

Modular Digital Game System
 An experiment in game design platforms

Interactive Media & Game Development

A Major Qualifying Project Report

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Hillary Fotino and Alexander Gray

Advised by Professor Brian Moriarty

2

ABSTRACT
 This project created an Application Programming Interface (API) for a simulated modular

digital game system. Each module consists of a triangle that displays colors at the center and

edges, monitors an input and signals from the surrounding modules, and communicates with a

computer controller. The API allows users to develop game programs for the system. The

simulation runs the game files and displays the results. The focus was on practical coding and

design of an instructional game system. The challenges in creating such a system provided a

valuable learning environment for us in the areas of user interface design, system tool

management and design, human computer interaction, and designing educational platforms.

3

Table of Contents
ABSTRACT .. 2
TABLE OF CONTENTS .. Error! Bookmark not defined.
INTRODUCTION ... 4

Problem Statement ... 4
The Goal .. 4
The Team ... 4

DESIGN PROCESS ... 5
The Simulation ... 5

Processing .. 6
Processing.js .. 6
Design Process ... 7

The API .. 8
Javascript.. 8
Processing .. 9
Design Process ... 9

The Hardware ... 9
DOCUMENTATION ..12

Development ...12
Implementation ..12

PROJECT OUTCOMES ..13
CONCLUSIONS ..14
APPENDICES ...15

Appendix A : References ...15
Appendix B: API Code ...16
Appendix C: API Documentation ...19
Appendix D: Hardware Documentation ..20

4

INTRODUCTION

Problem Statement

 Teaching the development of new, unique and interesting games can be difficult,

especially when it is very simple to just make a clone of an existing game. Constraining students

requires them to be more creative. One method of constraining students to enforce creativity is

by giving them an API that is simplified to create very simple games or by giving them a specific

hardware set. To accomplish this goal, we set out to create an API for students to use to

develop games and a simulation of the hardware for them to test on.

The Goal

The ultimate goal for the hardware was to be a reconfigurable modular system with an

API for development and a simulation such that a student could take both pieces and begin to

create games even without the hardware component. The intention was also for the hardware to

be dynamically reconfigurable into any shape, be it two dimensional or three dimensional. For

the purposes of our project, we set out to develop just the API and simulation in full and create a

simple prototype of what the hardware could be like. We also chose to limit the simulation to a

single, simple 3D solid to test the concept and see if it was viable.

The Team

The project team formed to meet this goal was comprised of two interactive media and

game design students, one to handle technical requirements of the software and one to handle

artistic requirements and to do the hardware development. Hillary Fotino was responsible for the

development of the API, documenting it, and developing the simulation. Alex Gray was

5

responsible for the creation of the art assets used in the simulation and for developing and

building the prototype hardware. He also developed the demonstration Simon game using the

API that was developed.

 Background

The inspiration for our project came largely from Perlenspiel, a tool for teaching game

design which was developed by our advisor, Professor Brian Moriarty. Early in the brainstorming

process, we discussed a hardware implementation of

Perlenspiel, done with a physical array of Light

Emitting Diodes (LEDs). What we eventually set out to

make was a system that could be dynamically

reconfigured, and was capable of detecting its

configuration. This concept is similar to Sifteo Cubes,

although they contain Liquid Crystal Display (LCD)

screens and can only connect up to six units. Our end

goal was to be simpler and more limited from the

developer standpoint, but far more configurable from

the hardware standpoint.

DESIGN PROCESS

The Simulation
 The first step in developing the simulation was to determine which language or

framework we would use to create it. The language had to be able to render 3D graphics,

preferably from an object file created in a 3D modeling program such as Maya, and need to

6

have a simple enough syntax that we could pick it up in a short span of time. We narrowed it

down to Processing, OpenGL or Processing.js.

 Processing
 Processing is an open source programming language based on Java. It was developed

to be simple way to teach programming in a visual context. Development of Processing began

in the spring of 2001 by Ben Fry and Casey Reas while they were students are MIT working at

the Media Lab. The development of the project has continued since then, with many different

developers working on adding many different libraries to expand the project. Among these are

the ability to generate sound, to render 3D objects from object files and networking.

 From our perspective, the ability to render 3D objects was the most important ability of

the language. The associated library, OBJ Loader, takes the object file, loads it in and renders it

to the screen. This allowed us to create our models in Maya and not have to manually develop

them in Processing, which could have cost us a lot of development time.

OpenGL
OpenGL was introduced in 1992 and has become a standard for graphical rendering.

OpenGL has many useful features, such as hardware acceleration of graphics processing and

very extensive documentation, and is an API which has been ported to many different

languages include Python, Java, C/C++ and Fortran. However, OpenGL is quite a bit more

complicated than Processing or Processing.js, so we ultimately did not choose to use it.

Processing.js
 Processing.js is a sister to the Processing project, only instead of being built on the Java

language, it was built on the Javascript language. It was developed to make the Processing

project more web portable. It is a much newer project than Processing, with the Version 0.4.0

release being made public in early 2010. Because of this, many of the useful libraries that have

been developed for Processing have yet to be ported to this project. The object loader libraries

7

are currently in beta, and while we successfully got access to the beta, the bugs were not

hammered out enough to make it a viable choice for our project.

Design Process

Ultimately, we chose to use Processing to develop the simulation. From that point, it was

a matter of designing a simplified version of the hardware design as the interface and adding

other useful features. The major requirements of the simulation were that it be an accurate

simulation that could be used to see how student developed code was working, and that the

simulation be able to render the model and

allow the student using it to click on the

model to simulation pushing the button on

that surface. At first, the model being

rendered showed all of the electrical

components that the hardware would

require, and clicking on a surface involved

actually clicking on the surface’s button.

This was determined to not be a user-friendly interface since it was very easy to miss the

small button and showed things that a developer would not care about. We then changed the

design to be solid panels of color in place of LEDs and allow the user to click anywhere on a

face. Since the model being rendered is 3D and at least one of the faces would always be

obstructed from the user’s view, we also added icons across the top which represent the faces

and react the same way that they do.

8

The API
The development of the API began with choosing the language to be used. From there,

we had to determine the most important functions for developing a game.

 Javascript
 The original intention had been to develop the API in Javascript so that it would match

the Perlenspiel API in simplicity. However, since we chose to develop the simulation in

Processing, this meant that Javascript was no longer truly an option. While Processing can be

scripted using Javascript, it is not optimal and it runs much more smoothly when written entirely

in Processing. The Processing.js project would have allowed for this to happen, by as was

stated earlier, does not yet have features that were necessary.

9

Processing
The API was eventually developed in Processing because it was optimal for the

performance of the program. This also allowed the API to be loaded into a given Processing

sketch, the name used for Processing programs, as though it was simply part of the project

rather than as an external library.

Design Process
 When designing the API, the first thing we did was set out the requirements. The

requirements for the API were developed by looking through the Perlenspiel API and seeing

what kinds of functions and constants it had. Then we compared it to our requirements and

constraints. Since Perlenspiel is browser-based rather than being in physical hardware, it had a

lot more things it was capable of doing compared to what we needed and could do. We needed

to be able to change the colors of the faces of the model, and the subsections of the faces, to

handle the button presses on a given face and be loaded onto an Arduino and run. First, a

Tetrahedron class was developed which contained all the information about the model, including

the port information for the hardware. Then a small selection of helper functions was developed

for setting the colors of the faces and face subsections and for reacting to a button press. These

were determined to be the major functions that the API required. We chose not to include a

speaker on the prototype hardware, so developing sound generation functions for the API was

not necessary at this time, though they could be added as a further expansion to the project.

The full API can be seen in Appendix B.

The Hardware
In order to make the shape more universally appealing, the prototype boards are

composed of equilateral triangles. This lets us make any 3D shape from a Tetrahedron (4-sided

solid) to a massive icosahedron (20-sided solid), as well as irregular 3D objects and 2D grids.

The modules are designed so that each can be identical, with only one module needing a

10

connection to power and a programming source. The

intention was that additional modules would be

connected to the edges of the first module and

capable of organizing themselves into a linked

system, passing along inputs and outputs to each

uniquely addressed board using the Inter-Integrated

Circuit (I²C) communication protocol. The primary

output for the face is a set of four Red-Green-Blue

(RGB) LEDs, the primary input is a momentary contact push button switch, as shown in the

accompanying photograph.

The Microprocessor is an ATtiny88, a 28 pin device that allows for the control of the 12

component LEDs, 1 switch, 3 edge connections, 2 I²C lines, and 4 pins required to program the

chip’s logic. There are also 2 pins dedicated to 5 volts and 2 to Ground, leaving 2 additional pins

for future use. This chip has programming examples available in C and includes C definitions for

the Input/Output (I/O), that makes up the basis of the device code. An Arduino would be coded

with a modified C/C++ to be used as the I²C Master controller and be connected to a computer

to transfer commands. Once the Master is connected to the first module the module would be

set into a search mode and would then send a signal to its first edge and look for a responding

module. The responding module would be addressed as module two and it would wait for

module one to check the other edges for other modules. When module one has finished

assigning its edges it would tell module two if it found module three and four, then module two

would check its two other edges and if the modules there didn't already have an address it

would assign them and report what it found back to module one. Module one would then send

search commands through to the other modules in the system to establish the overall shape of

the system.

http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d

11

The actual implementation of the I²C protocol ended up being more of a challenge to

implement on the ATtiny88 chips than expected. As of the project’s conclusion, complete

hardware functionality is not complete. The prototype tetrahedron’s modules are not

communicating with each other, the Arduino or the API.

Along the development process the components and dimensions of the system changed

as new insights came to light. The thought that the boards could be cut with edge lengths of 2

inches was lost with the realization that the chip footprint, LED, and switch placements would be

forced to overlap, and that there wouldn’t be enough time or money available to have the circuit

boards fabricated using a printed circuit board service.

The next board size used edge lengths of 3 inches and made use of both sides of the

board for wiring to allow the central LED and switch to be located properly with accordance to

the design. This prototype brought the problem of the interconnect ports for the boards to light.

The original thought was to have short wires bent between edge mounted connectors. The tight

angles in the tetrahedron’s geometry cause the connectors to interfere with each other at this

scale.

The problems with the

interconnect ports are still present in the

4 inch version due to the lengths of the

wiring and the added precautions of

current limiting resistors. The figure to the

right shows the rear of a 4-inch prototype

module.

The design works for well for the purpose of the prototype at this scale. The core

functionality is partially implemented, while the software that would run it is currently incomplete.

12

DOCUMENTATION

 Development
 When any API is developed, the most important thing that can be developed along with it

is proper documentation. It is only with the documentation that it can truly be used to create.

The documentation for the digital modular game system was based largely on the

documentation for Perlenspiel. This seemed like an appropriate organization given our

inspiration for the project, and since the Perlenspiel API is very well organized and user friendly.

 Implementation
The documentation itself is done through inline and block commenting in the API file

itself. This allows the user to not only read through what a function is supposed to do, but also

allows them to look at the function and see exactly how it is behaving. This prevents black box

coding problems from occurring on the user end. This also makes it so that the user can look up

the documentation without having to go outside of their own program. A secondary

documentation set containing all constants and function calls necessary exists and has been

included in the appendices as appendix C.

13

PROJECT OUTCOMES
 While we successfully developed the API and simulation for our digital modular game

system, and successfully developed a prototype of the hardware, many of the goals we had

early on had to be removed from the project due to time constraints. Our ultimate goal to

develop something that was fully reconfigurable and dynamic was instead realized as a single

tetrahedron with an API and a simulation that fully supported it. The intention shifted from

developing a fully functional game system, to prototyping a concept and seeing if it was viable.

 The major reason that we kept running into problems that were sufficiently troublesome

as to cause us to scale back parts of the project was lack of technical knowledge about

hardware development. Future projects working with this, or any, hardware should include an

electrical or robotics engineer since they have the background in working with these kinds of

systems.

 Given the goal of creating an API, simulation and hardware prototype to see if the

concept of using a simple hardware setup to create games and game-like toys is an interesting

and useful one, we believe that our project has been a success. We developed a prototype for

what we set out to make and successfully created a game for it. The creation of the game was

fairly simple.

14

CONCLUSIONS
Looking back over this project, we had many setbacks and successes. We developed

more than we set out to make, though less than the vision we had in the beginning. The API and

simulation have been tested through the development of a game, and prototype hardware has

been produced. While the hardware does not have all of the features that it optimally would

have, and is not yet running code developed with the API, it does demonstrate that the concept

is viable.

15

APPENDICES

Appendix A : References
API
http://www.perlenspiel.org/
http://processing.org/
http://opengl.org/
http://processingjs.org/

Hardware
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-
PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d

http://www.ladyada.net/learn/avr/whatisit.html

http://forums.adafruit.com/viewtopic.php?f=19&t=16260

http://www.evilmadscientist.com/article.php/avrtargetboards

http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/

http://www.expresspcb.com/ExpressPCBHtm/Tips.htm

http://www.edaboard.com/entry861.html

http://www.ermicro.com/blog/?p=1971

http://www.ermicro.com/blog/?p=1239

http://www.ermicro.com/blog/?p=744

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0

http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/

Processing
http://www.openprocessing.org/visuals/?visualID=9397

http://www.openprocessing.org/visuals/?visualID=48874

http://www.openprocessing.org/visuals/?visualID=47549

http://thequietvoid.com/client/objloader/#examples

http://www.openprocessing.org/sketch/7881

http://processingjs.org/articles/jsQuickStart.html

http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://www.perlenspiel.org/
http://processing.org/
http://processing.org/
http://processing.org/
http://processing.org/
http://processing.org/
http://processing.org/
http://opengl.org/
http://opengl.org/
http://opengl.org/
http://opengl.org/
http://opengl.org/
http://opengl.org/
http://processingjs.org/
http://processingjs.org/
http://processingjs.org/
http://processingjs.org/
http://processingjs.org/
http://processingjs.org/
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.mouser.com/ProductDetail/Atmel/ATTINY88-PU/?qs=sGAEpiMZZMvu0Nwh4cA1wRKJzS2Lmyk%252bS1XFHRQy1EA%3d
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://www.ladyada.net/learn/avr/whatisit.html
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://forums.adafruit.com/viewtopic.php?f=19&t=16260
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.evilmadscientist.com/article.php/avrtargetboards
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.instructables.com/id/I2C_Bus_for_ATtiny_and_ATmega/
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.expresspcb.com/ExpressPCBHtm/Tips.htm
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.edaboard.com/entry861.html
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=1239
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.ermicro.com/blog/?p=744
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=27233&start=0
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://iamsuhasm.wordpress.com/tutsproj/avr-gcc-tutorial/
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=9397
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=48874
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://www.openprocessing.org/visuals/?visualID=47549
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://thequietvoid.com/client/objloader/#examples
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://www.openprocessing.org/sketch/7881
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html
http://processingjs.org/articles/jsQuickStart.html

16

Appendix B: API Code

User Code File:

 class YourCode{
 YourCode(){

//constructor
 }
 void lose(){
 println("You LOSE!");

 }
 void start(){

 }

}

API File:

 // game.pde for Modular Game Development

/*
Copyright © 2012 Worcester Polytechnic Institute.
*/

// This is a template for creating new games
// All of the functions below MUST exist, or the engine will stop and
complain!
final color RED = color(256, 0, 0);
final color DARKRED = color(40, 0,0);
final color GREEN = color(0, 256, 0);
final color DARKGREEN = color(0, 40, 0);
final color BLUE = color (0, 0, 256);
final color DARKBLUE = color (0,0,40);
final color BLACK = color (0,0,0);
final color PURPLE = color(256, 0, 256);
final color YELLOW = color(255, 255, 0);
final color DARKYELLOW = color(0x20, 0x20, 0);
final color ORANGE = color(256, 100, 0);
final color AQUA = color(0, 100, 100);
final color WHITE = color(255,255,255);

class Game{
 int id;
 int data;
 int state;

17

 void Game(){
 state = 5;

 }
 // Init ()
 // Initializes the game
 // This function normally includes a call to ModelType(Tetra)
 void Waiting()
 {
 //does nothing but wait for activation by 's' key
 println("WAITING");
 }
 void Init()
 {
 // change to the dimensions you want

 //ModelType(Tetra);
 println("in init");
 state = 1;// sends game.state to menu
 //simon = new Simon();
 // Put any other init code here
 }

 // Menu
 // displays the game menu and options
 void Menu()
 {
 //println("in Menu");
 state = 2;// sends game.state to run
 }

 // Run
 void Run(){
 println("in Run");
 //Put code here that you want to run
 }

 // Lose
 void Lose(){
 //Put code here for when the player loses
 }

 // Win
 void Win(){
 //Put code here for when the player wins

18

 }

 // Click (id, data)
 // This function is called whenever a board is clicked
 // It doesn't have to do anything
 // id = the board reporting the click
 // data = the data value associated with this board, 0 if none has
been set

 void Click(int id, int data)
 {

 }

 // Release (id, data)
 // This function is called whenever a mouse (switch) button is
released over a board
 // It doesn't have to do anything
 // id = the id of the board that is being released
 // data = the data value associated with this board, 0 if none has
been set

 void Release(int id, int data)
 {

 // Put code here for when the mouse (switch) button is released
over a board
 }

 // Tick ()
 // This function is called on every clock tick
 // if a timer has been activated with a call to Timer()
 // It doesn't have to do anything
 void Tick()
 {
 println("tick");
 // Put code here to handle clock ticks
 }
}

19

Appendix C: API Documentation

CONSTANTS:

 Colors:

 RED

DARKRED
GREEN
DARKGREEN
BLUE
DARKBLUE
BLACK
PURPLE
YELLOW
DARKYELLOW
ORANGE
AQUA
WHITE

 Faces are identified by their number 1,2,3 or 4

 Sub face sections are identified as 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42,
43, and 44.

Functions

 void turnOnWholeFace(int faceNum)

 Takes the number associated with a whole face and turns all of the lights on.

 void turnOffWholeFace(int faceNum)

 Takes the number associated with a whole face and turns all of the lights off.

 void turnOnSubFace(int subFaceNum)

 Takes the number of a sub-face and turns the light on.

 void setWholeFaceColor(int faceNum, color c)

 Takes the number of a face and a color and sets the color of that whole face.

 void setSubFaceColor(int faceNum, color c)

 Takes the number of a sub face and a color and sets the color of that sub face.

20

Appendix D: Hardware Documentation

ATtiny88 pin layout

used for Pin

label used for Pin

label

ICSP 1 (PCINT14 / RESET)
PC6

I2C 28 (PCINT13 / SCL /
ADC5) PC5

LED 1 R 2 (PCINT16) PD0 I2C 27 (PCINT12 / SDA /
ADC4) PC4

LED 1 G 3 (PCINT17) PD1 Edge 3
Comm.

26 (PCINT11 / ADC3) PC3

LED 1 B 4 (PCINT18 / INT0) PD2 Edge 2
Comm.

25 (PCINT10 / ADC2) PC2

Push button
switch

5 (PCINT19 / INT1) PD3 Edge 1
Comm.

24 (PCINT9 / ACD1) PC1

LED 2 R 6 (PCINT20 / T0) PD4 Expansion
Pin

23 (PCINT8 / ADC0) PC0

+5 volts 7 VCC Ground 22 GND

Ground 8 GND Expansion
Pin

21 (PCINT15)

LED 2 G 9 (PCINT6 / CLKI) PB6 +5 volts 20 AVCC

LED 2 B 10 (PCINT7) PB7 ICSP 19 (PCINT5 / SCK) PB5

LED 3 R 11 (PCINT21 / T1) PD5 ICSP 18 (PCINT4 / MISO) PB4

LED 3 G 12 (PCINT22 . AIN0) PD6 ICSP 17 (PCINT3 / MOSI) PB3

LED 3 B 13 (PCINT23 / AIN1) PD7 LED 4 B 16 (PCINT2 / OC1B / SS)
PB2

LED 4 R 14 (PCINT0 / CLK0 /
ICP1) PB0

LED 4 G 15 (PCINT1 / OC1A) PB1

	ABSTRACT
	INTRODUCTION
	Problem Statement
	The Goal
	The Team

	DESIGN PROCESS
	The Simulation
	Processing
	OpenGL
	Processing.js
	Design Process

	The API
	Javascript
	Processing
	Design Process

	The Hardware

	DOCUMENTATION
	Development
	Implementation

	PROJECT OUTCOMES
	CONCLUSIONS
	APPENDICES
	Appendix A : References
	Appendix B: API Code
	Appendix C: API Documentation
	Appendix D: Hardware Documentation

