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Abstract

Many modern applications process queries over unboundednss of data. These ap-
plications include tracking financial data from internaibmarkets, intrusion detection
in networks, monitoring remote sensors, and monitoringepé vital signs. These data
streams arrive in real time, are unbounded in length and hapesdictable arrival pat-
terns due to external uncontrollable factors such as n&teamgestion or weather in the
case of remote sensors.

This thesis presents a novel technique for adapting theuérecof stream queries
that, to my knowledge, is not present in any other continuuesy system to date. This
thesis hypothesizes that utilizing a single schedulingrtigm to execute a continuous
guery, as is employed in other state-of-the-art continguesy systems, is not sufficient
because existing scheduling algorithms all have inherantsflor tradeoffs. Thus, one
scheduling algorithm cannot optimally meet an arbitratyod€uality of Service (QoS)
requirements. Therefore, to meet unique features of speudnitoring applications, an
adaptive strategy selector guidable by QoS requiremenssdeaeloped. The adaptive
strategy selector monitors the effects of its behavior sreftvironment through a feed-
back mechanism, with the aim of exploiting previously benafibehavior and exploring
alternative behavior. The feedback mechanism is guidedibiitgtively comparing how
well each algorithm has met the QoS requirements. Then tktesnbeduling algorithm
is chosen by spinning a roulette wheel where each candislateosen with a probability
equal to its performance score.

The adaptive algorithm is general, being able to employ amditlate scheduling
algorithm and to react to any combination of quality of seevpreferences. As part of

this thesis, the Raindrop system was developed as expiptati bed in which to conduct



an experimental study. In that experimental study, the tagaplgorithm was shown to
be effective in outperforming single scheduling algorithfor many QoS combinations

and data arrival patterns.
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Chapter 1

Introduction

1.1 Motivation

Many modern applications process queries over unboundeaihss of data. These appli-
cations include tracking stock and other financial data franous international markets,

intrusion detection in networks [17], monitoring remotasers, and monitoring patients
vital signs at a hospital. These data streams arrive in @&l tare unbounded in length
and have unpredictable arrival patterns due to externagnirollable factors such as net-
work congestion, weather (in the case of remote sensorshjects moving in and out of

sensor range. The data streams also can have high volunme®afing data. The queries
in such environments typically are long running, continsi¢aiways running) and thus
must be answered incrementally to avoid possibly infiniteydér any result.

At first, we shall consider if existing database managemygstems (DBMS) could
be applied for the processing of such continuous queriesM®&8have mature query
optimization and indexing techniques and are used to sioge bolumes of business data.
This would potentially be a good foundation for continuougiy processing. However,

because the applications described above work with comtisly arriving data streams



rather than data that had previously been stored, they haigeiel features that render

traditional database management systems ineffectiveselieatures include:

1. The database must be continuously updated in the form SERI queries and

would require unbounded storage to handle the possiblyr eadkng stream.

2. The only means DBMSs have to process rapidly arriving dathrough the use
of triggers. Triggers are query plans that are stored withendatabase and are
executed on some event, such as a tuple being inserted ¢oedlelEhe downside
to triggers is that they typically do not scale well beyondrfor five simultaneous
executions [5]. Thus, the monitoring application’s scdigbwould be severely
limited. An alternative approach to using database triggeosuld be to encode
the queries in a middleware application built on top of theMI¥8 However, this
approach may not scale well because the middleware apphoabuld need to ei-
ther continuously poll the database or rely on triggers ¢otal of newly arriving
data. The middleware application would have little contreér query execution
and planning and thus could not reoptimize a poorly perfogmlan [9] or effi-

ciently share computation among multiple queries [6].

3. Some of these applications require real-time resultslanglhave clear result delay
deadlines. The application needs to rely on partial or apprate results because
not all of the data is available at any given time. Howeveg, tiiaditional DBMS
was designed to answers queries in full, regardless of the tieeded to produce
them. Thus they do not meet this requirement. For examplgstars monitoring
valves at a chemical plant wants to have an alert sound wleeavérage pressure
over the last 5 minutes exceeds a given threshold. TheitvaditDBMS is not
capable of producing any partial result because the “aeéragerator will block

until it has seen all data and thus never produce a result.
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4. Traditional DBMSs assume that all data is present wheqtieey is issued and that
the data will not change during execution (transaction @semg). Thus DBMSs
typically use a static query evaluation strategy where gitgrozation is performed
before query is actually executed and no run time adaptiggerformed. In a
streaming environment where many external factors affata drrival patterns, a
static optimization or execution strategy would likely nprform well. This is
because a plan that initially performed well may have itdqrerance deteriorate
when the data arrives much quicker. In the case of the chépimat monitoring
system, if one sensor temporarily went off-line, query exen in the DBMS may
need to likely wait until the sensor came back. A better safuvould be to recog-
nize that one data source is arriving slowly and thus perfoitmer work instead to

keep the system busy.

5. Because of the nature of continuous queries, certaincapipins may have Quality
of Service (QoS) requirements based on domain-specificsné®d example, stock
market system users are interested in receiving resulte@s & possible (data
rate), a content server wants maximum throughput, wheresassor network has
strict memory requirements. Furthermore, a single apjpticanay contain several
administrative-specified goals relating to how the serlieusd process the data and
each contains weights as a relative priority rating. The CBiday not capable of
explicitly addressing the server-specific QoS requiresienich as memory usage,
or client-side QoS requirements, such as delay and outpubeause it lacks the
ability to alter execution to meet the goals (see item 43iirittial execution strategy

was not sufficient. The DBMS would not

Due to these and other limitations, several general purpasgnuous query systems

such as [16][5][15] are being developed. Such systems glyerork as follows. First,



the system subscribes to any number of data streams (likec& starket ticker) and
makes these streams available for end user applicationst th@se user applications
issue queries against the streams that will run for longoperof time. The system pro-
cesses these queries and provides the results to the djgpigcas a stream of data. If the
performance of the system begins to degrade, the systemdakeral possible measures
to ensure an acceptable performance level.

Continuous queries typically have some measure of adgpbuwilt-in to cope with
unexpected changes in the data. [16] uses an adaptive dicigealgorithm called Chain
[3] that helps to keep memory usage down during periods dftparrival at the expense
of throughput. This system also monitors resource allooatnaking use of load shed-
ding (tuple dropping) when allocation grows too large. [bpjimizes the global query
plan such that multiple user queries will efficiently shdre tomputation. [5] allows an
administrator to input QoS specifications and the systemtorsrexecution performance
based on these QoS metrics. If the QoS drops below an actefaaél, the system will
shed load until the performance increases. This strategeVver will produce results that
are not necessarily representative of the data that wastnuelb@ processed by the query
plan. We believe that a framework must be developed suchtibatystem can recognize
performance degradation and adapt accordingly withoytming any data that is to be
processed.

This thesis presents a novel technique to adapt the exadhi, to my knowledge,
is not present in any other continuous query system to dakes thesis hypothesizes
that utilizing a single scheduling algorithm to execute atowous query (as is cur-
rently employed in [16][5][17][20]) is not sufficient becsal all scheduling algorithms
have inherent flaws or tradeoffs. For example, Round Robas ¢t consider the cost
of executing an operator and thus may under-utilize inegperoperators. Chain, em-

ployed in [16], works well at minimizing memory requiremgnbut this comes at the



expense of an increased throughput. [20] focuses on maxighautput rates of oper-
ators, but does not consider the cost of executing an operataus, we hypothesize
one scheduling algorithm cannot meet an arbitrary set of @q8irements. Therefore,
to meet the unique features of query applications that wsted above, we propose an

adaptive strategy selecttirat will be guided by some provided QoS requirements.

1.2 Motivating Scheduling Example

The scheduling policy chosen by the system can have a d@asfégct on the character-
istics of the system, including the throughput (i.e., thenber of result tuples produced),
memory requirements, and delay (i.e., how long does dayairstdne system before it
is processed and sent to the end-application). The folipwrheduling example will
illustrate this point and motivate the need for the adaptvategy selector.

Consider the query plan in Figure 1.1 that contains threseautive filter operators
O, throughOs3. O is connected directly to the input stream and its outputasgd into
the input queue foO,. O,’s results serve as input t0; andOs outputs its results to the
end user application. Furthermore, because all operatwesdelectivity §, see Equation
3.2 in Section 3.3.1) less than one, the number of the tuplédecrease as they “move”
through the system. Note that when we refer to a tuple, weeally/referring to a group
of tuples that are organized in some logical way, like on & gege. Thus, it is possible
to have fractional tuples.

Let us assume that the input stream will place one tuple imina buffer ofO, every
time unit, starting at time,. Assume that context switches take zero time and we are
running the filter operators on a single processor sharirg @Rver and memory. When
told to run, an operator will consume at most one tuple fra@input queue, process the

tuple for a fixed amount of tim&,/, and then output a fixed percentageof tuples. For



instance, if an operator consumes 0.5 tuples from its inpatiq and its is 0.9, it will
output 0.45 tuples and the operation will takeime units. Figure 1.1 shows tleandC'

values for the operators in our example plan.

ONOXO

Stream

Figure 1.1: Selectivityy and Average Tuples Processing Tiievalues for the example
query plan.

Now consider two different scheduling strategies. Stnatage is a FIFO scheduler
that will take tuples from the input queue @f and process them until completion. Strat-
egy two is a variation of a Greedy algorithm, called Most Bgih Queue (MTIQ). MTIQ
always runs the operator with the most tuples in its inpuug(®). It is important to note
that any scheduling algorithm will eventually produce tkact same query result, other-
wise the algorithm is not correct. The difference in schedupolicies becomes apparent
when looking at resource allocation, output rate, operatibization, and freshness of
results (how long did it take for the query to produce the ltgstihis example will focus
on the throughput and total queue sizes.

Table 1.1 summarizes the number of tuples in all queues anthtbughput (number
of tuplesO; outputs) for each strategy as execution progresses. Asayosee, the queue

sizes for the FIFO scheduler will continue to grow at its présrate. The execution



happened as follows: first one tuple is removed from the iqueue ofO, and after
processing for 1 unit, 0.9 tuples are outputted (0.9=Q@3s o). Then 0.9 tuples are
processed by, and 0.09 are outputted (0.09 = 0.9X’s ¢). Finally, 0.09 are consumed

by O; and 0.09 are outputted to the end user because tbeO; is 1.

Time FIFO MTIQ FIFO MTIQ
Queue Queue Throughput Throughput
Size Size

0 1.0 1.0 0.0 0

1 1.9 1.9 0.0 0

2 2.0 2.8 0.09 0

3 2.9 1.9 0.09 0

4 3.0 1.9 0.18 0

5 3.9 1.9 0.18 0

Table 1.1: Queue Sizes and Throughput for Example Queryastaneach Time Unit.

The queue sizes grow as they do becausg #tere is 1 tuple in the queue. Then,
duringt;, 0.9 tuples are in the queue f6x, and one more tuple arrived into the system
from the input stream (1.9 tuples total). Next, aftethe 0.9 tuples that were outputted
by O, were processed by the remaining operators (hence the thpaugcreased) and
removed from the system and one more tuple arrivedXoto process, s01.9-09+1=
2.0 tuples. This cycle is every two time units.

It is a little tougher to intuitively follow what happens ihea MTIQ example because
aftert,, operators run over the course of 2 time intervals. MTIQ bebdahe same as
FIFO duringt,, but differs starting with;. At ¢;, there is one tuple queued 6% and 0.9
for O,. MTIQ chooses to ruw, again. Att,, there is 1 tuple fo), and 1.8 forO, (0.9
+ 0.9), so MTIQ rung),. O, finishes at timé, 55 (because it started &t and processed
for 0.25 time units) and now the queue sizes are 1, 0.8, 0.0fp0,, O5 respectively.
MTIQ runs O; again and at;, there is one new tuple fap; and still 0.8 and 0.1 ab,

andOs, respectively.



The process continues and at abaut O; will have more than one tuple in its input
qgueue and it will finally be run.

The MTIQ strategy keeps its queue sizes smaller than thoB&@, but it does not
output any results for a (relatively) long time. MTIQ’s tlughput is much burstier than
FIFO's. MTIQ will take approximately 14 time units to outpits first tuple. The next
output will come slightly more quickly, but the output pattewill not be as regular as
FIFO. FIFO outputs every 2 time units. Table 1.2 summarizepbsitives and negatives

of the two scheduling algorithms.

Algorithm | Positive Negative

FIFO

Schedules operators with tk
same frequency, outputs t
ples sooner and at a consta
rate

1e€Queue sizes grow quickly

u-Output rate is low (0.045 tu

\rtles per time unit), Does ng
utilize operators as fully a
MTIQ

MTIQ

Queue sizes are smalle
higher output rate (0.07 tuple

;rBursty output pattern, tuple

sspend a long time in the sys

[ =1

per time unit), more fully tem

utilizes operators

Table 1.2: Summarizing the Positives and Negatives of FIRDOMTIQ from Example.

1.3 Adaptive Scheduling Approach and Background

In general, an adaptive system is a system that changesh&vibe in response to a
changing environment with the goal of improving performaft]. The improved perfor-
mance may be quantified as absolute or relative to some pretdeed goal. The adaptive
system monitors the effects of its behavior on its enviromintferough a feedback mecha-
nism, with the aim of exploiting previously beneficial beltaand exploring alternative

behavior [14].



In the context of query execution, the adaptive scheduliecse will periodically
evaluate the current scheduling algorithm’s performancéhie administration-specified
QoS requirements and compare this with the other candidigeeithms’ performance.
This qualitative comparison is based upon assigning a fteesre [13] to each algorithm
that captures how well it performed in several metrics, agthroughput, memory size,
and output rate. The next algorithm is then chosen based®omomore heuristics, such
as “always pick highest score” or “pick next algorithm withpeobability equal to its
score.” This process is repeated continuously during faegrtie of the query.

The example from Section 1.2 has shown the relative strergtid weaknesses of
two scheduling algorithms during a period of constant atnates. Expanding upon the
example, say that the user’s QoS requirement specifies 4086 ‘weight be given to
maximizing throughput and 60% to minimizing queue sizes® Section 5.1 for a full
discussion on quality of service requirements. During aken, while the stream was
producing at the rate of 1 per time unit, assume the Greedtegly adequately met this
requirement (ignore the calculations of how well a strategets a requirement for now,
they are discussed in depth in Section 5.2) and FIFO did nlotis;Tthe system utilized
the Greedy algorithm.

Next, say that tuples began to arrive from the stream withvemage rate of 2 per
time unit instead of 1. Thus, we are not dealing with conshaintate (CBR) streams,
but rather variable bit rate (VBR) streams. Let's compares leach algorithm would
perform. FIFO would behave the same, although its queus sipeld grow even more
quickly than before. If we were using the Greedy algoriththimay never produce any
results, but the queue sizes would grow much more slowly B&@®. To see the intuition
of this, realize thatD; will now have 2 tuples placed into its input queue at each time
interval andO; can only process one tuple per time unit. After each inteth& queue

size of O, will grow by 1 while the queue size @, will grow by 0.9. Therefore, Greedy



will never choose to run any operator other tlian(becaus&); will always have a larger
gueue size tha®,)!

Once the system has recognized that Greedy’s queues aragrgwickly, but no re-
sultis ever being produced, it will switch to FIFO becauge® better meets the through-
put requirement. Because this switch comes at the expengeat sizes, the system may
switch between the two algorithms such that it can leveragétroughput from FIFO and
the queue size control of Greedy. If the system did not pesbese adaptive qualities,
either the memory usage would grow very rapidly and the dutge would be constant
or memory usage would grow less quickly, but there would oty throughput. Either
way, QoS would not be met.

The goal of the adaptive strategy selection is to leveragedhative strengths and
weaknesses of the various scheduling algorithms in ordguide the behavior of exe-
cution, such that it will meet the given QoS requirement. \&&suane ahead of time that
we know all scheduling algorithms that are available for useur system, but do not
know anything about their relative strengths and weakrsesghis is important to keep
in mind because if we are deficient in one metric, we cannatvclgantly find the algo-
rithm that is best suited for improving that metric. Alsofeemance of any one of the
algorithms can fluctuate wildly as the data arrival charasties change. For example,
one algorithm may perform very well when the streams arrtiveoastant intervals, but
break down precipitously during periods of bursty arrival.

This thesis will make use of a diverse set of greedy and faralgorithms including
Chain [3], a variation of Batch scheduling [5], Round Rolf#hi-O, and Greedy. The
system needs to determine which scheduling algorithmsrisider as candidates to help
answer each query. If too many are chosen the system wilbsgléof its time exploring
strategies and not enough time running the best strategyfelowill limit the adaptive

abilities of the system.

10



1.4 Research Challenges

There are several challenges associated with creating aptiagel execution engine that
can meet user’'s QoS requirements. First, a continuous gystgm and data stream
generator must be built before any adaptive scheduling thgsas can be tested. Second
a metric needs to be developed that can quantify how wellgorighm performs relative
to the arbitrary QoS requirements. The scoring functiordede 1) allow the individual
goals to be weighed for relative importance and 2) normdheecollected statistics for
those metrics such that one algorithm can be ranked againthex (i.e., scheduler A
meets the Qo0S requirements better than B does).

Next, the adaptive strategy selector needs to be able tihigetely choose the next
scheduling algorithm to use. It must be able to weigh the titsn&f choosing another
algorithm vs. staying with the existing algorithm. No séigy can ever be completely
eliminated from the selection set because there is no meaaige the effect the stream
arrival patterns had on the strategy’s performance. Thezethe adaptive strategy needs
to be carefully chosen such that it favors the well-perfognirelative to QoS require-
ments) strategies, but still allows the other strategidsetperiodically explored. How-
ever, exploring too much will degrade performance becauseetis a non-zero overhead
cost associated with switching the scheduler. The adaptrategy selector needs to be
made as generic as possible such that it may be applied torasdiieerent applications
as possible. Therefore, the selector will not make any apsans about query languages,
incoming data values, or query plans.

Perhaps the toughest challenges associated with cre&ngcbring function and
choosing the adaptive strategy selector is ensuring thersywill be able to meet the
various QoS requirements better than a single algorithnr. ekample, if rotating be-

tween three algorithms in order to maximize throughput amiimmze queue sizes did

11



not yield higher throughput and smaller queue sizes thaningnjust one algorithm,
then the proposed adaptive techniques are not useful. TapEa@dceeds to be able to be
self-monitoring in order to observe then assess this behavherefore, an experimental
framework needs to be developed that will be capable of etialy the usefulness of the
adaptive strategy for a variety of query plans and dataampatterns.

It is important to notice that the goal of the adaptive stygteelector is not to “beat”
any one algorithm at any one metric. Theoretically if thexests an algorithm that is
optimal for one particular goal, then it will not be outperfeed by a combination of
itself and other sub-optimal strategies. Hence our adapgtamework should be able
to recognize this situation and to indeed end up pickingwhisier most of the times.
Rather, the goal of this work is to leverage the strengthsaobus scheduling strategies
for a set of performance goals. This works under the assomphiat no scheduling
algorithm can meet every possible goal. This assumptiosgdgroved to be the case as
our base experiments have confirmed.

Finally, an accurate statistics engine is also needed ssysdtem can correctly and
continuously assess how it is performing. There are two gmynissues related to the
design of a statistics engine: which statistics to collectrdy execution and the trade off
between freshness of statistics and the overhead assbuidtethe gathering of those

statistics.

1.5 Outline

The remainder of this paper is structured as follows. Chidlkeiefly reviews the related
research. Chapter 3 describes the architecture of thensyetduding the underlying
guery model, queue and operator structure, and the majoulesadSeveral key concepts

and terms necessary to understand the adaptive technicpietsa defined in this sec-
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tion. Statistical calculations and metrics used are erplthin Chapter 3.3. Chapter 4
describes the scheduling algorithms that were chosen guidies their advantages and
disadvantages. Chapter 5 describes quality of servicareagants in detail, including
how they are structured and used. The section also detaitddbrithm scoring functions
and strategy selection heuristics. Finally, Chapter 6idesrthe experiments used that

will validate this work and contributions and conclusions en Chapter 7.1.
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Chapter 2

Related Work

There is a recent surge of ongoing research in the field ofutkxerqueries over stream-
ing data. A comprehensive overview of the challenges of @xeg queries in a stream
environment can be found in [4]. Most closely related to thask is that of STREAM

[16] and Aurora [5].

2.1 Stream Query Systems

Several data stream processing systems have been propo$eddurrent database re-
search. The STREAM [16] project’s goal is to “manage resesicarefully, and to per-
form approximation in the face of resource limitations inexilble, usable, and principled
manner.” STREAM focuses on efficiently allocating memorygteues, synopses, and
operators by making use of stream constraints and the CBastheduling algorithm.
STREAM also provides techniques to best approximate theygqsult using various
static and dynamic techniques such as dropping unimpdriplgs and reducing the time
that historical data is joined with current data.

STREAM differs from this thesis in the following ways. FirSTREAM’'s Chain

14



scheduler does not consider other heuristics such as margriuple throughput or min-
imizing overall response time. Second, STREAM only supporte scheduling algo-
rithm, namely Chain. While Chain works well in certain siioas, Chain can fail in
others (i.e., if high priority Chains are higher in the quplan, those operators will starve
for input). In these cases, STREAM does not have any mearectver. In this work,
if a scheduling algorithm starves or is ill-performing, tagaptive algorithm is able to
choose an alternative strategy that will perform bettere ©fthe primary contributions
of this approach is the ability to adapt to any changing cibor in the data stream and
thus, STREAM’s performance should lag behind the adaptiategy more if the arrival
patterns change frequently. STREAM also does not allowtferstystem administrator to
specify their own quality of service requirements.

Aurora [5] aims to reduce tuple execution costs while mazing overall QoS. They
accomplish this by having operators queue as many tuplessaitye without processing
and then the operator processes all tuples at once germpeaatiain. The benefit is that
tuples passed to subsequent operators do not have to gé& endishus they incur less 1/0
time. Aurora allows the administrator to input a graph thefirtes what a “good” QoS
means. Aurora takes into account many different QoS medrich as response times,
tuple drops, and importance of values. It allows for aribjtigompositions to be created.
When the performance deteriorates (as detected by the QaBampthe load shedder is
activated to bring the QoS to an acceptable level [5].

Aurora contrasts from our work in that Aurora makes use ofdyremic scheduling
algorithm as opposed to adapting the scheduling algoritepedding on the circum-
stances. Aurora focuses on maintaining administratocipd QoS requirements, as in
this work, but the key difference is how the systems behavenwdoor performance is
detected. Aurora assigns a priority to each tuple based wmraleheuristics and drops

the unimportant tuples to improve performance. This sgsatan be effective in some
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situations because it reduces the load on the system, howésads to an approximated
result. This work will always keep data that has arrived teuga the accuracy of the
result, but will alter the scheduling strategy in hopes dfie@ging better performance.
Tribeca [17] is a stream oriented system that was designadalyze network traffic.
Tribeca’s goals are similar to this work, but does not suppdrhoc queries, adaptive

scheduling, and does not allow for administrator-define® @muirements.

2.2 Operator Scheduling

Several works focus on operator scheduling. The Chain itfgof3] is a modified greedy

algorithm that takes into account the importance of an dperelative to those around it
in the query plan. Rate-based stream scheduling in [20kde&h ordering the execution
of input streams so that the stream with the highest outpeitvdl have a higher priority,

and thus will be executed more often. The goal is to produgkesuas quickly as possible
and to maximize throughput. They also take into accountefegive importance of tu-

ples, based on how well the system believes the tuple willrtmrte to the query answer,
and strives to output the more important tuples quickly.e@edph [2], [12],[11] is an-

other adaptive query system that makes use of Eddies [2]dptdkle execution for each
tuple. Eddies uses a lottery-type scheduler to decide whyale should go to which Join
operator. Eddies will dynamically route tuples to any aaalié operator that will need to
eventually process the tuple. The goal is to prevent tuptas fvaiting in input queues
for a slow operator to be ready to process them. [12] extettteegrevious Eddies work
by providing support for queries over stream. This level ddation is much finer than
compared to what is used in this thesis, although the ideaying the tuple schedul-
ing served as inspiration for this work. Eddies does not iciemsadministrator-specified

QoS metrics and thus, while the system is adaptive, it doeallwov the administrator to
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customize the behavior of the system.

2.3 Query Plan Adaption

Various works [10][21] focus on adapting the query plan tdtddemeet performance
goals. This adaption can either happen during executioiyforganizing poor per-
forming query plans or before execution begins [22] by getiieg a better plan based on
statistics from similar plans.

The Tukwila project [9] proposed the use of synchronizapackets to “tell” each
operator to complete the processing of the tuples in itstibpfiers so that the query plan
may be reorganized. [21] proposed cost-based heuristoyg@mically scramble partial
and complete query plans. NiagaraCQ [6][15] is a continwguery system that uses
XML as data format. Niagara focuses on efficiently sharingcpssing between large
amounts of continuous queries. In [22], NiagaraCQ was ang¢gdewith two rate based
heuristics to consider when processing a user’s long rgnoircontinuous query. The
first heuristic optimizes for a specific time point in the exi®en process which answers
“which plan will produce the most results by timg” The second heuristic optimizes
for output production size, answering “which plan is thetfoee to reach N results.”
However, Niagara primarily focuses on generating an efftcggiery plan and does not
focus on any execution-time scheduling issues, thus theedtics do not map directly
to our work. Niagara only considers those two rate heusstitd does not account for
gueue sizes.

The XJoin [18] operator was created in order to reduce thelrdelay needed to
produce results, efficiently create output tuples by bregakhe Join into three stages,
and keep the system occupied during periods of slow arratakr As future work, this

thesis could incorporate an implementation of an XJoin ajperto assist in meeting a
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“maximize throughput” QoS.
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Chapter 3

Background

3.1 Architecture

A primary part of this thesis entailed developing the coreticmous query architecture
for the Raindrop system. Raindrop is made up of five primamponents as shown in
Figure 3.1. It acts as a middleware application between sadapplications and the raw
streaming data. End user applications submit queries todRap and have results re-
turned to them when they are available. Team Receiver is responsible for receiving
the streaming data from vario®ream Sources across the Internet and submitting the
data to theStorage Manager. The Operator Scheduler orders the execution of operators
according to a given scheduling algorithm. The Executiogii® (EE) actually runs the
operators and the Statistics Gatherer (SG) managesistaéibbut the current system per-
formance. This thesis deals with the EE and SG in depth artddidhese modules are
discussed in detail below. An overview of the Storage Manage Operator Scheduler

is provided at the end of the section.
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Figure 3.1: Raindrop System Architecture

3.2 Query Model

3.2.1 Query Plans

Raindrop executes a query plan over streaming sources. Udrg glan can be thought
of as a directed acyclic graph (DAG) where the nodes reptegeaty operators (Section
3.2.2) and the edges represent queues (Section 3.2.3) axdmple can be found in Fig-
ure 1.1. The streams are connected at the bottom of the pththarend user application
resides at the very top. The operator(s) that connect diriecthe end user application(s)
are called theoots and those that connect to the streams are cdmas.

Assume that each user query in Raindrop is able to be maxistadred with the other
guery plans. That is, Raindrop is able to combine all sinafzgrators and functions from
one query plan with another, thus saving execution time. M& @sume that the query
plan does not change during the course of execution andlth&ea queries are specified

ahead of time.
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3.2.2 Operators

All query operators in Raindrop have been implemented inp&lied, non-blocking
manner. That is, every operator is capable of producindteeafier seeing only a partial
data set and the operator will not block waiting for more in@ome relational operators,
such as Select and Project can easily be implemented in gmsen, while others, like
Join, need a new implementation strategy [19].

The adaptive scheduling techniques will work over a gersetof algebra operators
that do not depend on a specific query language or data fofithetallows us to focus on
the issues related to adaptive scheduling. In this papegqulery plans and operators are
generalized. Two representative operators will be useglfarsingle streams and one for
multi-streams. Both operators can be assigned a chosentigi&yeand per-tuple process-
ing time. To avoid an unbounded memory requirement, we imptged the multi-stream

operator as a windowed-hash join.

3.2.3 Queues

Intra-operator data results are stored in main memory quasiéuples. Queues serve as
the connections between operators and define the routetufilas take during execu-
tion. Each queue maintains one pointer to the last tupleithsitbeen processed by each
consumer. Periodically the queue cleans up these poimedreeaoves filtered tuples in

order to minimize memory consumption.

3.2.4 Execution Engine

The Execution Engine (EE) lies at the heart of Raindrop. tegponsible for asking the
scheduler to determine the next operator to run, runningaperator, updating statistics

through the Statistics Gatherer (see Section 3.3), anddbsrmining if the scheduling
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algorithm should be changed. Here is a walkthrough of thes ESks during execution:

1. Ask the Operator Scheduler to choose the next operaigto run.

2. Ifthe workload, the number of tuples available for an eparto process, foaDp >
0, then update the statistics fOp’s input and output queues and pass the workload
to the operator. If the workloag 0, then there is starvation and the algorithm will

pick another operator.

3. Run the operator. When the operator has processed iggadsivork, control is

returned to EE.

4. Update statistics faDp including: runcount, outputeduples, and timeun. Pe-
riodically updateOp’s selectivity, average tuple processing time, output, ratel
priority, all of which can change depending on the chargsties of the data that

arrives. See Section 3.3.1 for equations to calculate ttasistics.

5. Determine if the scheduling algorithm should be switcbetfor an algorithm that
better meets the user’s QoS requirements. This check is gemadically, on the

order of seconds, based on some administrator-definedeinegu

6. Repeat steps 1-6 for the duration of the query.

The EE needs to ensure that the system will not deadlock whetgarithm starves
because some scheduling algorithms are inherently pros&teation (i.e. any Greedy
algorithm). Therefore, if an algorithm chooses an operaiaun and the operator has
no work to do, the EE will note the starvation and ask the diigor to choose another
operator. This process will continue until either the altpon either chooses an operator
that has work to do or a starvation threshold is reached.eltliheshold is reached, the

EE will change the scheduling algorithm.
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The Execution Engine’s behavior is strongly influenced l&ydiistem administrator’s
parameter setting. The system administrator is respanfblsetting the frequency that
certain statistics are updated and how often the EE cheeksatiormance of the current
scheduling algorithm relative to the quality of serviceuigments. A poor choice of
parameters can cause a large increase in the system ovelreeupdating statistics too
frequently. It can also cause the EE to stick with a poor dligor too long. Therefore,
careful tuning is needed to ensure the EE performs optimally

In our current setup, the EE only asks for the schedulingrétgo to choose one op-
erator at a time. This simplifying assumption was made b&e#oe overhead to choose
the next operator was experimentally shown to be negligleh some scheduling al-
gorithms, such as round robin, the algorithm can deterntirecomplete running order
for operators. On the other hand, greedy algorithms suchoas toples in queue, cannot
predict which operator will be run next because the systere s constantly changing.

Unlike Eddies [2], the execution runs in a single thread tabke to assess the ef-
fectiveness of adaption. Future work can investigate theefits of running multiple

operators at the same time, but for now, only one operataut@e at a time.

3.2.5 Statistics Gatherer

In order for the query plan to be executed according to uséned priorities, cost formu-
las must continuously be evaluated to measure how well éecg performing relative
to the desired behavior. To aid in the evaluation of thesaédas, a comprehensive statis-
tics engine was created to store, calculate, and sorttgtatielated to various operators
and queues in the system. All statistics related to quergatdjare stored in one place to
allow for efficient analysis of system state.

The Statistics Gatherer’s (SG) foremost requirement isieffcy both through storage

and in retrieval abilities. If the bulk of the execution tinvere spent calculating statistics,
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then the system would not be able to adapt very well. It alsila¢o be compact and
efficiently support queries. Therefore, the statisticheger is analogous to a database
that only stores its data in main memory. Like a databasesgtdistics gatherer can
also be tuned by the system administrator. The administn@® control over parameters
such as the size of historical data kept, weight of old datapgared to new values, and

frequency that data is sorted and indexed.

Retrieving and Updating Statistics.

Traditional (relational) cost models primarily gathertisttics on selectivity of predicates
and estimated sizes of relations [8]. The optimizer thes tisese statistics, which can be
updated at various time intervals, to determine how to aegeate query plan and how to
schedule execution. In comparison, SG stores statisttog tw quantify the unpredictable
nature of a streaming execution.

During execution, both the scheduling algorithms, ex@cutiontroller, and operators
access the statistics gatherer to either update or ret{genasy) statistics about other oper-
ators or queues. After an operator has executed, the ezr@antroller updates statistics
related to how long an operator ran, how many tuples wereuymexdi how many tuples
were consumed, and how many times an operator ran. Petligdiba controller updates
aggregate statistics for operators including selectivoityput rate, average tuple process-
ing cost, and priority. The various scheduling algorithmeny the SG to find properties
about operators such as which operator has the highestyriowest processing cost, or
highest output rate. The SG also keeps track of statistyzzdéng queue sizes.

Because we assume that all of the statistics will fit in mairmowey, we can make
use of a nested-hashtable that will keep the cost of retrieand updating values nearly
constant. This is important because often updating onsstitatequires querying values

of several other statistics and we want to minimize the timeded to update a statistic.
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For example, to update the average tuple processing timeallulator needs to retrieve
the number of tuples the operator has inputted and the timmepghkrator has run. SG also
exposes an interface to allow for the query objects to bemetbased on defined filters,
such as min, max, highest, or lowest. This allows schedudlggrithms to retrieve the

operator that has the highest priority or most tuples inflqueues.

Statistics Organization.

The individual statistics for the operators are organizediews in the SG where each
scheduling algorithm has a view created that representgadtor’s statistics while that
algorithm was selected by the EE. There are two additiomaVsiof the statistics created,
one containing the overall statistics for the operators@reicontaining generic operator
statistics. The overall or historic view provides a meansde how each operator has
performed regardless of the scheduling algorithms empldyes far. The generic view
is used to store statistics about the current state of aratggesuch as the number of
tuples enqueued in the operator’s input or output queue(s).

The scheduling algorithm views allow for the SG to providensoway for the exe-
cution controller to determine how well the current schedpbklgorithm is performing
compared with the others. Using the views, the EE can makeegut® the SG to com-
pare the value of statisticfor operator A for the Round Robin and Greedy algorithms.
Furthermore, using the overall view, the EE could compagg#rformance for statistic
for Round Robin to the overall performance, which includeaggregate of Round Robin
and the other possible algorithms. Note that if only onetigom has been employed thus

far in execution, then the historical view will be equivalémthe view for that algorithm.
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3.2.6 Storage Manager and Operator Scheduler

The Storage Manager is responsible for storing the datehteeither arrived from the
data streams or been generated during the execution of grg. dihe Storage Manager
utilizes efficient algorithms for writing and reading thet@&om disk and memory and
is essential for the system to process queries quickly. TinerydProcessor provides an
interface to the external user applications to submit @seover the data streams. The

Query Processor will generate query plans that will thendne ®© the EE.

3.3 Statistics

3.3.1 Supported Statistics

This section defines the statistics that are calculated eystatistics gatherer and the
formulas used to calculate them. Statistics are calcul@ieduery objects and a query
object is a generic base class for all operators, tuplessaine query plans. Statistics can
also be an aggregate of any number of query objects. Table @&3cribes the notations
and variables that will be used in defining these statisticsgeneral, the value of a
statistic will be represented ag B). This is interpreted as “retrieve the value of statistic
B for the query object A’. The possible query objects@;d’, and( for operator, tuple,

and query plan, respectively.

Note:

1. O(n},,) is equivalent to the number of output tuples that the operatould have
produced duringl! of the total time that the operator has been Wfy;,,,,). That

is, if an operator has one input queue of sizehenO(n? ;) = x. If an operator
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var name| description

t’ Unit of time

O(n?) Number of tuples in all of the input queues for operator
O(nk,..) | Total number of tuples processed by oper&daturing all#’
O(n?,.) | Total number of tuples outputted by operatdduring all¢’
O(t,,.,;) | Total time units that operat@p has run

T(t) Total time tupleT” has spent in the system

Q(n) The number of operators in query pl@n

Q(n") The number of root operators in query pl@n

Table 3.1: Variables and notations used in the forthcomqggons

hasi input queues with sizes, toz;, O(N},,,) is equivalent to the product of those

sizes.

2. O(ng,,,) represents the total number of tuples that oper@tbas outputted during

all of its time slices.

3. Frequently, the weighed average of statistics is usedlmulate other statistics.
This average is calculated by the Equation 3.1, where the weight given to the
older value. Settingy higher will force the system to “remember” the older values
for longer. Thus over time the value is less likely to fluceua®n the other hand,

lower w values will cause the average to fluctuate more.

In Equation 3.1,4,,¢44¢(B) represents the new average value of statiBtifor
query objectd, A(Byew_vaive) represents the most recent value of statisgtior

query objectd, andA,,,_q.4(B) represents the prior calculated average.

Aaverage(B) - (Aold_avg(B) * w) + (Anew_value(B) * (1 - U))) (31)

Statistics apply to operators. All statistics are computed using the data from the begin-
ning of execution. This does not create unbounded storagpribe most of the statistics

are averages and thus their storage space does not growoger t
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Selectivity:

O(nar)
O(0) = ks 3.2
( ) O(nfotal) ( )
Output Rate:
O(nar)
O(7op) = — 2! 3.3
( p) O(t;otal) ( )
Average Tuple Processing Time:
o(nh )
O tC _ total 34
( ) O(t:‘,otal> ( )
Operator Throughput:
O(tozn) = O(ngotal) (3.5)

The following statistics apply to entire query plans.

Query plan’s throughput:
Qltg) = Y. Oj(te) (3.6)

The throughput of a query plan is the sum of the throughpuaoheoot operator.

Output rate:
Q(ry) = Q(tq)/t’ (3.7)

The output rate of the query plaf(r,), can be thought of as a normalized through-
put for the query plan for an average time unit. It is equalhe guery plan’s
throughput divided by a unit of time. Typically the denontoraused is the over-
all length that the query has been running, but sometimesrgventerested in the

output rate over the lasttime units.
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Total number of tuples in queues:

Q
Q(Grota) = Y_(n)O;(n’) (3.8)
§=0
Average age of tuples:
T
T(tage) = 3 T (1) (3.9)
=0

3.3.2 Adding New statistics

The statistics gatherer is flexible and supports the additfaser-defined statistics about
operators, tuples, and query plans. The statistics can foeedebefore the system has
started (during linking) if the new statistic requires a @pecomputation that is not
presently supported by the system. If the statistics caserexisting calculations, then
the user may define statistics during the initializationgghaThe user needs to specify
where the calculation is performed, which type of query otfg support this statistic
(or all of them), and the frequency the statistics shoulddleutated - either every time

statistics are updated or along with the rest of the peralyicipdated statistics.
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Chapter 4

Scheduling

4.1 General Issues

Raindrop uses several scheduling algorithms for execstitbeduling of query operators.
The Execution Engine will ask a scheduler to choose the np&tator to run and to
determine its workload. After the operator is run, the coligr may decide to choose
another scheduling algorithm if it deems the current athariis not meeting the user’s
QoS requirements for execution behavior. The heuristicddaiding which algorithm to
choose are presented in Section 5.3.

A scheduling algorithm is responsible for two tasks: chongdhe operator to run
next and assigning a workload to that operator. The nextabdpedecision depends on
the algorithm itself while the workload assignment is ofteed regardless of the sched-
uler. In Raindrop, the workload assignment is controlledvwsy administrator-defined
parameters. The first paramet&AT 0, is the ratio of tuples that an operator should
dequeue relative to the total number tuples available.eddlyr this ratio is fixed for each
strategy, but future work could adapt this depending onssied. The second parameter,

THRESHOLD, aids in calculating how much work to assign to an operat@inhs to
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reduce the chances that an operator is underutilized bpgettimit for when to use the
RATIO and when to use the total number of tuples available. Figurélldstrates the

intuition of this parameter.

N = the nunber of tuples in operator O s input gqueue
A = N x RATIO
if A > THRESHOLD
t hen O dequeues A tuples.
el se
then O dequeues N tuples

Figure 4.1: Pseudo code for determining operator workload

Without this threshold, iDp has 50 tuples in its input queues and the ratio i$)A4,
first runs for 5 tuples, then 5 (45 x .1), then 4, and so forfp will have to be run
many times over to work with all 50 tuples. If tHeH RESHOLD is set to 50, which
experimentally was shown to yield good performance for egmdrator,O, only has to
run once. Setting this too high could decrease performaacause an operator may be
overwhelmed with tuples, but setting it too low could resnla lower performance as
well because an operator may not be fully utilized. In ourezkpents (Section 6), we
found that setting the RATIO to 30% yielded the best perforcea

Every scheduling algorithm has its advantages and its fl&estain algorithms are
particularly good at keeping memory utilization to a minim{B8]. Other algorithms are
excellent at quickly producing some result set for the ermliegtion user [22]. The adap-
tive technique utilized in this paper focuses on selectipgrécular scheduling algorithm
when its advantages can be exploited. There are times wheesiongle algorithm is the
best to use and is more effective than switching betweerilggseveral algorithms. Our
aim is that in this situation the adaptive technique woul@ethis algorithm as often
as possible. However, supported by our experimental sesalt will show that many

gueries based on varying QoS requirements do not have otieutar scheduling strat-
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egy that works the best. In fact in such cases, it is bettetilimaithe strengths of several
algorithms to produce the best overall quality of servicggilde. For review purposes, we
now describe several scheduling strategies employed badaptive scheduling frame-

work, and explain their advantages and disadvantages.

4.2 Round Robin

Round Robin (RR) is perhaps the most basic scheduling #gorilt works by placing
all runnable operators in a circular queue and allocatingealfiime slice to each. Round
Robin’s best quality is the avoidance of starvation. An aparis guaranteed to be sched-
uled within a fixed period of time. In fact, as long as an opmratways has work to do,
no operator will be run more times than any other. HoweveuyriRidRobin does not adapt
at all to changing stream conditions. It also does not camnsitany possibly important
factors, such as an operator’'s performance relative tor @perators, size of the input
gueues, or the selectivity. Therefore, the intermediatugusizes can grow rapidly be-
cause RR may spend its time running other operators thatiéss@vork to do or are less

favorable for other reasons.

4.3 FIFO

FIFO (first in first out) chooses a leaf operator to executeatampts to push its tuples
through the system as far as possible. FIFO typically yialdensistent throughput, be-
cause it tries to execute older tuples until completion keefoconsiders newly arrived
tuples. But it has the same drawbacks as Round Robin - noieglagss and no consid-

eration of operator properties.
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4.4 Greedy

Greedy scheduling assigns a priority to each operator avalyaltries to run the operator
with the highest priority. If the operator with the highesiopity has no work to do (i.e.
empty input queues), Greedy will choose the next highestipyi The priority, calculated
dynamically, is shown in Equation 4.1 and was originallywhan [3]. The operator’s
priority and corresponding selectivity and tuple cost a@alculated periodically during
execution to insure that the information is not stale.

Greedy eliminates some of the drawbacks of Round Robin aidieétause it consid-
ers the cost of each operator before choosing which opeaxatan. However, it is prone
to starvation. If the high priority operatof}, is proceeded by lower priority operators,
O will eventually starve for input because its children operstmay not be run as often.
On the other hand, if that same operatbwere connected to the streams instead, it will
almost always have work and thus the other operators in thtesywould never be run
often. The output queues 6f would grow indefinitely.

Throughput and average delay may suffer with Greedy bedaesstrategy does not
take into account where in the execution plan the operagsr IThus, it does not give
higher priority to those operators that will output resttishe end user. These metrics
will suffer more if the higher priority operators are lower the plan and less if those
operators are near the top of the plan.

Greedy will slowly adapt to bursty streams. To see this , fissume that an operator’s
selectivity is relatively constant over time. Some opeatnay be able to work more effi-
ciently with a larger amount of tuples (i.e some hash-basied pecause the fixed cost of
hashing each tuple can be spread out over more possible@satnid thus their average
tuple processing time would increase or decrease duringdseof burstiness. Therefore,

the priority would fluctuate accordingly. However, it is Uger if this fluctuation would
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be immediate or if there would be some lag time before thesagds are propagated
throughout the system and the scheduler adapts. The spelee pfopagation depends
on how often the priorities are updated. Updating too fredyevill keep the priorities
current, but at the expense of system overhead, especidtypperators whose priorities
are unlikely to change much over time. For example, the dgséidorming a traditional
RDB Project operator will likely remain constant.

The Greedy priority is calculated in Equation 4.1. Equadiohwill produce higher
(better) values when the operator has a low selectivity(1» 1) and / or has a low cost

to process 1 tuple.

(4.1)

4.5 Most Tuples in Queue

The Most Tuples in Queue (MTIQ) scheduler is a greedy algorithat assigns a priority
to each operator equivalent to the number of the tuples imjist queues. MTIQ is a
simplified batch scheduler similar to [5]. Batch scheduilgosk under the assumption
that the average tuple processing cost can be reduced ifexatopworks on more tuples
at a time. Operators typically have a start-up cost asstiaith their execution and the
batch scheduler can amortize this cost over a larger grotppbés. Round Robin and
FIFO do not have this property and thus those algorithmstendder-utilize operators.
Second, MTIQ tends to have a bursty output pattern. Typicatiakes a relatively
long period of time for enough tuples to make it through th&temy such that the root op-
erator has more work to do than the operators below it. Hovyeween the root operator
runs, it then will output a large block of tuples. Some tuplais experience little delay

while others will be enqueued for long periods of time, butawerage, the mean delay
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will not be much worse than the other algorithms.

The most obvious advantage is that MTIQ works well at miningznemory con-
sumption. By running the operator with the most tuples engdethe algorithm will
have a better chance than the previous algorithms at egstirat no queue will grow
unbounded. If the data arrives faster than MTIQ can pro¢es®en that queue will grow

infinite in size.

4.6 Chain

Chain [3] is a recently proposed variation of Greedy SchadulConceptually, each op-
erator is assigned a priority that is based on selectiviylet processing cost, and the
priorities of each operator preceeding it in the query plEms inductive priority is cal-
culated by plotting the query plan on what is called a progodsrt. The horizontal axis
of the chart represents time and the vertical axis repredbetnumber of tuples in the
system at each operator at the given time. Each point on @ir¢ obrresponds to the time
that an operator takes to process its tuples. The pointsosmgected and the priority is
calculated based on the slope of the line between pointsinGahedules the operator
who has tuples that lie on the steepest slope of the proghast cThe intuition here is
that several operators will be "chained” together in suchaammer that when the opera-
tors are selected they will remove the largest number oegifstbm the query plan in the
shortest amount of time.

Chain may suffer from starvation and poor response timenduimes of burst [3],
but was shown, using experiment results, to be a near opsiraegy for keeping queue
sizes to a minimum.

The relative strengths and weaknesses of the algorithnesided above can be found

in Table 4.6.
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Table 4.1: Comparison of Scheduling algorithms.

| Algorithm | Advantages

| Disadvantages

Round - Guarantees that every operator Does not select an operator because it is "bgs
Robin is scheduled. but because it is "next”.
- Over time, poor output rate and memory utilize
tion.
FIFO - Schedules operators with the Queue sizes grow quickly.
same frequency. - Output rate is low.
- Outputs tuples sooner and af aDoes not utilize operators as fully as Greedy.
constant rate.
MTIQ - Queue sizes are smaller. - Bursty output pattern.
- Higher output rate. - Tuples spend a long time in the system.
- More fully utilizes operators.
Chain - Keeps queue sizes small.

- Chains logically scheduled op-latest statistical data.

erators together.

- Suffers from poor average processing time and

hinder output rate.

- Chains need to be periodically recalculated wi

C
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Chapter 5

Adaptive Scheduling

5.1 Quality of Service Requirements

Raindrop allows for the system administrator to specifydésired execution behavior as
a composition of several possible goals. A QoS requirememsists of three parts, the
statistic, the quantifier, and the weight. The statisticesponds to which requirement

the user wishes to control. Currently, Raindrop suppoddaliowing requirements:

Output Rate: how many tuples does the query plan output teritieiser application per

time unit.
Intermediate Queue Size: how many tuples are stored imagiate queues

Tuple Delay: what is the delay from the time tuples enter y&esn until they are

outputted.

The quantifier, eithemaximize or minimize, specifies what the system administrator
wants to do with this preference. Because the system sigppaoyt metric in the QoS
specification, Raindrop needs information regarding wéretiie metric should be maxi-

mized or minimized. The weight is the relative importanceath requirement and the
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sum of all the weights is equivalent to 1. The weights willwé&om application to ap-
plication meaning it is imperative that the administratssigns weights that reflect the
individual application’s needs. Table 5.1 shows an exar@u®& specification. Here, the
administrator has specified that the system should giveelsigtriority to the minimizing

queue size and the maximizing throughput is assigned pyrig2i.

Statistic Quantifier| Weight
Input Queue Size minimize | 0.75
Throughput maximize | 0.25

Table 5.1: An example preference

Here we assume that all application queries share the saatigyqpf service require-
ments. That is, assume the system administrator will specgingle quality of service
requirement that applies to all registered applicatiorrigsei.e., for the one global query
plan in the system. The administrator has the ability to gleathe requirements during
the course of execution, but that would affect all queriesing this assumption allows us
to ignore issues related to conflicting QoS specificationsraltiple application queries.

QoS requirements are a key concept in Raindrop. They witlgthe adaptive exe-
cution by encoding the goal that the system is supposed supuiWithout these pref-
erences, the system will not have any benchmarks to deternaw well or poorly it is
performing. It is important to note that the requirementscsy the desired behavior in
relative terms. That is, the administrator does not speaifabsolute performance goal
(i.e., achieve an output rate of X tuples / sec or have no nmare Y tuples in the queues at
once), but rather specifies that they want the system to magioutput rate or minimize
gueue size. Absolute requirements are too dependent oradatal patterns and so on
thus, may not be achievable without drastic measures sudhoaping tuples from the

load and thus affecting the actual answer [16][5].
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Aurora’s [5] definition of quality of service requirement sgmilar to what is used
here, although the terminology is slightly different. Geally, QoS relates to a desired
execution behavior in Aurora and it specifies an absoluteirement. In this work, QoS
requirements also relate to the goals specified by the adtrator (as in Aurora), but this
work does not try to improve the QoS as execution progressheRaRaindrop tries to
match system performance to what is specified in the QoSnesgent.

The system also provides QoS requirement templates. Eaqiate contains one or
more requirements and each has been tuned to best achiextaia geal. This allows
the administrator to more easily specify the desired execltehavior without having to
worry about the lower level details including making gussabout relative weights. If
no service requirements are provided, the system will chaa$efault suite that will give

equal weight to minimizing queue sizes and delay and maxngiautput rate.

5.2 Algorithm’s Score Computation

During execution, the Execution Engine will update theistias that are related to the
QoS requirements. Once these statistics have been uptiaesiystem needs to decide
how well the previous schedule$,;;, has performed, compare this performance to the
other scheduling algorithms and then determine how to naatexecution. To accom-
plish this, the system calculates the meap)(and the spread of the valuesdzy —
miny) of each of the statistics specified in the service prefereifior the historical cat-
egory, H. Next, using the statistics frorfi,; the meanus of each of the statistics is
calculated. Finally, eachs is normalized according to the formula in Equation 5.1. This
normalizes each value in the).5 to 0.5 range. 0.5 is added to theto insure it is always

between 0 and 1.
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2 = (s = pun1) s decay'™ 4+ 0.5 (5.1)

marg — ming

A decay parameter is used to exponentially decay old and out of dettetd reflect
the unreliability of the score of algorithms that have nat for long periods of time. The
decay is calculated by raising thlecay paramete(0 < decay < 1) to a giventime.
time can be expressed in units of time sincgwas updatedr it can be in expressed as
the number of times that other algorithms have been chosee this strategy was cho-
sen. Both approaches have their merits and the choice debeadily on several other
factors such as the frequency that the scores are compttdte dcores are frequently
recalculated, using the time since updated makes more Hesseising the number of
algorithms since last chosen because the number of timedeg#y the score too quickly

and an algorithm’s score will rapidly approach zero.

Next we compute a scheduler’s overall scoi@eduler_score for the algorithm we
just used, using a weighed sum, using the statistics saare$ection 5.1 and the weights
of each requirement as given by the user. Equation 5.2 showsHis score is computed.
In this equation, each of the normalized values producedduafion 5.1 are multiplied
by the corresponding weight;. The quantifier, from the preference, is used to determine
if we wish to maximize or minimize;. If the quantifier equals maximize, = z;. If the
guantifier is to minimize, theg, =1 - ;.

1
scheduler_score = _ (z;)(w;) (5.2)
=0

Finally by comparingS,;;'s scheduler_score with the scores for all of the other al-
gorithms (that have run so far), the system can decide howaxgloorly the previous
scheduler performed. The system then determines whichittgoto choose next, Sec-

tion 5.3 describes this next decision making process.
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Analysis of Behavior of Equation 5.2 Equation 5.2 gives a higher score to QoS re-
quirements that have a high weight and a higlalue from Equation 5.1. Equation 5.1
maps each scheduler’s score for each statistic to a valweebetO and 1 and allows for
a comparison among different statistics. The weighed som fEquation 5.2 will also
yield a value between 0 and 1 for each scheduler. In our casejamted to map a whole
data set (statistics for a scheduler) into a single valuedbald be compared to another
set.

The score assigned to an algorithm is not based solely onrthgops time that it
was used, but rather is an aggregate over time. While thenpeaihce of an algorithm is
largely coupled to the behavior of the data, over time theesob the algorithm should
reflect its true potential.

There are several important properties to note regardingtanp 5.2. First, the statis-
tics in theH category are a union of the statistics for each individua¢saling algorithm.
That is, becaus# (historical category) contains data from every categargl,thus every
time that the statistics fo$,,; are updated, those same statistics are updateH faith
the same values.

Second at the beginning of execution, Equation 5.2 is prorautliers and initially
will assign misleading scores. Similarly,  has been used more frequently than any
other scheduler or if it has been run for a long time, the medmes for statistics fof);
will be similar to the mean iri{. This is due to the normalization technique chosen in
the equation. The min-max technique captures the behavigyrmelative toH by noting
the difference between their means for the given statiBtrery time an algorithm is run,
the mean off is drawn closer (skewed) towards that algorithm. By corgusly running
the same algorithm, the mean 6f will end up on top of the mean off any relative
performance information is lost. Thus Equation 5.1 willgwoe a value closer to 0, even

if S; is performing well or poorly.
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To overcome this problem, after each algorithm has beenwergo not update the
score forS,,4, but rather the score for every algorithm that did not run is computeds;If
ran for sufficiently long, then this will effectively compathe other algorithm’s previous
performance to that of the current algorithm’s. Thus we dasctly compare how well
each algorithm is performing. The score used for the cuakyarithm,S,,;, comes from
the last timeS,;; was run. To account for stale data f8y,;, we decay that score every
time using thelecay parameter that was previously discussed.

Several items that must be considered using the scoresdordat the next schedul-

ing algorithm.

1. Initially, all scheduling algorithms should be given anhe to “prove” themselves,
otherwise the decision would be biased against the algositthat did not run.
Therefore, at the beginning of execution, we want to allomsalegree of explo-
ration on the part of the adapter. However, if the query iatietly short-lived, i.e.
the application only issues the query for a short amounteé tiallowing too much

exploration will not allow the adapter to do its job.

2. Not switching algorithms periodically during executi@®., greedily choosing the
next algorithm to run) could result in a poorly performing@iithm being run more
often than a potentially better performing one. Hence, weeha periodically

explore other strategies.

3. Switching algorithms too frequently could cause one g to impact the next
and skew the latter’s results. For example, using Chain asritbed in Section 4
could cause a glut of tuples at the input queues of loweripyioperators. If MTIQ
were to be run, its throughput would initially be artificialhflated because of the
way Chain operated on the tuples. If we switched to anottgardhm soon after,

the z-score from Equation 5.1 for throughput would be skewed
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More generally, when a new algorithm is chosen, it shouldds&ldor enough time

such that its behavior is not significantly controlled by pinevious algorithm.

5.3 Adapting Scheduling Strategy

After the above computation has been completed, the systedsro decide if the current
scheduling algorithm performed well enough that it shouddused again or if better
performance could be achieved through changing algoritidossidering the two points
above, initially running each algorithm in a round robintes is the fairest way to start
the adaptive scheduling.

In an effort to consider all scheduling strategies whild ptiobabilistically choos-
ing the best fit we adopted the Roulette Wheel strategy [I8hfGenetic Algorithms
research. This strategy assigns to each algorithm a slieecottular “roulette wheel”
with the size of the slice being proportional to the indi\adls score that was calculated
by Equation 5.2. This strategy is also referred to as “fitqpgeportion selection”. Then
the wheel will be spun once and the algorithm under the wheedirker is selected to
run next. This strategy may initially choose bad scheduéifggprithms, but over time,
should fairly choose the correct algorithm. The strategp allows for a fair amount of
exploration and it prevents one algorithm from dominating.

The adaptive strategy will first run each algorithm onceafgoroximately one second,
in a round robin fashion. The first algorithm run will be runcenmore at the end to
account of the initial start up time for the query. Once thisgess has completed, the

roulette wheel will be used for the duration of the query exer.
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Chapter 6

Experiments

6.1 Experiment Setup

This section will describe the experiments conducted irotalcompare the performance
of a single scheduling algorithm to our adaptive solutiopleiting multiple algorithms.
The first phase of experiments establishes a performanedinm$or a single algorithm
during bursty streams, where bursty streams are definedessrs whose arrival rate
spikes to an order of magnitude above the average arrival rEthe second phase will
then compare the performance of the adaptive strategy tsitigge algorithms during
periods of burst. Four scheduling algorithms describedectiSn 4 were used- Round
Robin, Chain, FIFO, and MTIQ.

If one algorithm can meet a given service preference on its th&n switching be-
tween that algorithm and other sub-optimal algorithms nalt yield better performance.
Therefore, we want to show that the adaptive strategy pitisdingle algorithm most
often and will perform nearly, if not exactly, the same ag tree strategy does. The more
interesting experimental case is when a clear tradeoffémtvalgorithms exists. We also

want to show clearly that, for each quality of service conijpms, the adaptive strategy
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selection performs better than any of the candidate algostThe optimal case would be
for the adaptive strategy to meet the maximum value posiibkeach preference.

We used the three metrics in our experiments- mean outpeit mean delay, and
mean memory size that were discussed in Section 5.1. Toattdehe memory size is
defined as the number of tuples in all queues in the systemia¢a gme unit. The delay
is equal to the time a tuple spends in the system (time waitingueues + processing
time) and the output rate is the number of tuples a query ptadyzes per time unit.
These requirements were selected for experimentation ascdmeduling algorithm can
optimize for all of them at the same time.

For each experiment with two preferences, the preferenees assigned weights of
100-0, 70-30, 50-50, 30-70, and 0-100 where the first nunsbtra weight assigned to
the first and the second to the second. When all three prekseamere used in a single
experiment, we used equal weights of 33-33-34.

The single QoS experiments were run for 30 seconds while tilgpie QoS exper-
iments ran for 300. The influence of any startup costs wasmiied by running the
first algorithm for five seconds before beginning the rour@ir@roceedure described in
Section 5.3. The charts shown below do not include any stsigatherered during the
startup and exploratory phases. We evaluated the adaptivieg function every two sec-
onds after running each algorithm for an initial period. Bletistics described in Section
3.3.1 were updated every second and 0.875 was usedifothe weighed average equa-
tion, Equation 3.1. From Section 4.1, thé/ RESHOLD is set to 50 and th& AT 1O
is set to 30%.

Two query plans were used in the experiments. The first quaryip a simple query
plan with four filter operators. The second query plan w#iz window join operator
[7] with a window of 200ms. That is, any tuples that are reediwithin 200ms of each

other are evaluated in the join predicate of the operatoe duery plans are listed in
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(a) Query Plan 1 (b) Query Plan 2
Figure 6.1: Query Plans used in Experimentation.

Figure 6.1 with selectivityo) and average tuple processing tift¢. For these particu-
lar experiments, the selectivity o#, is irrelevant because its output is piped to an end
user application and not another operator. Hence we setlgstivity to 1. Setting this
value lower would only serve to reduce the query plan’s tghput,7,,,,,,, by a constant
percentage.

The Internet Traffic Archive [1] was used as the data set. This simulates the
contents of real streaming data. The arrival rates of tleasts were adjusted to have a
random pattern using Poisson distribution. The streamse wsteady at times, and rather
bursty (with a mean arrival time that was approximately tingess that of the average rate
during non-bursty periods) at other times, due to the unpiaility of users’ requests.
The stream rates were adjusted using custom built Streamc&othat would generate
data with different Poisson means every 5 seconds. This was tb show that under
both steady and bursty conditions, the adaptive framewoukdcrespond with good ex-

perimental results.

6.2 Evaluation of Scheduling

Figure 6.2 shows the performance of the four algorithmsewvimbnitoring two different
guality of service requirements, the number of tuples in mgtmand the average tuple

delay. As anticipated, Chain and MTIQ performed best wheroihes to minimizing
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Figure 6.2: Performance of scheduling algorithms with @uan 2.

memory use. As discussed in Section 4.1 Chain processeatopethat remove the
largest number of tuples the most quickly. MTIQ processesatprs that have the largest
gueue in the query plan. Thus it is no surprise that these lgarithms are excellent at
reducing memory usage.

However we see very different results when observing how thielalgorithms per-
form when it comes to the average tuple delay. MTIQ and Chadhugp being the two
worst performers by the end of execution. FIFO, which way enédiocre under the
memory requirement, actually does quite well keeping trexaaye tuple delay to a min-
imum. Overall we observe from Figure 6.2 that no one algoritias a clear advantage.
MTIQ and Chain compete for the best results in memory consiempvhile RR, Chain
and FIFO compete for the best results for average tuple ddlagrefore, by combin-
ing all of the algorithms, we should be able to outperformrayl& strategy for a given

requirement.
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Figure 6.3: Optimizing query execution with one QoS requeet. Figure a, top, mem-
ory usage. Figure b, bottom, average delay.

6.3 Direct Competition with Published Scheduling Algo-
rithms

The next experiment used a QoS specification with only oneireapent. This was done
to demonstrate that the adaptive framework can pick an @btstheduling algorithm
even for only one requirement. Figure 6.3(a) shows that taptve framework does
exceptionally well at selecting algorithms to keep tuplkesnemory down. In fact, at
many times the framework outperforms every single schadulgorithm in terms of
memory.

In Figure 6.3(b) it can be seen that the adaptive framewotestorms all individual
scheduling algorithms. It outperformed the other algonghby leveraging their relative
strengths. It was observed that MTIQ can exploit queue bpsdcaused by FIFO. As
FIFO begins execution, a buildup of tuples is created at¢hédperator. Since there is
a buildup in tuples at the leaf operator MTIQ is selectedifaet=7) and progresses the

tuples through the query plan. FIFO is then selected agatmia¢=21) as older tuples

48



©
S
S

——Adaptive
—s—FFO

M
>

Average Tuple delay in
R
5 8 8 &
8 8 8 8
@ ’

t
\\%

query plan (ms)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (s)

—o— Adaptive
—s— FIFO

M —— MTIQ

| | —— Chain

o
N
IN]
a

o o

Average Tuple Output
Rate (Tuples/ms)

W

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

o
=]
=
o

Time (s)
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were still in the query plan that needed to be processed.

6.4 Reaction to Changing QoS Specifications

For the second set of experiments, the ability of the adaftamework to react to a QoS
specification with two requirements is shown. There are taalgin this set of experi-
ments. First showing that if the importance of a requirenieichanged, the framework
will acknowledge this and adapt accordingly. Secondlyiitiportant that the framework
performs well in both QoS requirements.

Figure 6.4 depicts the results for an experiment for whickb Tdportance was placed
on tuple delay and 30% importance was placed on output ratre bbserve that the
adaptive framework outperformed single algorithms witbpet to average tuple delay,
and performed about average with respect to the averagatoatp.

Figure 6.5 shows our performance when we adjust the pegemtathe weights to

70% focus on maximizing output rate, and 30% focus on minimgizuple delay. We
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mizing tuple delay, and 70% focus on maximizing output radry Plan 1)

can observe that with the change in service requirementadagtive framework still
does exceptionally well at minimizing tuple delay, but iroyes significantly at raising
the average tuple output rate. This shows that the adaptivesivork can adapt accord-
ingly to varying QoS requirements, and also provide sigaiftamprovements of single
scheduling algorithms.

We will now consider the case of having two equally import@aS requirements.
Figure 6.6 shows the performance of the adaptive framewdtkan equal focus on av-
erage output rate and average tuple delay. We make two @beers from these charts.
First, clearly there is no single optimal scheduling altfon, as each algorithm has vary-
ing performance throughout execution. Second, our adaftamework is able to out-
perform all single scheduling algorithms for most of exemut The adaptive algorithm
appears to have made better decisions as the executiorepsegras evident by the im-

proved memory utilization. The output rate did suffer stighhowever.
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6.5 Adaptive Framework with Multi-Facetted QoS Spec-
ifications

In our final set of experiments we compared the performantkeecfdaptive framework
against the single scheduling algorithms with a QoS spetidin of three requirements.
In this example each requirement (average tuple delayageevutput rate, and average
tuples in memory) was each given equal weight.

In Figure 6.7 we can see that the adaptive framework agafiornpes well under all
three QoS requirements. The biggest improvements aregevarple delay and the num-
ber of tuples in memory, where the adaptive framework sigaifily improves upon all

but the best single scheduling algorithms.
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Chapter 7

Conclusions

/7.1 Summary

This thesis addressed the issues relating to creating gotiael@xecution strategy for
the execution of a continuous query over streaming data. pfbeosed adaptive strat-
egy chooses the next scheduling algorithm to utilize amengral candidate algorithms
based on their performance thus far relative to the usegsitguf service requirements.
This leverages prior research in artificial intelligencéna area of multi-agent systems by
utilizing ideas in how to combine several candidate sohgimto one. This performance
is captured by normalizing the statistics for each algarit#ind calculating how well each
algorithm did compared to the algorithm that was just usdten] the next algorithm is
chosen by spinning a roulette wheel where each candidateosea with a probability
equal to its performance score. This made use of technigaesdenetic algorithms.
Current continuous query systems rely on a single scheglalgorithm. As a conse-
guence, they are restricted in the QoS specs that they mayomeentrolling the operator
scheduling alone. Thus, the goal of this adaptive algorithta leverage the strengths of

each of the candidate algorithms against one another tteaesolution that outperforms
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each single strategy for the given QoS.

Our experimental study illustrated that the adaptive allgor was able to outperform
the four candidate algorithms for some, but not all, QoS irequents. The study eval-
uated the Most Tuples in Queue and Chain batch schedulertharféirst in First Out
and Round Robin fair-use schedulers against the adaptategy for various preferences
using a Poisson based arrival patterns. The QoS combinatiaeights aims for min-
imizing memory usage and result delay and for maximizingpoutate. The algorithm
successfully leveraged the consistent-performing natittee fair use algorithms with the
fluctuating behavior of the batch algorithms. The adaptigerdhm was able to success-
fully identify when one candidate’s performance was desirep(due to the rate of newly
arriving tuples) and switched to the other to keep overalfqpgenance at an acceptable
level. The experimental study also showed that the adapty@rithm’s overhead was
comparable to either of the single strategies, even in tke chmore complex queries.

We also showed that the user’s service preferences do ihdaetan effect on the be-
havior of the adaptive algorithm. In our study, the adapéilgorithm that was optimized
for a given metric outperformed the other adaptive algatithat was optimized for an-
other metric. This is an important conclusion because wvstbat the adaptive algorithm
behaves intelligently and does not win simply because itlioes the other algorithms.

Given the presence of a single algorithm that optimally thetrequirement, the adap-
tive strategy chose that algorithm more than the other. Wiheadaptive algorithm peri-
odically switched to one of the other candidates for exptoyapurposes, the adaptive’s
overall performance decreased. Thus, the adaptive was able to outperform that

single strategy.
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7.2 Contributions

This thesis contributed to Continuous Query Systems, qudatily query processing, in

the following ways:

¢ Studied the performance of a variety of scheduling algorgln a real Continuous
Query System, to determine the pros and cons of algorithrderuwarying QoS

requirements, data stream arrival rates, and query plans.

e Designed an adaptive framework that has the ability to olestre behavior of the
continuous query system and pick scheduling algorithmtedabilistically have

the best chance to fulfill a given set of QoS requirements.

e Built a continuous query system from the ground up, that wezles a test bed to

study how our adaptive framework can aid in the processiragapfery.

e Performed an experimental study to support our claim th&ah we can lever-
age the strengths of several existing scheduling algostttmimprove the overall

performance of a continuous query system given a set of Quresnents.

7.3 Future Work

There are many future topics to investigate based on tharpnary results produced
by this thesis. The first direction involves augmenting thpegimental study with ad-
ditional data distributions and more complex query plansother direction involves
tweaking the various experiment parameters. Furthemtgsti find the optimal values
for the weight to give to old values for weighted average,khaad ratio, and frequency

of updating statistics should result in improved perforoearThe adaptive strategy can be
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further tweaked by altering the data decay and algorithncévgarameters or by running
multiple operators at the same time.

Another direction involves investigating incorporatinteanate adaptive techniques
such as those used in [5][9]. Combining these techniquds thvé adaptive scheduling
strategy yields an interesting research question - couldirdea formula to weigh the
benefits of one technique over the other and always choosadtygtive technique that

will meet the user’s quality of service best.
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