
On LTE Security: Closing the Gap

Between Standards and Implementation

A Thesis submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment for the requirements for the

Degree of Master of Science

by

Nicholas DeMarinis

ndemarinis@wpi.edu

APPROVED:

Prof. Alexander M. Wyglinski, alexw@wpi.edu

Prof. Hugh C. Lauer, lauer@wpi.edu

Prof. Craig A. Shue, cshue@wpi.edu

Abstract

Modern cellular networks including LTE (Long Term Evolution) and the evolving LTE-

Advanced provide high-speed and high-capacity data services for mobile users. As we become

more reliant on wireless connectivity, the security of voice and data transmissions on the

network becomes increasingly important. While the LTE network standards provide strict

security guidelines, these requirements may not be completely followed when LTE networks

are deployed in practice. This project provides a method for improving the security of LTE

networks by 1) characterizing a gap between security requirements defined in the standards

and practical implementations, 2) designing a language to express the encoding formats

of one of LTE’s network-layer protocols, 3) developing a compiler to translate a protocol

description in our language into an implementation, and 4) providing recommendations on

lessons learned during development of the language and compiler to support development

of future protocols that employ formal representations. In this way, our work demonstrates

how a formal language can be utilized to represent a cellular network protocol and serves

as an example for further research on how adding formalism to network standards can help

ensure that the security goals defined in the standards can be upheld in an implementation.

i

Table of Contents

Abstract . i

Table of Contents . ii

List of Figures . iv

List of Tables . v

1 Introduction . 1

1.1 Motivation . 1

1.2 Research contributions . 3

1.3 Thesis Structure . 4

2 Background . 5

2.1 Brief History of Cellular Networks . 5

2.2 3GPP Standardization Process . 7

2.3 Overview of Cellular Network Architectures 9

2.4 What are the security threats to a cellular network? 10

2.4.1 Early Security Goals: GSM Networks 10

2.4.2 External Threats: Malicious Base Stations 11

2.4.3 Insider Threats: Compromised User Equipment 12

2.4.4 Compromised Base Stations . 13

2.5 Overview of LTE Architecture . 16

2.5.1 Fundamental Components . 16

2.5.2 Key Features . 17

2.6 Implementation-based Security Threats . 18

2.6.1 Case Studies: SMTP and TLS . 20

2.6.2 Standards vs. Implementation: The Knowledge Gap 21

2.7 Chapter Summary . 23

3 Methods . 24

3.1 Objective 1: Identify a protocol . 24

3.2 Objective 2: Designing a language to represent NAS 25

3.3 Objective 3: Recommendations for future protocols 25

4 Language design and implementation . 27

4.1 Overview of NAS protocol . 27

4.1.1 Message structure . 27

4.1.2 Encoding Formats . 28

4.2 Language design . 30

ii

4.2.1 Key Features . 30

4.2.2 Packets . 31

4.2.3 Types . 32

4.3 Compiler design and testing . 34

4.4 Chapter summary . 37

5 Recommendations on protocol designs . 38

5.1 Ambiguity in encoding descriptions . 38

5.2 Disparate standards documents . 39

5.3 Inheritance from other network standards . 40

5.4 Chapter summary: Recommendations for reducing ambiguity 40

6 Discussion and Future Work . 42

6.1 Research contributions . 42

6.2 Future work . 42

6.3 Final discussion . 43

References . 44

Appendix A: Project source code . 48

iii

List of Figures

1 3GPP Project Coordination Groups . 8

2 Generic cellular network architecture . 9

3 Example of macrocell and femtocell . 14

4 LTE logical architecture diagram . 16

5 Conceptual map of distance between cellular network standards and physical

implementations. 22

6 An example NAS message. 28

7 Example NAS message as specified in 3GPP standard TS 24.301. 29

8 An example packet encoding . 32

9 Compiler architecture . 35

10 Example generated class based on a packet definition 36

11 Example decoding of generated Authentication Reject message 37

12 Listing of generated Attach Reject messages 37

13 Excerpt from TS 24.007 on usage of tags, or “Information Element Identifiers”

in network-layer messages. 39

iv

List of Tables

1 Comparison of 3GPP-family cellular network standards. 7

2 Example NAS messages. 28

3 NAS message encoding formats . 30

v

1 Introduction

1.1 Motivation

Cellular networks provide vital communication services for an increasing number of users

around the world. According to the International Telecommunications Union (ITU), the

number of cellular network subscriptions has reached 7 billion in 2014 [1]. In developing

countries, the number of cellular network subscriptions per capita, or “penetration rate,” has

reached 90%, compared to 121% in developing countries, where many users have multiple

subscriptions. Thus, cellular networks are responsible for connecting these users together and

providing access to global resources like the Internet. To meet the increasing demand for

connectivity, wireless providers have developed new standards for allowing for higher network

capacity and faster data rates. The current leading standards for cellular communications

are LTE, or Long Term Evolution, and the evolving LTE-Advanced, which are developed by

the Third Generation Partnership Project (3GPP) to meet the design goals set by the ITU

for the fourth generation of wireless networks. LTE was designed to provide a significantly

more advanced network architecture than its predecessors, such that it can be extended as

cellular technologies evolve and as our population grows.

As we become more reliant on wireless connectivity, the security of cellular network

traffic becomes increasingly important. Early network generations like GSM (colloquially

known as “2G”) were designed to provide confidentiality against passive eavesdroppers and

to verify subscribers’ authenticity for billing purposes. However, it was discovered that this

threat model was too limited: GSM’s architecture was designed with the assumption that

all base stations were trusted devices. This allowed an outside attacker to set up a false (or

“rogue”) base station to accept users’ connections. Using such a device, an attacker could

send control messages to the connected devices to perform actions like disabling encryption

of traffic, forging messages, or denial-of-service (DoS) attacks against users connected to the

base station.

As later standards corrected GSM’s vulnerabilities, the threat model continued to evolve.

UMTS (known as “3G”), corrected the architectural vulnerability that made GSM vulner-

able to outside attackers by using stronger authentication mechanisms to prevent outside

devices from impersonating base stations. However, a more recent class of vulnerabilities

evokes a similar threat from inside the network. An increasing trend in cellular networks is

the deployment of small base stations to users in poor service or in areas of high network

congestion [2]. Notably, these devices, often called “femtocells,” are designed for deployment

1

in a user’s home or business, rather than the physically secure environment of a traditional

base station. This difference in physical security has enabled researchers to reverse-engineer

and compromise femtocell devices. Analyses conducted by DePerry et al. [3] and Borgaonkar

et al. [4] demonstrated various physical and remote attacks to gain root access on femtocell

devices using by exploiting relatively weak security measures. Once in control of the a fem-

tocell, the authors were able to intercept and forge certain traffic between connected devices

and the core network and hypothesized further attacks on the cellular network’s core to deny

availability or perform large-scale surveillance. Most critically, they demonstrated that these

devices are insecure by design, as network standards define base stations as trusted entities,

while commercial femtocell implementations are so easy to compromise with physical access.

Even though the 3GPP standards for femtocells require that devices should be physically

secure, this requirement does not hold in practice and thus undermines the security of the

network.

This exemplifies a knowledge gap between the organization creating the standards and

the developers that implement them. While the LTE standards developed by the 3GPP may

be designed to provide a more secure architecture, the software and hardware that implement

the standards may not implement them in such a way as to guarantee these properties. Thus,

a developer’s implementation of a protocol may deviate from the standards; for example,

1) the developer may take freedoms on parts of the standard that are not completely specified,

2) the developer’s interpretation of the specification may not match the standards body’s

interpretation, or 3) the developer may remove or add a feature (eg. a backdoor) that

differs from the standard. In a security-critical application, these differences may lead to

unintended vulnerabilities.

In this way, the attacks on femtocells described above raise questions on the security

practices in other cellular network hardware implementations, such as large-scale base sta-

tions or core network components. Since these devices are typically produced in a very

closed environment that includes many contracts and non-disclosure agreements, little open

research has been conducted to audit the security of cellular network hardware or how it is

configured and used in practice. Thus, how do we know that network operators are actually

following the 3GPP’s security standards? We discuss this in Section 2.6.1 by drawing on

widely-deployed Internet standards like email (SMTP) and Transport Layer Security (TLS)

as case studies. Since both of these standards have many possible security configurations

in practice, similar to LTE, we can infer that LTE networks face similar implementation

challenges.

2

LTE was designed to provide a new, robust architecture that can scale as cellular tech-

nologies evolve, but it also inherits the same security challenges as its predecessors. Notably,

LTE emphasizes network heterogeneity, or a reliance on various small base stations, which

research on the practical security of femtocells demonstrates is a serious security threat.

More critically, however, are the potential gaps between the standards and implementation—

similar to all network standards—that may compromise the network’s security despite its

robust design.

Therefore, our goal is to investigate a way to help close this gap between standards and

implementation to help ensure that the security goals intended in the standards are actually

implemented in practice. Some protocol standards attempt this by describing a protocol

using a formal language specification, which can then be used to generate an implemen-

tation that matches the standard. While this is true for some LTE specifications, certain

protocols do not include formal representations, which may make them particularly open to

implementation vulnerabilities.

1.2 Research contributions

In this project, we focus on just one protocol in LTE’s network standard, namely the Non-

Access Stratum (NAS) protocol, which is responsible for some of the components of LTE’s

authentication procedures. We develop a language for expressing the protocol’s encoding

based on the standard in order to demonstrate one example of closing the gap between its

specification in the standard and possible implementations. To facilitate this, we

1. Characterize the history of LTE’s security goals, related attacks, and how it led to the

LTE’s current requirements and threat model

2. Identify the NAS protocol as a specific point in LTE’s architecture that could introduce

vulnerabilities

3. Develop a language to express the NAS protocol’s encoding at a high level and translate

this representation into an encoding for its message formats, which represents one

example of connecting the 3GPP specification of the protocol with an implementation,

and

4. Provide recommendations based on lessons learned from creating the language on how

to develop future protocol designs that can be easily represented as a language

3

We hope that this work can help shape future protocol designs to help promote secure

implementations of network standards. We conclude with a discussion of future work to

extend the language to support more robust verification of implementations or as a starting

point for a testbed to identify potential protocol vulnerabilities.

1.3 Thesis Structure

The remainder of this document is organized as follows: Section 2 provides an overview

of security in cellular networks and discusses the gap between standards and specification.

Section 3 outlines our design goals and methods that led to the implementation of a language

to represent the NAS protocol. Section 4 provides an overview of the NAS protocol and

presents our language design which can represent it. Section 5 provides our recommendations

for future protocol designs to facilitate implementation as a language based on lessons learned

during our implementation. Finally, Section 6 summarizes our contributions and outlines

future work in using languages to improve security in LTE.

4

2 Background

This section outlines the challenges inherent to the design of cellular network architec-

tures that make them difficult to secure. In doing so, this section provides background on

the relevant history of cellular networks, and an overview of their major architectural com-

ponents. From there, we outline the major security goals of an LTE network and discuss

related work in identifying threats to cellular network architectures. Finally, we discuss the

difficulties in creating a verifiably secure network with respect to the standards and present

methods of dealing with this issue.

2.1 Brief History of Cellular Networks

Current cellular networks are the work of many decades of evolving wireless technologies.

These new technologies have been incorporated into standards released to help unify their

deployment across many network providers and countries around the world. Of the many

current standards, this section will discuss the family of standards that led to the develop-

ment of Long Term Evolution, as much of its architecture and security goals are inspired by

its predecessors.

One of the first modern standards for digital telephony was GSM, or the Global System

for Mobile Communications, was introduced in Europe in 1991 by the European Telecom-

munications Standards Institute (ETSI). The GSM standard intended to provide a unified,

global standard for mobile communications; it was designed to replace earlier mobile network

standards that used analog technologies, which were termed as the “first generation” of cel-

lular networks. In contrast, GSM described a standard for global voice communications and

represents the “second generation” of networks, popularly known as 2G. GSM was quickly

adopted throughout Europe and the world, reaching 100 million subscribers in almost 100

countries by 1998 [5]. Like traditional telephone systems and 1G networks, GSM was de-

signed for voice traffic; it utilized a circuit-switched network to route calls between devices.

In 2000, ETSI introduced the General Packet Radio Service (GPRS) to provide data services

for GSM networks. GPRS introduced a packet-switched network deployed alongside GSM’s

circuit-switched network to route data traffic to the public Internet. Initial deployments did

not provide much throughput, only reaching downlink speeds around 40Kbps due to the

need to compete with the circuit-switched voice traffic [6]. This was improved in 2002 with

the development of the third generation of mobile networks, or 3G.

5

The successor to GSM in this space was termed the Universal Mobile Telecommunications

System (UMTS), which built on GSM’s architecture but aimed to provide higher data rates

by using new frequency bands, encoding methods, and by emphasizing the importance of

data traffic on the network [7]. UMTS was developed by a group of representatives from

telecommunications companies in a number of countries called the 3GPP, or 3rd Generation

Partnership Project.

While UMTS met its goal of enhanced data rates, the wireless community saw the need

for a new architecture to allow for future expansion. Thus, the 3GPP developed Long Term

Evolution (LTE) was developed as part of the fourth generation of network architectures.

As its name suggests, a key goal behind LTE’s design was to provide an architecture that

could support future evolution of cellular technologies, like higher data rates and increased

capacity, while reducing the complexity of the network [8]. LTE uses an entirely packet-

switched architecture for both voice and data traffic in order to simplify the architecture

of its core network, called the Evolved Packet Core (EPC). To facilitate higher data rates,

LTE also uses more frequency bands and physical encoding schemes to increase its spectral

efficiency. This new architecture allowed for downlink speeds as high as 300Mbit/s and

uplink speeds up to 75Mbit/s, a notable improvement over previous standards.

While impressive, LTE is not marketed as a “4G network”, since it does not meet the

requirements defined for the term by the International Telecommunications Union (ITU),

which specifies a data rate of 1Gbit/s. To meet the requirements of a “true 4G” network,

the LTE standard was updated in 2011 under the name LTE-Advanced, which provides the

necessary physical layer changes to support the enhanced data rates [9].

A comparison of these various standards is shown in Table 1. Note that Table 1 and the

standards mentioned in this section represent only those most directly related to the evo-

lution of LTE. Other technologies common in the United States include the CDMA family

of networks, which derive from a “2G” standard based on Code Division Multiple Access

(CDMA). As technologies have evolved into the fourth generation of standards, LTE has

gained popularity over its competitors in other network families, making it the choice for

most carriers deploying “4G” technologies that previously used CDMA-based networks [8].

Examples of this in the United States include major carriers Verizon and Sprint, which pre-

viously relied on CDMA-based technologies, but are deploying LTE for their “4G” services.

Other US carriers including T-Mobile and AT&T provide wireless services using 3GPP-family

standards.

6

Table 1: Comparison of 3GPP-family cellular network standards.

Name Generation Networking type Peak data rate

Analog networks 1G Circuit-switched —

GSM 2G Circuit-switched —

GPRS 2.5G Packet-switched 56-114Kb/s

UMTS 3G Circuit and packet-switched 42Mb/s

LTE 4G LTE Packet-switched 300Mb/s

LTE-Advanced 4G Packet-switched 1Gb/s

2.2 3GPP Standardization Process

Any cellular networking standard describes a complex, distributed architecture that is

operated by many different carrier networks around the world. The process of developing

such a standard has many technical and regulatory challenges in order to balance the engi-

neering requirements of the network with practical and legal limitations. The standards for

GSM, UMTS, and LTE were developed and maintained by the 3GPP, an international orga-

nization made up of telecommunications corporations and national regulatory bodies. This

section briefly discusses the organization of the 3GPP and the process by which it develops

and maintains network standards.

Similar to the networks they create, the 3GPP has a complex organizational architecture.

At a high level, the 3GPP is composed of a series of Organizational Partners, or OPs,

which are groups of corporations and regulatory agencies in a specific country. Examples

of OPs include the European Telecommunications Standards Institute (ETSI) in Europe

and the Alliance for Telecommunications Industry Solutions (ATIS) in the United States.

OPs provide both technical expertise and input on the regulatory and security goals for its

specific country [10]. Each OP contains a number of member organizations—examples for

ATIS include corporations like Cisco, Sprint, Intel, Alcatel-Lucent, and regulatory bodies

like the Federal Communications Commission (FCC) and the Department of Commerce [11].

Members of these organizations are divided into Project Coordination Groups (PCGs)

and further divided into Technical Specification Groups (TSGs), which control specific stan-

dards documents on certain aspects of the network architecture. As an example, one PCG

manages the radio access network, or the specifications related to the network’s wireless

7

interfaces, and one specific TSG inside it manages the physical layer specifications. The

current makeup of PCGs and their corresponding TSGs is shown in Figure 1.

Figure 1: 3GPP Project Coordination Groups [10]

Each TSG has its own a set of elected officials, work items, and standards documents

for which it is responsible. Responsibilities for some specifications may be shared between

different groups [10]. Notably, only one group is dedicated to security aspects, which handles

architectural security requirements and develops the various encryption algorithms used

throughout the network.

To create a complete standard, the TSGs operate based on a larger “work plan” created

by the 3GPP as a whole, which provides milestones for releasing standards for deployment.

Since 2007, these milestones have included various “enhancements” to LTE, including LTE-

Advanced, which has contributed to the evolution of its architecture.

8

2.3 Overview of Cellular Network Architectures

While every cellular network standard has a different architecture, from a high level,

each type of network has the same set of fundamental components. The basic structure of a

cellular network is shown in Figure 2.

User Equipment

External
Networks

User Equipment

Core Network

Base Station

Base Station

Base Station

Access Network

Figure 2: Generic cellular network architecture

The major components of such a network are:

• User Equipment (UE): These devices represent any mobile device controlled by a

user or customer on the network (mobile phone, tablet, modem, etc.), also known as

“end hosts”. By definition, UEs are mobile devices and can move to different points

on the network. In general, each UE contains a unique identifier so that they can

be individually recognized by the network. On 3GPP-family networks, the each UE

contains a Subscriber Identity Module (SIM) card that securely stores these identifiers.

• Base Stations (BS): Base Stations provide the wireless interface between the UE and

the core network. They are responsible for radio resource control, which entails main-

taining connections to each UE in its range and allocating wireless channel resources

accordingly. As UE move between different base stations on the network, base sta-

tions are responsible for communicating with the core to update each UE’s connection

information in a process called a handover.

• Access Network: The access network represents the subset of the network that

comprises the components responsible for communicating over the air interface, or

radio links between the base stations and user equipment.

9

• Core network: The core network is the subset of the network responsible for managing

devices and routing information across the network. The core network often differenti-

ates between control-plane and user-plane traffic. Control-plane, or signalling, traffic

refers to the necessary protocols and messages for keeping track of devices, such as at-

taching new devices to a base station, managing handovers, or allocating IP addresses

for data connections. User-plane traffic refers to traffic users’ voice and data traffic,

which must be routed to other UE on the carrier’s network, or to an external gateway

to access another network like the Internet, other carriers’ wireless networks, or the

Public Switched Telephone Network (PSTN).

These major components are provided by different implementations in each network

standard, but with the same major roles. Section 2.5 describes these components in further

detail for an LTE network.

2.4 What are the security threats to a cellular network?

As cellular network technologies have evolved, so have their security requirements and

guarantees. This section outlines the security threats faced by cellular networks as a whole in

order to describe the security goals that affect LTE networks. Here, we discuss the relevant

history of the security goals in cellular networks to establish a basis for LTE’s security goals

and architecture.

2.4.1 Early Security Goals: GSM Networks

In early cellular networks like GSM, the term “security” involved two design goals: confi-

dentiality against unauthorized eavesdropping, and authenticating users on the network for

billing purposes. In early telephone systems, skilled users developed methods for accessing

certain network features, such as long-distance calling, by reverse engineering the network’s

routing protocols to subvert the fees associated with these features. This process, known

as “phone phreaking” [12], was possible because these networks provided no method for

authenticating subscribers, and instead relied on the obscurity and relative secrecy of the

routing protocol to enforce fees.

GSM was designed with the goal of identifying authorized devices when they attach

to the network [13]. Each GSM UE contains a SIM card, a trusted device that stores

an identifier unique to each subscriber called the International Mobile Subscriber Identity

(IMSI) and a pre-shared key, called K or Ki. When a UE attaches to the network, the UE

10

can be authenticated using a simple challenge-response protocol using a random challenge

sent from the core network and K as a shared secret. Once a device is authenticated, the core

network can create a session for the device to track its actions for billing and call routing.

Another important concern for GSM was the confidentiality of users’ voice traffic. Since

a wireless channel is inherently a broadcast medium, the designers added support for encryp-

tion at the physical layer to prevent traffic interception by an unauthorized third-party [14].

Thus, the initial standard allowed for encryption, which is called ciphering in 3GPP stan-

dards, using one of two algorithms named A5/1 and A5/2, which were stream ciphers de-

signed specifically for GSM to provide confidentiality at a very low implementation cost.

These ciphers used a pre-shared key derived from K [15]. The designs for these ciphers

were initially kept secret to prevent outside cryptanalysis, but they were eventually reverse-

engineered and subsequently broken [16]. Modern GSM networks use a new cipher named

AS/3, which is stronger than its predecessors and is also used in UMTS networks. Newer

3GPP standards on GSM and GPRS discourage the use of AS/1 and AS/2, though both are

still deployed in practice.

This type of security architecture shows that GSM was designed to protect against ex-

ternal threats: unauthorized devices without a valid IMSI for the network, and external

eavesdroppers.

2.4.2 External Threats: Malicious Base Stations

After GSM was released, this security model was challenged by a new external threat:

unauthorized base stations. While the GSM standard authenticates user equipment, it does

not provide any means of authenticating the network itself. Thus, a GSM UE has no way to

determine if the base station to which it is connecting actually belongs to a legitimate carrier

network. This allows for the deployment of malicious or “rogue” base stations, which can

accept connections from legitimate UEs. This was first demonstrated by Mulliner et al. in

2009 [17] and since replicated and simplified by many researchers.

Using such an attack, a rogue base station masquerading as the core network can intercept

a handset’s communications or spoof calls and SMS messages. Furthermore, since the GSM

standard allows the the base station to determine which encryption modes are used for

transmission, a rogue base station can entirely disable ciphering using the null encryption

algorithm A5/0, leaving the device’s traffic visible in the clear. In this way, a rogue base

station takes advantage of GSM’s inherent lack of network authentication to eavesdrop on

11

all of a UE’s transmissions, or enable eavesdropping by a third party [17]. This influenced

the development of subsequent network standards such as UMTS.

Indeed, this technique is often used for the purposes of “lawful interception.” Law en-

forcement agencies can purchase devices that can be deployed in areas of interest that act as

cellular base stations and passively eavesdrop on users’ communications [18, 19, 20]. These

devices, which are often called IMSI catchers, can eavesdrop on the device’s IMSI numbers

allowing for further tracking of the users who own the devices.

To address GSM’s architectural vulnerabilities, UMTS was designed with a new threat

model that did not assume all base stations were trusted devices. To do this, UMTS utilizes

a new authentication procedure that provides mutual authentication of the user equipment

and the core network. In this procedure, the UE must prove its identity to the core network

and vice versa, allowing the UE to determine if it is connected to the legitimate carrier

network.

This process, termed Authentication and Key Agreement (AKA), entails an extended

procedure which occurs when a UE connects, or “attaches,” to the network. The AKA

procedure verifies the authenticity of both the UE and the core network using a series of

challenges based on pre-shared keys [21, 13].

Notably, while UMTS did address the critical architectural vulnerability that allows for

such easy deployment of rogue base stations, it does not completely eliminate the threat.

GSM remains widely deployed throughout the world alongside other networks. Thus, many

attacks are still feasible on newer networks by forcing devices to “downgrade” to GSM,

thereby denying the availability of other, more secure, networks in a given area [13].

2.4.3 Insider Threats: Compromised User Equipment

The security threats previously discussed involved attacks from malicious devices from

outside a network. Another notable class of attacks involve insider threats, or trusted devices

that may be compromised by an attacker.

One type of attack targets the “baseband processor” on UE devices, which is a special-

purpose processor inside every mobile phone that controls the phone’s radio interface. The

baseband processor is usually a separate processor core running a separate program from the

device’s application processor, which is typically the only processor accessible to the user.

Notably, the baseband processor may be considered a trusted device on the network, as the

network operator may not expect it to be accessed by a malicious party.

12

Attacks on the baseband processor have been performed locally on UE devices by gaining

root access [22] or exploiting memory corruptions like buffer overflows [23]. In addition,

attacks deployed from rogue base stations have been performed using messages sent via

Short Message Service (SMS, often simply known as “text” messages) [17, 24, 25], that have

allowed attackers to disrupt UE devices. Notably, the SMS standard allows transmission of

various control messages, including over-the-air configuration updates, in addition to text

messages. A rogue base station can masquerade as the core network to spoof an SMS

message—possibly with a malicious payload. Since UE on a GSM network have no means

of authenticating messages from the core network, the UE implicitly trusts these forged

messages and executes any control commands they may include. In this manner, SMS-based

attacks have been performed on GSM networks to crash applications, or change device

settings without the user’s intervention [17].

Extensions to these SMS-based attacks have been hypothesized on a larger scale, includ-

ing attacks involving cellular botnets, or groups of devices compromised by similar vulnera-

bilities [26]. Such a botnet could be used to perform Denial of Service (DoS) attacks on the

network core, denying availability to a portion of the network [27].

2.4.4 Compromised Base Stations

More critically, recent changes to cellular network architectures have made the threat

of rogue base stations more prevalent. As cellular traffic increases throughout the world,

networks are increasingly deploying small base stations in their service areas. A network

made up of many different types of such base stations is called a heterogeneous network.

While traditional base stations are typically large towers built in an area controlled by the

carrier, small cells, termed micro-, pico-, and femtocells, have a much more limited range, but

can be deployed in areas too small for a larger base station. An example femtocell is shown

compared to a traditional base station, or “macrocell,” in Figure 3. A typical femtocell has

a range of less than 100 meters, much smaller than a traditional base station, but is available

at a low manufacturing cost [2, 28]. This provides a cost-effective for a carrier to increase

its network’s capacity.

Network operators often deploy small cells to users in order to provide cellular service

in homes or small businesses in areas of high network congestion or poor service [31]. To

connect with the rest of the carrier’s network, femtocells and other small cells use an IP

network like the Internet as a backhaul, usually via a consumer Internet connection.

13

(a) A macrocell, or traditional
base station. [29]

(b) A typical femtocell, a consumer de-
vice about the size of a home Internet
router. [30]

Figure 3: Example of macrocell and femtocell

The 3GPP standard TS33.320 provides security guidelines on femtocell devices [32]. Since

the devices connect to the cellular network from the Internet, an untrusted network, the stan-

dard includes requirements for authenticating femtocells and protecting the traffic between

them and the core network. For authentication, each femtocell must contain an authentica-

tion token or certificate, usually stored on a SIM card, which it uses to authenticate when

attaching to the network. Confidentiality and integrity are provided using IPSec, a protocol

layer that encrypts and authenticates packets at the network layer to provide end-to-end

security between two parties. In this case, the certificates are used to establish an IPSec

tunnel between the femtocell and the core network to protect sensitive core network traffic

from exposure over the public Internet. Notably, the standard also indicates that, similar to

traditional base stations, femtocells are “trusted environments,” in that they have a privi-

leged role in the network architecture and must remain secure from unauthorized tampering

with its hardware or software to avoid exposing this sensitive traffic.

From an architectural standpoint, femtocells serve the same role as a base station by

providing a radio interface for user equipment to the core network. However, femtocells

represent an important shift in the physical security of cellular base stations. Traditional base

stations are located in areas physically controlled by the network operator, while femtocells

are deployable anywhere and are not secure against physical tampering.

14

Indeed, researchers have reverse-engineered commercial femtocells on some networks to

analyze their security. DePerry et al. [3], demonstrated a series of attacks on mobile phones

after compromising a commercial femtocell from a CDMA network. Similar to reverse-

engineering techniques on small network devices like home routers, the authors found that

their device ran an embedded operating system, and they were able to gain root access on

the device using a debug interface. Once in control of the device, the authors were able to

perform a number of attacks against UE connected to their compromised femtocell, including

interception of voice and data traffic, recording of devices’ unique identifiers in a manner

similar to an IMSI catcher, and impersonation, or “cloning” of the devices whose identifiers

had been recorded. In [28], Borgaonkar et al. analyzed a commercial UMTS femtocell and

found a number of similar vulnerabilities that allowed the authors to gain root access on the

device. The authors were able to use the compromised femtocell to capture users’ confidential

subscriber identifiers, extract the femtocell’s cryptographic keys, and use the extracted keys

to intercept and decrypt voice and data traffic sent to the core network, clearly violating

the user privacy and confidentiality requirements set by TS33.320. In addition, the authors

were able to perform a DoS attack by forging certain messages called IMSI detach messages

to send to the core network, thereby denying network service to a targeted device.

Thus, attacks on femtocells become a means for man-in-the-middle attacks between user

devices and core networks. In addition, compromised femtocells are unique in that they

represent an insider threat: once compromised, a femtocell remains a trusted device, as

it already contains the pre-shared credentials needed to authenticate with the operator’s

network. This allows a malicious user to operate a rogue femtocell despite a UMTS or

LTE network’s mutual authentication requirements. Similarly, UE might still connect to

a femtocell even if it is compromised, as the UE will still be able to carry out its own

authentication procedure with the carrier network.

Similar to research on UE device security, attacks have been proposed involving botnets

of compromised base stations, or using base stations as a platform for attacking UE or the

core network. In [33], Bilogrevic et al. developed a remote exploit to gain root access to a

femtocell, hypothesizing that it could be used to propagate a malicious payload to build a

botnet of femtocells that could perform attacks. Similar hypotheses have been developed in

[34], [4], and [26] for creating and propagating a botnet of femtocells to carry out Distributed

Denial of Service (DDoS) attacks or large-scale interception of traffic.

In this way, a compromised femtocell or other base station poses a significant threat to

cellular network users and the network infrastructure itself. This is possible because femto-

15

UE Core Network

E-­‐UTRAN
(Radio Access Network)

External
Networks

(IP, PSTN, Etc.)

HSSMME

S-­‐GW P-­‐GW

eNodeB

EPC
(Evolved Packet Core)

Figure 4: LTE logical architectural diagram. Note that, like all cellular networks, an LTE
network is a large, distributed system—many instances of each component may exist on a
network.

cells change the threat model for a cellular network: unlike previous network architecture,

the base station is no longer a trusted entity, but one that can be controlled by an attacker.

While the 3GPP provides requirements for the securely deploying femtocells, analyses con-

ducted in [4] and [35] have demonstrated that these requirements do not hold true in practice.

The 3GPP has acknowledged these threats in its own security standards, noting the possible

implications if their requirements are not guaranteed [32].

2.5 Overview of LTE Architecture

2.5.1 Fundamental Components

While the LTE architecture contains many new components, some components and much

of its terminology is inherited from earlier standards. The logical components of an LTE

network are shown in Figure 4.

As discussed in Section 2.3, LTE’s network is divided into two main components, the

radio access network and the core network. The access network is named E-UTRAN, or

Evolved UTRAN, which stands for UMTS Terrestrial Access Network, and incorporates all

of the radio interface components. The packet-switched core network, which is built on the

Internet Protocol (IP), is part of the System Architecture Evolution (SAE) standard and is

called the Evolved Packet Core (EPC). Together, the SAE and EPC standards are termed

16

the Evolved Packet System (EPS) [36]. These terms are often used interchangeably to refer

to the core network.

E-UTRAN, the access network, has the following components:

• User Equipment (UE): UE represent any devices that is under the control of a user,

as described in Section 2.3.

• Evolved NodeB (eNodeB): An eNodeB is a base station in an LTE network and is

an enhanced version of a UMTS base station, known as a NodeB.

The core network has the following components [36]:

• Home Subscriber Server (HSS): The HSS is a database that stores subscriber infor-

mation for the carrier’s network, including each UE’s unique identifiers and pre-shared

keys. The HSS is responsible for generating security keys for LTE’s authentication

procedures and maintaining state regarding the MME to which each UE is connected.

• Mobility Management Entity (MME): The MME is responsible for handling de-

vice authentication and creation of sessions that track a UE’s location throughout the

network, which are termed “bearer contexts.”

• PDN Gateway (P-GW): The Packet Data Network (PDN) gateway is responsible

for allocating IP addresses to each UE as well as maintaining quality of service (QoS).

• Serving Gateway (S-GW): The Serving Gateway provides the link between the

LTE network and external networks (eg. the Internet). The S-GW is responsible for

maintaining a “mobility anchor” for each UE to ensure packets are routed properly as

each UE moves about the network.

2.5.2 Key Features

LTE has a number of design elements that distinguish it from previous networks from

a security perspective. In addition to its improvements at the physical and link-layers that

enable higher data rates and channel capacities, LTE has a number of architectural differences

with respect to UMTS that make it interesting from a security perspective:

• Flat, IP-based architecture: LTE employs an entirely IP-based architecture, com-

pared to the fully or partially circuit-switched architecture present in previous stan-

dards. In addition, LTE is advertised as a “flat” architecture, meaning that it has

fewer specialized devices compared to previous networks.

17

• Heterogeneous networks: One of LTE’s methods of increasing capacity is to deploy

many small base stations (called micro-, pico-, or femtocells) in order to distribute the

network load. These small network cells have a range of less than 100 meters and can

be small enough to be deployed in the home by a user.

• Enhanced security protocols: LTE’s security architecture has built on UMTS’s

mutual authentication procedures. LTE’s standards have added support for additional

authentication parameters, newer algorithms, and support for extending the algorithms

in the future.

• Interoperability: LTE exists in an ecosystem of many cellular network standards,

including UMTS, GSM, and other non-3GPP systems such as CDMA networks. In

addition to inheriting many standards and protocols from previous networks, the 3GPP

defines standards for how LTE should interoperate with these network technologies.

Moreover, since LTE is designed for long-term usage, it must be able to support future

enhancements to its network architecture as well.

2.6 Implementation-based Security Threats

Insider threats from compromised devices represent a significant threat to LTE’s archi-

tecture. In this section, we explore the practical implications of the of the security analyses

performed on femtocell devices in more detail to discuss security of cellular network hardware

implementations deployed in practice.

Most cellular hardware is produced in a closed environment: devices and their specifica-

tions are typically only available to trusted network operators after signing non-disclosure

agreements. For example, a cursory search for information on cellular network hardware on

the website for any major vendor will yield only promotional material without any detail

on how their products are implemented. One factor in this may be to protect the security

of their products through obscurity. This was noted by Golde et al. [4] in their femtocell

security analysis, stating that “telecommunication network security is traditionally based on

secrets,” an observation also echoed by Welte in [37].

This closed and secretive environment makes it difficult for external researchers to perform

security analyses on the devices that make up the core of a cellular network, as the hardware

is so inaccessible. Femtocells are also significant in that they are accessible by definition,

since they are designed for deployment to the general public. As of this writing, we are

18

unaware of any security audits in open literature performed on other components of modern

cellular network infrastructure.

In this way, research on femtocells provides unique insights into the security of production

hardware and how these hardware implementations may differ from the standards. Analyses

discussed in Sectionn 2.4.4 found poor security practices in commercially-available femtocell

devices—for example, open debug interfaces, unsigned firmware upgrade procedures, open

management interfaces for network services, and the use of unauthenticated control messages

from the core network. These provided vectors that enabled the authors to gain control of

the device, such as by uploading an altered firmware image.

This raises questions about the extent to which other core network hardware meets

the standards defined by the 3GPP to provide security. The vulnerabilities identified in

femtocells describe issues in the device’s configuration that violate the security 3GPP security

guidelines. But what if we extend this to consider vulnerabilities in the implementations for

the protocols used in the core network?

Consider, for example, LTE’s AKA procedure, which is used to authenticate devices

with the core network. The procedure mainly uses the Non-Access Stratum (NAS) protocol,

which is a binary message protocol defined between the UE and the MME (described further

in Section 4). The protocol has been well-studied, having been part of UMTS’s authenti-

cation procedure, and it has even been formally proven to guarantee mutual authentication

assuming that the required confidentiality and integrity properties are upheld [21]. When

evaluating the implementation, however, we may still need to consider the following ques-

tions:

• Does the protocol actually use integrity protection where specified? Does it verify

message authentication codes to reject invalid messages?

• Does the protocol accept messages from a UE before it has authenticated to the net-

work?

• Is encryption actually used where specified? Does the implementation use known weak

or deprecated encryption algorithms? How do we know?

• How are the packets in the protocol handled? Are they parsed in such a way to invite

exploits like buffer overflows that could cause the packet to be handled improperly?

These questions target the device’s implementation of the standard, rather than the

specification itself. While a given protocol implementation may operate successfully, just

19

like a femtocell may perform its role as a small base station, it may neglect certain security

requirements as defined by the standards. These make it insecure. We can find examples

of this by examining other widely-deployed protocols with security requirements that are

well-studied on the public Internet.

2.6.1 Case Studies: SMTP and TLS

Simple Mail Transport Protocol (SMTP), initially developed in the 1980s, is the de facto

standard for sending email messages. To deliver mail, the sender composes a message to

be sent from one mail server and accepted at the mail server of the intended recipient.

Since its introduction, the original standard (RFC 821 [38]) was developed, the protocol has

been extended to include richer message formats and many security measures to provide

confidentiality and integrity for messages during delivery and to authenticate the servers

responsible for sending mail. For example, the original protocol sent messages to other servers

in cleartext, allowing an eavesdropper to read the message. Since then, the standard has

been extended to support tunneling SMTP messages over Transport Layer Security (TLS)

to provide confidentiality and integrity protection when messages are transmitted. Notably,

TLS provides security for a point-to-point session—in this case, between mail servers or

between a client and their mail server, but TLS does not provide end-to-end security.

Just as many companies produce LTE network hardware, many different SMTP imple-

mentations exist, including open-source solutions like Postfix and sendmail, and commercial

closed-source implementations like Microsoft’s Exchange and IBM’s Lotus Notes. Again sim-

ilar to LTE’s architecture, there are many providers of email services to end-users, including

large Internet Service Providers to corporate networks.

Despite the many implementations and configurations of SMTP servers in the world,

SMTP is widely used in practice and is generally considered reliable. While SMTP can

reliably deliver mail, its support for security is not as dependable. Even though security

features like TLS have been standardized for many years and part of most SMTP server

implementations, it still not universally used in practice. In June of 2014, Google released a

dataset showing the proportion of email providers that used TLS for mail traffic with Google’s

servers [39]. When the data was released, only 50% of mail servers receiving outbound

traffic from Google supported TLS. Some of the organizations listed as not supporting TLS

were Internet Service Providers like Comcast and AOL. Since Google released the initial

dataset—which included the names of the providers not implementing TLS—the proportion

of providers using encryption has increased to 80%.

20

In this way, SMTP demonstrates a disparity between the standards, accepted best prac-

tice, and the various implementations of the protocol. Similar to SMTP, many LTE protocols

support optional cryptographic features like encryption or integrity protection. However, it

is unknown to what extent cellular network providers actually use these features or even

respect the cases where encryption is required by the standards.

TLS itself is a widely-used security protocol for providing confidentiality and integrity to

a number of applications, most notably web browsing and email. The initial standard was

released in 1995 as the Secure Sockets Layer (SSL) protocol and has been continually revised

to add new encryption algorithms for better security and address architectural vulnerabilities.

Thus, many versions of SSL and now TLS have been released and implemented by both clients

and servers for various applications that require security. Many implementations of TLS and

SSL exist in practice. Common examples include cryptographic libraries included with major

operating systems and browsers, such as OpenSSL in Linux, SChannel in Windows, and

SecureTransport in Mac OS X, as well as libraries built into major web browsers. In order

to maximize compatibility with older implementations, many of these implementations still

support outdated or deprecated versions of TLS, which has led to a number of widely-known

security vulnerabilities. As one example, a attack published in April 2014 named POODLE

exposed a vulnerability in many current versions of TLS by exploiting a mechanism that

allowed fallback to SSL version 3.0, an older variant of the standard with a longstanding

architectural vulnerability.

This demonstrates how practical usage of TLS differs from recommendations presented

in the network standards—even though security practices dictate the how a client or server

supporting TLS should be configured, a real-world implementation may use a different, less

secure configuration. Here, the challenge involves balancing the tradeoff of security vs. other

network requirements such as compatibility or performance.

This tradeoff exists in LTE as well and is readily apparent in the standards’ provisions

for allowing operators to define security policies on their network. However, the challenges

arises when reconciling these differing policies and implementations against the new need for

security against insider threats.

2.6.2 Standards vs. Implementation: The Knowledge Gap

Based on the previous security analyses of femtocell devices and observations of security

practices in other large systems, we can infer that the LTE core network is not without

implementation vulnerabilities. While the standards defined by the 3GPP may describe a

21

secure architecture, particular implementations may differ from the standard in ways that

do not adhere to the same security goals. This exemplifies a gap between the organization

creating the standards, the 3GPP, and the developers that implement them, as outlined in

Figure 5. In some cases, developers may take freedoms when implementing protocols that

are not clearly specified, or might misunderstand the specification.

Figure 5: Conceptual map of distance between cellular network standards and physical
implementations. Note that the lines suggest possible mappings of hardware vendors to
network operators. The actual mappings are proprietary and not generally released.

This leads to disparity between the standard developed by the 3GPP and a hardware

vendor’s implementation, which could introduce vulnerabilities in a security-critical appli-

cation. Since LTE hardware is produced by an number of vendors, each may have different

interpretations of the standards. Further, network operators may introduce further differ-

ences in their specific configurations of LTE hardware. Since many security policy decisions

are left to network operators (a decision partly due to legal policies of different countries),

this step adds another level of disparity between the standards and the LTE service provided

to subscribers. Similar to SMTP and TLS, as described previously, these disparities may

lead to a wide array of implementations that function reliably, but may not meet LTE’s

security requirements.

In the cases of SMTP and TLS, disparities between current standards and best practices

were introduced as their respective standards evolved to include new security features. While

LTE is marketed as a new network architecture, it inherits many of the physical components

and their security challenges from previous networks. This may introduce some of the same

22

challenges as networks are deployed in practice. Moreover, LTE is designed to interoperate

with its predecessors GSM and UMTS, as well as other, non-3GPP networks, which may

provide additional areas for vulnerabilities.

These practical challenges exemplify how the disparity between the standards and phys-

ical implementations of LTE networks may pose a security threat. Thus, a key challenge

to ensuring LTE’s security involves identifying a way to reduce the potential for introduc-

ing implementations that may differ from the standards in such a way that could introduce

vulnerabilities.

2.7 Chapter Summary

This chapter has provided an overview of the major security challenges in cellular net-

works, focusing on how they have led to LTE’s security goals. Specifically, insider threats

represent an emerging challenge to cellular network security, as the threat of compromised

devices like femtocells allow an attacker access to the network’s core, which was once consid-

ered a trusted entity. As LTE networks continue to become more widespread, their reliance

on small cells makes this threat particularly concerning and calls into question the security

of the core network.

As a means of investigating this, we have identified a gap between the standards or-

ganization that provides LTE’s security goals and the developers involved in creating the

network. This provides an opportunity to introduce vulnerabilities that may compromise

the network’s security. Thus, in order to help ensure LTE’s security, we require a method

for more tightly connecting the standards that describe LTE’s protocols with physical im-

plementations. In this manner, we can help to eliminate ways in which differences may be

introduced into various implementations of LTE hardware to help ensure that the security

properties defined in the standards are maintained. In the next section, we describe our

process for identifying how to do this for one LTE protocol, as an example of one method to

help close this gap.

23

3 Methods

The overall goal of our implementation is to demonstrate one method of closing the gap

between LTE’s standards and the way they are implemented in practice. In doing so, we

hope that our work will serve as a starting point for further security research in LTE, as

well as provide recommendations for the development of future standards. In this project,

we select just one protocol in LTE’s network standard and develop a language to describe it,

providing one example for how a formal definition in a standard could aid the development

of a physical implementation. In order to do this, we the following objectives:

• Select one protocol in LTE’s network standards that exemplifies a gap between its

definition in the standards and practical implementations

• Devise a method for closing this gap—in our case, by developing a language to represent

it

• Using lessons learned from the development of the language, provide recommendations

on how future protocols could be designed to support expression as a language

The following sections describe our design process for carrying out these objectives.

3.1 Objective 1: Identify a protocol

LTE’s network-layer architecture is composed of a wide array of protocols with differing

responsibilities. Thus, we needed to select one such protocol as an example of the knowledge

gap that was relevant to LTE’s security and could benefit from a formal representation. To

provide an example related to the security challenges discussed in Section 2, we examined the

protocols involved in the authentication procedure between UEs and the core network. Since

traffic between UEs and the core is inherently routed through a base station, a vulnerability

in one of these protocols could be exploited by a compromised base station.

When examining the protocol stack between the UE and the core network, we also

desired to select a protocol complex enough to benefit from the formalism of a language.

Notably, some LTE protocols already provide formal definitions for certain components. For

example, the S1 protocol, which defines control and data-plane traffic for a number of LTE

devices, includes an ASN.1 definition to describe its message formats. This definition can

be compiled to generate a parser for S1 messages. However, not all LTE protocols provide

formal representations and are instead solely described by the standards documents in prose

24

form. As described in Section 2.6, a developer must parse this text in order to implement the

standard, which may introduce differences between the protocol described in the standard

and the implementation. Thus, to maximize the utility of our implementation, we focused

on a protocol without a formal definition.

As a result, we selected the Non-Access Stratum (NAS) protocol for our implementation.

NAS is responsible for handling the authentication procedures between the UE and the

core network, making it an important component to LTE’s security architecture. Further

discussion of the NAS protocol’s key implementation features that affected our language

design are described in Section 4.2.1.

3.2 Objective 2: Designing a language to represent NAS

After selecting the NAS protocol, we developed a language to represent how the protocol

encodes messages. This involved characterizing the fundamental components of how NAS

messages are formatted to identify the most important features for our language to support.

Our present language design allows a developer to describe NAS messages and their encoding

formats. This protocol description, written in our language, can be compiled to generate

source code providing data structures for the described messages, which can then be used

in an implementation of the protocol. Our language and compiler designs are described in

detail in Section 4.2.

Notably, NAS describes not only set of messages, but a protocol for how these messages

should be sent to perform certain network procedures. Examples of these procedures include

the mutual authentication procedure between the UE and the core network, selection of

cryptographic algorithms, and location update requests. Thus, there are many possible

aspects of the NAS protocol that could be represented formally, such as the way message

flows are handled or how cryptography is used. For our implementation, we chose to focus

our language on the byte-level encoding of NAS messages, as this component required for

implementations at a higher level. Section 6 describes possible extensions to our language

design and compiler that could support more complete implementations.

3.3 Objective 3: Recommendations for future protocols

While developing our language, we recorded observations on specific elements of the

protocol that made our implementation challenging. In particular, we observed areas where

the protocol specification is ambiguous, or deviates from its own definitions for certain special

25

cases. These observations have been compiled in Section 5 as recommendations for creating

future protocol designs that are more representable as a formal language. We hope that

these recommendations will help raise awareness of formal descriptions in designing message

formats, which could provide a method of resolving differences between specification and

implementation in these areas.

26

4 Language design and implementation

This section describes the design and implementation of our language and compiler to

represent encodings for the NAS protocol. We first provides an overview of the NAS protocol

in order to describe the key elements required in the language. We then describe the language

itself from a syntactic point of view to demonstrate how it can represent these components.

Finally, we present our initial design for a compiler that generates data structures for NAS

packet descriptions and discuss possible future extensions to our work.

4.1 Overview of NAS protocol

The Non-Access Stratum, or NAS, protocol is a control-plane protocol that supports

the “mobility” of user equipment on an LTE network, meaning it handles the addition,

removal, and tracking of UE devices on the network. Conceptually, NAS represents a logical

link between an LTE mobile device (UE) and the Mobility Management Entity (MME)

on the core network, which is responsible for keeping sessions for devices attached to the

network [40]. As discussed in Section 2, the NAS protocol provides the procedures for the

mutual authentication procedure between devices and the core network and the subsequent

derivation of cryptographic keys used for all further communications.

The NAS protocol is described in 3GPP standard TS 24.301 [40], which extensively

describes each procedure in the protocol and outlines the format of each message. All NAS

procedures are handled as a sequence of messages passed between a UE and the MME. Some

example messages and their roles are described in Table 2 [40].

Each message contains a number of fields, called information elements, which contain the

relevant message data to carry out the network procedure. The structure of these messages

and their encoding formats is described further in Section 4.1.2.

4.1.1 Message structure

Similar to many low-level protocols in other networks, NAS messages are encoded on a

byte level to reduce the size of messages. On the most basic level, each message contains a

header and a number of fields specific to the message.

A NAS header contains three fields to identify the protocol, the type of message, and

a security parameter, followed by the message fields, as shown in Figure 6. The security

parameter indicates if the message is encrypted or integrity protected; in these cases, a shim

27

Table 2: Example NAS messages.

Message Name Direction Description

Attach Request UE to MME Request addition to the network;
starts authentication procedure and
includes a UE’s supported encryp-
tion modes, etc.

Security Mode Command MME to UE Contains encryption algorithms and
security parameters selected by the
MME

Authentication Request MME to UE Start of a challenge in the authenti-
cation procedure

Tracking Area Update Request UE to MME Start of procedure to update tracking
session information

01234567

Header Type Protocol Type

Message Type

Field

Field

· · ·

Figure 6: An example NAS message.

header is prepended to the message containing the relevant data to decrypt or verify the

message.

4.1.2 Encoding Formats

While the headers for NAS messages are relatively straightforward, the fields that contain

the message payload are more complex. The specification provides a listing of the possible

fields that may be present in each message. An example is shown in Figure 7.

Each field has a presence specifier, indicating if the field must be included in the message

or is optional. Further, the listing also gives a size for each field. Some fields have a fixed

28

Figure 7: Example NAS message as specified in 3GPP standard TS 24.301. [40]

length in all packets of a given type, while the lengths of other fields may vary as specified

by a length tag.

To rectify these options, the standard provides various formats for encoding the different

types of fields. Optional fields are encoded by adding a unique value, called a “tag,” at the

start of the field. Fields with variable length are encoded by prepending the data field with

its length.

In the listing that specifies the fields for each message, each field is assigned a “format,”

which defines a method for encoding the field using these constructs. These encoding formats,

defined in another 3GPP standard [41], are named based on the data they include. The most

basic type, type V, only includes the message’s value with no extra information—this type

is used for mandatory fields. Other types include type TV, which includes a tag and is used

for optional fields. Similarly, type TLV is used for variable-length fields and includes a tag,

and a field length.

To complicate matters, different sizes of tags and lengths are used for certain types. The

standard defines two formats using length fields, one set with a single-byte length field, and

a set with a two-byte length field, which are named with the suffix “-E”, (eg, type TLV-E

is a TLV field with an extended length). Tags, which called Information Element Identifiers

(IEIs), are specified as either one byte, or four bits, depending on the field. These message

formats are summarized in Table 3.

This overview of the NAS protocol and its various message formats demonstrates the basic

components of a NAS message. Section 4.2 discusses how we identified a set of language

features based on the NAS protocol’s design to incorporate in our language.

29

Format Description Tag Length Length field size Value

T Tag only Yes No — No

V Value only No No — Yes

TV Tag and value Yes No — Yes

LV Length and value No Yes 1 byte Yes

TLV Tag, length, and value Yes Yes 1 byte Yes

LV-E Length and value No Yes 2 bytes Yes

TLV-E Tag, length, and value Yes Yes 2 bytes Yes

Table 3: NAS message encoding formats

4.2 Language design

In order to represent how the NAS protocol encodes messages, our language requires a way

to describe the data structures that comprise each packet defined in the protocol. This section

describes the design of our language. We first outline our language’s key requirements based

on the NAS specification and describe how they influenced the constructs in our language.

4.2.1 Key Features

At the most basic level, the NAS protocol describes a series of data structures based on a

defined format. Our design is based on this simple idea of specifying the elements in a data

structure, closely following how struct types are defined in the C programming language.

The target for our language was to use it to generate data structures that a developer

can use to access the various fields of a NAS packet while abstracting away the byte-level

encoding described in the standard. In this way, the language can help remove the challenge

of encoding the packet data structures into a byte stream as defined by the standard, thereby

removing the need for a developer to implement this step by hand. Our specific compiler

implementation was designed to generate a set of header files in C++ pertaining to the

packet data structures specified in the language. The goal of this was to provide an interface

that a developer could use to construct NAS packets for an implementation.

After examining the various formats in which NAS messages are specified, we identified

the following notable features of the NAS protocol to support in our language:

• Optional fields: Many fields in NAS packets are optional. These fields must be avail-

able in a data structure accessible to a programmer when building an implementation,

30

but do not appear in a transmitted packet unless they are utilized. This has the ob-

vious implication that the size and structure of a given packet may change based on

which fields are included, a significant difference from C structs. Thus, our language

must have the ability to specify mandatory and optional fields and encode only those

which are populated.

• Type formats: Every NAS message is specified with a type format that describes

how the message is encoded. Our language must have a way of expressing the rules

these types and encoding fields based on them.

• Half-byte fields: Many fields in NAS messages, including the header fields, use a size

of 4 bits to encode certain data in order to reduce message size. Notably, these fields

are used for enumerated types to represent elements like status codes.

Based on these requirements, we defined two fundamental constructs that define our

language: packets and types. Packets specify complete NAS messages, which contain a set

of fields. The definition of a packet specifies enough information to encode it into a stream

of bytes that comprise a valid NAS message. Types define the rules for encoding each field,

whether the field represents a simple data value encoded in a V type field, or a complex

structure in a TLV-E field.

While the overall goal of this project was to create a language implementing the NAS

protocol, an additional requirement of our design was to make our language definition generic

enough to specify other protocols that use constructs similar to the NAS protocol. This allows

our language design to extend to describing other protocol formats, allowing for possible

application to other protocols.

4.2.2 Packets

Packets represent a data structure that encodes a single NAS message. Conceptually,

the packet definition is very straightforward. Similar to a structure in the C programming

language, a packet is defined containing a set of ordered fields, as follows:

packet Alpha {

mandatory uint8 foo = 0xAB;

mandatory uint16 bar;

}

This example defines a packet named “Alpha” that contains two fields, foo and bar.

Each line specifying a field can contain four elements: a presence specifier, the field’s type,

31

01234567

foo = 0xAB

bar

Figure 8: An example packet encoding

a name, and an optional default value, which provides a way to specify fields that remain

consistent in certain message. An example of this is a field indicating a version or specifying

a message type. Here, the field foo has a value of 0xAB. This definition would encode a

packet with a format as shown in Figure 8.

In this way, packets provide a way to encapsulate the fields that make up a NAS message.

At the packet level, the only variation in the data structure comes from the usage of optional

fields, making their specification rather simplistic. More expressive power is require to handle

the protocol’s type formats, described in Section 4.2.3.

4.2.3 Types

Our language separates types into three distinct categories:

• “Plain old data,” or POD, types, which represent types of fixed sizes or arrays

• Enumerated types, which have specified sizes predefined values

• Encoded types, which have specific encoding rules based on a defined format

POD types represent simple data fields, such as integers or arrays. In these cases, no

special formatting is required to encode them, so our language only requires information

about the field’s size. Here, a compiler for the language only requires information about the

type of field in the host language to store the data. In our language, we can define these

types using the typedef construct, which maps types defined in our language to types in the

host language and then used in a packet definition, as follows:

typedef uint8_t byte;

typedef uint64_t long_field;

packet Foo {

mandatory byte a;

mandatory byte b;

optional long_field c;

}

32

As in many other programming languages, enumerated types represent fields with a

specific set of values. Our language provides support for enumerated types with a parameter

to specify the size of the field they represent. Notably, our language’s support for enumerated

types allows for the specification of types smaller than one byte, to allow for the NAS

protocol’s use of these types for half-byte fields.

An enumerated type can be defined as follows:

enum Foo : 4 {

A = 0x1 ,

B = 0x2 ,

C = 0x4 ,

}

When compiled, the compiler is responsible for ensuring that these fields are included

with their specified sizes when encoded as a byte stream.

Encoded types require further expressiveness to describe a custom set of formats for

encoding at type. To provide a generic way of encoding all of the type formats defined in

the NAS standard, we describe an encoded type using two constructs: a structure definition

and an encoding definition. The structure definition defines how the data in the type is

formatted, similar to a packet or C struct. The encoding definition specifies how fields in

the structure are updated when the packet is encoded. In the NAS specification, this entails

filling the length field with the type’s size before encoding.

An encoded type is defined as in the following example, which describes a TLV type, as

defined in the NAS standard:

type TLV(tag , size) {

structure:

uint8 iei = tag;

uint8 length;

uint8 data[size];

encoding:

length = this_length;

}

As specified in Table 3, this type’s structure includes a single-byte tag field, a single-byte

length, and an array of bytes to represent the data portion, which allows for the variable-

length properties required of this type. The encoding portion of this type marks which field

should be populated with the size of the field at the time of encoding. The size of the field

is denoted by the keyword this length;

33

In addition, a type’s definition also allows for the specification of parameters to define a

specific instance of this type. Here, the parameters tag and size specify an the value of the

tag field and an initial size of the data field. These parameters are specified when a type is

used in a packet definition. The following example defines the NAS Authentication Failure

packet, which uses the TLV type and a number of enumerated types to represent the NAS

header:

packet AuthenticationFailure {

mandatory SecHeader headerType;

mandatory ProtoDescrim protoDescrim = EPS_MOBILITY_MANAGEMENT;

mandatory MsgType msgType = EPS_AUTH_FAILURE;

mandatory EmmCause cause;

optional TLV(0x30 , 16) authFailParam;

}

In this manner, we can define encoded types to represent all of the type formats defined

by the NAS standard in Table 3. As shown above, this allows us to specify the encodings

for the various field types used in NAS packets.

Section 6 describes future work for improving the expressiveness of our language.

4.3 Compiler design and testing

In order to develop an implementation based on a protocol specification defined in our

language, we developed a compiler to generate the described data structures.

For our implementation, we developed a compiler capable of generating these data struc-

tures as C++ header files. From there, we used the interface provided by these data struc-

tures to encode the packets and test them against an existing NAS protocol decoder.

Our compiler is designed to take a protocol defined in our language as an input and

generate a set of C++ header files for each packet and predefined type. We selected C++ as

a target language for code generation since it provided useful data structures for representing

packets while still providing the low-level operations necessary for working with a binary

protocol.

The compiler for our language follows a modular design, depicted in Figure 9. The major

components of the compiler are as follows:

• Lexer and Parser: These components are responsible for parsing the textual descrip-

tion of the protocol into tokens that can be recognized by the rest of the compiler. This

34

Figure 9: Compiler architecture

step is often known as the “front end” of the compiler. These components were gen-

erated by the open-source parser generator ANTLR [42]. ANTLR generates a parser

based on a formal grammar definition, which defines the language’s reserved words and

syntax.

• Abstract Syntax Tree (AST): Once parsed into a stream of tokens, the compiler

constructs a representation of the protocol described by the language in an Abstract

Syntax Tree. This data structure maintains a hierarchy of the various definitions in the

language, which can be parsed in order to perform operations like code generation. As

its name suggests, this provides a way of abstracting the language’s syntactic features

from the representation in the compiler.

• Symbol Table: A symbol table is a series of lookup tables that provide information

on the various elements defined in a language. In our compiler, a symbol is mainly

used to store information about each of the type definitions in the protocol to support

generation of the various packet data structures.

• Code Generation: This final step, known as the “back end,” parses the AST and

generates C++ header files for each packet in a given protocol definition. Thus, it uses

all of the information gathered in the previous parsing steps to generate a valid C++

header.

As with all modular compilers, this design allows for the development of different front-

ends and back-ends based on new requirements. For our language, this could mean developing

code generators for different languages, or allowing interoperability with verification tools like

model-finders. Further discussion of extensions to the compiler are described in Section 6.

The generated code for a protocol definition defines an interface that a developer can use

to build NAS packets. Taking advantage of C++’s object-oriented features, our compiler

35

generates each packet as a class, which contains each of the packet fields as members and

methods for accessing each field, as shown in Figure 10. In each class, the compiler gen-

erates a method named serialize, which encodes the packet’s fields into a stream of bytes,

represented as an STL vector. This byte stream can converted as necessary and then sent

over a network socket for use by another application using the NAS protocol. Defined types

are handled in a similar manner: a class is generated to represent each type format, which

is instantiated on each usage in a packet.

Figure 10: Example generated class based on a packet definition

To test our compiler and our language definition, we described a small set of NAS packets

and their corresponding types in our language and used our compiler to generate header files

from them. From there, we used the provided interface in C++ code to create and serialize

NAS messages.

As one example, the Attach Reject packet could be instantiated and serialized into a byte

stream as follows:

AttachReject *msg = new AttachReject ();

msg ->set_emmCause(ILLEGAL_UE);

send_pkt(msg ->serialize ());

In this example, an Attach Reject message is created and populated with its only manda-

tory field, a status code indicating the reason the UE was rejected from the network.

For our example packets, we verified our example message decodings both manually and

with an existing NAS decoder included with Wireshark, an open-source network analysis

tool [43]. Wireshark is designed to decode traffic to allow for further manual analysis.

An example decoding for an Authentication Reject message is shown in Figure 11, which

demonstrates its presentation of the various message fields.

Note that our analysis performed with this decoder is not comprehensive: future work

is needed to verify our decoding against a larger set of NAS messages and input data, as

discussed in Section 6. Some example packets for Attach Reject messages are shown in

Figure 12.

36

Figure 11: Example decoding of generated Authentication Reject message

Figure 12: Listing of generated Attach Reject messages

The packet decodings given by Wireshark provide a simple method of manually verifying

packet encodings. This demonstrates our language’s ability to express simple NAS mes-

sages, generate code to represent them as data structures, and encode them as valid NAS

messages. Future work in this area could continue testing the compiler’s ability to express

more complex message types, such as those containing very large numbers of fields, to ver-

ify and help improve our implementation. Additional future work that could provide more

robust verification methods, such as using a dataset of existing NAS traffic, is described in

Section 6.

4.4 Chapter summary

This chapter has described our design for a language to express the NAS protocol and

a compiler to transform this representation into data structures. In this way, our design

provides an example of formally representing a protocol in the LTE standard as a formal

language and using it to develop an implementation. We hope that our design can be used as

an example that can be further extended to support more components of the NAS protocol.

In the next section, we discuss lessons learned regarding the NAS protocol’s implementation

to provide recommendations for how future protocols can be design to be more amenable to

a formal representation as a language.

37

5 Recommendations on protocol designs

While implementing our language design and compiler, we identified certain components

of the NAS standard that made it a challenge to represent as a language. These observations

relate to parts of the standard that may be ambiguous, or otherwise make it difficult for a

developer to create an implementation that matches the standard. As discussed in Section 2,

these gaps between the standard and implementation may violate the intended security

requirement, compromising the security of the network.

This chapter describes these observations and outlines a set of recommendations for

future protocol designs that may make them easier to represent as language. Our major

observations included:

• Ambiguity in specific encoding descriptions

• Disparate specifications in many standards documents

• Inheritance from older network standards

The following sections describe each observation and provide potential recommendations

to aid future protocol designs.

5.1 Ambiguity in encoding descriptions

Many 3GPP specifications provide generalized requirements or descriptions for certain

groups of protocols. While the NAS standard is defined in TS 24.301 [40], most of the

specifications on the specific packet encoding formats is described in another, more general

standard, TS 24.007 [41]. This standard describes message formats for network-layer proto-

cols, which are also used in certain radio-layer protocols. Moreover, some of the protocols

referenced in this standard date back to GPRS, a very early standard for providing data

services to cellular networks.

In order to handle the requirements of each of these protocols, the descriptions for en-

coding formats presented in this standard are often very complex. While this expected to

be expected, some descriptions are verbose to the point of introducing ambiguity in how an

implementation of any one protocol using this standard may be implemented.

One such example, shown in Figure 13, is an excerpt from Section 11.2.1.1.3 of TS

24.007 [41]. This excerpt describes how and when Information Element Identifiers (IEIs),

also known as tags, are included in certain message type formats. This one paragraph

38

Figure 13: Excerpt from TS 24.007 on usage of tags, or “Information Element Identifiers”
in network-layer messages. [41]

describes a number of cases for IEIs may or may not be used, or may or may not have values

specified by their respective protocol definitions. While the description is verbose, it begs

the question: does the standard provide enough information for a developer to implement

it correctly? Descriptions such as these introduce ambiguity, which may lead to certain

differences in implementations by different developers, thus exemplifying the knowledge gap.

In addition, this ambiguity also hinders the development of a formal language, as any for-

mal description must handle all of the possible edge cases and exceptions to the rules defined

in the standards. Indeed, ambiguity is a significant in parsing programming languages [44],

such that many designers recommend ways to remove ambiguity when first specifying the

language, rather than trying to build a parser to handle it.

5.2 Disparate standards documents

Another challenge that follows from the previous example involves the many standards

documents that comprise a protocol specification. As discussed in Section 4.2, the message

format and packet definitions for the NAS protocol are mainly included in two standards,

TS 24.301 and TS 24.007. In addition, the descriptions for the data contained in the fields of

each packet (such as the packet shown in Figure 6) references yet more standards documents.

Each packet field contains a reference to a section of TS 24.301 that describes the field. In

most cases, this field is simply a reference to another document that contains the description

of the encoding.

This demonstrates that the complete specification of the NAS protocol, and likely others

like it, is distributed over a wide range of network standards. While this presents an obvious

challenge for developers implementing the standard, or a language describing the standard,

it has further consequences as the specifications evolve over time. Section 1.3 discussed

the 3GPP’s standardization process and the large number of working groups dedicated to

39

maintaining these standards. As certain standards are updated or extended, there exists the

potential for adding further ambiguities or differences that may have unintended impacts on

the other standards they reference. While this is an inherent challenge to a large network

architecture, a description of the standard as a formal language would help to resolve this is-

sue, as it would enforce a singular representation of the protocol from which implementations

could be developed.

5.3 Inheritance from other network standards

In addition to merely referencing other network standards, many standards are designed

as extensions to previous protocols. This exemplifies the natural evolution of the cellular

network architecture, as discussed in Section 2.1. Many of the fields in the NAS protocol

definition are based on similar protocols or fields in UMTS networks, or even reference

older GPRS standards. In one specific example, one field that encodes a subscriber identity

number, the identity number is encoded in the arcane binary-coded decimal (BCD) format,

further demonstrating that the NAS protocol inherits components from its predecessors [40].

This means that the NAS protocol not only inherits a dependency on these older stan-

dards definitions, but also inherits any ambiguities or edge cases in their specifications or

message formats as well. This significantly complicates a language definition, which would

be required to rectify the disparate components into a single specification. From an imple-

mentation perspective, such reliance on older systems invites code reuse from other imple-

mentations and protocols, which may lead to additional differences between implementations

and thus security vulnerabilities.

5.4 Chapter summary: Recommendations for reducing ambiguity

This section has outlined a number of practices that may introduce ambiguities and

exceptions in network standards. These complications may lead developers to misunderstand

the specification and also hinder the development of a formal representation by adding

further complexity to the way these standards can be parsed. While the addition of a formal

representation in a language would help reduce ambiguity in such a protocol specification,

these issues suggest that further revision is needed in the way the standards are created and

maintained to help reduce the complexity of the standard. In light of this, we make the

following recommendations for future standards in order to aid representation as a language:

40

• Avoid exceptions and edge cases: A number of message formats discussed in Sec-

tion 5.1 contained a number of exceptions and edge cases to support the requirements

so many different implementations. Simply avoiding such edge cases at the time of the

protocol’s design would greatly simply a formal representation.

• Unify disparate representations of protocols: As discussed in Section 4.1, the

NAS protocol’s specification was dependent on a number of other, more general stan-

dards documents, which contained many exceptions and edge cases as a result. Future

standards should avoid such dependencies, or avoid adding further exceptions that

would create further complexity in a general standard.

• Carefully consider reuse of elements from previous standards: Reliance on

message formats from older network standards, which may have their own ambiguities

and edge cases adds further complexity to a standard’s definition. While evolution

from past standards is an inherent part of the development process, significant reuse

may be detrimental by complicating the specification.

This chapter outlined a number of ways that network standards may introduce ambi-

guity or complications that make an implementation or formal representation challenging.

These recommendations identify methods for reducing ambiguity in a protocol specification,

reducing the complexity required to create a formal representation of the language. We hope

that these recommendations can provide guidelines for the development of future protocols

as cellular technologies evolve.

41

6 Discussion and Future Work

6.1 Research contributions

The goal of this project was to identify ways to improve the security of LTE networks.

Our work has focused on providing a tool to help close the gap between standards and

implementation in LTE’s network layer protocols. In doing so, we have:

• Characterized LTE’s security goals and architecture to identify a gap between the

security requirements described in the standards and practical implementations

• Developed a language to express the NAS protocol’s encoding as well as a compiler to

translate the protocol description into an implementation, to provide one example for

closing this gap

• Provided recommendations based on lessons learned during development of the lan-

guage and compiler to support development of future protocols that employ formal

representations

In this way, our work demonstrates how a formal language can be utilized to represent a

cellular network protocol. We hope that our work helps to raise awareness of the disparity

between standards and implementation to support further research on how adding formalism

to network standards can help ensure that the security goals defined in the standards can

be upheld in an implementation.

6.2 Future work

We have outlined a number of extensions to this work that can further improve our

language design and compiler implementation:

• Improve validation of the language and compiler: As discussed in Section 4.3,

we verified our language and compiler design by describing a subset of messages in the

NAS protocol and manually decoding packets to verify their encodings. Further verifi-

cation could be conducted using a sample dataset of NAS traffic created by production

hardware or a commercial traffic generator that implements the NAS protocol. This

would enable further work to implement and verify more message types to help make

our implementation more comprehensive.

42

• Investigate further compiler backends: Our compiler was designed to generate

header files to encode NAS packets, which only represents one portion of a NAS proto-

col implementation. Further work could develop additional code generators that could

use the language representation to perform other functions, such as encoding packets

or generating traffic to help verify other implementations.

• Extend the language design to support more protocol aspects: As discussed

in Section 4.2, our language was designed to specify the encoding formats for NAS

protocols. Extensions to our language design could support further aspects of the

protocol, such as message flows, that describe the critical security features provided by

the protocol.

• Use the language as a verification tool: In addition to generating an imple-

mentation, our language design could also be applied to the research space of formal

verification of existing implementations of other protocols. This may be possible by de-

veloping a compiler backend to target existing verification tools, such as model-finders,

that can help ensure certain security properties are maintained.

We hope that our language and compiler design provides a framework for continued de-

velopment in representing NAS and other protocols. To support this, the source code for our

implementation will be published as an open-source project to enable further development

and community contributions, described further in Appendix A.

6.3 Final discussion

The goal of this project was to provide a method for improving LTE’s security by reducing

the gap between the security goals defined in the standards and practical implementations.

In doing so, we have developed a language design and compiler for representing the encoding

formats of the NAS protocol and generating source that can encode NAS messages. Our

work provides an example of how the formalism provided by a language can helping connect

a protocol’s specification with a practical implementation, which can help ensure that the

security requirements defined by a standard are upheld in practice. In addition, we provide

recommendations based on our work implementing the NAS protocol for how future protocol

designs can more easily utilize formal descriptions. We hope that our work helps to raise

awareness on how formal languages can be used in other standards to help improve their

security.

43

References

[1] I. T. Union, “The world in 2014: Ict facts and figures,” 2014. [Online]. Available: http:

//www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf

[2] A. Germano, “The impact of femtocells on next generation lte mobile networks,” Femto-

Forum 3GPP, 2010.

[3] A. R. Doug DePerry, Tom Ritter, “Traffic interception and remote mobile phone cloning

with a compromised cdma femtocell,” DEF CON, 2013.

[4] N. Golde, K. Redon, and R. Borgaonkar, “Weaponizing femtocells: The effect of rogue

devices on mobile telecommunications.” in NDSS, 2012.

[5] G. Association, “History,” 2015. [Online]. Available: http://www.gsma.com/aboutus/

history

[6] 3GPP, “Gprs and edge,” 2015. [Online]. Available: http://www.3gpp.org/technologies/

keywords-acronyms/102-gprs-edge

[7] ——, “Umts,” 2015. [Online]. Available: http://www.3gpp.org/technologies/

keywords-acronyms/103-umts

[8] M. Nohrborg, “Lte,” 2015. [Online]. Available: http://www.3gpp.org/technologies/

keywords-acronyms/98-lte

[9] J. Wannstrom, “Lte,” 2015. [Online]. Available: http://www.3gpp.org/technologies/

keywords-acronyms/97-lte-advanced

[10] 3GPP, “About 3gpp home,” 2015. [Online]. Available: http://www.3gpp.org/

about-3gpp/about-3gpp

[11] ATIS, “Atis - north american organizational partner: 3gpp,” 2015. [Online]. Available:

http://www.atis.org/3gpp/

[12] D. Terdiman, “Unlocking ma bell: How phone phreaks came

to be,” CNET, 2013. [Online]. Available: http://www.cnet.com/news/

unlocking-ma-bell-how-phone-phreaks-came-to-be/

44

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.gsma.com/aboutus/history
http://www.gsma.com/aboutus/history
http://www.3gpp.org/technologies/keywords-acronyms/102-gprs-edge
http://www.3gpp.org/technologies/keywords-acronyms/102-gprs-edge
http://www.3gpp.org/technologies/keywords-acronyms/103-umts
http://www.3gpp.org/technologies/keywords-acronyms/103-umts
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
http://www.3gpp.org/about-3gpp/about-3gpp
http://www.3gpp.org/about-3gpp/about-3gpp
http://www.atis.org/3gpp/
http://www.cnet.com/news/unlocking-ma-bell-how-phone-phreaks-came-to-be/
http://www.cnet.com/news/unlocking-ma-bell-how-phone-phreaks-came-to-be/

[13] M. Green, “On cellular encryption,” A Few Thoughts on Cryptography En-

gineering. [Online]. Available: http://blog.cryptographyengineering.com/2013/05/

a-few-thoughts-on-cellular-encryption.html

[14] M. Rahnema, “Overview of the gsm system and protocol architecture,” Communications

Magazine, IEEE, vol. 31, no. 4, pp. 92–100, 1993.

[15] M. Olawski, “Security in the gsm network,” IPSec. pl. Stream ciphers.

[16] E. Barkan, E. Biham, and N. Keller, “Instant ciphertext-only cryptanalysis of gsm

encrypted communication,” in Advances in Cryptology-CRYPTO 2003. Springer, 2003,

pp. 600–616.

[17] C. Mulliner, N. Golde, and J.-P. Seifert, “Sms of death: From analyzing to attacking

mobile phones on a large scale.” in USENIX Security Symposium, 2011.

[18] S. K. Pell and C. Soghoian, “Your secret stingray’s no secret anymore: The vanishing

government monopoly over cell phone surveillance and its impact on national security

and consumer privacy,” Harvard Journal of Law and Technology, Forthcoming, 2014.

[19] A. Soltani and C. Timberg, “Tech firm tries to pull back cur-

tain on surveillance efforts in washington,” Washington Post. [On-

line]. Available: http://www.washingtonpost.com/world/national-security/

researchers-try-to-pull-back-curtain-on-surveillance-efforts-in-washington/2014/

09/17/f8c1f590-3e81-11e4-b03f-de718edeb92f story.html

[20] M. Richtel, “A police gadget tracks phones? shhh! its secret,” New York Times, 2015.

[21] C. Tang, D. A. Naumann, and S. Wetzel, “Analysis of authentication and key estab-

lishment in inter-generational mobile telephony,” in High Performance Computing and

Communications & 2013 IEEE International Conference on Embedded and Ubiquitous

Computing (HPCC EUC), 2013 IEEE 10th International Conference on. IEEE, 2013,

pp. 1605–1614.

[22] L. Miras, “Baseband playground,” Ekoparty,, 2011.

[23] R.-P. Weinmann, “Baseband attacks: Remote exploitation of memory corruptions in

cellular protocol stacks.” in WOOT, 2012, pp. 12–21.

[24] Z. Lackey and L. Miras, “Attacking sms,” BlackHat 2009, 2009.

45

http://blog.cryptographyengineering.com/2013/05/a-few-thoughts-on-cellular-encryption.html
http://blog.cryptographyengineering.com/2013/05/a-few-thoughts-on-cellular-encryption.html
http://www.washingtonpost.com/world/national-security/researchers-try-to-pull-back-curtain-on-surveillance-efforts-in-washington/2014/09/17/f8c1f590-3e81-11e4-b03f-de718edeb92f_story.html
http://www.washingtonpost.com/world/national-security/researchers-try-to-pull-back-curtain-on-surveillance-efforts-in-washington/2014/09/17/f8c1f590-3e81-11e4-b03f-de718edeb92f_story.html
http://www.washingtonpost.com/world/national-security/researchers-try-to-pull-back-curtain-on-surveillance-efforts-in-washington/2014/09/17/f8c1f590-3e81-11e4-b03f-de718edeb92f_story.html

[25] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Exploiting open functionality in

sms-capable cellular networks,” in Proceedings of the 12th ACM conference on Computer

and communications security. ACM, 2005, pp. 393–404.

[26] C. Mulliner and J.-P. Seifert, “Rise of the ibots: Owning a telco network,” in Malicious

and Unwanted Software (MALWARE), 2010 5th International Conference on. IEEE,

2010, pp. 71–80.

[27] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and T. La Porta,

“On cellular botnets: measuring the impact of malicious devices on a cellular network

core,” in Proceedings of the 16th ACM conference on Computer and communications

security. ACM, 2009, pp. 223–234.

[28] R. B. Borgaonkar, “Security analysis of femtocell-enabled cellular network architecture,”

Ph.D. dissertation, Universitätsbibliothek der Technischen Universität Berlin, 2013.

[29] J. Ravi, “Cell phone tower,” Wikimedia Commons, 2011. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Cell Phone Tower.jpg

[30] P. Team, “Verizon network extender review,” PhoneArena, 2009. [Online]. Available:

http://www.phonearena.com/reviews/Verizon-Network-Extender-Review id2110

[31] “Samsung network extender,” Verizon Wireless, 2015. [Online]. Available: http:

//www.verizonwireless.com/accessories/samsung-network-extender-scs-2u01/

[32] 3GPP, “Security of home node b (hnb) / home evolved node b (henb),” 3GPP Technical

Specification 33.320, Release 12, 2013.

[33] I. Bilogrevic, M. Jadliwala, and J.-P. Hubaux, “Security issues in next generation mobile

networks: Lte and femtocells,” in 2nd international femtocell workshop, no. EPFL-

POSTER-149153, 2010.

[34] N. Golde, K. Redon, and J.-P. Seifert, “Let me answer that for you: Exploiting broadcast

information in cellular networks,” in Proceedings of the 22nd USENIX conference on

Security. USENIX Association, 2013, pp. 33–48.

[35] R. Borgaonkar, N. Golde, and K. Redon, “Femtocells: a poisonous needle in the oper-

ator’s hay stack,” Black Hat Las Vegas, 2011.

[36] Alcatel-Lucent, “The lte network architecture: A comprehensive tutorial,” 2009.

46

https://commons.wikimedia.org/wiki/File:Cell_Phone_Tower.jpg
http://www.phonearena.com/reviews/Verizon-Network-Extender-Review_id2110
http://www.verizonwireless.com/accessories/samsung-network-extender-scs-2u01/
http://www.verizonwireless.com/accessories/samsung-network-extender-scs-2u01/

[37] H. Welte, “Anatomy of contemporary gsm cellphone hardware,” Unpublished paper, c,

2010.

[38] J. B. Postel, “Rfc 821: Simple mail transfer protocol,” IETF, 1982. [Online]. Available:

https://tools.ietf.org/html/rfc821

[39] Google, “Transparency report: Email encryption in transit,” 2015. [Online]. Available:

https://www.google.com/transparencyreport/saferemail/

[40] 3GPP, “Non access stratum (nas) protocol for evolved packet system (eps),” 3GPP

Technical Specification 24.301, Release 12, 2014.

[41] ——, “Mobile radio interface signalling layer 3; general aspects,” 3GPP Technical Spec-

ification 24.007, Release 12, 2013.

[42] T. Parr, “Antlr,” 2014. [Online]. Available: http://antlr.org

[43] W. Foundation, “Wireshark,” 2015. [Online]. Available: https://wireshark.org

[44] D. Grune, K. van Reeuwijk, H. E. Bal, C. J. Jacobs, and K. Langendoen, Modern

compiler design. Springer Science & Business Media, 2012.

47

https://tools.ietf.org/html/rfc821
https://www.google.com/transparencyreport/saferemail/
http://antlr.org
https://wireshark.org

Appendix A: Project source code

The source code for our design will be published as an open-source project and maintained

at: http://github.com/ndemarinis.

48

http://github.com/ndemarinis

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research contributions
	Thesis Structure

	Background
	Brief History of Cellular Networks
	3GPP Standardization Process
	Overview of Cellular Network Architectures
	What are the security threats to a cellular network?
	Early Security Goals: GSM Networks
	External Threats: Malicious Base Stations
	Insider Threats: Compromised User Equipment
	Compromised Base Stations

	Overview of LTE Architecture
	Fundamental Components
	Key Features

	Implementation-based Security Threats
	Case Studies: SMTP and TLS
	Standards vs. Implementation: The Knowledge Gap

	Chapter Summary

	Methods
	Objective 1: Identify a protocol
	Objective 2: Designing a language to represent NAS
	Objective 3: Recommendations for future protocols

	Language design and implementation
	Overview of NAS protocol
	Message structure
	Encoding Formats

	Language design
	Key Features
	Packets
	Types

	Compiler design and testing
	Chapter summary

	Recommendations on protocol designs
	Ambiguity in encoding descriptions
	Disparate standards documents
	Inheritance from other network standards
	Chapter summary: Recommendations for reducing ambiguity

	Discussion and Future Work
	Research contributions
	Future work
	Final discussion

	References
	Appendix A: Project source code

