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Abstract

The exponential increase in photovoltaic (PV) arrays installed globally, particularly

given the intermittent nature of PV generation, has emphasized the need to accurately

forecast the predicted output power of the arrays. Regardless of the length of the forecasts,

the modeling of PV arrays is made difficult from their dependence on weather. Typically,

the model projections are generated from datasets at one location across a couple of years.

The purpose of this study was to compare the effectiveness of regression models in very

short-term deterministic forecasts for spatio-temporal projections. The compiled dataset

is unique given it consists of weather and output power data of PVs located at five cities

spanning three and six years in length. Grated recurrent unit (GRU) generalized the

best for same-city and cross-city predictions, while long short-term memory (LSTM) and

ensemble bagging had the best cross-city and same-city predictions, respectively. The code

and data are available at https://github.com/Zhang-VISLab?tab=repositories.
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1 Introduction

1.1 Problem

The usage of renewable energy sources (RES) within the energy sector has been exponentially increas-

ing, both globally and domestically, within the twenty-first century. While there are several types

of RES, PV arrays have seen consistent improvements in their efficiency and reductions in cost, sub-

sequently leading to becoming more readily adopted. In 2001, only 1.5GW of PV generation were

constructed, while the global gigawatt capacity constructed in 2011 and 2021 was 65GW and approx-

imately 156.1GW, respectively [2], [3].

Although the shift from fossil fuels to RES likely originated from the desired to decarbonize our

world, the shift would not have gained much traction without the reduction in costs for these alternative

sources. There are multiple factors that govern the cost of a given PV system. The most important

economic inputs are the cost of the system and the energy that it would deliver each year [4]. These

factors are closely followed by the energy displaced by the system, if there are any tax credits or other

economic incentives, and how the system will be paid for. Additional considerations include the cost

for operation and maintenance, the future cost of electricity from utilities, any loan terms or if the

system was purchased outright, the lifetime of the system, and the cost for removing the system after

the lifespan is achieved [4]. The estimated total selling price per peak DC watt of power generated

by PV arrays across the residential, commercial, and utility sectors were projected to significantly

decrease from 2010 to 2020 [4]. The prices were $5.71, $4.59, $3.80 in 2010 for residential, commercial,

and utility and were forecasted to drop to $1.50, $1.25, $1.00 in 2020, respectively.

With this trend in the reduction of the overall cost of PV arrays across all sectors, the rate of

installation and construction of additional arrays would naturally increase. The projected growth of

RES from 2020 to 2026 is expected to increase by more than 60 percent such that the total global

generation is more than 4,800GW [3]. To put this in another perspective, this would amount to more

than the current global generation of fossil fuels and nuclear power combined. However, unlike fossil

fuels and nuclear power generation, RES are subject to variability and inconsistencies due to weather

factors [2]. Therefore, there is value in applying machine learning algorithms to model PV arrays, such

that grid operators can accurately predict the output power at a given instance to ensure the load

demand is met.
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1.2 Significance

Given the inconsistencies inherent to RES due to their reliance on weather and external factors, a

diverse collection of RES and predictive modeling of these respective sources is necessary to maintain

the load demand of electric grids. While all RES must receive careful consideration in terms of

potential installation locations, for PVs, the impact of partial shading and typical weather patterns of

the region are critically important [5]. Partial shading is impactful to the output power of an array

because the cells that compose each panel are particularly sensitive to shading. If a cell is minimally

shaded, neighboring cells can be affected as well because most arrays are composed of strings of cells

[4]. Therefore, even if a small amount of shading can significantly compromise the output power. The

standard procedure to mitigate this behavior is through the implementation of bypass diodes. If one

cell in a string cells are shaded, rather than simply not contributing to the net output power of the

array, the shaded cell can produce a negative voltage [4]. When this occurs, it is best to remove the

shaded cell from the resulting circuit rather than to drive current through the whole string, thereby

impairing the net power output. For this reason, and to prevent system failure, while also maintaining

load demands by mitigating the impacts of shading are a few of the reasons it is critical to carefully

construct these systems.

Therefore, PV generation is most closely tied to cloud cover. When there are no clouds, PV

generation follows a diurnal curve as the sun traverses the sky, which is both smooth and predictable

[6]. When clouds are present, they impact both the quality and quantity of the output power generated.

One such example is when there are sparse cumulus clouds in an otherwise relatively clear day. Due

to the sparsity of these clouds, the shading upon the given PV array is inconsistent [6]. The quality of

the output power is then greatly diminished while the quantity remains relatively high. This contrasts

with when there are opaque stratus clouds that linger for hours, thereby causing the output power

to be greatly diminished while the quality remains high [7]. Whether a cloud is drifting such that it

is just shading an array or that it is just departing, the abrupt nature of this change creates a step

change that either is a decrease or increase of the power generation [8]. This is classified as ramping

and is a factor that grid operators must consider when balancing load demands.

Any significant surplus or deficit of PV power generation, if multiple sources are tied together,

must be balanced with an equal but opposite allocation such that the load demand of a given region is

met [6]. The power quality from a PV array can be most easily visualized on the consumer end when

voltage flicker occurs. While low power quality is not directly indicative of voltage flicker occurring,

it would occur more frequently given increased variations in the quality of power delivered. Voltage

flicker is when the demand for electricity momentarily rises above the threshold of power generation
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that can be delivered [9]. This can most easily be observed in the brief flickering of lights after a

large appliance was activated. That said, preventing voltage flicker and moderating ramping effects

are just a few of many parameters that govern the output power generated by a singular or collection

of PV arrays. These are just a few tasks that are categorized as electric grid management, as shown

in Fig. 1. Therefore, the more accurate the projections of output power from RES, the more efficient

and cost-effective energy management can be. The grid operators would be able to either pull from

energy storage units to meet the grid’s load demand or allocate any surplus of energy generated to

these battery units. Additionally, with a better understanding of the amount of energy generated by

a source at any given point, the grid operator would be able to better transmit the energy to regions

with greater demand.

Figure 1: The connection between inputting weather data into a model, to utilizing that model in
assisting in the management of the electrical grid. Source [1].

The impact of clouds upon PVs influence the amount of solar irradiance that is received by the

arrays. This irradiance can be subcategorized based on the angle and method that it hits each panel

of the PV array. These distinctions include the diffused horizontal irradiance (DHI), diffused normal

irradiance (DNI), global horizontal irradiance (GHI) and the corresponding clear sky variations. Al-

though the different distinctions of irradiance are grouped as one in Fig. 1, it also becomes evident that

there are multiple other parameters that influence the output power of PVs. These include but are

not limited to the cloud type and amount of cloud cover, wind speed, relative humidity, temperature,

and other weather parameters. Therefore, given these characteristics and the additional complexity

of the conditions governing the power generation of PVs, logically these arrays would greatly benefit

from the usage of predictive modeling. Whereby, the output power can be modeled given the weather

conditions at the location. These forecasts are best accomplished using machine and deep learning.

Artificial intelligence is the parent category that contains machine learning, and within it exists a
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subset called deep learning. Machine learning can be considered a shallow neural network, as it allows

programs to learn from data without being declaratively programmed [10]. Deep learning differs by

having several hidden layers, complex connectivity architectures, and different transfer operations [10].

Deep learning algorithms are synonymous with neural networks. The term machine learning was

first used in 1959 by the American scientist Arthur Lee Samuel to describe the field of computers

that enabled the computers to learn from data without being directly programmed [10]. However,

in the contemporary era, machine learning has become universal. Its usage has entered the everyday

workspace, household devices, automobiles, and any sphere with the intention of providing ease-of-life

to people. From the ubiquitous growth of machine learning, it has also been employed to generate

predictive models for the output power of PVs.

1.3 PV Prediction in Literature

There are numerous publications that compare different machine learning and deep learning models

against one another. In most cases, there are only a handful of models whose performances are

compared, while there are a few publications that are more comprehensive, comparing the results

across articles.

However, before determining which model is best to use, one must first understand the different

durations of forecasts and their corresponding applications. Forecasts are typically categorized into

four groups based on the length of the projection: very short-, short-, medium-, and long-term forecasts

[11]. Intraday forecasts are classified as very short-term, and onsite measurements are typically required

for these projections. These very short-term forecasts are applied in real-time operations such as

spot markets, power smoothening, real-time power dispatching, and automatic generation control [11].

Short-term forecasts are typically between one hour to one week ahead. These projections are typically

utilized for reserve optimization, economic dispatching, transmission scheduling, unit commitment,

storage system management, and day-ahead markets [11]. Medium-term forecasts typically range

from one month to one year [2], while long-term forecasts tend to range from one year to ten years

[11]. These longer forecasts are mainly applied to the power sector for determining scheduling and

planning within the sector.

To properly compare the accuracy of different models, error analyses and accuracy evaluations were

conducted. Under different sky conditions, the accuracy of a model, let alone the baseline, will vary.

The California Renewable Energy Collaborative demonstrated that a %RMSE value up to six percent

could be expected when forecasting a day ahead under clear sky conditions [12]. While under non-clear

sky conditions, %RMSE values of at least 20 percent with a few outliers ranging between 40-80 percent

were observed [12]. A study that focused on a type of an artificial neural network (ANN) determined
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that this type of algorithm could achieve %RMSE values within the range of 15.2-16.3 percent for

the day ahead forecasts [13]. Additionally, the forecasting techniques of ANNs on average have been

proven to be considerably effective given the inherent ability to record non-linear abrupt changes that

are caused by rapid changes in the environmental conditions of the relationship between the input and

outputs [11] [13].

1.4 Prior Datasets

As relevant as the forecasting window is to understand the differences between different applications of

machine learning upon PV generation, the parameters used also have different predictive capabilities.

The parameters of GHI, wind speed forecasts, and ambient temperature are considered basic because

they are most often used [14]. That said, the GHI from the actual, hourly, and daily mean GHI, ambient

temperature shifted by one hour, azimuth, declination angles, and elevation are the most effective at

predictive capability. However, these are considered complex as these are calculated from the basic

inputs without requiring additional data [14]. While the daily mean GHI, supplemented by declination

angle, azimuth, and modeled 15-min elevation, are useful if operating at a low budget [14]. They come

at the cost of a reduced resolution of generated forecasts. In short, the most used predictors for the

output power are the average GHI, temperature, wind speed and direction, precipitation, humidity,

and cloud cover.

Across two comparative analyses spanning 31 studies, there are significant variations in the sampling

rates, lengths of datasets, and locations tested within each study. The average sampling rate was split

equally between 15- and 30-minute intervals. There were sampling rates as frequent as once per minute

and as infrequent as once an hour [10]. The length of each dataset varied from less than a year to the

rare few with five years of data. However, the average length of data available was between one and

two years, erring on two years [14]. Furthermore, all but two of the 31 studies had datasets that were

restricted to one location. Of the two multi-location studies, they contained data from two and ten

different locations.

1.5 Classic Machine Learning Methods

Proportionally, there are more types of machine learning algorithms applied to PV projections than

those of deep learning. Typically, the machine learning algorithms of linear regression, ridge, Lasso,

elastic net, decision trees, random forests, random forest based ensemble bagging, and support vector

machines are applied [10]. In one particular study, an ensemble method that was developed was

composed of the elastic net, gradient boosting, and random forest algorithms [10].
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1.6 Deep Learning Methods

Deep learning algorithms are tested as frequently as machine learning algorithms. These algorithms

consist of multiple layers, each layer composed of multiple nodes, thereby earning the name neural

networks. These layers are the input layer, the hidden layer, and the output layer. The hidden layer

can be a single layer or multiple layers. Additionally, the output layer may consist of a single node or

a multitude of nodes, depending on how many dependent variables are desired. The most overarching

type of neural network is the recurrent neural network (RNN). The standard deep learning models

within existing studies include multi-layer perceptron (MLP), LSTM, GRU, or a convolutional neural

network (CNN) [15]. LSTM models and other RNNs have also been used for these predictions because

of their strength when applied to time series datasets [15].

Regardless of the type of the neural network used, the algorithms typically outperform machine

learning models. In one study, a joint Siamese CNN and LSTM model (SCNN-LSTM) was developed

[15]. This model was then tested against a MLP, a LSTM, and a 3D-CNN. The SCNN-LSTM out-

performed the 3D-CNN, which outperformed the LSTM and MLP respectively for 10-minute ahead

forecasts. The better performance of the SCNN-LSTM and the 3D-CNN could be attributed to the

ability of deep learning models to handle images as well as numerical data. In another study, a Bayesian

neural network was tested against a support vector regressor (SVR) and a regression tree [11]. These

models were tested under conditions where minimal input features were provided to determine the

day-ahead forecasts. Within this study, the three models were trained and tested on the same dataset

for an optimal comparitive analysis. The results were that the Bayesian neural network significantly

outperformed the SVR which moderately outperformed the regression tree. Another study compared

24 machine learning models for deterministic day-ahead forecasts using a two-year-long dataset at

15-minute resolution [11]. From this comprehensive comparison, it was found that a neural network

composed of a MLP had the best overall performance, followed by SVMs.

1.7 Contributions

This study compares the accuracy of projections from 15 algorithms upon expansive spatio-temporal

datasets. Of the algorithms, 12 are machine learning, while three are deep learning. The machine

learning models analyzed are k-nearest neighbors (KNN), linear regression, linear stochastic gradient

descent regression (LSGDR), elastic net, partial least squares (PLS), ridge, kernel ridge, SVR, NuSVR,

decision tree, random forest, and ensemble bagging. The neural networks used were MLP, LSTM and

GRU. The datasets used in this study included five locations, where all but one of the locations had

six years of data. The accuracy of the projections were compared for both same-city and cross-city.
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2 Spatio-Temporal Weather and PV Power Data

In this section, the compiled weather and PV dataset is introduced and described. The weather data

was obtained from the National Renewable Energy Laboratory (NREL) [16], while the output power

of the PV arrays was obtained from the Special Interest Groups Energy (SIG Energy) of California

and the University of Massachusetts Amherst [17]. For each of these sources, the usage rights are only

restrictive against commercial usage.

2.1 Dataset Analysis

The empirical data for this study was compiled from three different databases. The dataset consists

of the weather data and the output power of a given PV array, taken at uniform intervals of date and

time. To maintain standardization across the dimensions of the dataset, the weather data from each of

the five locations were obtained from NREL [18]. The weather data from NREL is available from the

years 1998 to 2021, and it is sampled at a 30-minute refresh rate with a localized region of 4km [16].

The initial city was Amherst, MA, wherein the power data was obtained from the 155kW capacity

PV array atop the Computer Science building at the University of Massachusetts Amherst [19]. The

locations of the other PV arrays were in the Californian cities of Davis, Huron, Santa Barbara, and

La Jolla with output power capacities of 143.2kW, 53.8kW, 42.5kW, and 41.7kW, respectively [20].

Given the vast distances between some of the chosen cities, it is necessary to provide the rationale

behind the selection. The city of Amherst, MA, was initially selected to serve as a ground truth for

the weather and PV power data collected by an undergraduate capstone project at WPI given the

relative proximity of the cities. Wherein this capstone, an array of irradiance sensors were utilized

to predict the output power of a small PV array. Given the initial plan had been to train the model

on the data from Amherst and to test it on the data collected by the irradiance sensors, a sampling

window from 10am to 3pm with a 30-minute refresh rate had been proposed. As this was deemed

an acceptable window given the setup and management of the undergraduates. The direction of this

research changed, and with it the number and the scope of the cities included. This evolution was

done to enable cross-city projections, where a given algorithm was trained on data from one city and

tested on another. In order to avoid the persistence of weather in a localized region, it was necessary

to locate additional PV arrays outside of New England with a comparable sampling frequency and

length of data available. The cities in California were selected based on these criteria. Additionally,

the capacities of the PV arrays were large enough that comparisons could be made. The city of Davis

in California was selected as it had a PV array nearly equal in size to that of Amherst and was located

on a similar latitude. The remaining cities in California were selected based on the subsequently
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decreasing capacities of the PV arrays located at the given cities.

Although multiple years of data were obtained from each source and location, there were no overlap

of years between the site in Massachusetts and those in California. The University of Amherst accrued

historical data for the power output of their array with a 15-minute refresh rate from the years 2017

up until the current day when this was written. The output power from Amherst was compiled from

the year 2018 to 2020. This contrasts with the years available from SIG Energy. Although the data

also contained a 15-minute sampling frequency, it was only available from 2011 to 2016. For each

year of data available, the dataset followed the calendar year by starting on January 1st and ending

on December 31st. Fortunately, despite this discrepancy, the weather data maintained a consistent

dimension of parameters for each location. When conducting cross-city analyses on three years of

data, all five cities were used. Therefore, only the cities in California were used when conducting

cross-city projections for six years. To reduce any potential differences that may arise when comparing

the datasets from California and Massachusetts, only the last three years of the SIG Energy data were

utilized for the cross-city analyses across the five cities.

The datasets underwent preliminary preprocessing, prior to any standard preprocessing required

for the algorithms. This preliminary preprocessing predominantly consisted of filtering the dataset to

match the daily window of 10am to 3pm, composed of 11 data points per day. However, in addition

to that, the output power from SIG Energy was converted from kWh every 15 minutes to kW per

30-minute window. The datasets for each city are composed of 22 columns, wherein the first five are

the date and time, the next 16 are the weather data, and the last column is the output power. For

the datasets of three years in length, there are 12,056 rows while the datasets of six years in length

are twice that at 24,112 rows. The columns and the respective units are described in more detail in

the bulleted list.

2.2 Data Description

• Year: For the data at Amherst, the years range from 2018-2020, while the Californian cities range

from 2011-2016. Wherein only the last three years from the Californian cities are compared to those

from Amherst.

• Month: All twelve months of data are included for each year of data available.

• Day: Each day, including leap days, was included.

• Hour: Only the hours from 10am to 3pm and subsequent data points within were used.

• Minute: The data was sampled at a 30-minute sampling frequency.

• Diffused Horizontal Irradiance (DHI) [W/m2]: The solar radiation that has indirectly arrived

at a given location after having been scattered by the clouds and other particulate matter in the
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atmosphere. The solar radiation arrives equally from all directions [21].

• Diffused Normal Irradiance (DNI) [W/m2]: It is representative of the total radiation that

arrives perpendicular to a given surface, and is measured by photoelectric detectors [16].

• Global Horizontal Irradiance (GHI) [W/m2]: It is representative of the total amount of

shortwave radiation that is received from the sun by a given horizontal surface. The GHI was

measured by thermoelectric detectors and can also be calculated from the equation: GHI = DNI ∗

cos(SolarZenithAngle) +DHI

• Clear sky (DHI) [W/m2]: Clear sky denotes the conditions where there is an absence of clouds

across the entire visible sky. The clear sky DHI is therefore the upper threshold that the DHI could

achieve.

• Clear sky (DNI) [W/m2]: The clear sky conditions for DNI.

• Clear sky (GHI) [W/m2]: The clear sky conditions for GHI.

• Cloud Type [Unitless]: NREL classifies clouds into eleven types. In increasing numbers, these

types are probably clear, fog, water, super-cooled water, mixed, opaque ice, cirrus, overlapping,

overshooting, unknown, and dust. Therefore, this specific column contains discretized data rather

than continuous.

• Dew Point [°C]: The temperature at which water vapor can condense at. At the dew point, a

saturation of water vapor is reached, therefore fog, clouds, and precipitation may develop [22].

• Solar Zenith Angle [Degrees]: The angle is the angle that the sun is relative to an axis that

is normal to a surface [23]. This angle decreases as midday approaches, reaches a minimum value,

then increases afterward. It equals the latitude minus the angle of solar declination.

• Surface Albedo [Degrees]: The fraction of solar radiation that is reflected by the surface of the

Earth [24]. This value varies between zero and one, whereby a higher value indicates a larger amount

of radiation that was reflected off the Earth.

• Wind Speed [m/s]: The speed of the wind within the atmosphere. This measurement was taken

at the surface and scaled to within the atmosphere [16].

• Precipitable Water [mm]: The cumulative amount of water vapor contained within a vertical

column of a given space of the atmosphere. The volume of water vapor is typically expressed as if

it had condensed.

• Wind Direction [Degrees]: The direction is determined by the nearest hourly values of the second

iteration of the Modern Era Retrospective analysis and Research Applications [16].

• Relative Humidity [%]: The total amount of water vapor in the air compared to the maximum

vapor that the air can retain at a given temperature [22].

• Temperature [°C]: The temperature is measured at surface level but scaled to be the temperature
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within the atmosphere by a factor of 6ºC/km of elevation increased.

• Pressure [mbar]: The measured pressure of the atmosphere.

• Output Power [kW]: The power generated by the PV array. The upper threshold of this value

is dependent on the size of the array, while the instantaneous value is dependent on the weather

factors above.

3 Machine Learning Methods

There were numerous models whose accuracies were compared in this study. Due to the similarities

between select models, they have been grouped into families. These algorithms can be classified

as distance-based, linear, kernel, ensemble methods, and neural networks. The numerous regression

models were compared to determine which model, or set of models, performed best on the dataset

accumulated.

3.1 Distance-Based Model

The KNN algorithm utilizes a type of instance-based supervised learning, based on the differences

between features. The algorithm uses the distance function to determine a set of samples, whose

length is dictated by the value of k, that are the closest to the target variable [25]. The algorithm

stores the entire training dataset during the training phase. The model then creates a set of instances

of length k that most closely maps to the target. The prediction of the model is created based on

the similarity that the new observations have with the aforementioned set formed during training.

These new instances are compared to each instance within the training set, the prediction is derived

from the average of the response variable [25]. In regression based KNN, the algorithm computes the

prediction Y for each instance of x by averaging the targets from the nearest k instances from the set,

as described in Eq.(1).

Y =
1

k

∑
xi∈Nk(x)

yi (1)

where in this simplified example, xi represents the training examples, and Nk(x) is the set of nearest

points [25]. It can be difficult to determine the optimal value of k as there is an inverse relationship

between k and the error on the training set but a direct relationship with the error on the test set. The

distance function, used to calculate the Euclidean distance d between the variables x and y is used in

the KNN algorithm as described in Eq. (2).

dx,y =

√√√√ n∑
i=1

xi − yi2 (2)
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This model differs from the others from its simplistic nature by using distance-based weighting for the

samples closest to the target. Because of this functionality, it tends to be an ideal model to run on a

dataset early into the researching phase.

3.2 Linear Models

There are numerous types of models that fall within the parent category of linear regression. In this

study, a few of these algorithms that were compared include the baseline linear regression, linear

regression with stochastic gradient descent as an optimizer, PLS, ridge regression, kernel ridge, and

elastic net.

Linear regression is one of the simplest models that could be tried when conducting regression on

a dataset, therefore acting as a baseline performance. As shown in Eq. (3) the correlation between

the independent variable x and the dependent variable y is bridged with a weighed coefficient for each

dependent variable and an intercept [26]. The objective of a linear regressor is to determine the values

of w and w[0] such that the loss function is minimized. Furthermore, the loss function must be defined

within the predicted and actual values of the target variable [27].

y = w[0] + w[1] ∗ x[1] + . . .+ w[n]x[n] (3)

where y is the output, or dependent variable, x[1]...x[n] are the independent features, w[1]...w[n] are the

coefficients of the linear model and w[0] the intercept term. A variation of the baseline linear regressor

is also compared in this study. Linear stochastic gradient descent regressor is a linear regressor that

uses stochastic gradient descent as an optimizer. This model iteratively updates the model weights

using a small, randomized subset of the training data instead of the entire dataset. Therefore, making

it computationally efficient for larger datasets [27]. Although as the complexity of a dataset increases,

the likelihood of a linear regressor producing accurate projections tends to decrease.

Another variation of a linear regressor is PLS. It differs from the previous regressors as it is based

on covariance, and is often employed in circumstances where there are many independent variables

where some are correlated. PLS reduces the number of variables to predict a smaller set of predictors

[28]. This smaller set is then used to perform the regression analysis. Although there are two types

of PLS for regression, PLS 1 and PLS 2, the applications for each differ if there are one or multiple

dependent variables, respectively. Given there was only one dependent variable in this study, PLS 1
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was used [28]. The formula for PLS regression is described in Eq. (4).

Y = ThC ′h+ Eh = XWh ∗ C ′h+ Eh = XWh(P ′hWh)− 1C ′h+ Eh,

B = Wh(P ′hWh)− 1C ′h

(4)

where Y is the matrix of dependent variables, X is the matrix of independent variables, B is the matrix

of regression coefficients generated by PLS of Y on X with h number of components. While Th, Ch,

W ∗ h, Wh, Ph are the matrices generated by the algorithm, and Eh is the residual.

Ridge regressors are algorithms that estimate the coefficients of multiple regression models where

the independent variables are highly correlated. What separates ridge regression from PLS is how the

model handles the multicollinearity. Multicollinearity occurs when any two independent variables are

correlated [29]. Instead of utilizing covariance matrices, ridge uses L2 regularization is to minimize

the penalized sum of squares to yield the weighted ridge coefficient. Ridge is typically used when the

independent and the dependent variables have been centered [30]. The process of determining the

ridge coefficient is described in Eq. (5). Where y is the dependent variable in the regression model, λ

is a a small coefficient, X is the design matrix, and I is an identity matrix [30].

β̂ridge =
(
XXT + λI

)−1
XT y (5)

Elastic net is a sparse learning regressor that solves the limitations of the Lasso and ridge regressors

yet maintains both as special cases. In Lasso regression, the independent variables are shrunk to a

central value, eliminating irrelevant parameters and utilizes the L1-norm [31]. This contrasts with ridge

regression that utilizes the L2-norm and minimizes the impact of the irrelevant parameters. Elastic

net employs a weighted combination of the L1 and L2 regularization methods used by the component

algorithms. This algorithm is able to generate reduced models by creating zero-valued coefficients [32].

Elastic net is often preferred, as it can apply the optimal regularization technique based on the nature

of the data. As a result, it is considered to be a parent model to Lasso and ridge regression [31].

Elastic net is described further in Eq. (6)

minPα(β) =

(
1

2N

N∑
i=1

(
yi − β0 − xT

i β
)2

+ λPα(β)

)
, Pα(β) =

p∑
j=1

(1− α

2
β2 + α|βj |

)
(6)

where N is the number of observations, yi is the response at observation i, xi is the data as a vector

of p values at observation i, λ is a positive regularization parameter, Pα(β) is the penalty term, α is

a scalar that ranges between zero and one, and β0 and β are scalars [32]. When α equals one, elastic

net applies L1-norm and functions like Lasso regression, alternatively, as α approaches zero, elastic
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net approaches the L2-norm, therefore functioning comparable to ridge regression. If the elastic net is

operating similarly to ridge regression, then the algorithm would use gradient descent to generate the

projections. If elastic net is either completely or partially configured to operate as Lasso regression,

then subgradient descent or coordinate descent would be used. In the case where α is between zero

and one, then both L1- and L2-norm would be used by the algorithm. Due to the robustness of elastic

net, it was one of the models whose results were displayed graphically.

3.3 Kernel Methods

A variation of the standard ridge regressor is kernel ridge, which combines the least squares and L2-

norm of ridge regression with the kernel trick. The kernel trick means that the computations for all

pairs of data in the feature space are calculated from the inner products of vectors [33]. The usage

of the kernel trick sets kernel ridge apart from the ridge regressor. Additionally, the usage of the

squared error loss function differentiates it from SVR. In this study a polynomial kernel of degree ten

is employed, thereby mapping the function to the original space [33].

Support vector regression is an abstracted version of support vector machines. SVRs are better

suited for times-series predictions, which are the conditions that governs forecasts for PV power gen-

eration when using irradiance. In a more general sense, the SVR is derived from a function that maps

the input patterns to those of the output. This is done based on a given set of training data that aims

to minimize error by individualizing the hyperparameters. The input features are mapped using a

non-linear mapping process to a high-dimensional space [11]. The nature of the SVR can is described

in Eq. (7).

y(x,w) =

N∑
i=1

wik(x, xi) (7)

where {xi, ti}i=1:N is the training set and many of the wi’s are equal to zero. However, there are some

limitations to the SVR algorithm: it lacks probabilistic interpretation, there is difficulty in selecting

the optimal regularization parameter C, and the algorithm is restricted to using positive semi-definite

kernels [34]. The projections of NuSVR were also compared in this study. Nu is a parameter used to

control the number of support vectors, replacing the parameter epsilon in epsilon-SVR [35]. In this

case, a nu value of 0.35 was used. For both SVR and NuSVR the radial basis function kernel was used

as the activation function. The NuSVR algorithm was selected to represent this group of models given

it had a more robust performance overall.
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3.4 Ensemble Models

The basic principle behind ensemble methods is to create an integrated group of baseline models,

typically considered weak learners, into a more robust model [10]. Where the more robust model can

better adapt to changes in the dataset, thereby providing more accurate and reliable performances

regarding the projections. Although varying degrees of ensemble models were used in this study, all of

them were composed of regression trees.

In general, tree-based regression models benefit from a simpler structure and higher efficiency when

applied to large domains of datasets. This is a result of the fast divide-and-conquer behavior of the

models. Furthermore, regression trees are based on the greedy algorithm, wherein the larger dataset

is split recursively into smaller partitions [36]. Although these tree-based algorithms are effective for

large datasets, they prove to have shortcomings such as instability on smaller datasets [36]. This

instability could arise from a small change during the training phase leading to different nodes being

created and subsequently causing said instability and inconsistent results.

The weakest learner of these tree regressors are decision trees. Decision trees are composed of

the potential decisions and corresponding repercussions, constructed in a flowchart-like tree structure

[25]. The outcome of a node is represented by the branches or edges. Each node either has a decision

node, chance node, or end node. A Boolean argument is representative of the branches or edges. The

decision tree then weighs the three aforementioned conditions [25].

Random forest is a type of supervised learning algorithm that effectively uses ensemble bagging to

tackle regression- or classification-based problems. During the training phase, the algorithm creates

multiple decision trees and then outputs the mean prediction of the trees [37]. The benefit of having

multiple trees, is that the collection of trees protects against the errors of the individual counterparts.

The random forest model acts as an aggregator to the mean projections of the total decision trees

constructed [37]. This architecture of aggregating multiple decision trees is displayed in Fig. 2. In this

study, the tree algorithms use squared error as the loss function.

Ensemble models are characterized based on the method that was used to build the weak learners.

There are three types of ensemble methods that are typically used: bagging, boosting, and stacking

[10]. The term “bagging” was derived from bootstrap aggregation. It is where multiple baseline

models are trained in parallel on portioned subsets of the training data. During the training phase,

bootstrapping occurs, where the original dataset is randomly sampled with replacement. Sampling

with replacement means that every time a sample is collected by a model, it is then replaced [38]. This

ensures that each round of sampling is independent and does not interfere with the next round. Then,

the final prediction of the algorithm is obtained from a voting aggregation of the final predictions
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Figure 2: The architecture of a simple random forest.

of the baseline models [10]. Given that random sampling with replacement is used within ensemble

methods, instead of altering the biases of the models, the variance of the projections is reduced. In

this study, a version of ensemble bagging composed of random forest models was utilized. Therefore

this was equivalent to the aggregation of final result from multiple random forests as displayed in Fig.

2. Due to the nature of the ensemble bagging model, it is a particularly strong algorithm and is the

best of the machine learning models compared in this study.

3.5 Neural Networks

These neural networks are composed of the three typical layers such as the input, hidden, and output

layers. Although the size of the output layer remains constant across each of the models, the size of the

input and hidden layers vary. The implementation of the MLP, differs more significantly from that of

the LSTM and GRU. Once such difference is that the architecture of the MLP more closely resembles

that which is displayed in Fig. 3, with one hidden layer. This contrasts with the LSTM and GRU

which have multiple inter-connected hidden layers. These multiple hidden layers can be conceptualized

as another column of hidden neurons. In Fig. 3, xm represents the number of features of the input

layer, hn the number of hidden neurons, and ŷ is the target variable.

The LSTM and GRU algorithms are subsets of RNN and were developed years ago to combat the

vanishing gradient problem, that is typical of RNNs [39]. The vanishing gradient becomes prevalent

during in RNNs that utilize gradient descent learning. The vanishing gradient occurs when the partial

derivative assigned to a weight is so small that the weight is effectively eliminated [40].
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Figure 3: The architecture of a simple neural network.

MLP is simple neural network with a feed forward supervised learning algorithm. Within this

model a non-linear activation function is used when each neuron in the hidden layer transforms the

previous dimensions of the input layer using a weighted linear summation [41]. Additionally, back-

propagation is used without the need of an activation function in the output layer, effectively using

the identity function as an activation function. For the forward propagation in this study, the recti-

fied linear unit activation function is used. Additionally, the Adam optimizer, an extended version of

stochastic gradient descent optimizer, and the square error loss function were implemented into the

MLP. Furthermore, the MLP was implemented such that during the training and testing phases, the

algorithm took in the entire dataset from the respective phases. The MLP algorithm is beneficial as

it has the capability to learn non-linear models as well as learning models in real time. Although,

the hidden layers have a non-convex loss function, which leads to the potential for multiple minima

to exist [41]. Therefore, any differences in the random weighting of the initialization can cause more

significant variations in the accuracy of the validation. Additionally, the MLP is subject to sensitivity

when feature scaling.

Unlike the MLP, the LSTM network consists of a series of gating mechanisms. This network is

composed of several types of gates that contain information about the previous state. The information

of the LSTM is either written, stored, read, or eliminated in the cells that serve as a memory stage

for the model [42]. The four potential processes are accomplished through the selective opening or

closing of the gates. The cells act on signals they receive and based on the strength of the signal

they will either transmit or block information. The LSTM model is composed of three different states,

the input, hidden, and output state. Within each unit of the LSTM there exists a cell state, Ct, an

input gate, it, an output gate, ot, and a forget gate, ft, displayed in Fig. 4. The forget gate is tasked

with determining which information is kept or eliminated from the cell state [42]. This decision is
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(a) The LSTM Unit. Source [42]. (b) The LSTM Cell.

Figure 4: The LSTM unit with the forget, input, and output gates, while the LSTM cell is able to
process data sequentially and maintain hidden states through time steps.

determined by the logistic function ft, as described in Eq. (8). Where this function will either output

a value of zero, to keep the information, or a value of one to forget it.

ft = σ(Wf [ht−1, xt] + bf ) (8)

where, in equations (8) and (9), σ is the activation function, Wf is the weight of the forget gate, bf

is the bias of the forget gate, xf is the input at time t, ht−1 is the hidden layer at time t − 1, Wc is

the weight of the cell, and bc is the bias of the cell. The input gate, forget gate, cell state, and output

gate are shown in Fig. 4, the LSTM cell. The input gate, it, and the cell state, Ct, are described in

Eq. (9). The input gate determines which input values are updated by the blocks of the LSTM.

it = σ(Wi[ht−1, xt] + bi), Ct = tanh(Wc[ht−1, xt] + bc) (9)

The output state determines which segment of the cell state is permitted to output. The formula for

the output state, as described in Eq. (10) includes tanh and is multiplied by another logistic function

whose output is scaled similar to the forget state.

ot = σ(Wo[ht−1, xt] + bo), ht = ot + tanh(Ct) (10)

where σ is the activation function, Wo is the weight of the output gate, and bo is the bias of the output

gate. The input data to the LSTM is composed of a three-dimensional array. The first dimension is

represented by the number of samples in the network, the second dimension is the time-steps, and the

third is the number of features in one input sequence [42]. In order for the LSTM to properly handle

the dataset, a sliding window was created. The implementation of the LSTM and GRU by utilizing the

sliding window separate these models from the other algorithms evaluated in this study. The sliding

21



window is discussed in greater detail in the preprocessing section. That said, the resulting size of the

three-dimensional array inputted into the LSTM was 11 by 3 by 20. The version of the LSTM in this

study contains a batch size of 64, a hidden size of 64, three dropout layers, and a MSE loss function

used given the regressive nature of the dataset. Additionally, the Adadelta optimizer was determined

to yield the best performance by trial-and-error. The Adadelta optimizer is a more robust version of

the Adagrad optimizer. Adadelta adapts the learning rates based on a moving window of gradient

updates, therefore, it is not necessary to set an initial learning rate [43].

Although the GRU shares similarities to the LSTM in terms of the functionality, there are still

differences in the architecture nature of the models. Similar to the LSTM, the GRU is able to handle

sequential data such as time series, speech, and text [39]. The GRU uses gating mechanisms to

selectively update the hidden state, subsequently updating the output layer. One way that the GRU

differs is that the model has two gates instead of three and lacks a cell state. The gating mechanisms

of the GRU are composed of the update gate and the reset gate [39]. In the GRU model, the reset

gate determines how much of the previous information of the hidden state should be forgotten. The

reset gate of the GRU is analogous to the input and forget gate of the LSTM [40]. The update

gate determines how much of the previous information should update the hidden state, and then

subsequently be passed into future units of the algorithm. The update gate is comparable to the

output gate of the LSTM. Within the reset gate exists another gate that is a subset of it. This is the

current memory gate, and introduces non-linearity into the input data. The current memory gate is

able to reduce the impact that the previous information has on the current information, which would

be transmitted to any future units [40]. The GRU cell is displayed in Fig. 5. Where ht−1 is the

previous state, xt is the input, and ht is the output. The final output of the GRU model is calculated

based on the hidden state and is described in Eq. (11)

Figure 5: The structure of the GRU cell.
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rt = sigmoid(Wr[ht−1, xt]), zt = sigmoid(Wz[ht−1, xt]),

h′
t = tanh(Wh[rtht−1, xt]), ht = (1− zt)ht−1 + zth

′
t

(11)

where rt is the reset gate, zt is the update gate, h′
t is the candidate hidden state, ht is the hidden

state, ht−1 is the prior hidden state Wr and Wz are the learnable weight matrices, and xt is the input

at time step t. The sigmoid function is applied to scale the result between zero and one. The GRU

model is able to solve the vanishing gradient by storing the relevant information from one time step

to the next of the network [39]. The GRU used in this research shared the input dimensions of the

LSTM because the same sliding window was employed. Additionally, the model utilized an averaged

stochastic gradient descent optimizer with a MSE loss function.

4 Experiments

4.1 Preprocessing

The research that was conducted included machine learning and deep learning models. To improve

the accuracy of the projections of these models feature selection was conducted on the dataset. The

parameters of interest were determined from the generation of Kendall correlation heatmaps. Addi-

tional preliminary testing was conducted to evaluate the optimal normalization technique to be used

on the compiled dataset. The normalization methods that were compared were min-max, z-score, and

decimal scaling. These methods were evaluated based on the accuracy of the models given same-city

and cross-city projections when trained at Huron. Ultimately, min-max scaling was used for the eval-

uations within the study. The data was then either split sequentially or randomly depending on the

type of model used, although in both cases there was a 70/30 split of training data to testing data.

Sequential data was used for the deep learning models of LSTM and GRU, while all the other mod-

els underwent random sampling. The machine learning models were inherited from the scikit-learn

library. Based on the input requirements for the machine learning models, the entire training dataset

was inputted in one instance prior to testing. This is in contrast to LSTM and GRU algorithms. The

two deep-learning models were trained and tested using a sliding window. The sliding window dropped

the year but retained the other independent parameters of data and was composed of 11 rows such

that the equivalent of one day of data was used in each instance. The output power data from the

11th row was the dependent variable tied to the entire sliding window. The sliding window and the

respective output power value were saved as a pickle file. The hyperparameters of each model were

tuned through trial and error.

The experimentation remained the same for each model. The models were trained on the dataset
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from one city, then tested three times on the dataset of a given city. The location of the testing city was

cycled after recording the results of the evaluation metrics from the mean and standard deviation of

each iteration. The process was then repeated by cycling through which city was used as the training

dataset. The same-city projections and cross-city projections results, from datasets of a given length

of years, were extracted from the large matrix of results generated.

The above process was conducted for the five cities with datasets of three years in length and then

repeated for the four cities with six years of data. Varying the length of years of data inserted into

the models allowed for deeper evaluations of the performances. Namely, to observe if there was any

fall-off of accuracy for certain models.

4.2 Evaluation Metrics

Although there is no standardized evaluation metric applied to determine the accuracy of forecasts

for the output power of PVs, there are a few that are more commonly used. The acceptance of using

MSE or RMSE varies from one report to another, as there are numerous metrics used within each

study. Occasionally R2 is used as well. R2 is a statistical measurement of how well the regression

coefficient matches the ground truth. For R2 scores, the closer a score is to one, the more accurate

that projection, while smaller decimals and negatives are indicative of increasing inaccuracies. This is

in contrast to the ideal MSE and RMSE values, where the more accurate the projection of a model is,

the closer the value would be to zero. The results from MSE and RMSE are strictly positive.

At least in regard to electricity forecasting, RMSE appears to be a popular evaluation metric [44].

The three accuracy measurements of R2, MSE, RMSE, were used to better enable comparisons to

prior contributions. The evaluation metrics used are described in Eq. (12).

R2 = 1−
∑

yi−i
2∑

yi − ỹ2
, MSE =

1

n

n∑
i=1

yi − ỹi
2, RMSE(yT+1, ỹT+1) =

√√√√ 1

n

n∑
i=1

yi − ỹi
2, (12)

where n is the number of iterations, yi is the observed value, and ỹi is the predicted value.

4.3 Experimental Results and Analysis

In any dataset, particularly in datasets with many dimensions, it is beneficial to conduct feature

selection. Feature selection is a technique employed to improve the accuracy of projections by removing

the multicollinearity in independent variables. Multicollinearity between two variables can be easily

identified when the magnitude of the correlation coefficient is equal to or exceeds 0.7 [29]. This is

shown in Fig. 6, where a cross-correlation heatmap was generated based on the Kendall coefficient.

The Kendall correlation was selected as it is both more robust and ideal for time series data because
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it can handle normally and non-normally distributed data. When interpreting heatmaps, the learned

Figure 6: The Kendall cross-correlation of the parameters of the dataset.

weight that a given parameter on the horizontal axis has on a parameter on the vertical axis is given

by the value at the point of intersection of the two parameters. If the value of the coefficient is greater

than zero, there is a positive relationship between the two parameters, while if the coefficient is less

than zero, then there is an inverse relationship between the parameters. And if the coefficient is equal

to zero, then there is no correlation.

Although there is a slight variation in the value of the weight coefficients, based on the city used

in the cross-correlation, the relative ratios between the weights remain similar. There are a few cases

of multicollinearity within Fig. 6. This occurs between GHI and clear sky GHI, DNI and clear sky

DNI, GHI and solar zenith angle, and clear sky GHI and solar zenith angle, with coefficient weights

of 0.82, 0.75, -0.77, -0.93, respectively. According to the heatmap, the parameters with the greatest

correlation with the output power of a PV array are GHI, followed by clear sky GHI, solar zenith angle,

and DNI, with weights of 0.78, 0.67, -0.64, and 0.54, respectively. Unfortunately, the select variables

that are highly correlated with the output power also exhibit multicollinearity with the other correlated
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Figure 7: The Kendall cross-correlation after the dimensionality of the parameters were reduced.

predictor variables. To remove the multicollinearity within the dataset, the dimensions of solar zenith

angle, clearsky DHI, clearsky DNI, clearsky GHI were removed. A secondary Kendall correlation was

created as displayed in Fig. 7. However, the accuracy of the model projections decreased relative to

before the dimensionality of the dataset was reduced. Therefore, the complete dataset was used for

the remainder of the comparative analyses. Prior to the reduced dimensionality, the parameters that

were highly correlated with the output power of PVs aligns with that of prior art. Logically, the more

solar radiation that a given area receives as measured by GHI, the greater the power output of the

array. The reason the weight coefficient for the solar zenith angle is negative is that as the sun rises

in the sky, its angle from an axis normal to the ground decreases, indicative of an inverse relationship

between solar zenith angle and output power. The high correlation between these parameters, with

the output power aligns with the existing literature within the field.

A few normalization techniques were compared to determine the optimal method for the specific

dataset utilized in this study. The RMSE accuracy generated by these methods were compared through

same-city and cross-city projections as displayed in Table 1. The normalization techniques were min-
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Table 1: The RMSE results from different normalization methods on three years of data.

Same-City Projections Cross-City Projections
Model Min-Max Z-Score Decimal Min-Max Z-Score Decimal

KNN 0.082184 0.306474 0.000449 0.515207 0.513813 0.003769
Elastic net 0.061615 0.259507 0.001332 0.510282 0.484004 0.004285
NuSVR 0.046171 0.232047 0.000399 0.519203 0.488566 0.003741
Ensemble bagging 0.046672 0.221522 0.000357 0.499279 0.470452 0.003747
LSTM 0.077469 1.235138 1.215788 0.375896 1.261427 1.215734
GRU 0.074616 1.195654 1.157607 0.375316 1.225943 1.157613

max, z-score, and decimal scaling. Min-max normalization maps the data to be within the range

of zero to one by scaling each instance by the maximum and minimum of the dataset [45]. Z-score

normalization, also named Zero-Mean normalization, is derived from dividing the difference of the

instance and mean of the data by standard deviation of the data. While decimal scaling was performed

(a) Amherst Cross-City Projections. (b) Davis Cross-City Projections.

(c) Huron Cross-City Projection. (d) Santa Barbara Cross-City Projections.

(e) La Jolla Cross-City Projections. (f) Same-City Projections.

Figure 8: The cross-city and same-city R2 scores from three years of testing, on a semilog scale.
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by dividing each instance by ten to the power of four [45]. It was to the exponent of four because that

was the maximum length of the instances in the dataset. Although decimal scaling yielded smaller

RMSE results for the machine learning models, the accuracy decreased when applied to the neural

networks. Z-score normalization yielded competitive results for cross-city projections for the machine

learning models; however, lacked accuracy for the other testing conditions and models. This is in

contrast to min-max normalization which yielded the best accuracies across all conditions. For these

reasons, min-max normalization was considered the optimal normalization method.

Although numerous models were compared, only the more robust models from each of the groups

were displayed graphically. That said, tables were generated based off the compiled results from each

model. These tables are inclusive or more models than those in graphs.

In general, the cross-city projections of models were less accurate relative to those of same-city

projections. This was particularly evident for the R2 evaluations, where numerous models had negative

scores, in some cases this caused the results from select cities to not be graphed on a semi-log scale.

These negative R2 results indicate that the model’s performance is less accurate than that of a constant

function used to predict the mean [46]. The graphed R2 scores from the different testing conditions

across three and six years are displayed in Fig. 8 and Fig. 9, respectively. The discrepancies in the

graphed results of cross-city projections for R2 scores across six years of data are most likely caused

by significant negative scores under certain testing conditions. Notably, GRU was the only model to

have non-negative R2 scores on six years of data, as seen in Fig. 9a the value averaged to be 0.94.
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Table 2: The overall top performing models, given R2 scores on three years of data.

Training City Same-City Projections R2 Score Cross-City Projections R2 Score

Amherst, MA Ensemble bagging 0.818208 GRU 0.802737
Amherst, MA Kernel ridge 0.808784 NuSVR 0.701983
Amherst, MA GRU 0.802711 MLP 0.630215
Amherst, MA SVR 0.780876 KNN 0.611633
Amherst, MA LSTM 0.786242 Elastic net 0.595406

Davis, CA Kernel ridge 0.968095 GRU 0.924377
Davis, CA Ensemble bagging 0.961323 Kernel ridge 0.748125
Davis, CA NuSVR 0.960771 NuSVR 0.736539
Davis, CA Random forest 0.958764 Elastic net 0.735150
Davis, CA MLP 0.954446 Ensemble bagging 0.735079

Huron, CA Kernel ridge 0.961908 GRU 0.894339
Huron, CA Ensemble bagging 0.954075 Kernel ridge 0.765117
Huron, CA NuSVR 0.952966 Ensemble bagging 0.763900
Huron, CA Random forest 0.950676 NuSVR 0.758083
Huron, CA MLP 0.946865 MLP 0.745354

Santa Barbara, CA Ensemble bagging 0.860608 GRU 0.815995
Santa Barbara, CA Random forest 0.842497 Elastic net 0.691191
Santa Barbara, CA Kernel ridge 0.826094 Ensemble bagging 0.685700
Santa Barbara, CA GRU 0.815155 KNN 0.684999
Santa Barbara, CA MLP 0.796264 NuSVR 0.675440

La Jolla, CA Ensemble bagging 0.871669 GRU 0.820216
La Jolla, CA Kernel ridge 0.870437 Ensemble bagging 0.723362
La Jolla, CA Random forest 0.863120 Elastic net 0.707779
La Jolla, CA SVR 0.841832 Kernel ridge 0.707288
La Jolla, CA NuSVR 0.839770 Linear SGD regressor 0.706491

Table 3: The overall ranking of the top performing models, given R2 scores on three years of data.

Model Same-City Projections Cross-City Projections

Ensemble bagging 23 11
Kernel ridge 21 10
GRU 5 25
NuSVR 7 10
Random forest 11 —
Elastic net — 10
MLP 3 4
KNN — 4
SVR 4 —
LSTM 1 —
Linear SGD regressor — 1
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(a) Davis Cross-City Projections. (b) Huron Cross-City Projections.

(c) Santa Barbara Cross-City Projections. (d) La Jolla Cross-City Projections.

(e) Same-City Projections.

Figure 9: The cross-city and same-city R2 scores from six years of testing, on a semilog scale.
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Table 4: The overall top performing models given, R2 scores on six years of data.

Training City Same-City Projections R2 Score Cross-City Projections R2 Score

Davis, CA Kernel ridge 0.962847 GRU 0.939112
Davis, CA Ensemble bagging 0.959678 SVR -29.107155
Davis, CA Random forest 0.957719 NuSVR -35.422555
Davis, CA NuSVR 0.956933 Linear SGD regressor -37.781532
Davis, CA MLP 0.954850 KNN -37.950231

Huron, CA Kernel ridge 0.948526 GRU 0.944224
Huron, CA GRU 0.944319 NuSVR -0.082058
Huron, CA Ensemble bagging 0.943442 Ensemble bagging -0.087932
Huron, CA Random forest 0.938625 fandom Forest -0.089763
Huron, CA NuSVR 0.938625 Kernel ridge -0.095945

Santa Barbara, CA Random forest 0.848578 GRU 0.819383
Santa Barbara, CA Ensemble bagging 0.848578 Random forest -0.121863
Santa Barbara, CA GRU 0.943939 Decision tree -0.147946
Santa Barbara, CA Kernel ridge 0.628883 KNN -0.166443
Santa Barbara, CA Decision tree 0.628905 Ensemble bagging -0.190341

La Jolla, CA Ensemble bagging 0.860190 GRU 0.840431
La Jolla, CA Random forest 0.853891 Random forest -0.144870
La Jolla, CA Kernel ridge 0.849071 Decision tree -0.160601
La Jolla, CA GRU 0.840431 Ensemble bagging -0.203896
La Jolla, CA Decision tree 0.828522 KNN -0.211623

Table 5: The overall ranking of the top performing models, given R2 scores on three years of data.

Model Same-City Projections Cross-City Projections

GRU 9 20
Ensemble bagging 16 —
Kernel ridge 15 —
Random forest 14 —
NuSVR 3 —
Decision tree 2 —
MLP 1 —
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To assist in the comparison between the results from each model, the generated evaluation results

were tabulated. Only the top five performing models of each testing condition were included in Table 2.

In this study, the final value used in determining a model’s cross-city performance was done by taking

the average of all the results of projections including the same-city. While the same-city performance

of a model was determined by obtaining the mean of the results from the training and testing phase

occurring at the same location. For further readability, Table 3 was constructed based off Table 2. If

a model was within the top five performances of any given testing condition for same-city or cross-city

projections, then a score between one and five, inversely proportional to the ranking of the model, was

assigned. If a model had the best performance, it received a score of five, while the 5th best model

received a score of one. Subsequent models that did not perform within the top five models were not

assigned any score. The models were then reordered based on the decreasing overall performances.

When a model did not receive a ranking under any of the test conditions, it is reflected by a dashed

line. The process of tabulating the results was repeated for R2 scores across six years, and RMSE for

three and six years, as shown in Tables 4 and 5, 6 and 7, and 8 and 9 respectively.

Table 6: The overall top performing models given RMSE results on three years of data.

Training City Same-City Projections RMSE Cross-City Projections RMSE

Amherst, MA GRU 0.117168 LSTM 0.277781
Amherst, MA LSTM 0.117663 SVR 0.299399
Amherst, MA Ensemble bagging 0.132658 Elastic net 0.433328
Amherst, MA Kernel ridge 0.134039 Linear SGD regressor 0.434012
Amherst, MA Random forest 0.140668 Random forest 0.421120

Davis, CA Kernel ridge 0.045814 LSTM 0.277502
Davis, CA NuSVR 0.046171 GRU 0.280577
Davis, CA Ensemble bagging 0.046672 SVR 0.299829
Davis, CA MLP 0.049761 NuSVR 0.326975
Davis, CA Random forest 0.054414 KNN 0.376338

Huron, CA Kernel ridge 0.041984 GRU 0.375316
Huron, CA NuSVR 0.046171 LSTM 0.375896
Huron, CA Ensemble bagging 0.046672 Decision tree 0.500686
Huron, CA Random forest 0.048906 Elastic net 0.510282
Huron, CA MLP 0.049761 Linear SGD regressor 0.510518

Santa Barbara, CA Ensemble bagging 0.085397 LSTM 0.425840
Santa Barbara, CA Random forest 0.093342 GRU 0.459018
Santa Barbara, CA Kernel ridge 0.095554 Random forest 0.504005
Santa Barbara, CA MLP 0.101864 KNN 0.505611
Santa Barbara, CA NuSVR 0.107973 Ensemble bagging 0.509712

La Jolla, CA Kernel ridge 0.074351 GRU 0.409212
La Jolla, CA Ensemble bagging 0.075268 LSTM 0.438382
La Jolla, CA GRU 0.076123 Ensemble bagging 0.551663
La Jolla, CA Random forest 0.078357 Random forest 0.544993
La Jolla, CA NuSVR 0.082536 Decision tree 0.545914
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Table 7: The overall ranking of the top performing models, given RMSE results on three years of data.

Model Same-City Projections Cross-City Projections

LSTM 4 23
GRU 8 18
Ensemble bagging 18 4
Kernel ridge 20 —
Random forest 10 6
NuSVR 10 2
SVR — 7
MLP 5 —
Elastic net — 5
Decision tree — 4
KNN — 3
LSGDR — 3

(a) Amherst Cross-City Projections. (b) Davis Cross-City Projections.

(c) Huron Cross-City Projections. (d) Santa Barbara Cross-City Projections.

(e) La Jolla Cross-City Projections. (f) Same-City Projections

Figure 10: The cross-city and same-city RMSE results from three years of testing, on a semilog scale.
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(a) Davis Cross-City Projections. (b) Huron Cross-City Projections.

(c) Santa Barbara Cross-City Projections. (d) La Jolla Cross-City Projections.

(e) Same-City Projections.

Figure 11: The cross-city and same-city RMSE results from six years of testing, on a semilog scale.

For the evaluation metric of R2 scores, the models with the best performances remained relatively

similar across datasets spanning three and six years. Given R2 scores in Table 3 and 5, ensemble

bagging generalized the best for same-city projections yet also had respectable cross-city forecasts.

While GRU had the best projections for cross-city for both lengths of datasets. Based on the method for

determining the cross-city R2 performance of a model, GRU would be the only model that maintained

accuracy across six years.

Although the accuracy metrics of MSE and RMSE were obtained, only RMSE is discussed in

the report. This was because RMSE is more commonly compared between studies and was derived

from MSE. LSTM was the most accurate model for cross-city projections for RMSE on three years

of data, as shown in Table 7. Ensemble bagging performed the best given same-city projections, and

GRU generalized the best for both conditions between the two models. The better performances of the
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Table 8: The overall top performing models, given RMSE results on six years of data.

Training City Same-City Projections RMSE Cross-City Projections RMSE

Davis, CA Kernel ridge 0.048115 SVR 0.317826
Davis, CA Ensemble bagging 0.050737 NuSVR 0.344721
Davis, CA NuSVR 0.051682 KNN 0.358947
Davis, CA Random forest 0.052197 Linear SGD regressor 0.359327
Amherst, MA MLP 0.053125 LSTM 0.373920

Huron, CA Kernel ridge 0.002136 NuSVR 0.476343
Huron, CA Ensemble bagging 0.002386 Ensemble bagging 0.477623
Huron, CA NuSVR 0.002492 Random forest 0.477702
Huron, CA Random forest 0.002576 KNN 0.478098
Huron, CA MLP 0.002732 Kernel ridge 0.478177

Santa Barbara, CA Ensemble bagging 0.084657 Random forest 0.498814
Santa Barbara, CA Random forest 0.090800 Decision tree 0.505008
Santa Barbara, CA Kernel ridge 0.099094 KNN 0.510331
Santa Barbara, CA MLP 0.101365 Ensemble bagging 0.512817
Santa Barbara, CA Decision tree 0.103732 LSTM 0.512968

La Jolla, CA Ensemble bagging 0.078349 Random forest 0.537771
La Jolla, CA Kernel ridge 0.080821 Decision tree 0.541429
La Jolla, CA Random forest 0.080978 GRU 0.542811
La Jolla, CA MLP 0.084491 Ensemble bagging 0.550890
La Jolla, CA NuSVR 0.084968 KNN 0.551782

Table 9: The overall ranking of the top performing models, given RMSE results on six years of data.

Model Same-City Projections Cross-City Projections

Ensemble bagging 18 8
Random forest 11 13
Kernel ridge 17 1
NuSVR 7 9
KNN — 9
Decision tree 1 8
MLP 6 —
SVR — 5
GRU — 3
LSTM — 2
Linear SGD regressor — 2

neural networks could be attributed to the memory storage of previous states inherent to these models.

While the performance of the ensemble method could be attributed to the model’s nature averaging

the results across the baseline models relying on bootstrapping. Additionally, for RMSE results across

six years, ensemble bagging had the best generalizations for both same-city and cross-city projections.

In this study, the kernel ridge model should be disregarded because the algorithm was not stable.

It was common for the model to have cross-city MSE and RMSE results that were magnitudes worse

when it was trained on any city and tested on Amherst or Davis. This is most likely caused by over

tuning the model, as a 10th-degree polynomial kernel had been used.

From the extensive testing that was conducted, it became clear that select cities proved to be best
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for the training or testing phases. When conducting cross-city projections, the optimal city to use in

the training phase was Davis. This is because when a model was trained on a dataset from a city

that was not Davis, and tested on Davis, there were disproportionally large inaccuracies. Therefore,

by being trained on Davis the cumulative inaccuracies were reduced. However, if the dataset from

the city of Davis were to be omitted then the best dataset for the training phase for cross-city and

same-city projections would be from Huron. Should this research be extended and applied to any

given city, such that a model is trained on one city and tested on another, the dataset from the city of

Huron should be used during the training phase.

5 Conclusion

Over the past few decades, the installation of PV arrays have increased exponentially. Although bene-

fiting the environment by reducing the consumption of fossil fuels, this surge has primarily been driven

by the reduction in costs of these RES. Given the ever-increasing implementation of PVs into electri-

cal systems, and the intricate dependencies these sources have with shading and correlated weather

conditions, it is critical that PVs are accurately modeled. Typically, select machine learning and deep

learning algorithms have been adapted to model these RES with varied performances. The objective of

this study was to compare the accuracy of a couple of neural networks that were implemented against

machine learning algorithms to accurately model the output power of PV arrays. This testing was

conducted on a dataset that spanned three and six years in length and was inclusive of five locations.

It was determined that LSTM and GRU had the best overall performances, and of the two, GRU

outplaced LSTM when considering R2 scores as well. Although, if seeking an algorithm for a single

location, ensemble bagging should be selected. That said, GRU was the most robust of the models

when determining the output power of PV arrays in very short-term deterministic forecasts.

This application of cross-city projections could be expanded upon and used to model the PV

arrays from any given city. This would be particularly beneficial to locations where limited data is

available, yet a more extensive dataset available at a different location could be utilized to train the

model. Should this application be further developed, the dataset from the city of Huron yielded the

most accurate projections for modeling alternative cities and therefore could be used as a baseline.

Additionally, these models and the cross-location projections could be applied to the modeling of other

RES such as onshore or offshore wind farms.
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