
Adaptive Scheduling Algorithm Selection in a Streaming Query
System

by

Bradford Pielech

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

January 2004

APPROVED:

Professor Elke Rundensteiner, Thesis Advisor

Professor Robert Kinicki, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Many modern applications process queries over unbounded streams of data. These ap-

plications include tracking financial data from international markets, intrusion detection

in networks, monitoring remote sensors, and monitoring patients vital signs. These data

streams arrive in real time, are unbounded in length and haveunpredictable arrival pat-

terns due to external uncontrollable factors such as network congestion or weather in the

case of remote sensors.

This thesis presents a novel technique for adapting the execution of stream queries

that, to my knowledge, is not present in any other continuousquery system to date. This

thesis hypothesizes that utilizing a single scheduling algorithm to execute a continuous

query, as is employed in other state-of-the-art continuousquery systems, is not sufficient

because existing scheduling algorithms all have inherent flaws or tradeoffs. Thus, one

scheduling algorithm cannot optimally meet an arbitrary set of Quality of Service (QoS)

requirements. Therefore, to meet unique features of specific monitoring applications, an

adaptive strategy selector guidable by QoS requirements was developed. The adaptive

strategy selector monitors the effects of its behavior on its environment through a feed-

back mechanism, with the aim of exploiting previously beneficial behavior and exploring

alternative behavior. The feedback mechanism is guided by qualitatively comparing how

well each algorithm has met the QoS requirements. Then the next scheduling algorithm

is chosen by spinning a roulette wheel where each candidate is chosen with a probability

equal to its performance score.

The adaptive algorithm is general, being able to employ any candidate scheduling

algorithm and to react to any combination of quality of service preferences. As part of

this thesis, the Raindrop system was developed as exploratory test bed in which to conduct

an experimental study. In that experimental study, the adaptive algorithm was shown to

be effective in outperforming single scheduling algorithms for many QoS combinations

and data arrival patterns.

ii

Acknowledgements

First, I would like to express my sincere appreciation and gratitude to my advisor

Prof. Elke Rundensteiner for her help, guidance, support and encouragement. Without

her feedback, ideas, suggestions, incredible responsiveness and the time she always had

for me, this thesis would not have been achieved. I would alsolike to thank her for guiding

me throughout my graduate studies.

I thank my reader, Prof. Robert Kinicki for his valuable feedback.

I also would like to thank the entire Raindrop team for the close collaboration in

developing the base Raindrop system and invaluable help in achieving this thesis. Special

thanks to Tim Sutherland for his help in experiments and analysis.

Also, I would like to thank Xin Zhang and the other members of the Rainbow team

for all of their work on the base Rainbow system that served asthe stepping stone to

Raindrop. I’m thankful to all DSRG members.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Motivating Scheduling Example .. 5

1.3 Adaptive Scheduling Approach and Background 8

1.4 Research Challenges . 11

1.5 Outline . 12

2 Related Work 14

2.1 Stream Query Systems . 14

2.2 Operator Scheduling . 16

2.3 Query Plan Adaption . 17

3 Background 19

3.1 Architecture . 19

3.2 Query Model . 20

3.2.1 Query Plans . 20

3.2.2 Operators . 21

3.2.3 Queues . 21

3.2.4 Execution Engine . 21

3.2.5 Statistics Gatherer . 23

iv

3.2.6 Storage Manager and Operator Scheduler 26

3.3 Statistics . 26

3.3.1 Supported Statistics . 26

3.3.2 Adding New statistics . 29

4 Scheduling 30

4.1 General Issues . 30

4.2 Round Robin . 32

4.3 FIFO . 32

4.4 Greedy . 33

4.5 Most Tuples in Queue . 34

4.6 Chain . 35

5 Adaptive Scheduling 37

5.1 Quality of Service Requirements .. . 37

5.2 Algorithm’s Score Computation .. 39

5.3 Adapting Scheduling Strategy .. 43

6 Experiments 44

6.1 Experiment Setup . 44

6.2 Evaluation of Scheduling .46

6.3 Direct Competition with Published Scheduling Algorithms 48

6.4 Reaction to Changing QoS Specifications 49

6.5 Adaptive Framework with Multi-Facetted QoS Specifications 51

7 Conclusions 53

7.1 Summary . 53

7.2 Contributions . 55

v

7.3 Future Work . 55

vi

List of Figures

1.1 Selectivity� and Average Tuples Processing TimeC values for the ex-

ample query plan. 6

3.1 Raindrop System Architecture .. 20

4.1 Pseudo code for determining operator workload 31

6.1 Query Plans used in Experimentation. 46

6.2 Performance of scheduling algorithms with Query Plan 2.. 47

6.3 Optimizing query execution with one QoS requirement. Figure a, top,

memory usage. Figure b, bottom, average delay. 48

6.4 Two QoS requirements: 70% minimizing tuple delay, and 30% maximiz-

ing output rate (Query Plan 1). Figure a, top, absolute delay. Figure b,

bottom, absolute output rate. 49

6.5 Optimizing query execution with two QoS requirements. 30% focus on

minimizing tuple delay, and 70% focus on maximizing output rate (Query

Plan 1) . 50

6.6 Optimizing query execution with two QoS requirements. 50% focus on

minimizing tuple delay, and 50% focus on maximizing output rate (Query

Plan 2) . 51

vii

6.7 Optimizing query execution with three equal QoS requirements (Query

Plan 2) . 52

viii

List of Tables

1.1 Queue Sizes and Throughput for Example Query plan after each Time Unit. 7

1.2 Summarizing the Positives and Negatives of FIFO and MTIQfrom Ex-

ample. 8

3.1 Variables and notations used in the forthcoming equations 27

4.1 Comparison of Scheduling algorithms. 36

5.1 An example preference . 38

ix

Chapter 1

Introduction

1.1 Motivation

Many modern applications process queries over unbounded streams of data. These appli-

cations include tracking stock and other financial data fromvarious international markets,

intrusion detection in networks [17], monitoring remote sensors, and monitoring patients

vital signs at a hospital. These data streams arrive in real time, are unbounded in length

and have unpredictable arrival patterns due to external, uncontrollable factors such as net-

work congestion, weather (in the case of remote sensors), orobjects moving in and out of

sensor range. The data streams also can have high volumes of incoming data. The queries

in such environments typically are long running, continuous (always running) and thus

must be answered incrementally to avoid possibly infinite delay for any result.

At first, we shall consider if existing database management systems (DBMS) could

be applied for the processing of such continuous queries. DBMSs have mature query

optimization and indexing techniques and are used to store large volumes of business data.

This would potentially be a good foundation for continuous query processing. However,

because the applications described above work with continuously arriving data streams

1

rather than data that had previously been stored, they have unique features that render

traditional database management systems ineffective. These features include:

1. The database must be continuously updated in the form of INSERT queries and

would require unbounded storage to handle the possibly never ending stream.

2. The only means DBMSs have to process rapidly arriving datais through the use

of triggers. Triggers are query plans that are stored withinthe database and are

executed on some event, such as a tuple being inserted or deleted. The downside

to triggers is that they typically do not scale well beyond four or five simultaneous

executions [5]. Thus, the monitoring application’s scalability would be severely

limited. An alternative approach to using database triggers would be to encode

the queries in a middleware application built on top of the DBMS. However, this

approach may not scale well because the middleware application would need to ei-

ther continuously poll the database or rely on triggers to alert it of newly arriving

data. The middleware application would have little controlover query execution

and planning and thus could not reoptimize a poorly performing plan [9] or effi-

ciently share computation among multiple queries [6].

3. Some of these applications require real-time results andthus have clear result delay

deadlines. The application needs to rely on partial or approximate results because

not all of the data is available at any given time. However, the traditional DBMS

was designed to answers queries in full, regardless of the time needed to produce

them. Thus they do not meet this requirement. For example, a system monitoring

valves at a chemical plant wants to have an alert sound when the average pressure

over the last 5 minutes exceeds a given threshold. The traditional DBMS is not

capable of producing any partial result because the “average” operator will block

until it has seen all data and thus never produce a result.

2

4. Traditional DBMSs assume that all data is present when thequery is issued and that

the data will not change during execution (transaction processing). Thus DBMSs

typically use a static query evaluation strategy where the optimization is performed

before query is actually executed and no run time adaption isperformed. In a

streaming environment where many external factors affect data arrival patterns, a

static optimization or execution strategy would likely notperform well. This is

because a plan that initially performed well may have its performance deteriorate

when the data arrives much quicker. In the case of the chemical plant monitoring

system, if one sensor temporarily went off-line, query execution in the DBMS may

need to likely wait until the sensor came back. A better solution would be to recog-

nize that one data source is arriving slowly and thus performother work instead to

keep the system busy.

5. Because of the nature of continuous queries, certain applications may have Quality

of Service (QoS) requirements based on domain-specific needs. For example, stock

market system users are interested in receiving results as soon as possible (data

rate), a content server wants maximum throughput, whereas asensor network has

strict memory requirements. Furthermore, a single application may contain several

administrative-specified goals relating to how the server should process the data and

each contains weights as a relative priority rating. The DBMS may not capable of

explicitly addressing the server-specific QoS requirements, such as memory usage,

or client-side QoS requirements, such as delay and output rate because it lacks the

ability to alter execution to meet the goals (see item 4) if its initial execution strategy

was not sufficient. The DBMS would not

Due to these and other limitations, several general purposecontinuous query systems

such as [16][5][15] are being developed. Such systems generally work as follows. First,

3

the system subscribes to any number of data streams (like a stock market ticker) and

makes these streams available for end user applications. Next those user applications

issue queries against the streams that will run for long periods of time. The system pro-

cesses these queries and provides the results to the applications as a stream of data. If the

performance of the system begins to degrade, the system takes several possible measures

to ensure an acceptable performance level.

Continuous queries typically have some measure of adaptivity built-in to cope with

unexpected changes in the data. [16] uses an adaptive scheduling algorithm called Chain

[3] that helps to keep memory usage down during periods of bursty arrival at the expense

of throughput. This system also monitors resource allocation making use of load shed-

ding (tuple dropping) when allocation grows too large. [15]optimizes the global query

plan such that multiple user queries will efficiently share the computation. [5] allows an

administrator to input QoS specifications and the system monitors execution performance

based on these QoS metrics. If the QoS drops below an acceptable level, the system will

shed load until the performance increases. This strategy however will produce results that

are not necessarily representative of the data that was meant to be processed by the query

plan. We believe that a framework must be developed such thatthe system can recognize

performance degradation and adapt accordingly without dropping any data that is to be

processed.

This thesis presents a novel technique to adapt the execution that, to my knowledge,

is not present in any other continuous query system to date. This thesis hypothesizes

that utilizing a single scheduling algorithm to execute a continuous query (as is cur-

rently employed in [16][5][17][20]) is not sufficient because all scheduling algorithms

have inherent flaws or tradeoffs. For example, Round Robin does not consider the cost

of executing an operator and thus may under-utilize inexpensive operators. Chain, em-

ployed in [16], works well at minimizing memory requirements, but this comes at the

4

expense of an increased throughput. [20] focuses on maximizing output rates of oper-

ators, but does not consider the cost of executing an operator. Thus, we hypothesize

one scheduling algorithm cannot meet an arbitrary set of QoSrequirements. Therefore,

to meet the unique features of query applications that were listed above, we propose an

adaptive strategy selector
¯

that will be guided by some provided QoS requirements.

1.2 Motivating Scheduling Example

The scheduling policy chosen by the system can have a dramatic effect on the character-

istics of the system, including the throughput (i.e., the number of result tuples produced),

memory requirements, and delay (i.e., how long does data stay in the system before it

is processed and sent to the end-application). The following scheduling example will

illustrate this point and motivate the need for the adaptivestrategy selector.

Consider the query plan in Figure 1.1 that contains three consecutive filter operatorsO1 throughO3. O1 is connected directly to the input stream and its output is placed into

the input queue forO2. O2’s results serve as input toO3 andO3 outputs its results to the

end user application. Furthermore, because all operators have selectivity (�, see Equation

3.2 in Section 3.3.1) less than one, the number of the tuples will decrease as they “move”

through the system. Note that when we refer to a tuple, we are really referring to a group

of tuples that are organized in some logical way, like on a disk page. Thus, it is possible

to have fractional tuples.

Let us assume that the input stream will place one tuple in theinput buffer ofO1 every

time unit, starting at timeto. Assume that context switches take zero time and we are

running the filter operators on a single processor sharing CPU power and memory. When

told to run, an operator will consume at most one tuple from its input queue, process the

tuple for a fixed amount of time,C, and then output a fixed percentage,�, of tuples. For

5

instance, if an operator consumes 0.5 tuples from its input queue and its� is 0.9, it will

output 0.45 tuples and the operation will takeC time units. Figure 1.1 shows the� andC
values for the operators in our example plan.

σ = 1
C = 0.75

σ = .1
C = 0.25

σ = 0.9
C = 1

Stream

3

2

1

Figure 1.1: Selectivity� and Average Tuples Processing TimeC values for the example
query plan.

Now consider two different scheduling strategies. Strategy one is a FIFO scheduler

that will take tuples from the input queue ofO1 and process them until completion. Strat-

egy two is a variation of a Greedy algorithm, called Most Tuples in Queue (MTIQ). MTIQ

always runs the operator with the most tuples in its input queue(s). It is important to note

that any scheduling algorithm will eventually produce the exact same query result, other-

wise the algorithm is not correct. The difference in scheduling policies becomes apparent

when looking at resource allocation, output rate, operatorutilization, and freshness of

results (how long did it take for the query to produce the result). This example will focus

on the throughput and total queue sizes.

Table 1.1 summarizes the number of tuples in all queues and the throughput (number

of tuplesO3 outputs) for each strategy as execution progresses. As you can see, the queue

sizes for the FIFO scheduler will continue to grow at its present rate. The execution

6

happened as follows: first one tuple is removed from the inputqueue ofO1 and after

processing for 1 unit, 0.9 tuples are outputted (0.9= 1 xO1’s �). Then 0.9 tuples are

processed byO2 and 0.09 are outputted (0.09 = 0.9 xO2’s �). Finally, 0.09 are consumed

byO3 and 0.09 are outputted to the end user because the� for O3 is 1.

Time FIFO
Queue
Size

MTIQ
Queue
Size

FIFO
Throughput

MTIQ
Throughput

0 1.0 1.0 0.0 0
1 1.9 1.9 0.0 0
2 2.0 2.8 0.09 0
3 2.9 1.9 0.09 0
4 3.0 1.9 0.18 0
5 3.9 1.9 0.18 0

Table 1.1: Queue Sizes and Throughput for Example Query planafter each Time Unit.

The queue sizes grow as they do because att0 there is 1 tuple in the queue. Then,

during t1, 0.9 tuples are in the queue forO2 and one more tuple arrived into the system

from the input stream (1.9 tuples total). Next, aftert2 the 0.9 tuples that were outputted

by O1 were processed by the remaining operators (hence the throughput increased) and

removed from the system and one more tuple arrived forO1 to process, so 1.9 - 0.9 + 1 =

2.0 tuples. This cycle is every two time units.

It is a little tougher to intuitively follow what happens in the MTIQ example because

after t2, operators run over the course of 2 time intervals. MTIQ behaves the same as

FIFO duringt0, but differs starting witht1. At t1, there is one tuple queued forO1 and 0.9

for O2. MTIQ chooses to runO1 again. Att2, there is 1 tuple forO1 and 1.8 forO2 (0.9

+ 0.9), so MTIQ runsO2. O2 finishes at timet2:25 (because it started att2 and processed

for 0.25 time units) and now the queue sizes are 1, 0.8, 0.1 forO1, O2, O3 respectively.

MTIQ runsO1 again and att3, there is one new tuple forO1 and still 0.8 and 0.1 atO2
andO3, respectively.

7

The process continues and at aboutt14, O3 will have more than one tuple in its input

queue and it will finally be run.

The MTIQ strategy keeps its queue sizes smaller than those ofFIFO, but it does not

output any results for a (relatively) long time. MTIQ’s throughput is much burstier than

FIFO’s. MTIQ will take approximately 14 time units to outputits first tuple. The next

output will come slightly more quickly, but the output pattern will not be as regular as

FIFO. FIFO outputs every 2 time units. Table 1.2 summarizes the positives and negatives

of the two scheduling algorithms.

Algorithm Positive Negative
FIFO Schedules operators with the

same frequency, outputs tu-
ples sooner and at a constant
rate

Queue sizes grow quickly,
Output rate is low (0.045 tu-
ples per time unit), Does not
utilize operators as fully as
MTIQ

MTIQ Queue sizes are smaller,
higher output rate (0.07 tuples
per time unit), more fully
utilizes operators

Bursty output pattern, tuples
spend a long time in the sys-
tem

Table 1.2: Summarizing the Positives and Negatives of FIFO and MTIQ from Example.

1.3 Adaptive Scheduling Approach and Background

In general, an adaptive system is a system that changes its behavior in response to a

changing environment with the goal of improving performance [4]. The improved perfor-

mance may be quantified as absolute or relative to some predetermined goal. The adaptive

system monitors the effects of its behavior on its environment through a feedback mecha-

nism, with the aim of exploiting previously beneficial behavior and exploring alternative

behavior [14].

8

In the context of query execution, the adaptive scheduler selector will periodically

evaluate the current scheduling algorithm’s performance for the administration-specified

QoS requirements and compare this with the other candidate algorithms’ performance.

This qualitative comparison is based upon assigning a fitness score [13] to each algorithm

that captures how well it performed in several metrics, suchas throughput, memory size,

and output rate. The next algorithm is then chosen based on one or more heuristics, such

as “always pick highest score” or “pick next algorithm with aprobability equal to its

score.” This process is repeated continuously during the lifetime of the query.

The example from Section 1.2 has shown the relative strengths and weaknesses of

two scheduling algorithms during a period of constant arrival rates. Expanding upon the

example, say that the user’s QoS requirement specifies that “40% weight be given to

maximizing throughput and 60% to minimizing queue sizes.” See Section 5.1 for a full

discussion on quality of service requirements. During execution, while the stream was

producing at the rate of 1 per time unit, assume the Greedy strategy adequately met this

requirement (ignore the calculations of how well a strategymeets a requirement for now,

they are discussed in depth in Section 5.2) and FIFO did not. Thus, the system utilized

the Greedy algorithm.

Next, say that tuples began to arrive from the stream with an average rate of 2 per

time unit instead of 1. Thus, we are not dealing with constantbit rate (CBR) streams,

but rather variable bit rate (VBR) streams. Let’s compare how each algorithm would

perform. FIFO would behave the same, although its queue sizes would grow even more

quickly than before. If we were using the Greedy algorithm, it may never produce any

results, but the queue sizes would grow much more slowly thanFIFO. To see the intuition

of this, realize thatO1 will now have 2 tuples placed into its input queue at each time

interval andO1 can only process one tuple per time unit. After each interval, the queue

size ofO1 will grow by 1 while the queue size ofO2 will grow by 0.9. Therefore, Greedy

9

will never choose to run any operator other thanO1 (becauseO1 will always have a larger

queue size thanO2)!
Once the system has recognized that Greedy’s queues are growing quickly, but no re-

sult is ever being produced, it will switch to FIFO because FIFO better meets the through-

put requirement. Because this switch comes at the expense ofqueue sizes, the system may

switch between the two algorithms such that it can leverage the throughput from FIFO and

the queue size control of Greedy. If the system did not possess these adaptive qualities,

either the memory usage would grow very rapidly and the output rate would be constant

or memory usage would grow less quickly, but there would not be any throughput. Either

way, QoS would not be met.

The goal of the adaptive strategy selection is to leverage the relative strengths and

weaknesses of the various scheduling algorithms in order toguide the behavior of exe-

cution, such that it will meet the given QoS requirement. We assume ahead of time that

we know all scheduling algorithms that are available for usein our system, but do not

know anything about their relative strengths and weaknesses. This is important to keep

in mind because if we are deficient in one metric, we cannot clairvoyantly find the algo-

rithm that is best suited for improving that metric. Also performance of any one of the

algorithms can fluctuate wildly as the data arrival characteristics change. For example,

one algorithm may perform very well when the streams arrive at constant intervals, but

break down precipitously during periods of bursty arrival.

This thesis will make use of a diverse set of greedy and fair use algorithms including

Chain [3], a variation of Batch scheduling [5], Round Robin,FIFO, and Greedy. The

system needs to determine which scheduling algorithms to consider as candidates to help

answer each query. If too many are chosen the system will spend all of its time exploring

strategies and not enough time running the best strategy. Too few will limit the adaptive

abilities of the system.

10

1.4 Research Challenges

There are several challenges associated with creating an adaptive execution engine that

can meet user’s QoS requirements. First, a continuous querysystem and data stream

generator must be built before any adaptive scheduling hypothesis can be tested. Second

a metric needs to be developed that can quantify how well an algorithm performs relative

to the arbitrary QoS requirements. The scoring function needs to 1) allow the individual

goals to be weighed for relative importance and 2) normalizethe collected statistics for

those metrics such that one algorithm can be ranked against another (i.e., scheduler A

meets the QoS requirements better than B does).

Next, the adaptive strategy selector needs to be able to intelligently choose the next

scheduling algorithm to use. It must be able to weigh the benefits of choosing another

algorithm vs. staying with the existing algorithm. No strategy can ever be completely

eliminated from the selection set because there is no means to gauge the effect the stream

arrival patterns had on the strategy’s performance. Therefore, the adaptive strategy needs

to be carefully chosen such that it favors the well-performing (relative to QoS require-

ments) strategies, but still allows the other strategies tobe periodically explored. How-

ever, exploring too much will degrade performance because there is a non-zero overhead

cost associated with switching the scheduler. The adaptivestrategy selector needs to be

made as generic as possible such that it may be applied to as many different applications

as possible. Therefore, the selector will not make any assumptions about query languages,

incoming data values, or query plans.

Perhaps the toughest challenges associated with creating the scoring function and

choosing the adaptive strategy selector is ensuring the system will be able to meet the

various QoS requirements better than a single algorithm. For example, if rotating be-

tween three algorithms in order to maximize throughput and minimize queue sizes did

11

not yield higher throughput and smaller queue sizes than running just one algorithm,

then the proposed adaptive techniques are not useful. The adaptor needs to be able to be

self-monitoring in order to observe then assess this behavior. Therefore, an experimental

framework needs to be developed that will be capable of evaluating the usefulness of the

adaptive strategy for a variety of query plans and data arrival patterns.

It is important to notice that the goal of the adaptive strategy selector is not to “beat”

any one algorithm at any one metric. Theoretically if there exists an algorithm that is

optimal for one particular goal, then it will not be outperformed by a combination of

itself and other sub-optimal strategies. Hence our adaptive framework should be able

to recognize this situation and to indeed end up picking thiswinner most of the times.

Rather, the goal of this work is to leverage the strengths of various scheduling strategies

for a set of performance goals. This works under the assumption that no scheduling

algorithm can meet every possible goal. This assumption indeed proved to be the case as

our base experiments have confirmed.

Finally, an accurate statistics engine is also needed so thesystem can correctly and

continuously assess how it is performing. There are two primary issues related to the

design of a statistics engine: which statistics to collect during execution and the trade off

between freshness of statistics and the overhead associated with the gathering of those

statistics.

1.5 Outline

The remainder of this paper is structured as follows. Chapter 2 briefly reviews the related

research. Chapter 3 describes the architecture of the system including the underlying

query model, queue and operator structure, and the major modules. Several key concepts

and terms necessary to understand the adaptive techniques are also defined in this sec-

12

tion. Statistical calculations and metrics used are explained in Chapter 3.3. Chapter 4

describes the scheduling algorithms that were chosen and explains their advantages and

disadvantages. Chapter 5 describes quality of service requirements in detail, including

how they are structured and used. The section also details the algorithm scoring functions

and strategy selection heuristics. Finally, Chapter 6 decribes the experiments used that

will validate this work and contributions and conclusions are in Chapter 7.1.

13

Chapter 2

Related Work

There is a recent surge of ongoing research in the field of executing queries over stream-

ing data. A comprehensive overview of the challenges of executing queries in a stream

environment can be found in [4]. Most closely related to thiswork is that of STREAM

[16] and Aurora [5].

2.1 Stream Query Systems

Several data stream processing systems have been proposed in the current database re-

search. The STREAM [16] project’s goal is to “manage resources carefully, and to per-

form approximation in the face of resource limitations in a flexible, usable, and principled

manner.” STREAM focuses on efficiently allocating memory toqueues, synopses, and

operators by making use of stream constraints and the Chain [3] scheduling algorithm.

STREAM also provides techniques to best approximate the query result using various

static and dynamic techniques such as dropping unimportanttuples and reducing the time

that historical data is joined with current data.

STREAM differs from this thesis in the following ways. First, STREAM’s Chain

14

scheduler does not consider other heuristics such as maximizing tuple throughput or min-

imizing overall response time. Second, STREAM only supports one scheduling algo-

rithm, namely Chain. While Chain works well in certain situations, Chain can fail in

others (i.e., if high priority Chains are higher in the queryplan, those operators will starve

for input). In these cases, STREAM does not have any means to recover. In this work,

if a scheduling algorithm starves or is ill-performing, theadaptive algorithm is able to

choose an alternative strategy that will perform better. One of the primary contributions

of this approach is the ability to adapt to any changing conditions in the data stream and

thus, STREAM’s performance should lag behind the adaptive strategy more if the arrival

patterns change frequently. STREAM also does not allow for the system administrator to

specify their own quality of service requirements.

Aurora [5] aims to reduce tuple execution costs while maximizing overall QoS. They

accomplish this by having operators queue as many tuples as possible without processing

and then the operator processes all tuples at once generating a train. The benefit is that

tuples passed to subsequent operators do not have to go to disk and thus they incur less I/O

time. Aurora allows the administrator to input a graph that defines what a “good” QoS

means. Aurora takes into account many different QoS metricssuch as response times,

tuple drops, and importance of values. It allows for arbitrary compositions to be created.

When the performance deteriorates (as detected by the QoS monitor), the load shedder is

activated to bring the QoS to an acceptable level [5].

Aurora contrasts from our work in that Aurora makes use of onedynamic scheduling

algorithm as opposed to adapting the scheduling algorithm depending on the circum-

stances. Aurora focuses on maintaining administrator-specified QoS requirements, as in

this work, but the key difference is how the systems behave when poor performance is

detected. Aurora assigns a priority to each tuple based on several heuristics and drops

the unimportant tuples to improve performance. This strategy can be effective in some

15

situations because it reduces the load on the system, however it leads to an approximated

result. This work will always keep data that has arrived to ensure the accuracy of the

result, but will alter the scheduling strategy in hopes of achieving better performance.

Tribeca [17] is a stream oriented system that was designed toanalyze network traffic.

Tribeca’s goals are similar to this work, but does not support ad hoc queries, adaptive

scheduling, and does not allow for administrator-defined QoS requirements.

2.2 Operator Scheduling

Several works focus on operator scheduling. The Chain algorithm [3] is a modified greedy

algorithm that takes into account the importance of an operator relative to those around it

in the query plan. Rate-based stream scheduling in [20] deals with ordering the execution

of input streams so that the stream with the highest output rate will have a higher priority,

and thus will be executed more often. The goal is to produce tuples as quickly as possible

and to maximize throughput. They also take into account the relative importance of tu-

ples, based on how well the system believes the tuple will contribute to the query answer,

and strives to output the more important tuples quickly. Telegraph [2], [12],[11] is an-

other adaptive query system that makes use of Eddies [2] to adapt the execution for each

tuple. Eddies uses a lottery-type scheduler to decide whichtuple should go to which Join

operator. Eddies will dynamically route tuples to any available operator that will need to

eventually process the tuple. The goal is to prevent tuples from waiting in input queues

for a slow operator to be ready to process them. [12] extendedthe previous Eddies work

by providing support for queries over stream. This level of adaption is much finer than

compared to what is used in this thesis, although the idea of varying the tuple schedul-

ing served as inspiration for this work. Eddies does not consider administrator-specified

QoS metrics and thus, while the system is adaptive, it does not allow the administrator to

16

customize the behavior of the system.

2.3 Query Plan Adaption

Various works [10][21] focus on adapting the query plan to better meet performance

goals. This adaption can either happen during execution [9]by reorganizing poor per-

forming query plans or before execution begins [22] by generating a better plan based on

statistics from similar plans.

The Tukwila project [9] proposed the use of synchronizationpackets to “tell” each

operator to complete the processing of the tuples in its input buffers so that the query plan

may be reorganized. [21] proposed cost-based heuristics todynamically scramble partial

and complete query plans. NiagaraCQ [6][15] is a continuousquery system that uses

XML as data format. Niagara focuses on efficiently sharing processing between large

amounts of continuous queries. In [22], NiagaraCQ was augmented with two rate based

heuristics to consider when processing a user’s long running or continuous query. The

first heuristic optimizes for a specific time point in the execution process which answers

“which plan will produce the most results by timet0.” The second heuristic optimizes

for output production size, answering “which plan is the first one to reach N results.”

However, Niagara primarily focuses on generating an efficient query plan and does not

focus on any execution-time scheduling issues, thus these heuristics do not map directly

to our work. Niagara only considers those two rate heuristics and does not account for

queue sizes.

The XJoin [18] operator was created in order to reduce the initial delay needed to

produce results, efficiently create output tuples by breaking the Join into three stages,

and keep the system occupied during periods of slow arrival rates. As future work, this

thesis could incorporate an implementation of an XJoin operator to assist in meeting a

17

“maximize throughput” QoS.

18

Chapter 3

Background

3.1 Architecture

A primary part of this thesis entailed developing the core continuous query architecture

for the Raindrop system. Raindrop is made up of five primary components as shown in

Figure 3.1. It acts as a middleware application between end user applications and the raw

streaming data. End user applications submit queries to Raindrop and have results re-

turned to them when they are available. TheStream Receiver is responsible for receiving

the streaming data from variousStream Sources across the Internet and submitting the

data to theStorage Manager. The Operator Scheduler orders the execution of operators

according to a given scheduling algorithm. The Execution Engine (EE) actually runs the

operators and the Statistics Gatherer (SG) manages statistics about the current system per-

formance. This thesis deals with the EE and SG in depth and both of these modules are

discussed in detail below. An overview of the Storage Manager and Operator Scheduler

is provided at the end of the section.

19

Stream
Generator

Stream Source

Operator
Scheduler

Continuous Query Engine

Query

Control Flow

Data Flow

Legend:

Query

End User
End User

End User

Storage
Manager

Stream
Receiver

Statistics
Gatherer

Execution
Engine

Internet

Figure 3.1: Raindrop System Architecture

3.2 Query Model

3.2.1 Query Plans

Raindrop executes a query plan over streaming sources. The query plan can be thought

of as a directed acyclic graph (DAG) where the nodes represent query operators (Section

3.2.2) and the edges represent queues (Section 3.2.3) and anexample can be found in Fig-

ure 1.1. The streams are connected at the bottom of the plan and the end user application

resides at the very top. The operator(s) that connect directly to the end user application(s)

are called theroots and those that connect to the streams are calledleaves.

Assume that each user query in Raindrop is able to be maximally shared with the other

query plans. That is, Raindrop is able to combine all similaroperators and functions from

one query plan with another, thus saving execution time. We also assume that the query

plan does not change during the course of execution and that all user queries are specified

ahead of time.

20

3.2.2 Operators

All query operators in Raindrop have been implemented in a pipelined, non-blocking

manner. That is, every operator is capable of producing results after seeing only a partial

data set and the operator will not block waiting for more input. Some relational operators,

such as Select and Project can easily be implemented in this manner, while others, like

Join, need a new implementation strategy [19].

The adaptive scheduling techniques will work over a genericset of algebra operators

that do not depend on a specific query language or data format.This allows us to focus on

the issues related to adaptive scheduling. In this paper, the query plans and operators are

generalized. Two representative operators will be used, one for single streams and one for

multi-streams. Both operators can be assigned a chosen selectivity and per-tuple process-

ing time. To avoid an unbounded memory requirement, we implemented the multi-stream

operator as a windowed-hash join.

3.2.3 Queues

Intra-operator data results are stored in main memory queues as tuples. Queues serve as

the connections between operators and define the routes thattuples take during execu-

tion. Each queue maintains one pointer to the last tuple thathas been processed by each

consumer. Periodically the queue cleans up these pointers and removes filtered tuples in

order to minimize memory consumption.

3.2.4 Execution Engine

The Execution Engine (EE) lies at the heart of Raindrop. It isresponsible for asking the

scheduler to determine the next operator to run, running that operator, updating statistics

through the Statistics Gatherer (see Section 3.3), and thendetermining if the scheduling

21

algorithm should be changed. Here is a walkthrough of the EE’s tasks during execution:

1. Ask the Operator Scheduler to choose the next operator,Op, to run.

2. If the workload, the number of tuples available for an operator to process, forOp >
0, then update the statistics forOp’s input and output queues and pass the workload

to the operator. If the workload= 0, then there is starvation and the algorithm will

pick another operator.

3. Run the operator. When the operator has processed its assigned work, control is

returned to EE.

4. Update statistics forOp including: runcount, outputedtuples, and timerun. Pe-

riodically updateOp’s selectivity, average tuple processing time, output rate, and

priority, all of which can change depending on the characteristics of the data that

arrives. See Section 3.3.1 for equations to calculate thesestatistics.

5. Determine if the scheduling algorithm should be switchedout for an algorithm that

better meets the user’s QoS requirements. This check is doneperiodically, on the

order of seconds, based on some administrator-defined frequency.

6. Repeat steps 1-6 for the duration of the query.

The EE needs to ensure that the system will not deadlock when an algorithm starves

because some scheduling algorithms are inherently prone tostarvation (i.e. any Greedy

algorithm). Therefore, if an algorithm chooses an operatorto run and the operator has

no work to do, the EE will note the starvation and ask the algorithm to choose another

operator. This process will continue until either the algorithm either chooses an operator

that has work to do or a starvation threshold is reached. If the threshold is reached, the

EE will change the scheduling algorithm.

22

The Execution Engine’s behavior is strongly influenced by the system administrator’s

parameter setting. The system administrator is responsible for setting the frequency that

certain statistics are updated and how often the EE checks the performance of the current

scheduling algorithm relative to the quality of service requirements. A poor choice of

parameters can cause a large increase in the system overheaddue to updating statistics too

frequently. It can also cause the EE to stick with a poor algorithm too long. Therefore,

careful tuning is needed to ensure the EE performs optimally.

In our current setup, the EE only asks for the scheduling algorithm to choose one op-

erator at a time. This simplifying assumption was made because the overhead to choose

the next operator was experimentally shown to be negligible. With some scheduling al-

gorithms, such as round robin, the algorithm can determine the complete running order

for operators. On the other hand, greedy algorithms such as most tuples in queue, cannot

predict which operator will be run next because the system state is constantly changing.

Unlike Eddies [2], the execution runs in a single thread to beable to assess the ef-

fectiveness of adaption. Future work can investigate the benefits of running multiple

operators at the same time, but for now, only one operator executes at a time.

3.2.5 Statistics Gatherer

In order for the query plan to be executed according to user-defined priorities, cost formu-

las must continuously be evaluated to measure how well execution is performing relative

to the desired behavior. To aid in the evaluation of these formulas, a comprehensive statis-

tics engine was created to store, calculate, and sort statistics related to various operators

and queues in the system. All statistics related to query objects are stored in one place to

allow for efficient analysis of system state.

The Statistics Gatherer’s (SG) foremost requirement is efficiency both through storage

and in retrieval abilities. If the bulk of the execution timewere spent calculating statistics,

23

then the system would not be able to adapt very well. It also needs to be compact and

efficiently support queries. Therefore, the statistics gatherer is analogous to a database

that only stores its data in main memory. Like a database, thestatistics gatherer can

also be tuned by the system administrator. The administrator has control over parameters

such as the size of historical data kept, weight of old data compared to new values, and

frequency that data is sorted and indexed.

Retrieving and Updating Statistics.

Traditional (relational) cost models primarily gather statistics on selectivity of predicates

and estimated sizes of relations [8]. The optimizer then uses these statistics, which can be

updated at various time intervals, to determine how to organize the query plan and how to

schedule execution. In comparison, SG stores statistics totry to quantify the unpredictable

nature of a streaming execution.

During execution, both the scheduling algorithms, execution controller, and operators

access the statistics gatherer to either update or retrieve(query) statistics about other oper-

ators or queues. After an operator has executed, the execution controller updates statistics

related to how long an operator ran, how many tuples were produced, how many tuples

were consumed, and how many times an operator ran. Periodically, the controller updates

aggregate statistics for operators including selectivity, output rate, average tuple process-

ing cost, and priority. The various scheduling algorithms query the SG to find properties

about operators such as which operator has the highest priority, lowest processing cost, or

highest output rate. The SG also keeps track of statistics regarding queue sizes.

Because we assume that all of the statistics will fit in main memory, we can make

use of a nested-hashtable that will keep the cost of retrieving and updating values nearly

constant. This is important because often updating one statistic requires querying values

of several other statistics and we want to minimize the time needed to update a statistic.

24

For example, to update the average tuple processing time, the calculator needs to retrieve

the number of tuples the operator has inputted and the time the operator has run. SG also

exposes an interface to allow for the query objects to be returned based on defined filters,

such as min, max, highest, or lowest. This allows schedulingalgorithms to retrieve the

operator that has the highest priority or most tuples in input queues.

Statistics Organization.

The individual statistics for the operators are organized in views in the SG where each

scheduling algorithm has a view created that represents theoperator’s statistics while that

algorithm was selected by the EE. There are two additional views of the statistics created,

one containing the overall statistics for the operators andone containing generic operator

statistics. The overall or historic view provides a means tosee how each operator has

performed regardless of the scheduling algorithms employed thus far. The generic view

is used to store statistics about the current state of an operator, such as the number of

tuples enqueued in the operator’s input or output queue(s).

The scheduling algorithm views allow for the SG to provide some way for the exe-

cution controller to determine how well the current scheduling algorithm is performing

compared with the others. Using the views, the EE can make queries to the SG to com-

pare the value of statistic1 for operator A for the Round Robin and Greedy algorithms.

Furthermore, using the overall view, the EE could compare the performance for statistic1
for Round Robin to the overall performance, which includes an aggregate of Round Robin

and the other possible algorithms. Note that if only one algorithm has been employed thus

far in execution, then the historical view will be equivalent to the view for that algorithm.

25

3.2.6 Storage Manager and Operator Scheduler

The Storage Manager is responsible for storing the data thathas either arrived from the

data streams or been generated during the execution of the query. The Storage Manager

utilizes efficient algorithms for writing and reading the data from disk and memory and

is essential for the system to process queries quickly. The Query Processor provides an

interface to the external user applications to submit queries over the data streams. The

Query Processor will generate query plans that will then be sent to the EE.

3.3 Statistics

3.3.1 Supported Statistics

This section defines the statistics that are calculated by the statistics gatherer and the

formulas used to calculate them. Statistics are calculatedfor query objects and a query

object is a generic base class for all operators, tuples, andentire query plans. Statistics can

also be an aggregate of any number of query objects. Table 3.3.1 describes the notations

and variables that will be used in defining these statistics.In general, the value of a

statistic will be represented asA(B). This is interpreted as “retrieve the value of statistic

B for the query object A”. The possible query objects areO, T , andQ for operator, tuple,

and query plan, respectively.

Note:

1. O(nptotal) is equivalent to the number of output tuples that the operatorO could have

produced duringall of the total time that the operator has been run,O(t0total). That

is, if an operator has one input queue of sizex, thenO(nptotal) = x. If an operator

26

var name descriptiont0 Unit of timeO(ni) Number of tuples in all of the input queues for operatorOO(nptotal) Total number of tuples processed by operatorO during allt0O(nototal) Total number of tuples outputted by operatorO during allt0O(t0total) Total time units that operatorO has runT (t0a) Total time tupleT has spent in the systemQ(n) The number of operators in query planQQ(nr) The number of root operators in query planQ
Table 3.1: Variables and notations used in the forthcoming equations

hasi input queues with sizesx1 toxi,O(Nptotal) is equivalent to the product of those

sizes.

2. O(nototal) represents the total number of tuples that operatorO has outputted during

all of its time slices.

3. Frequently, the weighed average of statistics is used to calculate other statistics.

This average is calculated by the Equation 3.1, wherew is the weight given to the

older value. Settingw higher will force the system to “remember” the older values

for longer. Thus over time the value is less likely to fluctuate. On the other hand,

lowerw values will cause the average to fluctuate more.

In Equation 3.1,Aaverage(B) represents the new average value of statisticB for

query objectA, A(Bnew value) represents the most recent value of statisticB for

query objectA, andAold avg(B) represents the prior calculated average.Aaverage(B) = (Aold avg(B) � w) + (Anew value(B) � (1� w)) (3.1)

Statistics apply to operators. All statistics are computed using the data from the begin-

ning of execution. This does not create unbounded storage because most of the statistics

are averages and thus their storage space does not grow over time.

27

Selectivity: O(�) = O(nototal)O(nptotal) (3.2)

Output Rate: O(�op) = O(nototal)O(t0total) (3.3)

Average Tuple Processing Time: O(tC) = O(nptotal)O(t0total) (3.4)

Operator Throughput: O(top) = O(nototal) (3.5)

The following statistics apply to entire query plans.

Query plan’s throughput: Q(tq) = Q(nr)Xj=1 Oj(top) (3.6)

The throughput of a query plan is the sum of the throughput of each root operator.

Output rate: Q(�q) = Q(tq)=t0 (3.7)

The output rate of the query plan,Q(�q), can be thought of as a normalized through-

put for the query plan for an average time unit. It is equal to the query plan’s

throughput divided by a unit of time. Typically the denominator used is the over-

all length that the query has been running, but sometimes we are interested in the

output rate over the lastx time units.

28

Total number of tuples in queues:Q(qtotal) = QXj=0(n)Oj(ni) (3.8)

Average age of tuples: T (tage) = TXj=0Tj(t0a) (3.9)

3.3.2 Adding New statistics

The statistics gatherer is flexible and supports the addition of user-defined statistics about

operators, tuples, and query plans. The statistics can be defined before the system has

started (during linking) if the new statistic requires a special computation that is not

presently supported by the system. If the statistics can reuse existing calculations, then

the user may define statistics during the initialization phase. The user needs to specify

where the calculation is performed, which type of query object(s) support this statistic

(or all of them), and the frequency the statistics should be calculated - either every time

statistics are updated or along with the rest of the periodically updated statistics.

29

Chapter 4

Scheduling

4.1 General Issues

Raindrop uses several scheduling algorithms for executionscheduling of query operators.

The Execution Engine will ask a scheduler to choose the next operator to run and to

determine its workload. After the operator is run, the controller may decide to choose

another scheduling algorithm if it deems the current algorithm is not meeting the user’s

QoS requirements for execution behavior. The heuristics for deciding which algorithm to

choose are presented in Section 5.3.

A scheduling algorithm is responsible for two tasks: choosing the operator to run

next and assigning a workload to that operator. The next operator decision depends on

the algorithm itself while the workload assignment is oftenfixed regardless of the sched-

uler. In Raindrop, the workload assignment is controlled bytwo administrator-defined

parameters. The first parameter,RATIO, is the ratio of tuples that an operator should

dequeue relative to the total number tuples available. Currently this ratio is fixed for each

strategy, but future work could adapt this depending on statistics. The second parameter,THRESHOLD, aids in calculating how much work to assign to an operator. It aims to

30

reduce the chances that an operator is underutilized by setting a limit for when to use theRATIO and when to use the total number of tuples available. Figure 4.1 illustrates the

intuition of this parameter.

N = the number of tuples in operator O’s input queue
A = N x RATIO
if A > THRESHOLD
then O dequeues A tuples.

else
then O dequeues N tuples

Figure 4.1: Pseudo code for determining operator workload

Without this threshold, ifOp has 50 tuples in its input queues and the ratio is .1,Op
first runs for 5 tuples, then 5 (45 x .1), then 4, and so forth.Op will have to be run

many times over to work with all 50 tuples. If theTHRESHOLD is set to 50, which

experimentally was shown to yield good performance for eachoperator,Op only has to

run once. Setting this too high could decrease performance because an operator may be

overwhelmed with tuples, but setting it too low could resultin a lower performance as

well because an operator may not be fully utilized. In our experiments (Section 6), we

found that setting the RATIO to 30% yielded the best performance.

Every scheduling algorithm has its advantages and its flaws.Certain algorithms are

particularly good at keeping memory utilization to a minimum [3]. Other algorithms are

excellent at quickly producing some result set for the end application user [22]. The adap-

tive technique utilized in this paper focuses on selecting aparticular scheduling algorithm

when its advantages can be exploited. There are times when one single algorithm is the

best to use and is more effective than switching between possibly several algorithms. Our

aim is that in this situation the adaptive technique would select this algorithm as often

as possible. However, supported by our experimental results, we will show that many

queries based on varying QoS requirements do not have one particular scheduling strat-

31

egy that works the best. In fact in such cases, it is better to utilize the strengths of several

algorithms to produce the best overall quality of service possible. For review purposes, we

now describe several scheduling strategies employed by ouradaptive scheduling frame-

work, and explain their advantages and disadvantages.

4.2 Round Robin

Round Robin (RR) is perhaps the most basic scheduling algorithm. It works by placing

all runnable operators in a circular queue and allocating a fixed time slice to each. Round

Robin’s best quality is the avoidance of starvation. An operator is guaranteed to be sched-

uled within a fixed period of time. In fact, as long as an operator always has work to do,

no operator will be run more times than any other. However, Round Robin does not adapt

at all to changing stream conditions. It also does not consider many possibly important

factors, such as an operator’s performance relative to other operators, size of the input

queues, or the selectivity. Therefore, the intermediate queue sizes can grow rapidly be-

cause RR may spend its time running other operators that haveless work to do or are less

favorable for other reasons.

4.3 FIFO

FIFO (first in first out) chooses a leaf operator to execute andattempts to push its tuples

through the system as far as possible. FIFO typically yieldsa consistent throughput, be-

cause it tries to execute older tuples until completion before it considers newly arrived

tuples. But it has the same drawbacks as Round Robin - no adaptiveness and no consid-

eration of operator properties.

32

4.4 Greedy

Greedy scheduling assigns a priority to each operator and always tries to run the operator

with the highest priority. If the operator with the highest priority has no work to do (i.e.

empty input queues), Greedy will choose the next highest priority. The priority, calculated

dynamically, is shown in Equation 4.1 and was originally shown in [3]. The operator’s

priority and corresponding selectivity and tuple cost are recalculated periodically during

execution to insure that the information is not stale.

Greedy eliminates some of the drawbacks of Round Robin and PTT because it consid-

ers the cost of each operator before choosing which operatorto run. However, it is prone

to starvation. If the high priority operator,O, is proceeded by lower priority operators,O will eventually starve for input because its children operators may not be run as often.

On the other hand, if that same operatorO were connected to the streams instead, it will

almost always have work and thus the other operators in the system would never be run

often. The output queues ofO would grow indefinitely.

Throughput and average delay may suffer with Greedy becausethe strategy does not

take into account where in the execution plan the operator lies. Thus, it does not give

higher priority to those operators that will output resultsto the end user. These metrics

will suffer more if the higher priority operators are lower in the plan and less if those

operators are near the top of the plan.

Greedy will slowly adapt to bursty streams. To see this , firstassume that an operator’s

selectivity is relatively constant over time. Some operators may be able to work more effi-

ciently with a larger amount of tuples (i.e some hash-based joins because the fixed cost of

hashing each tuple can be spread out over more possible matches) and thus their average

tuple processing time would increase or decrease during periods of burstiness. Therefore,

the priority would fluctuate accordingly. However, it is unclear if this fluctuation would

33

be immediate or if there would be some lag time before these changes are propagated

throughout the system and the scheduler adapts. The speed ofthe propagation depends

on how often the priorities are updated. Updating too frequently will keep the priorities

current, but at the expense of system overhead, especially with operators whose priorities

are unlikely to change much over time. For example, the cost of performing a traditional

RDB Project operator will likely remain constant.

The Greedy priority is calculated in Equation 4.1. Equation4.1 will produce higher

(better) values when the operator has a low selectivity (1 -� ! 1) and / or has a low cost

to process 1 tuple. O(�) = 1� O(�)O(tC) (4.1)

4.5 Most Tuples in Queue

The Most Tuples in Queue (MTIQ) scheduler is a greedy algorithm that assigns a priority

to each operator equivalent to the number of the tuples in itsinput queues. MTIQ is a

simplified batch scheduler similar to [5]. Batch schedulerswork under the assumption

that the average tuple processing cost can be reduced if an operator works on more tuples

at a time. Operators typically have a start-up cost associated with their execution and the

batch scheduler can amortize this cost over a larger group oftuples. Round Robin and

FIFO do not have this property and thus those algorithms tendto under-utilize operators.

Second, MTIQ tends to have a bursty output pattern. Typically it takes a relatively

long period of time for enough tuples to make it through the system such that the root op-

erator has more work to do than the operators below it. However, when the root operator

runs, it then will output a large block of tuples. Some tupleswill experience little delay

while others will be enqueued for long periods of time, but onaverage, the mean delay

34

will not be much worse than the other algorithms.

The most obvious advantage is that MTIQ works well at minimizing memory con-

sumption. By running the operator with the most tuples enqueued, the algorithm will

have a better chance than the previous algorithms at ensuring that no queue will grow

unbounded. If the data arrives faster than MTIQ can process it, then that queue will grow

infinite in size.

4.6 Chain

Chain [3] is a recently proposed variation of Greedy Scheduling. Conceptually, each op-

erator is assigned a priority that is based on selectivity, tuple processing cost, and the

priorities of each operator preceeding it in the query plan.This inductive priority is cal-

culated by plotting the query plan on what is called a progress chart. The horizontal axis

of the chart represents time and the vertical axis represents the number of tuples in the

system at each operator at the given time. Each point on the chart corresponds to the time

that an operator takes to process its tuples. The points are connected and the priority is

calculated based on the slope of the line between points. Chain schedules the operator

who has tuples that lie on the steepest slope of the progress chart. The intuition here is

that several operators will be ”chained” together in such a manner that when the opera-

tors are selected they will remove the largest number of tuples from the query plan in the

shortest amount of time.

Chain may suffer from starvation and poor response time during times of burst [3],

but was shown, using experiment results, to be a near optimalstrategy for keeping queue

sizes to a minimum.

The relative strengths and weaknesses of the algorithms described above can be found

in Table 4.6.

35

Table 4.1: Comparison of Scheduling algorithms.

Algorithm Advantages Disadvantages

Round
Robin

- Guarantees that every operator
is scheduled.

- Does not select an operator because it is ”best”,
but because it is ”next”.
- Over time, poor output rate and memory utiliza-
tion.

FIFO - Schedules operators with the
same frequency.
- Outputs tuples sooner and at a
constant rate.

- Queue sizes grow quickly.
- Output rate is low.
- Does not utilize operators as fully as Greedy.

MTIQ - Queue sizes are smaller.
- Higher output rate.
- More fully utilizes operators.

- Bursty output pattern.
- Tuples spend a long time in the system.

Chain - Keeps queue sizes small.
- Chains logically scheduled op-
erators together.

- Chains need to be periodically recalculated with
latest statistical data.
- Suffers from poor average processing time and can
hinder output rate.

36

Chapter 5

Adaptive Scheduling

5.1 Quality of Service Requirements

Raindrop allows for the system administrator to specify thedesired execution behavior as

a composition of several possible goals. A QoS requirement consists of three parts, the

statistic, the quantifier, and the weight. The statistic corresponds to which requirement

the user wishes to control. Currently, Raindrop supports the following requirements:

Output Rate: how many tuples does the query plan output to theend user application per

time unit.

Intermediate Queue Size: how many tuples are stored in intermediate queues

Tuple Delay: what is the delay from the time tuples enter the system until they are

outputted.

The quantifier, eithermaximize or minimize, specifies what the system administrator

wants to do with this preference. Because the system supports any metric in the QoS

specification, Raindrop needs information regarding whether the metric should be maxi-

mized or minimized. The weight is the relative importance ofeach requirement and the

37

sum of all the weights is equivalent to 1. The weights will vary from application to ap-

plication meaning it is imperative that the administrator assigns weights that reflect the

individual application’s needs. Table 5.1 shows an exampleQoS specification. Here, the

administrator has specified that the system should give highest priority to the minimizing

queue size and the maximizing throughput is assigned priority #2.

Statistic Quantifier Weight
Input Queue Size minimize 0.75
Throughput maximize 0.25

Table 5.1: An example preference

Here we assume that all application queries share the same quality of service require-

ments. That is, assume the system administrator will specify a single quality of service

requirement that applies to all registered application queries, i.e., for the one global query

plan in the system. The administrator has the ability to change the requirements during

the course of execution, but that would affect all queries. Using this assumption allows us

to ignore issues related to conflicting QoS specifications for multiple application queries.

QoS requirements are a key concept in Raindrop. They will guide the adaptive exe-

cution by encoding the goal that the system is supposed to pursue. Without these pref-

erences, the system will not have any benchmarks to determine how well or poorly it is

performing. It is important to note that the requirements specify the desired behavior in

relative terms. That is, the administrator does not specifyan absolute performance goal

(i.e., achieve an output rate of X tuples / sec or have no more than Y tuples in the queues at

once), but rather specifies that they want the system to maximize output rate or minimize

queue size. Absolute requirements are too dependent on dataarrival patterns and so on

thus, may not be achievable without drastic measures such asdropping tuples from the

load and thus affecting the actual answer [16][5].

38

Aurora’s [5] definition of quality of service requirement issimilar to what is used

here, although the terminology is slightly different. Generally, QoS relates to a desired

execution behavior in Aurora and it specifies an absolute requirement. In this work, QoS

requirements also relate to the goals specified by the administrator (as in Aurora), but this

work does not try to improve the QoS as execution progress. Rather, Raindrop tries to

match system performance to what is specified in the QoS requirement.

The system also provides QoS requirement templates. Each template contains one or

more requirements and each has been tuned to best achieve a certain goal. This allows

the administrator to more easily specify the desired execution behavior without having to

worry about the lower level details including making guesses about relative weights. If

no service requirements are provided, the system will choose a default suite that will give

equal weight to minimizing queue sizes and delay and maximizing output rate.

5.2 Algorithm’s Score Computation

During execution, the Execution Engine will update the statistics that are related to the

QoS requirements. Once these statistics have been updated,the system needs to decide

how well the previous scheduler,Sold, has performed, compare this performance to the

other scheduling algorithms and then determine how to continue execution. To accom-

plish this, the system calculates the mean (�H) and the spread of the values (maxH �minH) of each of the statistics specified in the service preferences for the historical cat-

egory,H. Next, using the statistics fromSold the mean�S of each of the statistics is

calculated. Finally, each�S is normalized according to the formula in Equation 5.1. This

normalizes each value in the�0:5 to 0:5 range. 0.5 is added to thezi to insure it is always

between 0 and 1.

39

zi = (�S � �H)maxH �minH � de
aytime + 0:5 (5.1)

A de
ay parameter is used to exponentially decay old and out of date data to reflect

the unreliability of the score of algorithms that have not run for long periods of time. The

decay is calculated by raising thede
ay parameter(0 < de
ay < 1) to a giventime.time can be expressed in units of time since�S was updatedor it can be in expressed as

the number of times that other algorithms have been chosen since this strategy was cho-

sen. Both approaches have their merits and the choice depends heavily on several other

factors such as the frequency that the scores are computed. If the scores are frequently

recalculated, using the time since updated makes more sensethan using the number of

algorithms since last chosen because the number of times will decay the score too quickly

and an algorithm’s score will rapidly approach zero.

Next we compute a scheduler’s overall score,s
heduler s
ore for the algorithm we

just used, using a weighed sum, using the statistics score from Section 5.1 and the weights

of each requirement as given by the user. Equation 5.2 shows how this score is computed.

In this equation, each of the normalized values produced by Equation 5.1 are multiplied

by the corresponding weightwi. The quantifier, from the preference, is used to determine

if we wish to maximize or minimizezi. If the quantifier equals maximize,zi = zi. If the

quantifier is to minimize, thenzi = 1 - zi.s
heduler s
ore = IXi=0 (zi)(wi) (5.2)

Finally by comparingSold’s s
heduler s
ore with the scores for all of the other al-

gorithms (that have run so far), the system can decide how well or poorly the previous

scheduler performed. The system then determines which algorithm to choose next, Sec-

tion 5.3 describes this next decision making process.

40

Analysis of Behavior of Equation 5.2 Equation 5.2 gives a higher score to QoS re-

quirements that have a high weight and a highz value from Equation 5.1. Equation 5.1

maps each scheduler’s score for each statistic to a value between 0 and 1 and allows for

a comparison among different statistics. The weighed sum from Equation 5.2 will also

yield a value between 0 and 1 for each scheduler. In our case, we wanted to map a whole

data set (statistics for a scheduler) into a single value that could be compared to another

set.

The score assigned to an algorithm is not based solely on the previous time that it

was used, but rather is an aggregate over time. While the performance of an algorithm is

largely coupled to the behavior of the data, over time the score of the algorithm should

reflect its true potential.

There are several important properties to note regarding Equation 5.2. First, the statis-

tics in theH category are a union of the statistics for each individual scheduling algorithm.

That is, becauseH (historical category) contains data from every category, and thus every

time that the statistics forSold are updated, those same statistics are updated forH with

the same values.

Second at the beginning of execution, Equation 5.2 is prone to outliers and initially

will assign misleading scores. Similarly, ifSi has been used more frequently than any

other scheduler or if it has been run for a long time, the mean values for statistics forSi
will be similar to the mean inH. This is due to the normalization technique chosen in

the equation. The min-max technique captures the behavior of Si relative toH by noting

the difference between their means for the given statistic.Every time an algorithm is run,

the mean ofH is drawn closer (skewed) towards that algorithm. By continuously running

the same algorithm, the mean ofSi will end up on top of the mean ofH any relative

performance information is lost. Thus Equation 5.1 will produce a value closer to 0, even

if Si is performing well or poorly.

41

To overcome this problem, after each algorithm has been run,we do not update the

score forSold, but rather thez score for every algorithm that did not run is computed. IfSi
ran for sufficiently long, then this will effectively compare the other algorithm’s previous

performance to that of the current algorithm’s. Thus we can directly compare how well

each algorithm is performing. The score used for the currentalgorithm,Sold, comes from

the last timeSold was run. To account for stale data forSold, we decay that score every

time using thede
ay parameter that was previously discussed.

Several items that must be considered using the scores to determine the next schedul-

ing algorithm.

1. Initially, all scheduling algorithms should be given a chance to “prove” themselves,

otherwise the decision would be biased against the algorithms that did not run.

Therefore, at the beginning of execution, we want to allow some degree of explo-

ration on the part of the adapter. However, if the query is relatively short-lived, i.e.

the application only issues the query for a short amount of time, allowing too much

exploration will not allow the adapter to do its job.

2. Not switching algorithms periodically during execution(i.e., greedily choosing the

next algorithm to run) could result in a poorly performing algorithm being run more

often than a potentially better performing one. Hence, we have to periodically

explore other strategies.

3. Switching algorithms too frequently could cause one algorithm to impact the next

and skew the latter’s results. For example, using Chain as described in Section 4

could cause a glut of tuples at the input queues of lower priority operators. If MTIQ

were to be run, its throughput would initially be artificially inflated because of the

way Chain operated on the tuples. If we switched to another algorithm soon after,

the z-score from Equation 5.1 for throughput would be skewed.

42

More generally, when a new algorithm is chosen, it should be used for enough time

such that its behavior is not significantly controlled by theprevious algorithm.

5.3 Adapting Scheduling Strategy

After the above computation has been completed, the system needs to decide if the current

scheduling algorithm performed well enough that it should be used again or if better

performance could be achieved through changing algorithms. Considering the two points

above, initially running each algorithm in a round robin fashion is the fairest way to start

the adaptive scheduling.

In an effort to consider all scheduling strategies while still probabilistically choos-

ing the best fit we adopted the Roulette Wheel strategy [13] from Genetic Algorithms

research. This strategy assigns to each algorithm a slice ofa circular “roulette wheel”

with the size of the slice being proportional to the individual’s score that was calculated

by Equation 5.2. This strategy is also referred to as “fitnessproportion selection”. Then

the wheel will be spun once and the algorithm under the wheel’s marker is selected to

run next. This strategy may initially choose bad schedulingalgorithms, but over time,

should fairly choose the correct algorithm. The strategy also allows for a fair amount of

exploration and it prevents one algorithm from dominating.

The adaptive strategy will first run each algorithm once, forapproximately one second,

in a round robin fashion. The first algorithm run will be run once more at the end to

account of the initial start up time for the query. Once this process has completed, the

roulette wheel will be used for the duration of the query execution.

43

Chapter 6

Experiments

6.1 Experiment Setup

This section will describe the experiments conducted in order to compare the performance

of a single scheduling algorithm to our adaptive solution exploiting multiple algorithms.

The first phase of experiments establishes a performance baseline for a single algorithm

during bursty streams, where bursty streams are defined as streams whose arrival rate

spikes to an order of magnitude above the average arrival rate. The second phase will

then compare the performance of the adaptive strategy to thesingle algorithms during

periods of burst. Four scheduling algorithms described in Section 4 were used- Round

Robin, Chain, FIFO, and MTIQ.

If one algorithm can meet a given service preference on its own then switching be-

tween that algorithm and other sub-optimal algorithms willnot yield better performance.

Therefore, we want to show that the adaptive strategy picks that single algorithm most

often and will perform nearly, if not exactly, the same as that one strategy does. The more

interesting experimental case is when a clear tradeoff between algorithms exists. We also

want to show clearly that, for each quality of service composition, the adaptive strategy

44

selection performs better than any of the candidate algorithms The optimal case would be

for the adaptive strategy to meet the maximum value possiblefor each preference.

We used the three metrics in our experiments- mean output rate, mean delay, and

mean memory size that were discussed in Section 5.1. To reiterate, the memory size is

defined as the number of tuples in all queues in the system at a given time unit. The delay

is equal to the time a tuple spends in the system (time waitingin queues + processing

time) and the output rate is the number of tuples a query plan produces per time unit.

These requirements were selected for experimentation no one scheduling algorithm can

optimize for all of them at the same time.

For each experiment with two preferences, the preferences were assigned weights of

100-0, 70-30, 50-50, 30-70, and 0-100 where the first number is the weight assigned to

the first and the second to the second. When all three preferences were used in a single

experiment, we used equal weights of 33-33-34.

The single QoS experiments were run for 30 seconds while the multiple QoS exper-

iments ran for 300. The influence of any startup costs was minimized by running the

first algorithm for five seconds before beginning the round robin proceedure described in

Section 5.3. The charts shown below do not include any statistics gatherered during the

startup and exploratory phases. We evaluated the adaptive scoring function every two sec-

onds after running each algorithm for an initial period. Thestatistics described in Section

3.3.1 were updated every second and 0.875 was used forw in the weighed average equa-

tion, Equation 3.1. From Section 4.1, theTHRESHOLD is set to 50 and theRATIO
is set to 30%.

Two query plans were used in the experiments. The first query plan is a simple query

plan with four filter operators. The second query plan utilizes a window join operator

[7] with a window of 200ms. That is, any tuples that are received within 200ms of each

other are evaluated in the join predicate of the operator. The query plans are listed in

45

σ = 0.97
t = 1.6

σ = 0.9
t = 4

σ = 1.0
t = 1.8

Op 1Op 2Op 3Op 4

σ = 0.11
t = 0.2D

at
a

S
tr

ea
m

(a) Query Plan 1

σ = 0.5
t = 0.5

σ = 0.9
t = 4

σ = 1.0
t = 3.0

Op 1Op 2Op 3

Op 4

σ = 0.2
t = 0.25D

at
a

S
tr

ea
m

 1

σ = 0.2
t = 0.25D

at
a

S
tr

ea
m

 2

Op 5

(b) Query Plan 2

Figure 6.1: Query Plans used in Experimentation.

Figure 6.1 with selectivity(�) and average tuple processing time(t). For these particu-

lar experiments, the selectivity ofO1 is irrelevant because its output is piped to an end

user application and not another operator. Hence we set its selectivity to 1. Setting this

value lower would only serve to reduce the query plan’s throughput,Tplan, by a constant

percentage.

The Internet Traffic Archive [1] was used as the data set. Thisdata simulates the

contents of real streaming data. The arrival rates of the streams were adjusted to have a

random pattern using Poisson distribution. The streams were steady at times, and rather

bursty (with a mean arrival time that was approximately two times that of the average rate

during non-bursty periods) at other times, due to the unpredictability of users’ requests.

The stream rates were adjusted using custom built Stream Sources that would generate

data with different Poisson means every 5 seconds. This was done to show that under

both steady and bursty conditions, the adaptive framework could respond with good ex-

perimental results.

6.2 Evaluation of Scheduling

Figure 6.2 shows the performance of the four algorithms while monitoring two different

quality of service requirements, the number of tuples in memory, and the average tuple

delay. As anticipated, Chain and MTIQ performed best when itcomes to minimizing

46

0

10000

20000

30000

40000

50000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

T
u

p
le

s
 i

n
 M

e
m

o
ry

FIFO
MTIQ
RR
Chain

0

10000

20000

30000

40000

50000

60000

70000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

A
ve

ra
g

e
T

u
p

le
 D

el
ay

 i
n

q

u
er

y
p

la
n

 (
m

s)

FIFO
MTIQ
RR
Chain

Figure 6.2: Performance of scheduling algorithms with Query Plan 2.

memory use. As discussed in Section 4.1 Chain processes operators that remove the

largest number of tuples the most quickly. MTIQ processes operators that have the largest

queue in the query plan. Thus it is no surprise that these two algorithms are excellent at

reducing memory usage.

However we see very different results when observing how well the algorithms per-

form when it comes to the average tuple delay. MTIQ and Chain end up being the two

worst performers by the end of execution. FIFO, which was only mediocre under the

memory requirement, actually does quite well keeping the average tuple delay to a min-

imum. Overall we observe from Figure 6.2 that no one algorithm has a clear advantage.

MTIQ and Chain compete for the best results in memory consumption, while RR, Chain

and FIFO compete for the best results for average tuple delay. Therefore, by combin-

ing all of the algorithms, we should be able to outperform a single strategy for a given

requirement.

47

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (s)

T
u

p
le

s
 i

n
 m

e
m

o
ry

Adaptive
FIFO
MTIQ
RR
Chain

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

A
ve

ra
g

e
T

u
p

le
 d

el
ay

 i
n

 q
u

er
y

p
la

n
 (

m
s)

Adaptive
FIFO
MTIQ
RR
Chain

Figure 6.3: Optimizing query execution with one QoS requirement. Figure a, top, mem-
ory usage. Figure b, bottom, average delay.

6.3 Direct Competition with Published Scheduling Algo-

rithms

The next experiment used a QoS specification with only one requirement. This was done

to demonstrate that the adaptive framework can pick an optimal scheduling algorithm

even for only one requirement. Figure 6.3(a) shows that the adaptive framework does

exceptionally well at selecting algorithms to keep tuples in memory down. In fact, at

many times the framework outperforms every single scheduling algorithm in terms of

memory.

In Figure 6.3(b) it can be seen that the adaptive framework outperforms all individual

scheduling algorithms. It outperformed the other algorithms by leveraging their relative

strengths. It was observed that MTIQ can exploit queue buildups caused by FIFO. As

FIFO begins execution, a buildup of tuples is created at the leaf operator. Since there is

a buildup in tuples at the leaf operator MTIQ is selected (at time t=7) and progresses the

tuples through the query plan. FIFO is then selected again (at time t=21) as older tuples

48

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (s)

A
v
e
ra

g
e
 T

u
p

le
 d

e
la

y
 i

n

q
u

e
ry

 p
la

n
 (

m
s
)

Adaptive
FIFO
MTIQ
RR
Chain

0.075

0.125

0.175

0.225

0.275

0.325

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

A
v
e
ra

g
e
 T

u
p

le
 O

u
tp

u
t

R
a
te

 (
T

u
p

le
s
/m

s
)

Adaptive
FIFO
MTIQ
RR
Chain

Figure 6.4: Two QoS requirements: 70% minimizing tuple delay, and 30% maximizing
output rate (Query Plan 1). Figure a, top, absolute delay. Figure b, bottom, absolute
output rate.

were still in the query plan that needed to be processed.

6.4 Reaction to Changing QoS Specifications

For the second set of experiments, the ability of the adaptive framework to react to a QoS

specification with two requirements is shown. There are two goals in this set of experi-

ments. First showing that if the importance of a requirementis changed, the framework

will acknowledge this and adapt accordingly. Secondly it isimportant that the framework

performs well in both QoS requirements.

Figure 6.4 depicts the results for an experiment for which 70% importance was placed

on tuple delay and 30% importance was placed on output rate. Here observe that the

adaptive framework outperformed single algorithms with respect to average tuple delay,

and performed about average with respect to the average output rate.

Figure 6.5 shows our performance when we adjust the percentage of the weights to

70% focus on maximizing output rate, and 30% focus on minimizing tuple delay. We

49

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

A
ve

ra
g

e
T

u
p

le
 d

el
ay

 i
n

q

u
er

y
p

la
n

 (
m

s)

Adaptive
FIFO
MTIQ
RR
Chain

0.075

0.125

0.175

0.225

0.275

0.325

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

A
ve

ra
g

e
T

u
p

le
 O

u
tp

u
t

R
at

e
(T

u
p

le
s/

m
s)

Adaptive
FIFO
MTIQ
RR
Chain

Figure 6.5: Optimizing query execution with two QoS requirements. 30% focus on mini-
mizing tuple delay, and 70% focus on maximizing output rate (Query Plan 1)

can observe that with the change in service requirement, theadaptive framework still

does exceptionally well at minimizing tuple delay, but improves significantly at raising

the average tuple output rate. This shows that the adaptive framework can adapt accord-

ingly to varying QoS requirements, and also provide significant improvements of single

scheduling algorithms.

We will now consider the case of having two equally importantQoS requirements.

Figure 6.6 shows the performance of the adaptive framework with an equal focus on av-

erage output rate and average tuple delay. We make two observations from these charts.

First, clearly there is no single optimal scheduling algorithm, as each algorithm has vary-

ing performance throughout execution. Second, our adaptive framework is able to out-

perform all single scheduling algorithms for most of execution. The adaptive algorithm

appears to have made better decisions as the execution progressed as evident by the im-

proved memory utilization. The output rate did suffer slightly, however.

50

0.07

0.09

0.11

0.13

0.15

0.17

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

O
u

tp
u

t
R

a
te

 (
T

u
p

le
s
/m

s
)

Adaptive
FIFO
MTIQ
RR
Chain

0

10000

20000

30000

40000

50000

60000

70000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

A
ve

ra
g

e
T

u
p

le
 D

el
ay

 i
n

q

u
er

y
p

la
n

(m
s)

Adaptive
FIFO
MTIQ
RR
Chain

Figure 6.6: Optimizing query execution with two QoS requirements. 50% focus on mini-
mizing tuple delay, and 50% focus on maximizing output rate (Query Plan 2)

6.5 Adaptive Framework with Multi-Facetted QoS Spec-

ifications

In our final set of experiments we compared the performance ofthe adaptive framework

against the single scheduling algorithms with a QoS specification of three requirements.

In this example each requirement (average tuple delay, average output rate, and average

tuples in memory) was each given equal weight.

In Figure 6.7 we can see that the adaptive framework again performs well under all

three QoS requirements. The biggest improvements are average tuple delay and the num-

ber of tuples in memory, where the adaptive framework significantly improves upon all

but the best single scheduling algorithms.

51

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

O
u

tp
u

t
R

at
e

(T
u

p
le

s/
m

s) Adaptive
FIFO
MTIQ
RR
Chain

0

10000

20000

30000

40000

50000

60000

70000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

A
ve

ra
g

e
T

u
p

le
 D

el
ay

 i
n

q

u
er

y
p

la
n

 (
m

s)

Adaptive
FIFO
MTIQ
RR
Chain

0

10000

20000

30000

40000

50000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

T
u

p
le

s
 i

n
 M

e
m

o
ry Adaptive

FIFO
MTIQ
RR
Chain

Figure 6.7: Optimizing query execution with three equal QoSrequirements (Query Plan
2)

52

Chapter 7

Conclusions

7.1 Summary

This thesis addressed the issues relating to creating an adaptive execution strategy for

the execution of a continuous query over streaming data. Theproposed adaptive strat-

egy chooses the next scheduling algorithm to utilize among several candidate algorithms

based on their performance thus far relative to the user’s quality of service requirements.

This leverages prior research in artificial intelligence inthe area of multi-agent systems by

utilizing ideas in how to combine several candidate solutions into one. This performance

is captured by normalizing the statistics for each algorithm and calculating how well each

algorithm did compared to the algorithm that was just used. Then, the next algorithm is

chosen by spinning a roulette wheel where each candidate is chosen with a probability

equal to its performance score. This made use of techniques from genetic algorithms.

Current continuous query systems rely on a single scheduling algorithm. As a conse-

quence, they are restricted in the QoS specs that they may meet by controlling the operator

scheduling alone. Thus, the goal of this adaptive algorithmis to leverage the strengths of

each of the candidate algorithms against one another to create a solution that outperforms

53

each single strategy for the given QoS.

Our experimental study illustrated that the adaptive algorithm was able to outperform

the four candidate algorithms for some, but not all, QoS requirements. The study eval-

uated the Most Tuples in Queue and Chain batch schedulers andthe First in First Out

and Round Robin fair-use schedulers against the adaptive strategy for various preferences

using a Poisson based arrival patterns. The QoS combinationof weights aims for min-

imizing memory usage and result delay and for maximizing output rate. The algorithm

successfully leveraged the consistent-performing natureof the fair use algorithms with the

fluctuating behavior of the batch algorithms. The adaptive algorithm was able to success-

fully identify when one candidate’s performance was decreasing (due to the rate of newly

arriving tuples) and switched to the other to keep overall performance at an acceptable

level. The experimental study also showed that the adaptivealgorithm’s overhead was

comparable to either of the single strategies, even in the case of more complex queries.

We also showed that the user’s service preferences do in facthave an effect on the be-

havior of the adaptive algorithm. In our study, the adaptivealgorithm that was optimized

for a given metric outperformed the other adaptive algorithm that was optimized for an-

other metric. This is an important conclusion because it shows that the adaptive algorithm

behaves intelligently and does not win simply because it combines the other algorithms.

Given the presence of a single algorithm that optimally met the requirement, the adap-

tive strategy chose that algorithm more than the other. Whenthe adaptive algorithm peri-

odically switched to one of the other candidates for exploratory purposes, the adaptive’s

overall performance decreased. Thus, the adaptive was never able to outperform that

single strategy.

54

7.2 Contributions

This thesis contributed to Continuous Query Systems, particularly query processing, in

the following ways:� Studied the performance of a variety of scheduling algorithms in a real Continuous

Query System, to determine the pros and cons of algorithms under varying QoS

requirements, data stream arrival rates, and query plans.� Designed an adaptive framework that has the ability to observe the behavior of the

continuous query system and pick scheduling algorithms that probabilistically have

the best chance to fulfill a given set of QoS requirements.� Built a continuous query system from the ground up, that we used as a test bed to

study how our adaptive framework can aid in the processing ofa query.� Performed an experimental study to support our claim that infact, we can lever-

age the strengths of several existing scheduling algorithms to improve the overall

performance of a continuous query system given a set of QoS requirements.

7.3 Future Work

There are many future topics to investigate based on the preliminary results produced

by this thesis. The first direction involves augmenting the experimental study with ad-

ditional data distributions and more complex query plans. Another direction involves

tweaking the various experiment parameters. Further testing to find the optimal values

for the weight to give to old values for weighted average, workload ratio, and frequency

of updating statistics should result in improved performance. The adaptive strategy can be

55

further tweaked by altering the data decay and algorithm switch parameters or by running

multiple operators at the same time.

Another direction involves investigating incorporating alternate adaptive techniques

such as those used in [5][9]. Combining these techniques with the adaptive scheduling

strategy yields an interesting research question - could wefind a formula to weigh the

benefits of one technique over the other and always choose theadaptive technique that

will meet the user’s quality of service best.

56

Bibliography

[1] I. T. Archive. http://www.acm.org/sigcomm/ita/, 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. In

SIGMOD Conference 2000, pages 261–272, 2000.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwan. Chain: Operator scheduling for

memory minimization in data stream systems. InProc. of SIGMOD 2003, pages

253–264, 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. InProceedings of 21st ACM Symposium on Principles of

Database Systems (PODS 2002), pages 1–16, 2002.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

Braker, N. Tatbul, and S. Zdonik. Monitoring streams: A new class of data man-

agement applications. InProceedings of the 28th International Conference on Very

Large Data Bases (VLDB’02), 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continuous

query system for Internet databases. InSIGMOD, pages 379–390, 2000.

[7] L. Golab and M. T. Ozsu. Processing sliding window multi-joins in continuous

queries over data streams. InVLDB, pages 500–511, September 2003.

57

[8] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Mad-

den, V. Raman, and M. Shah. Adaptive Query Processing: Technology in Evolution.

IEEE Data Engineering Bulletin, 23(2), June 2000.

[9] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive query

execution system for data integration. InProceedings of SIGMOD, pages 299–310,

1999.

[10] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal

query execution plans. In L. M. Haas and A. Tiwary, editors,SIGMOD 1998, Pro-

ceedings ACM SIGMOD International Conference on Management of Data, June

2-4, 1998, Seattle, Washington, USA, pages 106–117. ACM Press, 1998.

[11] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over

streaming sensor data. InICDE, 2002.

[12] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive con-

tinuous queries over streams. InACM SIGMOD Conference 2002, 2002.

[13] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1999.

[14] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[15] J. F. Naughton, D. J. DeWitt, D. Maier, et al. The niagarainternet query system.

IEEE Data Engineering Bulletin, 24(2):27–33, 2001.

[16] R. Motwani, J. Widom and A. Arasu et al. Query Processing, Resource Manage-

ment, and Approximation in a Data Stream Management System.In Proceedings of

CIDR, pages 245–256, 2003.

[17] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of

network traffic. InI Proceedings of USENIX, 8, pages 13–24, 1998.

58

[18] T. Urhan and M. Franklin. Xjoin: A reactively-scheduled pipelined join operator.

IEEE Data Engineering Bulletin, 23(2):27–33, 2000.

[19] T. Urhan and M. Franklin. XJoin: A Reactively ScheduledPipelined Join Operator.

IEEE Data Engineering Bulletin, 23(2), 2000.

[20] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling for improving interactive

query performance. InThe VLDB Journal, pages 501–510, 2001.

[21] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scrambling for initial

delays. InProc. of SIGMOD 1998, pages 130–141, 1998.

[22] S. Viglas and J. F. Naughton. Rate-Based Query Optimization for Streaming Infor-

mation Sources. InProceedings of SIGMOD, pages 37–48, 2002.

59

