
Online Advising Tool

Jacob Adamsky

May 31, 2023

Abstract

This report represents the work of one or more WPI undergraduate

students submitted to the faculty as evidence of completion of a degree

requirement. WPI routinely publishes these reports on the web without

editorial or peer review. In an e�ort to improve the digestibility of both the

graduate and undergraduate catalogs, this project aimed to re-imagine how

students are able to access the course requirements for their degrees. Unlike

the current system for seeing the course requirements for your degree, the new

system allows students to create a mock schedule, giving them a general idea

of when they will be taking courses in the future.

1

Contents

1 Setting Things Up 4

1.1 Downloading the Application . 4

1.2 Setting Up Microsoft Azure . 4

1.3 Setting Up AWS and RDS . 5

1.3.1 Account and Database Setup 5

1.3.2 Installing MySQL Workbench 6

1.3.3 Setting up the Database . 6

1.4 Visual Studio and Microsoft Azure 6

2 Using the System as an Administrator 8

2.1 Administration Access . 8

2.2 Adding a Course . 8

2.3 Adding a Tracking Sheet . 9

3 Working with the Catalogs 11

3.1 Regular Expressions and Data Validation 11

3.2 Entering Tracking Sheets . 12

4 Development and Testing 13

4.1 Pre-Development . 13

4.2 Development . 13

4.2.1 Implementing Schedule Downloading 14

4.3 How it Works . 15

4.3.1 C# and JavaScript . 15

4.4 Testing . 18

5 User Experience 19

2

5.1 Undergraduate and Graduate Scheduling 19

5.2 General Graduate Scheduling . 21

5.3 Course Catalogs . 21

5.4 Help Page . 21

6 File System 22

6.1 Controllers . 22

6.2 Models . 22

6.3 Views . 23

6.3.1 Shared Views . 23

3

1 Setting Things Up

1.1 Downloading the Application

The �rst piece of software to install is Visual Studio (not VS Code). You can

�nd the download for it here. If you have access to a Professional or Enterprise

license, you can go ahead and install that. Otherwise, stick to Community because

it's free with your WPI email, while the other two will expire in 30 days. The

second piece of software you'll want to install is MySQL Workbench (if you have

your own preference for managing the MySQL database, use that instead). This

isn't entirely necessary, but can be very helpful if you're adding data to the

database and make an error as it allows you to quickly �x it without re-entering

everything. The download for that can be found here. Lastly, you'll want to

download the actual web application. All relevant �les for the project can be found

here. The connection string in Utils.cs is missing the server and password, so all you

have to do is follow the instructions in the Account and Database section.

1.2 Setting Up Microsoft Azure

The �rst step to begin setting up the application is to create a free Microsoft

Azure account and log in here. Next, click on the "App Services" button towards the

top-left of your screen and create a new app service. Once you've been redirected,

create a resource group, pick a name for your instance, select .NET 6 (LTS) for the

Runtime Stack, and then click Create at the bottom left of your screen. This part

may take a few minutes, so it would be best to move onto setting up things in AWS.

4

https://visualstudio.microsoft.com/downloads/
https://www.mysql.com/products/workbench/
https://github.com/adamskyjacob/Advising-Tool
https://azure.microsoft.com/en-us/

1.3 Setting Up AWS and RDS

1.3.1 Account and Database Setup

To start with AWS, head to this page and create an AWS account, making sure

to not choose any options that will cause unwanted billing to your account (it's

possible that Amazon would waive the fees if you mentioned you were working on a

school project). After logging in as the root user, search for RDS in the and click on

the �rst result labeled "Managed Relational Database Service". Head to the

Databases tab which can be found on the left menu and create a database. Select

standard create, MySQL for the engine option and the latest engine version, free

tier for the template so you don't get billed, and set the DB instance identi�er to

advising. Choose a new master username and master password (don't use anything

private as this will be visible to anyone who works on the project in the future), set

the storage type to gp2 and the allocated storage to 20 GiB, allow public access,

and create a new VPC security group in any of the three us-east zones. Once the

database has �nished creating, go back to the main RDS databases page and open

your database. Under Connectivity & security, copy the endpoint which will look

something like 'advising.(some random stu�).us-east-2.rds.amazonaws.com, open

the Utils.cs �le inside of the project downloaded

earlier (path is /Advising Tool/Advising Tool/Utils.cs),

and replace the server with your endpoint (leave

the ,3306), the user with your admin username (if you

picked a new one), and password with your password.

The �gure to the right shows where Utils.cs is in Visual

Studio. With every folder collapsed, it should be the last

�le.

5

https://aws.amazon.com

1.3.2 Installing MySQL Workbench

Launch MySQL Workbench and click the + button next to "MySQL

Connections". Name the connection something along the lines of Advising Tool, set

the hostname to the endpoint from your RDS database, the username to your

database admin username, and then click OK. After the popup disappears, click on

the database instance and enter your password. If you get a connection error, make

sure you followed all the previous steps correctly, and that the VPC security group

you have linked to your database has both an inbound and outbound rule for

MYSQL/Aurora with the TCP protocol and 3306 as the port.

1.3.3 Setting up the Database

To start, right click on the schema called sys and click "Drop Schema". This

schema holds no important information, so click OK. Right click on the empty

SCHEMAS section and Create Schema with the name advising. For each �le in

"Database CSV Files", right click on the "Tables" section, click "Table Data Import

Wizard", browse to the CSV �le, select it and click next, create a new table with

the same name as the �le you are currently importing (excluding �le extensions).

Once all of the tables have been imported, you're ready to hook everything up to

Microsoft Azure. Note: AWS RDS can and will be very slow. It can take anywhere

between 5-15 seconds to load a page, so try not to close out of tabs before they load

or swap tabs too frequently while others are loading.

1.4 Visual Studio and Microsoft Azure

For this part, you'll need to log into Visual Studio with the same email you

used for Microsoft Azure. Once you've done that, open up "Advising Tool.sln" and

open the "Build" menu on the top bar. Select "Publish Advising Tool" and create a

6

new target at Azure. Click next, select Azure App Service (Windows), select Azure

instance you created in the �rst part, and select the "Publish (generates pubxml

�les)" option. Once that is �nished, click on the Publish button at the top of your

current screen. Visual Studio will automatically open a browser window with the

application's website, but you'll need to add "/Home" to the end of the link to

access the website. With that, you should be good to look around the website and

start modifying it as you see �t. To update the website, simply click the "Publish"

button again.

7

2 Using the System as an Administrator

2.1 Administration Access

Currently, no there are no login credentials to determine who has access to the

Administration page, which can be accessed from the top-left hamburger menu.

Once you enter the Administration page, there are four di�erent options you can

choose from: Add Undergraduate Course, Add Undergraduate Sheet, Add Graduate

Course, and Add Graduate Sheet. Both the course and sheet pages work identically

to each other, so I'll explain from the perspective of someone adding to graduate

side of things.

2.2 Adding a Course

At the moment, course area is a text entry, but

should be updated to be an HTML select instead. First,

you pick the course area, enter the course ID (1001, 1002,

etc.) and course name,the description, and how many

credits its worth. For undergraduate courses, enter the

credit value as a fraction e.g 1/3, 1/6, while for graduate

courses, enter a whole number depending on what the

catalog lists the course credits as. For prerequisite and

recommended courses, you'll want to add a new grouping

for each prerequisite course. For example, in the image to the right, courses CS-123

and CS-234 are in a group together, meaning someone who is selecting courses can

pick CS-123 OR CS-234, not both. Each course group must have a course selected

from it, otherwise the student will get a warning about missing a prerequisite

(prevents them from adding the course to a schedule) or a recommended background

8

warning (just an alert popup, still allows course to be added to schedule). Next,

there is an option "Credit Range" input for the course. This is used in the case that

a course has a variable number of credits, e.g. RBE 598 Directed Research can have

up to 9 credits as an elective course. Lastly, tehre is the "Waive Options" section

which is use in conjunction with "Waive Course Form URL". Here, you can add an

option to take the course at the same time as another (in the case that this isn't

normally allowed), or you can choose to waive the course requirement entirely,

replacing the course instead with degree-related electives. You also should include a

link that directs students to a waiver form for all options you've added here.

2.3 Adding a Tracking Sheet

Adding a tracking sheet is a more complex task. Depending on what the course

requirements are, you'll have to use each section to the best of it's abilities. First,

enter the degree area (which, like in adding a course, should be an HTML select),

the full name of the degree, and the degree ID (e.g MS for Master of Science). Do

note that some degrees have widely di�erent course requirements depending on the

�nal option you select, so it may be best to make a whole other tracking sheet

instead of adding multiple options to the "Final" section. Free electives represents

the number of credit hours (graduate) or units (undergraduate) a student can take

in whatever area of study they please, while degree-related electives must be in the

student's area of study and committee-approved electives must be approved by the

graduate committee (only for graduate sheets). For "Course Sections", treat the

course groups similarly to those in adding a course prerequisite � you can only select

one course from each group. Focused electives are electives from a speci�c list of

areas (this should also be modi�ed to be an HTML select instead text inputs).

Specialty areas allow a student to select up to n number of course sections for their

9

degree specialty (only been used in Business degrees). As for a Depth area, they are

very similar to Specialty areas and Course Sections, except for the fact that a

student can only pick one of the Depth sections for their degree. Lastly, there is the

Final entry. How you enter the data for this is entirely dependent on the course

requirements for each �nal type. Some study areas have the same course

requirements for thesis vs. non-thesis degrees, while others vary to the point that

multiple tracking sheets are necessary. Each �nal option can have multiple groups of

course sections depending on what is necessary to complete the degree, and each

course section can either have a credit range or a number of times the course must

be taken. Do note that students cannot add courses in a �nal section to anywhere in

their schedule � it is only visible on the �nal selection page or once you download

the schedule as a PDF.

Note: For all undergraduate credit inputs, only enter fractional values unless

the course units are a whole number. For all graduate credit inputs, only enter

whole numbers. Doing otherwise will lead to a non-functional tracking sheet.

10

3 Working with the Catalogs

3.1 Regular Expressions and Data Validation

This part of the process only took a couple of days to get done. From each

catalog, I copied every course entry and pasted them into Notepad++ (also used

Visual Studio for JSON formatting). From there, I used "Find", set to regular

expression with ". matches newline" o�, to search with three di�erent regular

expressions. Firstly, I used '([A-Za-z]+) ([0-9]+): ([A-Za-z.]+)' as the �nd query

to locate the area, ID, and name of the courses and set the replace expression as

'{"AREA" : "$1", "ID" : "$2", "NAME" : "$3", "DESC" : "'. Each $# in the

replace expression corresponds to a parenthesis-contained regular expression ($1 =>

([A-Za-z]+)). After separating all of this data, the next regular expression Find

query was 'Credits: ([0-9]+)' and the replace statement was '", "CREDITS" : "$1"

},'. For courses without credits listed, I manually added a CREDITS property in

the JSON for the course and set it to "0". Alternatively, the MySQL Workbench

JSON import could have manually entered NULL values, but I avoided this so I

didn't have to worry about handling them. The last regular expression I used was to

remove the catalog page numbers. The �nd query was '[0-9]+ .* Catalog' and the

replace statement was � (empty string). After all that, I saved the �le as a .json and

opened it in Visual Studio where I used two quick regular expressions of '\n' and

'\r' to �nd and remove all newlines in the document. Splitting the regular

expressions apart instead of doing something like '[\n\r]*' was necessary as doing it

like this caused Visual Studio to crash. Once all newlines have been removed, I used

CTRL + K, CTRL + D to auto-format the document, and then I scrolled through

the �le to make sure all courses had an AREA, ID, DESC, and CREDITS property.

Whenever necessary, I made corrections to the course information due to the regular

11

expressions being an imperfect solution. Unfortunately, there was no e�ective way

for either undergraduate or graduate courses to enter prerequisite and recommended

background courses, so I had to manually enter the data for all course that had this

attribute.

3.2 Entering Tracking Sheets

I started with entering the graduate degrees as I knew this process was going to

be a bit more di�cult than the undergraduate side. Not all graduate degrees had a

clear-cut course track, so for those without a clear plan, I didn't enter them into the

database. As for undergraduate tracking sheets, most, if not all degrees have a

well-organized tracking sheet, so this process went a lot quicker.

12

4 Development and Testing

4.1 Pre-Development

Before I had started development of the course and tracking sheet entry pages,

I knew I needed to come up with a plan on how I was going to store the data. After

selecting a database hosting service (I explained how to set up AWS RDS above,

but personally used Azure MySQL hosting in the hopes of faster speeds, which I

was unfortunately not graced with), I opened up a blank JSON �le and started

coming up with a general structure for how I was going to enter the data. Once I

had come up with a basic format, I created the Add Tracking Sheet page for

graduate sheets (did this �rst because I knew it would be more di�cult to do data

entry) and entered the majority of the degrees I could. The next step was to process

the data, and ASP.NET worked wonders. As the .cshtml pages supported both

HTML and a slightly modi�ed version of C#, I was able process the data entirely

server-side. All of this, and the fact that I am fairly familiar with C#, were the

main reasons why I chose to use ASP.NET over React and JavaScript (on top of the

fact that I got an error trying to use MySQL with React with no solutions online).

4.2 Development

Originally, I was planning on using JavaScript and React as my framework, but

as I previously mentioned, I couldn't get React to work on my system.. Initially, I

set up all of the containers and navigation bars that would be needed, and then I

started parsing all of the information with C#. What I should have considered �rst

while doing this was how I was going to keep track of the required credits for each

section of the degree, but I dealt with that later. Once all the raw HTML elements

were on the pages for courses, sections, etc., I set up CSS style sheets for each view

13

and tinkered with them until I got a relatively decent-looking page. The next step

was writing all the JavaScript functions to do credit calculation, section hiding,

navigation, and prerequisite / recommended background / section credit checks.

Because of how some of the divs were organized in the raw HTML, I had to do

several element class and ID checks to make sure the correct element was being

modi�ed. As for the navigation and section hiding, that process was extremely easy

and very straight forward. Simply document.querySelector the section you want it

visible, set it's hidden attribute to false, document.querySelectorAll all of the

sections that should be hidden, and set them to hidden. The same went for

minimizing and maximizing course sections (when possible).

4.2.1 Implementing Schedule Downloading

Initial Implementation: Without use of an external package, the only option I

had to enable saving the course schedule was to use the print function in JavaScript.

This allows you to create a variable that you can write simple HTML to with inline

CSS, and then print the element as if you were printing to a printer, but instead of

printing to a printer, you would select "Print to PDF" and save the �le locally.

While it isn't the prettiest solution, I would de�nitely say it was very e�ective in

getting the job done. One bene�t to this solution, though, is that you could

querySelector a speci�c element you wanted to add to the downloaded PDF,

.cloneNode(true) on it, remove any unnecessary or undesired child elements, and

then add element.toString() to the print string.

Final Implementation: A simple PDF form package called "pdf-lib" was freely

accessible online, so I imported the script using a <script src="..."></script>

element in HTML. This script allows you to import a locally stored PDF as a

JavaScript variable, and modify the form values by selecting them based on their

14

hidden input tags. This made it very easy to export the course schedule as a Plan of

Study PDF.

4.3 How it Works

Something to note about HTML element dataset attributes is that they are

always stored as strings, so you must explicitly convert the dataset value to the

desired type. For example, if you are trying to access the prerequisite data array,

you must do JSON.parse(value) to convert it to an array as there is no other

explicit conversion in JavaScript from a string to an array. The same thing goes for

every other datatype you wish to store, no matter how basic (integer math doesn't

work consistently if you don't convert).

4.3.1 C# and JavaScript

C#: To get all of the courses visible on the website, C# was used in conjunction

with HTML to dynamically create HTML elements with the data received from the

MySQL database. With each function call (e.x. GetCatalog() or GetUGCatalog()),

the website's server creates a connection to the database and queries for the desired

course entries. The resulting rows are then converted into the Course model

(Course.cs in models) and added to a list of courses. In certain sections (e.x. core

electives, non-core electives), the courses are �ltered which can be done very easily

with an (Object).Where(course => course.property == true) call to return an

array with matching courses. Once all of the course sections are populated, the rest

of the functionality is entirely in JavaScript.

JavaScript: The rest of the site functionality will be explained here. The three

most important JavaScript functions used when adding and removing courses are

15

modifyCourseScheduling, updateCreditCount (or corresponding function depending

on parent section type), and downloadSchedulePoSPDF.

modifyCourseScheduling: The modifyCourseScheduling function handles

almost all of the logic for adding courses to the Selected Courses page (as well as

removing them when a course is deselected), with the exception of the �nal project

selection which is handled by addFinalCourse (this function works very similarly to

when you call modifyCourseScheduling on a course with a credit slider). When the

courses were initially added to the page, they included their dataset values

(recommended background, prerequisites, min-max credits if needed, course area

and id, and a copy of the course prerequisites). Both the recommended background

and prerequisite data values are used to check whether or not the necessary courses

have been added to previous semesters on the schedule. If not, the course has a

boolean attribute (for prerequisite) set so that the stylesheet turns it yellow,

indicating that you are missing a prerequisite course (you also get an alert with

window.alert), or just a window.alert if you are missing recommended background.

Additionally, when you select a waive option for RBE500, the course prerequisite

data will be modi�ed to remove RBE 500 as a prerequisite, or if you chose to take

RBE 501 or 502 with RBE 500, RBE 501 or 502 will be added to the sametime data

array which is then used to check whether or not the semester the course is being

added to includes the course you elected to take with RBE 500. If not, you get an

alert just like with recommended background. A check is also performed on all

courses using checkPrerequisite and checkRecommended which will alert the user if a

prerequisite or recommended background course has been removed from scheduling.

updateCreditCount: Each corresponding updateCreditCount or similar function

adds to the courses parent section's credit (or credits) data value the correct

16

amount of credits from the course when you select it. Another function is used for

the global credit counter which happens with the updateGlobalCredits function.

When a course is selected, if the credit count equals or exceeds the required credits

for the given section, all non-selected courses in the section are disabled, preventing

the user from selecting more courses. The section credits are used when users

attempt to access the Advisor Approval page: if the credit threshold for all sections

hasn't been met, you can't access the page.

downloadSchedulePoSPDF, getScheduleForEmailHTML: I consider

downloadSchedulePoSPDF to be one of the most important functions as it allows

students to download their plan of study to the o�cial WPI RBE Plan of Study

PDF, with the ability to add all of your personal information and automated adding

of courses and �nal selection to the PDF in one place. This might not be a massive

time save, but in terms of convenience, I think this is one of the nicest features of

the website. Students are still required to manually sign and date the plan of study

PDF, but this is a feature that could be added by whoever works on this next.

Additionally, there are more detailed text entries for the MS Thesis option, so the

data entry popup could be modi�ed to include those as well.

getScheduleForEmailHTML and getScheduleForEmail (child function not listed

in title) are both used together, allowing the user to click on a button and open up

an email window (with the system email application) that already has the currently

selected schedule in the body. It also lets you had a custom message, and shows a

preview of what the email will look like before it's opened in a new window.

Remaining Functions: The remaining functions not explicitly listed here likely

function very similarly to previously mentioned functions, or serve very basic

purposes such as adding or removing values to an elements dataset values.

17

4.4 Testing

When I started this project, I had the database and the ASP.NET server

running locally, so SQL queries were a lot quicker and the website loaded a lot

faster. This made testing very easy for me as the process was basically: add a new

function to JavaScript, test it's functionality on an actual tracking sheet, and �x

any issues that arose. Where testing became a bit of a nightmare was once I linked

my Visual Studio project and the database to Microsoft Azure. As I mentioned

previously, loading times with the free database and server hosting are not

particularly fast. On top of the 5-15 second loading times for the website, I had to

wait another 20-30 seconds for the publish to Azure to go through, and it wasn't

even guaranteed for the change to �x the issue. I strongly recommend keeping a

local database instance (that is kept up-to-date with the RDS database) and �gure

out a way to select between the local and server SQL connection strings to avoid the

slow loading times while testing. A lot of credit for bug/issue testing goes to

Professor Agheli, as well as a couple of friends.

18

5 User Experience

5.1 Undergraduate and Graduate Scheduling

Both undergraduate and graduate course scheduling work virtually the same.

The main di�erence between the two is that all undergraduate majors have a

"Project-Based Learning" section which contains IQP, MQP, and HUA. Both IQP

and MQP contain an empty placeholder course called IQP-1 and MQP-1

respectively just so the students have something to select during scheduling.

The scheduling process is pretty straight-forward. After picking the your area

of study and the speci�c degree you want to receive, you are redirected to the course

scheduling page. Most, if not all, degrees will start you o� on the Course Selection

tab with General courses selected. Regardless, the process is the same. Look

through the course options for each section and pick whichever ones you �nd

interesting (course information can be seen by clicking on the course label) while

still meeting the credit requirement. Some courses have waive options, so select

those as desired. It is advised that you select all courses for your general courses

before moving on to electives because there is a chance you may select the only

available option in a course section while selecting

degree-related electives. Once you've

selected enough credits from each section, you can

then pick your �nal option. Some degrees don't have

a �nal requirement (dissertation, capstone), so this

isn't always applicable. Each �nal can have multiple

sections of courses to select from, and it's important

to note that some course options in the �nal

selection page have a credit range instead of a single

19

number. For example, the picture on the right shows the Aerospace Engineering

non-thesis �nal option. The credit requirement for the �rst section is only 8 credits,

but with the way the system works, the maximum number of credits will be picked

from each selected course and added to the course counter. In the future, this could

be modi�ed to ensure that the global credit counter does not get updated past the

limit of each section, as selecting both options currently adds 11 to the credit

counter instead of 8. Lastly, certain courses (e.x. RBE 594, RBE 596, RBE 598,

RBE 599) can be split up into multiple sections depending on how many credits you

have elected to take for them.

To start organizing your courses into a semester-based (graduate) or

term-based (undergraduate) schedule, you can go to the selected courses tab. If you

are missing credits from any given section, or forgot to select a �nal option, you will

get a popup listing all of the areas you are missing selections in. Once you get into

the scheduling page, you can start selecting courses and adding them to semesters.

If you try adding a course to your schedule and you are missing prerequisites for

that course, you will get a popup telling you what courses you are missing and you

wont be able to add the course to your schedule. The same goes for recommended

background courses, but you can still add the course to your schedule. If you have

already taken a prerequisite course, for an undergraduate degree for example, you

can type the course in the format of MA-1021 (hyphen separating area and course

ID). Once you are done with scheduling, you can download the Plan of Study for

your degree, which will have your selected �nal option, as well as your selected

courses, already �lled out. Additionally, once all course section requirements have

been met, you can proceed to Advisor Approval where you can generate a template

email for an advisor.

20

5.2 General Graduate Scheduling

General scheduling is currently only available for graduate courses, but it

functions very similarly to how regular course scheduling works. You can search

through all courses in the graduate catalog, and pick whichever courses you'd like

with no restrictions. They can then be added to the same semester-based calendar

that you'll �nd in the graduate course scheduling.

5.3 Course Catalogs

Both undergraduate and graduate courses can be accessed through their

respective course catalog pages. There, you can click on a course and view it's

information including the course description, credits, recommended background, and

prerequisite courses. There are also two search options: title search and description

search. You can enable both to search course descriptions and titles for content, or

you can choose just one. If you have none selected, the search input does nothing.

You can also �lter courses based on their study area

5.4 Help Page

This section will be intentionally brief. As there are currently no security

measures to prevent SQL injection attacks (however unlikely they may be,

especially with how the site is being hosted) there is an issue submission form on

the help page in the case that students see any content that is unintended or was

injected by an external user. Future iterations of the system could have a feature

that allows students to make proposed changes to the database (modifying a course

description, prereqs, etc. or a tracking sheet course requirements, name, etc.) which

could then be accepted or rejected by a system admin.

21

6 File System

6.1 Controllers

This folder is where you can add/remove more controllers. The controllers for

an ASP.NET application (at least how I used them) are primarily for SQL updates

and natively used for URL routing. For example, the method

AddGraduateSheetRedirect in the picture

to the right would have a default path of

"/Home/AddGraduateSheetRedirect", but

because of the [Route("/Add-Sheet-Redirect")], this speci�c view now has the route

of just "/Add-Sheet-Redirect". For every .cshtml �le you have in the

"/Views/Home" folder, you need a corresponding method that returns an

IActionResult in the controller. If the name of the .cshtml is di�erent than the

method name, the page will fail to load.

6.2 Models

Models are just normal C# classes which are used as the model proprety of a

.cshtml �le. They are necessary, especially when making a SQL insert or update call,

as the ASP HTML form used to submit the data to HomeController.cs requires each

input to be a property of the Model class. Otherwise, the data submitted by the

form won't be sent to the controller and will never be part of a SQL query. Instead

of using �elds in the class, the model must exclusively use properties (these have

getters and setters). ASP.NET requires this for any class which is used as a model.

22

6.3 Views

The last aspect of the �le structure is Views. This is where the data from the

Model is processed and turned into HTML and JavaScript. It's important to note

that, while you can pass data from C# to an HTML attribute (e.g. set

dataset-num=@course.CREDITS), you cant do something like

onclick=@GetCourseInfo(this). As all C# is run

server-side, you can't pass any data from JavaScript

or HTML into a C# function. As you can see in the

example .cshtml code on the right, all C# method calls

when processing must be preceded by an . This is so

you can distinguish between HTML elements and their

text, and the C# method calls. One exception to this

is if you are currently inside the scope of a C# loop, or

if you are inside of @{}, the latter allowing you to put

whatever C# variables you want inside. All views must have a corresponding

IActionResult method in a controller (method name must be identical to �le name

preceding �le extension).

6.3.1 Shared Views

Shared views are an easy way of having identical HTML be displayed on

multiple pages without having to copy over the same code. The _Layout.cshtml

that I wrote up for this project includes the header, the page up button, and the

side menu. For the purposes of this project, I didn't look into how to use shared

views for di�erent pages, so there may be a way to do a shared view for certain

pages here to limit duplicate code.

23

	Setting Things Up
	Downloading the Application
	Setting Up Microsoft Azure
	Setting Up AWS and RDS
	Account and Database Setup
	Installing MySQL Workbench
	Setting up the Database

	Visual Studio and Microsoft Azure

	Using the System as an Administrator
	Administration Access
	Adding a Course
	Adding a Tracking Sheet

	Working with the Catalogs
	Regular Expressions and Data Validation
	Entering Tracking Sheets

	Development and Testing
	Pre-Development
	Development
	Implementing Schedule Downloading

	How it Works
	

	Testing

	User Experience
	Undergraduate and Graduate Scheduling
	General Graduate Scheduling
	Course Catalogs
	Help Page

	File System
	Controllers
	Models
	Views
	Shared Views

