CONFORMAL EQUIVALENCE OF VISUAL METRICS IN PSEUDOCONVEX DOMAINS

LUCA CAPOGNA AND ENRICO LE DONNE

Abstract

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in \mathbb{C}^{n} are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.

Contents

1. Introduction 1
2. Preliminaries 4
2.1. Distorsion in subRiemannian geometry 4) 4-4
2.2. Pseudoconvex domains and hermitian metrics 5
2.3. Gromov Hyperbolicity $\quad 7$
3. Conformal equivalence of boundary metrics $\quad 7$
3.1. Proof of Proposition 1.4
3.2. Boundary distances of hyperbolic fillings 8
4. Comparing d and g, after Balogh and Bonk 10
4.1. Lemmata 10
4.2. Proof of Theorem 4.1 13
5. Local biLipschitz equivalence of Bourdon functions and proof of main result 17
$\begin{array}{ll}\text { References } & 19\end{array}$

1. Introduction

Let $D \subset \mathbb{C}^{n}(n \geq 2)$ be a strongly pseudo-convex domain with $C^{\infty}{ }_{-s m o o t h ~ b o u n d a r y . ~ D e-~}^{\text {-sm }}$ note by d_{K} the distance function corresponding to a Finsler structure K satisfying suitable

[^0]estimates, see (2.8). For example, one may consider the Bergman metric or the Kobayashi metric or the Carathéodory metric. In [BB00, BB99], Balogh and Bonk have proved that the metric space $\left(D, d_{K}\right)$ is hyperbolic in the sense of Gromov and its visual boundary coincides with the topological boundary ∂D. They also show that the Carnot-Carathéodory metric $d_{C C}$ corresponding to the Levi form on ∂D, determines the canonical class of snowflake equivalent visual metrics on ∂D. As a consequence, results from the theory of Gromov hyperbolic spaces can be immediately applied in this setting. Among these we recall that every quasi-isometry between such spaces extends to a quasi-conformal map between the visual boundaries, endowed with their families of visual metrics, see for instance GdlH90, BH99] and references therein.

Our main contribution is to show that extensions of isometries are actually diffeomorphisms that are conformal with respect to the Carnot-Carathéodory metric. We only need to show that the extension is 1-quasi-conformal, as the smoothness then follows from the recent results in CCLDO16.

As in BB00], our strategy involves the Bonk-Schramm hyperbolic filling metric g defined in (1.2). This metric provides a stepping stone to connect the Carnot-Carathéodory distance, defined on the boundary by the Levi form (see Section 2.2), with the invariant metric defined in the domain.

Theorem 1.1. Let $D_{1}, D_{2} \subset \mathbb{C}^{n}$ be strongly pseudoconvex C^{∞}-smooth domains and denote by d_{K} the distance function corresponding to a Finsler structure K satisfying (2.8), and by $d_{C C}$ the Carnot-Carathéodory distance on the boundaries induced by the Levi form. If $f:\left(D_{1}, d_{K}\right) \rightarrow\left(D_{2}, d_{K}\right)$ is an isometry then the induced boundary map $F:\left(\partial D_{1}, d_{C C}\right) \rightarrow$ $\left(\partial D_{2}, d_{C C}\right)$ is a diffeomorphism, conformal with respect to the metric $d_{C C}$.

We emphasize that the result holds when d_{K} is the Bergman, the Kobayashi, or the Carathéodory metrics. Indeed, these distances satisfy (2.8) in view of the work in [BB00, BB99, Ma91.

As we noted above, the proof of Theorem 1.1 is based on the study of the relation between the visual distances associated to d_{K} and the visual distance of an ad-hoc hyperbolic filing metric, built through the Carnot-Carathéodory distance: For $x \in D$ denote by $h(x):=$ $\sqrt{d_{E}(x, \partial D)}$ and by $\pi(x) \in \partial D$ a closest point in ∂D with respect to the Euclidean distance $d_{E}(\cdot, \cdot)$, noting it is uniquely defined in a neighborhood of ∂D. Set

$$
\begin{equation*}
g(x, y):=2 \log \left(\frac{d_{\mathrm{CC}}(\pi(x), \pi(y))+\max (h(x), h(y))}{\sqrt{h(x) h(y)}}\right) \tag{1.2}
\end{equation*}
$$

This is an hyperbolic filling metric built from the metric space ($\partial D, d_{\mathrm{CC}}$) (see Bonk and Schramm BS00). Balogh and Bonk BB00, Corollary 1.3], showed that g is a metric in a neighborhood of ∂D and that g and the invariant distance function d_{K} are $(1, C)$-quasiisometric. As a consequence, they give rise to quasi-conformally equivalent visual metrics.

The main technical point of our work is to refine this result in a quantitative fashion. We show that a particular visual quasi-distance ρ_{o}^{K} associated to the invariant metric d_{K} is in fact pointwise and asymptotically $(1+\epsilon)$-quasi-conformally equivalent to the CarnotCarathéodory $d_{C C}$ metric. By pointwise and asymptotically we mean that for every point $x \in \partial D$ in the boundary, and for every $\epsilon>0$, one can choose a base point o for the definition
of the visual distances so that the identity map has distortion less than $1+\epsilon$ at x. Following ideas in CAT (-1) spaces, given a pointed metric space (X, d, o) we consider the Bourdon function

$$
\begin{equation*}
\rho_{o}^{d}(x, y)=\exp \left(-\langle x, y\rangle_{o}\right), \tag{1.3}
\end{equation*}
$$

where $\langle x, y\rangle_{o}$ denotes the Gromov product in (X, d), see Section 2. Usually, ρ_{o}^{d} is called Bourdon distance since for CAT (-1) spaces it satisfies the triangle inequality. In our setting, ρ_{o}^{d} may not be a distance.

Moreover, on a CAT(-1) space X Bourdon showed in Bou95] that the visual boundaries $\left(\partial_{\infty} X, \rho_{o}^{d}\right)$ corresponding to diffent base points $o, o^{\prime} \in X$ are conformally equivalent, thus implying immediately that any isometry of X extends to a conformal maps of its visual boundaries. Since pseudoconvex domains may not have negative curvature (see Kra13]) and may not be simply connected, they are not CAT(-1) spaces and so one cannot apply Bourdon's result.

Theorem 1.1 is achieved in two steps: First one shows that the Carnot-Carathéodory distance is conformally equivalent ${ }^{11}$ to the Bourdon function ρ_{o}^{g} associated to the hyperbolic filling metric g.

Proposition 1.4. For any $o \in D$, the functions $d_{C C}$ and ρ_{o}^{g} are conformally equivalent.
In other words, the identity map $\left(\partial D, d_{C C}\right) \rightarrow\left(\partial D, \rho_{o}^{g}\right)$ has distortion that is identically equal to one. See (2.1) for the definition of distortion.

Next, we show that at every boundary point, and for any $\epsilon>0$, one can find a base point $o \in D$ such that the corresponding visual functions ρ_{o}^{K} and ρ_{o}^{g} are $(1+\epsilon)$-biLipschitz equivalent in a neighborhood of that point. In the following we denote Euclidean balls in \mathbb{C}^{n} with the notation $B(x, r)$.

Proposition 1.5. For any $\bar{p} \in \partial D$ and $\bar{\epsilon}>0$ there exists $r>0$ such that for all $\omega \in$ $\partial D \cap B(\bar{p}, r) \backslash\{\bar{p}\}$ there exists $r^{\prime}>0$ such that for all $o \in D \cap B\left(\omega, r^{\prime}\right)$ the two functions ρ_{o}^{g} and ρ_{o}^{K} are $(1+\bar{\epsilon})$-biLipschitz on $\partial D \cap B\left(\bar{p}, r^{\prime}\right)$.

The proof of Proposition 1.5 and Theorem 1.1 are in Section 5. Theorem 1.1 follows rather directly from Propositions 1.4 and 1.5 and from the following diagram

[^1]At the center of this chain of compositions there is an isometry, the rest of the links are either $(1+\epsilon)$ biLipschitz maps or conformal maps, so that the total distortion is at most ϵ away from being equal to 1 everywhere.

From the conformal equivalence theorem above and the results in [CLDD16], one can immediately infer a result about boundary extensions for biholomorphisms between strictly pseudoconvex domains in \mathbb{C}^{n}, originally established by Fefferman [Fef74].

Corollary 1.6. Let $D_{1}, D_{2} \in \mathbb{C}^{n}(n \geq 2)$ be strongly pseudo-convex domains with C^{∞} smooth boundaries. If $f: D_{1} \rightarrow D_{2}$ is a biholomorphism then it extends to a smooth map $F: \partial D_{1} \rightarrow \partial D_{2}$ that is conformal with respect to the corresponding subRiemannian contact structure. In particular, at every boundary point, its differential is a similarity between the maximally complex tangent planes.

Since the publication of [Fef74] there have been several significative extensions and simplifications of the result. A small sample of this extensive line of inquiry can be found in the references BL80, BC82, NWY80, Bar83, Kra15.

Rather than a simplification of Fefferman's original proof, our approach is a recasting of the result from the perspective of analysis in metric spaces and the circle of ideas at the core of Mostow rigidity Mos73. The differentiable structure is not used to show that the extension map is 1-quasi-conformal, and then it only enters in play coupled with the rigidity of 1-quasi-conformal mappings in higher dimension. Likewise, curvature enters into the arguments only in its synthetic (metric) form. In particular, our work can be seen as an instance of a dictionary, introduced by Bonk, Heinonen, and Koskela in BHK01, translating back and forth problems in domains in Euclidean spaces by means of ad hoc hyperbolic or quasi-hyperbolic metrics, that endow such domains with an hyperbolic structure in the sense of Gromov. For more results along this line, see also the recent, interesting work of Zimmer in Zim16.

Acknowledgements The recasting of Fefferman's result from the point of view of Mostow rigidity and metric hyperbolicity was the main motivation behind this work, and was outlined by Michael Cowling, back in 2007. The authors are very grateful to both Michael Cowling and to Loredana Lanzani for several key observations that have led to a better understanding of the problem.

2. Preliminaries

In this section we recall some basic definitions and results. We start by discussing distortion and conformal maps on subRiemannian manifolds. Then we discuss pseudoconvex domains and their metrics. Finally we review hyperbolicity in the sense of Gromov.
2.1. Distorsion in subRiemannian geometry. By a previous work of the authors together with Ottazzi, we know that several definitions of conformal maps are equivalent in the setting of contact subRiemannian manifolds. We now recall the two definitions that we shall need in this paper.

For a homeomorphism $F: X \rightarrow Y$ between general metric spaces, we consider the following quantities

$$
\mathrm{L}_{F}(x):=\limsup _{x^{\prime} \rightarrow x} \frac{d\left(F(x), F\left(x^{\prime}\right)\right)}{d\left(x, x^{\prime}\right)} \quad \text { and } \quad \ell_{F}(x):=\liminf _{x^{\prime} \rightarrow x} \frac{d\left(F(x), F\left(x^{\prime}\right)\right)}{d\left(x, x^{\prime}\right)} .
$$

The quantity $\mathrm{L}_{F}(x)$ is sometimes denoted by $\operatorname{Lip}_{F}(x)$ and is called the pointwise Lipschitz constant. Within this paper, we define the distortion of f at a point $x \in X$ as

$$
\begin{equation*}
H^{*}\left(x, F, d_{X}, d_{Y}\right):=\frac{\mathrm{L}_{F}(x)}{\ell_{F}(x)} \tag{2.1}
\end{equation*}
$$

The homeomorphism f is said to be quasi-conformal if there exists K such that for all $x \in X$ one has

$$
\limsup _{r \rightarrow 0} \frac{\sup \left\{d_{Y}(F(p), F(q)): d_{X}(p, q) \leq r\right\}}{\inf \left\{d_{Y}(F(p), F(q)): d_{X}(p, q) \geq r\right\}} \leq K .
$$

It is well-known that in the literature there are several other equivalent definitions of quasiconformality in 'geometrically nice' spaces, see Wil12]. However, the equivalence is not quantitative, in the sense that each definition has an associated constant (like the K above) and the value of of these constants can be different from definition to definition. Thus we need to clarify what is a conformal map. To do this we invoke Theorem 1.3 and Theorem 1.19 from CCLDO16. Namely, the additional subRiemannian structure allows to an unambiguous definition of 1-quasiconformality.

Lemma 2.2 (C-L-O). Let $F: X \rightarrow Y$ be a quasi-conformal homeomorphism between two equiregular subRiemannian manifolds.
(i) The requirement $H^{*}\left(\cdot, F, d_{X}, d_{Y}\right) \equiv 1$ is equivalent to other notions of 1-quasi-conformality.
(ii) If X and Y are contact manifolds, then 1-quasi-conformality of F is equivalent to F being conformal (i.e., smooth and with horizontal differential that is a homothety).

One of the advantages to work with (2.1) is that it immediately yields a chain rule:

$$
\begin{equation*}
H^{*}\left(x, F_{1} \circ F_{2}\right) \leq H^{*}\left(x, F_{2}\right) H^{*}\left(F_{2}(x), F_{1}\right) . \tag{2.3}
\end{equation*}
$$

The last equation follows from the fact that $\limsup a_{n} b_{n} \leq \lim \sup a_{n} \lim \sup b_{n}$ whenever $a_{n}, b_{n} \geq 0$. Moreover, we trivially have that if f is an L-biLipschitz homeomorphism, then

$$
\begin{equation*}
H^{*}(x, F) \leq L \tag{2.4}
\end{equation*}
$$

2.2. Pseudoconvex domains and hermitian metrics. We recall some of the basic definitions about pseudoconvex domains and hermitian metrics, as well as some key results proved by Balogh and Bonk in BB00.

Let $D \subset \mathbb{C}^{n}, n \geq 2$ be a smooth, bounded open set. Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R}$ denote the signed distance function from ∂D, negative in D and positive in its complement. Set $N_{\delta}=\left\{x \in D \mid d_{E}(x, \partial D)<\delta\right\}$.

Lemma 2.5 (Tubular Neighborhood Theorem). Let $D \subset \mathbb{C}^{n}$, $n \geq 2$ be a bounded domain with smooth boundary. There exists $\delta_{0}>0$ such that the projection $\pi: N_{\delta_{o}} \rightarrow \partial D$ is a smooth, well defined map and the distance function $d_{E}(\cdot, \partial D)$ is smooth on $N_{\delta_{0}}$.

We will denote by $n(x)$ the outer unit normal at $x \in \partial D$, so that the fiber $\pi^{-1}(x) \cap N_{\delta_{0}}=$ $\left\{x+s n(x) \mid s \in\left(0, \delta_{0}\right)\right\}$.

For $p \in \partial D$, one can define the tangent space $T_{p} \partial D=\left\{Z \in \mathbb{C}^{n} \mid \operatorname{Re}\langle\bar{\partial} \varphi(p), Z\rangle=0\right\}$ and its maximal complex subspace $H_{p} \partial D=\left\{Z \in \mathbb{C}^{n} \mid\langle\bar{\partial} \varphi(p), Z\rangle=0\right\}$, where $\left\langle Z, Z^{\prime}\right\rangle=\sum_{i=1}^{n} Z_{i} \bar{Z}_{i}^{\prime}$ is the hermitian product. By definition, the domain D is strictly pseudoconvex if for every $p \in \partial D$, the Levi form

$$
\begin{equation*}
L_{\varphi}(p, Z):=\sum_{\alpha, \beta=1}^{n} \partial_{z_{\alpha} \bar{z}_{\beta}}^{2} \varphi(p) Z_{\alpha} \bar{Z}_{\beta} \tag{2.6}
\end{equation*}
$$

is positive definite on $H_{p} \partial D$.
For each $p \in \partial D$ one has a splitting $\mathbb{C}^{n}=H_{p} \partial D \oplus N_{p} \partial D$, where $N_{p} \partial D$ is the complex one-dimensional subspace orthogonal to $H_{p} \partial D$. This splitting at p induces a decomposition $Z=Z_{H}+Z_{N}$ for all $Z \in \mathbb{C}^{n}$.

Metrics that are invariant under the action of biholomorphisms play a key role in several complex variables. Important examples are the Bergman metric, the Kobayashi metric, and the Carathéodory metric (see Kra13). In all cases, for $x \in D$ the length of a complex vector $Z \in T_{x} D=\mathbb{C}^{n}$ is given by a Finsler structure $K(x, Z)$. We will rely on the following result, which can be found in [BB99] and also [BB00, Proposition 1.2].

Proposition 2.7 (Balogh-Bonk). Let $D \subset \mathbb{C}^{n}$, $n \geq 2$ be a bounded, strictly pseudoconvex domain with smooth boundary and let $K(x, Z)$ be the Finsler structure associated to the Bergman metric or the Kobayashi metric or the Carathéodory metric. For every $\bar{\epsilon}>0$ there exists $\delta_{0}, C>0$ such that for all $x \in D$ with $d_{E}(x, \partial D) \leq \delta_{0}$ and $Z \in \mathbb{C}^{n}$ one has

$$
\begin{align*}
\left(1-C \sqrt{d_{E}(x, \partial D)}\right) & \left(\frac{\left|Z_{N}\right|^{2}}{4 d_{E}^{2}(x, \partial D)}+(1-\bar{\epsilon}) \frac{L_{\varphi}\left(\pi(x), Z_{H}\right)}{d_{E}(x, \partial D)}\right)^{\frac{1}{2}} \leq K(x, Z) \tag{2.8}\\
& \leq\left(1+C \sqrt{d_{E}(x, \partial D)}\right)\left(\frac{\left|Z_{N}\right|^{2}}{4 d_{E}^{2}(x, \partial D)}+(1+\bar{\epsilon}) \frac{L_{\varphi}\left(\pi(x), Z_{H}\right)}{d_{E}(x, \partial D)}\right)^{\frac{1}{2}}
\end{align*}
$$

where $Z=Z_{H}+Z_{N}$ is the splitting at $\pi(x)$.
The subbundle $H \partial D$ is a contact distribution on ∂D and the triplet $\left(\partial D, H \partial D, L_{\varphi}\right)$ yields a contact subRiemannian manifold. In this structure, the horizontal curves are those arcs in ∂D that are tangent to the contact distribution, and the Carnot-Carathéodory distance $d_{C C}(p, q)$ between $p, q \in \partial D$ is defined as the minimum time it takes to reach one point from the other traveling along horizontal curves at unit speed with respect to the Levi form, see Gro96.

As in BB00, we will need to use a family of Riemannian metrics on ∂D that approximate the sub-Riemannian metric associated to the Levi form, and that in fact have corresponding distance functions that converge in the sense of Gromov-Hausdorff to the CarnotCarathéodory distance. For every $k>0$ we define a Riemannian metric g_{k} on $T \partial D$ as

$$
\begin{equation*}
g_{k}^{2}(p, Z):=L_{\varphi}\left(p, Z_{H}\right)+k^{2}\left|Z_{N}\right|^{2} \tag{2.9}
\end{equation*}
$$

for every $p \in \partial D$ and every $Z=Z_{H}+Z_{N} \in T_{p} \partial D$. Here we just recall a basic comparison result (see for instance [BB00, Lemma 3.2]) relating the distance function d_{k} associated to g_{k} to the Carnot-Carathéodory distance $d_{C C}$.

Lemma 2.10. There exists a constant $C>0$ such that for all $k>0$, and for all points $p, q \in \partial D$, with $d_{C C}(p, q) \geq k^{-1}$ one has

$$
\begin{equation*}
C^{-1} d_{k}(p, q) \leq d_{C C}(p, q) \leq C d_{k}(p, q) \tag{2.11}
\end{equation*}
$$

2.3. Gromov Hyperbolicity. Let x, y, o be three points in a metric space (X, d). Then the Gromov product of x and y at o, denoted $\langle x, y\rangle_{o}$, is defined by

$$
\langle x, y\rangle_{o}=\frac{1}{2}(d(x, o)+d(y, o)-d(x, y)) .
$$

Then X is called Gromov hyperbolic if there exists $\delta \geq 0$ such that

$$
\langle x, y\rangle_{o} \geq \min \left\{\langle x, z\rangle_{o},\langle z, y\rangle_{o}\right\}-\delta, \quad \text { for all } x, y, z, o \in X
$$

For a Gromov hyperbolic space X one can define a boundary set $\partial_{\infty} X$ as follows, see [BH99, p.431-2]. Fix a basepoint $o \in X$. A sequence (x_{i}) in X is said to converge at infinity if $\lim _{i, j \rightarrow \infty}\left\langle x_{i}, x_{j}\right\rangle_{o}=\infty$. Two sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ converging at infinity are called equivalent if $\lim \left\langle x_{i}, y_{i}\right\rangle_{o}=\infty$. These notions do not depend on the choice of the basepoint o. The set $\partial_{\infty} X$ is now defined as the set of equivalence classes of sequences converging at infinity.

For $p, q \in \partial_{\infty} X$ and $o \in X$ we define

$$
\langle p, q\rangle_{o}=\sup \liminf _{i \rightarrow \infty}\left\langle x_{i}, y_{i}\right\rangle_{o},
$$

where the supremum is taken over all sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ representing the boundary points p and q, respectively. Actually, there exists such sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ for which $\langle p, q\rangle_{o}=\lim _{i \rightarrow \infty}\left\langle x_{i}, y_{i}\right\rangle_{o}$, see BH99, Remark 3.17].

Balogh and Bonk have proved that if $D \subset \mathbb{C}^{n}, n \geq 2$ is a bounded, strictly pseudoconvex domain with smooth boundary, and $K(x, Z)$ is a norm satisfying (2.8), then the corresponding metric space (D, d_{K}) is Gromov hyperbolic and its visual boundary coincides with the topological boundary. See BB00, Theorem 1.4].

3. Conformal equivalence of boundary metrics

3.1. Proof of Proposition 1.4, In this section we prove Proposition 1.4, and then show that the conformal equivalence result holds more in general for every hyperbolic filling.
Let g be as defined in (1.2) and let ρ_{o}^{g} be its Bourdon distance, as defined by (1.3). We begin by giving a computation of the distance ρ_{o}^{g} on two points $p, q \in \partial D$. We represent p and q by two sequences x_{i} and $y_{i} \in D$, respectively. Notice that since $x_{i} \rightarrow p$ in \mathbb{C}^{n} then $\pi\left(x_{i}\right) \rightarrow p$ and $h\left(x_{i}\right) \rightarrow 0$. In particular, we also have that $\max \left(h\left(x_{i}\right), h(o)\right)=h(o)$. Similar
considerations apply to y_{i} and q. We compute

$$
\begin{aligned}
\rho_{o}^{g}(p, q)= & \exp \left(-\langle p, q\rangle_{o}\right) \\
= & \lim _{i \rightarrow \infty} \exp \left(-\left\langle x_{i}, y_{i}\right\rangle_{o}\right) \\
= & \lim _{i \rightarrow \infty} \exp \left(-\frac{1}{2}\left(g\left(x_{i}, o\right)+g\left(y_{i}, o\right)-g\left(x_{i}, y_{i}\right)\right)\right) \\
= & \lim _{i \rightarrow \infty} \exp \left(-\log \left(\frac{d_{\mathrm{CC}}\left(\pi\left(x_{i}\right), \pi(o)\right)+\max \left(h\left(x_{i}\right), h(o)\right)}{\sqrt{h\left(x_{i}\right) h(o)}}\right)\right. \\
& \quad-\log \left(\frac{d_{\mathrm{CC}}\left(\pi\left(y_{i}\right), \pi(o)\right)+\max \left(h\left(y_{i}\right), h(o)\right)}{\sqrt{h\left(y_{i}\right) h(o)}}\right) \\
& \left.\quad+\log \left(\frac{d_{\mathrm{CC}}\left(\pi\left(x_{i}\right), \pi\left(y_{i}\right)\right)+\max \left(h\left(x_{i}\right), h\left(y_{i}\right)\right)}{\sqrt{h\left(x_{i}\right) h\left(y_{i}\right)}}\right)\right) \\
= & \lim _{i \rightarrow \infty}\left(\frac{d_{\mathrm{CC}}(p, \pi(o))+h(o)}{\sqrt{h\left(x_{i}\right) h(o)}}\right)^{-1}\left(\frac{d_{\mathrm{CC}}(q, \pi(o))+h(o)}{\sqrt{h\left(y_{i}\right) h(o)}}\right)^{-1} \frac{d_{\mathrm{CC}}(p, q)}{\sqrt{h\left(x_{i}\right) h\left(y_{i}\right)}} \\
= & \frac{d_{\mathrm{CC}}(p, q) h(o)}{\left(d_{\mathrm{CC}}(p, \pi(o))+h(o)\right)\left(d_{\mathrm{CC}}(q, \pi(o))+h(o)\right)} .
\end{aligned}
$$

For every $p \in \partial D$ one has

$$
\lim _{q \rightarrow p} \frac{\rho_{o}^{g}(p, q)}{d_{C C}(p, q)}=\lim _{q \rightarrow p} \frac{h(o)}{\left(d_{\mathrm{CC}}(p, \pi(o))+h(o)\right)\left(d_{\mathrm{CC}}(q, \pi(o))+h(o)\right)}=\frac{h(o)}{\left(d_{\mathrm{CC}}(p, \pi(o))+h(o)\right)^{2}}
$$

so the limit exists, and the identity map $\left(\partial D, d_{C C}\right) \rightarrow\left(\partial D, \rho_{o}^{g}\right)$ is 1-quasi-conformal.
3.2. Boundary distances of hyperbolic fillings. An important contribution of Bonk and Schramm [BS00], is that the functor $X \rightarrow \partial_{\infty} X$ has an inverse functor, in the form of hyperbolic filling spaces $\operatorname{Con}(Z)$. To be more precise, one defines $\operatorname{Con}(Z)=Z \times(0, D)$, endowed with the metric given by

$$
\begin{equation*}
d_{2}((x, u),(y, v))=2 \log \left(\frac{d_{1}(x, y)+\max (u, v)}{\sqrt{u v}}\right) . \tag{3.1}
\end{equation*}
$$

The space $\left(\operatorname{Con}(Z), d_{2}\right)$ is Gromov hyperbolic, and its visual boundary is Z, with the canonical class of snowflake equivalent metrics given by d_{1}. Here we note that a particular visual metric is actually conformal to d_{1}. We will consider the particular visual metric generated by g given by the Bourdon distance. Choose a generic base point choose a base point $o=(z, s)$, with $z \in Z$ and $s \in(0, D)$. For any two points $x, y \in Z$ so that $d_{1}(x, y)<s$. consider $u, v \in\left(0, d_{1}(x, y)\right)$. Following (1.3), the Bourdon distance $d_{2}(x, y)$ is defined as follows

$$
d_{2}(x, y)=\lim _{u, v \rightarrow 0} e^{-\langle(x, u),(y, v)\rangle_{0}} .
$$

Notice that in general, Bourdon distances associated to the hyperbolic fillings are a quasidistance. By quasi-distance we intend that the triangle inequality is satisfied modulo a multiplicative constant.

Proposition 3.2. Let d_{1} a distance on a bounded space Z. If d_{2} denotes the Bourdon distance associated to the hyperbolic filling for d_{1}, then d_{1} and d_{2} are conformally equivalent.

Proof. In order to show that d_{1}, d_{2} are conformally equivalent it suffices to prove that the limit $\lim _{y \rightarrow x} d_{1}(x, y) / d_{2}(x, y)$ exists for every $x \in Z$. Fix any $z \in Z$ and $s \in(0, D)$. Let $o=(z, s)$. Take two points $x, y \in Z$ so that $d_{1}(x, y)<s$. Take $u, v \in\left(0, d_{1}(x, y)\right)$.

The rest of the proof follows from

$$
\begin{gathered}
\langle(x, u),(y, v)\rangle_{o}=\frac{1}{2}\left(d_{2}((x, u), o)+d_{2}((y, v), o)-d_{2}((x, u),(y, v))\right) \\
=\log \left(\frac{d_{1}(x, z)+\max (u, s)}{\sqrt{u s}}\right)+\log \left(\frac{d_{1}(y, z)+\max (v, s)}{\sqrt{v s}}\right)-\log \left(\frac{d_{1}(x, y)+\max (u, v)}{\sqrt{u v}}\right) \\
=\log \frac{\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)}{s\left(d_{1}(x, y)+\max (u, v)\right)} \\
=\log \left(\frac{\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)}{s\left(d_{1}(x, y)+\max (u, v)\right)} \frac{d_{1}(x, y)}{d_{1}(x, y)}\right) \\
=-\log \left(d_{1}(x, y)\right)+\log \left(\frac{d_{1}(x, y)\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)}{s\left(d_{1}(x, y)+\max (u, v)\right)}\right)
\end{gathered}
$$

We calculate $\lim _{y \rightarrow x} d_{1}(x, y) / d_{2}(x, y)$. Consider the quotient

$$
\begin{aligned}
d_{2}(x, y) / d_{1}(x, y) & =\lim _{u, v \rightarrow 0} \frac{e^{-\langle(x, u),(y, v)\rangle_{0}}}{d_{1}(x, y)} \\
& =\lim _{u, v \rightarrow 0} \frac{e^{\log \left(d_{1}(x, y)\right)} e^{-\log \left(\frac{d_{1}(x, y)\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)}{s\left(d_{1}(x, y)+\max (u, v)\right)}\right)}}{d_{1}(x, y)} \\
& =\lim _{u, v \rightarrow 0}\left(\frac{d_{1}(x, y)\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)}{s\left(d_{1}(x, y)+\max (u, v)\right)}\right)^{-1} \\
& =\frac{s d_{1}(x, y)}{d_{1}(x, y)\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)} \\
& =\frac{s}{\left(d_{1}(x, z)+s\right)\left(d_{1}(y, z)+s\right)} .
\end{aligned}
$$

The latter implies that

$$
\lim _{y \rightarrow x} \frac{d_{2}(x, y)}{d_{1}(x, y)}=\frac{s}{\left(d_{1}(x, z)+s\right)^{2}}
$$

which gives the conclusion.

4. Comparing d and g, after Balogh and Bonk

The quantitative bounds on the distortion of the identity map in Proposition 1.5 follow from the following result, which is a refinement of an analogue statement of Balogh and Bonk [BB00, Corollary 1.3]. We follow largely their arguments, but where in [BB00] the noise due to the rough geometry would yield an additive constant, here instead we need to exploit the fact that the geometry is asymptotically hyperbolic to show that such constants can be chosen arbitrarily small the closer one gets to the boundary.

Theorem 4.1. For every $\bar{p} \in \partial D$ and $\epsilon>0$ there exists $r>0$ such that for all distinct $p, q \in \partial D \cap B(\bar{p}, r)$ there exists $r^{\prime}>0$ such that for all $x \in D \cap B\left(p, r^{\prime}\right)$ and all $y \in D \cap B\left(q, r^{\prime}\right)$

$$
\begin{equation*}
g(x, y)-\epsilon \leq d_{K}(x, y) \leq g(x, y)+\epsilon . \tag{4.2}
\end{equation*}
$$

In the rest of the paper we will refer to this result in connection with the quintuplet (\bar{p}, p, q, x, y).
4.1. Lemmata. The proof of Theorem 4.1 is based on preliminary estimates established in Lemma 4.3, Lemma 4.8, and Lemma 4.12 below.

Lemma 4.3. Let $\delta_{0}>0$ to be the constant in Lemma 2.5. For $x_{1}, x_{2} \in D$ with $d_{E}\left(x_{i}, \partial D\right)<$ δ_{0}, and $h\left(x_{1}\right) \geq h\left(x_{2}\right)$, consider a piecewise C^{1} curve $\gamma:[0,1] \rightarrow N_{\delta_{0}}$ with $\gamma(0)=x_{1}$ and $\gamma(1)=x_{2}$. The length $l_{K}(\gamma)$ of γ with respect to the metric d_{K} satisfies

$$
\begin{equation*}
l_{K}(\gamma) \geq \ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}-C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right) \tag{4.4}
\end{equation*}
$$

where C is the same constant as in (2.8). Moreover, if the curve is a segment $\gamma(t)=$ $x_{1}+t\left(x_{2}-p_{1}\right) \subset \pi^{-1}(p)$ for some $p \in \partial D$ then one has

$$
\begin{equation*}
l_{K}(\gamma) \leq \ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}+C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right) \tag{4.5}
\end{equation*}
$$

Proof. Recall from [BB00, page 517] that

$$
\left|\frac{d}{d t} h(\gamma(t))\right|=\frac{\left|\operatorname{Re}\left\langle n(\pi(\gamma(t))), \gamma^{\prime}(t)\right\rangle\right|}{2 h(\gamma(t))} \leq \frac{\left|\gamma_{N}^{\prime}(t)\right|}{2 h(\gamma(t))} .
$$

The latter and (2.8) yield

$$
\begin{aligned}
l_{K}(\gamma) & =\int_{0}^{1} K\left(\gamma(t), \gamma^{\prime}(t)\right) d t \\
& \geq \int_{0}^{1}\left(1-C d_{E}^{\frac{1}{2}}(\gamma(t), \partial D)\right)\left(\frac{\left|\gamma_{N}^{\prime}(t)\right|^{2}}{4 d_{E}^{2}(\gamma(t), \partial D)}+(1-\bar{\epsilon}) \frac{L_{\varphi}\left(\pi\left(\gamma(t), \gamma_{H}^{\prime}(t)\right)\right.}{d_{E}(\gamma(t), \partial D)}\right)^{\frac{1}{2}} d t \\
& \geq \int_{0}^{1}\left(1-C d_{E}^{\frac{1}{2}}(\gamma(t), \partial D)\right) \frac{\left|\gamma_{N}^{\prime}(t)\right|}{2 d_{E}(\gamma(t), \partial D)} d t \geq \int_{0}^{1} \frac{(1-C h(\gamma(t))}{h(\gamma(t))} \frac{d}{d t} h(\gamma(t)) d t \\
& =\ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}-C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right),
\end{aligned}
$$

which gives (4.4).

On the other hand, if $\gamma(t)=x_{1}+t\left(x_{2}-x_{1}\right)$, then we observe that γ^{\prime} is parallel to the unit normal at $\pi\left(x_{i}\right)$ and so has no tangent component, hence no horizontal component with respect to the splitting at $\pi\left(x_{i}\right)$. Using the fact that

$$
d_{E}(\gamma(t), \partial D)=|\gamma(t)-p|=\left|t\left(x_{2}-x_{1}\right)\right|+\left|x_{1}-p\right|
$$

and (2.8) one has

$$
\begin{aligned}
l_{K}(\gamma) & =\int_{0}^{1} K\left(\gamma(t), \gamma^{\prime}(t)\right) d t \\
& \leq \int_{0}^{1}\left(1+C d_{E}^{\frac{1}{2}}(\gamma(t), \partial D)\right)\left(\frac{\left|\gamma_{N}^{\prime}(t)\right|^{2}}{4 d_{E}^{2}(\gamma(t), \partial D)}+(1+\bar{\epsilon}) \frac{L_{\varphi}\left(\pi\left(\gamma(t), \gamma_{H}^{\prime}(t)\right)\right.}{d_{E}(\gamma(t), \partial D)}\right)^{\frac{1}{2}} d t \\
& =\frac{1}{2} \int_{0}^{1} \frac{\left|x_{2}-x_{1}\right|}{t\left|x_{2}-x_{1}\right|+\left|x_{1}-p\right|} d t+\frac{C}{2} \int_{0}^{1} \frac{1}{\sqrt{t\left|x_{2}-x_{1}\right|+\left|x_{1}-p\right|}} d t \\
& =\ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}+C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right),
\end{aligned}
$$

which gives (4.5).
An immediate consequence of Lemma 4.3 is the following.
Corollary 4.6. Let $\delta_{0}>0$ to be the constant in Proposition 2.5. If $x_{1}, x_{2} \in D$, with $\delta_{0}>h\left(x_{1}\right) \geq h\left(x_{2}\right)$, then

$$
\ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}-C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right) \leq d_{K}\left(x_{1}, x_{2}\right) .
$$

Moreover, if $\pi\left(x_{1}\right)=\pi\left(p_{2}\right)$, then we also have

$$
\begin{equation*}
d_{K}\left(x_{1}, x_{2}\right) \leq \ln \frac{h\left(x_{1}\right)}{h\left(x_{2}\right)}+C\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right) \tag{4.7}
\end{equation*}
$$

where C is the same constant as in (2.8).

The next lemma provides an upper bound for $d_{K}\left(x_{1}, x_{2}\right)$ in the case when both points x_{1}, x_{2} are at the same distance from the boundary and equal to the Carnot-Carathéodory distance between the projections $\pi\left(x_{1}\right), \pi\left(x_{2}\right)$.
Lemma 4.8. Let $p_{1}, p_{2} \in \partial D$. If we set $x_{i}:=p_{i}-d_{C C}\left(p_{1}, p_{2}\right) n\left(p_{i}\right), i=1,2$, then

$$
\begin{equation*}
d_{K}\left(x_{1}, x_{2}\right) \rightarrow 0, \quad \text { as } d_{C C}\left(p_{1}, p_{2}\right) \rightarrow 0 \tag{4.9}
\end{equation*}
$$

Proof. Let $\eta>0$ and let $\alpha:[0,1] \rightarrow \partial D$ be any horizontal curve with $\alpha(0)=p_{1}$ and $\alpha(1)=p_{2}$, such that its subRiemannian length $l_{C C}$, satisfies

$$
l_{C C}(\alpha)=\int_{0}^{1} L_{\varphi}^{\frac{1}{2}}\left(\alpha(t), \alpha^{\prime}(t)\right) d t \leq d_{C C}\left(p_{1}, p_{2}\right)(1+\eta)
$$

Define a new curve $\gamma:[0,1] \rightarrow D$ as a lift at height $h \in\left(0, \delta_{0}\right)$ of α by the formula

$$
\begin{equation*}
\gamma(t):=\alpha(t)-h n(\alpha(t)) \tag{4.10}
\end{equation*}
$$

Arguing as in the proof of BB00, Lemma 2.2] yields the following relations between α^{\prime} and γ^{\prime},

$$
\begin{align*}
L\left(\alpha(t), \gamma_{H}^{\prime}(t)\right) & =L\left(\alpha(t), \alpha^{\prime}(t)\right)+O\left(h\left|\alpha^{\prime}(t)\right|^{2}\right) \tag{4.11}\\
\left|\gamma_{N}^{\prime}(t)\right| & =O\left(h\left|\alpha^{\prime}(t)\right|\right)
\end{align*}
$$

In fact, from (4.10) one has $\left.\gamma^{\prime}(t)\right|_{H}=\alpha^{\prime}(t)-\left[\left.d n\right|_{\alpha(t)} \alpha^{\prime}(t)\right]_{H}$ which, together with the bilinearity of the Levi form, yields (4.11). Consequently we have

$$
\begin{aligned}
l_{K}(\gamma) & =\int_{0}^{1} K\left(\gamma(t), \gamma^{\prime}(t)\right) d t \\
& \leq \int_{0}^{1}\left(1+C d_{E}^{\frac{1}{2}}(\gamma(t), \partial D)\right)\left(\frac{\left|\gamma_{N}^{\prime}(t)\right|^{2}}{4 d_{E}^{2}(\gamma(t), \partial D)}+(1+\bar{\epsilon}) \frac{L_{\varphi}\left(\pi\left(\gamma(t), \gamma_{H}^{\prime}(t)\right)\right.}{d_{E}(\gamma(t), \partial D)}\right)^{\frac{1}{2}} d t \\
& =\int_{0}^{1}\left(1+C h^{\frac{1}{2}}\right)\left(\frac{\left|\gamma_{N}^{\prime}(t)\right|^{2}}{4 h^{2}}+(1+\bar{\epsilon}) \frac{L_{\varphi}\left(\pi\left(\gamma(t), \gamma_{H}^{\prime}(t)\right)\right.}{h}\right)^{\frac{1}{2}} d t \\
& \leq \int_{0}^{1}\left(1+C h^{\frac{1}{2}}\right)\left(C\left|\alpha^{\prime}(t)\right|^{2}+(1+\bar{\epsilon}) \frac{L_{\varphi}\left(\alpha(t), \alpha^{\prime}(t)\right)}{h}\right)^{\frac{1}{2}} d t \\
& \leq(1+C \sqrt{h})(1+\eta)\left[C d_{C C}\left(p_{1}, p_{2}\right)+(1+\bar{\epsilon})^{\frac{1}{2}} h^{-\frac{1}{2}} d_{C C}\left(p_{1}, p_{2}\right)\right] .
\end{aligned}
$$

Setting $h=d_{C C}\left(x_{1}, x_{2}\right)$ in the latter yields the conclusion.

The next lemma will be instrumental in establishing a lower bound for $d_{K}\left(x_{1}, x_{2}\right)$ in the case when a length minimizing arc γ joining two points $x_{1}, x_{2} \in D$ will travel at a distance further than the Carnot-Carathéodory distance between their projections.

Lemma 4.12. Let $\delta_{0}>0$ be smaller than the similarly named constants in Propositions 2.5 and 2.7. Consider two points $x_{1}, x_{2} \in D$ with $d_{E}\left(x_{i}, \partial D\right)<\delta_{0}$. Set $p_{i}=\pi\left(x_{i}\right) \in \partial D$, and let $\gamma:[0,1] \rightarrow D$ denote an arc joining x_{1} and x_{2}. If $\max _{z \in \gamma} h(z) \geq d_{C C}\left(p_{1}, p_{2}\right)$ then

$$
\begin{equation*}
l_{K}(\gamma) \geq 2 \ln \left(\frac{d_{C C}\left(p_{1}, p_{2}\right)}{\sqrt{h\left(x_{1}\right) h\left(x_{2}\right)}}\right)-C\left(2 d_{C C}\left(p_{1}, p_{2}\right)-h\left(x_{1}\right)-h\left(x_{2}\right)\right), \tag{4.13}
\end{equation*}
$$

where C is the same constant as in (2.8).

Proof. Choose $t_{0} \in[0,1]$ such that $h\left(\gamma\left(t_{0}\right)\right)=\max _{z \in \gamma} h(z)$. Set γ_{1}, γ_{2} be the two branches of the curve γ corresponding to the subintervals $\left[0, t_{0}\right]$ and $\left[t_{0}, 1\right]$. Set also $\bar{\gamma}_{1}$ and $\bar{\gamma}_{2}$ to be the connected components on γ_{1} and γ_{2} joining x_{i} to the closest points $y_{i} \in \gamma$ such that $h\left(y_{i}\right)=d_{C C}\left(p_{1}, p_{2}\right)$, for $i=1,2$. More formally, $y_{1}=\gamma\left(t_{1}\right)$, with $t_{1}=\inf \left\{t \in\left[0, t_{1}\right]\right.$ such that $\left.h(\gamma(t)) \geq d_{C C}\left(p_{1}, p_{2}\right)\right\}$. The point y_{2} is defined analogously.

Next we invoke Lemma 4.3 to deduce

$$
\begin{aligned}
l_{K}(\gamma) & \geq l_{K}\left(\bar{\gamma}_{1}\right)+l_{K}\left(\bar{\gamma}_{2}\right) \\
& \geq \ln \frac{d_{C C}\left(p_{1}, p_{2}\right)}{h\left(x_{1}\right)}+\ln \frac{d_{C C}\left(p_{1}, p_{2}\right)}{h\left(x_{2}\right)}-C\left(2 d_{C C}\left(p_{1}, p_{2}\right)-h\left(x_{1}\right)-h\left(x_{2}\right)\right) \\
& =2 \ln \left(\frac{d_{C C}\left(p_{1}, p_{2}\right)}{\sqrt{h\left(x_{1}\right) h\left(x_{2}\right)}}\right)-C\left(2 d_{C C}\left(x_{1}, x_{2}\right)-h\left(x_{1}\right)-h\left(x_{2}\right)\right),
\end{aligned}
$$

which is the desired bound (4.13).
4.2. Proof of Theorem 4.1. Thanks to the previous lemmata we can now prove the main result of the section.

Proof of Theorem 4.1. We shall show that for all $\bar{p} \in \partial D$ and $\epsilon>0$ one can choose $r>0$ small enough so that for all distinct $p, q \in \partial D \cap B(\bar{p}, r)$ one can find $r^{\prime} \in(0, r)$ such that (4.2) holds for all $x \in D \cap B\left(p, r^{\prime}\right)$ and all $y \in D \cap B\left(q, r^{\prime}\right)$. In our proof we begin with arbitrary values of r and r^{\prime} and then put several constrains on them.

If p and q are distinct, then the value $d_{1}:=d_{C C}(p, q)$ is strictly positive. We shall choose r smaller that the constants δ_{0} in Propositions 2.5 and 2.7 and so that d_{1} is small enough to be determined later. Denote by \bar{x}, and \bar{y} the projections on the boundary of x and y, respectively. Note that since the projections are the closest points in ∂D, then $\bar{x} \in B\left(p, 2 r^{\prime}\right)$ and $\bar{y} \in B\left(q, 2 r^{\prime}\right)$. Set $d_{2}:=d_{C C}(\bar{x}, \bar{y})$. Notice that as $r^{\prime} \rightarrow 0$ we have $d_{2} \rightarrow d_{1}$. We shall choose r^{\prime} sufficiently small so that $r^{\prime}<d_{2}$ and $d_{2} \in\left(d_{1} / 2,2 d_{1}\right)$. In particular, if r was chosen small enough, then d_{2} is positive and smaller than the constants δ_{0} in Propositions 2.5 and 2.7.

Proof of the upper bound in (4.2). Set $x^{\prime}:=\bar{x}-d_{2} n(\bar{x})$ and $y^{\prime}:=\bar{y}-d_{2} n(\bar{y})$, so x^{\prime}, y^{\prime} are points in D at distance d_{2} from ∂D and with the same projection on ∂D as x, y, respectively.

By Lemma 4.8 we can choose d_{1} sufficiently small so that $d_{K}\left(x^{\prime}, y^{\prime}\right)<\epsilon / 3$. Invoking (4.7), since $h\left(x^{\prime}\right)=h\left(y^{\prime}\right)=d_{2}>\max \{h(x), h(y)\}$, yields
$d_{K}\left(x, x^{\prime}\right) \leq \log \left(d_{2} / h(x)\right)+C\left(d_{2}-h(x)\right) \quad$ and $\quad d_{K}\left(y, y^{\prime}\right) \leq \log \left(d_{2} / h(y)\right)+C\left(d_{2}-h(y)\right)$.
Choose d_{1} chosen sufficiently small so that $C d_{2} \leq \epsilon / 3$.
Combining the previous bounds with the definition of g, we obtain the following estimates

$$
\begin{aligned}
& d_{K}(x, y)-g(x, y) \leq d_{K}\left(x, x^{\prime}\right)+d_{K}\left(x^{\prime}, y^{\prime}\right)+d_{K}\left(y^{\prime}, y\right)-g(x, y) \\
& \leq \log \left(d_{2} / h(x)\right)+C\left(d_{2}-h(x)\right)+\epsilon / 3+\log \left(d_{2} / h(y)\right)+C\left(d_{2}-h(y)\right) \\
&-2 \ln \left(\frac{\left.d_{2}+h(x) \wedge h(y)\right)}{\sqrt{h(x) h(y)}}\right) \\
& \leq \epsilon-C h(x)-C h(y)-2 \ln \left(1+\frac{h(x) \wedge h(y)}{d_{2}}\right)<\epsilon,
\end{aligned}
$$

where we used that the terms $h(x), h(y), \ln \left(1+\frac{h(x) \wedge h(y)}{d_{2}}\right)$ are positive. This conclude the proof of the upper bound in (4.2).

Proof of the lower bound in (4.2). Choose $\delta>0$ such that $\ln (1 /(1+\delta))<\epsilon$ and $r^{\prime}>0$ small enough so that $\frac{\max (h(x), h(y))}{d_{C C}(p, q)} \leq \delta$, for all $x \in D \cap B\left(p, r^{\prime}\right)$ and all $y \in D \cap B\left(q, r^{\prime}\right)$. Consider any arc $\gamma:[0,1] \rightarrow D$ joining x and y, and set $H:=\max _{z \in \gamma} h(z)$.

- If $H \geq d_{C C}(\bar{x}, \bar{y})$ then in view of Lemma 4.12 we have

$$
\begin{align*}
d_{K}(x, y)-g(x, y) & \left.\geq 2 \ln \left(\frac{d_{2}}{\sqrt{h(x) h(y)}}\right)-C\left(2 d_{2}-h(x)-h(y)\right)\right)-2 \ln \left(\frac{\left.d_{2}+h(x) \wedge h(y)\right)}{\sqrt{h(x) h(y)}}\right) \\
(4.14) & \geq 2 \ln \left(\frac{1}{1+\frac{\max (h(x), h(y))}{d_{2}}}\right)-C\left(2 d_{2}-h(x)-h(y)\right) \tag{4.14}\\
& \geq-(C+2) \epsilon
\end{align*}
$$

In this case the proof is concluded.

- If $H \leq d_{C C}(\bar{x}, \bar{y})$ then it follows that H is smaller than the constants δ_{0} in Propositions 2.5 and 2.7. In particular we can assume without loss of generality that $C H<1 / 2$, where C is as in (2.8). Let $t_{0} \in[0,1]$ be such that $h\left(\gamma\left(t_{0}\right)\right)=H$ and consider the two branches γ_{1}, γ_{2} of γ given by restrictions to $\left[0, t_{0}\right]$ and $\left[t_{0}, 1\right]$. Given $\epsilon>0$ as in the statement, let $\theta \in(1,2]$ so that $\ln \theta<\epsilon$ and define $k \in \mathbb{N}$ such that

$$
h(\gamma(0)) \in\left[\frac{H}{\theta^{k}}, \frac{H}{\theta^{k-1}}\right] .
$$

Following [BB00], we define $s_{0}, s_{1}, \ldots, s_{k} \in\left[0, t_{0}\right]$ such that $s_{0}=0$ and

$$
s_{l}=\min \left\{s \in\left[0, t_{0}\right] \text { such that } h(\gamma(s))=\frac{H}{\theta^{k-l}}\right\} .
$$

Set $t_{1}=s_{k} \leq t_{0}$ and for each $l=1, \ldots, k$,

$$
\nu_{l}^{-1}=\frac{d_{C C}(\bar{x}, \bar{y}) \cdot(\theta-1)}{8 \theta^{k-l}} .
$$

For each of the two branches γ_{1}, γ_{2}, we distinguish two alternatives:

- Alternative \#1 (All sub-arcs have large slope) In this alternative we assume that for every $l=1, \ldots, k$ one has

$$
\begin{equation*}
d_{C C}\left(\pi\left(\gamma\left(s_{l-1}\right)\right), \pi\left(\gamma\left(s_{l}\right)\right)\right) \leq \nu_{l}^{-1} \tag{4.15}
\end{equation*}
$$

From the latter we draw two conclusions. The first is a simple application of the triangle inequality,

$$
\begin{align*}
& d_{C C}\left(\bar{z}, \pi\left(\gamma\left(t_{1}\right)\right)\right. \tag{i}\\
& \qquad \leq \sum_{l=1}^{k} d_{C C}\left(\pi\left(\gamma\left(s_{l-1}\right)\right), \pi\left(\gamma\left(s_{l}\right)\right)\right) \leq(\theta-1) \frac{d_{C C}(\bar{x}, \bar{y})}{8 \theta^{k}} \sum_{l=1}^{k} \theta^{l} \leq \frac{d_{C C}(\bar{x}, \bar{y})}{4} .
\end{align*}
$$

On the other hand, in view of Lemma 4.3 one has

$$
\begin{equation*}
l_{K}\left(\left.\gamma\right|_{\left[0, t_{1}\right]}\right) \geq \ln \frac{h\left(\gamma\left(t_{1}\right)\right)}{h(x)}-C\left(h\left(\gamma\left(t_{1}\right)\right)-h(x)\right)=\ln \frac{H}{h(x)}-C(H-h(x)) . \tag{ii}
\end{equation*}
$$

- Alternative \#2 (One sub-arc has small slope) In this alternative, we assume that there exists $l \in\{1, \ldots, k\}$ such that

$$
\begin{equation*}
d_{C C}\left(\pi\left(\gamma\left(s_{l-1}\right)\right), \pi\left(\gamma\left(s_{l}\right)\right)\right)>\nu_{l}^{-1} \tag{4.16}
\end{equation*}
$$

Note that if $s \in\left[s_{l-1}, s_{l}\right]$ then from the definition of the points s_{l}, one has

$$
h(\gamma(s)) \leq \theta^{l-k} H \leq \frac{8}{\theta-1} \nu_{l}^{-1} .
$$

We then claim that there exists a constant $\mathcal{C}>0$ depending only on the defining function φ such that

$$
\begin{equation*}
l_{K}\left(\left.\gamma\right|_{\left[s_{l-1}, s_{l}\right]}\right) \mathcal{C}(\theta-1)^{2} \frac{d_{C C}(\bar{x}, \bar{y})}{H} . \tag{4.17}
\end{equation*}
$$

Indeed, arguing as in [BB00, page 521] we invoke (2.8) and Lemma 2.10 and we bound as follows:

$$
\begin{aligned}
& l_{K}\left(\left.\gamma\right|_{\left[s_{l-1}, s_{l}\right]}\right) \\
& \quad \geq \mathcal{C} \frac{(1-C H) \theta^{k-l}}{H} \int_{s_{l-1}}^{s_{l}}\left[L_{\varphi}\left(\pi(\gamma(s)),[\pi(\gamma(s))]_{H}^{\prime}\right)+(\theta-1)^{2} \nu_{l}^{2}\left|[\pi(\gamma(s))]_{N}^{\prime}\right|^{2}\right]^{\frac{1}{2}} d s \\
& \quad \geq \frac{\mathcal{C}}{2}(\theta-1) \frac{\theta^{k-l}}{H} \int_{s_{l-1}}^{s_{l}}\left[L_{\varphi}\left(\pi(\gamma(s)),[\pi(\gamma(s))]_{H}^{\prime}\right)+\nu_{l}^{2}\left|[\pi(\gamma(s))]_{N}^{\prime}\right|^{2}\right]^{\frac{1}{2}} d s \\
& \quad \geq \mathcal{C}(\theta-1) \frac{\theta^{k-l}}{H} d_{\nu_{l}}\left(\pi\left(\gamma\left(s_{l-1}\right)\right), \pi\left(\gamma\left(s_{l}\right)\right)\right) \\
& \quad \geq \mathcal{C}(\theta-1) \frac{\theta^{k-l}}{H} d_{C C}\left(\pi\left(\gamma\left(s_{l-1}\right)\right), \pi\left(\gamma\left(s_{l}\right)\right)\right) \\
& \quad \geq \mathcal{C}(\theta-1)^{2} \frac{d_{C C}(\bar{x}, \bar{y})}{H},
\end{aligned}
$$

where $d_{\nu_{l}}$ denotes the approximation of the Carnot-Caratheodory metric defined in (2.9).

Next we claim that

$$
\begin{equation*}
l_{L}\left(\left.\gamma\right|_{\left[0, t_{1}\right]}\right) \geq \ln \left(\frac{H}{h(y)}\right)+\frac{\mathcal{C}(\theta-1)^{2}}{H} d_{C C}(\bar{x}, \bar{y})-C(H-h(y))-\epsilon . \tag{A2}
\end{equation*}
$$

Indeed, Lemma 4.3 and (4.17) yields

$$
\begin{aligned}
l_{L}\left(\left.\gamma\right|_{\left[0, t_{1}\right]}\right) & =l_{K}\left(\left.\gamma\right|_{\left[0, s_{l-1}\right]}\right)+l_{K}\left(\left.\gamma\right|_{\left[s_{l-1}, s_{l}\right]}\right)+l_{K}\left(\left.\gamma\right|_{\left[s_{l}, t_{1}\right]}\right) \\
& \geq \ln \left(\frac{H}{h\left(\gamma\left(s_{l}\right)\right)} \frac{h\left(\gamma\left(s_{l-1}\right)\right)}{h(x)}\right)+\frac{\mathcal{C}(\theta-1)^{2}}{H} d_{C C}(\bar{x}, \bar{y}) \\
& \quad-C\left(H-h\left(\gamma\left(s_{l}\right)+h\left(\gamma\left(s_{l-1}\right)\right)-h(x)\right)\right. \\
& \geq \ln \left(\frac{H}{h(x)} \theta^{-1}\right)+\frac{\mathcal{C}(\theta-1)^{2}}{H} d_{C C}(\bar{x}, \bar{y})-C(H-h(x)) \\
& \geq \ln \left(\frac{H}{h(x)}\right)+\frac{\mathcal{C}(\theta-1)^{2}}{H} d_{C C}(\bar{x}, \bar{y})-C(H-h(x))-\epsilon .
\end{aligned}
$$

Applying similar consideration to the branch γ_{2} one obtains a $t_{2} \in\left[t_{0}, 1\right]$ such that one of the following two alternatives hold: Either

$$
\begin{equation*}
d_{C C}\left(\bar{y}, \pi\left(\gamma\left(t_{2}\right)\right) \leq \frac{d_{C C}(\bar{x}, \bar{y})}{4} \quad \text { and } \quad l_{K}\left(\left.\gamma\right|_{\left[t_{2}, 1\right]}\right) \geq \ln \frac{H}{h(y)}-C(H-h(y))\right. \tag{B1}
\end{equation*}
$$

or

$$
\begin{equation*}
l_{L}\left(\left.\gamma\right|_{\left[t_{2}, 1\right]}\right) \geq \ln \left(\frac{H}{h(y)}\right)+\frac{\mathcal{C}(\theta-1)^{2}}{H} d_{C C}(\bar{x}, \bar{y})-C(H-h(y))-\epsilon \tag{B2}
\end{equation*}
$$

To conclude the proof we need to examine all possible combinations of these alternatives. We will show that in each case one obtains

$$
\begin{equation*}
l_{K}(\gamma) \geq 2 \ln \left(\frac{d_{C C}(\bar{x}, \bar{y})}{\sqrt{h(x) h(y)}}\right)-C\left(2 d_{C C}(\bar{x}, \bar{y})-h(x)-h(y)\right)-\epsilon \tag{4.18}
\end{equation*}
$$

- Suppose both (A1) and (B1) hold. Observe that

$$
\begin{aligned}
d_{C C}\left(\pi\left(\gamma\left(t_{1}\right)\right), \pi\left(\gamma\left(t_{2}\right)\right)\right) & \geq d_{C C}(\bar{x}, \bar{y})-d_{C C}\left(\bar{x}, \pi\left(\gamma\left(t_{1}\right)\right)\right)-d_{C C}\left(\bar{y}, \pi\left(\gamma\left(t_{2}\right)\right)\right) \\
& \geq \frac{d_{C C}(\bar{x}, \bar{y})}{2}
\end{aligned}
$$

Repeating the argument in (4.17) for $l=k$ and invoking the Riemannian approximation lemma BB00, Lemma 2.2] one has

$$
l_{L}\left(\left.\gamma\right|_{\left[t_{1}, t_{2}\right]}\right) \geq \mathcal{C}(\theta-1) \frac{d_{\nu_{k}}\left(\pi\left(\gamma\left(t_{1}\right)\right), \pi\left(\gamma\left(t_{2}\right)\right)\right)}{H} \geq \mathcal{C}(\theta-1) \frac{d_{C C}(\bar{x}, \bar{y})}{H}
$$

The latter, together with A1 (ii), and the second inequality in (B1) yields

$$
l_{K}(\gamma) \geq 2 \ln \left(\frac{H}{\sqrt{h(x) h(y)}}\right)+\mathcal{C}(\theta-1) \frac{d_{C C}(\bar{x}, \bar{y})}{H}-C(2 H-h(x)-h(y))
$$

Since the right hand side is monotone decreasing in $H \leq d_{C C}(\bar{x}, \bar{y})$ then one has

$$
\begin{aligned}
l_{K}(\gamma) & \geq 2 \ln \left(\frac{d_{C C}(\bar{x}, \bar{y})}{\sqrt{h(x) h(y)}}\right)+\mathcal{C}(\theta-1)-C\left(2 d_{C C}(\bar{x}, \bar{y})-h(x)-h(y)\right) \\
& \geq 2 \ln \left(\frac{d_{C C}(\bar{x}, \bar{y})}{\sqrt{h(x) h(y)}}\right)-C\left(2 d_{C C}(\bar{x}, \bar{y})-h(x)-h(y)\right)
\end{aligned}
$$

completing the proof of (4.18).

- Suppose both (A1) and (B2) hold. One immediately has

$$
\begin{aligned}
l_{K}(\gamma) \geq & l_{K}\left(\gamma_{\left[0, t_{1}\right]}\right)+l_{K}\left(\left.\gamma\right|_{\left[t_{2}, 1\right]}\right) \\
& \geq \ln \left(\frac{H}{h(x)}\right)+\frac{\mathcal{C}(\theta-1)}{H} d_{C C}(\bar{x}, \bar{y})-C[H-h(x)]-\epsilon+\ln \frac{H}{h(y)}-C(H-h(y))
\end{aligned}
$$

Applying the same consideration as above we immediately deduce (4.18).

- Suppose both (A2) and (B1) hold. This combination is dealt with analogously to the previous case.
- Suppose both (A2) and (B2) hold. Estimate (4.18) follows immediately from (A2) and (B2).

To conclude the proof we need to consider the infimum of $l_{K}(\gamma)$ among all arcs γ joining x and y and apply (4.18) to each. One has

$$
\begin{aligned}
& d_{K}(x, y)-g(x, y) \geq 2 \ln \left(\frac{d_{C C}(\bar{x}, \bar{y})}{\sqrt{h(x) h(y)}} \frac{1}{\frac{d_{C C}(\bar{x}, \bar{y})}{\sqrt{h(x, h(y)}}+\frac{\max \{h(x), h(y)\}}{\sqrt{h(x) h(y)}}}\right) \\
&-C\left(2 d_{C C}(\bar{x}, \bar{y})-h(x)-h(y)\right)-\epsilon \\
&=-2 \ln \left(1+\frac{\max \{h(x), h(y)\}}{d_{C C}(\bar{x}, \bar{y})}\right) \\
&-C\left(2 d_{C C}(\bar{x}, \bar{y})-h(x)-h(y)\right)-\epsilon .
\end{aligned}
$$

The proof is then concluded by applying the same argument as in (4.14).

5. Local biLipschitz equivalence of Bourdon functions and proof of main RESULT

In this section we prove Proposition 1.5 and the main result, Theorem 1.1,
Proof of Proposition 1.5, Let \bar{p} as in the statement and choose $\epsilon>0$ such that $\exp \left(\frac{3}{2} \epsilon\right) \leq$ $1+\bar{\epsilon}$. Invoke Theorem 4.1 in correspondence to the choice of \bar{p} and ϵ, to obtain the value $r>0$ and select any $\omega \in \partial D \cap B(\bar{p}, r) \backslash\{\bar{p}\}$. In correspondence to this choice of ω, Theorem 4.1 yields a smaller radius $0<r^{\prime}<r$, so that if we choose $y \in D \cap B\left(\bar{p}, r^{\prime}\right)$ and $o \in D \cap B\left(\omega, r^{\prime}\right)$ and then apply Theorem 4.1 to the quintuplet ($\bar{p}, \bar{p}, \omega, y, o$) we obtain

$$
\left|g(y, o)-d_{K}(y, o)\right|<\epsilon, \quad \text { for all } y \in D \cap B\left(\bar{p}, r^{\prime}\right), \text { and } o \in D \cap B\left(\omega, r^{\prime}\right)
$$

Next, given $p, q \in \partial D \cap B\left(\bar{p}, r^{\prime}\right)$ we similarly use Theorem 4.1 to infer the existence of a $r^{\prime \prime}>0$ for which, applying Theorem 4.1 to the quintuplet ($\bar{p}, p, q x, y$)

$$
\left|d_{K}(x, y)-g(x, y)\right| \leq \epsilon, \quad \text { for all } x \in D \cap B\left(p, r^{\prime \prime}\right), \text { and for all } y \in D \cap B\left(q, r^{\prime \prime}\right) .
$$

If x_{i} (resp., y_{i}) is a sequence in D converging to p (resp., q), then for i large enough $x_{i} \in D \cap B\left(p, r^{\prime \prime}\right)$ and $y_{i} \in D \cap B\left(q, r^{\prime \prime}\right)$ and $x_{i}, y_{i} \in B\left(\bar{p}, r^{\prime}\right)$. From the above bounds one obtains

$$
\begin{aligned}
\left|\left\langle y_{i}, x_{i}\right\rangle_{o}^{g}-\left\langle y_{i}, x_{i}\right\rangle_{o}^{K}\right| & =\frac{1}{2}\left|g\left(y_{i}, o\right)-d_{K}\left(y_{i}, o\right)+g\left(x_{i}, o\right)-d_{K}\left(x_{i}, o\right)+d_{K}\left(x_{i}, y_{i}\right)-g\left(x_{i}, y_{i}\right)\right| \\
& \leq \frac{3}{2} \epsilon
\end{aligned}
$$

Consequently, if the sequences x_{i}, y_{i} are taken so that $\langle p, q\rangle_{o}^{g}=\lim _{i \rightarrow \infty}\left\langle y_{i}, x_{i}\right\rangle_{o}^{g}$, we have

$$
\begin{aligned}
\frac{\rho_{o}^{K}(p, q)}{\rho_{o}^{g}(p, q)} & \leq \frac{\lim _{i \rightarrow \infty} \exp \left(-\left\langle y_{i}, x_{i}\right\rangle_{o}^{K}\right)}{\lim _{i \rightarrow \infty} \exp \left(-\left\langle y_{i}, x_{i}\right\rangle_{o}^{g}\right)} \\
& =\lim _{i \rightarrow \infty} \exp \left(\left\langle y_{i}, x_{i}\right\rangle_{o}^{g}-\left\langle y_{i}, x_{i}\right\rangle_{o}^{K}\right) \\
& \leq \exp \left(\frac{3}{2} \epsilon\right) \leq 1+\bar{\epsilon} .
\end{aligned}
$$

And similarly, $\rho_{o}^{g}(p, q) / \rho_{o}^{K}(p, q)$ is bounded by $1+\bar{\epsilon}$.
Proof of Theorem 1.1. For any $\bar{p} \in \partial D_{1}$ and $\bar{\epsilon}>0$ we show that the boundary extension is $(1+\bar{\epsilon})$-quasi-conformal at \bar{p}, i.e. $H^{*}\left(\bar{p}, F, d_{C C}, d_{C C}\right) \leq 1+\bar{\epsilon}$, where H^{*} is defined as in (2.1). Following the diagram (D) in the introduction, from (2.3) for every $o \in D_{1}$ we have

$$
\begin{align*}
& H^{*}\left(\bar{p}, F, d_{C C}, d_{C C}\right) \tag{5.1}\\
& \leq H^{*}\left(\bar{p}, \operatorname{Id}_{\partial D_{1}}, d_{\mathrm{CC}}, \rho_{o}^{g}\right) H^{*}\left(\bar{p}, \operatorname{Id}_{\partial D_{1}}, \rho_{o}^{g}, \rho_{o}^{K}\right) H^{*}\left(\bar{p}, F, \rho_{o}^{K}, \rho_{f(o)}^{K}\right) \\
& \text { - } H^{*}\left(F(\bar{p}), \operatorname{Id}_{\partial D_{2}}, \rho_{f(o)}^{K}, \rho_{f(o)}^{g}\right) H^{*}\left(F(\bar{p}), \operatorname{Id}_{\partial D_{2}}, \rho_{f(o)}^{g}, d_{\mathrm{CC}}\right) \text {. }
\end{align*}
$$

Start by observing that for any $o \in D_{1}$ the pointed metric spaces $\left(D_{1}, d_{K}, o\right)$ and $\left(D_{2}, d_{K}, f(o)\right)$ are isometric. Thus they give rise to visual boundaries that are isometric with respect to the induced distances ρ_{o}^{K} an $\rho_{f(o)}^{K}$, as defined in (1.3). Consequently the induced extension map $F:\left(\partial D_{1}, \rho_{o}^{K}\right) \rightarrow\left(\partial D_{2}, \rho_{f(o)}^{K}\right)$ is an isometry, and hence from (2.4)

$$
\begin{equation*}
H^{*}\left(\bar{p}, F, \rho_{o}^{K}, \rho_{f(o)}^{K}\right)=1 . \tag{5.2}
\end{equation*}
$$

Regarding the first and last term in the right-hand side of (5.1), in view of Proposition 1.4 we have that

$$
\begin{equation*}
H^{*}\left(\bar{p}, \operatorname{Id}_{\partial D_{1}}, d_{\mathrm{CC}}, \rho_{o}^{g}\right)=H^{*}\left(F(\bar{p}), \operatorname{Id}_{\partial D_{2}}, \rho_{f(o)}^{g}, d_{\mathrm{CC}}\right)=1 . \tag{5.3}
\end{equation*}
$$

We shall then prove that

$$
\begin{equation*}
H^{*}\left(\bar{p}, \operatorname{Id}_{\partial D_{1}}, \rho_{o}^{g}, \rho_{o}^{K}\right) \leq 1+\bar{\epsilon} \text { and } H^{*}\left(F(\bar{p}), \operatorname{Id}_{\partial D_{2}}, \rho_{f(o)}^{K}, \rho_{f(o)}^{g}\right) \leq 1+\bar{\epsilon} \tag{5.4}
\end{equation*}
$$

for some suitable choice of o. To prove this we will need to invoke Proposition 1.5 twice, in D_{1} and in D_{2}, together with the observation (2.4). Namely, we shall prove that for a suitable choice of o The maps considered in (5.4) are $(1+\bar{\epsilon})$-biLipschitz in a neighborhood of the considered points.

First we apply Proposition 1.5 in a neighborhood of $F(\bar{p}) \in \partial D_{2}$, thus yielding $r_{2}>0$ such that for all $\omega_{2} \in \partial D_{2} \cap B\left(F(\bar{p}), r_{2}\right) \backslash\{F(\bar{p})\}$ there exists $r_{2}^{\prime}>0$ such that for all $o_{2} \in D_{2} \cap B\left(\omega_{2}, r_{2}^{\prime}\right)$ one has that $\rho_{o_{2}}^{g}$ and $\rho_{o_{2}}^{K}$ are $(1+\bar{\epsilon})$-biLipschitz in $\partial D_{2} \cap B\left(F(\bar{p}), r_{2}^{\prime}\right)$. For the moment we do not choose any specific ω_{2} and o_{2}, so r_{2}^{\prime} is still to be determined.

Next, we apply Proposition 1.5 to D_{1} in a neighborhood of \bar{p} and use it to choose $r_{1}>0$ such that for all $\omega_{1} \in \partial D_{1} \cap B\left(\bar{p}, r_{1}\right) \backslash\{\bar{p}\}$ there exists $r_{1}^{\prime}>0$ such that $o_{1} \in D_{1} \cap B\left(\omega_{1}, r_{1}^{\prime}\right)$ one has that $\rho_{o_{1}}^{g}$ and $\rho_{o_{1}}^{K}$ are $(1+\bar{\epsilon})$-biLipschitz in $\partial D_{1} \cap B\left(\bar{p}, r_{1}^{\prime}\right)$. By continuity of the map F we may have chosen r_{1} small enough that $F\left(B\left(\bar{p}, r_{1}\right) \cap D_{1}\right) \subset B\left(F(\bar{p}), r_{2}\right) \cap D_{2}$.

We set $\omega_{2}:=F\left(\omega_{1}\right)$, which is then in $B\left(F(\bar{p}), r_{2}\right) \cap D_{2}$ and is different than $F(\bar{p})$ since F is a homeomorphism. Now we fix r_{2}^{\prime} accordingly, as we explained above. If needed we will select a smaller value for r_{1}^{\prime} so that we can assume $F\left(B\left(\omega_{1}, r_{1}^{\prime}\right) \cap D_{1}\right) \subset B\left(F\left(\omega_{1}\right), r_{2}^{\prime}\right) \cap D_{2}$.

To conclude, we can now select any base point $o \in B\left(\omega_{1}, r_{1}^{\prime}\right) \cap D_{1}$, so that $f(o) \in$ $B\left(\omega_{2}, r_{2}^{\prime}\right) \cap D_{2}$ and and hence $\rho_{o_{1}}^{g}$ and $\rho_{o_{1}}^{K}$ are $(1+\bar{\epsilon})$-biLipschitz in $\partial D_{1} \cap B\left(\bar{p}, r_{1}^{\prime}\right)$ and $\rho_{o_{2}}^{g}$ and $\rho_{o_{2}}^{K}$ are $(1+\bar{\epsilon})$-biLipschitz in $\partial D_{2} \cap B\left(F(\bar{p}), r_{2}^{\prime}\right)$. Thus, (2.4) gives (5.4).

Using the estimates (5.2), (5.3), and (5.4) in (5.1) we get $H^{*}\left(\bar{p}, F, d_{C C}, d_{C C}\right) \leq 1+\bar{\epsilon}$. By the arbitrariness of $\bar{\epsilon}$ we deduce $H^{*}\left(\bar{p}, F, d_{C C}, d_{C C}\right)=1$. Finally, from Lemma 2.2 we conclude.

References

[Bar83] David E. Barrett, Boundary analyticity of proper holomorphic maps of domains with nonanalytic boundaries, Math. Ann. 263 (1983), no. 4, 479-482.
[BB99] Zoltan M. Balogh and Mario Bonk, Pseudoconvexity and Gromov hyperbolicity, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 7, 597-602.
[BB00] Zoltán M. Balogh and Mario Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000), no. 3, 504-533.
[BC82] Steven Bell and David Catlin, Proper holomorphic mappings extend smoothly to the boundary, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 269-272.
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.
[BHK01] Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque (2001), no. 270, viii+99.
[BL80] Steve Bell and Ewa Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283-289.
[Bou95] Marc Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63-102.
[BS00] Mario Bonk and Oded Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266-306.
[CCLDO16] Luca Capogna, Giovanna Citti, Enrico Le Donne, and Alessandro Ottazzi, Conformality and q-harmonicity in sub-riemannian manifolds, Preprint, arXiv:1603.05548 [math.AP] (2016).
[Fef74] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65.
[GdlH90] Étienne Ghys and Pierre de la Harpe, Le bord d'un espace hyperbolique, Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 117-134.
[Gro96] Mikhail Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79-323.
[Kra13] Steven G. Krantz, Geometric analysis of the Bergman kernel and metric, Graduate Texts in Mathematics, vol. 268, Springer, New York, 2013.
[Kra15] , Smoothness to the boundary of biholomorphic mappings: an overview, Function spaces in analysis, Contemp. Math., vol. 645, Amer. Math. Soc., Providence, RI, 2015, pp. 179-190.
[Ma91] Daowei Ma, Boundary behavior of invariant metrics and volume forms on strongly pseudoconvex domains, Duke Math. J. 63 (1991), no. 3, 673-697.
[Mos73] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J., 1973, Annals of Mathematics Studies, No. 78.
[NWY80] L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), no. 3, 305-338.
[Wil12] Marshall Williams, Geometric and analytic quasiconformality in metric measure spaces, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1251-1266.
[Zim16] Andrew M. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann. 365 (2016), no. 3-4, 1425-1498.

Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609

E-mail address: lcapogna@wpi.edu
Department of Mathematics and Statistics, University of Jyväskylä, 40014 Jyväskylä, FinLAND

E-mail address: ledonne@msri.org

[^0]: Date: February 28, 2017.
 2010 Mathematics Subject Classification. 32T15; 32Q45; 32H40; 53C23; 53C17.
 L.C. partially funded by NSF award DMS 1503683.
 E.L.D. is supported by the Academy of Finland project no. 288501.

[^1]: ${ }^{1}$ The result holds for any hyperbolic filling as in the work of Bonk and Schramm. See Section 3.2

