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ABSTRACT 

 The focus of this work is to present in detail the implementation of a three dimensional 

direct simulation Monte Carlo methodology on unstructured Delaunay meshes (U-DSMC).  The 

validation and verification of the implementation are shown using a series of fundamental flow 

cases.  The numerical error associated with the implementation is also studied using a 

fundamental flow configuration. 

 Gas expansion from microtubes is studied using the U-DSMC code for tube diameters 

ranging from 100µm down to 100nm. Simulations are carried out for a range of inlet Knudsen 

numbers and the effect of aspect ratio and inlet Reynolds number on the plume structure is 

investigated.  The effect of scaling the geometry is also examined. 

 Gas expansion from a conical nozzle is studied using the U-DSMC code for throat 

diameters ranging from 250 µm down to 250 nm.  Simulations are carried out for a range of inlet 

Knudsen numbers and the effect of inlet speed ratio and inlet Reynolds number on the plume 

structure is investigated.  The effect of scaling the geometry is examined. 

 Results of a numerical study using the U-DSMC code are employed to guide the design 

of a micropitot probe intended for use in analyzing rarefied gaseous microjet flow.  The flow 

conditions considered correspond to anticipated experimental test cases for a probe that is 

currently under development. The expansion of nitrogen from an orifice with a diameter of 

100µm is modeled using U-DSMC.  From these results, local ‘free stream’ conditions are 

obtained for use in U-DSMC simulations of the flow in the vicinity of the micropitot probe. 

Predictions of the pressure within the probe are made for a number of locations in the orifice 

plume. The predictions from the U-DSMC simulations are used for evaluating the geometrical 

design of the probe as well as aiding in pressure sensor selection. 
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 The effect of scale on the statistical fluctuation of the U-DSMC data is studied using 

Poiseuille flow.  The error in the predicted velocity profile is calculated with respect to both first 

and second-order slip formulations.  Simulations are carried out for a range of channel heights 

and the error between the U-DSMC predictions and theory are calculated for each case.  From 

this error, a functional dependence is shown between the scale-induced statistical fluctuations 

and the decreasing channel height. 
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NOMENCLATURE 

 Boldface denotes a vector.  The magnitude of a vector is denoted using the same symbol 

as the vector, but without boldface.  Duplicate use of a symbol, or usage not defined below, will 

be clarified within the text.  

 

a sound speed 

b distance of closest approach 

d molecular diameter 

c  molecular velocity 

0c  drift velocity 

'c  thermal velocity 

rc  relative velocity 

E  portion of available energy 

NF  particle numerical weight 

Bk  Boltzmann constant 

Kn Knudsen number 

L characteristic length 

m mass of molecule 

Ma Mach number 

n number density 

n  normal vector 

N number of molecules in volume 

N�  number flux 

p pressure 

r  position vector 

Re Reynolds number 

S  Speed Ratio 

T temperature 

U∞  free stream speed 

V sample volume 

u  x-component of drift velocity 

v  y-component of drift velocity 

w  z-component of drift velocity 

u'  x-component of thermal velocity 

v'  y-component of thermal velocity 

w'  z-component of thermal velocity 

0u  x-component of molecular velocity 

0v  y-component of molecular velocity 

0w  z-component of molecular velocity 

β  reciprocal of most probable speed  

t∆  elapsed time 

ε  diffuse fraction 

Ξ  available modes 

Λ  rotational relaxation number 

ρ  number density 

χ  scattering angle 

ζ  internal degrees of freedom 

Tσ  total collision cross section 

δ  mean molecular spacing 
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1.  INTRODUCTION 

 Steady advances in aerospace technologies coupled with the rapid expansion of Micro-

Electro-Mechanical Systems (MEMS) and the promise of Nano-Electro-Mechanical Systems 

(NEMS) have resulted in a substantial demand for modeling tools capable of capturing gaseous 

flows in micro and nano devices, typically featuring complex geometries.  These flows are 

usually quantified through the use of the Knudsen number (Kn ), defined as the ratio of the mean 

free path (λ ) to the characteristic length (L ).  The Knudsen number can be related to the Mach 

number and Reynolds number by (Karniadakis and Beskok, 2002): 

 
2
M

Kn
L Re
λ γπ

= =  (1.1) 

 

By evaluating the Knudsen number the respective flow regime can be classified according to the 

following commonly accepted guidelines (Schaaf and Chambre, 1961): 

• 0 01Kn .<   Continuum Flow 

• 0 01 0 1. Kn .< <  Slip Flow 

• 0 1 10. Kn< <  Transitional Flow 

• 10 Kn<   Free-Molecular Flow 

For many gaseous flows occurring in MEMS and NEMS devices the Knudsen number is in the 

range of 0.1 to 10 (Liou and Fang, 2000).  As a result, the typical continuum based fluid 

modeling tools, built upon the Navier-Stokes equations, utilized during the design process cannot 

meet the needs of a growing number of developers whose applications lie in the rarefied regime.  

Furthermore, the fundamental understanding of gas flow characteristics at micro and nano scales 

is lacking in the slip and transitional Knudsen regimes.  The range of validity of continuum 

based modeling is seen in Figure 1. 
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Figure 1.  Graphical representation of the Knudsen regime, 25 -3
0n = 2.68×10 m for ideal gas at STP (adapted 

from Karniadakis and Beskok, 2002) as well as the dilute gas limit and region of significant statistical 

fluctuations in volume sampled properties, where L is a characteristic length,  d is the molecular diameter and 

δ  is the mean molecular spacing. 

   

In order to address these issues this work is devoted to the implementation of the direct 

simulation Monte Carlo (DSMC) methodology of Bird (1994) on unstructured three dimensional 

meshes which feature extremely flexible geometric resolution and can thus be applied to a 

number of micro and nano scaled flow scenarios.     

 This work is motivated by three primary goals.   

• The first goal of this dissertation is to develop a fully functional DSMC code 

implemented on unstructured Delaunay grids (U-DSMC) with extensive geometric 

flexibility and ease-of-use. 
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• The second goal is to verify each underlying algorithm of the U-DSMC code and to 

validate its overall applicability to modeling rarefied gaseous flows.   

• The final goal of this research is to apply the U-DSMC code in a series of 

investigations which probe the physical phenomena associated with gaseous flows in 

micro and nanoscale devices and to establish the relationship between the 

characteristic scale of the flow and statistical fluctuations in U-DSMC results. 

 

1.1  DSMC Basics 

 The DSMC method has become readily accepted as an effective method of modeling 

rarefied and nonequilibrium gaseous flows.  The method was initially developed in the early 

1960’s by G.A. Bird (1994).  DSMC is a direct simulation approach that relies on a number of 

probabilistic procedures that are valid only for dilute gases.  The basis of the method lies in the 

tracking of representative simulated molecules.  Each simulated molecule represents a large 

number of real molecules which lie in a similar range of phase-space.  The representative 

molecules are tracked as they interact with other molecules and with domain boundaries.  The 

fundamental assumption of the method is that for dilute gases the molecular motion and the 

intermolecular collisions can be uncoupled over a small time step ( τ ).   Within the simulation, 

the simulated particles transverse distances which correspond to the time step and their 

respective velocity.  Any resulting boundary interactions are treated during the motion step.  It 

should be noted that the time step must be chosen such that it is small with respect to the mean 

collision time of the flow (Bird, 1994).  The intermolecular collisions are treated at the end of 

each time step in a probabilistic fashion formed from basic kinetic theory.   
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 Modifications and additions to the original algorithms aided in increasing the accuracy of 

the DSMC method in the early developmental stages (Borgnakke and Larsen, 1975, Cercignani 

and Lampis, 1974, Lordi and Mates, 1970).  Over the last two decades DSMC has become 

widely accepted as the primary method for modeling rarefied gas flows.  In recent years further 

algorithmic refinements have been introduced (Boyd, 1993, Haas and Boyd, 1993, Haas et al, 

1994) that have extended the applicability of the method.  Analytical efforts have also been made 

to lend further validity to the method and to quantify the statistical error inherent to DSMC 

simulations (Rjasanow and Wagner, 1998, Alexander et al, 1998, Garcia and Wagner, 2000, 

Hadjiconstantinou, 2000). 

 

1.2  Outstanding Mathematical and Computational Issues of U-DSMC 

 Implementation of the DSMC method on unstructured grids yields vast improvements in 

regards to geometric flexibility when compared to structured DSMC codes, but the additional 

flexibility comes at the cost of added complexity and computational overhead.  Several major 

algorithmic issues arise when implementing the DSMC method on unstructured grids.  

Difficulties resulting from the unstructured nature of the local cell configuration require 

algorithmic advances as pertaining to particle motion, particle-surface boundary interaction, 

resulting surface force calculations, tracking of fluxal properties, as well as the implementation 

of both hypersonic and subsonic injection routines.  As a result of these issues the majority of 

DSMC codes utilized in the literature are based on structured meshes.  Due to the significance of 

the added difficulties only a few unstructured DSMC codes have been developed to date, 

however, their utility has been made apparent in the following studies. 
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 Wu et al (2002) present the implementation of DSMC on an unstructured 2-D grid.  

Although 2-D, the code does benefit from the added feature of mesh-spacing control through 

adaptive meshing.  The work clearly displays the benefits of unstructured meshes as well as 

mesh-spacing control in the resultant flow fields of hypersonic flow over a cylinder. 

 In Wu and Lian (2003) the DSMC method is extended into three dimensions by use of 

unstructured tetrahedral cells.  Code validation is reported by means of a benchmark comparison 

for supersonic corner flow as well as orifice expansion flow.  The method is also applied to 

hypersonic flow over a sphere as well as an analysis of the flow field in a spiral drag pump.  

In Wu and Tseng (2005) dynamic domain decomposition is added to the DSMC code and the 

resulting capabilities are applied to model a number of cases including two two-dimensional 

hypersonic flows, a three-dimensional hypersonic flow and a three-dimensional near-continuum 

hypersonic twin-jet gas flow problem.   

 In Boyd and Wang (2001) the range of applicability of their DSMC code MONACO was 

presented.  MONACO is reported to be a general, cell-based, object-oriented, parallelized 

implementation of the DSMC method which can operate on both structured and unstructured 

grids.  In this particular study, the code was applied to near-continuum regime simulations of 

hypersonic flow over hollow-cylinder and double-cone geometries using structured meshes.  The 

computational cost of near-continuum regime simulations with such a flexible code structure was 

reported to be so significant that the results given in the paper were not steady state values.  

Other simulations utilizing the MONACO code have been carried out over a wide range of 

applications.  In the work of Kannenberg and Boyd (1999), MONACO was used to carry out 

plume studies.  In the work by Karipides et al (1999), MONACO was applied to a detailed 

simulation of the surface chemistry that is responsible for spacecraft glowing.  Additional studies 
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have also been conducted into thin film deposition (Chen et al, 1998, Balakrishnan et al, 2000) as 

well as meteoroid trail analysis (Boyd, 2000). 

 Development of unstructured particle simulations at the Computational Gas and Plasma 

Dynamics Laboratory (CGPL) on the campus of Worcester Polytechnic Institute has been 

ongoing for some time.  In the work of Kovalev (2000) the development of an unstructured 

Voronoi-Delaunay grid generator, which provides the data structure underlying the unstructured 

DSMC code, was presented.  In Hammel et al. (2001) the findings of preliminary DSMC 

simulations of gaseous flows in nozzles and microchannels were shown.  In Hammel (2002) the 

basic elements of the unstructured DSMC code as well as a particle-in-cell (PIC) code were 

presented.  In Spirkin (2006) further development of the PIC methodology was shown, as well as 

code validation, numeric heating studies and plasma microdevice simulations. 

 To date, only a few DSMC codes have been reported in literature to have been 

implemented on unstructured grids.  Out of those unstructured codes, very few have full three-

dimensional capabilities.  Additionally, extensive literature searches yield limited reports of a 

three-dimensional unstructured DSMC code that has subsonic flow modeling capabilities.  As a 

result there is a strong need to combine the geometric flexibility of a three-dimensional 

unstructured DSMC implementation with a flexible and robust subsonic modeling technique.  To 

address this need the current implementation of U-DSMC has been established by means of 

algorithmic refinement, extension and addition from the foundations laid by the work of Kovalev 

(2000) and Hammel (2002) and now includes the capability of providing subsonic modeling of 

geometrically complex devices.  Furthermore, the U-DSMC code provides a platform from 

which the effects of statistical fluctuations in micro and nano scaled unstructured DSMC can be 

in investigated and characterized. 
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1.3  Major Limits and Fundamental Assumptions of the DSMC Method  

 As is true for all modeling schemes, the DSMC method has a number of built in 

assumptions, underlying limits and bounds on the computational accuracy of its results.  One of 

the primary limits of the DSMC method is based upon the assumption that molecular motion 

occurs outside the range of influence of neighboring molecules and that molecular motion may 

be uncoupled from inter-molecular collisions.  Furthermore, the method assumes that when inter-

molecular collisions do occur the overwhelming majority of them will be binary.  Based on these 

assumptions the DSMC method is limited to modeling of dilute gases.  The dilute gas 

assumption is taken to be valid for flows where the mean molecular spacing δ  is much greater 

than the effective molecular diameter (Bird, 1994): 

 >> moldδ  (1.2) 
 

The mean molecular spacing can be related to the number density of the flow through: 

 1/ 3−= nδ  (1.3) 
 

The number density can in turn be related to the pressure and temperature of a dilute gas by 

means of the Ideal Gas Law:  

 = BP nk T  (1.4) 
 

where Bk  is the Boltzmann constant ( 231.3805 10 J/K−= ×Bk ), P  is the pressure and T  is the 

temperature.  Figure 2 illustrates the limiting values of pressure for the dilute assumption as a 

function of effective molecular diameter over a range of common gases.   
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Figure 2.  Maximum pressure for which the dilute gas assumption is valid plotted as a function of effective 

molecular diameter, with T = 300K and δ / d = 7. 

 

 The DSMC method is stochastic in nature.  Furthermore, many of the underlying models 

contained in the method are phenomenological.  As such, the applicability of many of the core 

routines which comprise the method is limited by the assumption of molecular chaos and the 

requirement that a large number of real molecular interactions occur for every single 

corresponding simulated interaction.  The assumption of a large ratio of real events 

corresponding to a single phenomenologically simulated event can be achieved through the 

application of a modestly large particle weight (the number of real particles represented by a 

simulated particle).  Unfortunately, the applicability of molecular chaos is not as clearly defined 

and may in fact be in question for extremely rarefied flow in micro and nanoscale domains.  

Furthermore, as will be shown in Section 4.4, the application of a sufficiently large particle 

weight is also questionable at nanoscales.  These scale induced artifacts require significant 
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investigation in order to quantify the limit of applicability of the DSMC method in nanoscale 

gaseous devices.   

 Another key consideration in DSMC computations relates to statistical fluctuations.  Due 

to the nature of the DSMC method, the results for the macroscopic flow parameters obtained in a 

given simulation are subject to statistical fluctuations.  The onset of significant statistical 

fluctuations occurs when the volume being used for sampling of macroscopic parameters does 

not contain a large enough number of simulation particles.  It has been reported in Karniadakis 

and Beskok (2002) that a sampling volume containing 10,000 molecules results in 1% statistical 

fluctuations in the sampled quantities.  Furthermore, following the argument given by Bird 

(1994), a formal relation can be established between the statistical fluctuations of the 

macroscopic parameters to the sample volume, V , and the number of molecules in this sample 

volume, N .   

 The number of molecules in a volume element is subject to statistical fluctuation about an 

average value of nV , where n  is the time averaged number density in the region about the 

volume of interest.  The probability, P(N ) , of having a particular value of N  in the volume at 

any instant is given by the Poisson distribution as follows: 

 
( ) exp(- )

( )
!

NnV nV
P N

N
= . (1.5) 

 

For large values of nV , this distribution becomes indistinguishable from a normal or Gaussian 

distribution of the form 

 
21

2 2
-(N - nV )

P(N ) exp
nV nVπ

⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
. (1.6) 
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 Integration of the normal distribution over the limits of  +nV A nV  to -nV A nV , 

reveals that the probability of an individual sample falling within a region A nV  about the 

average nV , following: 

 
-

( ) ( ) ( / 2)φ
+

= =∫
nV A nV

nV A nV

A nV P N dN erf A  (1.7) 

 

The standard deviation of the fluctuations is then 1/ nV .  Correspondingly, the combination of 

the standard deviation, given by 1/ nV , in conjunction with a requirement of a standard 

deviation value that is preferably much less than unity results in the following requirement, 

which is taken as an approximate limit to assure a sufficiently small amount of statistical 

fluctuation will occur in samples made over volume V  with a local number density of n , to be:   

  

 1nV �  (1.8) 
 
 
 Further work has been done to quantify the statistical fluctuation in sampled properties as 

pertaining to the DSMC method in a number of more recent studies.  In Hadjiconstantinou et al 

(2003) predictions for the statistical error due to finite sampling in the presence of thermal 

fluctuations in molecular simulations was presented in detail.  The authors established a relation 

between statistical fluctuation error and key flow properties such as Mach number, Knudsen 

number and the number of simulation particles in each cell.  In Chen and Boyd (1996) the 

statistical error associated with the DSMC technique was studied in depth using nonequilibrium 

hypersonic flows as well as nozzle flows.  Using a root mean square error the level of statistical 

fluctuation was quantified in each flow case.  Similar studies have also been carried out to 
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determine the error associated with the computational cell size (Alexander et al, 1998) and the 

time step size (Garcia and Wagner, 2000). 

Although much work has been done to quantify and bound the statistical fluctuations in 

DSMC in regards to sample volume and the number of simulation particles in this volume, there 

has not been any work to date that investigated the effects of decreasing scale on the statistical 

fluctuations.  Therefore there is a need to characterize the increase in statistical fluctuations that 

occur due to the decrease in the number of simulation particles in the computational domain that 

results from the significant reduction of the number of real particles in rarefied gaseous flow in 

micron and submicron scale devices. 

 The limits of underlying assumptions and major approximations are shown in Figure 1.  

The vertical line corresponds to the limit of the dilute gas assumption for air at standard 

temperature and pressure.  The diagonal lines indicate the limiting ranges for the various 

Knudsen regimes.  Finally, the nearly horizontal dashed line represents the maximum length 

from which a sampling volume can be constructed so that statistical fluctuations in sampled 

properties would be negligible.  It should be noted that the majority of the flow regimes 

encountered in this work lie in the shaded region of Figure 1.  This flow regime is beyond the 

limits of applicability of Navier-Stokes based methods and well into the limiting range of past 

DSMC studies. 

       

1.4  Microscale Propulsion Systems and Related Flows 

 The efforts underlying this work are primarily focused toward meeting the gaseous phase 

modeling needs generated from the miniaturization of devices in numerous fields of technology 

and science.  One such field of direct interest is that of spacecraft propulsion.  The underlying 
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motivation driving the miniaturization of propulsion devices is that mass is critical in spacecraft 

design.  Inherent to all spacecraft systems is a delicate and difficult balance between the mass of 

the mission components and the mass of the propulsion system.  As a result, modern spacecraft 

and microspacecraft development has been intimately linked with many recent MEMS 

breakthroughs.  In addition, the drive towards ever smaller micro and eventually nanospacecraft 

necessitates the miniaturization of onboard propulsion technology.  To date many MEMS based 

systems have been developed for onboard propulsion (Micci and Ketsdever, 2000, Lewis et al, 

2000, Rossi et al, 2002, Kohler et al, 2002).   

 Performance, efficiency and spacecraft integration of micro and nanopropulsion requires 

investigation of internal and external jet flow.  In addition, experimental investigation of 

microjets requires new sensors that can operate in these regimes.  Due to its fundamental nature, 

free jet expansion has been investigated numerically and experimentally in previous studies 

(Campbell et al, 1992, Sharipov, 2002).  Not until recently however has it been necessary to 

investigate the nature of free jet expansion in detail as pertaining to the expansion from 

microtubes of variable aspect ratio.  Therefore there is a need to extend previous investigations 

that were limited to orifice geometries where the aspect ratio is near unity and the orifice 

diameter is a millimeter or larger.  Additionally, there is a need to provide a basis study which 

offers the transitional background needed for investigations of gaseous expansion from 

nanotubes.  To meet these needs several parametric studies have been carried out in order to 

characterize the effects of the primary parameters as well as the effect of scale (Chamberlin and 

Gatsonis, 2006 (b), Chamberlin and Gatsonis, 2007).  Details of these studies are given in 

Section 4.1 
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 A simple form of micropropulsion can be that of cold gas expansion from a nozzle.  Due 

to its common utilization as a form of satellite propulsion, nozzle expansion has been 

investigated numerically and experimentally in numerous studies (Boyd et al, 1992, Boyd et al, 

1994, Mo et al, 2005).  Not until recently however has it been necessary to investigate the nature 

of gaseous expansion from nozzles in detail as pertaining to the expansion from micronozzles.  

Therefore studies are needed that will compliment and extend previous investigations that were 

limited to nozzles with a throat diameter of a few millimeters or larger.  Additionally, basis 

information is needed that can serve as the transitional background needed for investigations of 

gaseous expansion from nanonozzles.  To supply the required basis information, as well as to 

extend previous investigations, several parametric studies have been carried out (Chamberlin and 

Gatsonis, 2006 (c)).  Details of these studies are given in Section 4.2. 

 Given the need for reduced scale thruster systems, design and testing of novel 

microscaled propulsion devices have seen a recent surge. As such, there is a growing need for 

plume diagnostics with sub-millimeter spatial resolution. The majority of past measurements in 

rarefied flows have often been obtained with instruments connected through orifices or tubes 

(e.g., neutral and ion mass spectrometers, pressure gauges, pitot probes). Following the 

progression of manufacturing capabilities, steel tubing with outer diameters of less than 500 mµ  

are now readily available from a number of industrial suppliers for a low cost. This development, 

coupled with the advancement of sensor technology, allows for an extension of the pitot probe 

design to be applied in a manner which can attain sub-millimeter spatial resolution. The incident 

flux and molecular composition at the entrance of such a device are related to the external flow 

field while the measurements taken inside the apparatus are affected by the compounding effects 

of the internal flow.  The cases of flow in the near and free molecular regimes through tubes and 



 14

orifices have been studied both analytically and computationally for many years due to their 

importance in numerous technical applications (Hughes and de Leeuw, 1965, Fan and Robertson, 

1969, Kannenberg and Boyd, 1996, Gatsonis et al, 1997).  However, the work to date did not 

consider the coupled effects of jet expansion and pitot probe measurements as pertaining to 

microscaled orifices and probe assemblies.  Therefore work was needed to extend the previous 

investigations by coupling past findings with numerical studies at the microscale.  To meet this 

need the coupled study presented in Chamberlin and Gatsonis (2006 (a)) was carried out.  Details 

of this work are given in Section 4.3.     

  

 

1.5  Objectives and Approach 
 
 The primary goal of this work is to further develop, revise and enhance the unstructured 

DSMC code.  The second goal is to verify each underlying algorithm of the U-DSMC code and 

to validate its overall applicability to modeling rarefied gaseous flows.  The final goal of this 

research is to apply the U-DSMC code in a series of investigations which probe the physical 

phenomena associated with gaseous flows in micro and nanoscale devices and to establish the 

relationship between the characteristic scale of the flow and statistical fluctuations in U-DSMC 

results.  The objectives and approaches are listed below.      

1. Develop and implement algorithms in order to develop a fully functional unstructured 

DSMC code (U-DSMC):    

a. Revise previous implementations of particle loading and particle motion. 

b. Revise and rewrite portions of the previous implementations of hypersonic 

injection, specular reflection, and diffuse reflection. 
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c. Implement corrected algorithms for calculating elastic inter-particle collisions 

using either the Hard Sphere (HS) or Variable Hard Sphere (VHS) models 

following the methods of Bird (1994), with provisions for the future addition of 

the Variable Soft Sphere (VSS) model. 

d. Implement corrected algorithms for calculating the rotational energy exchange in 

inelastic inter-particle collisions using the Larsen-Borgnakke Method (Borgnakke 

and Larsen, 1975). 

e. Develop and implement a simple model for non-diffuse reflection featuring partial 

accommodation of momentum and energy for the modeling of solid boundary 

surfaces. 

f. Develop and implement moving solid boundaries, with wall velocity specified by 

scalar values of speed in each Cartesian direction. 

g. Modify existing calculations of macroscopic parameters in order to include the 

calculation of the scalar pressure for each gas species as well as for the bulk gas 

following the methods of Bird (1994). 

h. Develop and implement calculations of species specific and bulk gas number flux 

and mass flux through arbitrary surfaces in the flow domain with arbitrary shape 

and orientation. 

i. Develop and implement the capture of species specific and bulk gas distribution 

function data through surfaces with arbitrary shape and orientation. 

j. Develop and implement calculations of gas-surface interaction properties such as 

pressure, shear and heat flux on arbitrary surfaces for individual species as well as 

the bulk gas. 
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k. Develop and implement calculations of both global and local surface coefficients 

such as the coefficient of pressure, coefficient of drag and the heat flux coefficient 

on arbitrary surfaces for both individual species and the bulk gas. 

l. Develop and implement calculations of the total force vector on a solid body 

immersed in gaseous flow. 

m. Develop and implement subsonic inflow boundary conditions featuring specified 

upstream pressure and temperature with floating face-normal drift velocity for 

arbitrarily oriented inlets based on the methods of Wang and Li (2004). 

n. Develop and implement subsonic outflow boundary conditions featuring specified 

downstream pressure with floating temperature and face-normal drift velocity for 

arbitrarily oriented outlets based on the methods of Nance et al (1997). 

o. Identify, develop and implement a means of utilizing a surface triangulation from 

a commercial software package as an input to the 3-D unstructured Voronoi-

Delaunay grid generation program. 

p. Identify, develop and implement a means of exporting and reformatting a 3-D 

unstructured Delaunay grid from a commercial software package into a format 

acceptable for use with U-DSMC. 

2. Verify and validate U-DSMC by applying it to: 

a. Heat transfer between stationary infinite parallel plates, thus verifying the current 

implementation of: particle loading, elastic collisions, specular reflection, diffuse 

reflection, and surface sampling of heat flux. 
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b. Also use heat transfer between stationary infinite parallel plates in order to 

approximate the order-of-error in the 3-D unstructured DSMC code as pertaining 

to the time step, cell size and number of simulation particles per collision cell.   

c. Hypersonic flow over a blunt flat plate, thus verifying the current implementation 

of: hypersonic injection, inelastic collisions, non-diffuse reflection, and surface 

sampling of pressure. 

d. Free jet expansion of argon, thus verifying the current implementation of: 

molecular flux injection with upstream-inlet free boundaries, downstream-vacuum 

free boundaries, mass flow rate, number flux calculations, as well as the code’s 

ability to capture the dynamics of internal to external expansion flow. 

e. Subsonic Poiseuille flow, thus verifying: subsonic inflow and subsonic outflow 

f. Subsonic Couette flow, thus verifying: moving diffuse wall boundaries and 

subsonic inflow without a pressure gradient. 

3. Apply U-DSMC to explore physical phenomena at the micro and nano scale: 

a. Characterize the effects of aspect ratio, Knudsen number, Reynolds number, and 

speed ratio on gaseous expansion from micro and nano tubes and micro and nano 

nozzles. 

b. Guide the design of a micropitot probe intended for use in analyzing rarefied 

gaseous microjet flow.  

c. Investigate and bound the increasing statistical fluctuation that occurs with 

decreasing scale in DSMC. 

 



 18

 The presentation of this work is organized in the following manner.  In Chapter 2, the 

theory underlying the DSMC methodology, as pertaining to its implementation on unstructured 

Delaunay grids, is presented in detail for each aforementioned code modification or addition.  In 

Chapter 3, the validation cases used to verify the proper execution of each underlying algorithm 

are shown.  Chapter 3 also contains a study which quantifies the approximate order-of-error for 

the current implementation.  In chapter 4 the U-DSMC code is applied to several case studies.  

The first two studies presented are investigations of the effects of aspect ratio, Knudsen number, 

Reynolds number, speed ratio and scale on the expansion of gas from micro and nano tubes and 

micro and nano nozzles.  The third case presented is a study of a developmental micropitot probe 

immersed in the plume of a microjet.  The last case presented is a study which quantifies the 

increase in statistical fluctuations in U-DSMC results with decreasing scale.  Conclusions and 

recommendations for future work are contained in Chapter 5. 
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2.  U-DSMC METHODOLOGY AND IMPLEMENTATION 

 The underlying algorithms of the DSMC method have been developed over time by a 

number of investigators.  Although the fundamentals have been laid out by Bird (1994) the 

details of numerous algorithms have undergone modification in order to incorporate new 

algorithmic developments.  In this work, the particulars of each algorithm have in many cases 

undergone significant alterations in order to be implemented on unstructured Delaunay grids.  

This chapter describes the computational mathematical methods and implementation of each 

fundamental DSMC algorithm in the current version of U-DSMC. 

 

2.1  U-DSMC Program Flowchart 

 The overall structure of the U-DSMC implementation and its supporting systems is 

shown in Figure 3.  The U-DSMC flow solver requires three input files.  The three required file 

types are a general input file, a boundary conditions file and a grid file.  The general input file 

contains information on gas composition, collision model specification, time step selection, and 

output file timing.  The boundary conditions file contains required information specifying which 

boundary conditions to apply at each boundary surface.  The grid file contains the solver required 

data for the unstructured grid, such as node location, face and cell connectivity and face attribute 

listings.  The general and boundary condition input files are generated as text files by the U-

DSMC user.  The grid file is typically generated using either the unstructured Voronoi-Delaunay 

grid generation program of Kovalev (2000) referred to as U-GridGen or a module which 

interfaces with COMSOL.  Details of the grid generations methods available to U-DSMC users 

are given in Section 2.3.   
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Figure 3.  Underlying processes of U-DSMC. 

 

2.2  Macroscopic Properties of Gas Mixtures 

 The DSMC method of Bird is stochastic by nature.  However the numeric evolution of 

particle states by the underlying stochastic relations result in distribution functions equivalent to 
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those which would be obtained by solving the nonlinear Boltzmann equation.  For a gas mixture 

the Boltzmann equation has the following form (Bird, 1994):  
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where ( ),p pn n t= r  is the number density at a given position and time for species p  which 

ranges from 1 to the total number of species in the mixture ( )s , c  is the mean velocity and mF  is 

the resulting acceleration due to an external force (external force per unit mass).  The right hand 

side of the equation is commonly referred to as the collision term.  The velocity distribution 

function for species p  is given as pf  and represents the distribution of particle velocities within 

a small volume of velocity space, d dudvdwc = , fitting (Bird, 1994): 

 dN / N dn / n fdc= =  (2.2) 
 

where nfdc  is the number of particles per unit volume with a velocity between c  and dc c+ .  

The velocity distribution is normalized function and thus the integration over all velocity space 

follows: 

 1fd N / Nc
∞

−∞

= =∫  (2.3) 

    

 Due to the high-dimensionality of the Boltzmann equation great difficulty is encountered 

when trying to obtain analytical solutions even for simple geometries.  Complex geometric 

problems render analytical solution virtually impossible thus dictating the need for numerical 

methods.   
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 Within the underlying structure of the DSMC method are a number of approximations 

derived from basic kinetic theory.  As a result the progression of the algorithm mimics the 

progression of a Boltzmann-like solution.  In fact the particle motion methodology follows the 

collisionless form of the Boltzmann equation.  From this basis similarity it has been concluded 

by Wagner (1992) that the DSMC methodology of Bird is found to converge to a Boltzmann-like 

equation in the limit of infinite simulation particles.  Although the DSMC method is not a direct 

numerical solution of the Boltzmann equation the results from DSMC simulations have been 

found to converge to those of the Boltzmann formulation when proper modeling considerations 

are made.  Accordingly, the DSMC method can be used to model gas flows with results for 

macroscopic quantities, such as those described below, matching closely to those which would 

be obtained using the Boltzmann equation. 

 The primary objective of most U-DSMC studies is to obtain the macroscopic parameters 

of the flow.  These parameters are given as moments of the distribution function.  Within the 

work of Chapman and Cowling (1939) the moments of the distribution function are defined in 

relation to the average velocity of the gas mixture, often referred to as the mass-average mean 

velocity. The mass-average mean velocity is given by: 
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having components 0 0 0{ , , }u v w , where the species mean velocity is given by: 
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Using the mass-average mean as the reference velocity, the thermal velocity of a particle of 

species p  is given as: 

 0
'
p pc c c= −  (2.6) 

 
The physically significant moments of the species distribution function, when using the mass-

average drift velocity as the reference velocity, are then calculated following: 

 

Species diffusion velocity: 

 0
'

p p pC c c c= = −  (2.7) 

 
Mixture number density: 
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Species translational temperature: 
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Mixture translational temperature: 
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Species scalar pressure: 
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Mixture scalar pressure: 

 21
3

'p nmc=  (2.12) 

Species pressure tensor: 

 p p p p pn m ' 'p c c=  (2.13) 
Mixture pressure tensor: 

 nm ' 'p c c=  (2.14) 
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Species stress tensor: 

 ( )' '
p ij ,p p i,p j ,p ij pnm c c p≡ = − −τ δτ  (2.15) 

Mixture stress tensor: 

 ( )' '
ij i j ijnmcc p≡ = − −τ δτ  (2.16) 

Species heat flux vector: 

 21
2

'
p p p p pn m c 'q c=  (2.17) 

Mixture heat flux vector: 
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2

'nmc 'q c=  (2.18) 

 
where a quantity Q  is given by the mean value principle (Bird, 1994) following: 
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 In non-equilibrium gases it is often convenient to define separate ‘species specific’ values 

in order to determine the degree of non-equilibrium as well as determine the macroscopic 

parameters applicable to each species individually.  Using the species drift velocity 0,pc  as the 

reference velocity the single species thermal velocity is given as: 

 0
''
p p ,p p pc c c c c= − = −  (2.20) 

 

Accordingly, the physically significant moments of the species distribution function, when using 

the species drift velocity as the reference velocity, are then calculated following: 

 
Species-specific translational temperature: 
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Species-specific scalar pressure: 

 21
3

ss ''
p p p pp n m c=  (2.22) 

 
Species-specific pressure tensor: 

 ss ' '
p p p p pn m ' 'p c c=  (2.23) 

Species-specific stress tensor: 

 ( )ss ss '' '' ss
p ij ,p p i,p j ,p ij pnm c c pτ δ≡ = − −τ  (2.24) 

Species-specific heat flux vector: 

 21
2

ss '' '
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2.3  Surface Generation, Grid Generation and Grid Data Structure 

 Within the current implementation of the U-DSMC method local data structuring is 

required in order to carry out the base processes such as particle motion, particle collisions, and 

the sampling of macroscopic parameters.  In order to define the data structure in standard DSMC 

codes a background grid is utilized.  An unstructured Delaunay grid formed of tetrahedral 

elements is used in this code for the background structure in order to define the localization of 

key data components.  The use of unstructured tetrahedral meshes enables effective control of 

nodal density throughout the computational domain in addition to the geometric flexibility 

needed to capture arbitrary flow geometries.  The flow chart shown in Figure 4 illustrates the 

three basic procedures that may be used in order to create an unstructured grid file which is 

formatted for use with U-DSMC. 
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Figure 4.  Methods of generating an unstructured grid for use with U-DSMC. 

 

2.3.1  Surface Triangulation Methods  

 There are two methods of generating a suitable surface triangulation for use with the 

unstructured grid generation code U-GridGen.  The first method utilizes a surface generation 

program written by Hammel (2002) referred to as U-SurfGen, while the second method makes 

use of the unstructured surface triangulation that bounds the tetrahedral mesh generated by the 

commercial software package COMSOL. 

 The first method utilized for generating a surface triangulation was developed by 

Kovalev (2000) and modified by Hammel (2002) into the current implementation of U-SurfGen.  

U-SurfGen was developed to handle axially symmetric objects as well as geometries that are 

definable by bi-linear elements.  Two-dimensional topologies are constructed from the definition 

of control points which are connected by lines, arcs or parabolas.  For axially symmetric 

geometries the topology generated from the control points are then tiled about the center axis 

analytically resulting in high-quality axisymmetric surfaces.  Unfortunately, the program is 

restricted to full rotations and thus does not allow the user to capitalize on the symmetry of the 

axially symmetric flow domain.  Bi-linear objects are created one planar face at a time.  

Examples of surface triangulations generated by U-SurfGen are shown in Figure 5.  Although the 
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resulting surfaces from U-SurfGen are of sufficient quality, the process of defining the geometry 

is not end-user friendly.  Additionally, the allowable node spacing is not sufficiently controllable 

as needed for complex flow fields. 

   

 

Figure 5.  Examples of surface triangulations generated using the U-SurfGen surface generator. 

 

 The second method for generating a surface triangulation is accomplished using 

commercial software from COMSOL.  Although COMSOL is a multiphysics package and is not 

a dedicated mesh generator, the geometric interface with CAD-type geometry entry is easy to use 

and the built in meshing parameters allow for precise control of the surface node spacing.  

Furthermore, the adaptation of a commercial software package allows for maximum geometric 

flexibility as compared to locally developed surface generation methods.  The interface between 

COMSOL and U-GridGen is achieved through the use of two post processing scripts, given in 

Appendix B.  These script files have been developed to import the resulting surface triangulation 

from COMSOL and format it for use in the U-GridGen mesh generator.  The combination of the 

commercial surface generation and the U-GridGen mesh generator allows for extensive 

geometric modeling capabilities utilizing high-quality grids with acceptable generation times for 
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grids with less than 100,000 cells.  Examples of surface triangulations generated by the 

COMSOL method are shown in Figure 6. 

 

Figure 6.  Examples of surface triangulations generated using COMSOL as a surface generator. 

 

2.3.2  Unstructured Delaunay Grid Generation Methods and Grid Data Structure   

 There are two methods of generating an unstructured grid suitable for use with the U-

DSMC code.  The first method utilizes a grid generation program developed by Kovalev (2000) 

and modified by Hammel (2002), while the second method makes use of the unstructured mesh 

that underlies the commercial finite element software package COMSOL. 

 The first method of generating an unstructured Delaunay grid is by use of a mesh 

generation program developed by Kovalev (2000) called U-GridGen.  Within the confines of this 

program the Delaunay grids are generated from a surface triangulation of the domain geometry 

using a formulation based on Watson’s incremental node insertion method (Watson, 1981).  The 

method of Watson is based on properties of Delaunay triangulations.  The fundamental property 

of the Delaunay triangulation, as pertaining to grid quality, is that the nodes of all mesh elements 

will lie on a respective circumsphere, as illustrated in Figure 7.  Further, the maximum radius of 
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the circumsphere may be chosen in order to improve the overall mesh quality.  The underlying 

sizing function, which is defined by the surface triangulation, controls the node enrichment of the 

interior region of the computational domain.  The method of Borouchaki and George (1997) has 

been extended to three dimensions and is used for interior node enrichment.  Following this 

algorithm the characteristic distance between nodes is specified for each grid node.  During the 

insertion algorithm every existing edge of the mesh is divided into a number of new prospective 

nodes such that the resulting edge segments vary gradually in length across the domain satisfying 

the surface triangulation spacing values. 

 

 

Figure 7.  Delaunay elements lying within their respective circumsphere. 

 

 Prospective node insertion is filtered in order to satisfy the spacing criteria and ensure 

mesh quality.  Nodes falling too close to existing nodes are not inserted, nor are nodes that 

worsen the local mesh quality.  The measure of local mesh element quality is the dihedral angle.  

A user specified minimum is maintained as the cutoff value during insertion.  The node is 

rejected if its insertion is calculated to create a tetrahedral element with a dihedral angle of less 

than the minimum.  The nodes that are not rejected are inserted by means of Watson’s algorithm.  
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Nodes are inserted until all spacing parameters are satisfied.  The end result is a grid of high 

quality, however the success rate of the implementation of these algorithms is not acceptable for 

grids with more than 100,000 cells. 

 The second method for generating an unstructured three dimensional grid for use with the 

U-DSMC program is by using a tetrahedral Delaunay mesh generated by the commercial 

software package COMSOL.  Although COMSOL is a multiphysics package and is not a 

dedicated mesh generator, the geometric interface allows for ease-of-use and the built in meshing 

parameters allow for precise control of the node spacing throughout the entirety of the flow 

domain.  Furthermore, the adaptation of a commercial software package allows for significant 

decreases in grid generation time as well as a significant increase in the success rate incurred 

when generating grids with more than 100,000 cells, as compared to the U-GridGen program. 

 The interface between the COMSOL grid and the U-DSMC flow solver is developed by 

means of a short post processing script, given in Appendix B, which has been developed to 

reformat the COMSOL grid structure into a form acceptable for use in the U-DSMC solver.  The 

combination of the commercial grid generator and the post processing script allows for extensive 

geometric modeling capabilities with increased cell-spacing control, reduced grid generation 

time, and an increased grid generation success rate.  Examples of grids generated by the 

COMSOL method and U-Gridgen are shown in Figure 8. 
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(a) 

 

(b) 

(c) (d) 

Figure 8.  Examples of the geometric flexibility of the two grid generation methods, (a) and (b) generated 

using the U-GridGen mesh generation program, (c) and (d) generated using COMSOL.  

 

 For ease of computational manipulation the grid parameters are stored in a data structure 

that maintains node position, node connectivity, face sharing and cell nearest-neighbor 

information.  The current data structure ensures minimal searching during particle motion and 

further lends itself to ease of parallelization.  The tetrahedral cells are used in the code to define 

the volume of space where particle collisions are carried out.  As such, a data structure that 

contains the particles local to each cell is maintained with indexing available to the cell’s nodal, 

facial, and cell neighbor information.  Since the grid cells are used for collision sampling the size 
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of the cell is maintained at a fraction of the local mean free path.  Macroscopic flow sampling 

occurs over each cell and then a volume-weighted average is calculated at each nodal location.  

Indexing is maintained to ensure minimal computation during the sampling routine.  

 

2.4  Particle Loading 

 At the onset of certain DSMC computations it is beneficial to insert an initial field of 

simulation particles.  The population of the computational domain at the start of the simulation is 

typically referred to as loading.  Loading is most often used as a means of reducing the 

computation time required to reach steady state.  In U-DSMC, loading is typically carried out by 

placing the particles in randomly chosen positions fitting a specified overall velocity distribution 

function for each species.  The standard velocity distribution function applied is the equilibrium 

or Maxwellian distribution: 

 ( )
3

2 '' 2
0, 3/ 2 exp

β
β

π
= −p

p p pf c  (2.26) 

 

where ( ){ }1/ 2
/ 2p p B pm k Tβ =  and ''

p
c  is the species-specific thermal velocity.  From the user 

defined global values of species number density ( pn ), temperature ( pT ), and drift velocity ( 0,pc ), 

noting that 0
''
p p ,p= −c c c , the distribution function above can be sampled to determine the 

molecular velocity components of each loaded particle.  Details on sampling from a distribution 

function are given in Appendix A.   

 The unstructured nature of the computational domain in U-DSMC creates the need for 

localized loading.  As such the global parameters for each species are used to determine the 

number of particles to load in each cell.  This number is calculated from the specified number 
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density, the chosen computation weight, and the volume of the cell.  Once this number is 

obtained, the random determination of the particle’s position is carried out using a local vector 

coordinate system based on cell edges and corresponding limiting edge lengths.  An illustration 

of the relevant geometry used in determining the particle’s position is given in Figure 9.   

 

 

Figure 9.  Particle position calculation geometry used in the loading algorithm. 

 

 A position vector, P , is generated from three sub-vectors of random length which run 

along three cell edges following: 

 

 = + +P a b c  (2.27) 
 

where the sub-vectors are determined from: 
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where 1R , 2R  and 3R  are random fractions between 0 and 1.  From vector P  the particle position 

can be determined in Cartesian coordinates by  

  

 1np
i i ir r P= +  (2.29) 

 

where p
ir  is the particle’s position and 1n

ir  is node one’s position.  It should be noted that even 

simple calculations like those above can become ill suited for highly skewed cells.  Therefore 

cell quality is of the utmost importance.  Molecular velocity components are then calculated 

according to standard distribution sampling methods given in Appendix A. 

 

2.5  Particle Injection 

 Flow boundaries are handled in U-DSMC by the application of molecular fluxes at 

specified surfaces.  The introduction of particles into the computational domain is referred to as 

injection.  Following the derivation by Bird (1994) the inward number flux pN�  of species p  can 

be defined by integration of the distribution function:  
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Figure 10.  Local coordinate system for the analysis of molecular flux 

  

 For a general case, the flux of particles across a surface may occur such that the species 

mean flow velocity ,0 pc  is inclined at an angle θ  to the unit normal vector e  of a given surface, 

as shown in Figure 10.  In an arbitrary coordinate system, such that the mean flow velocity lies in 

the x-y plane and the surface element lies in the y-z plane with the x-axis aligned in the negative 

e  direction, the particle velocity can be expressed in terms of the species mean flow velocity and 

the species-specific thermal molecular velocity, denoted by '' , as follows: 
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From these expressions the inward number flux can be written as  
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If the integration is carried out the resulting inward number flux is found to be 

 ( )( ) ( ) ( )( ){ }( )2 2exp cos cos 1 erf cos
2

p
p p p p

p

n
N S S S� θ π θ θ

β π
= − + +  (2.33) 

 

where 0, β=p p pS c  is the species-specific molecular speed ratio.  The value of �
pN  can be 

interpreted as the number of gas molecules of species p  crossing a unit surface element per unit 

time with species mean flow velocity , p0c . Thus the number of simulation particles to be added 

to the domain in a given time step, ∆ pN , is given by  

 p
p s

N

N
N A

F

�
∆ τ=  (2.34) 

 

where NF  is the particle weight, τ  is the time step and sA  is the area of the surface element. 

 The number of injected particles is calculated for each face comprising the injection 

surface using the local values of species temperature, number density, and drift velocity.  Since 

the surface elements of an unstructured domain are also unstructured, the calculation of the 

injection position is carried out using localized coordinates generated from the face edges, as 

shown in Figure 11.   
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Figure 11.  Particle position calculation geometry used in the injection algorithm  

 

 The determination of the particle’s injection position is a random process bounded by the 

face edge lengths, very similar to that of loading.  Using two face edges, a random component 

vector, R , is generated from sub-vectors determined from that of the respective defining edge: 

 1/ 2
1

1/ 2
2 1
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R R

= +

= ⋅
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b B
 (2.35) 

 

where 1R  and 2R  are a random fractions between 0 and 1.  From these vectors the intersection 

point for injection can be determined and the particle’s position can be specified in Cartesian 

coordinates by 1 Rnp
i i ir r= + , where p

ir  is the particle’s position and 1n
ir  is node one’s position.  

Once the particle’s position has been determined the molecular velocity components are sampled 

from a drifting Maxwellian distribution by the standard methods outlined in Bird (1994) which 

are given in Appendix A.   
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2.5.1  Hypersonic Free Stream 

 One application of particle injection is that of modeling a hypersonic free stream.  This 

occurs regularly in applications of U-DSMC to high-speed, high-altitude aircraft studies.  The 

implementation of a hypersonic free stream follows the basis injection algorithm outlined above.  

In hypersonic injection the inlet flow parameters are assumed to be independent of the 

downstream flow conditions.  Following this assumption, the parameters of the species specific 

free stream temperature, number density and drift velocity are chosen by the user and fixed 

throughout the simulation duration.  The chosen values are applied across the entirety of the free 

stream surface, which is defined by the user using a face attribute tag in the gird generation 

process.  The chosen parameters are then used for local determination of the species specific 

injection values, including the number of particles to inject, as well as the local temperature and 

drift velocity parameters to use when sampling the corresponding local distribution function.    

The initial implementation of this algorithm into the U-DSMC code was carried out by Hammel 

(2002).  Algorithmic corrections and geometric generalizations were carried out in the current 

work to extend the validity and applicability of the previous implementation.  

 
2.5.2  Subsonic Inflow 

 In subsonic internal or external flow scenarios the inlet or free stream parameters are 

affected by the downstream flow field.  As such, the local values of pressure, temperature, 

number density and drift velocity can be functions of the downstream flow.  Therefore the 

application of injection boundary conditions for subsonic flow cannot follow the fixed-parameter 

implementation used in the hypersonic free stream boundary condition.  Instead, the boundary 

condition parameters must vary throughout the simulation time in a manner that captures the 

effect of the downstream flow field development on the upstream boundary.  In order to meet 
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this need the implicit subsonic inlet boundary condition of Wang and Li (2004), which is based 

on the method of characteristics, has been incorporated into the U-DSMC code in the current 

work. 

 The implicit subsonic inlet methodology uses a first-order extrapolation based on the 

theory of characteristics to determine the local inlet drift velocity in the flow-parallel direction.  

Following the method of characteristics, the inlet pressure ( )inp  and temperature ( )inT  are 

independent of the downstream flow and are thus fixed throughout the simulation.  If the 

boundary surface is chosen such that the flow-parallel direction is aligned with the x-axis then a 

general first order implicit extrapolation for the local velocity, such as that used in Fang and Liou 

(2002), may be written as: 

 ( ) =
k k

in jj
u u  (2.36) 

 

where the subscript in  references the inlet value for the boundary condition, the subscript j  

denotes the local face number and the superscript k  denotes values computed at the -thk  time 

step.  However this simple implicit algorithm has been shown to require significant 

computational time to reach convergence and furthermore has been found to incur difficulties 

when the wall temperatures of internal flows are significantly different from the flow 

temperature.  To correct these limitations the method of Wang and Li (2004) was derived from 

the method of characteristics and has been shown to improve convergence as well as handle 

significant inlet temperature gradients.  Following the method of Wang and Li a general first-

order extrapolation of the local stream-wise velocity for flow aligned with the x-axis may be 

written as: 
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where ( )kin j
u  is the calculated value for the local drift velocity for boundary face j , inp  is the 

user-specified inlet pressure (constant throughout the simulation), jp , jρ  and ju  are the cell 

values of pressure, density and x-direction drift velocity for the sample cell corresponding to 

boundary face j  and ja  is the local speed of sound for the sample cell corresponding to 

boundary face j , which can be written as 
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It should be noted that the extension of this method for multi-species gases is straight forward 

and would be accomplished by simply adding a secondary subscript to the relations given above.  

The x-axis aligned sampling of the local drift velocity using the method of characteristics based 

relations given above is shown schematically in Figure 12. 

 

 

Figure 12.  Illustration of x-axis aligned sampling of the local drift velocity using the method of characteristics 

on Cartesian grids. 
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 Extension of the method of Wang and Li to U-DSMC has been carried out in this work.  

Several algorithmic modifications are required in order to handle the arbitrary orientation of the 

boundary faces with the stream direction that can occur within the confines of the unstructured 

grids.  In order to generalize the method of Wang and Li, the relations given above have been 

mapped to local face-fitted coordinates.  The implementation of the method of Wang and Li in 

U-DSMC also features additional boundary specification flexibility as well as an averaging 

technique used to limit fluctuations in the calculated cell values.  

 

 

Figure 13.  Illustration of surface normal aligned sampling of the local drift velocity based on the method of 

characteristics on unstructured grids. 

 

   For pressure driven flows within the unstructured subsonic inflow implementation a 

number of assumptions must be made.  The first two assumptions define the orientation between 

the local face normal and the pressure gradient and are most applicable to internal flow.  The 

relevant geometry is shown in Figure 13.  The assumptions require that the pressure in the 

inward face normal direction is decreasing while the pressure along the surface plane is constant.  
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This is true for most pressure driven flow provided the injection surface is aligned properly.  The 

pressure gradient-face normal alignment assumptions are given as:  

 0
∂

<
∂ ||

p
n

 (2.39) 

 0
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∂
=

∂
p
n

 (2.40) 

 

 In order to satisfy these assumptions the user must define the inflow boundary surface 

such that it is perpendicular to the local pressure gradient.  Due to the extensive geometric 

flexibility and ease-of-use of the modified grid generation methods, this restriction still yields 

expansive geometric flexibility and is not viewed as a significant limitation to the U-DSMC 

subsonic modeling capabilities.  The second assumption follows from the first and is in regards 

to alignment of species-specific drift velocity with respect to the local surface normal vector.  

Following the gradient alignment assumption, a resulting restriction on the species-specific drift 

velocity orientation is: 

 0 0
||

,p,inn c⋅ >  (2.41) 
 
 
This assumption is a direct physical result of the pressure gradient alignment assumption.  The 

final assumption underlying the implementation of unstructured subsonic inflow is with regards 

to the species-specific drift velocity component perpendicular to the local surface normal.  It is 

assumed that this component of the drift is zero and as such the perpendicular components of the 

injected particle’s velocity may be sampled directly from a non-drifting Maxwellian distribution.  

The assumption can be written as: 

  
 0 0,p,inc⊥ =  (2.42) 
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It should be noted that for subsonic inflow boundaries applied in regions with zero pressure 

gradient the assumptions above are not needed.   

 The current implementation of the unstructured subsonic inflow boundary condition 

consists of the following steps applied to each species at each face composing the inlet surface: 

Step 1.  Determine the local face normal vector n  from: 

 12 13

12 13

×
=

×|| ||
r r

n
r r

 (2.43) 

 

where 12r  is the vector from node 1 to node 2 and 13r  is the vector from node 1 to node 3, as 

shown in Figure 14.  Once calculated, the face normal is stored for future use.    

 

 

 
Figure 14.  Geometry utilized in the calculation of local face normal vectors. 

 

Step 2.  Determine the sample cell for the current face, calculated once per face and stored.  First 

calculate the sampling location from the user defined species-specific values for in ,pp , in,pT  and 

coef ,pλ .  Where coef ,pλ  is a user specified input used to control the location of the sampling cell 

within the domain with respect to the current face location.  The value of coef ,pλ  can be adjusted 

in order to reduce the convergence time of the subsonic inflow boundaries or to adjust the 
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placement of the sample cell when localized grid spacing at the inlet surface is significantly 

smaller than required to obtain satisfactory downstream data.  The calculation of the sample cell 

location c
jx  for face j  follows:  

 c f
j j coef ,p px x nλ λ= +  (2.44) 

where  
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The relevant geometry is shown in Figure 15 for a general single-species case where the sample 

cell may not be the face cell.  Once the sample cell location is calculated the sample cell number 

is determined by looping over the local cells and calculating if the sample location resides within 

each cell.   

 

 
 

Figure 15.  General geometry used to determine the sample cell for face j. 

 

Step 3.  During each iteration, the required species-specific parameters within the sample cell for 

face j  are calculated following: 
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where jV  is the volume of the current sample cell, NF  is the number of real molecules 

represented by each simulated particle and pm  is the mass for the species under consideration.  It 

should be noted that the calculations in this step are carried out one species at a time. 

 

Step 4.  Following the calculations of the sample cell parameters, the inlet species-specific drift 

velocity is calculated using corrections from the method of characteristics for pressure driven 

flows.  In order to reduce oscillations in the inlet species-specific drift velocity that may be 

caused by statistical fluctuations in the sample cell data, a weighted average is applied when 

calculating the drift velocity for the face following: 
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Step 5.  Once all the species-specific drift velocity for the face is determined the number of 

particles to be injected is calculated using Eq. (2.34).  The corresponding velocity components of 

each injected particle can then be sampled from the velocity distribution functions following the 

methods described in Appendix A using in,p in,p B in,pn p / k T= , in,pT  and ( )k||
in,p j
c . 

 

2.5.3  Subsonic Outflow 

 In subsonic internal or external flow scenarios the upstream conditions are affected by the 

downstream flow field.  As such, detailed capture of both the upstream inlet boundary conditions 

and downstream exit boundary conditions must be obtained to successfully model subsonic flow.  

Therefore the application of injection boundary conditions for subsonic flow cannot follow the 

‘vacuum’ implementation that is typically utilized in most hypersonic DSMC studies conducted 

to date.  Instead, the boundary condition parameters must vary throughout the simulation time in 

a manner that captures the effect of the upstream flow field development on the downstream 

boundary.  In order to meet this need the downstream pressure condition correction equations 

proposed by Nance et al (1997) and extended by Liou and Fang (2000) which employ 

Whitfield’s characteristic formulation (Whitfield and Janus, 1984) have been incorporated into 

the U-DSMC code in the current work. 
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 Following the methodology outlined in Liou and Fang (2000), the correction equations of 

Nance et al (1997) for the downstream boundary of a flow aligned in the x-direction of a 

Cartesian grid system are given as: 
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which can also be written in terms of an exit number density as, 
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with the exit velocities given by, 
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and the exit temperature following, 
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where the subscript e  corresponds to exit boundary condition values, the subscript j  denotes 

values obtained from the sample cell corresponding to boundary face j  and the superscript k  

denotes values computed at the -thk  time step.  The sample cell values of density and pressure 

are obtained from: 
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where k
jn  and k

jT  are obtained through sampling the particles in the sample cell.  Figure 16 

illustrates the geometric relations of the correction equations as pertaining to structured grids. 

 

 

Figure 16.  Illustration of x-axis aligned sampling of the local exit drift velocity using the method of 

characteristics on Cartesian grids. 

 

 Extension of the method of Nance et al (1997) to unstructured DSMC has been carried 

out in this work.  Algorithmic modifications for handling the arbitrary orientation of the 

boundary faces with respect to the stream direction within the confines of the unstructured grid 

have been made.  In order to generalize the implementation of Liou and Fang (2000), the 

relations given above have been mapped to local face-fitted coordinates.  Similarly to the 

unstructured subsonic inflow boundary conditions, the implementation of the method of Nance et 

al (1997) in U-DSMC also features additional boundary specification flexibility as well as an 

averaging technique used to limit fluctuations in the calculated cell values.  A schematic 

illustrating the parameters involved in the unstructured subsonic outflow boundary are shown in 

Figure 17.  
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Figure 17.  Illustration of surface normal aligned sampling of the local exit drift velocity based on the method 

of characteristics as applied to unstructured grids. 

 

 For pressure driven flows the unstructured subsonic outflow implementation follows the 

same assumptions underlying the subsonic inflow boundary condition.  Namely, the pressure 

gradient alignment and the corresponding species-specific drift velocity components must 

follow:  
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 The current implementation of the unstructured subsonic outflow boundary condition 

consists of the following steps applied to each species over each face composing the inlet 

surface: 

Step 1.  Determine the local face normal vector n  from: 

 12 13
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 (2.66) 

 

where 12r  is the vector from node 1 to node 2 and 13r  is the vector from node 1 to node 3.  Once 

calculated, the face normal is stored for future use. 

Step 2.  Determine the sample cell for the current face, calculated once per face and stored.  First 

calculate the sampling location from the user defined values for species-specific exit pressure 

e,pp , an initial guess of the exit temperature e,pT  and the multiplicative factor coef ,pλ   following:  

 c f
j j coef ,p px x nλ λ= +  (2.67) 

where  
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Once the sample cell location is calculated the sample cell number is determined by looping over 

the local cells and calculating if the sample location resides within each cell.  Once identified, the 

cells number is stored for future access. 

Step 3.  During each iteration, the required species-specific parameters within the sample cell for 

face j  are calculated following: 
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 (2.69) 
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where jV  is the volume of the current sample cell, NF  is the number of real molecules 

represented by each simulated particle and pm  is the mass of the species p  currently under 

consideration.  Once again, it should be noted that the calculations in this step are carried out one 

species at a time. 

Step 4.  Following the calculations of the sample cell parameters, the outlet species-mean 

velocity ( )k||
e,p j
c , number density k

e,pn  and temperature k
e,pT  are calculated, using corrections from 

the theory of characteristics for pressure driven flow.  In order to reduce oscillations in the outlet 

drift velocity that may be caused by statistical fluctuations in the sample cell data weighted 

averages are applied following: 
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1 3
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k k* AVE|| || ||
,p ,p ,pj j j
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Step 5.  Once the exit drift velocity, number density and temperature for the face are determined 

the number of particles to be injected is calculated using Eq. (2.34).  The corresponding velocity 

components of each injected particle can then be sampled from the velocity distribution 

functions following the methods described in Appendix A using k
e,pn , k

e,pT  and ( )k||
e,p j
c . 

 

2.6  Particle Motion  

 In a DSMC simulation the state of the system is given by the positions and velocities of 

the particles.  These values can be specified as vectors, { },i ir c , typically referred to collectively 

as phase space.  Within a DSMC simulation the motion and collisions of particles are uncoupled, 

and as such the particle motion can be linked with the collisionless Boltzmann equation:   

 ( ) ( ) ( ) 0m

nf nf nf
t

∂ ∂ ∂
+ + =

∂ ∂ ∂
c F

r c
i i  (2.80) 

 

from which the equations of motion are simply given by:  

 
dm
dt

=
c F  (2.81) 

 

 d
dt

=
r c  (2.82) 
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Within a U-DSMC simulation, particle motion is carried out using a particle tracing technique.  

During motion, particles are assumed to move free of the influence of all other particles.  A 

general description of particle motion within a cell can be given by 0 τ= +r r c , where r  is the 

new position vector, 0r  is the old position vector, c  is the particle’s velocity vector and τ  is the 

time step and thus the elapsed time for motion. 

 When working with particle methods on unstructured tetrahedral meshes the governing 

algorithms of motion become a bit more complex.  Although motion within the cell is relatively 

straight forward, capturing the transit of a particle from one cell to another requires special 

attention.  Identifying the cell in which a particle currently resides as well as calculating the cell 

to which a particle will move into is an extremely computationally intensive procedure on 

unstructured grids.  The current method used for capturing the motion of particles within the U-

DSMC code is based upon the successive-neighbor methodology of Lohner and Ambrosiano 

(1990) and has been implemented in successive increments by Hammel (2002) and Spirkin 

(2006).  Recently, within this work, minor modifications to supporting subroutines have been 

required in order to extend the geometric generality of the successive-neighbor algorithm. 

 The overall structure of the particle motion routine can be broken into a number of 

principle steps. Those steps are outlined below along with relevant details into the underlying 

implementation. 

Step 1.  The algorithm loops over all cells and each particle in each cell.  For each particle, the 

new position of the particle, assuming free motion without surface interaction, is calculated 

following:  

 f i τ= +r r c  (2.83) 

 



 54

Step 2.  The tracing algorithm considers each face of the current cell in turn in order to 

determine the probability that the particle of interest has left the current cell.  In order to reduce 

the computational requirements of particle tracking a series of pre-tests are calculated to 

determine if the current face may have been crossed.   

Test 1.  The first pre-test is a simple assessment to determine if the new particle position is in the 

cell inward or cell outward direction with respect to the current face.  Figure 18 illustrates the 

geometry involved as well as the possible scenarios.  Using the face normal n , along with its 

predetermined orientation, the projection of the particle’s ray of motion projr  can be generated 

following: 

 1= iproj fr r n  (2.84) 

 

If 0>projr  then the particle has not crossed the plane of the face and therefore intersection is not 

possible.  If 0<projr  then intersection is possible.  However, due to the nature of the tetrahedral 

cells it is also possible that the intersection occurred through a neighboring face.  Therefore a 

second test must be performed. 
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Figure 18.  Geometry utilized to determine cell inward or cell outward directionality with respect to the 

current face. 

 

Test 2.  The second test is applied to cases that pass the first test.  In order to determine the likely 

hood that the particle intersected a face a volume-weighted function is generated for each face 

following: 
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A schematic illustrating the geometric physicality of the volume-weighted function is shown in 

Figure 19.  The volume-weighted functions are evaluated with regard to the maximum value of 

1.  If 1 2 3 4 1+ + + <N N N N  then the particle continues to reside within the current cell.  

However, if 1 2 3 4 1+ + + >N N N N  then the particle has left the cell.  From an analysis of face 

values of N  the face which is intersected can be determined.  If it has been determined that the 

current particle has left the cell than the details of the cell transit must be obtained in order to 

trace the particle’s new position and cell owner. 

 

 

Figure 19.  Illustration of the geometric physicality of the volume-weighted functions. 

 

Step 3.  If it has been determined that the particle has exited the current cell then the details of 

the respective face transit must be determined.  To determine the details of the transit the 

intersection of a particle with one of the cell-edge planes is expressed as a system of linear 

equations.  The parameters of these equations are the particle’s position and velocity and also the 

geometric information regarding two edges of the cell face plane.  From these equations the time 
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of intersection along with the point of intersection with a given face can be extracted.  The sketch 

shown in Figure 20 illustrates the geometry involved.  

 As shown in Figure 20, the intersection of a particle with initial position 0r  and velocity 

c  with face ABC is given by:  

 0 1 2t α α+ ∆ = +r c AB AC  (2.89) 
 

where AB  and AC  are the vectors from point A to point B and from point A to point C 

respectively, t∆  is the time elapsed in moving from the initial point to the point of intersection 

with the plane defined by points A, B, and C.  The parameters 1α  and 2α  define the point of 

intersection in the skewed coordinate system of face ABC.   

 

 

Figure 20.  Particle-face intersection geometry used in particle motion algorithm. 

 
 
 Once a solution has been reached the values of t∆ ,  1α , and 2α  are analyzed.  If  t∆  is 

negative then intersection with face ABC does not occur.  If 1α  or 2α  are less than zero or 

greater than unity then the intersection with the plane defined by A, B, and C occurs outside of 
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face ABC.  Since the linear system of equations may be ill-conditioned if the cells and 

corresponding faces are poorly shaped, great care must be taken when constructing a 

computational mesh.  If the faces are poorly shaped, usually defined by a very small dihedral 

angle, the solution of the linear equations become unstable and particles can get ‘lost’, which is a 

term applied when a particle is without a cell owner.  If the particle does intersect a face, then the 

cell ownership of the particle is updated accordingly as is the new particle location.   

 

2.7  Collisions  

 The modeling of collisions in U-DSMC captures the collision effects seen in the right 

hand side of the Boltzmann equation:  

 ( ) ( )
4

* *
,

1 0

d d
s

p p p q p q p q r pq pq q
q

n f n n f f f f c
t

π

σ
+∞

= −∞

∂
= − Ω

∂ ∑ ∫ ∫ T c  (2.90) 

  

The collision procedure is applied in every cell of the computational domain independently. The 

procedure assumes a uniform distribution of particles throughout the cell volume. The complex 

collision processes that would occur between real gas molecules are substituted by stochastic 

interactions of model particles, where collision pairs are chosen irregardless of their positions 

inside the cell.  Furthermore, the collision does not change the position vector of either particle.   

 When two real molecules collide in nature the resultant collision mechanics are complex 

functions of an interaction potential whose roots lie in the quantum mechanics realm 

(Bergemann and Boyd, 1994, Haas et al, 1994).  Although the modeling of each individual 

collision would thus require complex algorithms to capture the underlying physics the stochastic 

nature of the DSMC method allows for a significantly simplified phenomenological approach 

that treats the bulk effect of the underlying quantum relations.  Within this simplified 
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methodology two key collision divisions exist, namely elastic collisions and inelastic collisions.  

The applicability of each is dependent upon the molecular model chosen and the implementation 

of each is described in the following discussions. 

 

2.7.1  Elastic Collisions: Mathematical Model 

 In elastic binary collisions both linear momentum and energy must be conserved, 

therefore: 
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where m  is the particle mass and c  is the particle velocity, the subscripts denote particles 1 and 

2, the superscript * denotes post-collision values.  In the center of mass reference frame, which is 

moving with velocity cmc  , the particle velocities are given by: 
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with, 

 1 2

1 2

m m
m m

+
=

+
1 2

cm

c cc  (2.93) 

and 

 = −r 1 2c c c  (2.94) 

 

where rc  is the relative velocity between the two particles.  The collision occurs in the plane 

defined by the two velocities and the collision dynamics can be characterized by the schematic 

shown in Figure 21. 
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Figure 21.  Illustration of the impact parameters used in binary collisions (adapted from Bird, 1994). 

  

 Applying a local coordinate system, { }', ', 'x y z  that aligns the 'x -axis with the pre-

collision relative velocity rc , the components of the post-collision relative velocity ∗
rc  become: 
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 (2.95) 

 

where χ  is the scattering angle and ε  is the angle between the collision-plane and the absolute 

x-y plane.   

 Once the post-collision relative velocity is obtained in the local coordinate system a 

transformation can be carried out to obtain the post-collision relative velocity components in the 

absolute reference frame following the determination of χ  and ε .  Therefore, apart from the 

translational velocities of the two particles undergoing collision, just two parameters, called the 

impact parameters, are required to completely specify a binary elastic collision.   

 The first parameter required is the distance of closest approach, b , as seen in Figure 21.  

The second parameter required is the angle ε .  These two parameters can be related to the 

scattering angle χ  by means of a differential cross section dσ Ω  through the following relations: 
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 d b db dσ Ω = ε  (2.96) 
where, 

 sind d dΩ = χ χ ε  (2.97) 
yielding: 

 
sin

σ
χ χ

=
b db

d
. (2.98) 

 

From these relations the total collision cross-section σT  is defined as: 

 
4

0 0

2
π π

σ σ Ω π σ χ χ= =∫ ∫T d sin d  (2.99) 

 

The formulation of σT  is dependant upon the molecular model, however, once a model is chosen 

the integral above is specified.  Upon specification the two collision parameters can be defined 

and the post-collision velocities can be calculated.  Within the current implementation molecular 

cross sections may be modeled as either Hard Sphere (HS) or Variable Hard Sphere (VHS).  

Details for determining σT  for the two collision models implemented in U-DSMC are given 

below. 

  In general the total collision cross section of an arbitrary collision is given as: 

 2
T d=σ π  (2.100) 

 

where d  is the distance between the centers of the molecules’ effective potential sphere.  A 

drawing illustrating the interaction distance is given in Figure 22. 
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Figure 22.  Illustration of the interaction distance d  (adapted from Bird, 1994)  

   

 Within the confines of the hard sphere model the complex nature of the true molecular 

interaction potential is simplified such that the interactive force becomes effective at a distance 

equal to the average of the two molecules’ effective diameters: 

 1 2
122

d dd d+
= =  (2.101) 

 

from which the parameter b  can be calculated as, 

 ( )sin sin12 12 2Ab d d χ= θ = . (2.102) 

giving,  

 ( )sin1 1
2 212

db dd = χχ  (2.103) 

yielding: 
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d
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From the relation for σ  given above it can be seen that the collision cross section for a hard 

sphere molecule is independent of χ  and thus the scattering that occurs is isotropic in the center 
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of mass reference frame.  This in turn indicates that all scattering angles are equally probable.  

The total collision cross section for the hard sphere model is given by:   

 
4

2
12

0

π

σ σ Ω π= =∫T d d  (2.105) 

 

which is used in calculating the number of collisions that occur in each cell for each time step as 

discussed below. 

 Although the hard sphere model benefits from the ease of calculation afforded by its 

isotropic scattering, the hard sphere model does not capture the translational energy dependence 

of the collision cross section.  To compensate for this factor Bird (1981) developed the variable 

hard sphere model.  Within the confines of the variable hard sphere model the collision cross 

section is taken to be a function of the relative velocity of the collision partners as well as the 

temperature exponent of the coefficient of viscosity.  The effective diameter is given as: 
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which yields, 
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2.7.2  Elastic Collisions:  U-DSMC Implementation 

 The implementation of the elastic collision algorithm within U-DSMC follows the 

standard methods of Bird (1994).  The Delaunay tetrahedral cells are taken as the collision 

volume and as such local cell spacing is restricted to a fraction of the local mean free path.  
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Furthermore, due to the current implementation of macroscopic sampling, the Delaunay cells can 

be viewed as collision-sub cells of a larger macroscopic sampling cell.  Further details on this 

principle are given in Section 2.9.  The collision algorithm is applied one cell at a time until all 

cells are treated.  Figure 23 illustrates the relevant collision volume used in U-DSMC.  The 

current implementation of collisions in U-DSMC has been developed in the current work by 

means of a rewrite of the implementation of Hammel (2002).  Due to the condition of the past 

implementation upon inheritance by the current investigator, only three supporting subroutines 

from the previous implementation could be reused. 

 

 

Figure 23.  Delaunay cell used as collision volume in U-DSMC. 

 

 The implementation of collisions in the U-DSMC code follows the unstructured 

Delaunay no-time counter collision sampling scheme (UD-NTC) which is an extraction of the 

original no-time counter scheme of Bird (1994).  The steps involved in calculating elastic 

collisions using the UD-NTC method are applied to every Delaunay cell in the computational 

domain and follow the algorithm given below: 
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Step 1.  Calculate the number of particles in the Delaunay cell by cycling over the cell’s particle 

stack: 

 
1

1
stack _last

c
i

N
=

= ∑  (2.109) 

 

Step 2.  Evaluate ( )T r MAX
cσ  for the current cell.  This calculation is done once at initialization 

and then the value of ( )T r MAX
cσ  is updated on a cell by cell basis as larger values of ( )T r MAX

cσ  

are encountered in Step 4.  The ( )T r MAX
cσ  term captures the maximum value, when applied to all 

particles in the cell, of the total collision cross section and the relative velocity of a collision pair.   

Step 3.  Calculate the number of collision pairs for the current cell.  Under the UD-NTC 

methodology the number of collision pairs per Delaunay cell per time step is given by:  

 ( ){ }1
2pairs c N T r MAX

cell

N N NF c
V

= τ σ  (2.110) 

 

where pairsN  is the number of pairs selected from the cell which will be considered for collision, 

cellV  is the volume of the Delaunay cell, cN  is the current number of computational particles in 

the Delaunay cell, N  is the time-averaged number of computational particles in the Delaunay 

cell, τ  is the time step (time elapsed per iteration), and NF  is the number of real particles 

represented by each simulation particle (particle weight).   

Step 4.  Generate pairsN  of collision partners from the cell’s particle stack and evaluate the 

probability of collision between each pair.  The pairs of particles that will total pairsN  are chosen 

at random from the list of particles in the cell.  For each collision pair, the value of T rcσ  is 

determined using: 
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 rc || ||= −c c1 2  (2.112) 

 

If the value of T rcσ  for the pair is greater than ( )T r MAX
cσ  for the current cell then the cell value 

of ( )T r MAX
cσ  is updated.  The probability of any chosen pair colliding is given as: 
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T r
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σ

σ
 (2.113) 

 

Using collP , each collision pair is chosen to undergo a collision according to the acceptance-

rejection algorithm, which is outlined in detail in Appendix A.  If the pair is selected to undergo 

collision then the algorithm moves to the next step, otherwise, a new pair is chosen and the 

algorithm loops over Step 4 again. 

Step 5.  Calculate the post-collision velocities of the collision pair selected in Step 4.  

Calculation of the post-collision velocities is a multi-step process and differs slightly for each 

molecular model.  However, an outline of the post-collision velocity calculation can be formed 

which applies to both models.  The steps of the general algorithm of post-collision velocity 

calculation follow: 

• Calculate the pre-collision relative velocity using: 

 = −r 1 2c c c  (2.114) 

 

• Calculate the center of mass velocity by: 
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• Generate the collision deflection angle (or scattering angle), χ . 

• Generate the angle between the collision-plane and the absolute x-y plane, ε . 

• Calculate the post-collision velocities in the localized coordinate system using: 

 

, '

, '

, '

cos( )

sin( )cos( )

sin( )sin( )

r x r

r y r

r z rel

c c

c c

c v

∗

∗

∗

= χ

= χ ε

= χ ε

 (2.116) 

 

• Then map the resulting post-collision velocities to global Cartesian coordinates using: 
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2.7.3  Inelastic Collisions: Mathematical Model 

 In inelastic collisions internal energy can be transferred from one particle to another or 

from one mode to another.  The exchange of rotational energy is captured in U-DSMC using the 

Larsen-Borgnakke model (Borgnakke and Larsen, 1975).  The current implementation of 

rotational energy exchange is a reformulation of the previous implementation of Hammel (2002).  

As with elastic collisions, the condition of the algorithm inherited by the current investigator was 

well beyond minor debugging and as such the current implementation of rotational energy 

exchange is an algorithmic rewrite of the past formulation.  However, the current implementation 

of rotational energy exchange is built upon the data structures of the previous implementation 

and follows the Larsen-Borgnakke method as specified in Hammel (2002).   
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 Following the Larsen-Borgnakke methodology, as developed in Bird (1994), a fraction of 

the simulated collisions are treated as inelastic where the post collision internal and translational 

energies are set by sampling the Larsen-Borgnakke distribution.  The fraction of inelastic 

collisions calculated is determined from tabulated internal energy relaxation rates which vary 

according to molecular composition.  Within the methodology of Bird (1994), if a collision is 

chosen to be modeled as inelastic then the total energy of all available degrees of freedom for 

both molecules is reassigned between both the translational and internal modes by sampling from 

the equilibrium distributions of each mode with the appropriate total energy.  The corresponding 

distribution function for application of the Larsen-Borgnakke method is 
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 (2.118) 

 

where  aΞ  denotes a group of modes with energy available for redistribution and bΞ  denotes the 

remaining available modes and aE  is the portion of the total energy to be redistributed to group 

aΞ  while bE  is the portion of the total energy to be reserved for redistributed to group bΞ .  The 

application of this method is carried out by sampling the distribution above for each mode 

available at the total collision energy in a serial fashion and will be discuss in detail in the 

following section.   

 

2.7.4  Inelastic Collisions: U-DSMC Implementation 

 Within the confines of a U-DSMC simulation the user has the option of specifying the 

modeling approach used to capture collision dynamics of the gas under study.  The options 

currently available to a U-DSMC user are: fully elastic using the hard sphere model, inelastic 

using the hard sphere model, fully elastic using the variable hard sphere model or inelastic using 
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the variable hard sphere model.  If either inelastic modeling technique is chosen then an internal 

energy exchange algorithm is activated within the elastic collision algorithm outline in the 

previous section.  As noted earlier, in keeping with the Larsen-Borgnakke methodology only a 

fraction of the simulated collisions are treated as inelastic where the post collision internal and 

translational energies are modified.  Therefore, the combined elastic-inelastic algorithm benefits 

from improved data structuring as well as decreased computation time. 

 The comprehensive algorithm used to model inelastic collisions is given below.  Added 

emphasis is given to the portions that are inelastic specific.  Further details on the elastic portions 

of the algorithm can be found in the previous section.  The calculation of inelastic collisions in 

the current implementation of U-DSMC is governed by the following steps as applied to each 

Delaunay cell within the computational domain: 

Step 1.  Calculate cell values of  cN , ( )T r MAX
cσ . 

Step 2. Calculate the number of collision pairs for the cell following: 

 ( ){ }1
2pairs c N T r MAX
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N N NF c
V

= τ σ  (2.119) 

 

Step 3.  Generate pairsN  of collision partners from the cell’s particle stack and evaluate the 

probability of collision between each pair using: 
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by applying the acceptance-rejection algorithm, which is outlined in detail in Appendix A. 
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 Step 4.  Determine if the first particle, q , of the accepted collision pair undergoes an inelastic 

collision.  The probability of an inelastic collision is determined using the reciprocal of the 

particle’s rotational relaxation number qΛ : 

 
1

inel
q

P =
Λ

 (2.121) 

 
The acceptance-rejection algorithm is then applied to determine if the particle undergoes an 

inelastic collision.  If the particle is chosen to undergo internal energy exchange, then several 

additional steps are required. 

1. The sum of the average degrees of freedom Ξ  is calculated following: 

 ( )12 1 25 2 2 2rot, rot,/ / /= − + +Ξ ω ζ ζ  (2.122) 

 
  

2. The total available energy for the Larsen-Borgnakke redistribution of internal energy is 

calculated: 

 12 1 2c tr , rot, rot,E E E E= + +  (2.123) 

 

3. Each individual available internal mode is then serially selected to undergo energy 

exchange.  At each internal mode selection, the mode under consideration aΞ  is 

subtracted from the total modes leaving bΞ  modes. 

4. The ratio of the post-collision internal energy to the pre-collision available energy is 

calculated using: 

 11 b/a

a b

E
R

E E
= −

+
Ξ  (2.124) 

  

 where R  is a random fraction between 0 and 1, for a case of a single internal mode with 

two internal degrees of freedom or by sampling: 
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5. From the ratio generated in the previous step, the ratio of the probability of the generated 

value aE  to the maximum probability is evaluated following: 
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6. The acceptance-rejection algorithm is then applied using the probability 
aE maxP / P .  If 

the value of aE  is accepted then the selected energy is redistributed to the degrees of 

freedom of the current mode.  If the value of aE  is rejected then the process returns to 

sub-step 4 and a new value of aE  is generated until an acceptable value is obtained.  

Upon redistribution of an acceptable aE  the available energy remaining for redistribution 

to the remaining modes is updated and the remaining modes are considered in turn.  

Step 5.  Following the redistribution of energy to the available internal modes the post-collision 

relative velocity is calculated using the redistributed translational energy trE , the pre-collision 

relative velocity rc  and the pre-collision relative speed rc  following: 
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From which the post-collision molecular velocities can be determined from: 
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2.8  Solid Surface Modeling  

 In a DSMC simulation the particles are free to interact with the solid surfaces that form 

the domain boundaries.  Within the confines of most problems of engineering significance the 

gaseous flow interacts with solid surfaces composed of a variety of materials.  Generally 

speaking, the gas typically has either a stagnation temperature or a static temperature that differs 

from the temperature of the solid surface.  As a result the distribution function of the incident 

molecules will typically differ from that of the reflected molecules.  Furthermore, the energy of a 

molecule relative to the surface will in general be different from the corresponding energy of the 

molecule after it has reflected from the surface, as such the gas-surface collisions are typically 

inelastic.  The models for gas-surface interaction developed to date are primarily 

phenomenological and as such their applicability varies with the nature of the surface and the 

magnitude of the molecule’s energy relative to the surface.  The most widely used surface 

models are diffuse and specular reflection as well as generalizations derived from these models.  

Descriptions of these models as well as two variations of these models that have been 

implemented into U-DSMC in this work are given below.  

 

2.8.1  Specular Reflection 

 Two models for the interaction of a stationary equilibrium gas with a solid surface were 

proposed by Maxwell (1879), the first of which was specular reflection.  Specular reflection is a 

model for a perfectly elastic collision between a gas molecule and a solid surface.  Under the 

specular reflection model, an impinging molecule’s surface-normal velocity component is 
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reversed during the collision while the surface-tangential velocity components remain 

unchanged: 

 
|| ||

*
*

⊥ ⊥=−

=

c c
c c

 (2.129) 

 

As a consequence the angle between the molecule’s incident velocity and the surface, θi , is equal 

to the angle between the surface and the molecule’s reflected velocity, θr , this is shown 

schematically in Figure 24.   

 

 

Figure 24.  Illustration of specular reflection for a single particle.  

 

Due to the nature of the specular reflection model, a specularly reflecting surface is functionally 

identical to a plane of symmetry, as such it is utilized to model a symmetry plane as needed 

throughout this work.  From a bulk gas standpoint, a stream of particles that is incident to a 

specular surface will reflect as a coherent stream with the surface-normal component of the 

stream’s directionality reversed.  This effect is illustrated in Figure 25 below.  The original 

implementation of the specular model in U-DSMC was carried out in Hammel (2002) and 

remains largely unchanged in the current implementation.  
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Figure 25.  Illustration of the bulk effect of specular reflection for a stream of particles. 

 

 

2.8.2  Diffuse Reflection 

 The second model proposed by Maxwell (1879) is that of diffuse reflection.  In diffuse 

reflection a gas-surface interaction is modeled as an absorption-reemission process where the 

reemitted state of the particle is determined from sampling an equilibrium distribution with a 

temperature corresponding to that of the solid surface.  From a bulk gas standpoint, a stream of 

particles that is incident to a diffuse surface will leave the surface in such a manner as to be 

equivalent to having the stream pass through the surface while molecules flux across the surface 

from a distribution equal to a stationary gas with a temperature equal to the wall temperature.  

The bulk effect of diffuse reflection is illustrated in Figure 26 below.  Further details regarding 

implementation of a diffuse model are given in the following section.  The initial implementation 

of the diffuse model in U-DSMC was carried out in Hammel (2002) and has undergone minor 

algorithmic correction in the current work.  
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Figure 26.  Illustration of the bulk effect of diffuse reflection for a stream of particles. 

 

 

2.8.3  Non-diffuse Reflection 

 In many applications of engineering significance the gaseous interaction with the solid 

surface does not fit either the purely specular or fully diffuse models.  Therefore, an extension 

model has been developed in the current work which combines the specular and diffuse models 

to form a model that achieves partial accommodation of energy and momentum.  This model is 

typically referred to as the non-diffuse model (Bird, 1994).  Within the non-diffuse model the 

user has control over the percentage of gas-surface interactions that are modeled as fully diffuse.  

The control parameter is the diffuse fraction ε , which determines the percentage of interactions 

that are treated as undergoing fully diffuse reflection.  It should be noted that although the non-

diffuse model does extend the phenomenological surface handling capabilities of U-DSMC the 

model is simplistic in nature and should be used to enhance surface approximations for problems 

of engineering significance only.  The non-diffuse model lacks detailed capturing of the 

underlying potential interactions required to accurately scrutinize the meticulous balance which 

occurs during real gas-surface interactions.  However, the non-diffuse model is a valid extension 
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of the phenomenological treatment of gas-surface interactions in U-DSMC and as such the 

current implementation will be outline below. 

 The process of modeling gas surface interactions in U-DSMC is composed of several 

steps.  The first step is to determine if the particle’s motion is such that a solid surface interaction 

occurs.  Treatment of this consideration is handled in the particle tracing algorithm which was 

presented in Section 2.6.  If the particle does reflect off a solid surface then the face of reflection 

is used to determine what type of reflection model is applied.  Tabulation of the surface model 

applied at each face is handled using a surface label referred to as a face attribute.  During the 

grid generation process the user specifies the face attribute to be applied to each flow boundary.  

This information is then linked to the boundary conditions applied.  From this data the surface 

model along with its supporting parameters are extracted during gas-surface interactions. 

 Once the surface model for the current face-particle pair has been determined the 

interaction is mapped to face-fitted coordinates.  Using the face normal n  and the unit vector 1a  

of the face edge 12r  a localized coordinate system can be generated as shown in Figure 27.   

 

 

Figure 27.  Face-fitted localized coordinate system used for surface modeling in U-DSMC. 
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 Following the non-diffuse implementation, the next step of the reflection model is to 

determine if the particle will under go diffuse reflection or specular reflection.  To determine the 

model used a random fraction R  is generated and a selection algorithm is applied.  If R > ε  

then the interaction is modeled as specular.  Following the specular reflection model the 

particle’s velocity components are updated following: 

 
 =

||

*
||c c  (2.130) 

 

 ⊥ ⊥=*c c  (2.131) 
    

 If R ≤ ε  then the interaction is modeled as fully diffuse.  Following the diffuse reflection 

model the particle’s velocity components are generated from sampling from the equilibrium 

distribution function corresponding to the wall temperature.  The algorithm used for generating 

the local face-fitted velocity components is outlined below. 

 

Step 1.  Using the wall temperature wT  and the mass m  for the current particle, the inverse of 

the most probable thermal speed β  is calculated following: 

 
2

=
B w

m
k T

β  (2.132) 

 

Step 2.  The velocity components perpendicular to the face normal are generated by sampling the 

product of two non-drifting Maxwellian distributions yielding a distribution of the form: 
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which can be sampled using the methods given in Appendix A.  In order to generate 
1a
c and 

2a
c  

the following relations can be used: 

 
1
=*

a r cos θc  (2.134) 

 
 

2
=*

a r sin θc  (2.135) 

 

For which values of r  and θ  can be generated utilizing separate calls to a random number 

generator, used to obtain a random fraction R : 

 2= Rθ π  (2.136) 
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yielding: 
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Step 3.  The velocity component parallel to the face normal is generated by sampling a biased 

non-drifting Maxwellian distribution of the form: 

 ( ){ }2 2

1 2
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β

β
π
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utilizing the selection-rejection method outlined in Appendix A.  Once a suitable face-normal 

component has been generated using the acceptance-rejection method the three components of 

the particle’s new velocity are mapped back into Cartesian coordinates and the cycle is 

continued.   
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2.8.4  Moving Walls 

 In many problems of engineering significance the solid surfaces are moving in a manner 

that cannot be mapped through the transference to a fluid-moving reference frame.  In order to 

allow for modeling cases where the wall motion must be considered directly, such as Couette 

flow, a model for capturing scalar Cartesian wall motion has been added to U-DSMC with in this 

work.  The current implementation of wall motion is interfaced within the structure of the non-

diffuse model.  The effect of the motion of the solid surface during gas-surface interactions is 

handled by means of a local reference frame for the surface face being impinged.  Within the 

local reference frame the surface interaction is modeled using the non-diffuse reflection 

algorithm outlined above.  Upon completion of the stationary gas-surface interaction, with 

respect to the local reference frame, the reference frame’s motion is added to the particle’s 

resultant post-interaction velocities following: 

 ( ) ( )= +* *
wabs loc

c c c  (2.141) 

 

2.9  Sampling Macroscopic Parameters 

 In U-DSMC simulations, macroscopic flow properties such as density, pressure, 

temperature and velocity must be sampled.  Within the current U-DSMC implementation, 

instantaneous cell based averages are calculated according to the following definitions (Bird, 

1994):  
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Nodal volume-weighted instantaneous averages are generated from the Delaunay cell based 

values following:  
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where the summation occurs over all cells to which the node is attached, ϒ  is the property of 

interest, and V  is the cell volume.  A schematic illustrating the Delaunay structure and nodal 

volume-weighted averaging is shown in Figure 28.   

 

 

Figure 28.  Illustration of the Delaunay structure used in nodal volume-weighted averaging. 
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The advantages of nodal averaging are a smoother parameter field, decreased statistical 

fluctuations and simplified data output formatting.  The disadvantages of nodal averaging are the 

increased computations and the decrease in the minimum cell length requirement needed for 

flow gradient resolution.  The benefits have been found to outweigh the detriments.  The 

underlying implementation of macroscopic sampling in U-DSMC was developed in Hammel 

(2002).  Addition of scalar pressure calculations as well as output file labeling required for 

ensemble averaging has been added to the base implementation within the current effort.  

 

2.10  Flux Capturing Through Interior or Free Boundary Surfaces  

 When modeling gaseous flows it is often advantageous to capture the number flux, mass 

flux or distribution functions at arbitrary points within the flow domain.  Flux capturing within 

the confines of unstructured grids has been developed and implemented into the U-DSMC code 

within the course of the current effort.  The implementation of flux capturing is built upon the 

specification of a flux surface during the grid generation process.  Within the confines of the 

modified grid generation techniques the user may place a sampling surface in any location within 

the flow field with arbitrary size, shape or orientation.  The flux capturing algorithm requires 

only that the surface of interest be specified, through a face attribute label, as either a free 

boundary or an internal face.  The flux capturing algorithm allows the user to obtain data outputs 

for any combination of number flux, mass flux or distribution function data for each species in 

the flow field.  A general schematic of the geometry utilized in flux capturing is shown in Figure 

29. 
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Figure 29.  General schematic of a flux capturing surface imbedded in a flow domain. 

 

 The species specific number flux 
qN

Γ  through a specified surface is calculated by 

tabulating the number of molecules of species q  to pass through the specified surface over an 

interval t∆  through the total area of the specified surface following: 
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 In order to keep the implementation geometrically flexible the area of the specified surface is 

calculated from a summation over all faces, with surface area s,jA , that feature the specified face 

attribute.  

 The species specific mass flux 
qm

Γ  through a specified surface is calculated by tabulating 

the mass of species q  molecules which pass through the specified surface over an interval t∆  

through the total area of the specified surface.  The mass flux calculation takes the form: 

 1

1

q

q q

q N
i

m q N faces

s,j
j

m F
m

t A

η

Γ Γ
∆

=

=

= =
∑

∑
 (2.149) 

 



 83

 The velocity distribution function of the particles of species q  that pass through the 

specified surface can be formed from a tabulation of the three Cartesian velocity components of 

each particle of species q  that transverses the specified surface.  Each component of velocity is 

tabulated for each species following: 

 q
xV ( ( i), t) uη ∆ =  (2.150) 

 
 q

yV ( ( i), t) vη ∆ =  (2.151) 

 
 q

zV ( ( i), t) wη ∆ =  (2.152) 
 
where ( i)η  is the data location of the current particle sample and t∆  is the sampling duration 

over which the velocity components are tabulated.  After the duration t∆  has passed the 

sampled velocity components are written to an output file for post-processing into the respective 

velocity distribution functions.  The duration t∆  is a user specified value.  Tabulated 

distribution function data is cleared from memory after each t∆  duration and a new data set is 

collected.  

 
 
2.11  Surface Transport Properties 

 In many problems of engineering significance the resulting forces and heat transfer of 

impinging particles on a surface must be quantified.  As such, calculations of the pressure, shear 

and heat flux at the solid surface boundaries have been added to U-DSMC 

 The pressure and shear stress on the solid surface is determined from the momentum 

exchange of the impinging particles following:  

 

 
( ) ( )*

j N jj
j

surf
s

m F
p

A t

⊥ ⊥
⎡ ⎤−⎣ ⎦

=
∆

∑ c c
 (2.153) 



 84

 
 

 
( ) ( )*
|| ||j N j j

j
surf

s

m F

A t
τ

⎡ ⎤−
⎣ ⎦

=
∆

∑ c c
 (2.154) 

 

where jm  is the mass of an impinging particle, NF  is the particle weight of the particle species, 

sA  is the area of the surface element and t∆  is the duration of impingement sampling.  The 

subscripts on the initial and final particle velocities signify directionalities normal, ( )⊥ , and 

tangential, ( )& , to the surface element plane.  The relevant geometry is shown in Figure 30.   

 

 

Figure 30.  Illustration of the parameters used to calculate the pressure and shear stress on a solid surface 

face element. 

 

 In an unstructured computation, care must be taken in determining the normal and 

tangential components of the velocity vectors.  The directionality of the surface normal may be 

constructed from the normalized cross product of two surface element edges.  Once the surface 
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normal vector has been established the normal and tangential components of the particles initial 

and final velocity may be determined from simple vector relations.  The heat transfer to the 

surface is comprised of the effects of the translational energy and internal energy exchange 

between the surface element and impinging particles.  In a general form, the heat flux may be 

written as:  
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From this relation the heat flux to a surface element can be calculated for monatomic and 

polyatomic molecules.  

 From the values of face shear, pressure and heat flux local and global surface coefficients 

may be calculated.  Calculations of both the local and global coefficients have been fully 

implemented in this work utilizing the basis data structure and storage arrays from the work of 

Hammel (2002).  From the face-specific data for pressure jp , in combination with the free 

stream data for pressure ∞p , density ∞ρ  and drift velocity ∞U  the pressure coefficient for the 

current face j  can be calculated as (White, 1999): 
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Similarly, the local skin friction coefficient can be determined from: 

 ( ) 21
2 ∞∞

= j

f j
C

U

τ
ρ

 (2.157) 

 
Likewise the local heat transfer coefficient may be evaluated using: 
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 From the local values of jp , jτ  and jq  global values can be obtained for totp , totτ  and 

totq  following:  
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It should be noted that due to the directionality involved in the shear calculations the vast 

majority of surface geometries of engineering importance possess surfaces with multidirectional 

components of shear which can negate one another.  To aid in the calculation of directional 

forces that are typically desired in engineering applications, the local and total directional forces 

are also calculated in the current U-DSMC implementation using both local coordinates and the 

more general Cartesian force vectors as well.  The calculation of surface forces follows directly 

from first principles and can be written in vector form as: 
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with, 
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 From the total values of totF , totp , totτ  and totq  the global or total values of ( )p totC , ( )f totC , and 

( )h totC  as well as the coefficient of drag ( )D tot
C  and the coefficient of lift ( )L tot

C  can be 

determined following:  
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where charA  is the characteristic area of the body.  By means of the coupling the geometrically 

general implementation of the calculation of gas-solid surface force and energy exchange given 

above and the geometric flexibility and ease of use of the current U-DSMC grid generation 

methods significant advances in rarefied flow modeling over solid bodies has been achieved in 

this work.  One example of the application of U-DSMC to characterize flow effects over a blunt 

body in a rarefied flow can be seen in Marchetti (2006).   
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3.  VALIDATION AND ORDER-OF-ERROR APPROXIMATION 

 The validation and verification of the U-DSMC implementation is achieved through the 

modeling of a number of test cases with comparisons to theoretical formulations and 

experimental data.  Each case presented in this chapter verifies and validates a specific subset of 

U-DSMC modeling capabilities.  Additionally, a basis case has been applied in Section 3.2 in 

order to carry out an approximation of the order of error of the current U-DSMC implementation 

with respect to Delaunay cell size, time step, and the number of simulation particles in each 

Delaunay cell.  

 

3.1  Transitional Heat Transfer Between Parallel Plates 

 The first test case involves one-dimensional heat transfer between two stationary infinite 

plane parallel plates.  A range of Knudsen numbers is simulated and the heat transfer predicted 

by U-DSMC for each is compared to theoretical formulations.  For large Knudsen numbers the 

heat transfer is carried out primarily through molecular transport across the plate separation.  

However, for small Knudsen numbers, in the slip to continuum range, the primary means of heat 

transfer is through energy exchange from molecular collisions.  Therefore, this test case verifies 

the elastic portion of the VHS collision algorithm as well as the diffuse and specular boundary 

conditions, particle motion, and heat transfer sampling.       

 

3.1.1  Geometry and Boundary Conditions 

 The schematic shown in Figure 31 (a) illustrates the test case geometry.  The stationary 

parallel plates are separated by a distance h .  The upper plate is assumed to reflect molecules 

diffusely with complete thermal accommodation to a temperature UT  while the lower plate is 
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also assumed to diffusely reflect molecules but to a temperature LT .  A gas composed of 

Maxwell molecules resides between the plates and has a overall number density of n .  An 

example of the grid structure used in these investigations is shown Figure 31 (b). 

  

 

(a) 
 

(b) 

Figure 31.  Schematic of parallel plate test scenario (a) and an example grid used in simulations (b). 

    

 

3.1.2  Results 

 Three theoretical formulations from Bird (1994) are used to validate the U-DSMC code.  

The first formulation corresponds to the free-molecule limit where h λ� .  The net upward heat 

flux for the free-molecule limit is given as: 

 ( )
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where 1 2 1 2/ /
B U Lp nk T T= , m  is the mass of the gas particles, and Bk  is the Boltzmann constant.  
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 The second formulation is that of continuum heat transfer between parallel plates, and is 

given by: 

 ( )2 2
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with,  
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where refT  is the reference temperature and refd  is the reference diameter for the VHS model.   

 The third formulation corresponds to the transitional regime and is obtained by means of 

the four-moment method: 
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and, 
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 The U-DSMC code was applied to parallel plate heat transfer with 1000KUT = , 

250 KLT = , and 1mh = .  The gas molecule properties are based on that of argon with 

2766 3 10 kgm . −= × , 104 17 10 mrefd . −= × , and 273 KrefT = .  A range of Knudsen numbers 

was investigated by varying the number density between the plates.  The results are shown in 

Figure 32. 
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Figure 32.  Heat transfer between parallel plates in transitional regime. 

 

3.1.3  Conclusions 

 As shown in Figure 32, excellent agreement between the U-DSMC results and the four-

moment solution occurs over the range of Knudsen numbers investigated.  This agreement lends 

confidence to current implementation of particle motion, collisions, wall-interaction, and heat 

transfer calculations.  Due to the wide range of Knudsen numbers modeled, the code was 

required to capture a variety of energy transport processes.  As previously stated, in the free-

molecule range the heat is transferred from the upper plate to the lower plate by individual 

molecular crossings while in the continuum regime the heat is transferred by means of collision-

driven exchange.  In the transitional regime a combination of heat transport phenomena occur.  

Therefore the agreement shown in Figure 32 illustrates the proper implementation of the 

underlying processes in the collision algorithm of U-DSMC.  It should be noted that this test 
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problem exhibits a high degree of sensitivity to cell spacing and thus is an excellent test scenario 

for understanding the relationship between grid spacing and transport phenomena.  Furthermore, 

the simplicity of this test case lends itself well to an order of error approximation and has thus 

been used as such in Section 3.2.  

 

3.2  Order of Error Approximation 

 In order to determine the influence of the cell size, time step and particles per cell on U-

DSMC results an order of error approximation has been carried out.  The case of heat transfer 

between parallel plates is an excellent test case for approximating the order of error associated 

with each key parameter.  For each parameter investigated, a base simulation was performed 

such that the error between the U-DSMC predictions and the 4-moment solution was negligible 

(less than 0.5 %).  From this base parameter set, manipulations of the investigated parameter 

were made whilst the remaining parameters were fixed at their respective optimal values.  The 

test case used for all investigations below corresponded to near continuum parallel plate heat 

transfer with 1mh = , 0 01Kn .= , and a wall temperature ratio of 4 with 1000KUT = . 

 

3.2.1  Effect of Delaunay Cell Size 

 The first parameter investigated is the Delaunay cell spacing.  The maximum cell spacing 

criteria for DSMC is commonly taken as 

 
4 3cl
λ λ

< <  (3.7) 

 

where λ  is the local mean free path and cl  is the collision cell edge length.  However, the effect 

of the cell spacing on the error of the simulation results is worth investigating for U-DSMC, due 
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to its implementation on unstructured grids.  Therefore the error associated with the Delaunay 

cell spacing and U-DSMC results has been quantified.  

   The percent error between the U-DSMC predictions for the heat flux and those of the 

four-moment method are plotted against the normalized cell spacing in Figure 33.  The error is 

calculated as the root-mean-square of the time-averaged U-DSMC results, denoted by , and 

the theoretical value following: 

 ( )24U DSMC Merror q q−= −  (3.8) 
 
 
 

4M

error
%Error

q
=  (3.9) 

 

The normalized cell spacing is simply the ratio of the cell spacing to the mean free path.  It 

should be noted that in the work of Spirkin (2006) the standard deviation of cell edge length in 

grids generated using U-GridGen from the specified value was found to be less than 10% for 

uniform grids.  Therefore a small uncertainty exists for the normalized cell spacing.  In Figure 33 

the percent error is plotted against the nominal normalized cell spacing.  From the linearity of the 

data fit shown in Figure 33, it is clear that the error of the U-DSMC simulations for this case is 

first order with respect to the cell spacing. 
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Figure 33.  Percent error in U-DSMC results as a function of cell spacing. 

 

3.2.2  Effect of Time Step 

 The second parameter under investigation is the time step.  The commonly applied 

criterion for choosing the appropriate time step for DSMC is (Bird,1994): 

 

 

( )
1 1

1 1
c s s

p
p T ,pq r ,pg

p q

n
n c

n

τ τ
ν

σ
= =

< = =
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑
 (3.10) 

 

where cτ  is the mean collision time, ν  is the mean collision rate, and τ  is the simulation time 

step.  However, the order of error associated with the time step must be ascertained for the 

current U-DSMC implementation.  

   The resulting error percentage between the U-DSMC predictions and those of the four-

moment method are plotted against the normalized time step in Figure 34.  Once again the error 

is calculated as the root-mean-square while the normalized time step is the ratio of the time step 
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to the mean collision time.  From the linearity of the data fit in Figure 34 it is clear that the error 

of the U-DSMC simulations for this case is first order with respect to the time step. 
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Figure 34.  Error in U-DSMC results as a function of time step. 

   

3.2.3  Effect of Simulation Particles in each Delaunay Cell 

 The final parameter under investigation is the number of simulation particles in each cell.  

A minimum number of twenty particles per collision cell is typically taken as satisfactory (Bird, 

1994) while a minimum of 100 particles per sample cell is associated with negligible statistical 

fluctuations in macroscopic flow parameters.  To clarify the effect of the number of particles in 

each Delaunay cell, used as the foundation of the current U-DSMC implementation, the order of 

error associated with the number of particles in each cell has been studied.   

 The resulting error between the U-DSMC predictions and those of the four-moment 

method are plotted against the normalized number of particles per cell in Figure 35.  The error is 

calculated as the root-mean-square between the U-DSMC predictions and the theoretical value 

while the normalized number of particles per cell is the ratio of the number of particles per cell to 
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the commonly accepted value of 20 particles per cell.  From the functionality of the data fit in 

Figure 35 it is shown that the error of the U-DSMC simulations for this case is of the order 

1 sim/ N  with respect to the number of particles per cell. 
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Figure 35.  Error as a function of particles per cell for the current U-DSMC implementation. 

 

 

3.2.4  Conclusions 

 From the investigations above the order of error associated with the cell edge length, time 

step and particles per cell have been determined.  For the case of near-continuum heat transfer 

between parallel plates the current U-DSMC implementation exhibits first order error in both 

space and time as seen from the studies of cell spacing and time step size.  However, the near-

continuum parallel plate test case revealed an inverse first order error associated with the number 

of simulation particles in each Delaunay cell.   
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3.3  Hypersonic Flow Over A Flat Plate 

 The second test case validates the ability of the current implementation of U-DSMC to 

model external flows of real gases by means of comparison with experimental data for 

hypersonic flow over a flat plate.  This case also provides an opportunity to test the effectiveness 

of the non-diffuse surface model.  The test case is taken from Allegre et al (1993) and features a 

blunt flat plate immersed in a free-stream flow of nitrogen at two angles of attack.  As such, this 

case requires that collisions are modeled as inelastic and that the rotational modes of the nitrogen 

molecules be properly modeled within U-DSMC.  Furthermore, comparison with experimental 

data offers the opportunity to validate hypersonic free stream boundaries, local pressure and heat 

flux capturing. 

 

3.3.1  Geometry and Boundary Conditions 

 The geometry and boundary conditions are shown in Figure 36.  As seen in Figure 36 (a), 

the plate is oriented parallel to the flow direction when α = 0 degrees and the flow is directed 

toward the top of the plate when α = 10 degrees.  Within the experiment of Allegre et al (1993) 

measurements of heat transfer and pressure were made at various locations along the center line 

of the upper surface of the plate.  The length and width of the plate are both 0.1 m while the plate 

thickness is 0.005 m.  The wall temperature was fixed at 290 K throughout the experiment and 

thus is fixed at this value throughout the U-DSMC simulations.  For the purpose of validation, U-

DSMC simulations have been carried out using the experimental flow conditions and the 

resulting heat transfer and pressure distributions are compared to experimental data.  Hypersonic 

free stream boundaries are applied along the computational domain boundaries.  The plate itself 
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is modeled as both fully diffuse and non-diffuse with ε = 0.8.  An example grid utilized in this 

investigation is shown is shown in Figure 36 (b).  

 

 

(a) 

 

(b) 

Figure 36.  Geometry and boundary conditions for flat plate test case (a) and an example grid from the flat 

plate simulations (b). 

 
 
3.3.2  Results 

 The free stream conditions, as well as the surface temperature of the plate, that have been 

applied in this investigation are tabulated in Table 1.  For each angle of attack, U-DSMC 

simulations were carried out using both fully diffuse and non-diffuse surface models.  The 

nitrogen gas is modeled using the VHS model with active rotational internal degrees of freedom.  

Each simulation was allowed to run until steady state had been reached.  Once this occurred, 

time-averaged sampling was carried out over several hundred iterations. 
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Table 1.  Parameters used in flat plate simulations. 

Re∞  Ma∞  P∞  n∞  T∞  V∞  ∞λ  wallT  

2800 20.2 0.6831 Pa 20 33.716 10 m−× 13.32 K m1503 s
32.35 10 m−×  290 K 

 

 The first data set used for validation comparison is that of local pressure along the surface 

of the plate.  The resulting comparison plot of the pressure along the centerline of the plate is 

shown in Figure 37 (a).  Close inspection of the data reveals a small bias in the U-DSMC results 

for the fully diffuse boundary conditions.  Although the non-diffuse case displays a reduced bias 

the bias is still rather clear.  A bias between experimental results and structured DSMC 

predicitions was also found in the work of Allegre et al (1993) and is credited to the definition of 

pressure used in the experimental measurements.    
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(a) 
(b) 

Figure 37.  Pressure on the plate surface as a function of distance along the centerline (a) and pressure 

contours along the surface of the plate (b). 
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 The flow visualization capabilities as pertaining to surface transport properties can be 

seen in Figure 37 (b).  The pressure distribution along the surface of the plate for a case with α  = 

10 degrees illustrates the high pressure region towards the leading edge of the plate.  The steady 

decrease of the pressure along the plate in the flow direction is also clearly visible.   

   Figure 38 (a) shows the comparison of the U-DSMC predictions for centerline heat flux 

with the experimental measurements.  Excellent agreement is seen between the experimental 

heat transfer measurements and the U-DSMC predictions for both the fully diffuse case as well 

as the non-diffuse case.  The local heat transfer distribution along the plate surface is shown in 

Figure 38 (b). 
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(a) 

 

(b) 

Figure 38.  Heat flux as a function of the distance along the centerline (a) and heat flux contours along the 

surface of the plate (b). 

  

 Further validation of the code is demonstrated in the flow field around the plate for the 

case with α = 10 degrees and fully diffuse modeling of the plate surface.  Figure 39 (a) shows 
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number density contours normalized with respect to the free stream value.  The contours clearly 

illustrate the development of a boundary layer over the top surface of the plate.  The 

development of the boundary layer is a collision based effect and thus is an additional visual 

indication that the current U-DSMC implementation is properly capturing collision based 

momentum exchange.   

 In Figure 39 (b) the x-component velocity contours, as well as velocity stream traces, are 

shown for the case with α = 10 degrees and non-diffuse modeling of the plate surface.  Once 

again, the contours clearly indicate the formation of a boundary layer over the top surface of the 

plate.  The entrance angle of the free stream is clearly indicated in the stream traces.   

 

  

Figure 39.  Flow field contours of normalized number density (a) and x-component velocity (b). 

 

3.3.3  Conclusions 

 The implementation of the inelastic collision algorithm within U-DSMC is verified from 

the good agreement seen between the numerical results and the experimental data.  Furthermore, 

it can be concluded that gas-surface interactions are modeled effectively.  Also, this test case 
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demonstrates that the particle injection algorithm used to model the free stream is implemented 

properly.  Finally, from investigation of the local values of the flow field, verification of the 

macroscopic sampling routines can be concluded.  

 

3.4  Free Jet Expansion 

 The next test case involves U-DSMC modeling of gaseous expansion and comparison 

between numerical results and theoretical formulations.  In this test case the local Knudsen 

number varies from 0.1 to well over 10.  Therefore free jet expansion tests the current 

implementation’s capability of capturing Knudsen regimes spanning from slip to free molecular 

within in a single computational domain.  This case also verifies molecular flux injection with 

upstream-inlet free boundaries, downstream-vacuum free boundaries, mass flow rate and number 

flux calculations. 

 

3.4.1  Geometry and Boundary Conditions 

 The simulation domain, shown in Figure 40, features an internal orifice region and a near 

field plume expansion region.  Particle injection along the inlet of the orifice is modeled as a 

molecular flux of an equilibrium gas.  As such, the pressure, temperature and drift velocity of the 

equilibrium distribution at the boundary are chosen at initialization and enforced throughout the 

simulation.  To aid in the development of a corresponding equilibrium distribution in the region 

of the inlet surface at steady state, any particles that move upstream along the inlet surface are 

removed from the flow.  The walls of the orifice are modeled as fully diffuse and the temperature 

of the wall is chosen to equal that of the inlet distribution.  A hard vacuum was chosen to model 

the boundaries of the plume region.  The working gas in the simulation was argon. 
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(a) 
 

(b) 

Figure 40.  Geometry and boundary conditions for free jet expansion test case (a) and an example grid from 

the free jet simulations (b). 

 

3.4.2  Results 

 The input parameters used in the simulation correspond closely to the limiting values for 

the underlying assumptions of the theoretical formulations and are shown in Table 2.  The inlet 

Knudsen number is based on the VHS formulation given by (Bird, 1994): 

 
( )

1 2
2

1 1

2
/

ref ref

Kn
D Dd n T T

−= = ω

λ

π
 (3.11) 

 

where λ  is the mean free path, D  is the orifice diameter, refd  is the reference diameter of the 

VHS molecule, refT  is the reference temperature for refd , and ω  is the viscosity index for the 

VHS molecule.  The orifice diameter is 100 µm and the aspect ratio is 1.5.  The inlet injection is 

sampled from a distribution with 300KIT = , 23 31.29 10 mIn
−= × , and an axial drift of 

13.5m/sIV = .  Using the VHS based formulation for the Reynolds number (Bird, 1994):  
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( )( )

1 2

2 5 2 7 2
15 /

S
Re

Kn
− −

=
ω ω
π

 (3.12) 

 

where S  is the speed ratio, the resulting inlet Reynolds number for this case is Re 0.5I = .  The 

orifice wall temperature is fixed at 300KWT = .  

 

Table 2.  Selected parameters for the expansion test case. 

In
3(m )−  ( )msIV  ( m)D µ  /L D  Kn  Re  

231.29 10×  13.5 100 1.5 0.1 0.5 
 

 Three formulations are used for verification of the simulation results.  The first relation 

used was developed by Ashkenas and Sherman (1966) from a data fit of their method-of-

characteristics calculations for the inertia-dominated region of free jet expansion:  

[Ashkenas & Sherman] 2

0 2
(R, )

cos
(R, )

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
ρ θ πθ
ρ φ

 (3.13) 

 

where R  is the radial distance from the orifice exit plane and θ  is the angle from the jet axis.  

The parameter φ  was found by Ashkenas and Sherman to be a function of the ratio of specific 

heats (γ ).  The corresponding value of φ  for argon is given as 1.365.  Ashkenas and Sherman 

found this relation accurate to within 3% of the numerical data.  Further validation of this 

formula was given in a study by Dettleff and Plahn (1998) where comparison between the 

Ashkenas and Sherman relation and experiment was found to differ between 10% and 20% for 

0 55o o≤ ≤θ .    

 The second relation used to verify the simulation results is an approximate formula 

developed by Boynton (1967) from a data fit of results derived from computations of rocket 

exhaust-plume flow fields at high altitude.  Boynton’s expression was also used in the work by 
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Dettleff and Plahn (1998) and was found to differ from experiment by roughly 10% to 30% for 

0 55o o≤ ≤θ .  The form of Boynton’s formula used by Dettleff and Plahn (1998) is: 

[Boynton] 
2
1

0 2 lim

(R, )
cos

(R, )
−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

γρ θ πθ
ρ θ

 (3.14) 

 

where R  is the radial distance from the orifice exit plane, θ  is the angle from the jet axis and 

limθ is the Prandtl-Meyer angle. 

 The third relation is a data fit similar to Boynton’s that is used by Albini (1965) and 

Hubbard (1966): 

[Albini & Hubbard] 
1
1

0 2 lim

(R, )
cos

(R, )
−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

γρ θ πθ
ρ θ

 (3.15) 

 

 Figure 41 shows normalized density profiles in the expansion plume.  A value of 

1mmR = , which corresponds to an axial distance from the exit plane ( )x  equal to ten tube 

diameters, was used to sample the angular profile shown in the figure.  The number density 

values at each angle were normalized by the centerline number density 0n .  Excellent agreement 

between the U-DSMC results and the three formulations is found.  Over angular ranges of 

45 45o o− ≤ ≤θ  the difference between the U-DSMC results and Eq. (3.13) varies from 1% to 

8%, while the difference between U-DSMC results and Eq. (3.14) ranges from 3% to 10%.  The 

error for Eq. (3.15) is a bit higher for each point over the same range but is still less than 10%, 

varying from roughly 6% to 10%.   
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Figure 41.  Comparison of U-DSMC results with theoretical formulations at a radial distance of R = 1mm.   

     

 The overall structure of the jet is shown in Figure 42 (a).  The number density contours 

illustrate the development of a fully expanded plume.  In Figure 42 (b) the x-component velocity 

contours are shown for the free jet expansion.  Once again, the contours clearly indicate the full 

expansion of the free jet plume. 

 

3.4.3  Conclusions 

 From the agreement shown above it can be concluded that the current implementation of 

the U-DSMC method properly captures gaseous expansion.  This case verifies the molecular flux 

injection with upstream-inlet free boundaries and the implementation of downstream-vacuum 

free boundaries.  Furthermore, the code demonstrates its capability to handle a wide Knudsen 

range within a single computational domain.  
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Figure 42.  Flow field contours of number density (a) and x-component velocity (b). 

 

3.5  Poiseuille Flow 

 The implementation of subsonic boundaries within the current version of U-DSMC is 

tested by means of two classic flow scenarios.  The first scenario is that of pressure driven 

Poiseuille flow.  Due to the nature of the flow conditions, Poiseuille flow requires proper capture 

of both the pressure inlet as well as the downstream pressure exit.  As a result of the internal flow 

conditions combined with subsonic upstream disturbances, subsonic Poiseuille flow is a 

demanding test case that will require accurate implementation of both the upstream fixed-

pressure, fixed-temperature subsonic boundary condition as well as the downstream fixed-

pressure condition.  Two theoretical formulations are used to verify the U-DSMC handling of 

pressure-driven subsonic flow. 

 

3.5.1  Geometry and Boundary Conditions 

 Poiseuille flow is a pressure-driven flow between two infinite stationary parallel plates.  

As illustrated in Figure 43 (a), the inlet surface is maintained at a fixed pressure ip  and 
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temperature iT  while the outlet is maintained at a fixed pressure ep  with the pressure ratio along 

the flow path given as ratio i ep p / p= .  The plate walls are fixed at a temperature wT .  The 

infinite parallel plates are modeled as a channel with fully diffuse upper and lower walls and the 

side walls are modeled as specularly reflecting thus effectively acting as symmetry planes.  The 

grid used in the simulations in shown in Figure 43 (b).    

 

 

(a) 

 

(b) 

Figure 43.  Geometry and boundary conditions for Poiseuille flow test case (a) and an example grid from the 

Poiseuille flow simulations (b). 

 

3.5.2  Results 

 The computational parameters are shown in Table 3.  The distance between the parallel 

plates was chosen as 1mh = .  The pressure applied at the inlet was chosen to be 5.34 Pa, while 

the outlet pressure has been fixed to 0.534 Pa thus resulting in a pressure ratio across the flow 

path equal to 10ratiop = .  The gas used for the current study is argon.  The upper and lower 

domain boundaries, which correspond to the plate surfaces, are modeled as diffuse with full 

accommodation to the wall temperature of 300KwT = .  The subsonic inlet boundary condition 



 109

was applied at the inlet surface with 1coef =λ  and the time averaged face-normal velocity 

component was recalculated every 10 iteration steps.  The subsonic outlet boundary condition 

was applied at the outlet surface with 1coef =λ  with time averaging also occurring every 10 

iteration steps.  The computational domain is initially loaded with a background field 

corresponding to a pressure of 0.4 Pa.   

 

Table 3.  Flow parameters used in the Poiseuille flow test case. 

( )Paip  ratiop  
in

3(m )−  (m)h  Kn  Re  S  

5.34 10 211.29 10×  1 0.001-0.01 300-900 0.2-0.6 
 

 The progression of the simulation results, as driven by the implementation of the 

subsonic boundary conditions, is of significant importance in determining the viability of U-

DSMC to model subsonic flows.  The flow field development as a function of simulation time is 

shown in Figure 44.  As seen in the left hand side of Figure 44, the development of the x-

component velocity profile is composed of various stages.  Initially the pressure gradient across 

the inlet surface is significant following: 

 
0 4 5 34

5000Nmj ip pdp . .
dx x

− −
= ≈ ≈ −

∆ λ
 (3.16) 

 
 Due to this large localized pressure gradient, the subsonic boundary condition over compensate 

with a large slug of high speed particles.  The slug continues to propagate through the 

computational domain.  By means of inter-molecular collisions, the kinetic energy of the slug 

particles is transferred to thermal energy as the slug front interacts with the loaded background 

field, as shown in the right hand side of Figure 44.  After the initial over-shoot period, the local 

pressure gradient at the inlet begins to settle toward the steady-state solution and as such the 
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injected particles have smaller x-component velocities.  Likewise, the translational temperature 

of the flow field begins to settle toward the steady state value. 

 

  

  

 

 

 

Figure 44.  Flow field development as a function of simulation time for subsonic Poiseuille flow. 

 

 Following the initial transient response of the boundary conditions a steady state solution 

is reached.  Although previous implementations of characteristic-based subsonic boundary 

conditions in structured DSMC have been reported to suffer from significant fluctuations of the 
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sample-based injection parameters, the averaging technique applied in the current 

implementation appears to dampen this fluctuation.   

 

(a) (b) 

 

(c) 

 

(d) 

Figure 45.  Time averaged steady state values of x-component velocity (a), pressure (b), number density (c) 

and translational temperature (d). 

 

 The steady-state flow field is shown in Figure 45.  Figure 45 (a) displays the clear 

development of a velocity profile between the parallel plates.  Similarly, the number density 

contours shown in Figure 45 (c) illustrate the development of a flow structure along the plate 

walls.  Figure 45 (d) shows the contours of translational temperature at steady state.   Once again 

a clear flow structure can be observed.  However, it should be noted that the contours of Figure 

45 (d) depict the thermal temperature of the molecules with respect to the local stream velocity 

therefore the contours do not indicate the development of true thermal boundary layers, as would 

be observed if the wall temperature was significantly different from the inlet stream temperature.  

However, the current implementation of U-DSMC would be excellent tool to use in investigation 

of thermal creep and subsonic heat transfer.   
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   In order to quantitatively validate and verify the subsonic implementation, the velocity 

profile generated from the U-DSMC simulation is compared to analytical formulations based on 

the Navier-Stokes equations with modified velocity-slip boundary conditions at the walls.  For 

fully developed parallel plate flow, such as Poiseuille flow, with low Reynolds numbers, the 

Navier-Stokes equations are simplified to: 

 
2

2

dp u
dx x

∂
=

∂
µ  (3.17) 

 

where dp / dx  is the pressure gradient in the x-direction, µ  is the fluid’s viscosity, and u  is the 

x-component of the local fluid velocity.  The first order slip wall boundary condition is taken 

from Maxwell (Liou and Fang, 2000) and for fully diffuse reflection at the wall can be written 

as: 

 w

du
u u Kn

dy
− =  (3.18) 

 
which is seen to be first order in Kn .  A second-order slip boundary condition was proposed by 

Beskok (1996) and for fully diffuse walls it can be written as: 

 
1w

Kn du
u u Kn

Kn dy
− =

+
 (3.19) 

 
For pressure driven Poiseuille flow, the first-order relation for the functionality of the local x-

component velocity in fully diffuse Poiseuille flow is found to be: 

 
22

1 2st

h dp y y
u Kn

dx h h

⎡ ⎤⎛ ⎞⎟⎢ ⎥⎜= − −⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦µ
 (3.20) 

 

where h  is the distance between the parallel plates.  The second-order functionality of the local 

x-component velocity in fully diffuse Poiseuille flow is given as: 
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22

2 2 1nd

h dp y y Kn
u

dx h h Kn

⎡ ⎤⎛ ⎞⎟⎢ ⎥⎜= − −⎟⎜ ⎟⎢ ⎥⎝ ⎠ +⎣ ⎦µ
 (3.21) 

 

It is clearly seen in both relations that the velocity profile is a function of the local Knudsen 

number as well as the pressure gradient and the distance between the parallel plates.  The 

relations above can be written in non-dimensional form with the introduction of a velocity scale.  

If the centerline velocity at the x-location of interest is taken as the velocity scale then the non-

dimensional velocity profiles become: 
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 (3.23) 

 
 
Comparison of the U-DSMC predicted velocity profiles with those of the relations above are 

shown in Figure 46.  Although the U-DSMC results exhibit minor scatter in the near-wall region 

the excellent agreement between the overall U-DSMC velocity profile and the theoretical 

formulations is shown in Figure 46.  It should be noted that for a Knudsen value as low as 0.002, 

such as the local value corresponding to the location from which the profile was generated, the 

flow does not exhibit noticeable slip and therefore the first and second-order slip models predict 

equivalent velocity profiles. 
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Figure 46.  Comparison of U-DSMC predicted velocity profiles with theoretical formulations. 

 

3.5.3  Conclusions 

 The study of Poiseuille flow using the current implementation of U-DSMC indicates that 

the implementations of subsonic inlet and exit boundary conditions are fully functional.  The 

direct comparison of the velocity profile generated using U-DSMC with theoretical formulations 

displays excellent agreement and thus verifies the accuracy of the current implementation.  

Additionally, the lack of noticeable fluctuation of the sample-based inlet velocity indicates that 

the averaging technique applied in the subsonic algorithms aids in reducing transient fluctuation 

of the boundary injection parameters. 

 

3.6  Couette Flow 

 The second classic flow scenario utilized to verify the subsonic implementation as well as 

the moving wall boundary condition is that of Couette flow.  The flow conditions of Couette 
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flow are suitable for determining the overall performance of the current U-DSMC 

implementation to subsonic flow cases which are not driven by pressure gradients.  As such, a 

theoretical formulation is used to verify the U-DSMC handling of shear-driven subsonic flow. 

 

3.6.1  Geometry and Boundary Conditions 

 Couette flow is a shear-driven flow between two infinite moving parallel plates.  The 

inlet surfaces are maintained at a fixed pressure ip  and temperature iT  while the local stream 

velocity must remain floating.  The plate walls are fixed at a temperature wT . The relevant 

geometry applied to the U-DSMC modeling of Couette flow is shown in Figure 47 (a).  In the 

current test case, both the upper and lower plates are moving with a velocity of wu U=  in the 

positive x-direction for the upper plate and negative x-direction for the lower plate.  The grid 

used in the Couette flow application is shown in Figure 47 (b). 

 

 

 (a) 
 

(b) 

Figure 47.  Geometry and boundary conditions for Couette flow test case (a) and an example grid from the 

Couette simulations (b). 
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3.6.2  Results 

 For validation purposes the velocity profile generated from the U-DSMC simulation are 

compared to analytical formulations based on the Navier-Stokes equations with modified 

velocity-slip boundary conditions at the walls.  For fully diffuse Couette flow with low Reynolds 

numbers, negligible thermal creep effects, slip-velocity at the wall and motion of the top plate 

only, integration of the momentum equation results in (Karniadakis and Beskok, 2000): 

 
1

1 2
u(y) y

Kn
U Kn h∞

⎡ ⎤
= +⎢ ⎥⎢ ⎥+ ⎣ ⎦

 (3.24) 

 

Extension of this relation to the case where both the top and bottom plate are in motion is 

achieved by a simple mapping of the reference frame.  Comparison of the U-DSMC predicted 

velocity profile and the theoretical formulation is shown in Figure 48. 

 

u / U

-1.0 -0.5 0.0 0.5 1.0

y 
/ 

h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N-S: 1st-order in Kn
U-DSMC

 

(a) 

 

 

 

 

(b) 

Figure 48.  Comparison of U-DSMC generated velocity profiles with a theoretical formulation (a) and velocity 

contours between the parallel plates (b) for Couette flow. 
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3.6.3  Conclusions 

 From the excellent agreement shown in Figure 48 it can be concluded that the current 

implementation of U-DSMC is readily applicable to subsonic flow scenarios that are shear-

driven in nature.  Consequently, the implementation of the moving wall boundary condition is 

verified as are the subsonic inlet boundary conditions.  
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4.  U-DSMC Studies of Micro and Nanoflows 

The U-DSMC code is applied to the investigation of four studies in order to investigate 

the nature of rarefied gaseous flows in micro and nano domains.  The first application involves 

the expansion of argon from microtubes into vacuum.  The U-DSMC simulations characterize 

the effects of Knudsen number, Reynolds number, aspect ratio and tube scale on the resulting 

plume.  The second study characterizes the effects of Knudsen number, Reynolds number, speed 

ratio and scale on micro and nano nozzle expansion.  The third application aids the design of a 

microsensor under development which will be used to study microjet expansion.  The last study 

characterizes the effects of decreasing the scale on statistical fluctuations with regards to 

subsonic micro and nano flows. 

 

4.1  Gaseous Expansion from Microtubes 

        The expansion of argon from microtubes into hard vacuum is extensively investigated using 

U-DSMC.  The simulations are used to investigate the effects of Knudsen number, aspect ratio, 

Reynolds number and microtube scale on plume structure as well as the decay of the number 

density along the flow path.  The following work is an extraction of the findings presented in 

Chamberlin and Gatsonis (2007) as well as those presented within a Keynote paper at the Fourth 

International Conference on Nanochannels, Microchannels and Minichannels (Chamberlin and 

Gatsonis, 2006 (b)). 

 

4.1.1  Geometry and Boundary Conditions 

 All cases investigated in this section correspond to the geometry indicated in Figure 49.  

The simulation domains feature the internal microtube region and the near field plume expansion 
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region.  Particle injection along the inlet of the microtube is modeled as a molecular flux of an 

equilibrium gas.  To aid in the development of a corresponding equilibrium distribution in the 

region of the inlet surface at steady state, any particles that move upstream along the inlet surface 

are removed from the flow.  Furthermore, the inlet flow constraints imposed allow for simple 

manipulation of the inlet Knudsen number and Reynolds number as is required for the 

investigation at hand.   

 The walls of the microtube are modeled as fully diffuse and the temperature of the wall is 

chosen to equal that of the inlet distribution.  This yields the most general relation between the 

wall temperature and the stagnation chamber temperature and therefore should lend simplicity to 

experimental validation of the U-DSMC results.   

 

 

(a) 

 

(b) 

Figure 49.  Geometry and boundary conditions applied in microtube study (a) and an example grid used for 

microtube simulations (b). 

 
 The final boundary conditions required for the simulations are the downstream plume 

region boundaries.  To keep the results as general as possible a hard vacuum was chosen to 

model the boundaries of the plume region.  Although a backpressure boundary condition would 



 120

be a better match for experimental investigation, the minimum achievable backpressure for each 

case investigated would vary with each facility.  However, future investigations are planned 

which will study the effect of backpressure on the plume properties.   

 An example grid used in the microtube expansion simulations is shown in Figure 49 (b).  

Although the grid spacing varies for each case a few relations remain constant amongst all cases.  

The first relation that is guaranteed for all grids is that the local cell spacing is always smaller 

than the local mean free path.  This is a widely accepted limit that, when coupled with a properly 

chosen time step and a sufficient number of simulated particles in each cell, ensures physical 

collision pair spacing and thus statistically accurate modeling of transport phenomena (Garcia 

and Wagner, 2000; Hadjiconstantinou, 2000).   The second cell spacing criteria common to all 

grids is sizing bounded by geometric resolution.  In certain cases investigated in this work the 

local mean free path is much larger that the microtube diameter.  When this relation holds the 

cell spacing is set to the maximum size that still leads to a sufficient capturing of the tube 

curvature. 

 It should be noted that for small Reynolds number flows DSMC results exhibit 

significant numerical scatter.  Furthermore statistical uncertainty is known to be large for small 

Reynolds number and speed ratio simulations (Hadjiconstantinou et al, 2003).  In order to reduce 

the statistical error in the results shown here, extensive time averaging of the data has been 

carried out for each case studied.  Additionally, the number of simulation particles in each 

computational collision cell is maintained at well over twenty, while macroscopic parameters are 

calculated over volumes featuring at least 100 simulation particles.  Although the computational 

cost of these features is considerable the statistical error and random noise in the resulting data is 

drastically reduced, even when using a standard DSMC implementation.   
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4.1.2  Establishment of a Basis Parameter Set 

 As a means of establishing a set of basis parameter values simulations were made with an 

aspect ratio approaching the free jet limits.  Case 1 has an inlet Knudsen number of 0.1, based on 

Eq. (3.11).  Using Eq. (3.12), the resulting inlet Reynolds number for this case is Re 0.5I = .  

The orifice diameter is 100 µm and the aspect ratio is 1.5.  The inlet injection is sampled from a 

distribution with 300KIT = , 23 31.29 10 mIn
−= × , and an axial drift of 13.5m/sIV = .  The 

tube wall temperature is fixed at 300KWT = . 

 Three formulations are used to define basis values of the governing parameters which 

yield a standardized plume profile.  The theoretical formulations are further used to serve as 

reference points for comparison purposes.  Details of the formulations have been given in 

Section 3.4.  The relations are repeated below for the simplified referencing.  
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0 2
(R, )
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where 1.365φ =  for argon. 
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 In Figure 50 the close agreement between the U-DSMC results and the formulations is 

displayed.  Excellent agreement between the U-DSMC results and the three formulations is 

found for case 1.  A point-to-point RMS error was calculated for the U-DSMC results with 

respect to each theoretical formulation following: 

 
( ) ( )

2

0 0
pp

U DSMC th

n R, n R,
RMS

n n
θ θ

−

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥= −⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭
 (4.1) 

 

Over angular ranges of 45 45o oθ− ≤ ≤  the point-to-point error between the U-DSMC results 

and Eq. (3.13) varies from 1% to 8%, while the difference between U-DSMC results and Eq. 

(3.14) ranges from 3% to 10%.  The error for Eq. (3.15) is a bit higher for each point over the 

same range but is still less than 10%, varying from roughly 6% to 10%.      
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Figure 50.  Comparison of U-DSMC results with theoretical formulations at an axial distance of x/D=10. 
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A value of 1mmR = , which corresponds to an axial distance from the exit plane ( )x  equal to 

ten tube diameters, was used to sample the angular profile shown in Figure 50.  The number 

density values at each angle were normalized by the centerline number density 0n .  For all cases 

in this work the flow is comprised of a single species, argon, and thus the normalized density is 

equal to the normalized number density.  Due to the excellent agreement between the resulting 

plume profile and the theoretical formulations, the parameter values of case 1 will be used as 

basis values in the following comparisons.    

 
 

4.1.3  Effect of Knudsen Number 

 The second set of parameters simulated corresponds to an increase in the inlet Knudsen 

number by increasing the number density.  The simulation parameters for case 2 are given in 

Table 4.  The goal of this simulation is to provide insight into role that the Knudsen number 

plays in the plume development.  To this end, the Reynolds number has been set to the value 

used in case 1.  In order to hold the Reynolds number constant while increasing the Knudsen 

number the speed ratio has to be increased.  It should be noted that within the present work the 

Reynolds number and Knudsen number are assumed to be the key nondimensional parameters of 

the flow.  Due to the interdependence shown in Eq. (3.12), the speed ratio is assumed to be a 

secondary parameter.  Future work is planned to fully test the validity of this assumption.   

 

Table 4.  Input parameters used for investigating the effect of Knudsen number on plume characteristics. 

Case 3mIn ( )−  ( )msIV  mD ( )µ  L / D  Kn  Re  

1 231.29 10×  13.5 100 1.5 0.1 0.5 
2 221.29 10×  135 100 1.5 1 0.5 
3 211.29 10×  1350 100 1.5 10 0.5 
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 The resulting profile of case 2 is plotted in Figure 51.  Although the U-DSMC data 

exhibits some numerical scatter a clear narrowing of the angular profile can be seen.  For case 2, 

the error between the U-DSMC data and Eq. (3.13) varies between 7% and 23% over 

45 45o o− ≤ ≤θ , while the error between U-DSMC results and Eq. (3.14) ranges from 14% to 

33%.  It should be noted that Eq. (3.14) and Eq. (3.15) can be adjusted slightly by varying limθ  to 

improve the correlation with the U-DSMC results.  However, even with adjustment, Eq. (3.14) 

and Eq. (3.15) fail to capture the plume shape seen in the U-DSMC results over an angular range 

greater than 20 20o o− ≤ ≤θ  with an error less than 10%.  This discrepancy indicates a deviation 

in the resulting plume shape from the standard shape commonly experienced in inertia-

dominated continuum-regime expansion.   
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Figure 51. Comparison of U-DSMC results with the theoretical formulation of Eq. (3.13) for case 2 at x/D=10. 

 
 The third set of simulation parameters extends the Knudsen number investigation. The 

Knudsen number is increased to 10 by decreasing the inlet number density by a factor of 10.  The 

simulation parameters are given in Table 4. 
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 The resulting plume is shown in Figure 52.  A clear narrowing of the angular profile can 

be seen.  The error between the U-DSMC data and the theoretical formulations are significantly 

higher than those seen in case 2.  Clearly the formulations fail to accurately capture the 

narrowing effect that occurs with increasing Knudsen number.     
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Figure 52. Comparison of U-DSMC results with the theoretical formulation of Eq. (3.13) for case 3. 

 
 
 
 

 The results of the first three simulations indicate that there is a relation between the 

Knudsen number of the flow and the resulting plume shape.  In order to visualize the effect of 

Knudsen number, the angular number density is sampled for each case and scaled with respect to 

both the centerline value 0n  and the inlet value In , as illustrated in Figure 53.   
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(a) 

 

(b) 

Figure 53.  Illustration of the sampled curves, with plume shape defined using centerline normalization (a) 

and drop in relative number density drop defined using inlet value scaling (b). 

 

A narrowing of the plume is seen to occur as the Knudsen number is increased.  This effect is 

displayed in Figure 54, where the angular profiles, normalized with respect to the centerline 

value, are plotted together for case 1, case 2 and case 3.   Although there is some numerical 

scatter in the results, a clear shifting of the plume shape is seen to occur between each case.  
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Figure 54.  Plume narrowing with increasing Knudsen number. 
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 By plotting the angular profiles normalized by the inlet number density, as in Figure 55, a 

second effect of the Knudsen number is illustrated.  As the Knudsen number increases the 

effective drop in number density along the centerline decreases.  This result can be attributed to 

collision based effects that decrease with increasing Knudsen number. 
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Figure 55.  Decrease of the effective number density drop along plume centerline with 

increasing Knudsen number. 

 
 
 

4.1.4  Effect of Aspect Ratio 

 The variations in plume characteristics with aspect ratio are investigated for 1Kn =  in 

cases 4-6, as shown in Table 5.  Each microtube simulated has a diameter of 10 mµ .  The aspect 

ratio is varied over a range from 1 to 10, with all other parameters kept constant.   
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Table 5.  Selected parameters used for investigating the effect of aspect ratio on plume characteristics. 

Case 3mIn ( )−  ( )msIV  mD ( )µ  L / D  Kn  Re  

4 231.29 10×  5 10 1 1 0.02 
5 231.29 10×  5 10 5 1 0.02 
6 231.29 10×  5 10 10 1 0.02 

 
  

 The resulting angular profiles taken at an axial distance from the exit plane corresponding 

to / 10x D =  are displayed in Figure 56 (a).  For / 1L D =  the resulting plume shape is very 

close to the formulation for a free jet.  The slight shift from the free jet formulation is attributable 

to the Knudsen value as seen in the previous section.  For larger aspect ratios a very distinct 

sharpening of the plume is seen to occur.  Furthermore, it seems the severity of the plume 

narrowing increases with increasing aspect ratio.  Additionally, the results suggest a nonlinear 

relation between the plume shape and the aspect ratio as seen by the unequal spacing between the 

three cases shown.  Figure 56 (b) indicates that the axial number density drop increases with 

increasing aspect ratio.   
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(b) 

Figure 56.  Angular profiles normalized with respect to the centerline value (a) and angular profiles 

normalized with respect to inlet conditions (b)  for a range of aspect ratios. 



 129

   
 
4.1.5  Effect of Reynolds Number 

 The variations in plume characteristics with inlet Reynolds number are investigated for a 

fixed Kn  and L / D  in cases 7-9 as given in Table 6.  The Reynolds number is varied by 

increasing the axial velocity at the inlet. 

 
Table 6.  Selected parameters used for investigating the effect of Reynolds number on plume characteristics. 

Case 3mIn ( )−  ( )msIV  mD ( )µ  L / D  Kn  Re  

7 231.29 10×  5 10 10 1 0.02 
8 231.29 10×  500 10 10 1 2 
9 231.29 10×  5000 10 10 1 20 

 
  

 The resulting angular profiles taken at / 10x D =  are displayed in Figure 57 (a).  The 

base plume shape can be attributed to the combination of / 10L D =  and 1Kn =  as gathered 

from the previous sections.  However from Figure 57 (b) the effect of the Reynolds number on 

the plume is rather clear.  Increasing the Reynolds number widens the base plume shape in a 

fashion similar to decreasing the aspect ratio.  Figure 57 (b) illustrates the effect that the 

Reynolds number has on the effective decrease in number density along the axis of the flow.  As 

the Reynolds number increases the effective drop in the number density decreases.  This result 

fits well with the interpretation of the Reynolds number as the ratio of inertial effects over 

viscous effects.  Furthermore the similarity between the effect of increasing the Reynolds 

number or decreasing the aspect ratio also lends support to a viscous argument.  As the aspect 

ratio decreases the relative number of gas-wall interactions decreases, as such the momentum 

transfer to the wall decreases and with it the effect of viscosity.  Further investigation is needed 
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to rigorously define the underlying relation between the effects of aspect ratio and Reynolds 

number on the plume structure. 
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(b) 

Figure 57.  Angular profiles normalized with respect to the centerline value (a) and angular profiles 

normalized with respect to inlet conditions (b) for a range of Reynolds numbers. 

  

 

4.1.6  Effect of Scale 

 The variation in plume characteristics with the diameter of the microtube is investigated 

in order to determine if the base U-DSMC procedures capture scale induced phenomena.  The 

simulation parameters are given in Table 7.  The microtubes simulated all have an aspect ratio of 

10. The inlet Knudsen number is kept constant for all three cases and the Reynolds number is 

fixed at 0.5.  The scale of the geometry is varied over three decades.   
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Table 7.  Selected parameters used for investigating the effect of geometric scale on plume characteristics.  

Case 3mIn ( )−  ( )msIV  mD ( )µ  L / D  Kn  Re  

10 231.29 10×  135 10 10 1 0.5 
11 241.29 10×  135 1 10 1 0.5 
12 251.29 10×  135 0.1 10 1 0.5 

 
 

 The resulting angular profiles taken at / 10x D =  are displayed in Figure 58 (a).  The 

case of 10 mD = µ  can be viewed as the basis of comparison since similar parameters were 

used in the two previous sections.  The results shown in Figure 58 (a) indicate that the base 

DSMC procedures of Bird (1994) do not capture scale induced phenomena for the scales 

investigated.  Since all three cases overlap within the numerical scatter, when accounting for the 

breakdown in symmetry of the plume for the 100 nm case, it can be inferred that U-DSMC, as 

currently implemented, is a scalable method.  As such, microscale tube expansion simulations 

can be carried out on macroscaled geometries as long as the Knudsen number and Reynolds 

number are matched properly.  Figure 58 (b) further illustrates the negligible effect of scale.  

Once again, the results of the three scales are nearly indistinguishable.  The minor discrepancy 

between the peaks can be attributed to numerical error induced from the small particle weight 

required to insure a maximum number of simulated particles in the domain at the smallest scale. 
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(b) 

Figure 58.  Angular profiles normalized with respect to centerline value (a) and angular profiles normalized 

with respect to inlet conditions (b) for a range of microtube scales at x/D = 10. 

 

 The results seen above indicate the inherent limitations of the algorithms that define the 

current implementation of the U-DSMC method.  It is seen that scale-based physical phenomena 

will not alter the U-DSMC results.  Therefore, real effects, such as surface roughness or chemical 

potentials at the walls, which may alter experimental results as scales decrease, will not be 

captured using standard U-DSMC implementation.  The only scaling effect anticipated to occur 

in U-DSMC is an increase in statistical scatter as the limitations of general DSMC methodology, 

such as the requirement of molecular chaos, begin to break down as scales decrease and thus the 

number of real particles in the domain decrease.  Further work is required over a wider range of 

geometries, with the Knudsen number and Reynolds number fixed, to determine the true nature 

of scaling U-DSMC. 
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4.1.7  Conclusions 

 The expansion of argon from microtubes into hard vacuum has been extensively 

investigated using the U-DSMC code.  Simulation results for cases with an aspect ratio of 1.5 

have been shown to compare well with commonly accepted theoretical formulations of free jet 

expansion.  The discrepancies between the theoretical formulation and the U-DSMC results have 

been found to increase with increasing Knudsen numbers and aspect ratios, and with decreasing 

Reynolds numbers.  These trends correspond to the breakdown of the assumptions used in the 

derivation of the three theoretical models.   

 U-DSMC investigations of the effect of Knudsen number, aspect ratio, Reynolds number 

and microtube scale on plume structure have been made.  The plume profile has been found to 

narrow with increasing Knudsen numbers, as well as increasing the aspect ratio.  However, the 

plume shape has also been found to narrow with decreasing Reynolds number.   

 The relative number density drop along the flow axis has been found to decrease with 

increasing Knudsen number and increasing Reynolds number.  Conversely, a decrease in the 

relative number density drop has been observed for decreasing aspect ratio.  From these 

investigations a similarity between the effects of aspect ratio and Reynolds number is seen.  

Furthermore, results obtained to date imply that the current U-DSMC implementation is a 

scalable method.  Results of this study indicate that modeling gas expansion from tubes using U-

DSMC is scalable with Reynolds number and Knudsen number. 
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4.2  Expansion from Micro and Nano Nozzles

 The expansion of helium from micronozzles into vacuum has been extensively 

investigated using the U-DSMC code. Investigations into the effect of Reynolds number, 

Knudsen number, speed ratio and scale have been carried out.  The following work is an 

extraction of the findings presented in Chamberlin and Gatsonis (2006 (c)). 

 

4.2.1  Geometry and Boundary Conditions 

 For this preliminary investigation, the chosen nozzle geometry corresponds to that shown 

in Figure 59 (a).  The geometry is fixed for all cases investigated.  Each nozzle features a conical 

half-angle of 20 degrees and an area ratio of 4.  The simulation domains used in this study all 

feature an internal nozzle region, shown on the left side of Figure 59 (a) and the near field plume 

expansion region, as seen in the right side of Figure 59 (a).   

 The particle injection along the inlet of the nozzle is modeled as a molecular flux of an 

equilibrium gas.  As such, the pressure, temperature and drift velocity of the equilibrium 

distribution at the boundary are chosen at initialization and enforced throughout the simulation.  

To aid in the development of a corresponding equilibrium distribution in the region of the inlet 

surface at steady state, any particles that move upstream along the inlet surface are removed from 

the flow.  The inlet flow constraints allow for simple manipulation of the inlet Knudsen number 

and Reynolds number as is required for this investigation. 
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(a) 

 

(b) 

Figure 59.  Geometry and boundary conditions used in the nozzle simulations (a).  An example of the 

unstructured grids used in the nozzle simulations, illustrating the localized grid spacing (b). 

 

    The walls of the nozzle are modeled as fully diffuse and the temperature of the wall is 

chosen to equal that of the inlet distribution.  To keep the results as general as possible a hard 

vacuum was chosen to model the boundaries of the plume region.  Although a backpressure 

boundary condition would be a better match for experimental investigation, the minimum 

achievable backpressure for each case investigated would vary with each facility.  However, 

future investigations are planned which will study the effect of backpressure on the plume 

properties. 

 An example of the unstructured grids used in the nozzle simulations is shown in Figure 

59 (b).  Although the grid spacing varies for each case, a few relations remain constant amongst 

all cases.  The first relation that is guaranteed for all grids is that the local cell spacing is always 

smaller than the local mean free path.  The second cell spacing criteria common to all grids is 

sizing bounded by geometric resolution.  In certain cases investigated in this work the local mean 

free path is much larger than that the nozzle throat diameter.  When this relation holds the cell 
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spacing is set to the maximum size that still leads to a sufficient capturing of the nozzle 

curvature. 

 It should be noted that for small Reynolds number flows U-DSMC results exhibit 

significant numerical scatter.  In order to reduce the statistical error in the results shown here, 

extensive time averaging of the data has been carried out for each case studied.  Additionally, the 

number of simulation particles in each computational collision cell is maintained at well over 

twenty, while macroscopic parameters are calculated over volumes featuring at least 100 

simulation particles.   

 

 
4.2.2  Characterization of Fundamental Parameters 

 The focus of this study is to identify the key parameters governing the expansion of gas 

from micronozzles and nanonozzles.  A secondary goal of this work is to characterize the effects 

of each key parameter on the resulting plume structure.  The parameters under consideration for 

this study are the inlet Knudsen number (Kn), Reynolds number (Re) and speed ratio (S).  The 

definitions used within this work were derived for the VHS model and take the form (Bird, 

1994): 
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For the purpose of identifying and characterizing the effects of the key parameters a parametric 

study has been carried out over a range of parameter values.  The resulting plume profiles are 

compared for each parameter set.   

 The first parameter set under investigation is chosen such that each case shares a common 

inlet Reynolds number of 0.5.  When using the VHS definitions, varying the Knudsen number 

while fixing the Reynolds number requires that the speed ratio also vary.  Unfortunately the 

relation between the commonly used governing parameters undermines the isolation of each 

potential key parameter.  However, by carrying out several parameter set comparisons with each 

potential key parameter fixed one can gain insight into the significance of the fixed parameter.  

 

Table 8.  Simulation parameters used in fixed Reynolds number investigations. 

 mµtD ( )  3m−
In ( )  m sV ( )  KT ( )  Re  Kn  S

Case 1 250 1.65e23 35 300 0.5 0.1 0.03 

Case 2 250 1.65e22 350 300 0.5 1 0.3 

Case 3 250 1.65e21 3500 300 0.5 10 3 

 

 The parameter values used for the first set of simulations are given in Table 8.  For the 

purpose of the current study, the number density is sampled as a function of the radial distance 

from the nozzle exit plane as well as the angle from the nozzle axis, θn( R, ) .  The resulting 

plume profiles are seen in Figure 60.  Figure 60 (a) is a comparison plot of the number density, 

normalized by the centerline value 0 0=n n( R, ) , at a radial distance of 20 exit diameters (40 

throat diameters).  From the comparison plot of Figure 60 (a) a clear narrowing of the plume can 

be seen as both the Knudsen number and speed ratio are increased.  Figure 60 (b) is a 

comparison plot of the number density, also at a radial distance of 20 exit diameters, scaled using 
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the inlet value ( )0=I Inletn n x , .  From Figure 60 (b) it can be seen that the relative drop in the 

number density along the flow path decreases with increasing Knudsen number and speed ratio.   
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(b) 

Figure 60.  Plume profiles for parameter sets with a common inlet Reynolds number of 0.5, sampled at a 

radial distance of 40 throat diameters from the nozzle exit plane. 

 

 The second parameter set investigated is chosen such that each case shares a common 

inlet Knudsen number.  The chosen value for the common Knudsen number is 1, which is well 

within the transitional regime.  The parameter values used for the second set of simulations are 

given in Table 9.   
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Table 9.  Parameter values used for fixed Knudsen number (Kn) simulations. 

 mµtD ( )  3m−
In ( )  m sV ( )  KT ( )  Re  Kn  S

Case 4 250 1.65e22 3500 300 5 1 3 

Case 5 250 1.65e22 350 300 0.5 1 0.3 

Case 6 250 1.65e22 35 300 0.05 1 0.03 

Case 7 250 1.65e22 3.5 300 0.005 1 0.003 

 
 

 The resulting plume profiles are seen in Figure 61.  In Figure 61 (a) a slight narrowing of 

the plume can be seen as both the Reynolds number and speed ratio are increased.  From Figure 

61 (b) it can be seen that the relative drop in the number density along the flow path clearly 

decreases with increasing Reynolds number and speed ratio. 
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(b) 

Figure 61.  Plume profiles for parameter sets with a common inlet Knudsen number of 1, sampled at a radial 

distance of 40 throat diameters from the nozzle exit plane. 
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Table 10.  Parameter values used for fixed speed ratio (S) simulations. 

 mµtD ( )  3m−
In ( )  m sV ( )  KT ( )  Re  Kn  S

Case 8 250 1.65e23 35 300 0.5 0.1 0.03 

Case 9 250 1.65e22 35 300 0.05 1 0.03 

Case 10 250 1.65e21 35 300 0.005 10 0.03 

 

 The third parameter set under investigation is chosen such that each case shares a 

common inlet speed ratio of 0.03.  The parameter values used for the third set of simulations are 

given in Table 10.  The resulting plume profiles are seen in Figure 62.  In Figure 62 (a) and 

Figure 62 (b), the comparison plots seem to indicate that the plume profile is not significantly 

altered by increasing the Knudsen number or decreasing the Reynolds number provided that the 

speed ratio is fixed.   
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(b) 

Figure 62.  Plume profiles for parameter sets with a common inlet speed ratio of 0.03, sampled at a radial 

distance of 40 throat diameters from the nozzle exit plane. 
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 The cause for the fixed plume profile is uncertain but is most likely attributed to one of 

two possibilities.  Either the speed ratio is the dominate parameter effecting the plume structure 

or the effects incurred as the Knudsen number increases and the Reynolds number decreases 

cancel each other out.  Further study is required to ascertain the cause of the static plume profile 

seen in this parameter set. 

 The final data set investigated in this study isolates the effect of nozzle scale on the 

resulting plume profile predicted by the current U-DSMC implementation.  Two nozzle scales 

are simulated.  The first has a throat diameter of 250 µm while the second has a throat diameter 

of only 250 nm.  For both cases the nozzle geometry is identical as are the values of the inlet 

Knudsen number, Reynolds number and speed ratio.  The simulation parameters are given in 

Table 11. 

 

Table 11.  Parameter values used for scale simulations. 

 tD  3m−
In ( )  m sV ( )  KT ( )  Re  Kn  S

Case 11 250 µm 1.65e22 350 300 0.5 1 0.3 

Case 12 250 nm 1.65e25 350 300 0.5 1 0.3 

 

   The resulting plume profiles are seen in Figure 63.  In Figure 63 (a) and Figure 63 (b) the 

comparison plots indicate that the plume profile is not significantly altered by decreasing the 

nozzle scale provided that the Knudsen number, Reynolds number and speed ratio are fixed.  

This result is expected considering that the current U-DSMC implementation is scale insensitive 

and does not capture the microscopic effects, such as the molecular potential interactions 

between the gas and surface molecules,  that would become more prevalent at the reduced scales 
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seen here.  Figure 63 (a) illustrates one effect of reducing the scale of the U-DSMC simulation 

domain which is a significant increase in statistical fluctuations in the sampling of macroscopic 

variables.  For the simulation sets shown above the results were obtained using time-averaged 

data which were averaged over twenty data sets (of 100 iteration intervals) in order to obtain 

number density data where the statistical noise was reduced to a point where 95% confidence 

interval error bars were smaller than the plotted point markers.  For the nanoscaled nozzle, data 

averaging was carried out over 100 data sets yet the the statistical scatter amongst the plotted 

points is comparatively large.  Future work is planned that will lend further insight into the scale-

induced increase in statistical scatter in U-DSMC simulation at the nanoscale.  
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Figure 63.  Plume profiles for scale parameter sets with a common inlet speed ratio, Knudsen number and 

Reynolds number. 
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4.2.3  Conclusions 

 A parametric study has been carried out over a range of Knudsen number, Reynolds 

number and speed ratio values.  The resulting plume profiles were compared for each set of 

parameters.  From the comparisons it has been found that the plume profile narrows as both the 

Knudsen number and speed ratio are increased for a fixed Reynolds number. Furthermore, the 

relative drop in the number density along the flow path was found to decrease with increasing 

Knudsen number and speed ratio for a fixed Reynolds number. A slight narrowing of the plume 

was seen as both the Reynolds number and speed ratio were increased for a fixed Knudsen 

number. While the relative drop in the number density along the flow path clearly decreases with 

increasing Reynolds number and speed ratio for a fixed Knudsen number. It was further 

observed that the plume profile is not significantly altered when increasing the Knudsen number 

while decreasing the Reynolds number with the speed ratio fixed.  With the exception of an 

increase in statistical fluctuations, the current U-DSMC implementation has been found to be 

scale insensitive.  

 

4.3  Micropitot Probe Pressure Measurement Predictions 

 A two-stage numerical modeling approach is used to guide the design of a micropitot 

probe, shown in Figure 64 (a).  The micropitot probe consists of a stainless steel tube with an 

outer diameter of 150 mOD µ=  and an inner diameter of 63.5 mµ=pD  coupled to a pressure 

sensor.  The U-DSMC simulations model the experimental test scenario shown in Figure 64 (b) 

in which the micropitot probe is used to measure the pressure field of a microjet.  In the first 

modeling stage, the expansion of nitrogen from the microjet into vacuum is modeled using the 

U-DSMC code.  Local free stream conditions are extracted from the resulting microjet plume 
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and are used in the second stage of the investigation as boundary conditions for a series of 

micropitot probe simulations.  From the results of stage two, predictions of the pressure within 

the probe are obtained for a range of axial distances from the exit plane of the microjet.  The 

following work is an extraction of the findings presented in Chamberlin and Gatsonis (2006 (a)). 

 

 

(a)  

(b) 

Figure 64.  Micropitot probe design (a) and a schematic of the experimental test scenario (b). 

 

4.3.1  Simulation of Microjet Expansion 

   Within the first stage of the investigation the expansion from a microjet corresponding to 

anticipated geometry and inlet conditions of the experimental test case are carried out using U-

DSMC.  The U-DSMC simulations for the microjet expansion are carried out on a domain that 

corresponds to the geometry shown in Figure 65 (a). The simulation domain features the internal 

flow region, shown on the left side of the figure, and the external plume expansion region, shown 

on the right side of Figure 65 (a). The grid spacing varies throughout the domain, as shown in 

Figure 65 (b), with the nominal cell sizing corresponding to a fraction of the local mean free 

path.  
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(a) 

 

(b) 

Figure 65.  Microjet simulation domain and boundary conditions (a) and unstructured mesh of the microjet 

simulation domain, featuring localized cell spacing (b). 

 

 For the microjet expansion simulation the particle injection along the inlet of the orifice is 

modeled as a molecular flux of an equilibrium gas.  As such, the pressure, temperature and drift 

velocity of the equilibrium distribution at the boundary are chosen at initialization and enforced 

throughout the simulation.  To aid in the development of a corresponding equilibrium 

distribution in the region of the inlet surface at steady state, any particles that move upstream 

along the inlet surface are removed from the flow.  The inlet flow constraints match anticipated 

plenum region conditions.  In keeping with the anticipated test conditions, the plenum 

temperature is set to the ambient laboratory value of 300K , the inlet number density used was 

23 31.29 10 m−× , and the drift velocity applied was 15m/s .  The walls of the orifice are modeled 

as fully diffuse and the temperature of the wall is also chosen to equal that of the ambient 

laboratory.  This yields the most general relation between the wall temperature and the 

stagnation chamber temperature and therefore should lend simplicity to experimental validation 

of the U-DSMC results. 
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  The final boundary conditions required for the simulations are the downstream plume 

region boundaries.  To keep the results as general as possible a hard vacuum was chosen to 

model the boundaries of the plume region.  Although a backpressure boundary condition would 

be a better match for experimental investigation, the minimum achievable backpressure for the 

intended test facility during microjet operation is unknown at this time.  However, future 

investigations are planned which will include the effect of backpressure on the plume properties. 

 

Microjet Expansion Results 

 The investigation begins with a comparison between simulation results of microjet 

expansion profiles and three theoretical models developed for supersonic free jets, given in detail 

in Section 3.4.  The purpose of the comparisons is twofold.  The primary motivation is that of 

plume characterization, that is, to define the shape of the plume with respect to the theoretical 

standards. The secondary motivation lies in the need to determine which of the three standard 

models most accurately captures the U-DSMC results for the current set of parameters, thereby 

setting the precedent for future investigations.      
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 Since Equations (3.13)-(3.15) were formulated from continuum solutions (typically 

having Knudsen numbers less than 0.01) where the Reynolds number was relatively large, it is of 

value to note the Knudsen number and Reynolds number of the microjet flow modeled here.  The 

inlet injection is sampled from a distribution with 300KIT = , 23 -31.29 10 mIn = × , and an 

axial drift of 15m/sIV = .  The orifice diameter is taken as 100µm. The resulting Knudsen 

number is then calculated to be 0.1Kn =  and as such the flow in near-field plume is expected 

to show characteristics fitting that of the near-continuum regime.  The inlet Reynolds number is 

found to be Re 0.5I = .  Although this value is small in absolute magnitude, it is relatively large 

in terms of microscale gas flows. 
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Figure 66.  Comparison of angular number density at an axial distance of 5mm from the orifice exit plane. 
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Figure 66 shows the normalized density at a distance of 5mmR =  downstream from the exit 

plane (which corresponds to fifty orifice diameters).  The number density values at each angle 

were normalized by the centerline number density 0n .  Since the flow is comprised of a single 

species, nitrogen, the normalized density is equal to the normalized number density.  Figure 66 

illustrates the excellent agreement that is found between the U-DSMC results and the theoretical 

predictions.  For polar angles of 45 45o o− ≤ ≤θ  the point-to-point RMS error between the U-

DSMC results and theory varies from 1% to 15% for Eq. (3.13), from 1% to 8% for Eq. (3.14) 

and from 1% to 13% for Eq. (3.15).  From these comparisons it is seen that the formulation of 

Boynton [Eq. (3.14)] gives the closest approximation to the U-DSMC results.  Furthermore, the 

comparisons indicate that the plume shape fits the standards rather closely, thus setting a basis 

configuration for future studies.   
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(b) 

Figure 67.  Number density contours of U-DSMC results (a) and centerline values of axial velocity (V ), 

temperature (T ), and number density ( n ). The normalization constants have values of 353m/srefV = , 

35KrefT = , and 23 -31.29×10 mrefn =  (b). 
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 A sense of the overall structure of the plume can be ascertained from the number density 

contours obtained from the U-DSMC simulations as shown in Figure 67 (a).  The number density 

contours indicate that the expansion occurs uniformly from the orifice exit plane as indicated by 

the circular shaping of the plume.  Figure 67 (b) shows the centerline values of the plume 

temperature, number density, and velocity.  Local free stream conditions are extracted from the 

U-DSMC centerline data and are used in the second stage of the investigation as boundary 

conditions for a series of micropitot probe simulations.  The resulting free stream parameters are 

tabulated in Table 12.  

 

Table 12.  Centerline values of axial velocity (V ), temperature (T ), and number density ( n ) at various axial 

distances from microjet exit plane. 

 

(m)x  (m/s)V  (K)T  3(m )−n  
0.0008 520 46.7 1.19e20 
0.0015 536 44.0 3.40e19 
0.0025 544 42.5 1.06e19 
0.005 544 41.8 2.49e18 
0.0075 547 41.7 1.02e18 
0.0125 550 40.2 3.91e17 
0.0175 556 37.6 1.89e17 
0.02 566 35.7 1.42e17 

 

4.3.2  Micropitot Probe Simulations 

 Following the attainment of the local free stream conditions from the microjet expansion 

of the previous section, predictions of micropitot probe performance are obtained from 

segmented local simulations.  The current design of the micropitot probe features a simplistic 

union of a pressure sensor (model yet to be determined) and a stainless steel tube.  The tubing is 

available with inner diameters ranging down to roughly 60 mµ  with a minimum outer diameter 
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of 150 mµ .  The length of the tube is variable and is currently chosen to be 2.5mm .  The details 

of the union required to affix the tube and the pressure sensor are also variable at this time (will 

be dependant upon sensor selection).  As such the sensor will be assumed to be located at the end 

of the tube with negligible sensor volume.  The actual sensor volume along with any required 

union volume will be addressed in future investigations as the design process progresses.  

 The U-DSMC simulations for the micropitot probe entrance and internal regions are 

carried out on a domain that corresponds to the geometry shown in Figure 68. The simulation 

domain features the external flow region, shown on the left side of the figure, and the internal 

probe region, shown on the right side of Figure 68 (a). The grid spacing varies throughout the 

domain, as shown in Figure 68 (b). As with the microjet simulation domain, the grid spacing for 

the probe simulations adhere to minimum spacing constraints required for physical collision 

modeling. The grid spacing is further constrained by the geometric resolution required to 

accurately capture the structure and dimensionality of the intended device.  

 

 

(a) 
 

(b) 

Figure 68.  Micropitot probe simulation geometry and boundary conditions (a) and unstructured mesh of the 

micropitot probe geometry (b). 
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 The domain size has been chosen such that the flow disturbance ahead of the probe 

entrance is contained within the external flow region, while simultaneously minimizing the 

distance at which the local free stream conditions are applied.  This balance, along with the finite 

radius of the probe simulation domain, leads to the need for a minor numeric approximation for 

the inlet conditions.  The approximation made for the probe model assumes that the radial 

divergence of the local free stream has negligible effect over the radius of the probe domain for 

the axial locations investigated.  Further, it is assumed that the local free stream undergoes 

negligible deviations from the imposed free stream conditions across the span between the free 

stream boundary and the probe inlet. Figure 69 illustrates the overlap of the microjet simulation 

region and the micropitot probe domain.        

 For the micropitot probe simulations the particle injection along the free stream 

boundaries of the domain is modeled as a molecular flux of an equilibrium gas with the pressure, 

temperature and drift velocity set to that of the local free stream conditions obtained from the 

microjet expansion simulation. The walls of the micropitot probe are modeled as fully diffuse 

and the temperature of the wall is set to the stagnation temperature of the flow. The inner 

diameter of the probe is 63.5 mµ=pD  while the outer diameter is 150 mµ . The length from the 

entrance to the pressure sensor surface is 2.5mm=pL . The pressure sensor boundary of the 

probe is modeled as fully diffuse, with a temperature equal to that of the flow stagnation 

temperature. The resulting pressure on the sensor boundary is monitored throughout the 

simulation. The sensor pressure is obtained directly from the momentum transfer that occurs 

during molecular impingement with the simulated sensor surface.  
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Figure 69.  Schematic illustrating the overlap of the micropitot probe 

domain with that of the microjet expansion domain. 

 

Micropitot Probe Results 

 The resulting pitot pressure predictions are shown in Figure 70 as a function of axial 

distance from the orifice exit plane. The U-DSMC results are plotted together with predictions 

from two theoretical models in order to establish a basis for future comparison as well as to 

determine the range of applicability of each theory.  

 The first relation used is developed by Edwards and Quan (1966) from a solution of the 

Boltzmann equation for a pitot tube immersed in hypersonic adiabatic rarefied flow.  The 

pressure at the sensor end of the tube is given as:   

 ( ) ( )2 2 2
0 1.12 1.19 / 0.75 2 4.2 2.9p p S S S Sδ χ δ δ⎡ ⎤= + − + − +⎢ ⎥⎣ ⎦  (4.3) 
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In equations (4.3)-(4.5), γ  is the ratio of specific heats, 0 0 0Bp n k T=  is the freestream static 

pressure, S  is the speed ratio of the free stream and Kn  is the Knudsen number based on the 

free stream mean free path and the inner diameter of the probe.   
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(b) 

Figure 70.  Micropitot probe pressure sensor predictions as a function of axial distance (x in Figure 69) from 

the microjet exit plane (a) and free stream values of Kn and S versus axial distance from the microjet exit 

plane (b). 

 

Eq. (4.3) is derived for the near-free-molecule regime where the distribution function of the 

internal flow is taken as the sum of two separate distribution functions, one characteristic of the 

free stream the other characteristic of the molecules reflecting from the tube walls.  It should be 

noted that Eq. (4.3) is the reduced relation that holds for the assumption of a long tube. This 

assumption is taken to hold for the present case since the aspect ratio of the current pitot probe 

design is larger than 40.  It should also be noted that, as seen in Figure 70 (b), the local free 

stream conditions for each plume location of interest match the requirement of a hypersonic 

speed ratio, however the local Knudsen number is well beyond the free-molecular limit and thus 
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beyond the intended range of the theory.  This discrepancy is most likely the cause of the slight 

bias between the theory of Edwards and Quan and the U-DSMC results, as seen in Figure 70 (a). 

Future investigations into the trends of pitot probe pressure as a function of Knudsen number, 

speed ratio and Reynolds number should clarify the cause of the bias. 

 The second relation used for comparison to the simulation results is a formulation 

developed by Hughes and de Leeuw (1965) for free-molecule impact pressure probes at an 

arbitrary angle of attack.  The model assumes a drifting Maxwellian distribution for the free 

stream with speed ratio S , temperature 1T , and pressure 1 1 1P n kT=  at an angle of attack α  with 

a tube having a diameter to length ratio of Α .  Perfectly diffuse reflection is assumed along the 

boundary.  The flow conditions in the sensor chamber are designated by a temperature 2T  and 

the equilibrated pressure inside the volume, 2 2 2P n kT= , is presented in terms of the pressure 

ratio ( , , )R S αΑ  by:   
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R S K F S d
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π

α ζ ζ ζΑ = = Α
Α ∫  (4.6) 

where, 

 1/ 2
2 1 1 2( , , ) ( / )( / )αΑ =R S P P T T  (4.7) 

 

In Eq. (4.6) ( , )ζ ΑK  captures the response of the cylindrical tube to a molecular beam and 

( , ,0)ζF S  is a function that captures the drifting Maxwellian beam flux density.  At equilibrium 

the flux of molecules that exit the chamber of the sensor is equal to the flux entering the tube.  

 The Hughes and de Leeuw model was implemented in a computer code in the work of 

Maynard (1996) and used for the comparisons shown in Figure 70.  Once again it should be 

noted that the plume points of interest exhibit Knudsen numbers corresponding to the free 

molecular regime and speed ratios that indicate supersonic velocities, as seen in Figure 70 (b).  
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Since the flow field properties are consistent with the governing assumptions of the Hughes and 

de Leeuw theory excellent agreement is seen between the theoretical predictions and the U-

DSMC results, as shown in Figure 70, for the simple geometry of the current pitot probe design. 

 

4.3.3  Conclusions 

 From the resulting pressure predictions shown in Figure 70, several conclusions can be 

made.  First, for the conditions of the present case, the theory of Hughes and de Leeuw can be 

used to determine the sensor pressure for the micropitot probe with acceptable accuracy.  

However, the geometric limits of the applicability of the theory have not been pushed by the 

current design and as such no conclusions can be made for the accuracy of the formulation for 

more complex geometries.  The second conclusion which may be drawn is that the theory of 

Edwards and Quan is not acceptably accurate for the conditions of the current case.  However, its 

range of applicability may have been overextended in the current U-DSMC study and as such 

future investigations will be needed to determine the applicability range in terms of the Knudsen 

number for both the Edwards and Quan theory and the Hughes and de Leeuw theory.   

 A further conclusion which can be drawn is that the required pressure range of a sensor 

implemented in the current experimental configuration is from 100 to 0.005 Pa (or 0.75 to 3.75e-

5 torr).  Furthermore, the U-DSMC results indicate that the effect of the blunt entrance geometry 

on the local probe-external flow field is negligible in the investigated Knudsen range. 

Additionally, it is seen from comparison with the Hughes and de Leeuw theory that the chosen 

length of the microtube does not markedly impede the transition of the external flow through the 

internal region in a manner not predicted by the theory.  However, further investigations are 
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required, once sensor selection has been made, to determine whether the pressure sensor housing 

will have a significant effect on the microjet flow field and the resulting internal pressure.   

 

4.4  Quantifying Scale-Induced Statistical Fluctuations in U-DSMC  

 The work presented in Sections 4.1 and 4.2 has uncovered scale-induced increases in the 

statistical fluctuations of U-DSMC results as the characteristic dimension approaches the 

nanoscale.  In order to further quantify this effect, Poiseuille flow is simulated over a wide range 

of scales.  For each simulation set the error between the theoretically predicted velocity profiles 

and those generated by U-DSMC is calculated.  From this error a relation between statistical 

fluctuations in U-DSMC data and the characteristic scale is shown. 

  

4.4.1  Scale-induced Statistical Fluctuations in Poiseuille Flow 

 Poiseuille flow is used as a test case in order to quantify the scale-induced statistical 

scatter that occurs as the characteristic domain length approaches the submicron range.  To 

isolate the effect of scale on macroscopic sampling both surface roughness and detailed gas-

surface potential interactions are neglected in this study.  Furthermore, the inlet Knudsen number 

and pressure ratio will be fixed over all cases such that the scalability of U-DSMC, as shown in 

Sections 4.1 and 4.2, can be utilized in order to produce scale-based similarity within the cases. 

 

Geometry and Boundary Conditions 

 Poiseuille flow is a pressure-driven flow between two infinite stationary parallel plates.  

The inlet surface is maintained at a fixed pressure ip  and temperature iT  while the outlet is 

maintained at a fixed pressure ep  with the pressure ratio along the flow path given as 
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ratio i ep p / p= .  The plate walls are fixed at a temperature wT .  The geometry corresponding to 

Poiseuille flow is illustrated in Figure 71 (a).  Within this investigation the infinite parallel plates 

are modeled as a channel with fully diffuse upper and lower walls and the side walls are modeled 

as specularly reflecting thus effectively acting as symmetry planes.  An example grid used in the 

simulations in shown in Figure 71 (b). 

 

 

(a) 

 

(b) 

Figure 71.  Geometric configuration (a) and example grid (b) used in Poiseuille scaling studies. 

 

Velocity Profile Comparison 

 As a means of determining the functionality between scale-induced statistical fluctuations 

a number of simulations have been carried out over a wide range of channel heights.  The 

relevant parameters for each case are listed in Table 13.  For each case studied, the grid structure 

has been scaled in such a manner as to constrain the number of cells in the domain to within 1% 

of the group average.  In doing so, the geometric resolution of the domain is nearly equal for all 

cases.  Therefore the macroscopic sampling volumes scale uniformly with each case.  As such, 

isolation of the effect of scale on the number of molecules in each sample volume is achieved.   
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Table 13.  Selected parameters used in Poiseuille scale simulations. 

 (m)h  (Pa)ip  -3(m )In  (K)iT  ratiop  Kn  (K)wT  

Case 1 1e-3 536 1.29e23 300 10 0.01 300 

Case 2 1e-6 5.36e5 1.29e26 300 10 0.01 300 

Case 3 100e-9 5.36e6 1.29e27 300 10 0.01 300 

Case 4 25e-9 1.07e7 2.59e27 300 10 0.01 300 

Case 5 50e-9 2.14e7 5.18e27 300 10 0.01 300 

Case 6 10e-9 5.36e7 1.29e28 300 10 0.01 300 
 

 

 In order to establish the scale-induced error resulting from increased statistical fluctuation 

two error approximation schemes are used.  The first method is an application of the definition of 

the root mean-squared error.  As such, the error associated with this method is an internal 

measure of the statistical variation of the U-DSMC data from its own local time-average.  In 

general form, the local-mean based error relation can be written as:  

 =RMS MSE  (4.8) 
with, 

 ( )
2

1 1

1 1
= =
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i i
i i

MSE var x var x x x
N N

 (4.9) 

 

Application of the relation for RMS to the U-DSMC results occurs in a post-processing manner 

by means of the data manipulation tools of Tecplot.  Within the current study a fixed number of 

data sets are used for each case.  The number of data sets used for time-averaging within this 

study has been set to 10.  Therefore the local time-averaged data take the form: 
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and the sample standard deviation from the local time-averaged value is calculated using: 
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An additional value that is often useful in visualizing the local scatter in U-DSMC results is a 

mean weighted version of the sample standard deviation and takes the form: 

 = STD
x

xE
x

 (4.12) 

 

 Within this study, the U-DSMC data has been time-averaged and the values of mean, 

sample standard deviation, and mean weighted sample standard deviation have been calculated 

for the x-component velocity for each case.  Figure 72 illustrates how these properties can be 

used to visualize the scale-induced scatter.   From Figure 72 several key distinctions between the 

h = 100 nm case and the h = 25 nm case can be seen.  The first noteworthy difference is shown in 

the mean velocity contours in the top plots of Figure 72.  The smooth contours of the h = 100 nm 

case illustrate that the flow field is well captured and that the velocity varies smoothly and 

continuously across the domain.  The sharp and blotchy contours of the h = 25 nm case illustrate 

that the flow field is not well captured and that the velocity varies discontinuously across the 

domain.   
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 (a) 

 

 (b) 

Figure 72.  Contours of x-component velocity, standard deviation in x-component velocity over data sample, 

and mean-weighted deviation in x-component velocity for Kn = 0.01 with h = 100nm (a) and h = 25nm (b). 

 

The middle plots of Figure 72 illustrate the range of the local sample standard deviations in the 

x-component velocity for each case.  The contour range of the h = 100 nm case shows that the 

standard deviation between each local velocity value for the data sets is modest.  However, the 

contour range of the h = 25 nm case illustrates that the standard deviation between each local 

velocity value for its corresponding data sets is significantly larger than the h = 100 nm case.  In 

the lower plots of Figure 72, a limitation of using local-mean error as a measure of the statistical 

fluctuations within a data set is seen.  Although it has been clearly shown that the h = 100 nm 

case is captured with far less scatter, using the estimated values from within the U-DSMC data 

can lead to an internally biased measure of the error associated with the scale-induced statistical 

fluctuations. 
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 In order to establish a consistent and unbiased measure of the scale-induced statistical 

fluctuation in U-DSMC predictions, error values based on comparison with theoretical solutions 

for Poiseuille flow have been developed.  Using both first and second-order slip formulations, for 

near-continuum Knudsen values, the velocity profiles predicted for the continuum to slip regime 

can be generated for use as basis values.  As derived in Section 3.5, the first and second order 

non-dimensional velocity profiles for Poiseuille flow are given by: 
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Comparison of the U-DSMC predicted velocity profiles and those of the relations above are 

shown in Figure 73 (a).  An error relation is formed between the theoretical profiles and the U-

DSMC results using: 

 ( )2

1

1 η

ξ ξ
η =

= −∑ cc
i

RPSE x / x /  (4.13) 

 

where η  is the number of curve points considered, x  is the U-DSMC data set average of the 

local quantity, in this case the x-component velocity, 
c

x  is the centerline value of x , ξ  is the 

theoretically predicted local quantity and ξc  is the centerline value of this quantity.  The scale-

induced error, as quantified using Eq. (4.13) is shown in Figure 73 (b).    
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(b) 

Figure 73.  Comparison between U-DSMC predictions of x-component velocity profiles and theory for Kn = 

0.01 with  h = 100nm and h = 25nm (a).  Plot of the error between the theoretical velocity profile prediction 

and U-DSMC results as a function of domain scale (b).   

  

 Figure 73 (a) clearly illustrates the velocity profiles under consideration in this study.  

From Figure 73 (a) the excellent agreement between the theoretical relations and the U-DSMC 

result for the h = 100 nm is well illustrated.  Figure 73 (a) also clearly illustrates the statistical 

scatter in the velocity profiles for the h = 25nm case.  Figure 73 (b) is a plot of the relative error 

between the U-DSMC results and the theoretically predicted values for all the cases studied.  

From Figure 73 (b) the scaled-induced error is seen to increase sharply as the channel height is 

decreased toward 1nm.  This effect can be seen to correlate with the decrease in the number of 

simulated particles within the domain as the number of real molecules decreases over the 

simulation volume.  Noting that the simulation set imposed a fixed Knudsen number of 0.01 for 

all cases, and also noting that the particle weight (the number of real particle represented by each 

simulated particle) was not allowed to reach unphysical values (a minimum of 1 was enforced) 
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the increase in error can be related to the decrease in the total number of real particles in the 

volume of interest following: 

 
3 2

2 22 2π π
= = =tot

L LN nV
d Kn L d Kn

 (4.14) 

 

where d  is the molecular diameter, n  is the overall number density, V  is the domain volume 

and L  is the characteristic length of the domain.  From this relation it can be seen that for a fixed 

Knudsen number the total number of particles in the domain is proportional to 2L .  Thus, as the 

length decreases by a factor of 10 the total number of particles drops by a factor of 100.  As such, 

the scale-induced error is nonlinear and as shown in Figure 73 (b) and increases as 21 / L  as the 

characteristic length is decreased toward 1nm. 

 

4.4.2  Conclusions 

 U-DSMC studies of scale-induced statistical fluctuations in Poiseuille flow have shown 

that the error between theoretical formulations and U-DSMC velocity profiles increase as the 

inverse of the square of the characteristic length, as the characteristic length approaches a value 

of 1nm.  Furthermore, the studies have established a number of error measurement relations as 

well as introduced means of visually depicting statistical fluctuations in U-DSMC results. 

 

 



 164

5.  CONCLUSIONS & RECOMMENDATIONS 

5.1  Summary 

  The implementation of the three dimensional direct simulation Monte Carlo 

methodology on unstructured Delaunay meshes (U-DSMC) has been achieved.  Extensive 

geometric flexibility as well as improved ease-of-use was achieved through the creation of an 

interface between U-DSMC and COMSOL.  The verification and validation of the U-DSMC 

implementation was shown using a series of fundamental flow cases.  The order of error 

associated with the implementation was also studied using a fundamental flow configuration.  

For the case of near-continuum heat transfer between parallel plates the current U-DSMC 

implementation exhibits first order error in both space and time as seen from the studies of cell 

spacing and time step size.  The study also revealed an inverse first order error associated with 

the number of simulation particles in each Delaunay cell.    

 The expansion of argon from microtubes into vacuum has been extensively investigated 

using the U-DSMC code.  U-DSMC investigations of the effect of Knudsen number, aspect ratio, 

Reynolds number and microtube scale on plume structure have been made.  The plume profile 

has been found to narrow with increasing Knudsen numbers, as well as increasing the aspect 

ratio.  However, the plume shape has also been found to narrow with decreasing Reynolds 

number.  The relative number density drop along the flow axis has been found to decrease with 

increasing Knudsen number and increasing Reynolds number.  Conversely, a decrease in the 

relative number density drop has been observed for decreasing aspect ratio.  From these 

investigations a similarity between the effects of aspect ratio and Reynolds number is seen.  

Furthermore, results obtained to date imply that the current U-DSMC implementation is a 
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scalable method.  Results of this study indicate that modeling gaseous expansion from tubes 

using U-DSMC is scalable with Reynolds number and Knudsen number. 

 A parametric study has been carried out over a range of Knudsen number, Reynolds 

number and speed ratio values.  The resulting plume profiles were compared for each set of 

parameters.  From the comparisons it has been found that the plume profile narrows as both the 

Knudsen number and speed ratio are increased for a fixed Reynolds number. Furthermore, the 

relative drop in the number density along the flow path was found to decrease with increasing 

Knudsen number and speed ratio for a fixed Reynolds number. A slight narrowing of the plume 

was seen as both the Reynolds number and speed ratio were increased for a fixed Knudsen 

number. While the relative drop in the number density along the flow path clearly decreases with 

increasing Reynolds number and speed ratio for a fixed Knudsen number. It was further 

observed that the plume profile is not significantly altered when increasing the Knudsen number 

while decreasing the Reynolds number with the speed ratio fixed.  With the exception of an 

increase in statistical fluctuations, the current U-DSMC implementation has been found to be 

scale insensitive.  

 Results of a numerical study using the U-DSMC code were employed to guide the design 

of a micropitot probe intended for use in analyzing rarefied gaseous microjet flow.  The flow 

conditions considered correspond to anticipated experimental test cases for a probe that is 

currently under development. The expansion of nitrogen from an orifice with a diameter of 

100µm was modeled using U-DSMC.  From these results, local ‘free stream’ conditions were 

obtained for use in U-DSMC simulations of the flow in the vicinity of the micropitot probe.  For 

the conditions of the current design, the theory of Hughes and de Leeuw (1965) can be used to 

determine the sensor pressure for the micropitot probe with acceptable accuracy.  Also, the 
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required pressure range of a sensor implemented in the current experimental configuration is 

from 100 to 0.005 Pa (or 0.75 to 3.75e-5 torr).  Furthermore, the U-DSMC results indicate that 

the effect of the blunt entrance geometry on the probe-local external flow field is negligible in 

the investigated Knudsen range. Additionally, it is seen that the chosen length of the microtube 

does not markedly impede the transition of the external flow through the internal region in a 

manner not captured by the Hughes and de Leeuw theory. 

 The effect of scale on the statistical fluctuation of the U-DSMC data was studied using 

Poiseuille flow.  The error in the predicted velocity profile was calculated with respect to both 

first and second-order slip formulations.  Simulations were carried out for a range of channel 

heights and the error between the U-DSMC predictions and theory were calculated for each case.  

From this error, a functional dependence was shown between the scale-induced statistical 

fluctuations and the decreasing channel height for fixed Knudsen number and pressure ratio 

flow.  U-DSMC studies have shown that the error between theoretical formulations of velocity 

profiles and U-DSMC velocity profiles increase as the inverse square of the characteristic length, 

as the characteristic length approaches a value of 1nm.  Furthermore, the studies have established 

a number of error measurement relations as well as introduced means of visually depicting 

statistical fluctuations in U-DSMC results. 

 

5.2  Recommendations for Future Work 

  It is the author’s contention that the effort applied over the course of this work represents 

a transitional phase in the development of U-DSMC.  The current implementation of U-DSMC 

was built upon the foundation of Hammel (2002) and Kovalev (2000) as well as the 

contributions of Spirkin (2006).  Therefore, it is expected that future studies and additional 
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algorithmic development lie ahead for U-DSMC.  The following listing covers key points that 

would significantly extend the efforts of this work as wells as those incorporated in the work 

mentioned above. 

• Algorithmic additions and modifications: 

1. Re-implementation of vibrational energy modeling.  

 Within the work of Hammel (2002), the initial implementation of methodologies 

which model vibrational energy of polyatomic molecules was shown.  However, the 

current version of the code does not contain a working algorithm to model vibrational 

energy.  Therefore, re-implementation of the surviving subroutines into a complete 

algorithm would extend the ability of U-DSMC to model high temperature flows in 

which the vibrational modes are excited. 

2. Implementation of chemical reaction modeling. 

 It has been shown in this work that U-DSMC can be applied to a wide range of 

applications.  Several potential applications of the method would require the 

modeling of chemical reactions within a gas mixture.  Therefore the implementation 

of chemical reaction modeling would greatly enhance the codes applicability for both 

re-entry flows as well as lab-on-chip MEMS devices.   

3. Implementation of localized particle weighting. 

 Within many of the studies carried out within this work the results suffered from 

localized scatter due to an insufficient number of simulation particles in collision and 

sampling volumes within finely meshed regions of the flow.  Frequently there is a 

requirement to size Delaunay cell edges based on geometric resolution rather than 

flow gradient.  Localized particle weighting could compensate for the reduced 
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number of simulation particles that inhabit these cells, thus resulting in reduced 

statistical fluctuation as well as an overall decrease in computational effort.     

4. Implementation of detailed gas-surface modeling.   

 It was shown within this work that the detailed interaction between gas molecules 

and solid surfaces become increasingly important as the characteristic length scale is 

decreased.  Therefore, detailed modeling of gas-surface interactions is required for 

submicron scaled flows.  Coupling the U-DSMC method with Molecular Dynamics 

simulations could be one method of capturing the detailed interactions that occur 

along the solid boundaries of nanoscaled flows.  

5. Parallelization of U-DSMC. 

 In order to take full advantage of the geometric flexibility of the U-DSMC 

method, parallelization of the underlying algorithms should be carried out.  

Parallelization of U-DSMC would greatly extend its range of applicability and thus 

allow for complete system modeling of both high-altitude aircraft and spacecraft as 

well as lab-on-chip devices. 

 

• Additional efforts into micro and nanotube expansion as well as micro and nanonozzle 

expansion: 

1. Additional U-DSMC studies. 

 The studies carried out within this work have uncovered a functional relation 

between the plume characteristics and several key parameters.  However, the data 

collected to date from the U-DSMC simulations is not comprehensive enough to 
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establish the functionality of this relation.  Therefore further studies should be carried 

out in order to provide the data needed to define the functionality. 

2. Development of a refined plume model that is a function of S, Kn, and Re. 

 From the data collected within the additional U-DSMC studies, a functional 

relation between the plume characteristics and the key parameters could be 

developed.  This relation would greatly extend the analytical predication capabilities 

available for use in expansion applications. 

3. Further study using U-DSMC to determine the effects of gas composition. 

 The effects of mass, internal degrees of freedom, and mixture composition should 

be studied in detail using U-DSMC to determine if there are any additional functional 

dependencies within the plume expansion on these parameters. 

 

• Extension and experimentation of the micropitot probe development: 

1. Sensor selection. 

 In order to further the computational predications of U-DSMC, component 

selection for the micropitot probe should be made and system design should be 

finalized. 

2. U-DSMC simulations of micropitot probe system. 

 Once a finalized system design has been developed, revised simulations should be 

carried out in order to determine the applicability of the theoretical models as well as 

to determine the response time of the pressure measurements. 

3. Additional U-DSMC simulations featuring background pressure. 
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 In order to fully predict the experimental measurements using U-DSMC the 

effects of background pressure would need to be investigated.  Determining the range 

of background pressures should be possible presently as the proposed experimental 

facility is currently well underway toward its fully-operational status. 

 

• Further study of scale-induced effects using U-DSMC: 

1. Numerical studies utilizing other fundamental flow scenarios.  

 Further U-DSMC study should be carried out using a combination of fundamental 

flow scenarios such as Couette flow or flow over a flat plate, in order to further 

determine the functionality of scale-induced statistical fluctuations in sampling of 

macroscopic properties in flow scenarios where the characteristic length scale 

approaches 1nm. 

2. Application of detailed surface interactions to determine the applicability of the 

diffuse model. 

 Upon the completion of a detailed surface model, the range of applicability of the 

diffuse model could be determined by means of several comparison cases with results 

from U-DSMC using both methods.  From these comparisons, the length scale where 

diffuse modeling becomes inappropriate could be determined. 
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APPENDIX A.  Sampling From Distribution Functions 

Cumulative Distribution Function Method: 

 One method of sampling a given distribution function is the cumulative distribution 

function method (CDF method) (Rubenstein, 1981, Kalos and Whitlock,1986).  The fundamental 

concept underlying the CDF method is a mapping of the distribution variable to a uniformly 

distributed set of numbers.  For purposes of computer based simulations the set of uniformly 

distributed numbers is most often taken as a pseudorandom set distributed between 0 and 1, 

which are readily available by means of most standard random number generators.  Throughout 

this section a given number from the uniform set of numbers generated by a random number 

generator will be written as R .   

 For a given distribution, ( )f x , the cumulative distribution, ( )F x , can be written as  

 
( ') '

( )
( ') '

= ∫
∫

x

a
b

a

f x dx
F x

f x dx
 (A.1) 

 
Note that by the definition above the cumulative distribution, ( )F x , is normalized even if ( )f x  

is not.  Accordingly ( )F x  can be viewed as the required map of ( )f x  to a uniformly distributed 

set of numbers ranging from 0 to 1.  Although there are limitations to the above definition of the 

cumulative distribution, this form is sufficient for the distribution functions encountered most 

frequently in particle methods.  For cases investigated in this work the mapping of ( )f x  to a 

uniformly distributed set of random numbers allows for the variable of the distribution, to be 

written in terms of a random number R  for all distributions where  
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 (A.2) 

 
can be solved explicitly for ( )x R .  In cases where an analytical expression cannot be found 

numerical tabulation may also be used to define an x  for a given R .     
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Box-Muller Method: 

 The Box-Muller method is in essence the application of the CDF method to a normal or 

Gaussian distribution by means of a clever mathematical trick.  For a normal distribution the 

form of the distribution function is given by the following, where µ  is the mean and 2σ is the 

variance, 
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2

1( ) exp
22
x

f x
µ

σσ π
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. (A.3) 

 

Applying the CDF method to a distribution of this form with a mean of 0 and a variance of 1 

would result in a cumulative distribution of  
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Upon evaluation of the integrals the final form of the cumulative distribution would be found to 

be  

 
( / 2) ( / 2)( )
( / 2) ( / 2)

erf x erf aF x R
erf b erf a

−
= =

−
, (A.5) 

 
where erf is the error function.  Unfortunately the above cumulative distribution cannot be 

explicitly solved for ( )x R .  However, if a product of two independent normal distributions are 

considered a coordinate transform can be carried out.  For example take  
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Applying the standard transform of Cartesian coordinates to polar coordinates, such that  
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yields a transformation of the cumulative distribution integrals that result in  
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Since the distribution is already normalized the denominator is unity and thus the expression 

reduces to  
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Carrying out the integral above yields  
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rF r Rθ θ
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Noting that the angle θ  varies uniformly over the interval between 0 and 2π , and further noting 

that r and θ  are independent, a value for θ  can be generated by  

 12 Rθ π= . (A.11) 

While a value for r  can be calculated by  

 22 log(1 )r R= − − , (A.12) 

 
which for a random number distributed between 0 and 1 the relation can be simplified to  

 22 log( )r R= −  (A.13) 

 
Therefore, by the Box-Muller method a value of x  from ( )f x  can be generated by  

 2 1cos( ) 2 log( ) cos(2 )x r R Rθ π= = −  (A.14) 

 
and likewise a value for y  from ( )f y  is generated from  

 2 1sin( ) 2log( ) sin(2 )y r R Rθ π= = −  (A.15) 

 
with x  and y  being completely independent of one another.  Sampling a large number of x  

values using a quality random number generator will thus generate the distribution ( )f x .  It is 
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important to note that the clever trick of considering two independent normal distributions allows 

for a closed form relation between x  and a pair of random numbers by following the CDF 

method, a result which was unattainable using a single normal distribution.  

   

Acceptance-Rejection Method 

 In the event that the CDF method does not return an explicit expression for x  as a 

function of R  and a mathematic trick cannot be found to alleviate this difficulty an approach 

referred to as the acceptance-rejection method can be used (Bird, 1994).  In order to relate the x  

value to a random fraction the distribution is normalized by its maximum value,  

 
( )'( )
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f xf x
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=  (A.16) 

 
Since the values of x  themselves are uniformly distributed between the lower and upper limits, 

a  and b , the distribution of x  can be written as  
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If the CDF method is then applied to the above distribution function the cumulative distribution 

is found to be  
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From which the direct relation between x  and R  is calculated to be  

 ( )x a R b a= + −  (A.19) 

 
Using the above relation to generate an x  for a given random fraction becomes rather straight 

forward.  Upon calculating x , the normalized distribution, '( )f x , can be evaluated.  A second 

random fraction is then generated.  If the value of '( )f x  is less than the second R  the value for 

x  is accepted, if not the entire process is repeated until an acceptable value for x  is generated.   

 The obvious draw back of this method is the lack of a one-to-one relation that would 

insure an accepted value of x  for a given random number.  The advantage of this method is its 

applicability to an extremely wide range of distributions, since it doesn’t suffer from the same 

limitations of the CDF method. 
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Loading: Extension to a Maxwellian Distribution 

 Since the results presented in the previous sections introduced and contrasted three 

methods of sampling a distribution, more precisely a normal distribution with zero mean and unit 

variance, further extension of the methodologies is required for sampling from distributions 

common to particle-based simulations.  One such distribution often encountered in particle 

methods is the Maxwellian Distribution of Velocity, which describes the state of the velocity 

distribution amongst molecules in a gas at equilibrium.  As regular practice in the majority of 

gas-dynamic particle simulations the initial loading of the computational domain is carried out 

by means of sampling a Maxwellian Distribution.  The form of the Maxwellian Distribution of 

Velocity used by Bird (1994) is  

 ( )
3

2 2
0 3/ 2 exp 'f β β

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

c  (A.20) 

with  
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and  

 0' = −c c c  (A.22) 

 
where 'c  is the peculiar or thermal velocity, 0c  is the macroscopic or drift velocity and c is the 

velocity of the molecule.  For Cartesian coordinates, the distribution for a single velocity 

component can be written as  

 ( )2 2
0exp ( ' )uf u uβ β

π
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (A.23) 

with  

 0'u u u= +  (A.24) 

 
where u is the molecule’s x-velocity component, 'u is the x-component of the thermal velocity 

and 0u  is the x-component of the macroscopic velocity.  A few points are worth noting here.  

First of all, there is nothing special about the x-component and the other two components will 

share the same form as above.  Furthermore, each component is independent of the other.  Also, 
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the thermal velocity is independent of the macroscopic velocity and therefore the expression 

above can be separated into to independent distributions, one for thermal velocity the other 

indicating the drifting effect. 

 In order to ease the work load of re-deriving the expressions used in the three sampling 

methods for a Maxwellian Distribution it is convenient to simply point out the similarities 

between the normal distribution and the Maxwellian Distribution.  If we rewrite the single 

component velocity distribution in terms of the thermal velocity we see  

 ( )2 2
' 0exp ( )uf u uβ β

π
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. (A.25) 

 
If we compare the form of the above distribution with the normal distribution, rewritten below 

for ease of comparison, similar terms can be related.   
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The first term to find the counterpart of is β , for which we find  

 
1
2

β
σ

≡  (A.27) 

 
Likewise it is clear that the drift term is equivalent in effect to the mean, thus  

 0u µ≡ . (A.28) 

 
From these relations a simple modification to the results for a normal distribution will in turn 

give the matching results for a Maxwellian Distribution.  Therefore the Box-Muller relations for 

the distribution function for thermal velocity is  

 2
1

log( )
' cos(2 )

R
u Rπ

β
−

=  (A.29) 

 
which is taken from the Box-Muller method applied to a normal distribution with non unity 

variance (derivation not shown).  Since the macroscopic velocity is independent of the thermal 

velocity the two can be uncoupled and analyzed separately with the final result of the product 
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being no more than the linear sum of the two solutions.  Therefore a given molecule’s velocity 

can be computed from  

 2
0 1 0

log( )
' ' cos(2 )

R
u u u u R uπ

β
−

= + = = +  (A.30) 

 
by means of the Box-Muller method.  For the other two approaches the same linearity applies, 

therefore the value for the drift velocity can simply be added to the final value (after acc.-reject. 

for example) of the thermal velocity to comprise the molecule’s velocity.  Likewise each 

component of the molecule’s velocity can be calculated such that each component independently 

satisfies its respective distribution function and as a result the overall set of molecules will 

together fill the corresponding 3-dimensional Maxwellian Distribution of Velocity.  

 The current implementation for loading used in U-DSMC follows the Box-Muller 

method as described above for the determination of the loaded particle’s velocity components. 

 

Injection: Extension to Maxwellian Flux 

Another key step in modeling gas flows by means of particle methods is the proper 

capturing of the flux of molecules at the boundaries of the domain.  For many cases a 

Maxwellian Flux is assumed for others a drifting Maxwellian Flux is more appropriate.  

Following section 7.1 of Gombosi (1994) the flux of particles across a surface element can be 

given as a relation between the surface normal and the corresponding distribution functions.  If a 

set of local coordinates are attached to the surface as shown in the figure below the macroscopic 

motion of the flow can be related to the local coordinates such that 01c is the component of the 

drift in the 1x  direction and likewise for the other two components.  Thus we find: 
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Figure 74.  Local coordinate system on a surface element. 

 

Using the localized values, the flux of a quantity, Q , through a surface which is perpendicular to 

the 3x  axis, is given by (adapted from Bird, 1994) 

 
1 2 33 3 ' ' ' 3 2 10 c c cQ n Qc f f f dc dc dc

∞ ∞ −∞

−∞ −∞
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with,  

 ( )2 2
' exp '
ic if cβ β

π
= −  (A.33) 

 

A few points are worth noting about this formulation.  First, the integral over 1c  is only over the 

positive values since the 3x  axis is in the positive normal direction (direction of flux) and since 

only particles with a 1c  component in the positive 3x  direction can cross the surface.  Second, 

the distribution function for each component used above corresponds to the thermal distributions 

as used by Bird (1994) and Gombosi (1994).  The number flux through a surface with the surface 

normal aligned in the 3x  direction is given as  
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= ∫ ∫ ∫� . (A.34) 

 
Using a variable transform between 'ic  and ic  yields  
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From the relation above we are reminded that each component is independent of the other two.  

The evaluation of each integral can be carried out to find  

 ( ) { }2 2
3 03 03 03exp 1 ( )

2
nN c c erf cβ β π β
π β

⎡ ⎤= − + +⎣ ⎦
� . (A.36) 

 
In particle simulations a key value is the number of particles to be injected along a boundary 

surface with area A  over the iteration time-step t∆ .  This value can be found from  

 3N N A t= ∆�  (A.37) 

which results in  
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03 03 03exp 1 ( )

2
nA tN c c erf cβ β π β
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From the flux relation given above the corresponding velocity distributions of each thermal 

component can be extracted for the purpose of sampling from these distributions in order to set 

the injected particle’s velocity components.  The thermal velocity distributions that are retrieved 

are  
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The components parallel to the surface are found to correspond to the standard thermal 

distribution and as such may be sampled using the Box-Muller method, CDF method or 

Acceptance-Rejection as outlined in the previous section.  The normal component however fits 

the form of a Maxwellian Flux and therefore must be evaluated using a new relation.  If the CDF 

method is applied to the full drifting Maxwellian Flux shown in 
3'ccf  we find  
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It is helpful to note that if we take 03 0c = the distribution reduces to the stationary Maxwellian 

Flux and the cumulative distribution becomes  

 2 2
0 31 exp( ' )driftF c β− = − −  (A.41) 

 
If the methods of the last section are applied a closed form relation between 3'c  and a random 

fraction R  would be  
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R R
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β β
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= =  (A.42) 

which is equivalent to the relation given in section 12.1 of Bird (1994) {pg 259} for  sampling a 

distribution function representing a stationary equilibrium gas crossing a surface.  Unfortunately 

a closed form relation cannot be obtained for a drifting Maxwellian Flux and therefore the 

application of either the CDF or Acceptance-Rejection is required.   
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APPENDIX B.  COMSOL Grid Generation Interface Programs 

 
COMSOL to U-DSMC Direct: comTo3D.f: 
 
 The following program is used to covert a COMSOL grid file into a grid file formatted 
for use with U-DSMC.  The program is written in Fortran and is compiled using Intel’s Fortran 
complier.  The program has been used extensively on Philippos.  The input to the program is a 
COMSOL .MPHTXT file which is exported directly from COMSOL.  The output of the program 
is a .3d file which is formatted for immediate use with the U-DSMC program.  
 
 
!program that formats COMSOL mesh.txt output into grid.3d format 
 
 program comTo3D 
 implicit none 
 
 real::h,xVir,yVir,zVir 
 real::nx,ny,nz,x,y,z 
 integer::INnodes,INFaces,INBFaces,INCells,fn1,fn2,fn3,old,i,j 
 integer::iAt,nVir,in1,in2,in3,in4,ibf,ic,cfCount,in,cn1,cn2,cn3 
 character(50)::InputFile,OutputFile,s1,s2,s3,s4,s5 
        character(50)::s6,s7,s8,s9,s10 
 character(100)::str,head1,head2,head3,head4,format 
 integer,allocatable,dimension(:,:)::faces,cells       
                                         !local arrays of faces,cells 
 integer,allocatable,dimension(:,:)::fm_e,fm_t 
 real,allocatable,dimension(:,:)::fm_p 
             !incoming data arrays from fem.mesh e-bf, t-cells, p-nodes 
 integer,dimension(4,3)::nIndex 
 
!--------------------------------------------------  
! [] specify input/output file names 
!-------------------------------------------------- 
 InputFile='INPUTS/femMesh.mphtxt' 
 OutputFile='OUTPUT/CD_dSphereF_5.3d' 
 
!------------------------------------------------ 
! [] specify rough node spacing: 
!----------------------------------------------- 
 h=1e-1 
 
!----------------------------------------------- 
! [] specify virus info. (if needed) 
!from solver parser, it seems virus is not needed 
!by the solver routine 
!----------------------------------------------- 
 nVir=0 
 xVir=0.0 
 yVir=0.0 
 zVir=0.0 
 
!---------- block 0: create node index arrays -------------- 
!                           ( cell node combos for faces) 
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 !group 1: 
 nIndex(1,1)=1 
 nIndex(1,2)=2 
 nIndex(1,3)=3 
 !group 2: 
 nIndex(2,1)=2 
 nIndex(2,2)=3 
 nIndex(2,3)=4 
 !group 3: 
 nINDEX(3,1)=3 
 nIndex(3,2)=4 
 nIndex(3,3)=1 
 !group 4: 
 nIndex(4,1)=4 
 nIndex(4,2)=1 
 nIndex(4,3)=2 
 
 
!---------- block 1: read in fem.mesh data from in-file-------- 
!open input file 
 str='' 
 write(str,*)"Input File:" 
 str(14:)=InputFile(:) 
 write(*,*) trim(str) 
 open(15,file=trim(InputFile),STATUS='OLD') 
 
!read in header: 
 read(15,fmt=*)s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 
 write(*,*)'HEADER:'  
 write(*,*)s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 
 
!loop over first block (data not needed) 
 do i=1,8 
   read(15,fmt=*)head1 
 enddo 
 
!first object block: nodes 
 read(15,fmt=*)s1,s2,s3,s4,s5 
 write(*,*) 
   !skip next 4 lines 
 do i=1,4  
          read(15,fmt=*)head1  
 enddo 
!read in number of nodes 
 read(15,fmt=*)INNodes,s1,s2,s3,s4,s5 
 write(*,*)'# of Nodes: ',INNodes 
 write(*,*) 
   !skip next 2 lines 
 do i=1,2  
          read(15,fmt=*)s1  
 enddo 
!allocate array based on node number: 
 allocate(fm_p(4,INNodes))            !node data array (fem.mesh) 
 
!read in Nnodes (nx, ny, nz) and store in fm_p 
  !loop over Nnodes, read in data, store needed info. 
 write(*,*)'reading in node data' 
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 write(*,*)  
 do i=1,INNodes 
    read(15,fmt=*)x,y,z 
    fm_p(1,i)=x 
    fm_p(2,i)=y 
    fm_p(3,i)=z 
    fm_p(4,i)=h 
 enddo 
 
!skip over blocks of uneeded info: 
 do i=1,4 
   read(15,fmt=*)s1     
 enddo 
 read(15,fmt=*)in1      !_ # number of elements 
 do i=1,in1+2            
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ # number of parameters 
 do i=1,in1+1 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ # number of domains 
 do i=1,in1+1 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ # number of up/down pairs 
 do i=1,in1+4 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !edges: _ # of elements 
 do i=1,in1+2 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ number of parameters 
 do i=1,in1+1 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ # number of domains 
 do i=1,in1+1 
   read(15,fmt=*)s1 
 enddo 
 read(15,fmt=*)in1      !_ # number of up/down pairs 
 do i=1,in1+4 
   read(15,fmt=*)s1 
 enddo 
 
!read in boundary faces and store in fm_e 
 read(15,fmt=*)INBFaces             !#type 2: tri's, _# num. of elemets 
 write(*,*)'# of boundary Faces: ',INBFaces 
 write(*,*) 
 write(*,*)'Reading in Boundary Face Data' 
 write(*,*) 
!allocate boundary face array: 
 allocate(fm_e(4,INBFaces))        !boundary faces array (fem.mesh) 
!skip label 
 read(15,fmt=*)s1 
!read in nodes and faceats for boundary faces 
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 write(*,*) 
 do i=1,INBFaces 
    read(15,fmt=*)in1,in2,in3 
    fm_e(1,i)=in1+1 
    fm_e(2,i)=in2+1                !femMesh.txt goes 0->n, need 1->n 
    fm_e(3,i)=in3+1 
 enddo 
!skip line 
 read(15,fmt=*)s1 
 read(15,fmt=*)in1     !_ # number of parameters (don't need) 
 do i=1,in1+1 
   read(15,fmt=*)s1 
 enddo 
!get face attributes (Comsol boundary numbers) 
 read(15,fmt=*)in1     !_ # number of domains  (faceAt's) 
 read(15,fmt=*)s1 
 do i=1,in1 
   read(15,fmt=*)iAt 
   fm_e(4,i)=iAt+1     !numbers are 1 off (0->n-1) instead of (1->n) 
 enddo 
  
!loop over up/down pairs (uneeded) 
 read(15,fmt=*)in1     !_ # number of up/down pairs 
 do i=1,in1+4 
   read(15,fmt=*)s1 
 enddo 
 
!read in cell info and store in fm_t 
 read(15,fmt=*)INCells        !#Type 3: Tet's: _ # number of elements 
 write(*,*)'# of Cells: ',INCells 
 write(*,*) 
 read(15,fmt=*)s1 
!allocate cell data array 
 allocate(fm_t(4,INCells))            !cell data array (fem.mesh) 
!read in cell node data 
 do i=1,INCells 
    read(15,fmt=*)in1,in2,in3,in4 
    fm_t(1,i)=in1+1 
    fm_t(2,i)=in2+1 
    fm_t(3,i)=in3+1                !femMesh.txt goes 0->n, need 1->n 
    fm_t(4,i)=in4+1 
 enddo 
 write(*,*)'DONE reading in data:' 
 write(*,*) 
 
!don't care about the rest of the data: 
!close input file 
 close(15) 
 
 
!------------ Block 2: Create Boundary Faces ------------- 
 write(*,*)'Looping over Boundary Faces:' 
 write(*,*) 
!allocate needed arrays: 
 in4=4*INCells 
 allocate(cells(12,INCells))          !cell array - solver req.d info. 
 allocate(faces(6,in4))               !face array - solver req.d info. 
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!initialize local arrays (-1 is a needed tag in the solver) 
 do i=1,INCells 
   do j=1,12 
    cells(j,i)=-1 
   enddo 
 enddo 
 do i=1,in4 
   do j=1,6 
    faces(j,i)=-1 
   enddo 
 enddo 
 
 INFaces=0  !total # of faces in grid 
 
!loop over all boundary faces 
 do ibf=1,INBFaces 
   INFaces=INFaces+1         !create new face (1-to-1 at this point) 
     !set face's nodes and faceAt 
   do i=1,4 
     faces(i,INFaces)=fm_e(i,ibf) 
   enddo 
     !solver reserves faceAt=1 for interior so change 1's to 99's 
   if(faces(4,INFaces).eq.1)faces(4,INFaces)=99 
 enddo 
 
 
!------- Block 3: Create Cell Array & Rest of Face Array -------------- 
 write(*,*)'Looping over all Cells: ' 
 write(*,*) 
  !loop over all cells: 
 do ic=1,INCells 
   cfCount=4           !space counter for array index 
      !loop over all node sets for the cell (4 PER CELL) 
   do in=1,4 
        !add 1 to cell face counter 
     cfCount=cfCount+1 
        !see if face with same four nodes already exsits 
        !(temp variables used to shorten if statments) 
     cn1=fm_t(nIndex(in,1),ic) 
     cn2=fm_t(nIndex(in,2),ic)    !cell nodes making the current face 
     cn3=fm_t(nIndex(in,3),ic) 
       !add 1 to cell's node list (node 1 varies each time) 
     cells(in,ic)=cn1 
   !Loop over existing faces to see if current face is an OLD face 
     old=-1 
       j=0 
     do while((j.lt.INFaces).and.(old.lt.0)) 
  j=j+1 
  fn1=faces(1,j) 
   fn2=faces(2,j)        !existing face nodes 
  fn3=faces(3,j) 
  if(((cn1.eq.fn1).or.(cn1.eq.fn2).or.(cn1.eq.fn3)).and. 
     *              ((cn2.eq.fn1).or.(cn2.eq.fn2).or.(cn2.eq.fn3)).and. 
     *               ((cn3.eq.fn1).or.(cn3.eq.fn2).or.(cn3.eq.fn3)))then 
      !if true then its an old face, so don't add face, just 
         !add cell # to face's cell list, also check if interior 
       !boundary face: 
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      if(faces(6,j).eq.-1)then   
                         !if ind:6 is -1, then Old interior 
         faces(6,j)=ic 
      else   
                         !otherwise it is an old interior boundary face 
         faces(5,j)=ic 
      endif 
   !add face to cell list 
             cells(cfCount,ic)=j 
      old=1 
             exit 
  endif 
     enddo        !end do while loop 
       !if not an OLD face then create a NEW face 
     if(old.lt.0)then 
  !in this case, face is new, so create a new face 
  INFaces=INFaces+1 
    !set face's nodes 
  faces(1,INFaces)=cn1 
  faces(2,INFaces)=cn2 
  faces(3,INFaces)=cn3 
    !set face's first cell (second gets set when its old) 
  faces(5,INFaces)=ic 
    !if not a boundary face (which are done already) then it must  
                  !be an interior face, so set faceAt to 1 
  faces(4,INFaces)=1 
    !now just add data to cell array 
  cells(cfCount,ic)=INFaces 
      endif 
   enddo     !loop to in, node set loop 
 enddo      !loop to ic, cell loop 
   
 write(*,*)'Done looping over cells:' 
 write(*,*) 
 
!------------ Block 4: Tally neighbors -------------------- 
 write(*,*)'Tallying nearest neighbors:' 
 write(*,*) 
   !loop over all faces of all cells 
 do ic=1,INCells 
   do j=1,4 
     !check if cell is in face's cell list position 1 or 2 
     if(ic.eq.faces(5,cells(4+j,ic)))then 
        !if cell is pos. 1 then cell in pos. 2 is a neighbor 
  cells(8+j,ic)=faces(6,cells(4+j,ic)) 
     elseif(ic.eq.faces(6,cells(4+j,ic)))then 
        !if in pos 2 then cell in pos 1 is a neighbor 
        cells(8+j,ic)=faces(5,cells(4+j,ic)) 
     endif 
   enddo   !loop over faces 
 enddo   !loop over cells  
  
 write(*,*)'ALL NEEDED DATA SET:' 
 write(*,*) 
 
 
!------ block 5: write out grid.3D file ------------------ 
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!open output file 
 str='' 
 write(str,*)"Output File:" 
 str(14:)=OutputFile(:) 
 write(*,*)'Writing output file: ',trim(str) 
 open(16,file=trim(OutputFile)) 
 
!write typical 3d header 
 write(16,*)'< Nnodes >< Nfaces >< NCells >' 
 write(16,*)INNodes, INFaces, INCells 
 
!write Node data: 
 write(16,*)' < Nx >< Ny >< Nz >< Nh >' 
 do i =1,INNodes 
   write(16,*)fm_p(1,i),fm_p(2,i),fm_p(3,i),fm_p(4,i) 
 enddo 
 
!write Face data: 
 write(16,*)'< connectivity list >' 
 do i = 1,INFaces 
   write(16,*)faces(1,i),faces(2,i),faces(3,i),faces(4,i) 
 enddo 
 
!write Cells Data: 
 write(16,*)'Cells - 4 nodes, 4 faces, 4 cells-neighbors' 
 format='(1X,12I8)' 
 do i=1,INCells 
   write(16,format)cells(1:12,i) 
 enddo 
 
 !write virus stuff to end of file 
 write(16,*)'<  nVir  >' 
 write(16,*)nVir 
 
!rc BE CAREFUL OF THIS BLOCK, coment out when nVir = 0 
 if(nVir.gt.0)then 
   write(16,*)'< XVir>< YVir >< ZVir >' 
   write(16,*)xVir, yVir,zVir 
 endif 
 
 write(*,*)'--------DONE-------' 
 
 end    !end program 
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COMSOL Surface Exporting: FemToSurf.m: 
 
 The following program is used to extract the surface triangulation from a COMSOL mesh 
structure.  The program is written in Matlab and is run within the COMSOL/Matlab interface.  
The input to the program is a COMSOL .mesh data type which is exported directly from 
COMSOL.  The output of the program is a surf.dat file which is formatted for immediate use 
with the fForm.f program. 
 
 
%!m file to take in femlab mesh and create a surface for our meshGen 
%!general values 
numNodes=size(fem.mesh.p,2); %!number of nodes in FEM mesh 
numFaces=size(fem.mesh.e,2); %!number of boundary faces in FEM mesh 
h=-1.0;                      %!spacing number common to surf files 
wArray1(1)=0; 
wArray3(1:3)=0; 
wArray4(1:4)=0; 
%!mapping stuff 
mapArray(1:numNodes)=0; 
BNArray(1:numFaces)=0; 
bnIndex=1; 
for i=1:numFaces 
    %!LOOP over nodes of face 
    for j=1:3 
        tempNum=fem.mesh.e(j,i); 
        %!set mapping if new node 
        if mapArray(tempNum)==0 
            BNArray(bnIndex)=tempNum; 
            mapArray(tempNum)=bnIndex; 
            bnIndex=bnIndex+1; 
        end 
        faceNodes(j,i)=mapArray(tempNum); 
    end 
    %!make faceAt array, all 1's get changed to 99 
    faceAt(i)=fem.mesh.e(10,i); 
    if faceAt(i)==1 
        faceAt(i)=99; 
    end 
end 
%!start writing surfFile 
%!leave a single zero for text input: 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
%!write <Nnodes>,<NBnodes>,<NFaces> 
wArray3(1)=bnIndex-1; 
wArray3(2)=bnIndex-1; 
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wArray3(3)=numFaces; 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray3','-ASCII','-append') 
%!leave a single zero as a separator 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
for k=1:bnIndex-1 
    %!write <Xn>,<Yn>,<Zn>,<h> for all BoundaryNodes 
    wArray4(1)=fem.mesh.p(1,BNArray(k)); 
    wArray4(2)=fem.mesh.p(2,BNArray(k)); 
    wArray4(3)=fem.mesh.p(3,BNArray(k)); 
    wArray4(4)=h; 
    save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray4','-ASCII','-append') 
end 
%!leave a single zero as a separator 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
for l=1:numFaces 
    %!write <n1>,<n2>,<n3>,<at> for each face 
    wArray4(1)=int16(faceNodes(1,l)); 
    wArray4(2)=int16(faceNodes(2,l)); 
    wArray4(3)=int16(faceNodes(3,l)); 
    wArray4(4)=int16(faceAt(l)); 
    save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray4','-ASCII','-append') 
end 
%!leave space for <Nvir> 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
%!leave space for number of viruses 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
% !leave space for <Xvir>,<Yvir>,<Zvir> 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
%!leave space for values 
save('C:\Documents and Settings\ryanc\Desktop\newSurf.dat','wArray1','-ASCII','-append') 
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COMSOL Surface to U-GridGen: fForm.f: 
 
 The following program is used to reformat the surface triangulation from FemToSurf.m.  
The program is written in Fortran and is compiled using Intel’s Fortran compiler.  The input to 
the program is a surf.dat file which is the output of FemToSurf.f.  The output of the program is a 
.srf file which is formatted for immediate use with the U-GridGen program. 
 
!program that formats matlab output in surf.srf style 
 program fileFormat 
 
 real::a,b,Nnodes,NFaces,x,y,z,h 
 real::n1,n2,n3,At 
 integer::INnodes,INFaces,In1,In2,In3 
 integer::IAt,nVir 
 character(50)::InputFile,OutputFile 
 character(100)::str 
 
!--------------------------------------------------  
!specify input/output file names 
 InputFile='INPUTS/newSurf.dat' 
 OutputFile='mmP_c1.srf' 
!------------------------------------------------ 
 
!careful when virus is need, must add location by hand at bottom 
 nVir=0 
 
!open input file 
 str='' 
 write(str,*)"Input File:" 
 str(14:)=InputFile(:) 
 write(*,*) trim(str) 
 open(15,file=trim(InputFile),STATUS='OLD') 
!open output file 
 str='' 
 write(str,*)"Output File:" 
 str(14:)=OutputFile(:) 
 write(*,*)trim(str) 
 open(16,file=trim(OutputFile)) 
!read in header 0 
 read(15,fmt=*)a 
 write(*,*)'at header, a= ',a 
     !write typical surf header 
 write(16,*)'-surface triangulation-' 
 write(16,*)'<Nnodes><Nbnodes><Nfaces>' 
!read in Nnodes and Nfaces 
 read(15,fmt=*)b,Nnodes,NFaces 
 INnodes=int(Nnodes) 
 INFaces=int(NFaces) 
 write(*,*)'Nnodes: ',INnodes 
 write(*,*)'NFaces: ',INFaces 
     !write nodes, faces to file 
 write(16,*)INnodes,INnodes,INFaces  
!read in spacer 0 
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 read(15,fmt=*)a 
 write(*,*)'at spacer, a= ',a 
     !write header to file 
 write(16,*)'< Xn >< Yn >< Zn >< h >Nodes' 
!loop over Nnodes  
 do i=1,INnodes 
  read(15,fmt=*)x,y,z,h 
  write(16,*)x,y,z,h 
 enddo 
!read in spacer 0 
 read(15,fmt=*)a 
 write(*,*)'at spacer, a= ',a 
    !write next header to file 
 write(16,*)'< N1 >< N2 >< N3 >< At > Faces' 
!read in nodes and faceats for NFaces faces 
 do i=1,INFaces 
    read(15,fmt=*)n1,n2,n3,At 
    In1=int(n1) 
    In2=int(n2) 
    In3=int(n3) 
    IAt=int(At) 
    write(16,*)In1,In2,In3,IAt 
 enddo 
!read in final spacer 0 
 read(15,fmt=*)a 
 write(*,*)'at end of file, a= ',a 
    !write virus stuff to end of file 
 write(16,*)'Nvir' 
 write(16,*)nVir 
 write(16,*)'XVir, YVir, ZVir' 
!rc BE CAREFUL OF THIS BLOCK, coment out when nVir = 0 
 if(nVir.gt.0)then 
  write(16,*)'0.0 0.0 0.0' 
 endif 
 
 
 end 
 
 
 


