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Abstract 
 

 

V. cholerae is a gram-negative bacterium that colonizes the human intestine via 

toxin co-regulated pilus (TCP) and can cause diarrhea with fluid losses severe enough to 

be fatal.  Without TCP, V. cholerae cannot attach to the intestine, secrete toxins, or cause 

GI disease.  At least 10 proteins encoded by genes within the tcp operon of V. cholerae 

are needed to assemble TCP.  Four of these proteins -- TcpD, TcpE, TcpR, & TcpT -- 

localize to, or peripherally associate with, the inner membrane (IM).  Previous 

experiments support the hypothesis that not all four proteins are needed to form a stable 

IM platform, believed to serve as an anchor & scaffold for outward pilus assembly. 

Instead, as seen within E. coli‘s bundle-forming pilus (BFP) biogenesis apparatus, 

interactions among three proteins are predicted to be sufficient to form a stable IM 

platform in V. cholerae.  To test this hypothesis, plasmids were genetically engineered to 

carry combinations of tcp genes and induced to co-express the four IM proteins required 

for TCP assembly in all groups of two and three in E. coli.  Protein immunoblots on cell 

lysates were analyzed to help determine which proteins may form a stable IM platform, 

most likely by stabilizing the TcpR-TcpT interaction.  Although not conclusive, results 

suggest that both TcpD and TcpE stabilize the TcpR-TcpT interaction.  Therefore, as 

predicted, three proteins required for TCP biogenesis appear to form a stable IM platform 

– just as seen within E.coli‘s BFP biogenesis machinery.  Future pull-down and yeast 

two-hybrid studies can confirm or refute these implied protein interactions.  Overall, 

understanding the structure of proteins needed for TCP biogenesis may provide clues as 

to how TCP forms & functions to cause cholera.  Discovering how TCP forms may also 

help identify methods of disrupting pilus assembly, as well as novel targets for antibiotic 



development & drug therapy.  Finally, the mechanism of TCP biogenesis may serve as a 

useful model for studying protein secretion and DNA uptake in bacteria since the proteins 

involved in these processes share extensive sequence, structural, and functional 

homology. 
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Introduction 
 

Vibrio cholerae is a gram-negative bacterium that causes the gastrointestinal 

disease cholera characterized by diarrhea with fluid losses severe enough to be fatal.  V. 

cholerae is transmitted to humans through contaminated food or drinking water and 

colonizes the human small intestine via TCP (Kaper et al., 1995).  TCP is a type IV pilus 

(Tfp) composed of a single pilin protein, TcpA, polymerized into long fibers (Strom & 

Lory, 1993).  Without TCP, V. cholerae cannot attach to intestinal epithelial cells, 

effectively secrete cholera toxin, or cause gastrointestinal disease (Kirn et al., 2003).  At 

least ten proteins encoded by genes within the tcp operon of V. cholerae (depicted in 

Figure 2) are needed to make TCP.  Four of these proteins -- TcpD, TcpE, TcpR, and 

TcpT -- localize to, or peripherally associate with, the inner membrane (IM).  As shown 

in Figure 1, the current working model for the TCP biogenesis apparatus consists of 11 

proteins encoded by genes within the tcp operon (Tripathi & Taylor, 2005 poster).  V. 

cholerae mutants with single deletions of any gene within the tcp operon, except tcpF, 

fail to make TCP.  Therefore, at least 10 known proteins are required for TCP biogenesis 

– four of which are found within or attached to the IM.  Little is understood, however, 

about how the proteins involved in TCP biogenesis interact to assemble functional pili.  

Within the IM, for instance, TcpR and TcpT are the only proteins confirmed to interact 

through metal affinity pull-down and bacterial two-hybrid experiments (Tripathi & 

Taylor, 2007).  Previous experiments support the hypothesis that not all four -- but 

combinations of three – IM proteins involved in TCP biogenesis are needed to form a 

stable IM platform, likely by stabilizing the TcpR-TcpT interaction as illustrated in 

Figure 5 (Tripathi & Taylor, 2005).  An IM platform within the TCP biogenesis 



apparatus is believed to serve as an anchor and scaffold for outward pilus assembly, 

which involves: 1) pilus assembly in the periplasm and (2) transfer of the growing pilus 

to the cell surface (Wolfgang et al., 2000). 

 



Background 
 

 

Functions of TCP 

 

V. cholerae requires two virulence factors to cause disease:  cholera toxin and 

TCP (Waldor & Makalanos, 1996).  First, cholera toxin is a potent enterotoxin largely 

responsible for the symptoms of cholera.  Cholera toxin causes ‗rice water‘ stool by 

disrupting electrolyte balance in the small intestine such that epithelial cells expel water 

and ions (Spangler, 1992; Kaper et al., 1995).  Second, TCP is a Type IV pilus expressed 

on the surface of V. cholerae which is believed to function in:  (1) adhesion to the human 

small intestine, (2) bacterial interactions mediating colonization, (3) DNA uptake via 

phage transduction and natural transformation, and (4) extracellular protein secretion. 

TCP is believed to allow V. cholerae to adhere to epithelial cells of the small 

intestine where the bacteria can colonize, proliferate, and cause GI disease (Taylor et al., 

1987).  No epithelial cell receptor for TCP, however, has been identified. 

Pilus-pilus contacts among V. cholerae mediate microcolony formation which 

promotes colonization of the small intestine (Kirn et al., 2000).  TCP-deficient V. 

cholerae -- carrying mutations in the gene encoding the structural pilin TcpA -- are 

unable to colonize the human intestine (Herrington et al., 1988).  Microcolonies facilitate 

colonization by increasing intestinal concentrations of bacteria, likely enhancing their 

proliferation, growth, persistence, and potentially dissemination to surrounding tissues 

(Kirn et al., 2000).  Association into microcolonies may also help bacteria hide from 

antimicrobial host defenses like antibodies and the complement system (Kirn et al., 

2000).  Pilus-pilus interactions may also be responsible for the autoagglutination or 

clumping of V. cholerae observed in liquid cultures (Taylor et al., 1987). 



TCP serves as a receptor for the bacteriophage CTXФ which carries the structural 

genes for cholera toxin (Waldor & Makalanos, 1996; Wolfgang et al., 2000).  

Transduction of CTXФ via TCP infects new virulent strains of V. cholerae (Waldor & 

Makalanos, 1996).  V. cholerae must colonize the human intestine via TCP before it can 

secrete cholera toxin, a potent enterotoxin, via a T2S pathway called the extracellular 

protein secretion (EPS) system (Kirn et al., 2003).  Cholera toxin acts by elevating cyclic 

AMP levels in the epithelial cells of the small intestine, thereby disrupting ion transport 

and electrolyte balance (Kaper et al., 1995; Kirn et al., 2003). 

Regarding extracellular protein secretion, the TCP biogenesis apparatus mediates 

the extracellular secretion of the soluble colonization factor TcpF.  In a two step process, 

(1) the EPS T2S pathway transports TcpF to the periplasm, then (2) the TCP biogenesis 

apparatus transports TcpF across the OM (Bose & Taylor, 2005).  Mutant V. cholerae 

strains carrying deletions in tcpF (∆tcpF) still assemble TCP, but have a remarkably 

reduced ability to colonize the mouse small intestine (Kirn et al., 2003).  

 

Assembly of Type IV Pili 

 

Expressed by gram-negative bacteria, type IV pili are related by their:  (1) 

structural pilins which share extensive sequence homology (especially within their N-

terminal ends) and contain a leader peptide that is cleaved prior to mature processing and 

(2) well-conserved biogenesis machineries (Strom & Lory, 1993; Wolfgang et al., 2000).  

Little is understood about how proteins within the biogenesis machineries of type IV pili 

function, interact, and ultimately work together to assemble functional pili.  The 

functions of three proteins – TcpJ, TcpT, and TcpC -- involved in TCP biogenesis, 



however, have begun to emerge and are providing insight into the mechanics behind this 

complex process (Bose & Taylor, 2005).  

Type IV pilus biogenesis can be divided into two main steps:  (1) pilus assembly 

in the periplasm and (2) extrusion of the growing pilus through the OM to the cell surface 

(Wolfgang et al., 2000).  Regarding pilus assembly, TcpJ is a type IV prepilin peptidase 

which cleaves the 25 amino-acid N-terminal leader peptides from TcpA precursors to 

produce mature pilins that are polymerized into a fiber in the periplasm (LaPointe & 

Taylor, 2000).  Removal of this leader peptide by TcpJ is required for stable pilin 

expression, polymerization, and translocation across the IM (Strom & Lory, 1993).  In 

addition, TcpT is an ATPase tethered to the IM which is believed to generate all the 

energy needed for TCP biogenesis (Tripathi & Taylor, 2007). 

Evidence suggests that type IV pili are extruded through the OM as intact fibers 

(Wolfgang et al., 2000). Translocation across the OM is believed to occur through a large 

secretion pore formed by a homomultimeric ring of secretin proteins (Wolfgang et al., 

2000).  In V. cholerae, 12 subunits of the lipoprotein TcpC are believed to form the OM 

secretion channel (Parsot et al., 1991; Bose & Taylor, 2005).  Evidence that type IV pili 

are translocated through the OM as intact fibers comes from N. gonorrhoeae mutants 

lacking the secretin pore-forming protein which express intact pili within the cell 

(Wolfgang et al., 2000).  This suggests that pilus assembly occurs prior to and 

independently of pilus translocation to the cell surface.   Furthermore, the diameter of 

protein transport channels formed by secretins in the OM of gram-negative bacteria like 

P. aeruginosa are large enough to accommodate the 80 Å diameter of functional TCP 

(Bitter, 2003; Taylor et al., 2004).   Studies have proposed the secretin protein channel is 



gated to retain the structural integrity of the OM as a cell barrier (Wolfgang et al., 2000).  

Within V. cholerae‘s TCP biogenesis apparatus, TcpQ – proven to directly interact with 

TcpC using metal affinity pull-down experiments – has been proposed to facilitate the 

opening and closing of the gated OM pore (Bose & Taylor, 2005). 

Regarding the functional significance of IM proteins within V. cholerae‘s TCP 

biogenesis apparatus, the IM platform may serve as an anchor, scaffold, and energy 

supplier for pilus assembly and localization (Py et al., 2001).  The IM proteins may help 

to anchor TCP in the IM (Py et al., 2001).  The IM platform also believed to serve as a 

scaffold on which other proteins of the TCP biogenesis apparatus can assemble outwardly 

to span the periplasm and outer membrane (Py et al., 2001).  In addition, the IM platform 

is important for generating energy to build TCP via the ATPase activity of TcpT (Tripathi 

& Taylor, 2007). 

 

IM Protein Interactions within E. coli’s BFP Biogenesis Apparatus: A Model System  

 

Enteropathogenic E. coli‘s bundle-forming pilus (BFP) and V. cholerae‘s TCP are 

well studied type IV pili.  Since the biogenesis machinery of type IV pili is well 

conserved among gram-negative bacteria, what is known about the BFP biogenesis 

apparatus can be used to make predictions about protein interactions within the inner 

membrane platform of V. cholerae‘s TCP biogenesis apparatus.  Figure 3 depicts the 

predicted structures of IM proteins comprising V. cholerae‘s TCP biogenesis apparatus 

and E. coli‘s BFP biogenesis apparatus based on biochemical evidence (Tripathi & 

Taylor, 2005 poster; Crowther et al., 2004).  The TCP biogenesis apparatus consists of 

four IM proteins, while the BFP biogenesis apparatus consists of three (Crowther et al., 

2004).  E. coli‘s BfpC, BfpE, and BfpT proteins resemble V. cholerae‘s TcpR, TcpE, and 



TcpT proteins, respectively (Tripathi & Taylor, 2007).  To standardize the notation when 

comparing these biogenesis machineries, proteins from the BFP biogenesis apparatus of 

E. coli will be referred to as homologs of TcpR, TcpE, and TcpT. 

Using a yeast two-hybrid system, the following IM proteins of the BFP biogenesis 

apparatus were found to interact:  TcpT-TcpR, TcpT-TcpE, and TcpR-TcpE homologs 

(Crowther et al., 2004).  To examine the stability of the IM proteins required for BFP 

biogenesis alone versus together, combinations of purified proteins were subjected to 

digestion by proteases.  Individually, the TcpR and TcpT homologs were relatively 

resistant to degradation by protease.  The susceptibility of the TcpR and TcpT homologs 

to protease digestion increased drastically, however, in the presence of one another 

(Crowther et al., 2004).  Among IM proteins required for BFP biogenesis in E. coli, there 

appears to be a trend that each protein (homologous to TcpR, TcpE, and TcpT) is stable 

alone, any pair (homologous to TcpR-TcpT, TcpR-TcpE, and TcpT-TcpE) is unstable, 

and all three IM proteins (homologous to TcpR-TcpE-TcpT) are stable together 

(Crowther et al., 2004).  This pattern of differential stability suggests that binary protein 

interactions induce conformational changes in the proteins rendering them more sensitive 

to protease digestion.  The addition of a third protein, however, stabilizes the complex 

and protects the proteins from protease degradation (Crowther et al., 2004).  Due to 

extensive homology, there is reason to believe this pattern of IM protein stability 

observed within the BFP biogenesis apparatus may also exist within the TCP biogenesis 

apparatus of V. cholerae.  

 

 

 

 



IM Protein Interactions within V. cholerae’s TCP Biogenesis Apparatus 

 

 

TcpR-TcpT Only Known IM Protein Interaction within TCP Biogenesis Apparatus 

 

Localization, bacterial two-hybrid, and metal affinity pull-down studies have 

demonstrated that TcpR and TcpT interact (Tripathi & Taylor, 2007).  Evidence includes 

the observation that TcpT properly localizes to the IM in a wildtype (O395) strain of V. 

cholerae, but mislocalizes to the cytoplasm when expressed in a tcpR deletion (∆tcpR) 

strain of V. cholerae (Tripathi & Taylor, 2007).  Complementation of the ∆tcpR strain of 

V. cholerae with a plasmid expressing TcpR rescued the wildtype phenotype -- as 

evidenced by the production of functional TCP able to autoagglutinate and secrete TcpF, 

as well as TcpT properly localized to the IM (Tripathi & Taylor, 2007).  As in the 

wildtype strain of V. cholerae, TcpT remained properly localized to the IM when 

expressed in ∆tcpD and ∆tcpE strains of V. cholerae.  These localization studies suggest 

that TcpR and TcpT interact, and that TcpR – but not TcpD or TcpE -- is needed to tether 

TcpT to the IM (Tripathi & Taylor, 2007).  Without TcpR, TcpT mislocalizes to the 

cytoplasm. 

 

TcpR-TcpT Interaction Requires Additional Proteins to Become Stable 

 

After TcpR and TcpT were discovered to interact, the following question arose:  

is TcpR sufficient to tether to TcpT to the membrane?  In other words, is the TcpR-TcpT 

interaction stable alone-- or are additional proteins required for its stabilization?  To test 

this experimentally, TcpR was fused with the protein PhoA (the carboxyl-terminal 

portion of alkaline phosphatase) to ensure that TcpR properly localized to the IM.  When 

TcpR-PhoA and TcpT were co-expressed in a ∆tcpP strain of V. cholerae (in which the 



tcp operon is turned off), TcpT was found to degrade (Tripathi & Taylor, 2005 poster).  

That is, TcpT could not be detected in the cytoplasm or IM cellular fractions using 

protein immunoblotting with anti-TcpT antibody (Tripathi & Taylor, 2007).  In contrast, 

when expressed alone in a ∆tcpP strain of V. cholerae, TcpT was found to be stable, but 

mainly mislocalized to the cytoplasmic fraction when detected via protein 

immunoblotting (Tripathi & Taylor, 2005 poster).  This change in the stability of TcpT 

when expressed alone versus co-expressed with TcpR-PhoA suggests that, upon 

interaction, TcpR-PhoA may induce a change in the shape of TcpT which makes TcpT 

more unstable and susceptible to digestion by proteases.  Complementation of the ∆tcpR 

strain of V. cholerae with a plasmid expressing TcpR-PhoA rescued proper localization 

of TcpT to the IM – suggesting that TcpT degradation is not a result of TcpR‘s fusion 

with PhoA (Tripathi & Taylor, 2007).  Overall, the TcpR-TcpT interaction is not stable 

alone.  Additional proteins are needed to stabilize the TcpR-TcpT interaction and to 

protect TcpT from degrading -- potentially by physically covering sites on TcpT where 

proteases can attack or preventing a conformational change that destablilizes TcpT. 

 

TcpD and TcpE Appear to Perform Redundant Function in Stabilizing TcpR-TcpT 

 

Another experiment providing clues as to the IM structure of proteins within the 

TCP biogenesis apparatus demonstrated that TcpT remains stable in all V. cholerae 

mutants carrying single deletions of a gene within the tcp operon (Tripathi & Taylor, 

2007).  That is TcpT can be detected via protein immunoblotting of cell lysates from all 

V. cholerae strains carrying single deletions of tcp genes.  TcpT is detected in the IM 

fraction of all the single deletion mutants, except the TcpR deletion (∆TcpR) strain in 

which TcpT is detected in the cytoplasm (Tripathi & Taylor, 2007).  This data suggest 



that more than one protein required for TCP biogensis is stabilizing the TcpR-TcpT 

interaction.  Since TcpD and TcpE are the only other IM proteins involved in assembling 

TCP, they are likely candidates for performing a redundant function in stabilizing the 

TcpR-TcpT interaction.  In other words, TcpD could be stabilizing the TcpR-TcpT 

interaction in a ∆tcpE strain of V. cholerae, while TcpE is stabilizing this interaction in a 

∆tcpD strain.  So, a third protein – namely TcpD alone or TcpE alone -- may be sufficient 

for stabilizing the TcpR-TcpT interaction.  These two models of stable IM platforms 

within the TCP biogenesis apparatus -- TcpD-TcpR-TcpT and TcpE-TcpR-TcpT -- are 

illustrated in Figure 5.  Of note, these models are consistent with evidence from E. coli‘s 

BFP biogenesis apparatus that three proteins are sufficient to form a stable IM platform. 

 

Similarities between Tfp Biogenesis Machinery & T2S & DNA Uptake Systems 

 

Proteins involved in assembling TCP and other type IV pili share considerable 

structural and functional homology with proteins involved in type II protein secretion 

(T2S) and DNA uptake in gram-negative bacteria (Strom & Lory, 1993; Kirn et al., 

2003).  In some gram-negative bacteria, the same proteins function in more than one of 

these related processes.  The extensive similarities among type IV pili biogenesis, T2S, 

and DNA uptake systems seem to suggest a shared evolutionary history and shared 

functional mechanisms.  This seems likely because proteins involved in TCP biogenesis 

have been implicated in both the extracellular protein secretion of colonization factor 

TcpF and the uptake of bacteriophage CTXФ DNA carrying the genes for cholera toxin 

(Kirn et al., 2003).  Overall, the mechanism of Type IV pilus biogenesis may serve as a 

useful model for studying processes that facilitate the transport of macromolecules across 

cell membranes.   



 

Tfp Biogenesis & T2S Machineries 

 

The T2S pathway refers to the process by which proteins are transported across 

the outer membrane of gram-negative bacteria (Sandkvist, 2001).  T2S is a two-step 

process in which:  (1) proteins bearing a signal peptide are transported across the IM via 

the Sec pathway then (2) signal peptides are removed and proteins are translocated from 

the periplasm across the OM (Sandkvist, 2001).  Several proteins involved in TCP 

biogenesis share structural and functional homology with proteins involved in the 

extracellular protein secretion (EPS) system, a T2S pathway of V. cholerae (Kirn et al., 

2003).  Four similarities between proteins involved in the EPS system of V. cholerae and 

proteins encoded by the tcp operon include:  (1) ―pseudoplin‖ proteins EpsG, H, I & J of 

the T2S system resemble the pilin protein TcpA comprising TCP; (2) EpsE of the T2S 

system resembles TcpT of the TCP biogenesis apparatus because both are ATPases that 

peripherally associate with the IM; (3) VcpD of the T2S system resembles TcpJ of the 

TCP biogenesis apparatus because both are type IV prepilin peptidases that remove the 

signal sequences of type IV prepilins to produce mature pilins, like TcpA, that can be 

secreted outside the cell; and (4) EpsD of the T2S system resembles TcpC of the TCP 

biogenesis apparatus because both are believed to be secretins that form a multimeric ring 

in the OM that serves as a gated channel for extracellular protein secretion (Kirn et al., 

2003). 

Further evidence suggests that the processes for assembling type IV pili and 

secreting proteins via the type II system operate through similar mechanisms.  In some 

bacterial species, the same proteins function in both T2S (or secretion pathways closely 

resembling T2S) and type IV pilus biogenesis.  Regarding V. cholerae, the TCP 



biogenesis apparatus facilitates TcpF secretion by helping the soluble colonization factor 

transit the OM (Kirn et al., 2003).  That is, TcpF secretion appears to occur via the TCP 

biogenesis apparatus in a process closely resembling T2S (Kirn et al., 2003).  The 

secretion pathway for TcpF appears to at least partially overlap with that for TcpA 

because over-expression of TcpF results in reduced TCP assembly, presumably due to 

reduced TcpA secretion (Kirn et al., 2003).  Yet another link between these systems is 

that proteins from the T2S system of some gram-negative bacteria, like Pseudomonas 

aeruginosa, have been shown to form pili when over-expressed (Durand et al., 2003).  

One proposed function of the pilus formed by T2S machinery is to serve as a piston, 

extending and retracting to force proteins across the OM through a secretion channel 

(Crowther et al., 2004; Sandkvist, 2001). 

 

Tfp Biogenesis & DNA Uptake Machineries 

 

DNA uptake in bacteria functions:  (1) to promote genetic adaptability and 

diversity by acquiring DNA that potentially confers some benefit for survival -- such as 

antibiotic resistance or virulence factors, (2) to repair damaged DNA by using DNA 

acquired from closely related bacteria as a template for synthesis, and (3) to use DNA as 

a source of carbon, nitrogen, and phosphorous (Dubnau, 1999; Chen & Dubnau, 2004).  

In V. cholerae, TCP directly functions in DNA uptake as a receptor for the transduction 

of CTXФ – a filamentous bacteriophage whose DNA encodes the genes for cholera toxin 

(Waldor & Makalanos, 1996).  After infection via TCP, the CTXФ genome can integrate 

into the bacterial chromosome or replicate independently as a plasmid -- giving rise to 

new virulent strains of V. cholerae by (Waldor & Makalanos, 1996).  In naturally 

competent gram-negative bacteria, extensive similarities exist between cellular 



machinery involved in DNA uptake during transformation and the biogenesis machinery 

of type IV pili (Chen & Dubnau, 2004).  DNA uptake systems in gram-negative bacteria 

also form competence pseudopili that resemble that type IV pili regarding their major 

structural pilins, prepilin peptidases, ATPases associated with IM, and OM secretins 

(Chen & Dubnau, 2004).  A correlation exists between the production of competence 

pseudopili and ability of gram-negative bacteria to acquire DNA via natural 

transformation (Chen & Dubnau, 2004). 

Among gram-negative bacteria, proteins involved in DNA uptake via natural 

transformation resemble proteins involved in Type IV pilus biogenesis (Chen & Dubnau, 

2004).  In general, natural transformation in gram-negative bacteria can be divided into 

three steps:  (1) binding of DNA to the cell surface, (2) DNA uptake into the periplasm 

through an OM pore made of secretins, and (3) transport of one DNA strand across the 

IM while the other strand is degraded (Dubnau, 1999).  DNA uptake specifically refers to 

the transition of DNA from a DNase-sensitive to a DNase-protected state and is generally 

accomplished in gram-negative bacteria by passage through the OM (Chen & Dubnau, 

2004).  Another link between these systems is that proteins involved in DNA uptake are 

believed to form a pilus-like structure (Dubnau, 1999).  Still further support these 

processes operate via similar mechanisms emerges from the discovery that several 

proteins required for type IV pilus biogenesis -- including IM peptidases and OM 

secretins – are also required for natural competence in some gram-negative bacteria like 

N. gonorrhoeae (Dubnau, 1999; Wolfgang et al., 1998; Crowther et al., 2004).  For 

instance, the structural pilin comprising the type IV pilus of N. gonorrhoeae is required 

for the binding of DNA to the cell surface in the first step of natural transformation 



(Dubnau, 1999; Chen & Dubnau, 2004).  Overall, discovering how proteins interact 

within V. cholerae‘s TCP biogenesis machinery has promising implications for 

understanding diverse cellular processes. 

 



Methods 
 

 

Engineering Plasmids pAJ1-pAJ5 

 

 To investigate IM protein interactions within V. cholerae‘s TCP biogenesis 

apparatus, five plasmids -- pAJ1-pAJ5 -- were engineered to carry various combinations 

of tcp genes (shown in Figure 6).  Plasmids expressing tcpE alone and tcpR alone were 

previously engineered.  The cloning strategy was devised to use the fewest restriction 

enzymes needed to build compatible plasmids for co-expression of V. cholerae‘s IM Tcp 

proteins in all combinations of two and three in E. coli (see Figures 7 & 8, respectively).  

The cloning strategy was also designed to express all combinations of Tcp proteins in E. 

coli by transformation with just two plasmids. 

To construct the plasmids pAJ1-pAJ5, V. cholerae genomic DNA was extracted 

and purified using Gentra Systems‘ PureGene Purification System.  IM tcp genes were 

amplified from V. cholerae‘s genome by PCR.  PCR primers were designed to contain 

the restriction sites shown flanking the tcp genes in Figure 6.  By utilizing primer pairs 

with different restriction sites, PCR-amplified tcp genes were more likely to ligate with 

vectors in the proper orientation.  Amplified tcp genes were purified with Qiagen‘s 

Qiaquick PCR Purification Kit (according to the manufacturer‘s ―microcentrifuge‖ 

protocol).  In addition, the following plasmid vectors were extracted and purified from 

bacteria using Qiagen‘s Miniprep Plasmid Extraction Kit (according to the 

manufacturer‘s ―miniprep‖ protocol):  (1) empty pBAD33 and (2) pBAD33 carrying tcpE 

fused to a 6-histidine tag (or pEF) from E. coli and (3) pBADTOPO carrying tcpR fused 

to a 6-histidine tag from V. cholerae.  The purity and amount of extracted plasmid DNA 



were measured using the NanoDrop ND-1000 Spectrophotometer at an absorbance of 

260nm.  Of note, all the plasmids contained arabinose-inducible promoters. 

The extracted plasmids (vectors) and PCR-amplified tcp genes (inserts) were all 

digested with two restriction enzymes as outlined in Figure 6.  Double-digested vectors 

and inserts were separated by electrophoresis on a 1% agarose gel, visualized with 

ethidium bromide, gel-extracted, and purified using Qiagen‘s Gel Extraction and 

Purification Kit (according to the manufacturer‘s ―microcentrifuge‖ protocol).  

Surprisingly, DNA bands in the gel‘s pAJ2 - pAJ5 lanes revealed that the Nhe restriction 

site was not unique to the multiple cloning site (MCS) of pBAD33 vectors (see Figures 1 

& 2, Appendix A).  Rather, two distinct Nhe restriction sites exist as depicted in the 

accurate pBAD33 vector map in Figure 3 in Appendix A.  To work around this obstacle 

without re-designing the entire cloning strategy, plasmids were digested with the 

restriction enzyme Nhe alone for 10, 30, 60, and 180 minutes.  After ten minutes, Nhe 

was found to cut some pBAD33 vector only once.  At longer times, Nhe completely 

digested the plasmids by cutting at both restriction sites (see Figure 3 in Appendix A).  

So, only the band representing ―partially digested plasmids – those cut once at the Nhe 

site within the MCS -- were gel-extracted, digested with a second restriction enzyme, and 

used for genetic engineering.  

Vectors and inserts digested with the same restriction enzymes were joined with 

DNA ligase to form pAJ1-pAJ5 (shown in Figure 6).  The NanoDrop ND-1000 

Spectrophotometer and quantitative DNA gels helped determine the relative amounts of 

vector and insert needed to combine to make pAJ1-pAJ5.  The pAJ1-pAJ5 ligations were 

spot dialyzed against dH20 for 30 minutes to remove excess salts.  Electrocompetent E. 



coli were electroporated with each pAJ1-pAJ5 ligation at 1.7 kV during a one second 

pulse.  Of note, electocompetent E. coli were prepared by growing cells to an OD 600 of 

0.3-0.7, then repeatedly centrifuging and re-suspending the cells in cold sterile water.  

Vials of electroporated cells were taped to a rotating test tube rack and incubated for 45 

minutes at 37°C to allow sufficient time for gene expression of critical proteins, including 

those conferring antibiotic resistance.  For example, the pBAD33 and pEF vectors (pAJ1-

pAJ5) carry chloramphenicol resistance, while pBADTOPO (ptcpR) contains the 

ampicillin resistance gene.  To select E. coli transformed with the pAJ1-pAJ5 ligations, 

electroporated cells were spread on antibiotic plates containing 100 µg/mL ampicillin or 

15 µg/mL chloramphenicol.  

 

Using “Colony PCR” to Select E. coli Transformed with pAJ1-pAJ5 

 

Since plasmid vectors carry the antibiotic resistance genes, bacteria transformed 

with empty plasmids are able to grow on the antibiotic selection plates.  ―Colony PCR,‖ 

therefore, was used to screen for ―positive‖ colonies – colonies transformed with 

plasmids carrying the properly inserted tcp gene(s) of interest (see Figures 4-7 in 

Appendix A).  From the antibiotic selection plates for E. coli transformed with the pAJ1-

pAJ5 ligations, cells from 18 colonies were dilution-streaked on new antibiotic plates (3 

plates divided into sixths) and incubated at 37°C overnight.  Isolated colonies from 12 of 

the 18 dilution-streaked parent colonies were removed from each pAJ1-pAJ5 ligation 

plate, suspended in 25uL dH20, and pre-heated to 95°C using a PCR machine.  For each 

pAJ1-pAJ5 transformation, PCR was performed using:  cells from the 12 selected 

colonies, primers specific to the tcp gene(s) on pAJ1-pAJ5, Taq polymerase, 10X pfu 

buffer, dNTPs, and dH20.  PCR products were run on a 1% agarose gel to detect 



amplified tcp genes and reveal ―positive‖ colonies transformed with pAJ1-pAJ5.  Tcp 

genes amplified from the wildtype V. cholerae genome were used as positive controls. 

 

Testing Ability of Engineered Plasmids to Rescue WT Phenotype 

 

When feasible, complementation tests helped reveal whether plasmids expressed 

the tcp genes they were engineered to carry.  V. cholerae strains with single deletions (∆) 

of tcp genes were electroporated with plasmids engineered to carry these tcp genes.  For 

example, the V. cholerae deletion strains ∆tcpD, ∆tcpR, and ∆tcpT were electroporated 

with pAJ1 (ptcpD), ptcpR, and pAJ5 (ptcpT), respectively, at 2.5 kV during a one second 

pulse.  Electroporated cells were incubated at 30°C for 45 minutes and transformed V. 

cholerae cells were selected on antibiotic-containing agar plates.  Liquid cultures of 

―positive‖ colonies transformed with pAJ1, ptcpR, and pAJ5 were grown overnight at 

30°C and examined for their ability to ―complement‖ or ―rescue‖ the wildtype V. 

cholerae phenotype.  Wildtype rescue was qualitatively measured by the ability of cells 

to auto-agglutinate.  So, rescue was visually confirmed by clumping of cells along the test 

tube walls of liquid cultures. 

 

Building E. coli Strains for Co-Expression of V. cholerae’s IM Tcp Proteins 

 

To build E. coli strains co-expressing V. cholerae‘s IM Tcp proteins in all pairs 

and groups of three, pAJ1-pAJ5 were extracted and purified from their respective 

―positive‖ colonies using the ―Qiagen Miniprep Plasmid Extraction Kit.‖  Extracted 

plasmids were spot dialyzed against dH20 for 30 minutes.  Electrocompetent E. coli were 

electroporated with the pairs of plasmids (or ―co-expression vectors‖) outlined in Figures 

7 & 8.  Electroporated cells were incubated at 37°C for 45 minutes to allow sufficient 



time for the transcription and translation of critical genes, including those conferring 

antibiotic resistance.  To select only E. coli transformed with the appropriate co-

expression vectors, cells were spread on agar plates containing both chloramphenicol and 

ampicillin.  Various volumes of electroporated cells were plated, then incubated at 37°C 

overnight to find a concentration at which single, isolated colonies grew.  

Of note, due to time pressures, the tcp genes carried by pAJ1-pAJ5 were 

sequenced through Dartmouth‘s cycle sequencing service only after the E. coli co-

expression strains carrying these plasmids were built and used in experiments.  However, 

E. coli strains expressing TcpR alone and TcpE alone were previously built and frozen in 

glycerol stocks.  Sequencing experiments confirmed these strains contained plasmids 

carrying the wildtype genes. 

 

Immunoblotting to Predict Interactions Among IM Proteins within V. cholerae’s 

TCP Biogenesis Apparatus 

 

SDS-PAGE protein immunoblotting was used to detect when proteins were stably 

expressed in E. coli.  To make samples for the protein gel, liquid cultures of the E. coli 

―co-expression strains‖ -- strains genetically engineered to co-express IM TCP proteins in 

groups of two or three – and of the relevant controls were prepared.  Portions of isolated 

E. coli colonies transformed with each pair of co-expression vectors were removed from 

the antibiotic selection plates and mixed with 5mL LB broth containing 5µL 

chloramphenicol and 5µL ampicillin.  Varying concentrations (0%, 0.02%, and/or 0.1%) 

of arabinose were added to the liquid cultures of each co-expression strain.  This helped 

determine at what concentration arabinose increased protein expression from the 

plasmids‘ arabinose-inducible promoters.  Liquid E. coli cultures were incubated on a 



rotating test tube rack at 37°C overnight, while V. cholerae cultures were incubated at 

30°C overnight.  For each co-expression strain, 500µL of liquid culture was centrifuged 

at 14,000 rpm for 2 minutes and cell pellets were re-suspended in 200µL 2X SDS protein 

sample buffer (composed of 0.5mL 1% bromophenol blue, 1mL beta-mercaptoethanol, 

6mL 10% SDS, 2.5mL 4X upper buffer [6.06 gm Tris base and 4mL 10% SDS with pH 

adjusted to 6.8 and volume adjusted to 100mL with dH20], 4mL glycerol, and 6mL 

dH20).  Samples were boiled for 10 minutes and 30µL of each sample was loaded on a 

12.5% acrylamide gel.  Gel electrophoresis was used to separate proteins from the cell 

lysates of each co-expression strain.  Proteins were transferred to a nitrocellulose 

membrane in 1X transfer buffer (composed of 100mL 10X transfer buffer [30.3 gm 

0.25M Tris base and 0.144 gm glycine with volume adjusted to 1L with dH20], 200mL 

MeOH, and 700mL dH20 with volume adjusted to 1L) at 200V for one hour.  Qiagen‘s 

anti-His antibody was used to detect TcpE and TcpR since they are fused to a 6-Histidine 

tag.  Anti-TcpT and anti-TcpD polyclonal antibodies directly recognized these proteins.  

Overall, protein immunoblots were used to predict interactions among IM proteins within 

the TCP biogenesis appartus. 



Results 
 

 

Based on previous experimental results, this paper makes the following 

predictions about the stability of IM proteins required for TCP biogenesis when 

expressed in E. coli:  (1) all proteins, except TcpR, will be stable alone, (2) any pair of 

proteins (TcpR-TcpT, TcpR-TcpE, TcpT-TcpE, TcpR-TcpD, TcpE-TcpD, TcpT-TcpD) 

will not be stable, and (3) two triplets of proteins (TcpD-TcpR-TcpT and TcpE-TcpR-

TcpT) will be stably expressed.  These predictions closely reflect the known IM protein 

interactions within E. coli‘s BFP biogenesis machinery and account for preliminary 

experimental results in V. cholerae.  

 

Sequencing Results for tcp Genes on pAJ1-pAJ5 

 

Due to time constraints, E. coli strains containing the co-expression vectors in 

Figures 7 & 8 were built before the tcp genes on the plasmids were sequenced.  

Eventually, however, the sequencing results (summarized in Table 1) helped to explain 

some unexpected findings and unveiled mutants that are valuable for future studies.  

Results concluded the tcpD and tcpT sequences of pAJ2, as well as the tcpE and tcpT 

sequences of pAJ4 were all correct.  PAJ1 and pAJ5, however, were found to carry 

mutations useful to study.  For instance, the mutated tcpD gene on pAJ1 results in a175 

amino acid long truncated TcpD that is missing 103 amino acids from its C-terminus.  

Although this truncated protein contains the TcpD antibody binding region, it cannot be 

detected on a protein immunoblot.  Moreover, the mutated tcpT gene on pAJ5 changes 

the fourth cysteine in TcpT‘s tetra-cysteine bridge to serine.  This mutation is especially 

valuable to investigate further because the tetra-cysteine bridge is believed to be critical 



for TcpT to function properly as an ATPase.  Lastly, the sequencing reaction for tcpD 

and tcpE on pAJ3 was not successful and must be repeated.   

 

Protein Stability Analysis via Immunoblotting to Predict IM Protein Interactions 

Within TCP Biogenesis Apparatus 

 

Only protein immunoblots were used to detect stable TCP proteins because 

Coomassie-staining techniques were not specific enough to detect the desired proteins 

among total cell proteins.  The top of Figure 10 shows an anti-His protein immunoblot to 

detect TcpR which carries a 6X-His tag.  The positive control for TcpR is the dark band 

in the ∆R + R lane which proves the plasmid carrying tcpR complements the ∆R deletion 

strain of V. cholerae.  TcpR can be seen in the pAJ2 + TcpR lane in which the three 

proteins TcpD, TcpT, and TcpR -- predicted to form a stable IM platform – are 

expressed.  Detection of an at least partially stabilized TcpR in the presence of TcpD and 

TcpT is one major novel finding of this paper.  The anti-His protein immunoblot does not 

suggest, however, how the stability of TcpR in the presence of TcpD and TcpT compares 

with the stability of TcpR in wildtype V. cholerae because the wildtype strain was not run 

as a control.  Surprisingly, TcpR appears very faintly in the pAJ1 + TcpR lane in which 

TcpD and TcpR are expressed.  This is unexpected because previous experiments have 

consistently shown that when wildtype TcpD and TcpR are co-expressed, TcpR cannot 

be detected on a protein immunoblot.  This apparent discrepancy is resolved by 

sequencing results showing the TcpD expressed by pAJ1 is a largely truncated protein.  

Apparently, this truncated TcpD is in a conformation, different from the wildtype TcpD, 

that partially stabilizes TcpR.  So, some region within the first 175 amino acids of TcpD 

is important in stabilizing TcpR. 



The bottom of Figure 10 is an anti-TcpD protein immunoblot of the same 

membrane as above after stripping and re-probing with antibody.  Although there is no 

positive control, TcpD is represented by the lowest band on the membrane.  As shown, 

TcpD is stable in the pAJ2 and pAJ2 + R lanes when induced with 0.02% and 0.1% 

arabinose.  The arabinose concentration of 0.02% is more effective in enhancing the 

expression of TcpD from the pBAD33 vector than 0.1% since the band is darker at this 

lower concentration.  Interestingly, TcpD does not appear in the pAJ1 or pAJ1 + R lanes.  

Sequencing results again explain the unexpected finding that even though it still contains 

the TcpD antibody-binding region, the largely truncated TcpD cannot be detected on a 

protein immunoblot.  This observation again suggests the truncated protein is in a 

conformation different from that of wildtype TcpD -- which blocks or hides the site 

where TcpD antibody binds. 

The anti-His protein immunoblot in Figure 11 should visualize TcpR and TcpE 

which both carry identifying 6X-His tags.  All of the plasmids used were induced with 

the ideal arabinose concentration of 0.02%.  For some unknown reason, the wildtype V. 

cholerae (―0395‖) strain failed as a positive control because TcpR and TcpE cannot be 

seen in this lane.  While the dark band in the ∆R + R lane can serve as a positive control 

for TcpR, no positive control exists for TcpE.  The lanes for pEF, pAJ4, and pAJ5 – all of 

which carry TcpE – do not share a unique band.  Therefore, only the stability of TcpR 

can be addressed on this membrane.  TcpR is seen in the pAJ4 + TcpR lane in which the 

three proteins TcpE, TcpT, and TcpR – also predicted to form a stable IM platform – are 

expressed.  Detection of an at least partially stabilized TcpR in the presence of TcpE and 

TcpT is the other major novel finding of this paper.  Surprisingly, TcpR appears even 



more stable in the pAJ5 + R lane in which only TcpT and TcpR are expressed.  This 

observation contradicts previous experimental results that demonstrate when wildtype 

TcpT and TcpR are co-expressed, neither can be detected on a protein immunoblot.  

However, the apparent discrepancy can be resolved by sequencing results showing the 

TcpT expressed by pAJ5 has a mutation within its tetra-cysteine bridge, believed to be 

critical for proper ATPase functioning.  This suggests that the mutated TcpT is in a 

conformation, distinct from wildtype TcpT, that is able to stabilize TcpR.  Clearly, 

TcpT‘s tetra-cysteine bridge must be very important since the mutated TcpT differed 

from wildtype by only a single amino acid.  Of note, TcpR can no longer be detected in 

the pAJ2 + R lane as it was in the top of Figure 10.  This is believed to have occurred 

because a ‗negative‘ pAJ2 colony was accidentally used – that is, a colony which took up 

the plasmid, but without the correctly inserted tcpD and tcpT genes.  

Figure 12 is an anti-TcpT blot.  As in Figure 10, all of the represented plasmids 

were induced with the ideal arabinose concentration of 0.02%.  Moreover, the wildtype 

V. cholerae (0395) strain again failed as a positive control because TcpT cannot be 

detected in this lane.  Based on band position, however, TcpT is almost certainly 

represented by the highest band on the membrane.  So, TcpT is detectable in the pAJ4 

and pAJ4 + R lanes.  Interestingly, TcpT appears even more stable in the pAJ5 and pAJ5 

+ R lanes.  As previously mentioned, this observation conflicts with past data showing 

that wildtype TcpT is not stable when expressed with wildtype TcpR and that TcpT 

degrades in the presence of TcpR-PhoA.  This conflict is also resolved by acknowledging 

the TcpT expressed by pAJ5 is mutated within its tetra-cysteine bridge.  Apparently, the 

mutated TcpT‘s single amino acid change prevents wildtype TcpR from inducing a 



conformational change in this protein which, in turn, renders it more susceptible to 

digestion by proteases. 

 Overall, these experimental results paint a partial, yet very intricate picture.  This 

paper‘s novel findings suggest that TcpD and TcpT together, as well as TcpE and TcpT 

together can at least partially stabilize TcpR.  Results would likely show that TcpD and 

TcpE can each stabilize the TcpR-TcpT interaction if the membranes in Figures 10 and 

11 were probed with ant-TcpT antibody to confirm the presence of TcpT along with 

TcpR.  So, the data seems to suggest that TcpD-TcpR-TcpT and TcpE-TcpR-TcpT can -- 

in fact -- form stable IM platforms, although no combination of all three proteins was 

successfully detected on protein immunoblots presented in this paper.  With TcpD-TcpR-

TcpT (pAJ2 + R) co-expression, TcpT was not detected because the membrane was not 

re-stripped and probed with anti-TcpT antibody.  This could, however, easily be done.  

With TcpE-TcpR-TcpT (pAJ4 + R) co-expression, TcpE could not be detected for some 

reason.  So, further experiments with reliable controls are critical to prove that TcpD-

TcpR-TcpT and TcpE-TcpR-TcpT are stably expressed as triplets and indeed represent 

the smallest combinations of proteins required to form a stable IM platform within the 

TCP biogenesis apparatus.  



Discussion 
 

 

Interpreting Experimental Results 

 

While many research efforts are aimed at studying the diverse functions of TCP 

and other type IV pili, little is understood about how they are assembled.  The goal of this 

project was to help elucidate the structure of proteins required for TCP biogenesis – 

specifically, which proteins can form a stable IM platform.  Based on the methods used, 

experimental results did not offer direct biochemical evidence of protein interactions— 

which could be obtained through pull-down, co-immunoprecipitation, bacterial two-

hybrid, or cross-linking studies.  Instead, this project used protein immunoblotting to 

analyze protein stability and help determine which IM proteins required for TCP 

biogenesis are likely to physically interact.  The integrity of this analysis rests on the 

belief that patterns of protein stability are useful predictors of protein-protein interactions.  

That is, analysis of experimental results relies on the following premises:  (1) the TCP 

biogenesis apparatus assembles in a proteolytic environment and (2) when co-expressed, 

the proper arrangement of proteins within the TCP biogenesis apparatus will form a 

stable complex, protected from protease degradation.  Consider the following example:  

when expressed in E. coli, TcpT is stable alone, unstable in the presence of TcpR, and 

appears to be stable in the presence of both TcpR and TcpE.  This differential stability, as 

detected via protein immunoblotting, suggests that TcpT and TcpR interact, but TcpR 

induces a conformational change in TcpT that renders it susceptible to protease 

degradation.  So, the TcpT-TcpR interaction is not stable in isolation.  Furthermore, the 

data suggest that TcpE can stabilize the TcpT-TcpR interaction and that TcpE-TcpT-

TcpR form a stable IM platform within V. cholerae‘s TCP biogenesis apparatus.  The 



validity of this type of analysis -- based on detecting patterns of protein stability on 

immunoblots-- has been confirmed by experiments conducted with E. coli‘s BFP 

biogenesis machinery and V. cholerae‘s EPS T2S system which have accurately 

predicted protein-protein interactions (Ramer et al., 2002). 

 

Future Directions & Research Implications 

 

Many steps of the experimental design must be repeated to provide further 

support that TcpE-TcpR-TcpT and TcpD-TcpR-TcpT are the smallest combinations of 

protein needed to form a stable IM platform within the TCP biogenesis apparatus.  First, 

E. coli co-expression strains must be re-built to carry plasmids with correctly sequenced 

tcp genes that express wildtype proteins and complement their respective tcp deletion 

strains of V. cholerae.  Then, wildtype TcpD, TcpE, TcpR, and TcpT must be co-

expressed in all combinations of two and three in E. coli.  Protein immunoblotting of cell 

lysates can be used to detect which IM Tcp proteins are stably expressed E. coli.  

Collectively, protein immunoblots will test the stability of each IM Tcp protein in the 

presence of all possible combinations of the remaining three IM proteins required for 

TCP biogenesis.  To support the notion that three proteins are indeed the minimal 

requirements for stable platform assembly, evidence must show that no pair of IM Tcp 

proteins is stable together.  In addition, subcellular fractionation studies can confirm that 

stable IM Tcp proteins detected via immunoblotting are indeed assembling within and 

localizing to the IM – as opposed to the cytoplasm, periplasm, or OM.  

Furthermore, TcpD, TcpE, TcpR, and TcpT can be co-expressed in all pairs and 

groups of three in a ∆tcpP strain of V. cholerae.  The tcp operon is essentially turned off 

in the ∆tcpP strain of V. cholerae due to the absence of TcpP, a positive regulator of the 



tcp operon.  This experiment will reveal whether the results obtained in E. coli can be 

mimicked in V. cholerae, the natural cellular environment for assembly of the TCP 

biogenesis apparatus.  Lastly, as previously mentioned, any protein-protein interactions 

predicted by stability patterns on protein immunoblots must ultimately be confirmed by 

experiments proving direct biochemical interaction, such as bacterial two-hybrid and 

metal-affinity pull-down studies.   

Overall, understanding the intricate structure of proteins needed for TCP 

biogenesis may provide clues as to how TCP forms & functions to cause cholera.  

Discovering how TCP forms may lead to breakthrough methods for disrupting pilus 

assembly.  That is, each discovery of a novel protein-protein interaction required for TCP 

assembly represents a potential target for antibiotic development or drug therapy.  One 

therapeutic intervention that seems especially promising is a drug that could prevent both 

the secretion of virulence factors and colonization by pathogenic bacteria by 

simultaneously interfering with type IV pilus biogenesis and type II secretion pathways.  

This type of inhibitor could prevent infections by a wide range of pathogenic bacteria and 

provide an alternative to antibiotic use.  Finally, the mechanism of TCP biogenesis may 

serve as a useful model for studying type II protein secretion and DNA uptake in bacteria 

since the proteins involved in these processes share extensive sequence, structural, and 

functional homology.  
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Fig. 1:  Current working model for TCP biogenesis apparatus. 
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Fig. 2: The tcp operon; V. cholerae mutants with single deletions of any gene within 

the tcp operon, except tcpF, fail to make TCP. 
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Fig. 3:  Predicted IM protein structure of a) TCP in wildtype V. cholerae (0395) and 

b) BFP in wildtype E. coli (BL21). 
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Fig. 4:  TcpR is not stable alone, but becomes stable and properly localizes to the IM 

when fused to PhoA. 
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Fig. 5:  Predicted models for stable IM platforms in V. cholerae. 
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Fig. 6:  Plasmids pAJ1-pAJ5 showing inserted tcp genes and restriction sites used 

for genetic engineering. 
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Fig. 7:  Plasmid pairs used to co-express 2 V. cholerae IM Tcp proteins in E. coli. 
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Fig. 8:  Plasmids pairs used to co-express 3 V. cholerae IM Tcp proteins in E. coli. 

 

 



 
Figure 9:  pBAD33 vector map displaying two Nhe restriction sites -- located at 2372 

bases and within the MCS at 4657 bases. 
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Fig. 19:  Top:  Anti-His blot to visualize TcpR; Bottom:  Anti-TcpD blot of same 

membrane after stripping.  (Subscripts “un,” “0.02,” and “0.1” refer to 0%, 0.02%, 

and 0.1% concentrations of arabinose used to induce the engineered plasmids’ 

arabinose-inducible promoters) 

 

 
Fig. 20:  Anti-His blot to visualize TcpR and TcpE. 
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Fig. 21:  Anti-TcpT blot. 

 

 

 

Construct Sequencing Results 

pAJ1 A frame-shift mutation creates a 175 amino acid truncated 

TcpD (103 aa missing from C-terminus).  

pAJ2 Both tcpT and tcpD sequences are correct. 

pAJ3 Needs to be sequenced. 

pAJ4 Both tcpT and tcpE sequences are correct. 

pAJ5 A missense mutation in tcpT results in a change from 

cysteine to serine at amino acid 406. 
Table 1:  Summary of automated DNA sequencing results for pAJ1-pAJ5. 
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Appendix A 
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Fig. 1:  DNA gel showing pEF digested with the restriction enzymes Nhe and Kpn, 

as well as pBAD33 digested with Nhe and Xba; reveals Nhe restriction site is not 

unique to MCS of these vectors. 
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Fig. 2:  DNA gel showing pBAD33 digested with Nhe and Kpn; confirms Nhe 

restriction site is not unique to the MCS. 
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Fig. 3: DNA gel showing pBAD33 & pEF digested with Nhe alone for 10, 30, 60, & 

180 minutes; 10 minutes is only time interval at which some vector is cut only once 

at the Nhe restriction site within the MCS. 
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Fig. 4:  Colony PCR results showing “positive” pAJ1 & pAJ2 colonies designated by 

asterisks above their lanes.  Primers were designed to amplify the full-length tcpD 

gene from pAJ1, while the 3’ end of tcpT through the 5’ end of tcpD from pAJ2 

(explaining higher band from positive pAJ2 colony versus positive tcpD control and 

positive pAJ1 colonies). 
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Fig. 5:  Colony PCR results showing “positive” pAJ3 colonies designated by 

asterisks above their lanes.  Primers were designed to amplify the full-length tcpD 

gene from pAJ3. 
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Fig. 6:  Colony PCR results showing “positive” pAJ4 colonies designated by 

asterisks above their lanes.  Primers were designed to amplify the full-length tcpT 

gene from pAJ4. 
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Fig. 7:  Colony PCR results showing “positive” pAJ5 colonies designated by 

asterisks above their lanes.  Primers were designed to amplify the full-length tcpT 

gene from pAJ5. 
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