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Abstract 

The goal of this project, sponsored by General Dynamics C4 Systems, is to evaluate proprietary 

FPGA technology developed by Achronix Semiconductor Corporation and its effectiveness using 

a 128-bit, one clock cycle multiplier in a finite field, GF(2
128

), as a test application. The testing 

will determine if there is a significant increase in speed that can be achieved by simple 

modifications of existing synchronous HDL designs using three metrics: number of LUTs, 

number of registers, and clock speed. 
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1 Introduction 

Field Programmable Gate Arrays (FPGAs) are used in commercial and industrial applications for 

both implementation and testing more so than they have ever been used before. A 

combination of cheaper technology coupled with faster and more reliable boards have made 

FPGAs one of the best tools for system development available to engineers. An FPGA allows the 

luxury of reworking and retooling a design on-the-fly without having to manufacture or build 

the design every time a new revision is decided upon. What FPGAs face, in terms of future 

development issues, is that they are not keeping up with the demand for speed and throughput 

that high-complexity applications, such as cryptography, are beginning to require. The limiting 

factor in most FPGA designs is the clock speed that must be carefully tuned for the system as to 

not disrupt the balance of the system clock and the synchronous components that require a 

clock. FPGAs achieve a much faster system throughput if they are designed asynchronously, but 

designing for an asynchronous system is time-consuming and extremely difficult. 

 

In cooperation with General Dynamics C4 Systems and the Achronix Semiconductor 

Corporation, this MQP will explore experimental, proprietary technology developed by 

Achronix that will improve throughput speeds of a synchronous FPGA design to theoretical 

speeds of 1.6GHz+. This is accomplished by a proprietary blend of removing routing delays and 

allowing the system to run without a clock, asynchronously. This experiment will use a Galois 

Field multiplier, GF(2
128

), that runs within one system clock cycle as a testing application. This 

multiplier serves a valid and important purpose in cryptographic systems such as Advanced 

Encryption Standard (AES) and Galois Counter Mode (GCM), thus the reason it was chosen. The 

system will be tested across two simulated FPGAs: the Achronix Speedster ACXSPD60 (Std. 

speed, FBGA1680 package) and the Altera Stratix III EP3SL150 (-2 speed, FC1152 package). The 

designs will be optimized using Synplicity’s Synplify Pro and simulated for timing analysis within 

the Achronix CAD Environment and Altera Quartus II for the Speedster and the Stratix III, 

respectively. Of the results produced by these tools, the number of lookup tables (LUTs), logic 

registers, and the system clock speed will serve as benchmarks for the performance of the 

systems under test. 
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As with any MQP performed off-campus and in conjunction with an engineering firm such as 

GDC4S, time constraints and project goals must be kept in a delicate balance to support 

producing the best results in the seven week time frame. This project will accomplish the goals 

it has set out for itself, with the approval of its supervisors, as well as propose future research 

and experimentation that could be explored in future MQPs. 
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2 Background 

This project is a culmination of two primary efforts: research and implementation. This section 

will explain the broad concepts necessary towards a complete understanding of the finished 

result and the design methodology. 

2.1 Field Programmable Gate Arrays (FPGAs) 

An FPGA is a semiconductor device in which a large array of logic blocks can be programmed to 

be connected to each other in different ways. This enables the designer to create a hardware 

device that is specifically designed for a particular task, without the need for the expensive 

process involved in creating an Application Specific Integrated Circuit (ASIC). 

 

Since the first FPGAs created by Xilinx Inc. came to market in 1985, their use has been 

increasing steadily in a variety of disciplines. Not only are the costs for small batches of FPGAs 

significantly lower than those of comparable ASICs, but they are also easier to change once the 

initial design has been deployed. While FPGAs are generally slower and use more power than 

an ASIC designed for the same task, advancements in FPGA fabrication technology mean that 

they are rapidly reaching a speed and power utilization that enables them to be used in almost 

any application [13].  

2.2 Hardware Encryption 

It is desirable to perform encryption in hardware for applications where large amounts of data 

need to be encrypted, transmitted, decrypted, and received in a time critical manner the 

performance gains provided by hardware encryption outweigh its increased cost. Specifically, 

algorithms like AES (elaborated upon in section 2.6 Advanced Encryption Standard (AES)) are 

particularly easy to implement in hardware due to the fact that most of the computations are 

based on bit manipulation, which run much more efficiently in hardware as opposed to 

software [14].  
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2.3 Available Tools 

Throughout the course of this project, multiple software tools were used in order to facilitate 

simulation, version comparison and simplification processes to increase productivity. The most 

important of these tools are explained in further detail in this section. 

2.3.1 Mentor Graphics QuestaSim 

Questa is Mentor Graphics’ Advanced Functional Verification (AFV) tool and is an integrated 

platform that includes QuestaSim. QuestaSim is capable of high efficiency advanced verification 

of large electronic systems, and includes built-in management and debugging utilities. 

QuestaSim, based upon Mentor Graphics’ ModelSim, seen in Figure 1, is a standards-based 

digital simulator capable of receiving VHDL or a variety of other languages’ code as input and 

simulating results based on test bench waveforms. 

 

Figure 1: QuestaSim displaying simulation results for a period of 400ns 
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QuestaSim boasts a variety of features in addition to its primary functionality, such as low-

power design verification and fast time-to-debug using assertions and a multi-abstraction 

debug environment [11]. 

2.3.2 Synplicity Synplify and Synplify Pro 

Synplify is synthesis engine that is used to create FPGA designs. It takes in VHDL or Verilog code 

and outputs a netlist which can be optimized for a variety of FPGA vendors and packages. 

Synplify uses Behavior Extracting Synthesis Technology® (B.E.S.T. ™) to produce designs which 

are fast and highly efficient. Additionally, it is designed with a simple interface so that it is easy 

to use [16]. Below is a screenshot of the Synplify user interface during the mapping process of a 

VHDL module (Figure 2): 

 

Figure 2: Synplify mapping the square128 VHDL module as part of the compilation process 

Synplify Pro is similar in operation and use to that of Synplify, but offers better algorithms for 

compilation and mapping. In addition, it also improves the user interface (the Synplify Pro 

interface can be seen in Figure 3) and adds a great deal more options that may be used in 
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design. This project uses both Synplify and Synplify Pro, the latter being used in situations 

concerning benchmarking due to the need of the auto constraining feature found within 

Synplify Pro. 

2.3.3 Achronix CAD Environment (ACE) 

The Achronix CAD Environment runs as a complementary tool to Synplicity’s Synplify Pro 

software, seen in Figure 3, and allows for enhanced optimization techniques using Achronix’s 

proprietary technology to decrease routing delays. This results in an overall throughput 

increase of the system and allows for FPGAs to run some applications at speeds greater than 

1GHz. ACE, which can be seen in Figure 4, has been designed to be intentionally easy to use and 

while it functions on the premises of an asynchronous logic design, all input to the program is 

standard architecture, synchronous logic designs. This allows for current configurations to only 

require slight HDL modifications in order to benefit from the performance improvements ACE 

offers. 

 

Figure 3: Synplify Pro mapping mult_accu128 
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Figure 4: Achronix CAD Environment compiling mult_accu128 

At the time of this report’s authoring, ACE is not commercially available but is scheduled to 

launch before the end of the year (2008) to major companies. As such, the version of ACE used 

in this project is only to be considered a pre-release, or beta, version of the software with some 

functionality not yet implemented by the Achronix software engineers. 

2.3.4 Altera Quartus II 

Altera’s Quartus II software is a product of the Altera Corporation that provides a unified 

development design flow for FPGAs, structured ASICs, and CPLDs. Quartus II is capable of easily 

addressing problems relevant to designs such as post place-and-route design modifications. 

Compared to the Xilinx ISE, Quartus II provides higher benchmarks in performance with 

relevance to FPGA and CPLD designs. Quartus II also provides tools such as TimeQuest and 

PowerPlay that assist in timing analysis and power analysis, respectively, as well as a pin 

planner feature to be used in I/O pin assignment [15]. Quartus II’s interface can be seen below 

in Figure 5: 
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Figure 5: Example of Quartus II flow summary after compilation 

2.4 General Dynamics C4 Systems (GDC4S) 

“General Dynamics C4 Systems is a subsidiary of the General Dynamics Corporation located in 

Falls Church, Virginia. C4 Systems is part of the General Dynamics Information Systems and 

Technology group that consists of four business units: Advanced Information Systems, C4 

Systems, United Kingdom Limited and Information Technology. General Dynamics C4 Systems is 

a leading provider of network-centric solutions. Their leadership credentials come from 

applying world-class capabilities to create high-value, low risk solutions for use on land, at or 

under the sea, in the air and in space. Based in Scottsdale, Arizona, General Dynamics C4 

Systems employs approximately 11,000 people worldwide and is focused on the development, 

design, manufacturing and integration of secure communication, information and technology 

solutions.” [5] 

 

General Dynamics C4 Systems sponsored this MQP and its research by providing the project 
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team with office space, software and hardware necessary to complete this project as well as 

some of its employees’ time. While General Dynamics C4 Systems is a government contractor 

and primarily deals with classified materials, this work was unclassified and is subject to a non-

disclosure agreement. 

2.5 Achronix Semiconductor Corporation 

“Achronix Semiconductor is a privately owned fabless corporation based in San Jose, CA. 

Achronix markets the world’s fastest FPGAs capable of running at speeds of up to 2GHz, in 

throughput, using their unique, patented technology. Achronix FPGAs are targeted at a wide 

variety or markets ranging from medical to military and products are manufactured to different 

specifications, the highest of which requires their products be operable from -260°C to +130°C.” 

[12] 

 

Achronix provided this MQP with the necessary software to implement functional designs much 

faster than standard FPGA designs due to their software utilizing Achronix’s unique technology. 

Achronix also provided training from an Achronix field applications engineer as well as 

documentation and tutorials not otherwise available. 

2.6 Advanced Encryption Standard (AES) 

Following the increasing number of simple exploits to the Data Encryption Standard (DES), the 

United States government needed a new encryption standard that could be trusted for general, 

unclassified materials. On May 26, 2002 [6], AES became that standard, replacing DES for all but 

legacy systems. Designed by Vincent Rijmen and Joan Daemen, the Rijndael algorithm was 

chosen by the National Institute of Standards and Technology (NIST) to be used for AES. AES is 

now widespread and is extremely common in both software and hardware applications, 

utilizing a 128-bit block structure with key sizes of 128, 192, and 256 bit forms [7]. This larger 

key size compares with the DES key sizes of 56 bits and allows for 10
21

 additional keys, 

rendering it extremely difficult to search for encryption keys using brute force methods [8].  

 

AES systems remain, to date, unbroken. However, implementation-related attacks such as side-

channel attacks may compromise insecure systems. Side-channel attacks do not rely on the 
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encryption algorithm but rely on physical proximity and external monitoring of power, noise 

and other factors related to the system in order to formulate an attack [9]. Often based on 

timing information or transmission of leaked electromagnetic data, these attacks may require 

knowledge about the internal operation of the system under attack. Side-channel attacks may 

be averted on an AES by shielding the hardware components or implementing stricter security 

guidelines for physically accessing the computer system [10]. 

2.7 Finite Fields 

Finite fields are useful mathematical structures found in a number of cryptographic primitives, 

most notably, the Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC). 

The subject of finite fields is an intensively studied field of mathematics with many 

constituents. Finite fields of order p
n
, where n is a positive integer, are generally written as 

GF(p
n
); GF stands for Galois field, named so after the famous mathematician who introduced 

finite fields of the order p
n
; Galois fields are most useful in encryption when of the order GF(2

n
). 

In GF(2), addition is equivalent to logical XOR and multiplication is equivalent to logical AND; 

addition and subtraction are also equivalent to mod 2. Polynomial arithmetic in GF(2
n
) is often 

used in encryption standards and is the basis for AES. AES uses the finite field GF(2
8
) with the 

following irreducible polynomial: 

1)( 348 ++++= xxxxxm  

Equation 1: AES irreducible polynomial 

2.8 Galois/Counter Mode of Operation (GCM) 

By definition, the Galois/Counter Mode is a block cipher mode of operation that uses universal 

hashing over a binary Galois field whose purpose is to provide authenticated encryption. It is 

implementable in both hardware and software and is able to achieve high speeds at a low area 

overhead while maintaining low latency and, in software, perform significantly faster using 

table-driven finite field operations. 
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Figure 6: The GCM authenticated encryption operation using a simplified, single authenticated data block, two 

plaintext blocks model [3] 

What makes GCM appealing is its ability to provide authenticated encryption at ten gigabits per 

second and higher (10Gbps+). GCM is also an open-license mode of operation and thus no 

royalties need be paid or licenses bought in order to implement and redistribute hardware or 

software operating with GCM. The ability to parallelize and pipeline systems using GCM without 

a loss of performance makes it more attractive to implement as the regular counter mode 

requires integer arithmetic and carry chains. What makes GCM ultimately unique is its 

functionality as a suitable standard message authentication algorithm. CBC-MAC, CCM, EAX, 

OMAC, OCB, CWC, and Counter Mode all suffer from inadequacies that make them less 

apposite choices than GCM. Of note, GCM is also capable of operating as a standalone Message 

Authentication Code (MAC) generator when there is no data to encrypt, as well as operating as 
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an incremental MAC. The encryption techniques will be discussed in detail later, including the 

GHASH and authenticated encryption operation algorithms. [3] 
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3 Design Requirements 

3.1 Initial Design 

The initial designs for the multiplier used for GHASH were provided to this project by Mark 

Krumpoch, a GDC4S employee who wrote Galois field multipliers for unrelated projects and 

allowed us to utilize his expertly coded HDL designs as a basis. Three different versions of his 

multipliers were made available: the first which ran in one clock cycle, the second which 

required four clock cycles, and the third which required eight clock cycles. Given the software 

design goal that we implement the fastest GHASH function and, by association, multiplier into 

the tools that would be used for FPGA design, we used the one clock cycle multiplier as a basis. 

 

The one clock cycle multiplier to be used in the GHASH implementation takes in two 128-bit 

inputs and performs a Galois field multiplication of the two polynomials, resulting in a single 

128-bit output. This multiplier is designed synchronously and uses start, reset, and done ports 

which may be removed for implementation. The code can be safely modified for the reason 

that start is only used to initialize temporary variables used if the multiplier is not running; reset 

is also used similarly as top level code for the portion of code responsible for checking if the 

multiplier is running or not (our design is always running the multiplier, effectively); done is 

only used to pass a 1 or 0 to another component signifying the multiplication is finished, an 

unnecessary function in our design. While earlier sections of this project experimented with this 

multiplier on a smaller scale, it should be noted that modifying this multiplier to work with n 

bits is not only possible (given capable hardware) but also very simple. 

 

To establish a control in this project, we followed the typical experimental process and followed 

our supervisor’s instructions to benchmark an optimized GHASH multiplier versus the standard, 

synchronous design created by Krumpoch. As such, the mult_loop128 and its variants 

(mult_loop16 and mult_loop32) were tested in Synplify Pro and Quartus II/ACE without any 

modifications to the original code, but could not be included in this document as they are 

property of General Dynamics C4 Systems. It is important to note that the code header includes 

our modifications regarding the method in which the AES polynomial is declared, this is 
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common to all the designs and variants requiring this and is simply an improved method for 

readability over bitwise declaration for 128 bits. 

3.2 Transition from Synchronous to Asynchronous Design 

While asynchronous designs are generally more difficult to create than synchronous designs, 

they have several advantages over synchronous designs in speed and power critical 

applications. Asynchronous designs can run in average time, as opposed to worst case time. 

Different regions can also run at different effective clock rates, so that slower elements don’t 

slow down the entire design. Additionally, asynchronous designs also tend to use less power, as 

idle unclocked components consume very little power compared to idle components in a 

clocked, synchronous design. [18] 

 

In a training seminar with Achronix field applications engineer Scott E. Norrholm, Mr. Norrholm 

explained that to switch a synchronous design to an asynchronous model, ACE uses a technique 

known as pico-piping to increase performance. The ACE software creates data tokens and form 

pipelines along the data flow paths in the synchronous FPGA design. By placing pico-pipes at 

roughly evenly spaced intervals it enables the design to run at a much higher speed because the 

routing delays are shorter. Additionally, since components are not clocked, idle components 

consume almost no power, which greatly reduces power consumption for sleep modes. This 

implementation, however, has some important limitations due to this pipelined design. Any 

design which includes loops or feedback will be limited by the time it takes a data token to 

travel around the loop, as no more data can flow into the loop until the first data token has 

completed its circuit. Additionally, it is important to make sure that there are roughly the same 

number of pipeline stages when two or more data tokens re-converge, since whichever token 

arrives first will have to wait for its companion tokens before going through that logical 

component, causing a backup of the tokens behind it. 
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4 Implementation 

4.1 Design Intent 

This project began with the ambition of optimizing and implementing the GHASH algorithm on 

an FPGA board capable of running it at speeds of over 1GHz. The methodology behind 

accomplishing this was to use Achronix’s proprietary routing technology the increase system 

throughput to that greater than 1GHz. This speed would render regular synchronous design 

nearly impossible, as well as challenging other components that need to be clocked carefully. 

As a result, the FPGA design was to be fully asynchronous. Being asynchronous requires that no 

component of the design use a clock to synchronize the system as it passes signals and data to 

other locations in the system. 

 

Accomplishing the initial objective quickly became a matter of time and not practice, for which 

the project’s goals changed to focus on the slowest part of the GHASH implementation – the 

multiplier. The multiplier component became the focus of this project and its optimization to 

run at speeds beyond 1GHz became the goal. Below is the GHASH algorithm in generalized 

form, which excludes special cases found in the GCM specification that do not apply to this 

project: 

 

Equation 2: GHASH message stream compression algorithm [2] 

To accomplish this goal, we attempted to implement a fully asynchronous multiplier that is 

capable of being synthesized and simulated at speeds greater than 1GHz using squaring 

methods explained in their entirety in [17]. The basis of the new squaring algorithm is that one 

can transform a square operation, in GF(2
m

), into a multiplication by a constant and a sum. This 

not only reduces registers, but also reliance on multiple clock cycles. This, in sequence with the 

Achronix proprietary optimization methods, should yield a sufficiently fast multiplier for use in 

GHASH. 
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4.2 Experimental Coding Exercises 

Prior to the design of the fully asynchronous 128-bit multiplier and squarer, several smaller 

steps were taken to validate the algorithms we researched and employ the multiply module we 

received from GDC4S in a way in which we could test them by hand. Since 128-bit multiplication 

in a finite field is very difficult to do by hand, we restructured the multiply module we received 

and built supplemental modules to test with 8 bit components, instead of 128-bits. For these 

tests, we made an 8 bit XOR, 8 bit register, and an 8 bit GF(2
8
) multiply based on the multiply 

module we received. First, we verified the output of the multiplier by comparing its outputs to 

hand calculations of the expected values that a multiplier in a GF(2
8
) field would give. Second, 

we built an 8-bit XOR and an 8-bit register and, with the multiply, constructed a multiply 

accumulate circuit. This design, shown below in Figure 7, multiplies incoming values with the 

value already stored in its output register. 

 

 

Figure 7: mult_loop8 operational block diagram 

This design allowed us to test the multiplier in a mode of operation that would be similar to 

how it would function in a traditional GHASH implementation. Following the validation of these 

modules and their operation in QuestaSim, we then tested our environment by putting this 

small design through Synplify and Quartus to verify that those tools were also working properly.   

4.3 VHDL Design – Top and Module Levels 

The processes for the creation of our VHDL design began with the expansion of our 8-bit 

modules covered in section 4.2 Experimental Coding Exercises, to 128-bits. In addition to 

Input (8bit) 

Add (8bit, XOR) 

Multiply (8bit, GF(28)) 8bit Polynomial GF(28)) 

Output (8bit) 
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increasing the size of these modules, the 128-bit multiplier was streamlined and trimmed of 

some excess control logic that was not necessary for our implementation. After constructing 

the 128-bit versions of our modules in VHDL, we tested them in QuestaSim with test vectors to 

verify their output. We then generated netlists with Synplify and applied the netlists to a Stratix 

III EP3SL150F1152C2ES (an Altera FPGA) to ensure that the modules were of an appropriate size 

with respect to LUT and register usage. 

4.4 VHDL Design – Component Level 

4.4.1 128-bit XOR Logic 

The most basic module we created as a part of this project was the 128-bit XOR. It takes in two, 

128-bit inputs, performs a bitwise XOR, and then sends the result to a 128-bit output. 

4.4.2 128-bit Register 

Another basic module we created for this project was a 128-bit register. It is composed of 128 D 

flip-flops, allowing it to take in, store, or output a 128-bit value. It has one 128-bit input and one 

128-bit output. It also has two control signals, load enable and reset, in addition to a clock 

signal. When load enable is toggled, values are read into the register on the input side. When 

reset is toggled, the value stored in the register is reset to 0. There is no output enable/disable, 

this module always outputs the value stored in it. 

4.4.3 128-bit Multiply 

The simplest 128-bit multiply is the once clock cycle version, mult_loop128. This module takes 

in two 128-bit values and outputs there product in the finite field GF(2
128

). It performs this 

computation in one clock cycle by computing all of the shifts simultaneously. This means, 

however, that it is quite large in terms of LUT usage, and the register to register delay is also 

large, limiting the maximum frequency with which it can be run. On a Stratix III, it took up 8672 

LUTs and ran at a maximum speed of 60MHz, which results in a minimum compute time of 

16.7ns. 

 

Mult_loop32 performs the same operation as mult_loop128 except that it computes it over the 

course of four clock cycles, using the same set of components four times. This indicates that it is 
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significantly slower in terms of total time to compute, but also takes up much less space in 

terms of LUTs and can be run at a higher clock rate. On a Stratix III, the multiplier occupied 2375 

LUTs and ran at a maximum speed of 164MHz, which results in a minimum compute time of 

24.4ns. 

 

Mult_loop16 is an extension of mult_loop32, in that it runs in eight clock cycles instead of four. 

It is the smallest of the three multipliers, but it is also the slowest in terms of time to compute. 

It can, however, be run at the highest clock rate. On a Stratix III, it took up 1308 LUTs and ran at 

a maximum speed of 276MHz, which results in a minimum compute time of 29.0ns. 

4.4.4 128-bit Squarer 

The 128-bit multiply is large and, in addition to a multiply for 128-bit, we also needed a squarer. 

If one just uses the basic multiplier and ties the inputs together, a moderate reduction in size 

can be observed. However, we knew from the algorithm proposed in [17] that the squaring 

function could be done smaller and more efficiently. From an arithmetical discussion with G. 

Orlando, the equations used to describe the optimized squaring algorithm are derived as 

follows in Equation 3: 
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Equation 3: Mathematical representation of optimized squaring algorithm for AES GF(2
128

) 

This module takes the input, spreads the input out by placing an extra zero in between each bit, 

multiplies the top half by the GF(2
128

) polynomial, then adds the bottom half to the result of 

that multiplication. [17] Because the GF(2
128

) polynomial contains almost all zeros except for 

four bits, most of the multiplier is simplified away in the synthesis process performed by 

Synplify. By creating a module specifically for squaring, we reduced the size of the 128-bit 

squarer from over 5000 look-up tables (LUTs) down to just 192 LUTs. An added benefit of this 

module, in addition to its reduction in size, is that it can run much faster than a normal 
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multiplier. On a Stratix III, it took up 192 LUTs and ran at a maximum speed of 480MHz, which 

results in a minimum latency of 2.1ns. 

4.4.5 128-bit Bit Spreader 

The spread128 component is a subcomponent of square128 that spreads out a 128-bit input 

into two 128-bit outputs by putting a zero between each input bit to get to 256 bits and then 

dividing the upper half and lower half to achieve two 128-bit outputs. 

4.5 Optimizing VHDL Design for Highest Throughput Performance 

4.5.1 Efficient Squaring Algorithm 

There are more efficient ways to square numbers in GF(2
128

) than to simply run the input to 

both ports of a GF(2
128

) multiplier. Below is an example of one of these techniques, originally 

outlined by Orlando in [17]. 

 

The first step in the algorithm, shown in Equation 4, is to rewrite the square into a sum 

squared, moded by the finite field polynomial. 
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Equation 4: Transform of a square operation into a sum, pt. I [17] 

The next step, as presented in Equation 5: Transform of a square operation into a sum, pt. II 

[17], is to divide the terms into two halves, one for the lower set of bits and one for the upper 

set of bits. In addition, the size of each half is doubled by inserting zeros in between each input 

bit.  
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Equation 5: Transform of a square operation into a sum, pt. II [17] 
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The final result, as shown in Equation 6, Equation 7 and Equation 8, is that the square is the 

sum of the top half, B’, multiplied by the polynomial for the finite field one is operating in, and 

that of the bottom half, C’. 

 

 

∑
−

=

+=
12/

0

2

2/'
m

i

i

miaA α  

Equation 6: Transform of a square operation into a sum, pt. III, Definition of A’ [17] 
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Equation 7: Transform of a square operation into a sum, pt. IV, Definition of B’ [17] 
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Equation 8: Transform of a square operation into a sum, pt. V, Definition of C’ [17] 

This process shows that we are multiplying by a constant value, the finite field polynomial, and 

that value contains mostly zeros, which allows a large simplification of the logic. This not only 

greatly decreases the size of the logic required to square a number, but it also increases the 

speed, as several stages of the multiplier get synthesized away. 

4.5.2 Making the Single Clock Cycle Multiplier Asynchronous 

To enable the multiplier to be pipelined more effectively by ACE, it was important to convert it 

to be fully asynchronous. To do this, all signals other than the two inputs and the one output 

were removed. Since there is no start or reset control, the multiplier outputs garbage data for 

the first few clock cycles, but this data will be ignored by the upper level module that uses this 

multiplier. To drive the multiplier, the inputs x and y replaced the clock in the sensitivity list of 

the process that encompasses the GF(2
128

) multiplier. This way, the multiply calculation is 

computed whenever the inputs change, as opposed to on the transition of a clock, making the 

multiplier fully asynchronous. Now that the multiplier was implemented asynchronously, ACE 

was able to optimize it to a much higher level. ACE was able to use six extra pipelining stages, as 

described in 2.3.3 Achronix CAD Environment (ACE), which resulted in over a 300% 

performance gain in speed, in comparison to the version that we implemented for a Stratix III 

using Quartus II. 
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4.5.3 Making the Efficient Squarer Asynchronous 

In addition to making the multiplier asynchronous, the efficient squarer, described in section 

4.5.1 Efficient Squaring Algorithm, was also made asynchronous. This was done by using the 

same techniques implemented on the asynchronous multiplier. The clock was removed in both 

the XOR and the spreader modules and the sensitivity lists were changed to reflect the inputs 

rather than the clocks. This enabled the Achronix chip to clock up extremely high, almost 

reaching 1GHz, which is more than twice as fast as the maximum speed achievable on a Stratix 

III. 
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5 Synthesis, Testing and Results 

5.1 Synthesis and Testing Procedure 

By utilizing the various aforementioned programs, it is possible to obtain results that accurately 

represent performance for a given module or VHDL design. The metric used in this project is the 

clock setup time which is then converted to megahertz or gigahertz simply as 

MHz

ns

Clk
t

=
1

 

Equation 9: Formula used to determine maximum clock speed of a system or module.  

Note that t is the "clock setup time" in nanoseconds 

Due to the nature of programs such as Synplify and Quartus, this process can be repeated by 

the tester numerous times unless a procedure is defined that will stop the tester from 

continuing to tweak inputs to the programs to give the highest clock speed. When running 

Synplify, the user must enter a clock speed which determines Synplify’s design optimization, 

directly affecting how Synplify maps the design. This information makes it difficult to establish a 

benchmark for a variety of units under testing (UUTs) and it was decided that Synplify Pro 

would prove a more useful tool for comparison testing. Synplify Pro allows the user to instruct 

the program to auto constrain the design so that the program decides what clock speed is best 

to optimize for. Synplify Pro also utilizes better mapping algorithms and provides for a better 

comparison when compared to the Achronix testing results. The outputted .vma file (virtual 

memory area descriptor) is then passed to Quartus II, which can synthesize the design for a 

given FPGA. The FPGA chosen for Synplify and Quartus II designs is the Altera Stratix III 

EP3SL150, package FC1152 with speed rating equivalent to -2 (EP3SL150F1152C2ES). Before 

Quartus II runs it synthesis process, a system clock speed must be set. This clock speed, though 

it can be any value, is not capable of being auto constrained and the user must decide what 

system clock speed is optimal for system performance. For this project, a system clock speed of 

1GHz was used within Quartus II. While this clock speed was far too high for a system to 

operate at, Quartus II outputs the “actual time” or, more appropriately, the maximum clock 

speed the system could function at. 
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For the Achronix CAD Environment tests, the procedure is simplified. Input the appropriate HDL 

files into Synplify Pro with the selected FPGA being the Achronix Speedster ACXSPD60, package 

FBGA1680 and speed equivalent to “Std.” After this step, open ACE and pass the appropriate 

.vma file and ensure that the target device is set to SPD60-FBGA1932 with “Timing-Driven PnR” 

off, “Placement Effort” on high, and “PnR Seed” set to 42. Then run “Prepare” and it will 

generate timing analysis results as well as place and route and output to a plaintext log file 

which can be viewed to find the max system clock speed after Achronix proprietary 

optimization. 

5.2 Results 

The primary goal of this project was to evaluate the Achronix technology and its feasibility in a 

real-world market and application. Compiling and synthesizing different designs, we have 

produced results that offer a good comparison between standard FPGA technology, 

represented by the Altera Stratix III, and Achronix technology, represented by the Achronix 

Speedster FPGA. The three metrics to be discussed in this section were all generated 

simultaneously by either Quartus II or ACE and are the number of LUTs, number of registers and 

the system clock speed. While graphs will be used to assist in explanation and comparison, the 

tables in Figure 8 and Figure 9 contain the experimental data we obtained that corroborates 

with the proceeding figures. 

Component Target 6-Input ALUTs Registers Speed (MHz) 

mult_loop128_reg Stratix III:EP3SL150F1152C2ES 8672 1254 60 

mult_loop32_reg Stratix III:EP3SL150F1152C2ES 2375 1050 164 

mult_loop16_reg Stratix III:EP3SL150F1152C2ES 1308 909 276 

square128_n_reg Stratix III:EP3SL150F1152C2ES 192 448 480 

mult_loop128_f_reg Stratix III:EP3SL150F1152C2ES 8676 1576 58 

mult_32b_f_reg Stratix III:EP3SL150F1152C2ES 609 165 284 

square128_reg Stratix III:EP3SL150F1152C2ES 5638 840 57 

square128_nf_reg Stratix III:EP3SL150F1152C2ES 128 261 480 

Figure 8: Table of Stratix III experimental results obtained from Quartus II testing 
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Component Target 4-Input LUTs Registers Speed (MHz) 

mult_loop128_reg Achronix: SPD60-FBGA1932 Fail Fail Fail 

mult_loop32_reg Achronix: SPD60-FBGA1932 4261 912 153 

mult_loop16_reg Achronix: SPD60-FBGA1932 2640 915 161 

square128_n_reg Achronix: SPD60-FBGA1932 448 448 595 

mult_loop128_f_reg Achronix: SPD60-FBGA1932 13688 1101 225 

mult_32b_f_reg Achronix: SPD60-FBGA1932 927 117 295 

square128_reg Achronix: SPD60-FBGA1932 Not Tested Not Tested Not Tested 

square128_nf_reg Achronix: SPD60-FBGA1932 257 256 926 

Figure 9: Table of Speedster experimental results obtained from ACE testing 

 

Below, in Figure 10, is a graph of the number of LUTs, separated by design scenario. Before 

analyzing this particular metric, it is important to note that the Stratix III board uses 6-input 

LUTs that are a combination of two 4-input LUTs that are registered and function as a 6-input 

LUT. This is in comparison to the Achronix Speedster FPGA that uses more typical 4-input LUTs 

in its design. With this stated, the graph clearly represents that the Achronix Speedster requires 

more LUTs for all of the designs. LUTs serve as an important metric as FPGAs are only capable 

of supporting so many LUTs before the design exceeds the board’s physical capacity. With more 

complex designs, LUTs become a scarce resource that need to be balanced properly with the 

size of the FPGA. 
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Figure 10: Graphical representation comparing number of LUTs between the two FPGAs 

The next metric to be discussed is the number of registers for each design which is depicted, 

again graphically, in Figure 11. Registers are much like LUTs in that they are both a physical 

limitation of the FPGA board. Therefore, designs that require too many registers, even if 

offering better speeds, will be discarded if the rest of the design will not fit onto the FPGA. 

Here, the results are mixed with two of the tests exhibiting more required registers for the 

Achronix FPGA, and the remaining tests requiring more registers with the Altera FPGA. As 

stated before, the ACE software works best with designs that do not possess feedback and a 

positive result for the ACE software is found in the mult_loop128_f_reg numbers which show 

that the 128-bit multiplier design, when registered and possessing no feedback, requires 1101 

registers, fewer registers than the original 128-bit multiplier design on both the Altera (1254 

registers) and Achronix (1748 registers) boards. 
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Figure 11: Graphical representation comparing number of registers between the two FPGAs 

The final metric, depicted in Figure 12, is of great importance. The selling point of all Achronix’s 

technology is that of speed for design throughput optimization. Figure 12 shows this specifically 

in system clock speed, measured in MHz, between the same designs on both the Altera and 

Achronix boards. However, though the results look as if ACE does not offer improvement for 

most designs, these designs are the most reliant on feedback and, as such, were not expected 

to perform better than the Altera designs. Achronix specifically noted this, and this project does 

not seek to point out any deficiencies, rather, the tests with feedback were performed so that 

some control points could be established. These control points represent unmodified, existing 

synchronous designs. 
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Figure 12: Graphical representation comparing clock speeds between the two FPGAs 

The most significant results obtained are those of the performance measured in 

square128_nf_reg and mult_loop128_f_reg. These two components were modified only a small 

amount to work better in tandem with how the Achronix optimization algorithms are 

performed; removing feedback as well as removing resets, clocks, and other synchronous 

components while maintaining design functionality proves to be a trivial task for these designs 

and Achronix produces results that are commendable. The clock speed for the Altera and 

Achronix boards for the square128_nf_reg design were 480MHz and 926MHz, respectively. This 

is a roughly 93% increase in clock speed which, given the simplicity of the design modifications, 

is an excellent increase in clock speed. This increase in clock speed is also beneficial due to most 

FPGAs having a clock speed ceiling speed of around 400-450MHz that can only be increased a 

small amount and puts a greater stress on the synchronized components in the design. For 

mult_loop128_f_reg, the results are impressive too. The Achronix Speedster, in conjunction 

with ACE, was able to run at a speed of 225MHz compared to that of the Altera Stratix III board 

that was only capable of running the design at 58MHz. This result indicates a 388% increase in 
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speed which is a huge increase in system throughput. These results are also of importance 

given that they are required, functional parts of the GHASH equations that describe GCM. By 

increasing the speed of the multiplier and squarer, the GHASH speed directly benefits by the 

increase as the other algorithms defining GHASH are not the limiting factors – the multiplier is. 

With the multiplier running at almost four times normal speeds, GCM is capable of encrypting 

at a similar increased speed multiple, theoretically. 

 

The significance and magnitude of these results are important for another key goal of this 

project: to evaluate the feasibility of introducing ACE to a commercial or industrial designer. 

This, in combination with other factors experienced when working with ACE, can be found in 

6.2 Achronix CAD Environment Effectiveness. 
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6 Conclusions 

6.1 Conclusion 

This project placed us into a real-world engineering firm with a meaningful project relevant to 

more than just our academic interests. General Dynamics C4 Systems and the Achronix 

Semiconductor Corporation relied on us to complete this project to the standards of 

engineering professionals. This helped provide the project with a real sense of meaning as we 

knew that the results we obtained would be taken into account for possible purchase of future 

software and hardware for GDC4S. 

 

What quickly became a challenge for us was time management. While we, and our supervisors, 

had goals we wanted to accomplish and set out with those original goals, the real world of 

engineering and time constraints hastily reminded us that we only had seven weeks to 

accomplish whatever goals we put forth. It was with this time constraint in mind that we had to 

adjust our goals and reach for goals that we knew were within the time period we had, leaving 

the other goals open still for future researchers or project teams. 

 

We ran into several issues during our project with regards to not only technical and software 

problems, but also problems in communication. We knew our supervisors were going to be very 

busy and thus had to take even the hardest of problems onto our own plates and determine a 

way to solve them. This was not necessarily the quickest way of solving these problems, but it 

was necessary that we solve them ourselves and so we did. Software problems arose that 

ranged anywhere from licensing issues with limited software to trying to understand complex 

issues such as pipelining with programs like Synplify Pro. We managed to avoid wasting time, 

however, by thoroughly testing our designs and following good coding practices as well as 

implementing a solid procedure for synthesizing and compiling our code. 

 

This project culminated with the success of achieving near gigahertz speeds on the 

square128_nf_reg design, which represents not only the success of the ACE software, but the 

success of goals that, for a moment, looked unreachable in our time frame. Reaching the 
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maximum speed on a board such as the Stratix III and then watching the FPGA design in ACE 

more than break that speed by a factor of two was not only satisfying, but represented a design 

goal being accomplished during the final week. This goal looked unreachable and the project 

was out of time, almost choosing to settle on the progress it had made, but with the speed 

obtained in the square128_nf_reg design, the real purpose and goal of the project was able to 

be realized. 

6.2 Achronix CAD Environment Effectiveness 

The Achronix CAD Environment offers promising results despite the developmental nature of 

the tool in its current state. While this project did not delve deeply into all the features of the 

program and thus we can only evaluate the features we used throughout this project, from 

which our decision about ACE effectiveness will be drawn. As most companies’ engineering 

force is built of synchronous designers, it was an intelligent choice for Achronix to force their 

software to accept synchronous designs. Typical, unmodified designs tested as controls, such as 

mult_loop16, mult_loop32 and mult_loop128 did not benefit from the ACE tools. These designs 

were input in their original synchronous form with registers on the inputs and output (for the 

purpose of measuring speeds) and performed better on the Altera Stratix III board overall than 

on the Achronix Speedster. With regards to unmodified designs, we found the ACE tools to be 

not as practical as Quartus II and slower as well. 

 

The main purpose of the ACE tools was that one could provide simply modified designs and 

produce significant results. We tested this and, as can be seen in mult_loop128_f_reg, the 

results were laudable. A good increase in speed was also achieved for the square128_nf_reg 

module and illustrates that ACE has no trouble taking designs that are at their limit on other 

FPGAs and bumping them up to near gigahertz speeds without too much extra work. Clock 

speed comparisons aside, ACE produced results that indicate some mixed success in other 

design aspects of an FPGA system. While square128_nf_reg and mult_loop128_f_reg may have 

increased in speed, so it did too in number of LUTs needed. This, however, is mitigated by the 

fact that Altera uses 6-input ALUTs, which are composed of two 4-input LUTs. Taking this into 

account it is clear that designs implemented on an Achronix Speedster with the ACE tools do 

not significantly increase or decrease the number of LUTs used. 
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Where Achronix does not succeed with minimizing LUTs, however, it does well with register 

optimization in certain situations. Referring specifically to Figure 11, nearly all designs 

optimized through ACE show a reduced number of registers. The main reason for the reduction 

of additional registers needed in ACE is that Synplify dose not need to duplicate the registers as 

many times on the Achronix chip in order to achieve optimal speed. Mult_loop128_f_reg had 

only 1101 registers in ACE compared to 1576 in Quartus II. This is almost a 44% decrease in 

registers. This information makes it an easier decision when evaluating a design coming from 

ACE as both clock speed and number of registers, two deciding factors, are better with ACE. 

 

The user interface in ACE is straight forward and intuitive to anyone who may have used Xilinx 

ISE or Synplify Pro and is easily learned with relatively no guidance. A console window may be 

viewed at any time that details the programs processes specifically. In addition, all commands 

may be run through this console window as the programs graphical user interface is simply 

linked to these console commands. This makes advanced use and batch scripting easier for 

complex projects. The use of HTML-formatted results that are displayed in one of the windows 

using the system’s integrated browser provides for easily read results that are also available in 

plaintext format. On Linux systems, at this point in the beta of the software, however, there 

appears to be some issue recognizing the default browser for the operating system. The 

console window, while useful, displays cryptic results as well, at times. During the program’s 

timing analysis, the program notifies you of the step of the timing analysis it is currently on, 

though it does not tell you how many steps there will be. This can be problematic as time 

between steps may be hours and there is no way of estimating the time or number of steps the 

program will take before completion. This can range uncontrollably from 100 steps to 8000 or 

more steps in this project’s experience. 

 

There does appear to be an issue with designs that begin to fill the Achronix chip more 

completely. While running the un-optimized version of the multiplier, mult_loop128, through 

ACE we encountered not only a prohibitively high run time of over 11 hours, but also a design 

that failed to successfully place and rout due to a Design Rule Check (DRC) failure. Additionally, 

we were unable to fully diagnose the cause of this problem due to the limited documentation 
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we were provided with. Hopefully these problems will be addressed in a future release of the 

ACE tool. 

 

Overall, this project recommends the Achronix CAD Environment as a promising option for 

designs for which feedback can be minimized or eliminated. While specifically designing for it is 

not required, projects that start their design with ACE and the Speedster FPGA in mind will 

most likely achieve higher initial results without additional modifications. For pre-existing 

designs, ACE is also viable as a tool for engineers that are looking to get every last ounce of 

performance from their FPGA, as is so often the case. While we suggest that the final version of 

ACE fix or modify some of the user interface issues we encountered, the program itself is stable 

and has never crashed. Designs have failed to compile in ACE successfully, but given that the 

designs were unmodified and not expected to be used specifically with ACE, this is not a reason 

to discount the program’s otherwise praiseworthy optimization routines. 

6.3 Recommendations for Future Research 

The scope of this project was initially much larger and the project had to be re-focused in order 

to accomplish worthwhile goals in the short amount of time allocated. As such, future research 

opportunities that can build off the results here are pursuable. Included in this section are a 

couple of the research and development ideas that this project was not able to further 

investigate. 

6.3.1 Manual Pipelining 

While pipelining is done easily on Achronix chips using the ACE tool, it can also be done 

manually on traditional FPGAs by inserting registers into the middle of the design. This holds 

some potential for improving the performance of large, slow modules like the 128-bit, 1 clock 

cycle multiplier. Additionally, there is also an automated pipelining feature provided in Synplify 

Pro. Currently, it appears that the automated pipelining option in Synplify Pro will only pipeline 

very specific kinds of designs. Synplify Pro is, however, an evolving tool, and it is conceivable 

that they will expand this feature in a future release. It is worth noting that traditional silicon is 

limited to around 450MHz. The Stratix III chip used for this report would not exceed a clock 

speed of 480MHz, so designs like the efficient squarer are already at their limit in terms of 
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performance. The Achronix speedster, however, can achieve speeds well over 1GHz. Manual 

pipelining cannot improve designs that already operate at the absolute limit of traditional 

FPGAs. 

6.3.2 Multiplier Implementation into GCM 

While Achronix had already built and tested an AES module for fast hardware encryption on 

their FPGA, General Dynamics C4 Systems wanted us to increase the existing multiplier’s speed 

using ACE so that it may be used in a Galois/Counter Mode system. As mentioned previously, 

the multiplier was the limiting factor in the GHASH algorithm that describes message 

encryption and decryption for GCM. While we were able to greatly increase the speed of the 

multiplier that is to be used in the GHASH algorithm, it proved to be only days before the 

completion of this project. This put GHASH aside and, thus, it was not implemented. Future 

MQPs would do well to obtain an actual Achronix Speedster FPGA and attempt to implement 

the GHASH algorithm on it, testing its results in a physical system and assuring the system could 

operate without error. In addition to implementing the GHASH algorithm, the subcomponents 

of the algorithm could be tested to ensure they are capable of operating with the same 

performance of the now faster multiplier. 
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Glossary 

AES – Advanced Encryption Standard; adopted by the National Institute of Standards and 

Technology (NIST) in 2002 as the primary encryption standard in the United States. Replaced 

Data Encryption Standard as a greatly more secure standard is still used widely as of 2008. 

ASIC – Application Specific Integrated Circuit; lacks field-programming capabilities and suffers 

from being poorly adaptive but is higher speed, cheaper, and draws less power than the 

majority of FPGAs. 

Black Box – Blank modules used as placeholders in design process. Representative placeholder 

of some module to be introduced later; technique commonly used in modular design. 

CPLD – Complex Programmable Logic Device; a programmable logic device whose complexity is 

greater than of a Programmable Array Logic (PAL) but less than that of an FPGA that uses 

building blocks known as macro cells which contain logic implementing disjunctive normal form 

expressions and other specialized operations. 

DRC – Design Rule Check; a check performed by FPGA tools to ensure that the design dose not 

violate any minimum or maximum physical constraints imposed by the silicon. 

Exceed – Commercial X server that runs under Microsoft Windows allowing users to connect to 

Unix/Linux desktops and work similarly to that of Microsoft’s Remote Desktop service. 

Finite Fields – also known as Galois fields; fields with a finite number of elements. The number 

of elements in a finite field is sometimes referred to as the order of the field. 

FPGA – Field Programmable Gate Array; semiconductor device containing programmable logic 

blocks offering the capabilities to be repeatedly re-programmed after initial board production. 

Ideal choice for designs that must be updated often before finalization. 

GCM – Galois/Counter Mode; a block cipher mode of operation that uses universal hashing 

over a binary Galois field to provide authenticated encryption. It can be implemented in 

hardware at low cost and with low latency while maintaining high speeds. 
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GUI – Graphical User Interface; considered to be more user friendly, a GUI is used in place of a 

terminal to help facilitate software functions. 

I/O – Input/Output. 

Modular Design – Design model used in complex designs created by several team members. 

Design flow is created and followed by the team allowing for concurrent element design and 

ability to troubleshoot independent of entire design. Changes or modifications do not ripple 

through on each design modification, further increasing design success and implementation. 

PPC – PowerPC microprocessor; originally developed by the Apple-IBM-Motorola alliance and 

intended for use in personal computers. Operates on the Reduced Instruction Set Computer 

(RISC) architecture and are now widely used in embedded designs. 

UUT – Unit Under Testing; a term used by engineers and engineering programs that describes 

the unit currently being tested upon. 

VHDL – VHSIC (Very-High-Speed Integrated Circuits) Hardware Description Language; design-

entry language used in FPGAs and ASICSs originally developed by the Department of Defense 

(DOD) and is now an IEEE standardized language used by hardware designers to describe the 

design of circuitry. 
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Appendix A Hardware Description Language Code 

Hardware Description Language Code derived from Mark Krumpoch’s 128-bit multiplier has 

been removed at the request of General Dynamics C4 Systems. This includes mult_loop128, 

mult_loop32, and mult_loop16 and their corresponding asynchronous versions. 

A.1 128-bit XOR Logic 

------------------------------------------------------------------ 

-- file: xor128.vhd  modified: Mar26,2008 09:42AM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com      -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

 

ENTITY xor128 IS 

 PORT( 

  clk  : IN std_logic; 

  a,b  : IN std_logic_vector(127 DOWNTO 0); 

  sum  : OUT std_logic_vector(127 DOWNTO 0) 

  ); 

   

END xor128; 

 

ARCHITECTURE dataflow OF xor128 IS 

BEGIN 

 G1: FOR i in 0 TO 127 GENERATE 

  sum(i) <= a(i) xor b(i); 

 END GENERATE; 

END dataflow; 

A.2 128-bit Register 

------------------------------------------------------------------ 

-- file: register128.vhd modified: Mar26,2008 09:42AM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

library IEEE; 
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use IEEE.std_logic_1164.all; 

 

ENTITY register128 IS 

 PORT (  

   clk : IN STD_LOGIC; 

   reset : IN STD_LOGIC; 

   le : IN STD_LOGIC; 

   d_in : IN STD_LOGIC_VECTOR (127 downto 0); 

   d_out : OUT STD_LOGIC_VECTOR (127 downto 0) 

 ); 

    

END ENTITY register128; 

 

ARCHITECTURE register128_arch OF register128 IS 

BEGIN 

 PROCESS(clk, reset) 

 BEGIN 

  IF reset = '0' THEN 

   d_out <= (others => '0'); 

  ELSE 

   IF clk'EVENT AND clk = '1' THEN 

    IF le = '1' THEN 

     d_out <= d_in; 

    END IF; 

   END IF; 

  END IF; 

 END PROCESS; 

 

END ARCHITECTURE  register128_arch; 

A.4 128-bit Registered Multiplier, 1 Clock Cycle 

------------------------------------------------------------------ 

-- file: mult_loop128_reg.vhd modified: Mar28,2008 01:39PM-- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.STD_LOGIC_1164.ALL; 

USE  ieee.STD_LOGIC_unsigned.ALL; 

USE  ieee.STD_LOGIC_arith.ALL; 

------------------------------------------------------------------ 

ENTITY mult_loop128_reg IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  reset  : IN  STD_LOGIC; 

  le  : IN  STD_LOGIC; 

  reg_x  : IN  STD_LOGIC_VECTOR(127 downto 0); 

  reg_y  : IN  STD_LOGIC_VECTOR(127 downto 0); 
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  reg_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END mult_loop128_reg; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF mult_loop128_reg IS 

 --------------- 

 COMPONENT register128 IS 

 PORT(  

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  le : IN STD_LOGIC; 

  d_in : IN STD_LOGIC_VECTOR(127 downto 0); 

  d_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT register128; 

 --------------- 

 COMPONENT mult_loop128 IS 

  PORT( 

  clk  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  x  : IN STD_LOGIC_VECTOR(0 to 127); 

  y  : IN STD_LOGIC_VECTOR(0 to 127); 

  z  : OUT STD_LOGIC_VECTOR(0 to 127) 

  ); 

 END COMPONENT; 

 --------------- 

 SIGNAL A_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL B_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL C_s: STD_LOGIC_VECTOR(127 downto 0); 

------------------------------------------------------------------ 

BEGIN 

 U1: register128 PORT MAP (clk, reset, le, reg_x, A_s); 

 U2: register128 PORT MAP (clk, reset, le, reg_y, B_s); 

 U3: mult_loop128 PORT MAP (clk, rst_n, A_s, B_s, C_s); 

 U4: register128 PORT MAP (clk, reset, le, C_s, reg_out); 

END structural; 

A.5 128-bit Multiply Accumulate 

------------------------------------------------------------------ 

-- file: mult_accu128.vhd modified: Mar26,2008 09:39AM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

 

ENTITY mult_accu128 IS 
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 PORT( 

  clk  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  h  : IN STD_LOGIC_VECTOR(127 downto 0); 

  a  : IN STD_LOGIC_VECTOR(127 downto 0); 

  x  : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END mult_accu128; 

 

ARCHITECTURE structural OF mult_accu128 IS 

 --------------- 

 COMPONENT xor128 IS 

  PORT( 

   clk : IN STD_LOGIC; 

   a : IN STD_LOGIC_VECTOR(127 downto 0); 

   b : IN STD_LOGIC_VECTOR(127 downto 0); 

   sum : OUT STD_LOGIC_VECTOR(127 downto 0) 

   ); 

 END COMPONENT; 

 --------------- 

 COMPONENT mult_loop128 IS 

  PORT( 

  clk  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  x  : IN STD_LOGIC_VECTOR(127 downto 0); 

  y  : IN STD_LOGIC_VECTOR(127 downto 0); 

  z  : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT; 

 --------------- 

 SIGNAL C: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL L: STD_LOGIC_VECTOR(127 downto 0); 

BEGIN 

 U1: xor128 PORT MAP (clk, a, L, C); 

 U2: mult_loop128 PORT MAP (clk, rst_n, h, C, L); 

 x <= L; 

END structural; 

A.6 128-bit Squarer 

------------------------------------------------------------------ 

-- file: square128.vhd modified: Mar26,2008 09:39AM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 
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ENTITY square128 IS 

 PORT( 

  clk : IN STD_LOGIC; 

  rst_n : IN STD_LOGIC; 

  a : IN STD_LOGIC_VECTOR(127 downto 0); 

  x : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END square128; 

 

ARCHITECTURE structural OF square128 IS 

 

 COMPONENT mult_loop128 IS 

  PORT( 

  clk : IN STD_LOGIC; 

  rst_n : IN STD_LOGIC; 

  x : IN STD_LOGIC_VECTOR(127 downto 0); 

  y : IN STD_LOGIC_VECTOR(127 downto 0); 

  z : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT; 

 

BEGIN 

 U2: mult_loop128 PORT MAP (clk, rst_n, a, a, x); 

END structural; 

A.7 128-bit Efficient Squarer 

------------------------------------------------------------------ 

-- file: square128_n.vhd modified: Mar28,2008 01:01PM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

------------------------------------------------------------------ 

ENTITY square128_n IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  reset  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  a  : IN STD_LOGIC_VECTOR(127 downto 0); 

  x  : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END square128_n; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF square128_n IS 

 --------------- 

 COMPONENT spread128 IS 
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  PORT( 

   clk : IN STD_LOGIC; 

   a : IN STD_LOGIC_VECTOR(127 downto 0); 

   c : OUT STD_LOGIC_VECTOR(127 downto 0); 

   g : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT; 

 --------------- 

 COMPONENT register128 IS 

 PORT(  

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  le : IN STD_LOGIC; 

  d_in : IN STD_LOGIC_VECTOR(127 downto 0); 

  d_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT register128; 

 --------------- 

 COMPONENT mult_loop128 IS 

  PORT( 

   clk : IN STD_LOGIC; 

   rst_n : IN STD_LOGIC; 

   x : IN STD_LOGIC_VECTOR(127 downto 0); 

   y : IN STD_LOGIC_VECTOR(127 downto 0); 

   z : OUT STD_LOGIC_VECTOR(127 downto 0) 

   ); 

 END COMPONENT; 

 --------------- 

 COMPONENT xor128 IS 

  PORT( 

   clk : IN STD_LOGIC; 

   a : IN STD_LOGIC_VECTOR(127 downto 0); 

   b : IN STD_LOGIC_VECTOR(127 downto 0); 

   sum : OUT STD_LOGIC_VECTOR(127 downto 0) 

   ); 

 END COMPONENT; 

 ---------------  

 SIGNAL H_s : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL C_s : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL G_s1 : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL G_s2 : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL F_s : STD_LOGIC_VECTOR(127 downto 0); 

BEGIN 

 H_s <= (0 => '1', 1 => '1', 2 => '1', 7 => '1', OTHERS => '0'); 

 U1: spread128 PORT MAP (clk, a, C_s, G_s1); 

 U2: register128 PORT MAP (clk, reset, '1', G_s1, G_s2); 

 U3: mult_loop128 PORT MAP (clk, rst_n, H_s, C_s, F_s); 

 U4: xor128  PORT MAP (clk, F_s, G_s2, x); 

END structural; 

A.8 128-bit Registered Efficient Squarer 

------------------------------------------------------------------ 

-- file: square128_n_reg.vhd modified: Apr02,2008 11:01AM-- 
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------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.STD_LOGIC_1164.ALL; 

USE  ieee.STD_LOGIC_unsigned.ALL; 

USE  ieee.STD_LOGIC_arith.ALL; 

------------------------------------------------------------------ 

ENTITY square128_n_reg IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  rst_n  : IN STD_LOGIC; 

  reset  : IN  STD_LOGIC; 

  le  : IN  STD_LOGIC; 

  reg_a  : IN  STD_LOGIC_VECTOR(127 downto 0); 

  reg_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END square128_n_reg; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF square128_n_reg IS 

 --------------- 

 COMPONENT register128 IS 

 PORT(  

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  le : IN STD_LOGIC; 

  d_in : IN STD_LOGIC_VECTOR(127 downto 0); 

  d_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT register128; 

 --------------- 

 COMPONENT square128_n IS 

  PORT( 

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  rst_n : IN STD_LOGIC; 

  a : IN STD_LOGIC_VECTOR(0 to 127); 

  x : OUT STD_LOGIC_VECTOR(0 to 127) 

  ); 

 END COMPONENT; 

 --------------- 

 SIGNAL A_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL B_s: STD_LOGIC_VECTOR(127 downto 0); 

------------------------------------------------------------------ 

BEGIN 

 U1: register128 PORT MAP (clk, reset, le, reg_a, A_s); 

 U2: square128_n PORT MAP (clk, reset, rst_n, A_s, B_s); 

 U3: register128 PORT MAP (clk, reset, le, B_s, reg_out); 

END structural; 
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A.9 128-bit Registered Asynchronous Multiplier 

------------------------------------------------------------------ 

-- file: mult_loop128_f_reg.vhd modified: Apr09,2008 4:04PM -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.STD_LOGIC_1164.ALL; 

USE  ieee.STD_LOGIC_unsigned.ALL; 

USE  ieee.STD_LOGIC_arith.ALL; 

------------------------------------------------------------------ 

ENTITY mult_loop128_f_reg IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  reg_x  : IN  STD_LOGIC_VECTOR(127 downto 0); 

  reg_y  : IN  STD_LOGIC_VECTOR(127 downto 0); 

  reg_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END mult_loop128_f_reg; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF mult_loop128_f_reg IS 

 --------------- 

 COMPONENT register128 IS 

 PORT(  

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  le : IN STD_LOGIC; 

  d_in : IN STD_LOGIC_VECTOR(127 downto 0); 

  d_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT register128; 

 --------------- 

 COMPONENT mult_loop128_f IS 

  PORT( 

  x : IN STD_LOGIC_VECTOR(0 to 127); 

  y : IN STD_LOGIC_VECTOR(0 to 127); 

  z : OUT STD_LOGIC_VECTOR(0 to 127) 

  ); 

 END COMPONENT; 

 --------------- 

 SIGNAL A_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL B_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL C_s: STD_LOGIC_VECTOR(127 downto 0); 

------------------------------------------------------------------ 

BEGIN 

 U1: register128  PORT MAP (clk, '1', '1', reg_x, A_s); 

 U2: register128  PORT MAP (clk, '1', '1', reg_y, B_s); 

 U3: mult_loop128_f PORT MAP (A_s, B_s, C_s); 

 U4: register128  PORT MAP (clk, '1', '1', C_s, reg_out); 
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END structural; 

A.10 128-bit Spreader 

------------------------------------------------------------------ 

-- file: spread128.vhd modified: Mar26,2008 09:41AM      -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

 

ENTITY spread128 IS 

 PORT( 

  clk : IN STD_LOGIC; 

  a : IN STD_LOGIC_VECTOR(127 DOWNTO 0); 

  c : OUT STD_LOGIC_VECTOR(127 DOWNTO 0); 

  g : OUT STD_LOGIC_VECTOR(127 DOWNTO 0) 

  ); 

   

END spread128; 

 

ARCHITECTURE dataflow OF spread128 IS 

 

BEGIN 

 

PROCESS (clk) 

BEGIN 

 FOR i IN 0 TO 63 LOOP 

  g(2*i)  <= a(i) ; 

  g(2*i+1) <= '0'; 

  c(2*i)  <= a(i+64) ; 

  c(2*i+1) <= '0'; 

 END LOOP; 

END PROCESS; 

 

END dataflow; 

A.11 128-bit Fast XOR 

------------------------------------------------------------------ 

-- file: xor128_f.vhd modified: Apr16,2008 01:42PM     -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 
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------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

 

ENTITY xor128_f IS 

 PORT( 

  a,b : IN std_logic_vector(127 DOWNTO 0); 

  sum : OUT std_logic_vector(127 DOWNTO 0) 

  ); 

   

END xor128_f; 

 

ARCHITECTURE dataflow OF xor128_f IS 

BEGIN 

PROCESS (a,b) 

BEGIN 

 FOR i in 0 TO 127 LOOP 

  sum(i) <= a(i) xor b(i); 

 END LOOP; 

END PROCESS; 

END dataflow; 

A.12 128-bit Asynchronous Squarer 

------------------------------------------------------------------ 

-- file: square128_nf.vhd modified: Apr16,2008 01:49PM     -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

------------------------------------------------------------------ 

ENTITY square128_nf IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  a  : IN STD_LOGIC_VECTOR(127 downto 0); 

  x  : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

END square128_nf; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF square128_nf IS 

 --------------- 

 COMPONENT spread128_f IS 

  PORT( 

   a  : IN STD_LOGIC_VECTOR(127 downto 0); 

   c  : OUT STD_LOGIC_VECTOR(127 downto 0); 
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   g  : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT; 

 --------------- 

 COMPONENT mult_loop128_f IS 

  PORT( 

   x  : IN STD_LOGIC_VECTOR(127 downto 0); 

   y  : IN STD_LOGIC_VECTOR(127 downto 0); 

   z  : OUT STD_LOGIC_VECTOR(127 downto 0) 

   ); 

 END COMPONENT; 

 --------------- 

 COMPONENT xor128_f IS 

  PORT( 

   a : IN STD_LOGIC_VECTOR(127 downto 0); 

   b : IN STD_LOGIC_VECTOR(127 downto 0); 

   sum : OUT STD_LOGIC_VECTOR(127 downto 0) 

   ); 

 END COMPONENT; 

 ---------------  

 SIGNAL H_s : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL C_s : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL G_s : STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL F_s : STD_LOGIC_VECTOR(127 downto 0); 

BEGIN 

 H_s <= (0 => '1', 1 => '1', 2 => '1', 7 => '1', OTHERS => '0'); 

 U1: spread128_f  PORT MAP (a, C_s, G_s); 

 U2: mult_loop128_f PORT MAP (H_s, C_s, F_s); 

 U3: xor128_f  PORT MAP (F_s, G_s, x); 

END structural; 

A.13 128-bit Asynchronous Registered Squarer 

------------------------------------------------------------------ 

-- file: square128_n_reg.vhd modified: Apr17,2008 10:01AM-- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.STD_LOGIC_1164.ALL; 

USE  ieee.STD_LOGIC_unsigned.ALL; 

USE  ieee.STD_LOGIC_arith.ALL; 

------------------------------------------------------------------ 

ENTITY square128_nf_reg IS 

 PORT( 

  clk  : IN STD_LOGIC; 

  reset  : IN  STD_LOGIC; 

  reg_a  : IN  STD_LOGIC_VECTOR(127 downto 0); 

  reg_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 
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END square128_nf_reg; 

------------------------------------------------------------------ 

ARCHITECTURE structural OF square128_nf_reg IS 

 --------------- 

 COMPONENT register128 IS 

 PORT(  

  clk : IN STD_LOGIC; 

  reset : IN STD_LOGIC; 

  le : IN STD_LOGIC; 

  d_in : IN STD_LOGIC_VECTOR(127 downto 0); 

  d_out : OUT STD_LOGIC_VECTOR(127 downto 0) 

  ); 

 END COMPONENT register128; 

 --------------- 

 COMPONENT square128_nf IS 

  PORT( 

  clk : IN STD_LOGIC; 

  a : IN STD_LOGIC_VECTOR(0 to 127); 

  x : OUT STD_LOGIC_VECTOR(0 to 127) 

  ); 

 END COMPONENT; 

 --------------- 

 SIGNAL A_s: STD_LOGIC_VECTOR(127 downto 0); 

 SIGNAL B_s: STD_LOGIC_VECTOR(127 downto 0); 

------------------------------------------------------------------ 

BEGIN 

 U1: register128 PORT MAP (clk, reset, '1', reg_a, A_s); 

 U2: square128_nf PORT MAP (clk, A_s, B_s); 

 U3: register128 PORT MAP (clk, reset, '1', B_s, reg_out); 

END structural; 

A.14 128-bit Asynchronous Spreader 

------------------------------------------------------------------ 

-- file: spread128_f.vhd modified: Apr17,2008 10:18AM     -- 

------------------------------------------------------------------ 

-- Bryce Barcelo  John Taylor             -- 

------------------------------------------------------------------ 

-- bryce.barcelo@gdc4s.com john.taylor@gdc4s.com           -- 

------------------------------------------------------------------ 

-- ext. 63156   ext. 63158             -- 

------------------------------------------------------------------ 

LIBRARY ieee; 

USE  ieee.std_logic_1164.ALL; 

USE  ieee.std_logic_unsigned.ALL; 

USE  ieee.std_logic_arith.ALL; 

 

ENTITY spread128_f IS 

 PORT( 

  a : IN STD_LOGIC_VECTOR(127 DOWNTO 0); 

  c : OUT STD_LOGIC_VECTOR(127 DOWNTO 0); 

  g : OUT STD_LOGIC_VECTOR(127 DOWNTO 0) 

  ); 
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END spread128_f; 

 

ARCHITECTURE dataflow OF spread128_f IS 

 

BEGIN 

 

PROCESS (a) 

BEGIN 

 FOR i IN 0 TO 63 LOOP 

  g(2*i)  <= a(i) ; 

  g(2*i+1) <= '0'; 

  c(2*i)  <= a(i+64) ; 

  c(2*i+1) <= '0'; 

 END LOOP; 

END PROCESS; 

 

END dataflow; 


