contained measured current data for the 

entire lifetime of the station.  On average, each station was active for 41.6 days for the 

Boston sites, and 62.1 days for the Cape Cod sites.  Current was measured at each site in 6 

minute intervals, with a few stations, such as the Stellwagen Basin East End station, 

measuring every 2 minutes.  Table 3 shows the timespan, average speed, estimated turbine 

size, and average power generation for the 10 best sites.  For the full data listing see 

Appendix F.  For an excerpt of the raw data gathered by the NOAA, see Appendix D. 
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Table 3: Top 10 Tidal Stream Generation Stations 

Station Timespan 
(days) 

Average 
Speed 
(cm/s) 

Estimated 
Turbine 
Radius (m) 

Average Power 
Generation 
(W) 

Cape Cod Canal, Railroad Bridge 77.00 159.9278 4.41 57125.9865 

Cape Cod Canal, Bournedale 47.00 115.1962 6.04 39976.7128 

Hog Neck 48.00 105.5866 3.54 10859.9899 

Woods Hole, The Strait 107.00 110.4358 2.90 7915.5299 

Georges Island 40.00 47.2270 8.08 5992.8114 

Quicks Hole, Middle 53.00 65.6249 5.24 5923.2678 

Stellwagen Bank 42.00 34.9426 10.00 3241.2155 

Deer Island (0.7mi.) 41.00 47.2242 5.00 2344.3403 

Boston Harbor, Deer Island Light 88.00 37.7787 6.46 2314.8836 

Abiels Ledge 47.00 49.8241 4.54 2077.0982 
Table 3: Top 10 Tidal Stream Generation Stations 

 The results from the possible tidal stream sites show that theoretically, there could be 

at most 57.125kW of power extracted from the Cape Cod Canal, Railroad Bridge Site.  The 

next best site, also in the canal, could yield 39.976kW.  
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3 Electrical Energy Cost Analysis 

 In this section, the potential values of tidal barrage and tidal stream are compared to 

each other.  Additional analysis is done to determine the effect both methods could have on 

the cost of electrical energy in Massachusetts. 

3.1 Tidal Power Effect on Electrical Power Generation 

 Based on the results of the theoretical power that would be generated from both tidal 

power sources, it appears that tidal stream is more effective at power generation in this area.  

To determine which system would be more effective, the energy that each system could give 

was calculated.  The tidal barrage method only occurs twice a day.  To calculate energy, it 

was assumed the generator would be able to run for 30 minutes each tide change, resulting in 

1 hour of power generation a day.  For tidal stream, it was assumed that turbine was running 

continuously year round.  With these assumptions, the kWh/year was calculated for the best 

stations of each method, as shown in Table 4.  Also shown is the number of households that 

could be powered by each method, based on the Massachusetts average energy consumption, 

627kWh/month, according to the United States Energy Information Administration, EIA. [5] 

Table 4: Comparison Between Tidal Barrage and Tidal Stream Generation 

Station Method kWh/Year Households Powered/Year 
Cape Cod Canal, Railroad Bridge Tidal Stream 500423.64 66.5103 

Cape Cod Canal, Bournedale Tidal Stream 350196.00 46.5439 

Hog Neck Tidal Stream 95133.51 12.6440 

Woods Hole, The Strait Tidal Stream 69340.04 9.2158 

Georges Island Tidal Stream 52497.03 6.9773 

Quicks Hole, Middle Tidal Stream 51887.83 6.8963 

Stellwagen Bank Tidal Stream 28393.05 3.7737 

Deer Island (0.7mi.) Tidal Stream 20536.42 2.7295 

Boston Harbor, Deer Island Light Tidal Stream 20278.38 2.6952 

Abiels Ledge Tidal Stream 18195.38 2.4183 

Wellfleet Tidal Barrage 125.47 0.0166 

Sesuit Harbor, East Dennis Tidal Barrage 123.37 0.0163 

Boston Tidal Barrage 113.77 0.0151 

Hingham Tidal Barrage 113.76 0.0151 

Duxbury, Duxbury Harbor Tidal Barrage 113.45 0.0150 

Weymouth Fore River Tidal Barrage 112.99 0.0150 

Amelia Earhart Dam Tidal Barrage 111.63 0.0148 

Nantasket Beach, Weir River Tidal Barrage 111.53 0.0148 
Plymouth Tidal Barrage 111.46 0.0148 
Provincetown Tidal Barrage 110.49 0.0146 

Table 4: Comparison Between Tidal Barrage and Tidal Stream Generation 
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 The calculated data shows that the most energy could be extracted from the Cape Cod 

Canal, Railroad Bridge, station, with 500MWh/year, enough to power about 66.5 household a 

year.  The next best site would be Cape Cod Canal, Bournedale, with the ability to power 

about 46.5 household a year.  Unfortunately, both of these sites are in the middle of a major 

shipping lane and therefore would be unusable.  The third best site, Hogs Neck, could power 

about 12.6 houses a year.  This data also shows that the least effective of the top 10 tidal 

stream sites is still better than the best tidal barrage site. 

3.2 Tidal Power Cost Effectiveness 

 Tidal power systems have similar cost elements to most other power generators.  

Capital expenditures, or capex, consist of construction, electrical system infrastructure, and 

pre-developmental costs.  Operational expenditures, or opex, consist of operating and 

maintenance costs, insurance, commissioning, and taxes.  To estimate these costs for a 

Massachusetts tidal generator, a study by Black & Veatch was used.  Black & Veatch is a 

global engineering, consulting, construction, and operations company that specializes in 

critical human infrastructure projects. 

 The Scottish government commissioned a study to assess tidal generation projects in 

the United Kingdom.  Black & Veatch analyzed the financial aspects in this study, including 

but not limited to ROI analysis, installation estimation, and potential cost of electricity.  The 

waters around Scotland have a faster current and larger tide differential than Massachusetts 

so this study would not fit perfectly; however, the study was chosen as a loose model because 

few tidal generation studies have been conducted recently.   

 This study included an analysis of tidal barrage and tidal stream in both shallow and 

deep waters.  Table 5 shows the commercial project cost results of their study, converted to 

from British Pounds to United States Dollars.  All estimates in this table were the mid-range 

values.   

Table 5: Black & Veatch Scotland Cost Effectiveness of Tidal Power Study 

Technology Capex/MW Opex/MW/year 

Tidal Barrage $4.44 million $0.05 million 

Tidal Stream Shallow (<50m Depth) $5.26 million $0.25 million 

Tidal Stream Deep (>50m Depth) $5.42 million $0.20 million 

Table 5: Black & Veatch Scotland Cost Effectiveness of Tidal Power Study 
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 For tidal barrage analysis, Black & Veatch combined four projects, the Mersey Tidal 

Power (700MW), Solway (150MW), Duddon (100MW), and Wyre (50MW) for 850MW capacity.  In 

comparison, Massachusetts’s best location for tidal barrage was Wellfleet, with an estimated 

0.125MW capacity. By assuming that the projects would have similar costs per m of 

constructed barrage, it was determined that a project at Wellfleet would cost $30.384 billion 

in capital expenditure and $342.157 million/year in operational costs (see Appendix I for 

calculations).  This project would be extremely financially unfeasible since the generator is 

estimated to only power 0.0166 households a year. 

 For tidal stream, Black & Veatch’s calculations assumed a 3 m/s current speed for 

shallow water and a 3.2 m/s current speed for deep water.  The best potential Massachusetts 

site for a tidal stream generator was Cape Cod Canal, Railroad Bridge, with a current speed of 

approximately 1.6 m/s.  This turbine would fall into the shallow water category since it is in 

water with depth less than 50m.  The current speeds in the Scotland study are double of 

those at the Cape Cod Canal, Railroad Bridge site, meaning there is a greater energy density 

in Scotland.  Assuming that the tidal stream generators used at both sites were of comparable 

costs, the Massachusetts site would have costs of approximately $10.52 million/MW (Capex), 

and $0.50 million/MW/year (Opex).  With an average power generation capability of 

57.125kW a day, this project would cost around $219.349 million in capital expenditure and 

$10.425 million/year in operational costs.  This project would also be financially unfeasibly 

since it is only estimated to be capable of powering 66.5 households a year. 

3.3 Effect on Consumer Prices Due to Tidal Power 

 To further analyze the financial feasibility of tidal power the cost/kWh for both 

generation methods was calculated using the results from the previous section.  Assuming the 

cheapest situation for the consumer, where the tidal power company broke even with a profit 

margin of $0, the cost of electricity generated from a Wellfleet tidal barrage would be $2.727 

million/kwh.  For a tidal stream generator at the Cape Cod Canal, Railroad Bridge site, the 

cost of electricity generated will be $20.832/kWh.  To put this into perspective, electricity in 

Massachusetts currently costs around 15.63¢/kWh on average. 
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4 Social and Environmental Issues 

 This section addresses the potential social and ecological issues concerning the 

installation of a tidal barrage or tidal stream system. 

4.1 Introduction 

When planning any type of power installation, there are a few factors outside of the 

amount of energy produced that have to be considered. Any construction can cause damage 

to the environment around it, and property owners around the site may have further concerns 

about loud noises, increased pollution, and decreased property values.  All of these concerns 

have to be taken into account when planning to construct either a tidal barrage or tidal 

stream turbines. While we do not have the means to conduct formal studies on the 

environmental impact tidal power would have there are several examples to compare our 

prospective proposals with. 

For an energy method to be implemented, it requires for two groups to be satisfied. The 

first and more important group is the government. If the government does not approve the 

construction, it remains impossible. If the government does approve, as tidal power is an 

alternative source of energy, it can provide both funding and tax credits to aid in 

construction. The second group is the people around any proposed site. If the people are 

against our project they could also prevent construction through protests and legal 

challenges. In the past, Massachusetts has attempted to install alternative energy production 

on Cape Cod; the location we determined was the best for both types of tidal power. This 

project was called Cape Wind and despite clearing all legal requirements, it is still delayed by 

groups outside the government. 
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Figure 4-1: Cape Wind Project [7] 

The Cape Wind project was proposed in the early 2000s and eventually backed by 

several environmental groups. These groups included the Massachusetts Audubon Society, 

which judged the primary environmental concern caused by wind turbines, their threat to 

birds, to not be “An ecologically significant threat” [9]. The project was predicted to 

eventually provide 75% of Cape Cod’s energy. However, the actual implementation of Cape 

Wind has proven to be difficult. It suffered from significant opposition from residents of the 

Cape. A group of several towns on the Cape and a coalition of wealthy landowners in the 

vicinity of the Cape Wind project site have led to a total stalemate in construction. The 

stalling tactic will lead to a significant withdrawal of funds from the project and my end up 

causing it to never be constructed.  This demonstrates that although there may be support 

from some residents, or even most, as shown by a Civil Society Institute survey, construction 

is difficult to get approved in the Cape Cod area. 
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4.2 Impact of Tidal Barrage 

There is a real example of a working tidal barrage and the environmental impact can be 

used to determine how much of an impact tidal barrages have on the environment. In France, 

the La Rance tidal barrage has been in operation since 1966. This long period of time has 

allowed for researchers to obtain a thorough evaluation of La Rance’s environmental effects. 

 

Figure 4-2: La Rance Tidal Barrage [8] 

The La Rance Barrage has led to several environmental changes in the Rance River, the 

river it holds the tides in. During construction in the 1960s, it prevented any flow of water 

from the sea into the Rance River and destroyed almost every ocean dwelling plant or animal. 

Currently, animals and plants have returned to the area, although their composition is 

different. The populations of sea bass and cuttlefish have grown, while sand eels and flatfish 

have suffered a reduction in population.  There have also been changes in the populations of 

birds. The barrage has led to a far larger tidal basin upstream from its installation, which has 

in turn attracted more migratory birds and diving ducks. One population that the barrage has 
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not disrupted is migratory fish, as they seem to be able to pass through the turbines without 

difficulty. 

In addition to changes in the ecosystem, the land and river around the La Rance Barrage 

has been changed. The makeup of the seabed around the La Rance barrage has been greatly 

worn away. Before installation, it was made up of sediment, but after years of operation, it 

has become full of rocks and gravel. This may be the reason for declines in sand eel and 

flatfish population, as they rely on sand for hunting and shelter. The barrage has also led to 

an increase in salinity in the Range River, as the barrage causes water to be sent upstream 

during high tides. Another change is that the water of the river has warmed from the 

increased amount of ocean water upstream, leading to decreased populations of cold-water 

fish.  One final discovery from the La Rance Barrage is that the operation must always be kept 

stable. If there is a significant change in the operations of the barrage, it causes significant 

damage to the local ecology so maintaining the barrage is required to avoid large scale animal 

and plant death. 

The tidal barrage method of power generation would have a larger impact on the 

environment in Massachusetts compared to the effects of the La Rance Barrage. Most of this 

impact is caused by the large size required by the barrage to store tidal water here. Due to 

the lower high tides in Massachusetts that we discussed previously in the paper, any 

theoretical tidal barrage in Massachusetts would take up many kilometers of coastline. This 

would lead to a far greater ecological effect, and given the damage caused by the La Rance 

Barrage during construction, a larger structure would be far more difficult to justify to the 

government, environmental groups, and fishing industry of Massachusetts. Building a tidal 

barrage in Massachusetts would lead to many environmental issues.  

This large use of coastline also makes any type of tidal barrage very unlikely to be 

approved socially, as the Massachusetts coastline is almost entirely already being used by 

various commercial, public, and private entities. Since the barrage would require a long 

contiguous area, it would cut off all access to the waterfront from the land it is parallel to. 

The water in this area could not contain any swimming, boating, or fishing as it would be 

drained or filled quickly through turbines to produce electricity. 

Additionally, the same forces that opposed the Cape Wind project would likely oppose 

any sort of tidal barrage project. Cape Wind was opposed on the fact that it would decrease 

property values and be an eyesore. Cape Wind was 4.8 Miles or 7.7 Kilometers from the 
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nearest shoreline and was only made of wind turbines. Any tidal barrage would have to be 

attached to the land and would look similar to a concrete dam. For these reasons, the public 

opposition would probably be far greater than the opposition to Cape Wind, which itself has 

been prevented from construction since 2001. 

 As a tidal barrage would be devastating to the environment of the Massachusetts 

shoreline in the short term, and potentially have permanent effects in the long term, tidal 

barrages would be very difficult to approve for construction. Additionally, as they require vast 

amounts of valuable coastline and would be unpopular for the residents of the coast, tidal 

barrages suffer from vast social challenges. With all of these concerns, a tidal barrage would 

likely have far too many issues to realistically be approved or constructed in Massachusetts. 

4.3 Impact of Tidal Stream 

 Compared to tidal barrages, tidal stream has far less research. Because of the lack of 

research, the low age or the technology, and lesser popularity, tidal stream power’s impact is 

harder to conclusively state. Additionally, since tidal stream generators are more popular in 

Europe, most existing studies were conducted on the fast moving waters of the United 

Kingdom’s coastline, which may be more difficult to transfer to the slow streams of 

Massachusetts. 

 

Figure 4-3: Turbine of a tidal stream generator [10] 
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 There are problems caused by the construction and operation of a turbine. The main 

problem during construction is pollution from having to attach the turbine solidly to the 

seabed. This doesn’t last too long since construction is only a temporary occurrence. The 

ecosystem may suffer, but it should be able to recover when construction is finished. During 

operation there are more problems. The turbine can change tides, waves, and reduces the 

velocity of the ocean currents it is placed in. The main environmental problem with running a 

tidal stream generator however, is the effects it would have on the surrounding sediment. 

Running a tidal stream generator can quickly remove an estimated 20% of sediment directly 

around the turbine. However, due to the way the various levels of sea currents travel, the 

stripping of sediment from the seabed is limited to this area close to the turbine. 

Additionally, as the turbine reduced the velocity of the water it is placed in, it reduces the 

erosion of the seabed from natural causes. While the sediment released by operating a 

turbine is not too much, it is has a constant presence in the water and changes the 

consistency. The environmental impact of a tidal stream turbine is low and localized to the 

area directly around the turbine. It would be minimally to moderately challenging to get such 

a project approved. 

 Compared to the social difficulties of a tidal barrage, the social requirements of a 

tidal stream generator are far less of a daunting obstacle. Unlike a barrage or a wind turbine, 

a tidal stream turbine is mostly hidden from view from land. The turbine would be mostly 

underwater, since that is where all of the actual working parts would have to be kept for it to 

produce any power. In fact, the only part of a tidal turbine that remains above water rests 

only a small distance above the surface and has the same appearance of a lighthouse or a 

large buoy. The biggest social problem of one of these generators is the amount of space 

underwater it takes up. It is dangerous for ships to travel over a turbine, so wherever a tidal 

stream turbine is constructed, ships may no longer pass through that area. Thus tidal stream 

generators would be difficult to obtain approval for a generator in any location used by 

commercial or private ships. Finding areas where the water moves fast enough to power a 

turbine and where there are no or few ships traveling through the waters is the main 

difficulty of placing a tidal stream generator. Unfortunately, finding a place like this would be 

very difficult in the modern world. 
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5 Alternative Solutions 

 In this section, a few other alternative hydroelectric sources that could be used in 

Massachusetts are discussed.  These sources were considered for the initial study of electrical 

cost reducing technologies along with other energy sources such as nuclear.  Nuclear power 

was not investigated further due to its poor public opinion and expense.  In addition, despite 

its fuel being abundant, it is still a non-renewable source of power with extremely hazardous 

and dangerous waste materials.   

5.1 Wave Power 

 Similar to tidal power, wave power uses the natural ocean currents to generate power.  

Two methods of wave energy generating technologies are through the use of buoys or 

oscillating water columns (OWCs). 

 Buoy type wave generators float on the ocean surface and generate electricity as the 

rising and falling motion drives hydraulic pumps.  The first commercial wave power farm was 

built in the Atlantic coast of Portugal, where three Pelamis Wave Power machines were 

installed.  The generators were able to generate energy close to speculated values; however 

the system was removed as the parent company that operated them went bankrupt.  We 

chose not to investigate use of Pelamis generators in Massachusetts because of the currently 

limited use and failure of companies that attempted to utilize this technology. 

 

Figure 5-1: Pelamis Buoy Type Wave Power Generator [26] 
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 OWC type generators are similar to tidal barrage generators, however instead of 

requiring a basin to hold the water gating off by with sluices, it consists of a chamber filled 

with air.  As the waves enter the chamber, air is pushed through a turbine to generate power. 

 

Figure 5-2: Oscillating Water Column Generator 

 OWC type wave power was not further investigated in our study due to the expense of 

electricity for current existing projects.  Wave energy using this method is currently more 

expensive than wind power.  In addition, previous studies have determined that the northeast 

coast in New England is far inferior to the potential power that could be harvested in the 

northwest.  Areas such as Oregon and Alaska have been estimated to have at least four times 

more energy potential. 

5.2 Pumped-Storage Hydroelectric 

 One alternative type of hydroelectric power that could be used is the pumped-storage 

generator. Pumped-storage hydroelectricity is generated by using electricity to pump water 

upward, storing the water, and releasing the water at a later time through turbines to 

generate power. It is mainly used as a storage method for electricity. Since the price of 

electricity varies over time by a predicable amount, the water is raised when electric costs 

are low, and released through the turbines when the costs are high. This process ends up 

producing money despite having a net loss of energy. 

 We did not choose to use this type of hydroelectric power for a few reasons. First, this 

type of power is not truly alternative energy because the raising of water up requires the use 
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of electricity from the power grid. Since the majority of grid power in Massachusetts is from 

nonrenewable sources, such as natural gas, using this method would also be nonrenewable.  

Another difficulty with pumped-storage power is that it consumes more power than it can 

return back to the grid. This is counterproductive to the initial goal of using hydroelectricity 

of produce power. 
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6 Conclusion 

 The construction of either a tidal barrage or tidal stream generators is economically, 

environmentally, and socially unfeasible. Based on the analysis of Massachusetts tidal 

resources both tidal barrage and tidal stream are infeasible with current technology.  A tidal 

barrage at the best site, Wellfleet, would cost approximately $30.384 billion to build and 

$342.157 million/year to operate and maintain.  It would provide enough power for less than 

a single average Massachusetts household at an astronomical price of $2.727 million/kWh.  A 

tidal stream generator in the best site, Cape Cod Canal, Railroad Bridge, would cost 

approximately $10.52 million to build and $10.425 million/year to operate and maintain.  This 

system would be able to power approximately 67 households a year, but at a high price of 

$20.832/kWh.  Tidal stream is significantly more feasible than tidal barrage cost wise; 

however, the energy prices to the consumer are two orders of magnitude larger with 

electricity in Massachusetts costing 15.63cents/kWh in October of 2013. 

 Additionally, the construction of either of these tidal power systems would face great 

social difficulty. Obtaining the valuable coastal land to construct a tidal barrage would 

require massive amounts of eminent domain or the use of public coastline. Constructing tidal 

stream generators would make sections of the ocean unusable by any other endeavor, and the 

best locations for these systems in Massachusetts are inside a canal specially dug to be a 

shipping lane. The next best location for a tidal stream generator would only have about 19% 

capacity as the former and is almost unavoidable when entering the Cape Cod Canal. As for 

environmental concerns, constructing a tidal stream generator would not be too taxing on the 

environment, but a tidal barrage would devastate all sea life around it or many years. 

Socially, a tidal barrage would have huge issues since many people prefer to live around a 

beach instead of a giant concrete barrier and would not want their property value to be 

decreased. 

 Based on the findings of this study, both tidal barrage and tidal stream generators are 

infeasible to be used in Massachusetts.  Due to social, environmental, and economic issues, 

the construction of either of these systems could not decrease the cost of electricity, nor 

provide enough alternative energy to replace polluting nonrenewable sources like coal and 

natural gas.  

  



26 | P a g e  

7 Bibliography 
 

[1]  G. Hagerman, B. Polagye, R. Bedard and M. Polagye, "Methodology for Estimating Tidal 

Current Energy Resources and Power Production by Tidal In-Stream Energy Conversion 

(TISEC) Devices," 14 June 2006. [Online]. Available: 

http://mhk.pnnl.gov/wiki/images/8/84/tidal_current_energy_resources_with_tisec.pdf

. [Accessed 2013]. 

[2]  N. E. Selin, "Encyclopedia Britannica Academic Edition," 2013. [Online]. Available: 

http://www.britannica.com/EBchecked/topic/595132/tidal-power. [Accessed 2013]. 

[3]  S. M. B. T. Shaikh Md. Rubayiat Tousif, "Tidal Power: An Effective Method of Generating 

Power," May 2011. [Online]. Available: 

http://www.ijser.org/researchpaper%5CTidal_Power_An_Effective_Method_of_Generati

ng_Power.pdf. [Accessed 2013]. 

[4]  "seagen-generator image," University of Strathclyde, [Online]. Available: 

http://www.esru.strath.ac.uk/EandE/Web_sites/10-11/Tidal/images/seagen-

generator.jpg. [Accessed 2013]. 

[5]  EIA, "EIA.gov," [Online]. Available: http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3. 

[Accessed 2013]. 

[6]  H. Electrical and Mechanical Services Department, "EnergyLand," 4 January 2012. 

[Online]. Available: 

http://www.energyland.emsd.gov.hk/en/energy/renewable/tidal.html. [Accessed 

2013]. 

[7]  K. Lofgren, "inhabitat," March 2013. [Online]. Available: 

http://assets.inhabitat.com/wp-content/blogs.dir/1/files/2013/03/Cape-Wind-Project-

Offshore-United-States-Wind-Farm-Renewable-Energy-Projects.jpg. [Accessed January 

2014]. 

[8]  "Tethys," [Online]. Available: http://mhk.pnnl.gov/wiki/images/e/e3/La_Rance.jpg. 

[Accessed December 2013]. 

[9]  B. Daley, "boston.com," Globe Staff, 29 March 2006. [Online]. Available: 

http://www.boston.com/news/local/massachusetts/articles/2006/03/29/audubon_revi

ew_supports_wind_farm/. [Accessed January 2014]. 

[10]  "Wikimedia Commons," 9 July 2007. [Online]. Available: 

http://commons.wikimedia.org/wiki/File:SeaGen_marine_current_turbine_HandW.jpg. 

[Accessed January 2014]. 



27 | P a g e  

[11]  K. Lofgren, "inhabitat," 20 March 2013. [Online]. Available: 

http://inhabitat.com/construction-to-finally-begin-on-the-first-offshore-wind-farm-in-

the-united-states/. [Accessed December 2013]. 

[12]  "Cape Wind," 2012. [Online]. Available: http://www.capewind.org/index.php. [Accessed 

December 2013]. 

[13]  "Tethys," US Department of Energy, Ocean Energy Systems, [Online]. Available: 

http://mhk.pnnl.gov/wiki/index.php/La_Rance_Tidal_Barrage. [Accessed December 

2013]. 

[14]  "La Rance Barrage," Wyre Tidal Energy, [Online]. Available: 

http://www.wyretidalenergy.com/tidal-barrage/la-rance-barrage. [Accessed December 

2013]. 

[15]  Ernst & Young LLP, Ernst & Young, Black & Veatch, 5 October 2010. [Online]. Available: 

http://webarchive.nationalarchives.gov.uk/20121205174605/http:/decc.gov.uk/assets/

decc/what%20we%20do/uk%20energy%20supply/energy%20mix/renewable%20energy/ex

plained/wave_tidal/798-cost-of-and-finacial-support-for-wave-tidal-strea.pdf. 

[Accessed January 2014]. 

[16]  Project Management Support Services, "Environmental Impact Assessment," July 2006. 

[Online]. Available: 

http://mhk.pnnl.gov/wiki/images/a/ac/Skerries_Scoping_Report_2006.pdf. [Accessed 

December 2013]. 

[17]  S. P. Neill, "ScienceDirect," 15 June 2009. [Online]. Available: 

http://www.sciencedirect.com/science/article/pii/S0960148109002882. [Accessed 

December 2013]. 

[18]  R. C. V. R. G. I. M. Sanchez, "ScienceDirect," 2013. [Online]. Available: 

http://www.sciencedirect.com/science/article/pii/S0306261913009598. [Accessed 

December 2013]. 

[19]  National Oceanic and Atmospheric Administration, "NOAA Tide Predictions," [Online]. 

Available: http://tidesandcurrents.noaa.gov/tide_predictions.html?gid=37. [Accessed 

2013]. 

[20]  ISO New England, [Online]. Available: http://www.iso-ne.com/markets/index.html. 

[Accessed November 2013]. 

[21]  Tidal Energy Pty Ltd, [Online]. Available: http://www.tidalenergy.net.au/faq.html. 

[Accessed November 2013]. 



28 | P a g e  

[22]  govGuru, [Online]. Available: http://govguru.com/massachusetts/average-electricity-

consumption. [Accessed November 2013]. 

[23]  US Energy Information Administration, 2011. [Online]. Available: 

http://www.eia.gov/state/data.cfm?sid=MA#ConsumptionExpenditures. [Accessed 

October 2013]. 

[24]  "Packing some power," The Economist, 3 March 2012. [Online]. Available: 

http://www.economist.com/node/21548495?frsc=dg%7Ca. [Accessed February 2014]. 

[25]  Popular Science Monthly, "Google Books," July 1930. [Online]. Available: 

http://books.google.com/books?id=sigDAAAAMBAJ&pg=PA60&dq=1930+plane+%22Popula

r&hl=en&ei=zxiVTtztJ-

Pr0gGvtu2kBw&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDQQ6AEwATgU#v=one

page&q=1930%20plane%20%22Popular&f=true. [Accessed February 2014]. 

[26]  Pelamis Wave Power, "E.ON at EMEC," 25 April 2012. [Online]. Available: 

http://www.pelamiswave.com/our-projects/project/1/E.ON-at-EMEC. [Accessed 

February 2014]. 

[27]  lemay, "Energy and the Environment - A Coastal Perspective," 22 May 2010. [Online]. 

Available: http://coastalenergyandenvironment.web.unc.edu/ocean-energy-generating-

technologies/wave-energy/oscillating-water-column/. [Accessed February 2014]. 

 

 

  



29 | P a g e  

8 Appendices 

Appendix A – Summary of Tide Differential Data By Location 

Boston Harbor Sites 

Station Tidal Differential (m) 

StationName: BOSTON LIGHT 2.815620128 

StationName: Deer Island (south end) 2.89924876 

StationName: CHELSEA 2.942508859 

StationName: Moon Head 2.958412473 

StationName: AMELIA EARHART DAM 2.959631467 

StationName: Charlestown, Charles River entrance 2.987824238 

StationName: Neponset, Neponset River 2.987824238 

StationName: BOSTON 2.987909284 

 

Cohasset Harbor to Davis Bank 

Station Tidal Differential (m) 

StationName: Pleasant Bay 1.016371368 

StationName: CHATHAM, STAGE HARBOR 1.197406095 

StationName: Georges Shoal, Texas Tower 1.313550673 

StationName: BOURNE BRIDGE, CAPE COD CANAL (STA. 320) 1.322664777 

StationName: CHATHAM 1.773366407 

StationName: BOURNEDALE, CAPE COD CANAL (STA. 200) 1.883004961 

StationName: SAGAMORE, CAPE COD CANAL (STA. 115) 2.417207654 

StationName: Damons Point, North River 2.659234585 

StationName: SANDWICH 2.692955351 

StationName: Cohasset Harbor (White Head) 2.748915663 

StationName: SCITUATE, SCITUATE HARBOR 2.759759036 

StationName: BRANT ROCK, GREEN HARBOR RIVER 2.788206945 

StationName: PROVINCETOWN 2.944549965 

StationName: PLYMOUTH 2.957377746 

StationName: DUXBURY, DUXBURY HARBOR 2.983713678 

StationName: Barnstable Harbor, Beach Point 2.987824238 

StationName: SESUIT HARBOR, EAST DENNIS 3.111381999 

StationName: Wellfleet 3.1378455 
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Hingam Bay 

Station Tidal Differential (m) 

StationName: Hull 2.89924876 

StationName: NUT ISLAND 2.912147413 

StationName: Crow Point, Hingham Harbor entrance 2.958412473 

StationName: Nantasket Beach, Weir River 2.958412473 

StationName: WEYMOUTH FORE RIVER 2.977746279 

StationName: Hingham 2.987824238 

 

Outer Coast 

Station Tidal Differential (m) 

StationName: RIVERSIDE 1.704096386 

StationName: MERRIMACPORT 2.133579022 

StationName: SALISBURY POINT 2.378639263 

StationName: NEWBURYPORT 2.521389086 

StationName: ROCKPORT 2.715832743 

StationName: PLUM ISLAND SOUTH 2.733890858 

StationName: SALEM, SALEM HARBOR 2.766435152 

StationName: Annisquam, Lobster Cove 2.767484054 

StationName: Gloucester Harbor 2.776895819 

StationName: ESSEX 2.798398299 

StationName: LYNN, LYNN HARBOR 2.865882353 
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Appendix B – Summary of All Tide Differential Data 

All Sites Based on Tidal Differential (Smallest to Greatest) 

Station Tidal Differential (m) 

StationName: Pleasant Bay 1.016371368 

StationName: CHATHAM, STAGE HARBOR 1.197406095 

StationName: Georges Shoal, Texas Tower 1.313550673 

StationName: BOURNE BRIDGE, CAPE COD CANAL (STA. 320) 1.322664777 

StationName: RIVERSIDE 1.704096386 

StationName: CHATHAM 1.773366407 

StationName: BOURNEDALE, CAPE COD CANAL (STA. 200) 1.883004961 

StationName: MERRIMACPORT 2.133579022 

StationName: SALISBURY POINT 2.378639263 

StationName: SAGAMORE, CAPE COD CANAL (STA. 115) 2.417207654 

StationName: NEWBURYPORT 2.521389086 

StationName: Damons Point, North River 2.659234585 

StationName: SANDWICH 2.692955351 

StationName: ROCKPORT 2.715832743 

StationName: PLUM ISLAND SOUTH 2.733890858 

StationName: Cohasset Harbor (White Head) 2.748915663 

StationName: SCITUATE, SCITUATE HARBOR 2.759759036 

StationName: SALEM, SALEM HARBOR 2.766435152 

StationName: Annisquam, Lobster Cove 2.767484054 

StationName: Gloucester Harbor 2.776895819 

StationName: BRANT ROCK, GREEN HARBOR RIVER 2.788206945 

StationName: ESSEX 2.798398299 

StationName: BOSTON LIGHT 2.815620128 

StationName: LYNN, LYNN HARBOR 2.865882353 

StationName: Deer Island (south end) 2.89924876 

StationName: Hull 2.89924876 

StationName: NUT ISLAND 2.912147413 

StationName: CHELSEA 2.942508859 

StationName: PROVINCETOWN 2.944549965 

StationName: PLYMOUTH 2.957377746 

StationName: Moon Head 2.958412473 

StationName: Crow Point, Hingham Harbor entrance 2.958412473 

StationName: Nantasket Beach, Weir River 2.958412473 

StationName: AMELIA EARHART DAM 2.959631467 

StationName: WEYMOUTH FORE RIVER 2.977746279 

StationName: DUXBURY, DUXBURY HARBOR 2.983713678 

StationName: Charlestown, Charles River entrance 2.987824238 

StationName: Neponset, Neponset River 2.987824238 
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StationName: Barnstable Harbor, Beach Point 2.987824238 

StationName: Hingham 2.987824238 

StationName: BOSTON 2.987909284 

StationName: SESUIT HARBOR, EAST DENNIS 3.111381999 

StationName: Wellfleet 3.1378455 
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Appendix C – Tidal Data Excerpt  

*Due to the large size of data only 5 days are shown here.  For full listing of data for 

all sites see the NOAA website at http://tidesandcurrents.noaa.gov/tide_predictions.html 

StationName: AMELIA EARHART DAM 

High (m) Low (m) Diff (m)  

3.0476967 0.0880652 2.9596315  

=AVERAGE(G5:G1415)*2/
100 

=AVERAGE(H5:H1415)*2/
100 =A3-B3  

Date  Day Time Pred(Ft) Pred(cm) 
High/Lo
w Only Highs Only Lows 

DATA DATA DATA DATA DATA DATA 
=IF(F5="H",E5,
0) 

=IF(F5="L",E5,
0) 

1/1/2013 Tue 
1:23 
AM 9.2 280 H 280 0 

1/1/2013 Tue 
7:31 
AM 0.9 27 L 0 27 

1/1/2013 Tue 
1:33 
PM 10.0 305 H 305 0 

1/1/2013 Tue 
7:58 
PM 0.0 0 L 0 0 

1/2/2013 Wed 
2:04 
AM 9.4 287 H 287 0 

1/2/2013 Wed 
8:17 
AM 0.8 24 L 0 24 

1/2/2013 Wed 
2:18 
PM 9.8 299 H 299 0 

1/2/2013 Wed 
8:43 
PM 0.1 3 L 0 3 

1/3/2013 Thu 
2:50 
AM 9.6 293 H 293 0 

1/3/2013 Thu 
9:06 
AM 0.7 21 L 0 21 

1/3/2013 Thu 
3:07 
PM 9.6 293 H 293 0 

1/3/2013 Thu 
9:31 
PM 0.2 6 L 0 6 

... 

12/30/2013 Mon 
2:34 
AM 0.4 12 L 0 12 

12/30/2013 Mon 
8:48 
AM 11.0 335 H 335 0 

12/30/2013 Mon 
3:15 
PM -0.8 -24 L 0 -24 

12/30/2013 Mon 9:26 9.6 293 H 293 0 

http://tidesandcurrents.noaa.gov/tide_predictions.html
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PM 

12/31/2013 Tue 
3:27 
AM 0.0 0 L 0 0 

12/31/2013 Tue 
9:41 
AM 11.5 351 H 351 0 

12/31/2013 Tue 
4:08 
PM -1.3 -40 L 0 -40 

12/31/2013 Tue 
10:18 
PM 10.0 305 H 305 0 

 
Explanation of equations in spreadsheet: 

The “Only Highs” and “Only Lows” columns were added to filter out the original data.  To 

determine the “High (m)” value the average of the “Only Highs” column is taken, multiplied 

by 2 since every other value is 0 representing the low tide data.  This is then divided by 100 

to convert to meters.  The “Low (m)” value was determined in the same way.  Lastly, the 

“Diff (m)” value was determined by subtracting the “Low (m)” value from the “High (m)” 

value. 
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Appendix D – Current Data Excerpt 

*Due to the large size of data only 5 days are shown here.  For full listing of data for 

all sites see the NOAA website at 

http://tidesandcurrents.noaa.gov/cdata/StationList?type=Current+Data&filter=historic 

 
Start Date End Date 

Little Misery 
Island  5/20/2011 6/25/2011 

Depth 6.37 m DATA 

Average Speed 
14.95519481 
cm/s =AVERAGE(B10:B8633) 

Average Power 133.5173383 =AVERAGE(D10:D8633) 

Timespan (days) 36 =C2-B2 

kWhr/year 1169.611883 =B5*8760/1000 

Date/Time 
 Speed 
(cm/sec)  Dir (true) Power 

DATA DATA DATA =Constants!B$4*(B10/100)^3/2*B$3^2 

5/20/2011 15:15 31.3 255 601.0033 

5/20/2011 15:21 33.7 260 750.1249 

5/20/2011 15:27 31.7 256 624.3407 

5/20/2011 15:33 31.4 258 606.7822 

5/20/2011 15:39 31.3 263 601.0033 

5/20/2011 15:45 34.6 262 811.8432 

5/20/2011 15:51 32.6 264 679.0420 

... 

6/25/2011 12:51 4.5 234 1.7860 

6/25/2011 12:57 4.8 205 2.1675 

6/25/2011 13:03 4.1 217 1.3508 

6/25/2011 13:09 3.3 206 0.7043 

6/25/2011 13:15 3.3 224 0.7043 

6/25/2011 13:21 3.2 233 0.6422 

6/25/2011 13:27 2.3 220 0.2384 

6/25/2011 13:33 3.2 197 0.6422 

6/25/2011 13:39 4.6 146 1.9077 
 

Explanation of equations in spreadsheet: 

The “Power” was determined from Equation 3.  The “Average Speed” was calculated by 

taking the average of the current speed data for a given station.  The “Average Power” was 

calculated by taking the average of the calculated power data.  The “Timespan (days)” was 

calculated by subtracting the “End Date” and “Start Date” values.  The “kWhr/year” value 

was determined by assuming the turbine would be running 24 hours for 365 days. 

http://tidesandcurrents.noaa.gov/cdata/StationList?type=Current+Data&filter=historic
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Appendix E – Summary of Energy Provided by Tidal Stream 

Code Station kWh/year 

Households 

Powered/Year 

Households 

Powered/Year/Turbine Size 

DATA DATA DATA =D3/J$3 =E3/C3 

COD0904 

Cape Cod Canal, 

Railroad Bridge 500423.64 66.5103 15.08170506 

COD0903 

Cape Cod Canal, 

Bournedale 350196.00 46.5439 7.705937114 

COD0905 Hog Neck 95133.51 12.6440 3.571753518 

COD0911 

Woods Hole, The 

Strait 69340.04 9.2158 3.177878676 

BOS1122 Georges Island 52497.03 6.9773 0.863524314 

COD0914 Quicks Hole, Middle 51887.83 6.8963 1.316089425 

BOS1131 Stellwagen Bank 28393.05 3.7737 0.377366397 

BOS1110 Deer Island (0.7mi.) 20536.42 2.7295 0.545891059 

BOS1111 

Boston Harbor, Deer 

Island Light 20278.38 2.6952 0.417207364 

COD0906 Abiels Ledge 18195.38 2.4183 0.532667856 

BOS1133 Sanctuary 1 12662.15 1.6829 0.174213372 

COD0912 Juniper Point 10893.40 1.4478 0.392363333 

BOS1132 Traffic Scheme 8424.11 1.1196 0.111963246 

BOS1128 

Minots Light,3.3 mi 

north 3460.32 0.4599 0.045990417 

BOS1129 Minots Light - 6.5 mi N 3297.17 0.4382 0.043822056 

BOS1112 Spectacle Island 2944.36 0.3913 0.087939128 

COD0910 

Woods Hole, North 

End 2470.22 0.3283 0.147225125 



37 | P a g e  

BOS1130 

Stellwagen Basin east 

end 2122.18 0.2821 0.028205519 

BOS1135 Sanctuary 3 1835.89 0.2440 0.024400474 

BOS1134 Sanctuary 2 1214.72 0.1614 0.016144543 

COD0908 West Island, 1mi SE of 1179.82 0.1568 0.04249515 

BOS1101 Little Misery Island 1169.61 0.1555 0.024403581 

BOS1106 Northeast Grave 1001.94 0.1332 0.020238012 

COD0907 Cleveland Ledge 249.01 0.0331 0.00743716 

BOS1103 Abbot Rock 59.71 0.0079 0.002099393 

 

Explanation of equations in spreadsheet: 

The “Households Powered/Year” value was calculated by dividing the kWh/year by the 

average kWh/year consumption in Massachusetts.  The “Households Powered/Year/Turbine 

Size” was a calculated ratio of the households powered a year and the turbine size.  This was 

a crude representation of value since larger turbines generally require greater capital 

investment.  
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Appendix F – Summary of Tidal Current Data 

Station 
Estimated Turbine 
Radius (m) 

Timespan 
(days) 

Average 
Speed (cm/s) 

Average Power 
Generation (W) 

Cape Cod Canal, Railroad Bridge 4.41 77 159.927793 57125.986590 

Cape Cod Canal, Bournedale 6.04 47 115.196209 39976.712770 

Hog Neck 3.54 48 105.586572 10859.989960 

Woods Hole, The Strait 2.90 107 110.435837 7915.529860 

Georges Island 8.08 40 47.227020 5992.811425 

Quicks Hole, Middle 5.24 53 65.624894 5923.267787 

Stellwagen Bank 10.00 42 34.942566 3241.215488 

Deer Island (0.7mi.) 5.00 41 47.224237 2344.340369 

Boston Harbor, Deer Island Light 6.46 88 37.778745 2314.883630 

Abiels Ledge 4.54 47 49.824144 2077.098173 

Sanctuary 1 9.66 32 20.858724 1445.450731 

Juniper Point 3.69 48 50.981183 1243.539149 

Traffic Scheme 10.00 42 22.385009 961.656917 

Minots Light,3.3 mi north 10.00 39 14.992375 395.013578 

Minots Light - 6.5 mi N 10.00 38 15.886563 376.389437 

Spectacle Island 4.45 37 26.705132 336.114189 

Woods Hole, North End 2.23 54 42.307341 281.988550 

Stellwagen Basin east end 10.00 30 13.621467 242.258362 

Sanctuary 3 10.00 42 12.240219 209.576677 

Sanctuary 2 10.00 42 10.822032 138.666140 

West Island, 1mi SE of 3.69 93 21.163939 134.682266 

Little Misery Island 6.37 36 14.955194 133.517338 

Northeast Grave 6.58 39 13.915203 114.376929 

Cleveland Ledge 4.45 47 11.397835 28.425741 

Abbot Rock 3.78 36 8.068590 6.816011 

 

Estimated Turbine Radius is 85% of total water depth.  All other values in this 

spreadsheet were values pulled from current data for sites as shown in Appendix D. 
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Appendix G – Current Data Site Location Maps for BOS and COD 

 



40 | P a g e  

 

 

 

 



41 | P a g e  

Appendix H – Tidal Barrage Analysis Station Maps 
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Appendix I – Tidal Barrage Cost Analysis Calculations 

For the 850MW capacity system, cost estimates were $4.44m startup and $0.05m operating 

per MW.  Tide differentials in the Severn project are around 14m. 

($4.44m/MW)*850MW = $3.774 billion 

($0.05m/MW)*850MW/year = $42.5 million/year 

   
         

     
                (2) 

Where: 
E = energy in joules 
A = the horizontal area of the barrage basin in m 
ρ = the density of water = 1025 kg/m3 
g = the acceleration due to Earth’s gravity = 9.81 m/s 
h = the vertical tidal range in m 
 

     
                   

     
  

A = 124.212 m 

Assuming that the projects would be similar in cost per m of barrage the following ratio is 

used to estimate the costs for the Massachusetts project. 

X = cost in billions of dollars (capex) 

              

         
  

 

     
  

X = $30.384 billion 

Y = cost in billions of dollars (opex) 

             

         
  

 

     
  

Y = $342.157 million 

 

 

 

 


