
Side Channel Leakage Exploitation, Mitigation and
Detection of Emerging Cryptosystems

by

Cong Chen

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

12 Mar 2018

APPROVED:

Professor Thomas Eisenbarth Professor Berk Sunar
Dissertation Advisor Dissertation Committee
ECE Department ECE Department

Professor Yunsi Fei Dr. Jonathan Petit
Dissertation Committee Dissertation Committee
Northeastern University OnBoard Security, Inc.

Abstract

With the emerging computing technologies and applications in the past decades,

cryptography is facing tremendous challenges in its position of guarding our digital

world.

The advent of quantum computers is potentially going to cease the dominance

of RSA and other public key algorithms based on hard problems of factorization

and discrete logarithm. In order to protect the Internet at post-quantum era, great

efforts have been dedicated to the design of RSA substitutions. One of them is

code-based McEliece public key schemes which are immune to quantum attacks.

Meanwhile, new infrastructures like Internet of Things are bringing the world

enormous benefits but, due to the resource-constrained nature, require compact and

still reliable cryptographic solutions. Motivated by this, many lightweight crypto-

graphic algorithms are introduced.

Nevertheless, side channel attack is still a practical threat for implementations

of these new algorithms if no countermeasures are employed. In the past decades

two major categories of side channel countermeasures, namely masking and hiding,

have been studied to mitigate the threat of such attacks. As a masking counter-

measure, Threshold Implementation becomes popular in recent years. It is sound

in providing provable side channel resistance for hardware-based cryptosystems but

meanwhile it also incurs significant overheads which need further optimization for

constrained applications. Masking, especially for higher order masking schemes, re-

quires low signal-to-noise ratio to be effective which can be achieved by applying

hiding countermeasures.

In order to evaluate side channel resistance of countermeasures, several tools

have been introduced. Due to its simplicity, TVLA is being accepted by academy

and industry as a one-size-fit-all leakage detection methodolgy that can be used by

non-experts. However, its effectiveness can be negatively impacted by environmental

factors such as temperature variations. Thus, a robust and simple evaluation method

is desired.

In this dissertation, we first show how differential power analysis can efficiently

exploit the power consumption of a McEliece implementation to recover the private

key. Then, we apply Threshold Implementation scheme in order to protect from the

proposed attack. This is, to the best of our knowledge, the first time of applying

Threshold Implementation in a public key cryptosystem.

Next, we investigate the reduction of shares in Threshold Implementation so

as to bring down its overhead for constrained applications. Our study shows that

Threshold Implementation using only two shares reduces the overheads while still

provides reliable first-order resistance but in the meantime it also leaks a strong

second-order leakage.

We also propose a hiding countermeasure, namely balanced encoding scheme

based on the idea of Dual-Rail Pre-charge logic style in hardwares. We show that

it is effective to mitigate the leakage and can be combined with masking schemes to

achieve better resistance.

Finally, we study paired t-test versus Welch’s t-test in the original TVLA and

show its robustness against environmental noises. We also found that using moving

average in computing t statistics can detect higher-order leakage faster.

2

Acknowledgement

This dissertation was supported by the National Science Foundation (NSF),

under grants CNS-1261399 and CNS-1314770.

First, I would like to thank my advisor Professor Thomas Eisenbarth for his

continuous support throughout my PhD study. The advice and guidance he gave

me not only help me to complete my dissertation, but also equip me best research

skills for my future career. I am sincerely grateful for what I have learned from him

in the past five years.

I would also like to thank my dissertation committee members Professor Berk

Sunar, Professor Yunsi Fei and Dr. Jonathan Petit. They have been making careful

review and advice on my research and dissertation. I am grateful for their guidance.

Special thanks are also given to Ingo von Maurich and Dr. Rainer Steinwandt

who are the coauthors of our publications[CEvMS15a, CEvMS16, CEvMS15b] as

discussed in Chapter 3. Materials of Chapter 4 have been published in [CFE16] and

[CESY14] thanks to the contribution of Mohammad Farmani and Xin Ye respec-

tively. I also learn a lot from Dr. Adam Ding during the collaboration in work of

[DCE16] discussed in Chapter 5 and thanks for his intelligent support.

I am also grateful for the life experience with my lab peers. Thanks to your

support and help during the last five years. It would be a great memory to have

you around in AK212.

My parents have been supportive all the time. They respect my decision to

come the states in pursuit of my graduate study and always encourage me when I

feel stressed.

In the end, I would express my deepest gratitude to my wife for her sacrifice and

contribution to the family. This dissertation cannot be finished with her unselfish

support. It is my fortune to have her in my life.

i

Contents

1 Introduction 1

2 Background 6

2.1 Side Channel Attacks . 6

2.1.1 Simple Power Analysis . 7

2.1.2 Differential Power Analysis . 8

2.1.3 Correlation Power Analysis 9

2.2 Side Channel Countermeasures . 9

2.2.1 Masking Countermeasures . 10

2.2.2 Hiding Countermeasures . 11

2.3 Evaluation Metrics . 13

2.3.1 Mutual Information based Leakage Evaluation 13

2.3.2 T-test based Leakage Detection 14

2.4 Emerging Cryptosystems . 15

2.4.1 Post-Quantum Cryptography 15

2.4.2 Lightweight Cryptography . 19

3 Leakage Exploitation 22

3.1 Introduction and Motivation . 23

3.2 DPA of a McEliece Cryptosystem . 25

ii

3.2.1 Target Implementation . 26

3.2.2 Attack Description . 27

3.2.3 Measurement Setup and Results 35

3.2.4 Full Key Recovery . 40

3.3 Masking QC-MDPC McEliece . 44

3.3.1 Masked Syndrome Computation 44

3.3.2 Masked Decoder . 45

3.3.3 Implementing a Masked QC-MDPC McEliece 49

3.3.4 Implementation Results . 55

3.3.5 Leakage Analysis . 56

3.4 Conclusion . 58

4 Leakage Mitigation 61

4.1 Masking: Two-share TI . 62

4.1.1 Threshold Implementation with Two Shares 63

4.1.2 Potential Pitfalls . 65

4.1.3 Application to Simon . 66

4.1.4 Application to Present . 71

4.1.5 Implementation Results . 77

4.1.6 Leakage Analysis . 80

4.2 Hiding: Balanced Encoding . 87

4.2.1 General Balanced Encoding Countermeasure 89

4.2.2 A Case Study Based on the Prince Cipher 91

4.2.3 Evaluation Results . 95

4.2.4 CPA Results . 97

4.3 Conclusion . 102

iii

5 Leakage Detection 103

5.1 Motivation . 103

5.2 Methodology . 106

5.2.1 Paired T-Test . 106

5.2.2 Higher-Order and Multivariate Leakage Detection 109

5.2.3 Computational Efficiency . 110

5.3 Experimental Verification . 111

5.4 Practical Application . 113

5.4.1 Solving the Test-Order Bias 114

5.4.2 First-Order Analysis of an Unprotected Cipher 115

5.4.3 Second-Order Analysis on a Protected Design 118

5.5 Conclusion . 120

6 Conclusion and Future Direction 121

6.1 Summary . 121

6.2 Future direction . 122

iv

List of Figures

2.1 The structure of Prince cipher. 21

3.1 Block diagram of the syndrome computation as implemented in [vMG14a]. 28

3.2 Differential leakage trace for key rotation. 33

3.3 Characteristic shape of a single set bit and the “adjacent” set bits. . . 33

3.4 Normalized differential leakage trace ∆carry for the bits of hΣ,j. 37

3.5 Key bit recovery rates for recovering 0 key bits and 1 key bits. 38

3.6 Key bit recovery rates for recovering 0 key bits 39

3.7 Abstract block diagram of the masked QC-MDPC McEliece decryp-

tion implementation. 50

3.8 The structure of the cyclic rotating LFSR that is used to generate

the masks on-the-fly. 53

3.9 Layout of our pipelined QC-MDPC McEliece decoder for the first

part of the secret key, h0. 54

3.10 Comparison between two differential traces of two sets of secret keys. 57

3.11 T-test based analysis of differential traces 59

4.1 Data-path of the Simon with Two Shares. 69

4.2 Data-path of the bit-serialized 2-TI Simon 70

4.3 Hardware architecture of the 2-share G module 76

v

4.4 Hardware architecture of the 2-share S-box module 77

4.5 Hardware architectures of the 2-shares Present Cipher. 78

4.6 First-order leakage analysis of synthetic data. 80

4.7 Second-order leakage analysis of synthetic data. 81

4.8 Leakage detection results for the two-share implementation of Simon . 83

4.9 Leakage detection results for the three-share implementation of Simon 83

4.10 Leakage detection results for the two-share implementation of Present. 85

4.11 Second-order CPA. Max correlation for each key hypothesis over the

number of traces. 86

4.12 Result of CPA of three Prince implementations on the S-box output. 99

4.13 CPA results for the Hamming weight of the S-box output. 99

4.14 Mutual information between the state and the leakage. 100

4.15 First order mutual information between the state and the leakage. . . 100

5.1 Power consumption moving averages at a key-sensitive leakage point

on the DPAv2 template traces . 107

5.2 T-test comparison for 1O leakage with and without a sinusoidal drift

rE. 112

5.3 T-test comparison for 2O leakage with a sinusoidal drift rE. 113

5.4 T-test comparison for 1O leakage on unprotected Simon. 117

5.5 T-test detection probability for 1O leakage. 118

5.6 T-test detection probability for 2O leakage 119

vi

List of Tables

3.1 Resources usage comparison between McEliece implementations . . . 56

4.1 Comparison of leakage for a 2-sharing and 3-sharing. 66

4.2 Implementation results of two-share Simon and Present. 79

4.3 Performance comparison of three Prince implementations. 97

4.4 Performance and cost comparison for Prince suboperations 98

5.1 Computation Accuracy between our incremental method and Two-

pass algorithm . 110

vii

Chapter 1

Introduction

The past decades has witnessed the surge of many new cryptosystems to handle

the challenge brought by the advancement of computing technologies. Two of the

remarkable emerging cryptosystems are post-quantum cryptography and lightweight

cryptography.

There has been a substantial amount of research on quantum computers – ma-

chines that exploit quantum mechanical phenomena to solve mathematical problems

that are intractable for conventional computers. Up to present, IBM has been able

to build a quantum computer that handles 50 quantum bits, or qubits. The rapid

progress in this area poses a serious threat to traditional public key cryptography

like RSA and DSA using Shor’s algorithm [Sho97]. In order to protect the con-

fidentiality and integrity of digital communications on the Internet, post-quantum

cryptography has been developed to secure against both quantum and classical com-

puters. Actually, NIST has initiated a process to solicit and standardize one or more

quantum-resistant public key cryptographic algorithms. Among many submissions,

McEliece cryptosystem is a promising candidate and many of its variants have been

introduced since its proposal 40 years ago. However, one drawback of McEliece is

1

that it often require large key size to achieve sufficient security. Thus, many efforts

have been dedicated to shortening the key size. Recently, QC-MDPC variant of

McEliece has received considerable attention since it features reasonable key sizes.

In the meantime, another advancing computing technology – Internet of Things

– becomes an emerging topic. Internet of Things connects billions of resource-

constrained devices including RFID tags, sensors, contactless smart cards to the

Internet. In order to enjoy this new technology, security mechanisms of these

devices must be carefully reviewed and proper cryptographic algorithms must be

implemented to guarantee the data confidentiality, integrity and authenticity. How-

ever, it is not easy to implement conventional cryptographic functions on con-

strained devices due to the limitation of their resources. Therefore, many so called

lightweight cryptographic algorithms have been proposed and tailored for implemen-

tation in constrained environments, such as Present [BKL+07], Prince [BCG+12],

Simon [BSS+13] and so on.

It is no surprise that more and more algorithms will be introduced to provide se-

curity service in the future applications. However, security has to be understood and

scrutinized under certain assumptions or adversary models. In a black box model,

these new algorithms have passed the test or is being tested by the community.

However, the discovery of side channel attacks (SCA) 20 years ago showed that the

physical implementations of cryptographic algorithms can leak sensitive information

via the side channel. The adversary can exploit this information to recover the in-

ternal secrets that cannot be unveiled in the black box model. Therefore, we need

evaluate the algorithms in a revised model considering the side channel leakages.

In this dissertation, we investigate the side channel security of post-quantum

cryptography and lightweight cryptography with case-study on the above-mentioned

algorithms. Our study spans over all three important domains of side channel anal-

2

ysis, namely side channel leakage exploitation, leakage mitigation and leakage detec-

tion. Our goal is to answer the following questions that raised when placing these

algorithms in a side channel adversary model.

• Leakage Exploitation Can an adversary perform differential power analysis

(DPA) on post-quantum McEliece cryptosystem? There have been reports on

simple power anaysis (SPA) on McEliece software implementations. However,

SPA can be easily counteracted and does not work well in hardwares due to

the smaller leakage. In contrast, DPA is more powerful in extracting secrets

from the measurements. Thus, DPA is of particular interest for an adversary.

On the other hand, from a perspective of circuit designer, a countermeasure

that has a formally proved security can be implemented easily without error

is desired. Therefore, another interesting question is how to protect McEliece

with a sound security proof.

• Leakage Mitigation Threshold Implementation is a masking scheme with a

security proof that has been recently well studied and applied in many con-

ventional ciphers. However, for lightweight ciphers running on constrained de-

vices, the overhead incurred is significant and will negatively affect its deploy-

ment. Therefore, an intriguing question is how to reduce the cost of Threshold

Implementation while keep its sound security guarantee. On the other hand,

effective masking requires low signal-to-noise ratio (SNR) in the side channel

leakage otherwise it may fail to work. Hiding countermeasures are often used to

reduce the SNR and one of important works on hiding is Dual-Rail Precharge

Logic circuit style which is used to achieve constant leakage in hardwares.

Can we apply the same idea in software to mitigate the leakage for masking

scheme? Can we achieve constant leakage not only for internal states but also

3

for state transitions? The answer to these questions will facilitate the pro-

tection of modern embedded processors where other hiding schemes are not

easily implemented.

• Leakage Detection Any instantiation of countermeasures need to be thor-

oughly evaluated before large-scale deployment. T-test based leakage detection

has become popular since it is a one-size-fits-most leakage detection test that

is usable by non-experts. However, environmental effects can influence the t-

test in a negative way, i.e., will decrease its sensitivity. In the worst case, this

means that a leaky device may pass the test only because the environmental

noise was strong enough. Can we improve the current t-test detection tool

and develop a more robust and reliable leakage detection methodology? This

is critical for a valid evaluation of any countermeasure.

Our Contribution This dissertation attempts to answer the challenges posed to

the emerging cryptosystems as described before. The summary of our contributions

are as follows.

• Leakage Exploitation We propose the first differential power analysis of a

state-of-the-art McEliece implementation based on quasi-cyclic MDPC codes.

The analysis exploits the leakages of a key rotation operation and recovers

the majority of the private key bits. An innovative algebraic step to exploit

the key structure results in the full key recovery. We also implement the first

Threshold Implementation of McEliece cryptosystem that is leakage resistant

with a formal proof and concrete attack proof.

• Leakage Mitigation We present the first practical threshold implementa-

tions using only two shares. We explain how using two shares can actually

4

yield smaller cipher implementations that need less randomness and still show

perfect first-order resistance indicating its promising application in lightweight

ciphers for constrained environment. we also propose a balanced encoding

countermeasure for software and perform the first practical evaluation. It is

an effective hiding countermeasure to bring down the SNR and can be com-

bined with masking schemes for better leakage resistance.

• Leakage Detection We propose a paired t-test to improve the standard

methodology for leakage detection. The resulting matched-pairs design re-

moves the environmental noise effect in leakage detection. Furthermore, we

showed that moving averages increase the robustness against environmental

noise for higher-order or multivariate analysis, while not showing any negative

impact in the absence of noise.

The following parts of the dissertation thesis starts with the brief background

introduction in Chapter 2. Next, we describe the attack on McEliece in Chapter 3.

Chapter 4 introduces the two-share Threshold Implementation and balanced encod-

ing scheme. Chapter 5 presents the study of paired t-test as a leakage detection

tool. The dissertation is concluded in Chapter 6.

5

Chapter 2

Background

This chapter revisits the discovery of side channel analysis, followed by the intro-

duction of two classic categories of countermeasures, namely hiding and masking.

Then, we describe two leakage evaluation methods used in the dissertation. In the

end, we present the emerging cryptosystems that we investigate.

2.1 Side Channel Attacks

Classic cryptanalysis treats cryptographic algorithms as black box and attempts to

breach the cryptosystems without access to its internal execution. However, when

the real-world cryptographic devices perform key-related operations, the physical

observations obtained from side channels could carry information about the secret

keys and thus be exploited by an adversary to recover those keys. As a consequence,

the security goal established in the black box model does not hold any more in the

real-world settings.

Since the discovery of timing and power channels [Koc96, KJJ99] by Kocher

about 20 years ago, many other side channels such as electromagnetic emanation

[GMO01], cache accesses [IIES14] and acoustic [GST14] have been investigated and

6

demonstrated practically effective. In this dissertation, we consider mostly power

attacks not only for its efficacy and efficiency but also for its widespread usage in

literatures for leakage exploitation, countermeasures and evaluation.

A typical adversary model of power attacks assumes that the attacker has access

to the crypto device and is even able to control the inputs to it. Next, she can

measure the power consumptions of key related crypto operations on those inputs

via a sampling equipment such as an oscilloscope. Let X be the inputs, k denotes

the secret key and Y = fk(X) is the target crypto operation that outputs secret

intermediate Y . Side channel leakage of this operation can be represented as L =

φ(Y) + ε where φ() is an unknown leakage function that captures the accurate

power characteristics of the device and noise term ε is assumed to follow a Gaussian

distribution. The attacker further predicts a leakage model φ̃(Y) based on her

knowledge of the crypto device or profiling steps and then she will compare the

leakage model and actual side channel measurements to distinguish the correct key.

Now, we briefly recall a couple of power attacks that utilize different types of

distinguisher.

2.1.1 Simple Power Analysis

Simple Power Analysis (SPA) is the simplest form of SCA that attempts to recover

the secret key with a small set of power measurements or even one single mea-

surement in the most extreme cases. It often involves a visual inspection of the

measurement to search for key dependent leakage patterns either in the amplitude

dimension or in the time dimension. The patterns can be used to distinguish the

instructions within one single measurement and the sequence of instructions can

possibly reveal the keys.

Take a square-and-multiply RSA implementation for example. Within one single

7

measurement, the adversary can possibly discern the power leakage patterns between

a squaring operation and a multiplication (by inspecting the amplitude dimension)

and then obtain the sequence of operations which can reveal the processed key bit.

SPA usually requires detailed knowledge of implementations of the crypto algo-

rithms and a high SNR measurement is also necessary for a successful key recovery.

Thus it is not directly used as a mean of practical attack. Instead, it can be used

to derive information about the crypto implementations and assist other advanced

attacks.

2.1.2 Differential Power Analysis

Differential Power Analysis (DPA) is one of most popular power analysis attacks.

Unlike SPA, DPA does not require detailed knowledge of the crypto devices. In fact,

it is usually sufficient to know what crypto primitive is being executed by the device.

DPA can still recover the secret key even if the power measurements have fairly low

SNR. To achieve this, DPA needs to collect a large set of power measurements

for operation Y = fk(X) on many inputs X under an unknown key k. Then the

adversary makes key guesses g and predicts the intermediate Y = fg(X). Then, she

uses a bit value as a leakage model, e.g., the most significant bit of Y . Based on this

power model, the measurements are divided into two groups, Then the adversary

makes key guesses and predict the intermediate bit value (0 or 1) under her choices

of plaintext and key guess. Based on the prediction, she can divide the power

measurements into two groups corresponding to either bit value 0 or bit value 1.

A difference of mean (DoM) distinguisher is then applied to the two groups and

distinguish the correct key with the strongest DoM. This is because the correct key

guess leads to the correct prediction of the intermediate value.

8

2.1.3 Correlation Power Analysis

Correlation Power Analysis (CPA) was originally proposed by Brier [BCO04]. CPA

attempts to find the dependency between side channel leakage and internal secret

of a cryptographic execution. To this end, CPA requires a leakage model, e.g.,

Hamming weight model of S-box output in a block cipher. Let Y be an S-Box

output of n bits, wt(Y) be the Hamming weight of Y and L be the observed side

channel leakage. Then the dependency between Y and L can be captured by their

correlation coefficient calculated as:

corr(wt(Y),L) =
Σ(L− L̄)

(
wt(Y)− wt(Y)

)√
Σ(L− L̄)2 × Σ

(
wt(Y)− wt(Y)

)2
(2.1)

Just as in DPA, attacker takes key guesses and then predicts corresponding

intermediates (now it is n-bit state instead of a single bit) as well as the leakage

model. By calculating the correlation coefficients between real leakage and predicted

model, attacker can distinguish the correct key corresponding the highest correlation

coefficient.

2.2 Side Channel Countermeasures

Ever since the introduction of side channel analysis, many works have studied and

developed countermeasures to protect cryptosystems from such attacks. Two major

lines of countermeasures are masking, which aims to randomize the intermediate

values processed by the crypto devices, and hiding which attempts to break the link

between the power consumption and processed data.

9

2.2.1 Masking Countermeasures

Masking countermeasure can be seen as a secret sharing scheme where each key

dependent intermediate value Y is split into d random shares Y1,Y2, ...,Yd. Any

combination of less than d shares cannot reveal knowledge of Y . Thus even if

attacker can obtain non-decaying leakage for each share, she has to integrate the

leakage for all d shares, namely L1,L2, ...,Ld in a multivariate manner or explore

the d-th order statistical moments of the measurements to perform a successful key

recovery which is getting more complicated as d grows larger.

Threshold Implementation is one flavor of masking countermeasures that has

drawn attentions in recent years. Unlike the ad hoc masking schemes, it is a generic

technique that can be conveniently applied to a wide range of algorithms. Moreover

it features a security proof against glitch leakages.

Threshold Implementation Threshold Implementation (TI) was proposed by

Nikova et al [NRR06] as a side-channel countermeasure to address the common

problem of glitches that resulted in leakage for many other theoretically sound coun-

termeasure techniques when applied to hardware.

TI combines a set of three requirements with a constructive description of how

to convert an algorithm into a side-channel resistant implementation in the presence

of glitches. Sensitive states are converted into a shared representation by applying

an additive Boolean masking, i.e., adding randomness. Functions F (·) are converted

meeting the requirements of correctness, uniformity, and non-completeness.

• Uniformity requires all intermediate states (shares) to be uniformly dis-

tributed. Uniformity is intended to ensures the mean leakages to be state-

independent, a key requirement to thwart first-order DPA. To ensure unifor-

mity in a circuit it suffices to ensure uniformity for the output share of each

10

function, as well as for the inputs of the circuit.

• Non-Completeness requires subfunctions fi of a shared function F to be

independent of at least one input share for first-order SCA resistance. That is,

a function F (x) shall be split into subfunctions fi(xj 6=i). This requirement was

updated in [BGN+14b] to require any d subfunctions to be independent of at

least one input share to achieve d-th order SCA resistance. Non-completeness

ensures that the final circuit is not affected by glitches. Since glitches can only

occur in subfunctions fi, and each subfunction has insufficient knowledge to

reconstruct a secret state (since it has no knowledge of at least one share xi),

no leakage can be caused by glitches.

• Correctness simply states that applying the subfunctions to a valid shared

input must always yield a valid sharing of the correct output.

2.2.2 Hiding Countermeasures

The goal of hiding is to make the side channel leakage independent of processed in-

termediate values. In order to achieve this, two different approaches can be adopted.

One is to randomize the leakage at each clock cycle during the crypto operations

such as inserting dummy operations, shuffling (in time dimension) and decreasing

signal-to-noise ratio (SNR) in amplitude dimension. The other approach aims to

build a crypto device that shows constant activities regardless of operations and

data being processed such that the leakage, e.g., power consumption is equally dis-

sipated and shows no correlation with the intermediate values. Dual-Rail Precharge

Logic (DPL) is a classic technique that achieves constant leakages for hardware

implementations.

11

Dual-Rail Precharge Logic DPL aims to achieve constant activity at the gate

level. In order to achieve this, DPL adopts the concepts of both dual-rail logic and

precharge logic.

Unlike a single-rail logic where each signal is carried in one wire, dual-rail logic

uses two complementary wires to represent a signal. One of the two wires will carry

non-inverted signal A while the other wire carries inverted signal Ā. That is, the

valid logic signal always consists of complementary values (A, Ā). For example, (0, 1)

are viewed as representation of signal 0 in a single-rail logic while (1, 0) denotes 1. For

a dual-rail logic gate, all the input wires and output wires are such complementary

wires.

As for the precharge logic, it means that all the wires in the circuit are set to a

so-called precharge value (0 for example). Then, in the evaluation phase, the signals

are set to their current logic values. When combined with dual-rail logic where

all signals are represented as two complementary values, there are always constant

transition activities at each clock cycle since for each signal it is either transit from

(0, 0) to (0, 1) or change from (0, 0) to (1, 0). In other words, there is constantly one

transition at each signal leading to constant power consumption in an ideal leakage

model.

Note that the Hamming weight of the pair is always constant as 1. Besides,

in order to obtain constant Hamming distance, the bit pair is precharged to (0, 0)

before evaluation. Hence, the gate transitions from (0, 0) to either (0, 1) or (1, 0)

leaks data independent power consumption or EM emissions. Based on this idea,

many DPL style have been proposed such as WDDL [TV04], MDPL [PM05] and

DRSL [CZ06].

12

2.3 Evaluation Metrics

2.3.1 Mutual Information based Leakage Evaluation

A popular method for evaluating the side channel resistance of an implementation is

mutual information. It was proposed as a side channel leakage metric for evaluation

in [SMY09] and refined for practical experiments in [DSVC14]. The goal is to

evaluate the leakage L of a critical intermediate state s. The evaluated intermediate

state for the Prince cipher is one nibble. The mutual information I(S;L) between

the leakage L and the states S is computed as I(S;L) = H(S) − H(S|L) where

H(S|L) is the conditional entropy of S, knowing the leakage L. It is given as

H(S|L) = −
∑
l∈L

(
Pr(l)

∑
s∈S

Pr(s|l) log Pr(s|l)

)
(2.2)

where l and s are specific observations of the leakage and state, respectively. Given

univariate templates N (µs,σs) for each state value s and each point of the leakage,

we have the probability density for observing a leakage l at that point given as

p(l|s) = N (µs,σs). Following Bayes’ Theorem, we get p(s|l) = p(l|s)Pr(s)
Pr(l)

and, since

all observations and states are equally probable, we can derive

Pr(s|l) =
p(l|s)∑

s∗∈S p(l|s∗)
,

as typically done for templates. Plugging this back into Equation (2.2), we can solve

Equation (2.2) by computing and summing over all Pr(s|l∗) for each l∗ ∈ LT , where

LT is the test (or evaluation) set.

13

2.3.2 T-test based Leakage Detection

In the framework of [GJJR11], the potential leakage for a device under test (DUT)

can be detected by comparing two sets of measurements LA and LB on the DUT.

A popular test for the comparison is Welch’s t-test, which aims to detect the mean

differences between the two sets of measurements. The null hypothesis is that the

two samples come from the same population so that their population means µA and

µB are the same. Let L̄A and L̄B denote their sample means, s2
A and s2

B denote their

sample variance, nA and nB denote the number of measurements in each set. Then

the t-test statistic and its degree of freedom are given by

tu =
L̄A − L̄B√
s2A
nA

+
s2B
nB

, v =
(
s2A
nA

+
s2B
nB

)2

(
s2
A

nA
)2

nA−1
+

(
s2
B

nB
)2

nB−1

. (2.3)

The p-value of the t-test is calculated as the probability, under a t-distribution with

v degree of freedom, that the random variable exceeds observed statistic |tu|. This

is readily done in Matlab as 2∗ (1− tcdf(·, v)) and in R as 2∗ (1−qt(·, df = v)). The

null hypothesis of no leakage is rejected when the p-value is smaller than a threshold,

or equivalently when the t-test statistic |tu| exceeds a corresponding threshold. The

rejection criterion of |tu| > 4.5 is often used [SM15, GJJR11]. Since Pr(|tdf=v>1000| >

4.5) < 0.00001, this threshold leads to a confidence level > 0.99999.

For leakage detection, a specific t-test use two sets LA and LB corresponding

to different values of an intermediate variable: V = vA and V = vB. To avoid the

dependence on the intermediate value and the power model, non-specific t-test often

uses the fixed versus random setup. That is, the first set LA is collected with a fixed

plaintext xA, while the second set LB is collected with random plaintexts xB drawn

from the uniform distribution. Then if there is leakage through an (unspecified)

14

intermediate variable V , then

LA = V (k,xA) + rA LB = V (k,xB) + rB, (2.4)

where k is the secret key, rA and rB are random measurement noises with zero

means and variance σ2
A and σ2

B respectively. The non-specific t-test can detect the

leakage, with large numbers of measurements nA and nB, when the fixed intermedi-

ate state V (k,xA) differs from the expected value of the random intermediate state

ExB [V (k,xB)] where the expectation is taken over the uniform random plaintexts

xB.

2.4 Emerging Cryptosystems

2.4.1 Post-Quantum Cryptography

With the advance of quantum computers, it is likely that in short future it would

undermine currently deployed asymmetric solutions, as most of these have to assume

the hardness of computational problems which are known to be feasible with large-

scale quantum computers [Sho97].

Given these threats, it is worthwhile to explore alternative public key encryption

schemes that rely on problems which are believed to be hard even for quantum

computers. The McEliece cryptosystem [McE78] proposed 40 years ago is still one

promising candidate of NIST’s post-quantum cryptography standard submissions.

In the following we introduce one recent variant of McEliece based on quasi-cyclic

(QC) Moderate-Density Parity-Check (MDPC) Codes.

15

2.4.1.1 Moderate-Density Parity-Check Codes

MDPC codes belong to the family of binary linear [n, k] error-correcting codes, where

n is the length, k the dimension, and r = n−k the co-dimension of a code C. Binary

linear error-correcting codes are equivalently described either by their generator G

or by their parity-check matrix H. The rows of generator matrix G ∈ Fk×n2 form a

basis of C while H ∈ Fr×n2 describes the code as the kernel C = {c ∈ Fn2 |HcT = 0⊥}

where 0⊥ represents an all-zero column vector. The syndrome of any vector x ∈ Fn2

is defined as s = HxT ∈ Fr2. Hence, the code C is comprised of all vectors x ∈ Fn2

whose syndrome is zero for a particular parity-check matrix H. MDPC codes are

defined by only allowing a moderate Hamming weight w = O(
√
n log(n)) for each

row of the parity-check matrix. By an (n, r,w)-MDPC code we refer to a binary

linear [n, k] code with such a constant row weight w.

A code C is called quasi-cyclic if for some positive integer n0 > 0 the code is

closed under cyclic shifts of its codewords by n0 positions. Furthermore, it is possible

to choose the generator and parity-check matrix to consist of p× p circulant blocks

if n = n0 · p for some positive integer p. This allows to completely describe the

generator and parity-check matrices by their first row. If an (n, r,w)-MDPC code

is quasi-cyclic with n = n0 · r, we refer to it as an (n, r,w)-QC-MDPC code.

Several t-error-correcting decoders have been proposed for (QC-)MDPC codes [BMvT78,

Gal62, HvMG13, HP10, MTSB13, vMOG15]. The implementation that we base our

work on implements the optimized decoder presented in [HvMG13], which in turn

is an extended version of the bit-flipping decoder of [Gal62]. Decoding a ciphertext

x ∈ Fn2 , is achieved by:

1. Computing the syndrome s = HxT .

2. Computing the number of unsatisfied parity checks #upc for every ciphertext

16

bit.

3. If #upc exceeds a precomputed threshold b, invert the corresponding cipher-

text bit and add the corresponding column of the parity-check matrix to the

syndrome.

4. In case s = 0⊥, decoding was successful, otherwise repeat Steps 2/3.

5. Abort after a defined maximum of iterations with a decoding error.

2.4.1.2 McEliece Public Key Encryption with QC-MDPC Codes

The McEliece cryptosystem was introduced using binary Goppa codes [McE78].

Instantiating McEliece with t-error-correcting (QC-)MDPC codes was proposed

in [MTSB13], mainly to significantly reduce the size of the keys while still maintain-

ing reasonable security arguments. The proposed parameters for an 80-bit security

level are n0 = 2,n = 9602, r = 4801,w = 90, t = 84, which results in a much more

practical public key size of 4801 bit and a secret key size of 9602 bit compared

to binary Goppa codes which require around 64 kByte for public keys at the same

security level.

The main idea of the McEliece cryptosystem is to encode a plaintext into a

codeword using the generator matrix of a code selected by the receiver and to add

a randomly generated error vector of weight t to the codeword which can only

be removed by the intended receiver. We summarize QC-MDPC McEliece in the

following by introducing key-generation, encryption and decryption.

Key-Generation. The parity-check matrix H is the secret key in QC-MDPC

McEliece. As the code is quasi-cyclic, the parity-check matrix consists of n0 con-

catenated r × r blocks H = (H0 | . . . |Hn0−1). We denote the first row of each of

these blocks by h0, . . . ,hn0−1 ∈ Fr2. The public key in QC-MDPC McEliece is the

17

corresponding generator matrix G, which is computed from H in standard form as

G = [Ik |Q] by concatenation of the identity matrix Ik ∈ Fk×k2 with

Q =



(H−1
n0−1 ·H0)T

(H−1
n0−1 ·H1)T

· · ·

(H−1
n0−1 ·Hn0−2)T


.

The key generation starts by randomly selecting first row candidates h0, . . . ,hn0−1 ∈R

Fr2 such that the overall row weight (wt) sums up to w =
∑n0−1

i=0 wt(hi). Since we

intend to generate a code which is quasi-cyclic, the n0 blocks of the parity-check

matrix are generated from the first rows by cyclic shifts. The resulting parity-

check matrix belongs to an (n, r,w)-QC-MDPC code with n = n0 · r. If the last

block Hn0−1 is non-singular, i. e., if H−1
n0−1 exists, the public key is computed as

G = [Ik |Q]. Otherwise new candidates for hn0−1 are generated until a non-singular

Hn0−1 is found.

Encryption. A plaintext m ∈ Fk2 is encrypted by encoding it into a codeword using

the recipient’s public key G and by adding a random error vector e ∈ Fn2 of weight

wt(e) ≤ t to it. Hence, the ciphertext is computed as x = (m ·G⊕ e) ∈ Fn2 .

Decryption. Given a ciphertext x ∈ Fn2 , the intended recipient removes the error

vector e from x using the secret code description H and a QC-MDPC decoding

algorithm ΨH yielding mG. Since G = [Ik |Q], the first k positions of mG are equal

to the k-bit plaintext.

18

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.4.2 Lightweight Cryptography

For many embedded applications, area and hence power or energy minimal im-

plementations of cryptography are highly desirable. This has led to a rich litera-

ture on hardware-minimal crypto cores, which often rely on the numerous proposed

“lightweight” block cipher designs, such as Prince, or Simon and Present.

2.4.2.1 Present

Present is a hardware-oriented block cipher proposed in 2007, optimized for low area

footprint [BKL+07]. It is a substitution-permutation network featuring a 4 × 4 bit

S-box and a permutation layer consisting only of bit shifts, making it low cost in

hardware. It features a block size of 64 bits and a key size of 80 or 128 bits, and has

31 rounds.Present has been optimized for many application scenarios, but the area-

minimal implementations with a 4-bit data-path. It has also been standardized as

a lightweight cryptographic block cipher as ISO/IEC 29192-2:2012. Each round of

Present cipher consists of three steps including a key-addition layer, a substitution

layer which is a non-linear function, and a permutation layer. In the first step,

the round key which is consisted of left most significant 64 bits of the key is xored

with the 64-bit current state. In the next step, the Present S-box is used which

is a non-linear 4-bit to 4-bit function shown in the following table in hexadecimal

notation.

The substitution layer can be performed with 16 parallel S-box or using only one

S-box 16 times which depends on the application requirement. In the last step, the

permutation is applied to all the 64-bit data which is just a rewiring.

19

At the same time, the key is updated in the key schedule part. The key can be

80-bit or 120-bit; however we use 80-bit key in this paper. In each round the 64

left most bits of the current key, k79k78k77...k17k16, is used in addroundkey. After

using the round key, the 80-bit key register is updated by shifting, using S-box, and

xoring with round-counter. More details about the specification of the Present is

provided in [BKL+07].

2.4.2.2 Simon

Simon is a lightweight block cipher proposed by NSA in 2013 [BSS+13]. Simon

implements a Feistel structure that accepts two n-bit words as input plaintext, with

n ∈ {16, 24, 32, 48, 64}. For each input size 2n, Simon has a set of allowable key

sizes ranging from 64 bits to 256 bits. The number of rounds in Simon ranges from

32 to 72 rounds. Simon128/128, which can be seen as a drop-in replacement for

AES-128, accepts 128 bits of plaintext at a word size of 64 bits and 128 bits of key.

It generates a ciphertext after 68 rounds. The Simon128/128 parameter set will

be used throughout this work, though the implementation strategies apply to other

parameter sets in a natural way..

We denote the input words of round i as li and ri. Then the output words are

given as:

ri+1 =li

li+1 =ri + l2i + (l1i ∗ l8i) + ki

(2.5)

The upper index in lsi indicates left circular shift by s bits. The addition and the

multiplication are in GF(2) and equivalent to bitwise XOR and AND operations,

respectively. Given the initial key words k0 and k1 (and possibly k2 and k3, depend-

ing on the key size), which are also used as first round keys, the subsequent round

20

Figure 2.1: The structure of Prince cipher.

keys are computed as:

ki+2 = ki + k−3
i+1 + k−4

i+1 + ci Two and Three Words

ki+4 = ki + ki+1 + k−1
i+1 + k−3

i+3 + k−4
i+3 + ci Four Words

(2.6)

where ci is a round constant.

2.4.2.3 Prince

The Prince block cipher is a lightweight cipher, featuring a 64-bit block size and

a 128-bit key size [BCG+12]. Prince has been optimized for low latency and a

small hardware footprint. Its round function has several similarities to the AES:

it features KeyAddition, S-box, ShiftRows and MixColumns operations as shown

in Firgure 2.1. However, these operations are performed on a 4-by-4 array of 4-bit

nibbles. This 4-bit oriented design makes Prince—unlike AES—a suitable candidate

for a constant Hamming weight encoding on 8-bit microcontrollers. Prince has 12

rounds, and the last six apply the inverse operations of the first six. The 64-bit

round key remains constant in all rounds, but is augmented with a 64-bit round

constant to ensure variation between rounds. The remaining 64 key bits are used

for pre- and post-whitening of the state. A feature of Prince is that encryption and

decryption only differ in the round key.

21

Chapter 3

Leakage Exploitation

Side channel attacks, in particular, power attacks, have been demonstrated as serious

threats to the cryptographic devices in the past decades. Unsurprisingly, without

consideration of such threats, any new cryptosystem designed and deployed in the

future will still be vulnerable in a hostile environment and fail to work properly in

the end. One of such new cryptosystems is post-quantum cryptography which is

designed to answer the challenge of the advent of quantum computers. However,

even in a post-quantum era, instantiations of post-quantum cryptography would leak

secret-related information via side channels. Therefore, they still require hardening

against side channel attacks for practical applications.

In this chapter, we first describe briefly the challenge of power attacks on post-

quantum cryptography and the motivation for protection against such attacks.

Then, we thoroughly introduce the first differential power attack on a McEliece

Cryptosystem. In the end, we propose the application of TI-based masking scheme

to protect McEliece against DPA. To our best knowledge, this is the first attempt

of application of TI on a public key cryptosystem.

22

3.1 Introduction and Motivation

Prominent services provided by public key cryptography include signatures and

key encapsulation, and their security is vital for various applications. In addition

to classical cryptanalysis, quantum computers pose a potential threat to currently

deployed asymmetric solutions, as most of these have to assume the hardness of

computational problems which are known to be feasible with large-scale quantum

computers [Sho97]. Given these threats, it is worthwhile to explore alternative pub-

lic key encryption schemes that rely on problems which are believed to be hard even

for quantum computers, which might become reality sooner than the sensitivity of

currently encrypted data expires [BCNS15]. The McEliece cryptosystem [McE78] is

among the promising candidates, as it has withstood more than 40 years of crypt-

analysis. To that end, efficient and secure implementations of McEliece should be

available even nowadays. The QC-MDPC variant of the McEliece scheme proposed

in [MTSB13] is a promising efficient alternative to prevailing schemes, while main-

taining reasonable key sizes. The first implementations of QC-MDPC McEliece were

presented in [HvMG13], and an efficient and small hardware engine of the scheme

was presented in [vMG14a].

However, even in a post-quantum world, i. e., when scalable quantum comput-

ers are available, implementation-specific information leakage via side channel will

remain a serious issue. Side channel leakages of McEliece have first been studied

in [STM+08]. This work, as well as two follow-up studies focused on analyzing tim-

ing behavior of different parts of PC implementations of McEliece [SSMS10, Str10].

Subsequently, [AHPT11] improved over prior results, presented countermeasures

and pointed out leakages in the preprocessing steps of McEliece encryption. Heyse

et al. [HMP10] performed power analysis on software implementations of classic

23

McEliece implementations. Their work relies on simple power analysis approaches,

which usually do not translate well to hardware implementations, due to the in-

creased parallel processing of data and the much smaller side-channel leakage. They

also show that side channel analysis is impeded by the large key sizes of McEliece. In

a recent work, AVR/ARM microcontroller implementations of QC-MDPC McEliece

were shown to be susceptible to SPA attacks [vMG14b]. The found weaknesses rely

on secret dependent branches, which allow to recover the encrypted message as well

as to recover the secret key. However, no differential power analysis has been doc-

umented on implementations of McEliece before our work. In this dissertation we

demonstrate that DPA can be a realistic threat for a state-of-the-art FPGA imple-

mentation of McEliece. We first show that significant parts of the private key can

be recovered by DPA on the decoding algorithm of , then we show that knowledge

of the public key can be utilized to recover missing key information or to correct re-

maining errors in hypothesized key bits with an algebraic calculation step. In CHES

2017, Rossi et al presented a similar attack [RHHM17] on QcBits a constant-time

CCA-secure C implementation of QC-MDPC and they claimed their attack is the

first one on a CCA-secure constant-time version of QC-MDPC. Even though the

details of their attack is different, the main idea of using DPA to recover partial

keys followed a full key recovery with an algebraic calculation is the same as ours.

Our attack of course works for CCA-secure constant-time implementation because

it exploits the leakage during the private key rotation which is regardless of what

CCA protocol is used and how constant-time is achieved. Also, our attack works

more efficiently mainly because we utilize the DPA results on both secret keys, i.e.,

h0 and h1 and greatly reduce the efforts for recovering the full key making it suitable

for even larger keys.

In order to counteract the proposed differential power attacks, we further present

24

a masked hardware implementation of QC-MDPC McEliece based on the lightweight

design presented in [vMG14a]. In fact, the masking scheme adopted in this work is

a state-of-the-art technique, namely Threshold Implementation [NRR06] which has

been applied in many symmetric cryptosystems [BDN+14, BGN+14a, BGN+14b,

MPL+11, STE15] to prevent first-order and higher-order side channel leakage. More

importantly, most of these works have performed thorough leakage analysis and

have shown that TI actually prevents the promised order leakage (if carefully im-

plemented). However, we notice that TI has not been investigated in asymmetric

cryptosystems before this work, particularly in emerging post-quantum cryptogra-

phy. Therefore, it is intriguing to study TI in post-quantum publick-key cryptogra-

phy. We choose TI for McEliece because TI is fairly straightforward to apply and to

implement, yet it is effective. Furthermore, large parts of McEliece are linear, and

hence cheap to mask using TI. The decoder part, while not linear, is also fairly effi-

cient to mask using TI. At the same time, our implementation avoids several of the

disadvantages of TI: Unlike [SMG15], we convert our addition to arithmetic masking

once the values get larger, yielding a much more efficient addition engine than one

solely relying on TI. By including the pseudorandom mask generation in the crypto

core, we significantly cut both the required memory space usually unavoidably in-

troduced by TI as well as the required overhead of random bits consumed by TI

engines.

3.2 DPA of a McEliece Cryptosystem

This section presents the first differential power analysis of an implementation of

the McEliece cryptosystem. Target of this side-channel attack is a state-of-the-art

FPGA implementation of the efficient QC-MDPC McEliece decryption operation.

25

The presented cryptanalysis succeeds to recover the complete secret key after a few

observed decryptions. It consists of a combination of a differential leakage analysis

during the syndrome computation followed by an algebraic step that exploits the

relation between the public and private key.

3.2.1 Target Implementation

The target under investigation is a lightweight implementation of QC-MDPC McEliece

for reconfigurable devices by [vMG14a]. The resource requirements are 64 slices and

1 block RAM (BRAM) to implement encryption and 159 slices and 3 BRAMs to

implement decryption on a Xilinx Spartan-6 XC6SLX4 FPGA. This lightweight

implementation is possible mainly for two reasons. First, QC-MDPC codes allow

smaller keys compared to (optimized) binary Goppa codes. Second, the implemen-

tation stores inputs, outputs and most intermediate values during encryption and

decryption in block memories. Since our attack focuses on secret-key recovery, we

limit the description of the details of the implementation to the decryption, espe-

cially to the part in which the syndrome is computed.

Decryption uses three BRAMs, one BRAM stores the 2 · 4801-bit secret key,

one BRAM stores the 2 · 4801-bit ciphertext, and one BRAM stores the 4801-bit

syndrome. Each BRAM is dual-ported, offers 18/36 kBit, and allows to read/write

two 32-bit values at different addresses in one clock cycle. To compute the syndrome,

set bits in the ciphertext select rows of the parity-check matrix blocks that are

accumulated. Since only one row of each block is stored in the BRAM, they need

to be rotated by one bit to generate the next rows. To generate all rows of H, the

rotation is repeated 4801 times.

Rotating the two parts of the secret key is implemented in parallel, which means

that the 4801-bit rows of the first and the second part of the parity-check matrix

26

are rotated at the same time. Efficient rotation is realized using the Read First

mode of Xilinx’s BRAMs which allows to read the content of a 32-bit memory cell

and then to overwrite it with a new value, all within one clock cycle.

The key rotation is implemented as follows: in the first clock cycle, the least

significant bit (LSB) is loaded from the last memory cell. The first 32-bit of the

row to be rotated are loaded next. In all following clock cycles, the succeeding

32-bit blocks of the row are read and overwritten by the rotated preceding 32-bit

block. The LSB of each 32-bit block is delayed by a flip-flop and becomes the most

significant bit (MSB) of the following block. An abstraction of this implementation

is depicted in Figure 3.1. In addition to a rotation of the rows, this introduces a

rotation of the memory cells. After one 4801-bit rotation, the most significant 32

bits of a parity-check matrix row do not reside in memory cell 0 but in memory cell

1.

The syndrome s is computed by processing the ciphertext x in a bitwise fashion.

If the j-th bit is set, i. e., xj = 1, then the j-th row of H is added to the syndrome s.

The implementation adds two 32-bit words in parallel: one word of the rotated h0

and one word of h1 are processed in each clock cycle.

3.2.2 Attack Description

Usually DPA attacks exploit an intermediate state y = f(x, k) that is a function of

both a known data item x and a subkey k. The subkey space K should be small

enough so that a hypothesis y can be checked for all candidates k ∈ K. Some

works that elaborate on this model are [KJJR11, KJJR11, WOS14]. McEliece does

not offer itself for this approach, as also noted in [HMP10]. One would expect the

syndrome s to serve as a potential predictable intermediate state y. However, the

bits in the ciphertext x only determine which rows of the parity check matrix H

27

dout

h0

dout

h1

din

h0

din

h1

SecKey BRAM

[31:0][31:0]

[31:1]

[0]

[31:0][31:0]

[0]

[31:1]

Carry h0

Carry h1

Syndrome BRAM

dout

syn

din

syn

0

[31:0]

[31:0]

Figure 3.1: Block diagram of the syndrome computation as implemented
in [vMG14a].

are added to s, where H is the secret key to be recovered. Predicting (parts of)

the syndrome s requires an additional key bit hypothesis for each variation of each

bit of s, i. e., each bit of s depends on l key bits after l variations, supporting the

infeasibility claim of [HMP10]. One of the strengths of QC-MDPC, its small private

key size, comes from the fact that secret information is highly redundant: each row

of H contains the same information—namely 〈h0 ≫ z||h1 ≫ z〉—only rotated by

one bit per row, z ∈ {0, 4800}. This redundancy allows for an efficient recovery of

key information. More important, it enables a differential analysis approach which

greatly enhances the visibility of even faint leakages.

We exploit this leakage of the key rotation operation during syndrome compu-

tation. Our analysis recovers a static key leakage that is completely independent of

the known or chosen ciphertext input x. Since the exploited leakage occurs several

times during one syndrome computation, our attack combines these leakage events,

as commonly done in horizontal side channel attacks.

28

3.2.2.1 Leakage Behavior of the Target Implementation

The described attack recovers the key during the syndrome computation step of

the decryption algorithm. The key for QC-MDPC consists of a single line of the

parity check matrix H, namely h0||h1. As described in Section 3.2.1, only this line

of H, or one of its rotated versions 〈h0 ≫ z||h1 ≫ z〉, is stored in BRAM. The

key has some noteworthy features that influence the derived DPA attacks. First,

the private key is of low weight : both parts of the secret key h0 and h1 are of

low Hamming weight such that, wt(h0||h1) = w. For the target implementation,

w = 90 and wt(hi) = 45, i. e. both h0 and h1 have exactly 45 bits set. This

means, each key bit hi,j ∈ {0, 1} where i ∈ {0, 1} and j ∈ {0, 4800} is set with

probability Pr(hi,j = 1) = w/(n0r) = 45/4801 ≈ .94%. This implies low-weight

leakages : Syndrome and key parts hi are stored in BRAMs and are processed as

151 32-bit words. The chance of a 32-bit key word to be all-0 is still 74%, about

22% contain a single one bit, leaving the chance of having more than one bit set in

a word below 5%.

The critical parts of the target implementation that feature exploitable key leak-

age are depicted in Figure 3.1. There are two operations that contribute to the

leakage during syndrome computation. One operation is the key rotation, which is

always performed. The second operation is the syndrome computation. Our anal-

ysis focuses on the key rotation operation, which is independent of the ciphertext

input x. The stored key row 〈h0 ≫ z||h1 ≫ z〉 is constantly rotated during the

syndrome generation. In fact, it is rotated by a single bit 4801 times, where each ro-

tation takes 151 clock cycles (plus two additional clock cycles for preprocessing and

a data read-write delay, resulting in the 153 clock cycles mentioned in [vMG14a]).

The implementation features a separate register which stores the carry bit during

rotations. In each of these clock cycles, one bit hi,j—the LSB of the last accessed

29

word—is written to the carry register, causing leakage λcarry(i, j). In the following

clock cycle, that bit is overwritten with the LSB of the next word, hi,j+32. Assuming

a Hamming distance leakage function, this register leaks first

λcarry(i, j) = w1 · wt(hi,j−32 ⊕ hi,j), (3.1)

then, in the subsequent clock cycle, leaks λcarry(i, j+32) = w1·wt(hi,j⊕hi,j+32), where

w1 ∈ R is an appropriate weight. Assuming that hi,j = 1 and further hi,j±32 = 0,

λcarry(i, j) gives a clearly distinguishable leakage from the case where hi,j = 0. This

leakage is the target of the described attack.

In addition to the leakage of the carry register λcarry(i, j) described in Equa-

tion (3.1), there are related leakages happening in the same clock cycles. In fact,

when hi,j is written to the carry register, the implementation also reads the word

〈hi,j+1 . . . hi,j+32〉 from the block memory at one address and then stores the word

〈hi,j−32 . . . hi,j−1〉 into the block memory at the same address. Both reading and stor-

ing operations will cause leakages at different levels. Assuming a Hamming weight

leakage function here, reading data and storing data words leaks as

λread(i, j) = w2 · wt(〈hi,j+1 . . . hi,j+32〉) and

λstore(i, j) = w3 · wt(〈hi,j−32 . . . hi,j−1〉),

respectively. Here, w2 ∈ R and w3 ∈ R are appropriate weights for the different

types of operations. The overall observed leakage is approximated as:

Li(j) = λcarry(i, j) + λread(i, j) + λstore(i, j) +N

where Li is the overall leakage at the clock cycle where hi,j is written into the

30

carry register and N is noise, which is assumed to be Gaussian. Please note that

the target implementation processes h0 and h1 in parallel. This means that the

leakage functions L0 and L1 for h0 and h1 overlap. There are two carry registers (cf.

Figure 3.1), one stores h0,j when the other stores h1,j. While these leakages slightly

differ, we will not attempt to distinguish them. Instead we recover the combined

leakages. That is, we predict the combined leakage hΣ = h0 + h1, which is still

sparse. Note that the addition here is not in F2, i. e., we can distinguish the case

where h0,j = h1,j = 1 from the case h0,j = h1,j = 0, although this case is very rare

(and will be ignored in the further description). While the model is not perfect, it

describes the observed leakages well enough to base a decent key recovery on it.

As in the classical DPA by Kocher et al. [KJJ99], we can now hypothesize the

value of each key bit hi,j separately. We further know at which clock cycle the leakage

of the carry registers (for the key rotation) occurs. Based on this knowledge, one

can build the following attack.

3.2.2.2 DPA of Key Rotation

As mentioned above, we do not distinguish h0,j and h1,j. Instead, we predict the

combined leakage hΣ,j = h0,j + h1,j. Our key recovery works well for this combined

leakage, as explained in Section 3.2.4. Note that we know for each key bit hi,j at

which clock cycle it is processed (if not, several hypotheses can be checked in parallel

by analyzing neighboring clock cycles). In fact, knowing the implementation, it is

predictable which key bit hi,j enters the carry register in which clock cycle for the

key rotation. We use this information to build a differential power analysis attack.

In spite of the independence of the input x we claim the analysis method to be

differential leakage analysis, since differential leakage traces can be computed—

similar to the approach originally proposed in [KJJ99].

31

Our algorithm identifies all clock cycles where hi,j is written to or overwritten in

the carry register in each trace L and extracts that leakage from L. Per processed

ciphertext bit, only 150 words are rotated. The additional bit is stored in the carry

register. Hence, all rotations together result in a total of 4801 · 150 carry register

overwrites for each hi. Since there are 4801 bits in hi, each bit is written to the

carry register 150 times. The corresponding clock cycles l are then identified and

their corresponding leakage Li(j, l) is combined, as done in horizontal SCA. The

result is a differential leakage trace ∆carry with only one bin per key bit. In other

words, the difference between a key bit being zero and a key bit being one can be

observed by comparing points of the leakage trace ∆carry horizontally. Since the

key is sparse, there are only very few bins that correspond to a bit hi,j = 1, while

most bins correspond to a bit hi,j = 0. The implicit assumption of all bits leaking

the same way is perfectly justified: each bit hi,j takes each column position exactly

once, in a specific row. That means due to the rotation, each key bit leaks in every

position exactly once, averaging out any position-specific leakages.

In order to detect whether a key bit is set, i. e., hi,j = 1, we average over all clock

cycles where hi,j is written to the carry register.

∆carry(j) =
1

150

150∑
l=1

(L0(j, l) + L1(j, l))

= avg (λcarry(0, j) + λread(0, j) + λstore(0, j)

+λcarry(1, j) + λread(1, j) + λstore(1, j))

Since hi,j−32 = 0 with very high probability, ∆carry(j) depends directly on the key

bit. Further, hi,j = 1 has an even stronger influence on ∆carry(j ± 32), since it leaks

through λcarry(i, j) and either λread(i, j) or λstore(i, j). The dependence of ∆carry(j)

on neighboring key bits hi,j±δ, with δ ≤ 32, implies that each set key bit not only

32

results in an increased leakage signal for its own position (i. e., index j), but also

in the neighboring positions. Note that due to the differing weights, each set key

bit imprints a characteristic shape onto the leakage trace. These shapes can (and

actually will) overlap if several key bits in the same region are set. Figure 3.2 shows

Figure 3.2: Differential leakage trace for key rotation. The plot shows the normalized
leakage (vertical axis) of both key parts hΣ,j = h0 + h1 over the key bit index
(horizontal axis). The red(gray) line is the simulated leakage while the blue/black
line is the observed leakage from the target implementation.

2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150
0

0.2

0.4

0.6

0.8

1

X: 2868
Y: 0.2793

key bit h
i, j

D
iff

er
en

tia
l T

ra
ce

 ∆
ca

rr
y

X: 2900
Y: 0.4211

X: 2932
Y: 0.2837

Real Differential trace
Simulated Differential trace

Figure 3.3: A magnified version of Figure 3.2 that highlights the characteristic
shape of a single set bit (center) as well as the overlap of two (right) and three (left)
“adjacent” set bits.

33

the comparison of the simulated leakage trace (red(gray) line) using the power model

and the real leakage trace (blue/black line). The characteristic shape is highlighted

in Figure 3.3, which is a magnification of a single set bit of the key, surrounded by

zeroes.

In summary, the key rotation analysis allows us to detect joint leakages of h0

and h1. This is due to the target implementation that processes both in parallel. The

key rotation leakage features a characteristic shape with easily detectable bounds.

This allows for a precise location of set key bits. Furthermore, the analysis of the

key rotation is mostly input-independent, as will be discussed in Section 3.2.3. More

importantly, each bit features 150 leakage observations per trace L, resulting in a

very strong leakage.

3.2.2.3 Key Bit Recovery

The key rotation causes leakages which can be analyzed in the presented differential

leakage traces where characteristic shapes caused by set key bits can be detected

and used to recover the set key bits. In the same way, the traces can be used to

detect key bits that are not set. Since the analyzed implementation processes h0

and h1 in parallel during the key rotation, resulting in an overlap of the leakages,

the differential leakage trace actually recovers the key bits of hΣ = h0 + h1.

In order to recover key bits, the characteristic shapes need to be detected. We

propose a generic shape detection algorithm that works as follows:

1. Shape Definition From the differential leakage trace, one singular character-

istic shape can be identified and used as a template for set bits. The template

is used to generate a shape threshold as shown in Figure 3.3. The threshold is

defined by the value of features in this shape such as edges, slopes and pulses.

2. Shape Detection For each key bit in the differential leakage trace, we check

34

if this key bit together with the neighboring key bits can form a characteristic

shape. This is done by checking if there are features that are beyond the

threshold. If more than two features exist, it is highly probable that this key

bit is set. If no feature exists, then it is highly probable that this key bit is 0.

Otherwise, we mark this key bit as an undetermined bit.

Note that the shapes will overlap if two set key bits are close to each other.

Furthermore, the leakage traces are noisy, hence we can only recover parts of the

key bits, leaving the other key bits as undetermined. By choosing the thresholds

for shape detection carefully, the number of detected bits can be maximized while

keeping the number of false positive errors as low as needed.

3.2.3 Measurement Setup and Results

We ported the implementation of [vMG14a] to a Xilinx Virtex-5 LX50 FPGA which

is mounted on a Sasebo-GII side-channel attack evaluation board. The implementa-

tion is clocked at 3 MHz by default. Measurements were performed using a Tektronix

DPO 5104 oscilloscope at a sampling rate of 100 MS/s. Since our attack focuses on

the syndrome computation, only the syndrome computation was recorded. The syn-

drome computation takes 245 ms, resulting in long traces. For the ease of analysis,

a peak extraction was performed. In each clock cycle only the point of maximum

power consumption is retained. The peak extraction prevents potential alignment

issues and makes data handling much faster.

3.2.3.1 DPA Results of the Key Rotation

Since the key rotation is independent of the ciphertext, the choice of the cipher-

text could be arbitrary. However, key rotation and syndrome computation run in

parallel, leading to a mixed leakage. To determine the influence of the syndrome

35

computation, two different ciphertext scenarios are studied. One is the all-0 ci-

phertext to minimize the influence of the syndrome computation. In this scenario

the syndrome remains all-0 throughout the entire computation. The other scenario

assumes random ciphertexts for each decryption, where each bit in x is set with a

50% probability. For each scenario we took 256 measurements.

Next, we averaged over all considered traces in both scenarios. From the resulting

average trace, 4801 · 150 peaks are extracted and used to construct the differential

leakage traces ∆carry as explained in Section 3.2.2.2. Note that averaging explicitly

before the computation of ∆carry or implicitly during the computation of ∆carry does

not influence the result. Figure 3.4 shows the differential leakage traces for the key

rotation, showing the key bit position (horizontal axis) vs. the bit leakage (vertical

axis) for all key bits. The blue (black) line indicates the result for the all-0 ciphertext

scenario while the green (gray) line indicates the results for the random ciphertext.

The latter one is slightly noisier, but nevertheless provides a well-exploitable leakage

for a low number of observations. Figure 3.3 shows magnifications of the differential

leakage trace to highlight the characteristic shapes, particularly the one generated

by setting the key bit hi,2900 as 1 and the neighboring key bits as 0.

The other shapes in Figure 3.3 result from the overlapping of characteristic

shapes that occur when set key bits of h are close to each other. We noticed that

set key bits for h0 result in a slightly different shape than those of h1. Since this

difference cannot be distinguished as easily, we did not further try to exploit this

information.

3.2.3.1.1 Key Extraction. To extract keys from ∆carry, we used the algorithm

described in Sec. 3.2.2.3. The first step is to define the characteristic shape. Distin-

guishable features such as the rising edge, the pulse in the center and the falling edge

36

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

Key Bit h
ij

D
iff

er
en

tia
l L

ea
ka

ge
 ∆

ca
rr

y

Differential trace for random ciphertext
Differential trace for all zero ciphertext

Figure 3.4: Normalized differential leakage trace ∆carry for the bits of hΣ,j = h0 +h1.
Whether the ciphertext is known (green(gray) line) or all-0 (blue(black) line) has
only marginal influence on the observed leakage.

are clearly visible in Figure 3.3 and are used to detect the shape. These features are

quantified using a threshold vector. Then, for each key bit hi,j in ∆carry, we check if

there is a pulse at hi,j, a rising edge at hi,j−32 and a falling edge at hi,j+32. If more

than one feature exists for hi,j, we take hi,j as 1. If no feature exists, hi,j is taken as

0. If only one feature exists, hi,j is left as undetermined key bit. Depending on the

number of traces used for generating ∆carry, it can be noisy and there will be false

positive errors in recovered key bits. Errors can also be introduced by unfavorable

overlapping of shapes.

Figure 3.5 shows how the chosen threshold affects the key recovery. Three dif-

ferent thresholds are used. The first one (◦) is exactly the value extracted from the

characteristic shape in ∆carry. The other two (4 and then ∗) are increased based

on the first one. In Figure 3.5.1, as the number of traces used to generate the dif-

ferential leakage trace increases, the number of recovered 0 key bits increases and

the number of false positive errors decreases for all three thresholds. However, the

less aggressive the threshold is, the lower is the number of false positive errors. In

contrast, Figure 3.5.2 shows that with the least aggressive threshold (◦), more key

37

1 2 4 8 16 32 64 128 256
3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

of

 r
ec

ov
er

ed
 k

ey
 b

its
 s

et
 a

s
0

of traces
1 2 4 8 16 32 64 128 256

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

of

 fa
ls

e
po

si
tiv

e
er

ro
rs

3.5.1: Recovered 0 bits vs. false positives

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

110

120

of

 r
ec

ov
er

ed
 k

ey
 b

its
 s

et
 a

s
1

of traces
1 2 4 8 16 32 64 128 256

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

of

 fa
ls

e
po

si
tiv

e
er

ro
rs

3.5.2: Recovered 1 bits vs. false positives

Figure 3.5: Key bit recovery rates for recovering 0 key bits and 1 key bits. Solid line
indicates the number of recovered bits (out of 90 ones and 4711 zeros, scale on left),
the dashed line indicates the number of false positives (scale on right). Markers ◦,
then 4, and then ∗ indicate the increasing values for the threshold.

bits of 1 can be recovered with a few more false positive errors. Hence, to recover

more key bits of 0 with least false positive errors, the less aggressive threshold should

be used. In contrast, to recover key bits of 1 with least false positive errors, the

more aggressive threshold should be used. Note that we repeated our experiments

for five different randomly generated keys to ensure the result is not key dependent.

The figures show the average result for those experiments.

Figure 3.6.1 shows a comparison of the number of recovered key bits and false

positive errors between the all-0 ciphertext and random ciphertext. As the number

of traces used to generate the differential leakage trace increases, the number of

recovered key bits of 0 increases and the number of false positive errors decreases

for both cases. However, with the all-0 ciphertext, there are less positive errors. In

conclusion, the all-0 ciphertext is more advantageous to the DPA of key rotation.

Hence, we use the traces with the all-0 ciphertext in the other experiments.

Modern electronic devices run faster than 3 MHz which is the default clock rate

for the SASEBO board and widely used in power analysis experiments. In order

38

1 2 4 8 16 32 64 128 256
3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

of

 r
ec

ov
er

ed
 k

ey
 b

its
 s

et
 a

s
0

of traces
1 2 4 8 16 32 64 128 256

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

of

 fa
ls

e
po

si
tiv

e
er

ro
rs

3.6.1: Random vs. all-0 input

1 2 4 8 16 32 64 128 256
2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

of

 r
ec

ov
er

ed
 k

ey
 b

its
 s

et
 a

s
0

of traces
1 2 4 8 16 32 64 128 256

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

50

of

 fa
ls

e
po

si
tiv

e
er

ro
rs

3.6.2: Varying clock rates

Figure 3.6: Key bit recovery rates for recovering 0 key bits. Solid line indicates
the number of recovered bits (out of 4711 zeroes, scale on left), the dashed line
indicates the number of false positives (scale on right). The left figure compares
known random (◦) vs. chosen all-0 (4) ciphertext inputs. The right figure compares
the experiments for varying clock rates: ◦ for 3 MHz,4 for 8 MHz, and ∗ for 16 MHz.

to validate our attack on faster platforms, the performance of the attack was mea-

sured for the same design clocked at 8 MHz and 16 MHz. The sampling rate was

accordingly increased to to 200 MS/s and 250 MS/s, respectively. For each case,

256 traces were obtained using the all-0 ciphertext, followed by peak extraction.

Figure 3.6.2 shows the degradation of the leakage over the increasing clock rate by

comparing the number of recovered 0 key bits and false positive errors. In all three

cases, the number of recovered 0 key bits increases and the number of false positive

errors decreases, as the number of analyzed traces increases. However, the lower

the clock rate is, the better the key bits extraction works. With a 3 MHz clock rate

(◦), almost 4500 of the 0 key bits can be recovered with about 1 false positive error

when using all 256 traces while 4000 of the 0 bits are recovered with about 3 false

positive errors at a clock rate of 16 MHz (∗).

Overall, it can be seen that with as little as 10 measurements, more than half the

key bits can be recovered with a remaining number of errors that is small enough

39

to allow for efficient error correction. With 100 measurements and a careful choice

of thresholds, the determined bits are entirely error-free at lower clock rates. This

strong leakage is partially due to the fact that 150 leakages are extracted from each

measurement, strongly amplifying the amount of leakage gained from each individual

trace.

3.2.4 Full Key Recovery

Next we analyze how to recover the full key of QC-MDPC McEliece if the adversary

has knowledge of several 1 bits of the key as well as several 0 bits of the key, possibly

with few errors. We show that the structure of the key can be used to recover the

remaining uncertain bits efficiently, or to detect remaining errors.

3.2.4.1 Connection between Secret Key and Public Key

As described before, the secret key consists of two related parts, h0 and h1. Due to

the relation between the secret h0,h1 and the public matrix Q, we can express h0

as:

h0 = h1 ·QT (3.2)

Likewise, given h0, one can compute h1, since Q is invertible. This means that once

the first half of the secret key is recovered, the second half can be computed using

the public key. More interestingly, this relationship can be used for error detection

for each hi independently: since Q is of high weight (each bit has approximately a

50% chance of being 1), even a single bit error in h∗i will result in a high weight of a

consequently derived h∗ī , i. e., wt(h∗ī) ≈ r/2. A correct hi, however, will result in an

hī of low weight, in our case wt(hī) = 45. We are currently not aware how slightly

faulty or noisy information of h0 and h1 can be combined more efficiently without

40

a trial and error approach using the above-mentioned relationship.

If the adversary observes a combined leakage of h0 and h1 as described above,

this is not a problem, since knowledge of h0 ⊕ h1 can also enable key recovery.

Adding h1 on both sides of Equation (3.2) we obtain

h0 ⊕ h1 = h1 · (QT ⊕ I4801). (3.3)

If side-channel leakage allows us to obtain the combined leakage h0⊕h1 and the rank

of QT ⊕ I4801 is high, we can solve this linear system of equations for h1 with a com-

puter algebra system like Magma [BCP97]—and then derive h0 from Equation (3.2).

In our experiments, the rank observed for QT ⊕ I4801 was 4800, resulting in two can-

didate solutions with only one of them having the correct Hamming weight. So in

cases where all ones can be correctly identified, Equations (3.2) and (3.3) enable a

practical key recovery.

Due to noise and leakage overlapping, there are probably false positive errors in

the recovered bits and hence error correction would be essential to correct positions

that are slightly off. Guessing error positions becomes infeasible quickly, even with

small improvements over an exhaustive search of
(

4801
l

)
possibilities for l errors.

We did not try to devise elaborate error-correction strategies, as a different attack

strategy which relies on exploiting detected zeroes turned out to be quite effective.

We explain this strategy next.

3.2.4.2 Efficient Key Recovery

After having identified several 1 bits and 0 bits of the secret key correctly, we aim

at an efficient way to recover remaining unknown or uncertain key bits. For this,

we define B0,B1 and Bu as index sets indicating the locations of definite zeroes,

41

definite ones and positions of undetermined bits in h0 ⊕ h1 such that

B0 ∪̇B1 ∪̇Bu = {0, 1, . . . , 4800} . (3.4)

Positions in B0 indicate that both h0 and h1 are zero in that position, while po-

sitions in B1 will mean a one in either h0 or h1.1 Hence, the uncertain positions

for h1 are B1
u = B1 ∪̇Bu, and with Iverson’s convention [Knu92] we can summarize

our knowledge of h0 ⊕ h1 and h1 as h0 ⊕ h1 = 〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800

and h1 = 〈u · [i ∈ B1
u]〉0≤i≤4800, where u indicates unknown bits (“erasures”). So

Equation (3.3) yields

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉

0≤i≤4800
· (QT ⊕ I4801).

As the indices in B0 indicate definite zeros in h0 ⊕ h1 and h1, the corresponding

rows in the matrix QT ⊕ I4801 will always be multiplied with a zero coefficient. We

remove these |B0| rows and the corresponding known 0-entries in h1, obtaining an

updated equation system

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉
i 6∈B0
·Q′. (3.5)

with a (smaller) matrix Q′ ∈ F(4801−|B0|)×4801
2 . There are 4801−|B0|− |B1| unknown

bits on the left- and 4801 − |B0| unknown bits on the right-hand side of Equa-

tion (3.5). As we are only interested in finding h1, we can try to eliminate unknown

values in h0 ⊕ h1 by dropping columns from Q′. One may hope that |Bu| columns

can be eliminated without Q′ dropping in rank, so that we end up with a linear

1The (rare) case of h0 and h1 having a one in the same position is not considered here, as this
situation is quite apparent from the side-channel leakage.

42

system of equations

〈1 · [i ∈ B1]〉i 6∈Bu
=
〈
u · [i ∈ B1

u]
〉
i 6∈B0
·Q′′ (3.6)

in 4801 − |B0| unknowns and a matrix Q′′ ∈ F(4801−|B0|)×(4801−|Bu|)
2 . If |Bu| ≤ |B0|

one may hope that this linear system of equations can be solved and yields a unique

candidate for h1.

To check the practical feasibility of this approach, we ran several experiments

in Magma [BCP97], solving the equation system given in (3.6) for several different

vectors B0 and B1. We were particularly interested in the situation where knowledge

of 1-positions in h0 ⊕ h1 is ignored (i. e., B1 = ∅), because in our measurements the

0-detection was more reliable. With B1 = ∅, the resulting system of equations

is homogeneous and thus in addition to h1 also has the trivial solution. From

Equation (3.4) we see that the condition |Bu| ≤ |B0| now implies that |B0| ≥

d4801/2e. Staying above this threshold, in our experiments we obtained no more

than 8 candidates for h1, and the weight condition identified the correct secret key

uniquely.

For |B0| < 2400, the kernel of the matrix Q′′ in Equation (3.6) gets larger

quickly and we obtain additional candidates for h1, but finding the correct h1 may

still be feasible by looking at the Hamming weight of the candidates as long as the

number of candidates is not overwhelming. The results in Section 3.2.3 show that

for the target implementation the attacker can expect to recover more information

from the side-channel than necessary for recovering the secret key. Having |B0|

comfortably above the threshold of 2400, a few false positives in B0 can be dealt

with efficiently: Instead of using all of these bit positions, one can select subsets of

size 2401 at random. Assuming a hypergeometric distribution, with f false positive

43

errors among the |B0| indices, the probability of guessing 2401 error-free positions

is
(|B0|−f

2401

)
/
(|B0|

2401

)
. E. g., with |B0| = 3281 and f = 4, this probability is still ≈ 2−7.6.

In summary, as long as more than half the bits of the key can be recovered with a

low error rate, the remaining key bits can be determined using the above-described

algebraic methods. Knowledge of additional bits of h0 ⊕ h1 facilitates the handling

of possibly remaining errors. Not being able to recover more than half the number

of key bits can make the search infeasible, although—due to the highly biased key—

guessing a few additional zeroes may still be an option.

3.3 Masking QC-MDPC McEliece

In this section, we show how to secure QC-MDPC McEliece by applying Threshold

Implementation which aims to randomize sensitive intermediate states such that the

leakage is independent of processed secrets. In QC-MDPC McEliece, the key bits and

the syndrome are sensitive values that need to be protected and therefore they must

be masked whenever they are manipulated. Similarly, since the decoding operation

processes the sensitive syndrome, leakage of the decoder needs to be masked as well.

We validate the side channel resistance of our design by practical DPA attacks and

statistical tests for leakage detection.

3.3.1 Masked Syndrome Computation

As described before, the decoding algorithm begins with the syndrome computation

s = HxT . Both the parity-check matrix H and the syndrome s are sensitive values

and can cause side channel leakage. However, since the syndrome computation is a

linear operation, masking this operation is simple and efficient. Intuitively, H can

be split into two shares, Hm and M such that H = Hm ⊕M , by Boolean masking.

44

The mask matrix M is created in correspondence to H, by first generating uniformly

distributed random masks for hi, m0, . . . ,mn0−1 ∈ Fr2 of the n0 blocks, which then

comprise the first row of mask matrix M . Each bit in the mi is uniformly set to 0

or 1. Next, the remaining rows of the mask matrix M are obtained by quasi-cyclic

shifts of the first row, according to the construction of H. The masked syndrome

sm and the syndrome mask ms can be computed independently as sm = Hmx
T

and ms = MxT . The syndrome s is available as the combination of the two shares

s = sm ⊕ms.

3.3.2 Masked Decoder

After syndrome computation, the error correction decoder computes the number of

unsatisfied parity check equations between the sensitive syndrome and one row of

the sensitive parity check matrix. By comparing that number with a predefined

threshold (usually denoted b), the decoder decides whether to flip the corresponding

bit in the ciphertext. Masking the actual decoding steps is more complex, since both

inputs, namely the syndrome and the parity check matrix, as well as the control flow

of the decoder can leak sensitive information and thus need to be protected. Unlike

the syndrome computation, the decoder performs a binary AND and a Hamming

weight computation on sensitive data. Both operations are non-linear and thus

need more elaborate protection than just a straightforward Boolean masking. In

the following we explain how these operations can be implemented. Algorithm 1

describes the masked version of the decoder. Note that the algorithm has been

formulated with a constant execution flow to better represent the intended hardware

implementation. Further note that the algorithm and its FPGA implementation

exhibit a constant timing behavior (except the number of decoder iterations) and

that all key-related variables are masked. The number of decoder iterations can be

45

Algorithm 1 Masked Error Correction Decoder

Input: Hm, M1, M2, sm, ms1 , ms2 , x, B = b0, ..., bmax−1, max
Output: Error free codeword x or DecodingFailure

1: for i = 0 to max−1 do
2: for every ciphertext bit xj do
3: #upc = SecHW(SecAND(sm,ms1 ,ms2 ,Hm,j,M1,j,M2,j))
4: d = (#upc > bi) , d ∈ {0, 1}
5: x = x⊕ (d · 1j) . Flip the jth bit of x
6: sm = sm ⊕ (d ·Hm,j ⊕ d̄ ·M2,j) . Update syndrome
7: ms1 = ms1 ⊕M1,j . Update masks
8: ms2 = ms2 ⊕M2,j ⊕ (d̄ ·M1,j)
9: end for

10: if SecHW(sm,ms1 ,ms2) == 0 then . Check for remaining errors
11: return x
12: end if . For constant run time, this if-statement can be moved after the

for-loop
13: end for
14: return DecodingFailure

set to maximum by simply moving the if-statement out of the loop. For the chosen

9602/4801 parameter set, max would be set to 5, increasing the average run time

roughly by a factor 2 (cf. [vMOG15]).

In Algorithm 1, we make use of two special functions. Function SecAND com-

putes the bitwise AND operation between syndrome s and secret key H in a secure

way without leaking any sensitive information. The other function SecHW computes

the Hamming Weight of a given vector. Both functions are explained in detail in

the following. An all-zero vector with the jth bit equal to 1 is indicated by 1j.

Secure AND Computation. One important step when decoding a QC-MDPC

code is to compute the unsatisfied parity-check equations which starts with a non-

linear bitwise AND operation between the syndrome and one row of the secret key

matrix. Our function SecAND performs a bitwise AND operation between two bit

vectors, namely s ∧ h. Since the AND is a non-linear operation, simple two-share

Boolean masking is not applicable. Instead, we follow the concept of Threshold

46

Implementation as described in Section 2.2.1. We adopt the bitwise AND operation

from [NRR06], which provides first-order security when applied to three Boolean

shares. This means that the two-share representations of the two inputs, i. e., the

syndrome and parity check matrix, need to be extended to a three-share represen-

tation.

To achieve a three-share representation of both syndrome and parity check ma-

trix, the masking is expanded in the following way: After syndrome computation as

explained in Section 3.3.1, the syndrome is represented as sm ⊕ms and the secret

key is represented as Hm,j ⊕Mj. Next, the syndrome representation is extended as

sm⊕ms1 ⊕ms2 and the key as Hm,j ⊕M1,j ⊕M2,j. Here, ms2 and M2,j are two new

uniformly distributed random mask vectors and ms1 is derived as ms1 = ms ⊕ms2

and M1,j = Mj ⊕M2,j. The following equations show how to achieve a TI version

of s ∧ h that satisfies correctness and non-completeness, but not uniformity.

s ∧ h =(sm ⊕ms1 ⊕ms2) ∧ (Hm,j ⊕M1,j ⊕M2,j)

=(sm ∧Hm,j)⊕ (sm ∧M1,j)⊕ (Hm,j ∧ms1)⊕

(ms1 ∧M1,j)⊕ (ms1 ∧M2,j)⊕ (M1,j ∧ms2)⊕

(ms2 ∧M2,j)⊕ (ms2 ∧Hm,j)⊕ (M2,j ∧ sm)

(3.7)

As pointed out in [NRR06], in order to fulfill uniformity, one can introduce

additional uniform random masks to mask each share. By introducing two more

uniformly random vectors r1 and r2, the three output shares can be computed as

follows. Let sh denote the result of the TI version of the AND operation. Using

the equations above, sh can be split into three shares shi, which are now uniformly

47

distributed thanks to the ri and are given as:

sh1 =(sm ∧Hm,j)⊕ (sm ∧M1,j)⊕ (Hm,j ∧ms1)⊕ r1

sh2 =(ms1 ∧M1,j)⊕ (ms1 ∧M2,j)⊕ (M1,j ∧ms2)⊕ r2

sh3 =(ms2 ∧M2,j)⊕ (ms2 ∧Hm,j)⊕ (M2,j ∧ sm)⊕ r1 ⊕ r2

(3.8)

Secure Hamming Weight Computation. In the unprotected FPGA implemen-

tation of [vMG14a], the Hamming weight computation of sh is performed by looking

up the weight of small chunks of sh from a precomputed table and then accumu-

lating those weights to get the Hamming weight of sh. However, the weight of a

chunk is always present in plain and the computation of it can result in side channel

leakage that will lead to the recovery of the Hamming weight. Even though the

knowledge of the weight does not necessarily recover the chunk value, it still yields

information about sh and thus the secret key h.

For a side-channel secure implementation, both the input and the output of a

Hamming weight computation for each chunk must be masked. Since the weight

of all chunks needs to be accumulated, it is preferable to use Arithmetic mask-

ing instead of Boolean masking. For example, the Hamming weight of sh can be

calculated using the following equation:

wt(sh) =

|sh|∑
i=1

sh1,i ⊕ sh2,i ⊕ sh3,i (3.9)

where subscript i refers to the i-th bit of each share and |sh| is the length of sh

in bits. Using a secure conversion function from Boolean masking to Arithmetic

masking [CGV14], each Boolean mask tuple (sh1,i, sh2,i, sh3,i) can be converted to

an Arithmetic mask pair (A1,i,A2,i) such that sh1,i⊕sh2,i⊕sh3,i = A1,i+A2,i. Then,

48

the Hamming weight of sh can be computed as:

wt(sh) =

|sh|∑
i=1

A1,i + A2,i =

|sh|∑
i=1

A1,i +

|sh|∑
i=1

A2,i (3.10)

According to Equation (3.10), we only accumulate A1 =
∑|sh|

i=1A1,i and A2 =∑|sh|
i=1A2,i, respectively, and sum them up in the end to obtain the total Hamming

weight wt(sh) = A1 + A2.

Secure Syndrome Checking. In order to test whether decoding of the input

vector was successful, the syndrome has to be tested for zero. If the Hamming weight

of the syndrome is zero, then all bits of the syndrome must be zero. Otherwise, there

must be some bits set as 1 and the number of set bits equals the Hamming weight

of the syndrome. Note that we perform SecHW operation over the three shares of

syndrome s in order to prevent the leakage.

3.3.3 Implementing a Masked QC-MDPC McEliece

This section presents more details of the masked FPGA implementation of QC-

MDPC McEliece decryption based on the unprotected one in [vMG14a]. We follow

the structure of the original design, including the same security parameters, but

replace vulnerable logic circuits with masked circuits.

3.3.3.1 Overview of the Masked Implementation

Each time before the decryption is started, both the ciphertext and the masked secret

keys h0m,h1m are written into the BRAMs of the decryption engine. As shown in

Figure 3.7, one BRAM stores the 2 · 4801-bit ciphertext, the second BRAM stores

the 2 · 4801-bit masked secret key and third BRAM stores the 4801-bit masked

syndrome and the 4801-bit syndrome mask. Note that the secret keys are masked

49

LO
G

IC

LFSR m1,h1

LFSR m1,h0

LFSR m2,h1

LFSR m2,h0

LFSR syn

h1m

h0m

BRAMkey

sm

ms

BRAMsyn

ct1

ct0

BRAMct

f1

f2

f3

Syndrome computation

Decoding

Figure 3.7: Abstract block diagram of the masked QC-MDPC McEliece decryption
implementation.

before being transferred to the crypto core. The seeds for the internal PRG are

transferred with the masked key. Each BRAM is dual-ported, offers 18/36 kBit, and

allows to read/write two 32-bit values at different addresses in one clock cycle.

Computations are performed in the same order as in [vMG14a]: To compute

the masked syndrome sm, set bits in the ciphertext x select rows of the masked

parity-check matrix blocks that are accumulated. In parallel, the syndrome mask

ms is computed in the same manner. Rotating the two parts of the secret key is

implemented in parallel, as in the unprotected implementation. Efficient rotation is

realized using the Read First mode of Xilinx’s BRAMs which allows to read the

content of a 32-bit memory cell and then to overwrite it with a new value, all within

one clock cycle.

An abstraction of this implementation is depicted in Figure 3.7. The three block

RAMs are used to store the masked keys (h0m and h1m), the shared syndrome (sm

and ms) and the ciphertext (ct0 and ct1). The LFSR blocks are used to generate

the missing masks on-the-fly. The logic blocks for the two phases of the McEliece

decryption are shown on the left side of Figure 3.7.

50

3.3.3.2 Masking Syndrome Computation

The syndrome computation is a linear operation and requires only two shares for

sensitive variables. Once the decryption starts, 32-bit blocks of the masked secret

keys h0m,h1m are read from the secret key BRAM at each clock cycle and are XORed

with the 32-bit block of sm read from the syndrome BRAM depending on whether

the corresponding ciphertext bits are 1. Then the result will be written back into

the syndrome BRAM at the next clock cycle and at the same time the rotated 32-

bit blocks of the masked keys will be written back into the secret key BRAM.

Meanwhile, we need to keep track of the syndrome mask ms. Since syndrome

computation is a linear operation, we can similarly add up the secret key masks

synchronously to generate the syndrome mask. In our secure engine, we use two

32-bit leap forward LFSRs to generate random 32-bit secret key masks each clock

cycle which are XORed with the 32-bit block of ms read from the syndrome BRAM

depending on the ciphertext.

Cyclic Rotating LFSRs. Our 32-bit leap forward LFSRs not only generate a

32-bit random mask at each clock cycle but also rotate synchronously with the key.

For example, the LFSR for h0m first needs to generate the 4801-bit mask mh0 in

the following sequence: mh0 [0 : 31],mh0 [32 : 63], . . . ,mh0 [4767 : 4799],mh0 [4800].

This is done in 150 clock cycles. In the next round, the secret key is rotated by one

bit as h0m ≫ 1 and hence the mask sequence should be: mh0 [4800 : 30],mh0 [31 :

62], . . . ,mh0 [4766 : 4798],mh0 [4799]. After 4801 rounds of rotation, the LFSR ends

up with its initial state. In order to construct a cyclic rotating PRG with a period of

4801 bits, we combine a common 32-bit leap forward LFSR with additional memory

and circuits, based on the observation that the next state of the LFSR either com-

pletely relies on the current state or actually sews two ends of the sequence together,

e. g., mh0 [4800 : 30]. As shown in Figure 3.8, five 32-bit registers are employed in-

51

stead of just one. The combinational logic circuit computes the next 32-bit random

mask given the input stored in IntStateReg. The following steps describe the

functionality of our LFSR:

1. Initially, the 32-bit seed seed[0 : 31] of the sequence is stored in register IvReg

and the first 32 bits of the sequence, e. g., mh0 [0 : 31] are stored in the other

registers.

2. During the rotation, the combinational logic circuits output the new 32-bit re-

sult and feed it back. If the new result is part of the 4801-bit sequence, then it

will go through the Mux, overwriting the current state registers IntStateReg

and ExtStateReg at the next clock cycle.

3. If the new result contains bits that are not part of the sequence, then those bits

will be replaced. For example, when mh0 [4767 : 4799] is in IntStateReg,

the new result will be mh0 [4800 : 4831] in which only bit mh0 [4800] is in the

mask sequence and mh0 [4801 : 4831] will be dropped. The Mux gate will only

let mh0 [4800] go through together with mh0 [0 : 30] stored in ExtBit0 31 and

the concatenation mh0 [4800 : 30] will overwrite register ExtStateReg.

4. mh0 [4800 : 30] will not be written into register IntStateReg because given

mh0 [4800 : 30] as input, the combinational logic circuit will not output the

next valid state mh0 [31 : 62]. Therefore, we concatenate part of the seed in

IvReg and part of the first 32-bits in IntBit0 31, e. g., {seed[31],mh0 [0 : 30]}

and overwrite IntStateReg. Then, the new output will be mh0 [31 : 62]. The

concatenation is implemented as a cyclic bit rotation as shown in Figure 3.8.

After 32 rotations, the seed is rotated to IntBit0 31 and the first 32-bit mh0 [0 :

31] is rotated to IvReg. Hence, they will be swapped back in the next clock

cycle.

52

Combinational
Logic

INTSTATEREG

EXTSTATEREG

IVREG

INTBIT0_31

M
U

X

EXTBIT0_31

M
U

X 32-bit LFSR Output

Figure 3.8: The structure of the cyclic rotating LFSR that is used to generate the
masks on-the-fly.

To sum up, ExtStateReg always contains the valid 32-bit mask while IntStateReg

always contains 32-bit input that results in the next valid state. The rotated secret

key is generated in 150 clock cycles. After 4801×150 clock cycles, the LFSR returns

to its initial state and idles.

3.3.3.3 Masking the Decoder

As mentioned previously, the masked secret keys and the syndrome are extended to

three shares. Hence, more LFSRs are instantiated to generate the additional shares

as shown in Figure 3.7. Two LFSRs generate the third shares of h0 and h1, another

LFSR generates the third share of the syndrome.

We use h0 as example to describe the decoder, since h1 is processed in parallel

using identical logic circuits. We split h0 into three shares: h0m stored in the BRAM

and m1,h0 and m2,h0 generated by two LFSRs. The syndrome is split into sm and

ms1 which are stored in BRAM and ms2 which is generated by an LFSR. After

decoding is started, each 32-bit share is read or generated at each clock cycle and

53

h0m

m1,h0

m2,h0

sm

ms1

ms2

f1

f2

f3

>>>

>>>

sh1

sh2

sh3

……

Bool_to_Arith Logic

share1

share2

Su
m

_
sh

a
re

1

Su
m

_
sh

a
re

2

+

sum

Figure 3.9: Layout of our pipelined QC-MDPC McEliece decoder for the first part
of the secret key, h0.

then SecAND and SecHW are performed. This is implemented using a pipelined

approach as shown in Figure 3.9.

The left part of Figure 3.9 illustrates the bitwise SecAND operation using Equa-

tion (3.8). The 32-bit shares are fed into shared functions f1, f2, f3, and the outputs

are three 32-bit shares of the result. As mentioned before, two additional random

vectors r1, r2 are required to mask the outputs in order to achieve uniformity. Our

design uses only two fresh random bits b1, b2 together with the shifted input shares

as the random vectors because the neighboring bits are independent of each other.

That is r1 = {b1,m1,h0 [0 : 30]} and r2 = {b2,m2,h0 [0 : 30]}. Both m1,h0 [31] and

m2,h0 [31] are shifted out and are used as b1 and b2 in the next clock cycle. The

right part shows the structure of SecHW. To compute the Hamming weight of the

unmasked result sh1⊕sh2⊕sh3 without leaking side channel information, a parallel

54

counting algorithm is applied to accumulate the weight of each bit position of the

word. We use 32 × 2 6-bit Arithmetic masked counters2 and each bit in the word

sh1⊕sh2⊕sh3 will be added into the corresponding counter during each clock cycle.

More specifically, the three shares of each bit of sh are converted and added into the

two Arithmetic masked counters. After 150 clock cycles, we sum the overall Arith-

metic masked Hamming weight. To convert and accumulate the masked weights,

we employ the secure conversion method developed in [CGV14].

3.3.4 Implementation Results

The masked design is implemented in VHDL and is synthesized for Xilinx Virtex-5

XC5VLX50 FPGA which holds the crypto engine in the side channel evaluation

board SASEBO-GII. The implementation results are listed in Table 3.1 in com-

parison with the unprotected implementation of [vMG14a]. In terms of Flip-Flops

(FFs) and Look-Up Tables (LUTs), the masked implementation uses 8 times as

many resources as the unprotected implementation. The increase is mainly due to

the masked Hamming weight computation which requires many registers to store the

Hamming weights of small chunks. Moreover, the leap forward LFSR also utilizes

many Flip-Flops and has to be instantiated five times in our design. The number of

occupied BRAMs remains constant, only the occupied memory within the syndrome

BRAM increases by a factor of 2 in the masked implementation because the syn-

drome masks are also stored in this BRAM. The performance of the masked design is

compromised for security and the maximum clock frequency is reduced by a factor of

4.3. This is mainly because the addition of 32 6-bit weight registers in SecHW is done

in one clock cycle resulting a long critical path and in turn a low clock frequency.

2Note that the Hamming weight of s ∧ H is bounded to the weight of hi, i. e., wt(s ∧ hi) ≤
w/2 = 45, i. e., 6-bit registers are always sufficient.

55

Table 3.1: Resources usage comparison between the unprotected and masked im-
plementations on Xilinx Virtex-5 XC5VLX50 FPGAs.

Implementation FFs LUTs Slices BRAMs Frequency

Unprotected [vMG14a] 412 568 148 3 318 MHz

Masked 3045 4672 1549 3 73 MHz

Overhead Factor 7.4x 8.2x 10.5x 1x 4.3x

Shortening the critical path can be an interesting goal in future work. Note that

the number of clock cycles remains the same as for the unprotected implementation,

unless the early termination of the decoder is disabled, in which case the average run

time doubles compared to [vMG14a] (assuming that the maximum number of itera-

tions is set to 5 similarly to [vMG14b], with early termination enabled the decoder

requires 2.4 iterations on average as was shown in [HvMG13, vMOG15]). The result-

ing mean overhead of our implementation is 4, which is in line with other masked

implementations. The TI AES engine in [MPL+11] introduces an area overhead

of a factor 4 as well, but that implementation does not include the pseudorandom

generators needed to generate the 48 bits of randomness consumed per cycle, while

ours does.

3.3.5 Leakage Analysis

Now we analyze the implementation for remaining leakage. We first apply the DPA

as explained in Section 3.2 on the masked implementation. Next we use the t-test

leakage detection methodology to detect any other potentially exploitable leakages.

The evaluated implementation is placed on the Xilinx Virtex-5 XC5VLX50 FPGA

of the SASEBO-GII board. The power measurements are acquired using a Tektronix

DSO 5104 oscilloscope. The board was clocked at 3 MHz and the sampling rate was

set to 100 M samples per second. In order to quantify the resilience of our masked

56

500 1000 1500 2000 2500 3000 3500 4000 4500

0.4

0.5

0.6

0.7

0.8

0.9

1

key bits

∆ c

Differential trace of fixed secret key
Differential trace of random secret keys

Figure 3.10: Comparison between two differential traces of two sets of secret keys.

implementation to power analysis attacks, we collected 10, 000 measurements using

the same ciphertext but two different sets of secret keys. The first set is actually

5, 000 repetitions of a fixed key while the second set contains 5, 000 random keys.

The two sets of keys are fed into the decryption engine alternatively.

3.3.5.1 Differential Power Analysis

As shown in Section 3.2, DPA on the target FPGA implementation requires con-

struction of differential traces. Therefore, we generate such differential traces out

of the power traces from masked implementation. In contrast to the unprotected

implementation, no features are present in the differential trace of the fixed secret

key (red line) even with 500 times more traces, as shown in Figure 3.10. Hence, the

key bit value cannot be recovered. The peaks in the trace are not the features caused

by set key bits because in the differential trace of the random secret keys where the

key bits are randomly set as 1 the same peaks appear. Thus, they cannot be used

as features to recover secret key bits as done in Section 3.2. The two differential

traces almost overlap, showing that the leakage is indistinguishable between fixed

key and random key when using a masked implementation.

57

3.3.5.2 Leakage Detection

Next, we apply the t-test leakage detection methodology to find any remaining

leakages. In our case, we obtained two groups of leakage samples, one for the

fixed key set and the other for the random key set. Each group has 5, 000 power

traces as well as 5, 000 derived differential traces. We first performed the t-test

using the original power traces and Figure 3.11.1 shows the t-statistics along the

whole decryption. The t-statistics are within the range of [-4.5, 4.5] which implies

a confidence of more than 99.999% for the null hypothesis showing that the two

sample groups are indistinguishable.

To assess the vulnerability to first-order horizontal attacks, we also performed

a t-test on the derived differential traces. The results are shown in Figure 3.11.2.

Similarly, the t-statistics are also within the predefined range and it validates the

indistinguishability between the two sets of secret keys. Hence, it can be concluded

that the design does not contain any remaining first-order leakage of the key.

3.4 Conclusion

This chapter presents the first successful differential power analysis of a state-of-

the-art McEliece implementation based on quasi-cyclic MDPC codes. The analysis

exploits the leakages of a key rotation operation which occurs during the syndrome

computation step of the decryption and recovers a combined leakage of h0 and h1.

The leakage model provides precise and strong leakage. The resulting attack is

independent of the ciphertext and succeeds with tens of traces. A significant part

of the key recovery stems from the relation between the private key and public key,

which can be exploited to ease key recovery. In fact, recovering only half the bits of

the (highly biased) secret key with a low error rate is sufficient for full key recovery.

58

1 2 3 4 5 6 7

x 10
4

−8

−6

−4

−2

0

2

4

6

8

Time samples

t−
st

at
is

tic

3.11.1: Results of original traces

500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8

key bits

t−
st

at
is

tic

3.11.2: Results of differential traces

Figure 3.11: T-test between the two groups of original power traces (3.11.1) and
differential power traces (3.11.2) corresponding to the two sets of secret keys. Both
cases indicate the absence of leakage for the given number of traces.

Then, we investigate a formal way to counteract the attack by applying state-of-

the-art Threshold Implementation masking scheme. While masking the syndrome

computation is straightforward and comes at a low overhead, the decoding algorithm

requires more involved masking techniques. Through on-the-fly mask generation,

the area overhead is limited to a factor of approximately 4. While the maximum

59

clock frequency of the engine decreases, the number of clock cycles for the syndrome

computation and each decoder run is unaffected by the countermeasures. The ef-

fectiveness of the applied masking has been analyzed by leakage detection methods

and by showing that previous attacks do not succeed anymore.

60

Chapter 4

Leakage Mitigation

Since the discovery of side channel analysis, numerous efforts have been dedicated to

the study of countermeasures to protect cryptosystems against such attacks. In gen-

eral, the countermeasures fall into two categories , i.e. masking and hiding. Masking

works by randomizing the intermediate values processed by the crypto devices and

hiding attempts to break the link between the power consumption and processed

data.While they provide leakage resistance at different levels, the instantiations of

both countermeasures often incur significant overhead in terms of area, performance

and power consumption, hindering their deployment in resource-constrained appli-

cations like Internet of Things.

In this chapter, we present our contributions in the study of both countermea-

sures aiming for more efficient schemes. In terms of masking, we investigate state-

of-the-art Threshold Implementation and explore the possibilities for practical TI

with only two shares in order for a smaller design; whereas for hiding, we develop

a scheme that has constant leakage in common linear leakage models. Constant

leakage is achieved not only for internal state values, but also for their transitions.

61

4.1 Masking: Two-share TI

Protecting cryptographic hardware against side channel analysis is a difficult task

and usually incurs significant area overheads. Especially masking schemes aimed at

hardware have been found to be flawed or prone to implementation errors that leave

the countermeasure at least partially insecure [CPR07, KP09, MM12].

Threshold Implementation (TI) has become a popular masking scheme for hard-

ware implementations in the recent years, due to several advantages over competing

schemes. Unlike secure logic styles [KP09], it does not require a change of the design

flow. TI is fairly simple to apply to a wide range of ciphers, and its implementa-

tion is not very error-prone, if a known set of requirements and best practices is

followed. Another advantage is that TI actually keeps the promise of reliable first-

order side-channel resistance. It also provides good protection against higher-order

attacks [MPL+11, BGN+14a].

However, like most other masking schemes, TI incurs large area and time over-

heads, and often consumes huge amounts of randomness for remasking, which can

make practical application cumbersome. So far the best results have an area over-

head of approximately three while consuming at least two times the combined

plaintext and key size of randomness per encryption. Such overheads—the sig-

nificant increase in area as well as the need for a high-performance random number

generator—make TI an expensive choice, too expensive for a broad range of practical

applications. Reparaz et al. [RBN+15] generalized TI to provide protection against

higher-order attacks. The work mentioned the feasibility of reducing the number of

shares to d+ 1, where d is the desired protection order, suggesting that two shares

are sufficient for first-order side channel protection. One proof of concept of using

d+ 1 shares for AES was proposed by De Cnudde et al in [DCRB+16] at the cost

62

of (d+ 1)2 fresh randomness. Later, so-called domain-oriented masking using d+ 1

shares was introduced by Gross et al in [GMK16] with less randomness.

However, our practical results of using d+1 shares in fact come earlier and show

its advantages as well as its limitations. In this work we explore the practical impli-

cations of reducing the number of shares of threshold implementations to only two

shares (2-TI). Such a reduction of shares enables implementations that only incur

an area overhead of two and at the same time can also reduce the need of minimally

required randomness by a factor of two, making the incurred cost more bearable

and thus allowing side channel protection for a much wider range of applications.

Our study shows that two-share TI is first-order secure and also reduces the

size of the sequential logic in hardware implementations. The 2-TI-conversion of

nonlinear functions is more cumbersome and usually requires at least one additional

pipeline stage, with negative impact on implementation size and/or performance.

However, we also expose a strong second-order leakage in both of the designs and

argue that this is inherent to two-share TI implementations. We show that these

leakages exist both in the theoretical model and can also be quickly exposed by

leakage detection tests. We validate the exploitability of the observed leakages by

side channel key recovery attacks.

4.1.1 Threshold Implementation with Two Shares

While the constructive approach by Nikova et al. allows to implement any d-th or-

der algebraic functions in a straightforward way, actual implementations requiring

to share functions of degree greater than 2 have put significant effort into keep-

ing the number of shares as close as possible to three, which is perceived as the

minimum possible to implement nonlinear functions, until [RBN+15]. In particu-

lar, [KNPW13] discussed the efficient implementation of 4-bit S-boxes with three

63

shares. Similarly, the current TIs of AES utilize the algebraic structure of the AES

S-box and four [MPL+11] or variable with up to five shares [BGN+14a] to implement

the S-box on a small area.

A natural question is: Why to stop at three shares? If small area is desirable,

using similar techniques as the ones used by the above papers could enable TIs

with just two shares, further reducing the area footprint as well as the need for

randomness. This approach was already discussed in [RBN+15]. The approach

is straightforward for the linear operations of an implementation, and has already

been widely used in several TIs for those parts [BGN+14a, CEvMS15b, BGN+15].

The simplest nonlinear operation is a simple two-input and: c = ab which can be

processed with two shares as

c0 = a0b0 c1 = a1b1 c2 = a0b1 c3 = a1b0 (4.1)

This equation is in violation of the common interpretation of the non-completeness

requirement, since c2 and c3 mix inputs from shares with different indices. However,

non-completeness is not violated as long as a and b are statistically independent.

Equation (4.1) suggests a 4-share output, which is undesirable for a minimal

implementation. To keep the number of shares low, the four shares ci can be re-

combined in the next cycle, e.g. c′0 = c0 + c2 and c′1 = c1 + c3. However, since the

recombination would violate non-completeness, it must happen after a register-stage

in the next clock cycle. In other words, a pipelining stage becomes necessary, increas-

ing the register count and the delay of the output. The share proliferation gets worse

for higher-degree algebraic functions, as stated in [RBN+15]. However, hardware-

minimal implementations break higher-order algebraic functions into degree-minimal

building blocks anyway, making share proliferation a theoretical concern only.

64

To also ensure uniformity and thus gain an implementable basic nonlinear build-

ing block, we implement z = ab+ c in two pipeline stages as

z′0 = a0b0 + c0 z′1 = a1b1 + c1 z0 = z′0 + a0b1 z1 = z′1 + a1b0 (4.2)

Note that z′i and zi are computed in separate cycles. Conveniently, the z′i and zi are

uniform. Furthermore, this computation order only needs to store 2 intermediate

states (unlike eq. (4.1)). However, this assumes that the inputs are available in two

subsequent clock cycles, which is a valid assumption in many serialized implemen-

tations. Either way, the resulting pipelining of the nonlinear function increases area

overhead of that function, and also introduces a latency according to the number of

pipeline stages needed. Most of this latency can be hidden if the data path of the

implementation is small enough.

4.1.2 Potential Pitfalls

The observed higher-order leakage can be explained by the significant dependence

of the variance on the value of the share x. For a simple example we compare a 2-

sharing S2 and a 3-sharing S3 of a bit x into S2(x) = 〈x0,x1〉 and S3(x) = 〈x0,x1,x2〉

respectively. We further assume a Hamming weight (wt(·)) leakage on the shares.

Table 4.1 lists the possible states and the resulting means and variances for both

sharings.

As proper TI sharings of x, the mean leakage µ(Si) is independent of the value

of x. However, the variance of S2 depends on x, in particular var(S2(x = 0)) = 2 6=

0 = var(S2(x = 1)). This is not true for the 3-sharing S3, where the variances in

both cases are identical as well. This is a strong indication why 2-sharings may have

a strong second-order leakage. This was also observed for partial 2-share implemen-

65

Table 4.1: Comparison of leakage for a 2-sharing (S2) and 3-sharing (S3) of a bit
x in a Hamming weight model. The 2-sharing (S2) shows a leakage in the variance
σ(S2).

x S2(x) S3(x) wt(S2) wt(S3) µ(S2) µ(S3) σ(S2) σ(S3)

0 {00, 11} {000, 011, 101, 110} {0, 2} {0, 2, 2, 2} 1 3/2 2 1

1 {01, 10} {001, 010, 100, 111} {1, 1} {1, 1, 1, 3} 1 3/2 0 1

tations in [BGN+15] and will be demonstrated for full 2-share implementations in

the analysis of our reference implementations in Section 4.1.6.

4.1.3 Application to Simon

Threshold Implementations of Simon with three shares have been proposed in [STE15]

to counteract first-order side channel attacks. Moreover, their bit-serialized imple-

mentation only consumes 87 slices on Spartan-3 xc3s50 FPGA which renders it the

smallest threshold implementation of a block cipher. The authors also discussed

how the requirement of non-completeness shuts the door on a two-share hardware

implementation of Simon but not on software implementations.

In this section, we at first apply serialization technique in order to realize a two-

share TI Simon on hardware. The leakage detection analysis and implementation

results will be presented in Sections 4.1.5 and 4.1.6.

66

4.1.3.1 Simon with Two Shares

We follow the notation used in [STE15] to describe the cipher. The input plaintext

is initially split into two shares as:

r[a]0 =m[p][1]

l[a]0 =m[p][2]

r[b]0 =m[p][1] + r0

l[b]0 =m[p][2] + l0

(4.3)

Where r and l represents the two input words, a and b denote two shares of the

variables and subscript i indicates the round of encryption. m[p][1] and m[p][2]

are two fresh random values that mask the plaintext in the very beginning of the

algorithm and no more random numbers are needed for the rest operations. Then,

the round function is denoted as:

r[a]i+1 =l[a]i

l[a]i+1 =r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + k[a]i

r[b]i+1 =l[b]i

l[b]i+1 =r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[b]i

(4.4)

Where the superscripts 1, 2, 8 on l[∗]i represent left circular shift by corresponding

numbers of bits. (Notice that both addition and multiplication are in GF(2)). Obvi-

ously, the computations of l[a]i+1 and l[b]i+1, if directly mapped into combinational

circuits, are not non-complete since the two shares l[a]8i and l[b]8i are present in the

same circuit and glitches may still cause leakage. We can serialize the above equa-

tions by enforcing them being executed in two steps rather than one. That is, we

first compute the intermediate values l[a]i+1,int and l[b]i+1,int using only half of the

67

terms in the equations as follows:

l[a]i+1,int =r[a]i + l[a]2i + l[a]1i ∗ l[a]8i

l[b]i+1,int =r[b]i + l[b]2i + l[b]1i ∗ l[b]8i
(4.5)

Then, the round outputs can be further calculated as:

l[a]i+1 =l[a]i+1,int + l[a]1i ∗ l[b]8i + k[a]i

l[b]i+1 =l[b]i+1,int + l[b]1i ∗ l[a]8i + k[b]i

(4.6)

The serialization not only retains both correctness and uniformity but achieves non-

completeness as well. In Equation (4.5), the inputs r[a]i, l[a]2i , r[b]i and l[b]2i are all

uniform and therefore the output intermediates are also uniform. Each function is

independent of one share of every input and hence is non-complete. Similarly, Equa-

tion (4.6) also satisfies the three requirements. Correctness can be easily proved by

substituting l[a]i+1,int and l[b]i+1,int with Equation (4.5). The uniformity of inputs

k[a]i and k[b]i makes the outputs uniform too. Moreover, each function is indepen-

dent of one share of every input and thus the functions are non-complete as well.

One may argue that l[a]1i and l[b]8i (or l[b]1i and l[a]8i) are two shares of li with differ-

ent rotations and may leak information of li. However, the multiplication between

them is in GF(2) and is equivalent with bitwise AND operation. Further, in order

to ensure the non-completeness, ”Keep Hierarchy” property of synthesize tool (ISE

with XST) is enabled to separate the LUTs for AND.

4.1.3.2 Round-based Implementation

Figure 4.1 depicts the structure of a FPGA implementation which contains two

copies of the same data-path which consists of two registers Lj and Rj and the

68

La

&

Ra

&

Lb

&

Rb

&

S1

S8

S2

S1

S8

S2

S1

S1S8

S8

Ka Kb

Figure 4.1: Data-path of the Simon with Two Shares. Solid line: First clock cycle;
Dashed line: Second clock cycle

combinational circuits for round functions. Specifically, two clock cycles are taken

to process each round operation. In the first clock cycle, the round inputs are

evaluated with Equation (4.5) and then the intermediates are overwritten back into

the registers as illustrated by the solid lines in the figure. Note that r[j]i+1 = l[j]i is

stored in Rj while l[a]i+1,int is in Lj. Then, in the second clock cycle, Equation (4.6)

is evaluated as shown by the dashed line but remember that since l[j]i is now stored

in Rj and hence no extra buffer is needed for it.

The sharing of key schedule is not presented here since it consists of linear

operations only and is trivial to implement.

4.1.3.3 Bit-serialized Implementation

In order to fairly compare with the bit-serialized 3-TI Simon introduced in [STE15]

and achieve a even smaller size of Simon implementation, a bit-serialized 2-TI Simon

is constructed as depicted in the Figure 4.2 (Only one share is shown).

69

Figure 4.2: Data-path of the bit-serialized 2-TI Simon

Our design originates from the FIFO-based 3-TI bit-serialized in [STE15] but

introduces new features in order for a 2-TI architecture.

First of all, the round function is adjusted according to Equation 4.5 and 4.6.

(Note that both equations are evaluated in bits instead of the whole word in this

case.) Therefore, as shown in the LUT part of Figure 4.2, a one-bit register is

inserted to hold the intermediate value l[a]i+1,int so that l[a]8i and l[b]8i will not be

combined to cause leakages mistakenly.

Second, due to the insertion of this register, it will take two clock cycles for LUT

to perform round operation for each bit. However, by using pipeline technique, the

overall throughput will not be scarified too much. In fact, the 2-TI architecture

processes all 64 bits within 65 clock cycles which is only one more than 3-TI in

[STE15]. In order to achieve this, the FIFOs and shifted registers are designed to

work as following.

• Initially, the 128-bit block is stored in register #63, Shifted Registers Up

(SRU) #62 to #55, FIFO 1 and FIFO 2.

• Once Encryption started, the values are right shifted and in the mean time

bits in register #63, #62 and #56 as well as bit 0 in FIFO 2 are fed into LUT

70

for logic operation.

• The output will be written back to Shifted Registers Down (SRD). Note that

the valid outputs are generated since the second clock cycle. And then, after

64 clock cycles, the first 63 output bits are stored in Shifted Registers Down

(SRD) #62 to #55, FIFO 1 and FIFO 2. In the last (65th) clock cycle, the

final output bit will be written in register #63. Therefore, the whole round

operation is done within 65 clock cycles.

4.1.4 Application to Present

In this section, we apply two-share Threshold Implementation to the Present cipher.

In [KNPW13], the authors presented the 3-TI Present S-box. To achieve this, they

decomposed the non-linear S-box of degree 3 into the combination of two quadratic

functions—G function—plus some linear functions, and then implement them with

three shares. We follow their idea to use the same decomposition but then implement

them with 2-TI while still retaining uniformity, non-completeness, and correctness.

According to [KNPW13], the S-box of Present can be decomposed as:

S(X) = A(G(G(BX ⊕ c))⊕ d) (4.7)

Where G(.), A, B, and the constant vectors of c, d are given as follows:

71

G(x, y, z,w) =(g3, g2, g1, g0) :

g3 =x+ yz + yw

g2 =w + xy

g1 =y

g0 =z + yw

(4.8)

A =



1 0 1 0

0 1 0 0

1 0 0 0

1 0 1 1


, B =



1 1 0 0

0 1 1 0

0 0 1 0

0 1 0 1


,c =

[
0 0 0 1

]
,d =

[
0 1 0 1

]
(4.9)

4.1.4.1 Present with Two Shares

A 2-sharing scheme of G(.) can be expressed as follows:

G0(x0, y0, z0,w0,x1, y1, z1,w1) =(g03, g02, g01, g00)

g03 =x0 + y0z0 + y0z1 + y0w0 + y0w1

g02 =w0 + x0y0 + x1y0

g01 =y0

g00 =z0 + y0w0 + y0w1

(4.10)

72

G1(x0, y0, z0,w0,x1, y1, z1,w1) =(g13, g12, g11, g10)

g13 =x1 + y1z0 + y1z1 + y1w0 + y1w1

g12 =w1 + x0y1 + x1y1

g11 =y1

g10 =z1 + y1w0 + y1w1

(4.11)

The above sharing satisfies both correctness and uniformity when the input

shares are uniformly distributed. However, non-completeness is not fulfilled since

two shares of the same inputs are fed into the same functions in some of the above

equations.

As before, we serialize the computations into two steps in order to achieve non-

completeness as illustrated in the following equations.

G1
0(x0, y0, z0,w0) =(g1

03, g1
02, g1

01, g1
00)

g1
03 =x0 + y0z0 + y0w0

g1
02 =w0 + x0y0

g1
01 =y0

g1
00 =z0 + y0w0

(4.12)

73

G2
0(x1, y0, z1,w1, g1

03, g1
02, g1

01, g1
00) =(g2

03, g2
02, g2

01, g2
00)

g2
03 =g1

03 + y0z1 + y0w1

g2
02 =g1

02 + x1y0

g2
01 =g1

01

g2
00 =g1

00 + y0w1

(4.13)

G1
1(x1, y1, z1,w1) =(g1

13, g1
12, g1

11, g1
10)

g1
13 =x1 + y1z1 + y1w1

g1
12 =w1 + x1y1

g1
11 =y1

g1
10 =z1 + y1w1

(4.14)

G2
1(x0, y1, z0,w0, g1

13, g1
12, g1

11, g1
10) =(g2

13, g2
12, g2

11, g2
10)

g2
13 =g1

13 + y1z0 + y1w0

g2
12 =g1

12 + x0y1

g2
11 =g1

11

g2
10 =g1

10 + y1w0

(4.15)

The superscript indicates the level of the circuit. Until now, we achieved a correct,

non-complete and uniform two-share implementation of G(.). the conversion of the

remaining linear operations is discussed next.

74

4.1.4.2 Hardware Implementation

As depicted in Figure 4.3, in order to provide the non-completeness to the design,

we use registers to separate the two parts of the G. The second part of the shares

(G2
0 and G2

1) use not only the outputs of the first part of the shares (G1
0 and G1

1)

but also some of their inputs as well (depicted in Figure 4.3). One 6-bit register and

two 4-bit registers are used before the second part of the G module, to store the

inputs x0, x1, z0, z1, w0, and w1; and the outputs of the first part of the G module,

respectively.

In Figure 4.4, the S-box architecture is depicted which includes two G modules,

and functions BX + c0 and AX + d0 for the first share as well as functions BX + c1

and AX+d1 for second share in which c0 +c1 = c and d0 +d1 = d. Furthermore, due

to non-completeness, we use another row of registers in between two G(.) functions

in the S-box. One may argue that registers should also be inserted between non-

linear functions (e.g. G(.)) and linear functions (e.g. AX + d0), since when they

are merged the two shares of certain variables may be combined again which fails

the non-completeness requirement. While this is true in general cases, our design

avoids this problem as G2
0 and G2

1 are both independent of one share of the inputs

and hence any linear combination of g2
13, g2

12, g2
11, g2

10 or g2
03, g2

02, g2
01, g2

00 still satisfies

non-completeness.

Figure 4.5 shows the whole Present cipher with two shares. The design includes

two control inputs namely key_load and data_load. If key_load is high, at the

rising edge of the clock signal, the 80-bit input key shares-Key A and Key B- are

copied to the registers Key A and Key B respectively. When the data_load signal

is high, at the rising edge of the clock signal, 64 right-most significant bits of the

input shares (data_in A[63:0], data_in B[63:0]) are copied to state registers. It

is worth mentioning that when the data_load is set, i.e. loading new two shares of

75

G
R
e
g

R
e
g

R
e
g

1

0 G
2

0

G
1

1 G
2

1

Figure 4.3: Hardware architecture of the 2-share G module

plaintext into the state registers results in a reset of the state machine. That why

this design does not have a reset signal. When the two-share keys and two-share

plaintexts are loaded, both key_load and data_load must be set to zero. After that,

it takes 31 rounds in order to Data_out A and Data_out B have a valid ciphertexts.

In each round, the S-box and permutation operations respectively operate the inputs

to update the state registers for the next round. Considering the hardware design,

each G(.) function needs one cycle and then every S-box needs four clock cycles to

compute table lookup. According to the Figure 4.5, each 64-bit input stored in the

State register needs to use S-box 16 times. Hence, it needs 4 clock cycles for the

first S-box due to its latency, plus 15 clock cycles for other 15 S-boxes in pipeline,

also one more clock cycle for the permutation operation. Therefore, we need 20

76

BX+c0

BX+c1

G G

AX+d0

AX+d1

R
e
g

R
e
g

Figure 4.4: Hardware architecture of the 2-share S-box module

cycles for each round of the Present cipher. Hence, we define another control signal,

’counter’, in which it updates the state registers and Key registers after each 20

cycles. After each cycle of these 20 cycles, the state registers are shifted to the right

by 4 bits and the four most significant bits of the state registers are replaced by

the outputs of substitution and permutation network. The Present cipher has 31

rounds, hence a full encryption of a 64-bit input takes 620 clock cycles. We also

design an unprotected Present cipher to show the area overhead of the protected

Present versus unprotected one as well as its impact on maximum frequency and

throughput. The comparison results are shown in Table 4.2.

4.1.5 Implementation Results

Table 4.2 summarizes the overhead and performance of two-share implementations

of both ciphers. Note that we only implement Simon128/128 and Present64/80 as

an example to show the advantage of two-share scheme. All the designs are im-

plemented in Verilog and synthesized for Virtex-5 (xc5vlx50) or Spartan-3 (xc3s50)

using XST.

77

State A

State B

Permutation

A

S-box

Key A

Key B

Update_Key A

Update_Key B

Permutation

B

Data_in B

Data_in A

Data_out A

Data_out B

Data_ load

Counter

Data_ load

Counter

Key_load

Key_load

4

4

4

4

4

4

4

4
64

80

64

80

80

80

80

6464

4

64

80

80

64

64

64

6464

64

80

80

64

4

64

64

64

Figure 4.5: Hardware architectures of the 2-shares Present Cipher.

For round-based Simon, we have three different implementations: unprotected, 2-

TI and 3-TI. In terms of slice registers used, two-share TI implementation costs twice

as much as the unprotected one and one third less than the 3-TI implementation.

This is not surprising since increasing by one share will consume one more copy of

registers to store the new share. Similarly, number of LUTs also increases. However,

each round operation in 2-TI costs double clock cycles and therefore the throughput

is greatly reduced compared with the other two designs.

We also implement bit-serialized 2-TI Simon to compare with the currently small-

est block cipher designs for FPGAs, as given in [AGS14], as well as its first-order

protected 3-TI version from [STE15]. As shown in Table 4.2, our 2-TI design re-

duces the area overhead when compared to the 3-TI by about 13%, i.e., cannot

quite reach the optimal reduction of 33% due to the pipelining overhead and the

78

Table 4.2: Implementation results of two-share Simon and Present.

Design
Slice

(Regs)

Slice

(LUTs)

Max. Frequency

(MHz)

Throughput

(Mbps)

Present on Virtex 5

3-TI Present 466 (3.0x) 715 (3.1x) 397.289 45.567

2-TI Present 370 (2.4x) 742 (3.2x) 490.252 50.61

Present 154 (1x) 234 (1x) 394.563 40.73

Round-based Simon on Virtex 5

3-TI Simon 777 (2.8x) 1302 (2.8x) 414 779

2-TI Simon 520 (1.9x) 1169 (2.5x) 382 360

Simon 272 (1x) 473 (1x) 421 792

Bit-serialized Simon on Spartan 3

3-TI Simon [STE15] 61 (2.0x) 160 (2.2x) 109.4 3.21

2-TI Simon 55 (1.8x) 135 (1.9x) 91.1 2.64

Simon [AGS14] 30 (1x) 72 (1x) 91.4 2.69

unaffected control logic. Nevertheless, this yields the smallest first-order protected

block cipher design for FPGAs with the same parameters as AES-128.

With respect to Present, we have three implementations: Unprotected, Regular

3-TI, and the new 2-TI Present. In terms of slice registers used, regular 3-TI im-

plementation used more than three times of the unprotected one. This is because

we should use extra registers to guarantee the non-completeness of first-order resis-

tant three-share Present cipher. Also, two-share implementation costs more than

two times of unprotected Present because of the same reason mentioned before.

Moreover, it is worth mentioning that the 2-TI first-order resistant implementation

uses less registers than 3-TI. For example, we use extra registers in G(.) function as

explained in Section 4.1.4. These registers help reducing the critical path, which

explains the speed-up and resulting increase in throughput for 2-TI Present.

79

200k 400k 600k 800k 1M 1.2M 1.4M 1.6M 1.8M 2M
0

1

2

3

4

5

6

Number of Traces

t v
al

ue

4.6.1: 1st-order t-test

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Number of Traces

M
ax

im
um

 a
bo

so
lu

te
 c

or
re

la
tio

n

4.6.2: 1st-order CPA

Figure 4.6: First-order leakage analysis of synthetic data. Left: first-order t-test.
Right: first-order CPA; Red line corresponds to the correct key guess

4.1.6 Leakage Analysis

In this section, we extend the discussion of a strong second-order leakage of two-

share TI scheme, which was already described in Section 4.1.2, using simulation

based leakage and the measurements from our reference implementations.

4.1.6.1 Theoretical Analysis

First we discuss the strong second-order leakage of two-share TI scheme using two-

share Present S-box look-up as a target, namely the key-dependent intermediate

value y = S(x⊕k) where x, y, k are 4-bit input plaintext, S-box output and sub-key

receptively.

Synthetic samples and leakage model First, we generate noise free synthetic

leakage samples of the 2-TI Present S-box based on Hamming weight model. As

shown in Section 4.1.4, a 2-TI S-box processes two shares (4 bits for each share)

in parallel and hence we use the Hamming weight of both output shares (8 bits in

total) as the synthetic leakage samples. Further, in order for a second order analysis,

the synthetic data should be center-and-then-squared. With respect to the leakage

80

40 80 120 160 200 240 280 320 360 400
0

1

2

3

4

5

6

7

Number of Traces

t v
al

ue

4.7.1: 2nd-order t-test

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

M
ax

im
um

 a
bo

so
lu

te
 c

or
re

la
tio

n

4.7.2: 2nd-order CPA

Figure 4.7: Second-order leakage analysis of synthetic data. Left: second-order
t-test. Right: second-order CPA; Red line corresponds to the correct key guess

model, we use the Hamming weight of the regular S-box output which equals the

bitwise XOR between the two output shares in the 2-TI S-box.

First-order analysis We perform first-order non-specific t-test on the synthetic

data and attempt to exploit any leakage using classic CPA as well. For this purpose,

1 million synthetic leakage samples for random input plaintext are generated as

well as another 1 million for fixed inputs. The result of t-test using the 2 million

samples is shown in Figure 4.6.1 where the t value is less than 2 as the number of

traces (synthetic samples) increases to 2 million. Then, a classic first-order CPA

is performed on the 1 million samples associated with the random inputs using the

above-mentioned leakage model. The results in Figure 4.6.2 shows the correct key

cannot be distinguished from the wrong key hypotheses with as much as 1 million

samples and the attacks fail.

Second-order analysis Then, we proceed with second-order non-specific t-test

and CPA. For this purpose, 200 synthetic leakage samples for random input plaintext

are generated as well as another 200 for fixed inputs.Figure 4.7.1 shows that t value

exceed 4.5 with only a couple of hundreds of samples while classic CPA can recover

81

the correct key with less than a hundred samples as shown in Figure 4.7.2.

In summary, the theoretical analyses also show the first-order resistance of 2-TI

scheme but reveals a strong second-order leakage. This strong second-order leakage

is caused by the differing variances, as pointed out in Section 4.1.2. Note that we use

perfect Hamming weight model for synthetic data without adding any noise. Hence,

the CPA with a Hamming weight model can efficiently recover the key because it

captures the leakage well. In fact, CPA on a perfect Hamming weight leakage is

comparable to a profiled attack, in the absence of noise. But in the real world,

actual leakages are more complex and CPA with Hamming weight model will not

be as efficient as in this synthetic scenario. In the following we will conduct analysis

on practical implementations to show this.

4.1.6.2 Practical Analysis

Next, we discuss the leakage analysis results for the two-share implementations of

round-based Simon and Present. First, we apply the non-specific t-test method

to detect any data-dependent leakage. Leakage detection tests are performed on

round-based 3-TI Simon in order to compare with 2-TI and show the first-order

leakage resistance of two-share scheme. Then, classic CPA is performed in order to

exploit the second-order leakage detected by t-test and the results comply with the

simulations in Section 4.1.6.1.

The analyzed implementations are ported into a Virtex-5 xc5vlx50 FPGA on the

SASEBO-GII board clocked at 3 MHz. Measurements are taken using a Tektronix

DPO-5104 oscilloscope which collects measurements with sample rate of 100 MS/s.

The oscilloscope features a FastFrame functionality that can capture encryptions

in bulk and thus 10 million measurements for each implementation can be taken in

several hours.

82

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

4.8.1: 1st-order t-test

0 200 400 600 800 1000 1200 1400 1600 1800 2000
3

4

5

6

7

8

9

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

4.8.2: 2nd-order t-test

Figure 4.8: Leakage detection results for the two-share implementation of Simon for
first-order (left) and second-order (right) leakage over the number of traces. Note
that the dimensions change for both axes.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

4.9.1: 1st-order t-test

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

4.9.2: 2nd-order t-test

Figure 4.9: Leakage detection results for the three-share implementation of Simon
for first-order (left) and second-order (right) leakage over the number of traces.

Round-based 2-TI Simon For two-share Simon implementation, 10 million mea-

surements are collected, yielding 5 million fixed-random pairs. Each measurement

contains 5000 time samples, covering the 68 rounds of Simon. The first-order t-test is

performed using n = 5000, 10000, 15000, ... pairs. Figure 4.8.1 shows the first-order

t-test result on the two-share Simon. The maximum absolute t value across the

5000 time samples remains below the threshold of 4.5 with 10 million traces. We

conclude that the two-share Simon implementation is resistant against first-order

83

DPA and thus a validly implemented threshold implementation.

The results of the second-order t-test are shown in Figure 4.8.2. The step size is

reduced to n = 100, 200, ... to magnify the relevant area: The t value of the second-

order analysis grows beyond 4.5 with about 500 traces. That is, a second-order

leakage is detectable with just hundreds of traces.

Round-based 3-TI Simon In order to practically compare the performance of 2-

TI and 3-TI in resisting first-order and second-order leakage, the t-test is also applied

to 10 million FRRF measurements from a round-based 3-TI Simon. Figure 4.9.1

shows similar result as in Figure 4.8.1 and the t value is below the threshold of

4.5. The comparison shows again that the first-order resistance of 2-TI is solid as

a 3-TI. However, 3-TI exhibits resistance against second-order analysis as shown in

Figure 4.9.2 and the t value is still below 4.5 with 10 million traces. That is, given

more than 1000x as many measurements as for the 2-TI case, the leakage is just

barely detectable. The results comply with the simulation analyses in Section 4.1.2

and Section 4.1.6.1 and validate the weakness of 2-TI.

2-TI Present As before, 10 million traces are captured for the two-share Present

implementation, and then analyzed using t-test. The first-order t-statistic is still be-

low 4.5 with 10 million measurements, as shown in Figure 4.10.1. The second-order

t-statistics exceeds the threshold with about 6000 traces as shown in Figure 4.10.2.

Again, the results suggest that two-share TI holds the promise of first-order resis-

tance, but fares terribly on the second-order resistance.

Exploiting the Uncovered Leakages In order to practically exploit this strong

second-order leakage, a classic CPA [BCO04, CJRR99, BGN+14a] is performed on

the measurements (center-and-then-squared) associated with the 5 million random

84

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
2.5

3

3.5

4

4.5

5

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

4.10.1: 1st-order t-test

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
2

3

4

5

6

7

8

Number of Traces

M
ax

im
um

 t
va

lu
e

Paired T−test

4.10.2: 2nd-order t-test

Figure 4.10: Leakage detection results for the two-share implementation of Present
for first-order (left) and second-order (right) leakage over the number of traces. Note
that the dimensions change for both axes.

plaintexts.

For 2-TI Simon, the targeted operations occurred in the first clock cycle of the

third round of encryption where shared values in registers La and Lb overwrite Ra

and Rb respectively (see Figure 4.1). The leakage model used is Hamming distance

between registers L and R as in a plain or unprotected implementation. The reason

why third round is chosen is because of the weak non-linearity of single Simon round

operation (only one AND) and attacking third round would relieve the effect of

”ghost peaks” [BCO04]. Moreover, in order to reduce the computational complexity,

we follow the divide-and-conquer approach and only attack the most significant four

bits in L and R which are dependent on 10 bits in k0 and 4 bits in k1. Therefore,

214 key hypotheses are required for the attack. To further reduce the complexity,

we assume the knowledge of the relevant 4 bits in k1 is known and only 10 bits in

k0 are aimed at to recover. Figure 4.11.1 shows the max correlation for each key

hypothesis over the number of traces. The practical second-order attack successfully

recovers the correct key with more than 3 million measurements even though ghost

keys still exist. Note that these results can be significantly improved by using a

85

1M 2M 3M 4M 5M
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Number of Traces

M
ax

im
um

 a
bs

ol
ut

e
co

rr
el

at
io

n

4.11.1: 2nd-order CPA of two-share Simon

1M 2M 3M 4M 5M
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Number of Traces

M
ax

im
um

 c
or

re
la

tio
n

4.11.2: 2nd-order CPA of two-share Present

Figure 4.11: Second-order CPA. Max correlation for each key hypothesis over the
number of traces.

profiled attack, predicting more bits, and by using a pruning technique as e.g. done

in [EKM+08], which is always an option for ciphers with a low algebraic depth per

round. Nevertheless, the results validate the second-order leakage of two-share TI

detected by the t-test and it can be practically exploited.

We also performed the same second-order CPA on 5 million random traces

(center-and-then-squared) on 2-TI Present, targeting at the S-box output to ex-

ploit the leakage. Recall our 2-TI Present in which the 64-bit state registers are

right rotated by 4 bits per clock cycle so that the least significant nibble is continu-

ously fed into the S-box look-up and output is written back to the most significant

nibble after 4 clock cycles. Therefore, a Hamming distance leakage occurs between

consecutive output nibbles. In this attack, we use the Hamming distance power

model between the first two consecutive S-box outputs which depends on the least

significant key byte and thus 28 key hypotheses are required. The max correlations

per key hypothesis over number of traces are shown in Figure 4.11.2 and the results

show that correct key can be successfully recovered with more than 1 million traces

which demonstrates the practical exploitability of detected leakage.

The results from both validate our simulation analyses for the idealized case

86

from Section 4.1.2 and Section 4.1.6.1, which suggests strong second-order leakage.

The difference in sensitivity for the two implementations stems from their differing

design strategies: 2-TI Simon is round based and does not use pipelining. Hence, it

maximizes the leakage for the fixed-vs-random test: the entire state that is processed

per cycle is constant in the fixed case and varies in the other case. For 2-TI Present,

the implementation is serialized, with a 4-bit datapath, hence, a much smaller part

of the implementation is updated per cycle, making the leakage less pronounced.

Moreover, unlike the theoretical analysis results in Section 4.1.6.1 where the

number of traces needed for successful second-order t-test and CPA are of the same

order magnitude, a lot more traces are needed for practical second-order CPA with

Hamming distance model to exploit the leakage detected by t-test with only hun-

dreds to thousands of traces. This is mainly because: 1) Practical implementation

don’t leak a perfect Hamming weight or Hamming distance leakage; 2) Noises also

render the practical attacks inefficient.

While two-share TI shows potential in preventing first-order leakage with less

overhead, its poor performance on second-order leakage resistance compared with

three-sharing makes it less worthwhile.

4.2 Hiding: Balanced Encoding

With the advent of the Internet of Things, an ever-increasing number of embedded

devices enters our lives and homes. These devices handle and exchange possibly

sensitive information, raising the need for data security and privacy. High-end se-

curity solutions such as the processors found in passports and security smart cards

come with an abundance of hardware protection to mitigate all kinds of physical and

side channel attacks. However, most embedded devices are consumer-grade prod-

87

ucts that usually have to rely on unprotected off-the-shelf microprocessors. Only a

limited number of methods are available to protect cryptographic software against

side channel attacks on such a platform. Previous section shows that masking is an

effective option. However, one of the biggest problems for getting a high level of

protection of microprocessors is that masking is only effective if the processor has

a low signal-to-noise ratio [CJRR99, PR13]. On modern embedded processors, this

is usually not the case, requiring the combination of masking with other counter-

measures that decrease the signal-to-noise ratio. Due to the fixed architecture of

processors, real hiding countermeasures that achieve leakage reduction are hard to

achieve. Proposed countermeasures for embedded software cryptosystems are mostly

randomization countermeasures, i.e. leakage is not reduced, but rather randomized

in time. Examples include shuffling [TH08, VCMKS12] or random delays [CK10].

This work explores a true hiding countermeasure in software. The idea is to

ensure a constant leakage for all intermediate states. There is some limited prior

work proposing constant Hamming weight (HW) encodings of intermediate states.

In [HDD14], a secure assembly coding style based on the concept of Dual-Rail

Precharge Logic (DPL) was proposed. The authors claim that a constant activ-

ity can be achieved using their specific data representation and programming rules.

Their work is purely theoretic, no experimental results to support their idea were

presented. Furthermore, the computation protocol did not completely prevent Ham-

ming distance (HD) leakage. In [RGN13], the authors present the methods and tools

to generate DPL style code automatically. In [HZL12], a similar data representation

called Bitwise Balanced enCoding scheme was proposed. This scheme appears to

be flawed: the XOR operation will leak information of one of the two inputs, as

we explain later. They also just present simulation results that assume an idealized

leakage. Hence, that work also lacks any analysis of real-world applicability.

88

In this work, we present new constant-leakage encodings. As prior works, we re-

quire intermediate states to be represented by constant Hamming weight encodings.

We go beyond prior studies by showing that requiring constant Hamming distance

transitions between states is also feasible. Unlike prior work, we actually implement

the countermeasure, allowing us to realistically judge resulting implementation over-

heads. More importantly, we evaluate the achieved leakage reduction on a modern

8-bit microcontroller. We show how the constant leakage can be implemented not

only for state representations, but also for state transitions, This allows us to apply

the encodings to create a protected implementation of the Prince block cipher.

As most countermeasures, this countermeasure cannot provide perfect protec-

tion by itself. The leakage of real-world microprocessors deviates from linear and

balanced models like the Hamming weight or Hamming distance model. However,

forcing the side channel adversary to exploit the non-linear and imbalanced compo-

nents of the leakage requires more sophisticated attacks and an increasing number

of leakage observations. In other words, the countermeasure can effectively decrease

the signal-to-noise ratio. The proposed countermeasure is orthogonal to masking

or randomization countermeasures. Hence it can easily be combined with those to

achieve an even higher overall resistance.

4.2.1 General Balanced Encoding Countermeasure

The non-balanced encoding of the algorithmic inputs and internal states usually

causes side channel leakage during the execution of crypto primitives. The leakage

can be exploited from classical side channel attacks such as DPA, CPA or MIA.

The proposed countermeasure aims at encoding the internal states with longer bit

length but resulting in constant Hamming weight of state and constant Hamming

distance between two consecutive states. This trade-off sacrifices some memory

89

and efficiency but achieves a balanced representation internal data and therefore

mitigates the impact of side channel threats.

Formally, the balanced encoding requires the uniform distribution of Hamming

weight for all codewords. Namely, every codeword should have the same Hamming

weight, like the idea of constant-weight code or (m of n code). Clearly, the nat-

ural binary encoding is not such a candidate (e.g. HW (0) 6= HW (1)) since the

resulting distribution of Hamming weight is binomial rather than uniform. The

idea of balancing encoding can be realized only if using more than necessary bit

length. A balanced encoding uses an embedding mapping τ from the natural binary

encoded space C = Fm2 for all c ∈ C into an extension ext(C) = Fn2 with n > m.

In order to satisfy the constant Hamming weight of the new codeword, a neces-

sary condition is that C
n/2
n ≥ 2m, where the image τ(C) sits entirely in the subset

Sn/2 = {u ∈ Fn2 | HW (u) = n/2}.

Secondly, the newer encoding should preserve the basic bivariate operations f(·, ·)

like xor and more complicated univariate operation g(·) such as the non-linear S-

box mapping. More precisely, for any v1, v2 ∈ C, it should hold that τ(f(v1, v2)) =

f̃(τ(v1), τ(v2)), where f̃ is the n-bit adjustment of the m-bit operation f . Similarly,

for any v ∈ C, it should hold that τ(g(v)) = g̃(τ(v)). Preserving such operations

ensures the validity of the algorithmic evolution.

Thirdly, we also want such balanced encoding that achieves constant Hamming

distance between any two consecutive states. This may not be easily realized with

the choice of the codeword by requiring HW (τ(v)⊕ g̃(τ(v))) being constant for any

v ∈ C. But it can be easily achieved with implementation tricks such as flushing

registers before overwriting them with new values. That is, in order to mitigate the

leakage generated from overwriting values, say for example, the state representation

τ(v) which is stored in register R1 needs to be replaced by the univariate functional

90

output g̃(τ(v)), the procedure is first to store the output g̃(τ(v)) at a different pre-

cleared register R2, then clear register R1 and finally copy the register value from R2

back toR1 and free the temporary registerR2. This approach sacrifices the efficiency

of the code, but prevents Hamming distance leakage from overwriting the state.

Another solution is to apply different balanced encodings to the two consecutive

states to achieve not only constant Hamming weight but constant Hamming distance

as well. More details of this solution will be given in the following section.

4.2.2 A Case Study Based on the Prince Cipher

In this section, we use Prince as an example to present the balanced encoding

scheme. Prince is a nibble-based block cipher, as detailed in Section 2.4.2.3. Since

our target platform is an 8-bit processor, a simple balanced encoding can be achieved

by simply adding complementary bits, as done for dual-rail logic styles. That way,

each state nibble is encoded as a 8-bit balanced encoding by inserting the comple-

mentary bits. For any nibble b3b2b1b0 where bi is one bit data, the complementary

nibble is b̄3b̄2b̄1b̄0, where b̄i is the inverse of bi. Concatenating these two nibbles forms

a balanced encoding b̄3b̄2b̄1b̄0b3b2b1b0. An alternative is the encoding b̄3b3b̄2b2b̄1b1b̄0b0.

Theoretically, under the Hamming weight leakage assumption, any sequence of those

bits can be used as a balanced encoding because the Hamming weight is always 4. In

the following we will use two different such encodings, i.e. encI = b̄3b3b̄2b2b̄1b1b̄0b0,

which we refer to as encoding I, and encII = b0b̄2b1b3b̄1b2b̄0b̄3, which we refer to as

encoding II. Both of the encodings ensure the constant Hamming weight of states.

The encoding II is used to guarantee the constant Hamming distance between state

transitions and the way this specific encoding is determined will be explained in the

following section.

91

4.2.2.1 KeyAddition with Constant HW/HD

In the unprotected Prince implementation, the KeyAddition operation is denoted

as r3r2r1r0 = b3b2b1b0 ⊕ k3k2k1k0 where k is the subkey, b is a state nibble before

the KeyAddition and r is the result of KeyAddition. For the protected Prince, we

want an XOR-addition where secret inputs and outputs have a balanced encoding.

However, for the initial key whitening at the input of the cipher, the plaintext input

can be assumed not critical. Hence, only the output r and the key k are mapped

to encoding I, i.e. r̄3r3r̄2r2r̄1r1r̄0r0 and k̄3k3k̄2k2k̄1k1k̄0k0. As in [HZL12], we can

simply XOR-add k in encoding I to b encoded as b3b3b2b2b1b1b0b0 to realize the

partially-protected XOR. This way, the Hamming weight of r is constant as well as

the Hamming distance between r and b. The encoding for b does not satisfy the

balanced encoding requirement, but has instead double Hamming weight leakage.

Therefore, this only works for the initial KeyAddition where the plaintext is known.

After the first KeyAddition, the state becomes sensitive and need the balanced

encoding. Hence, for the KeyAddition inside each round, b uses encoding I. Instead,

we map k to the encoding k3k3k2k2k1k1k0k0, resulting in a remaining constant leak-

age for the round keys. Since the leakage is constant, it is not exploitable by CPA

or DPA. Note that this leakage can also be avoided by using the XOR addition

described in the following MixColumns section. It is more costly than the above

described XOR variant, but all inputs and outputs have a balanced encoding and

all transitions a constant Hamming distance.

4.2.2.2 Table Lookup with Constant HW/HD

The S-box operation can be described as s3s2s1s0 = S(r3r2r1r0) where S(·) denotes

the S-box, r denotes an input nibble, and s denotes the output. To protect it, a new

lookup table based on the balanced encoding is designed in order to minimize the

92

leakage. The S-box operation is denoted as s̄3s3s̄2s2s̄1s1s̄0s0 = S ′(r̄3r3r̄2r2r̄1r1r̄0r0)

where the S ′(·) represents the new S-box. Therefore the Hamming weight of S-box

output bits is constant. Note that, unlike the regular S-box of size of 1×16, the new

S-box is a 16×16 table where the only 16 positions contain the output value and all

other positions are unused. The new S-box prevents the Hamming weight leakage

but cannot prevent the Hamming distance leakage. One solution is to precharge the

target register with zero before writing s into it. An alternative is applying encoding

II to s, which is found by exhaustive search in all the possible encodings. For the

Prince cipher, the S-box output in encoding II can be denoted as s0s̄2s1s3s̄1s2s̄0s̄3.

In this way, the Hamming weight of S-box output is still constant as 4 and the

Hamming distance between input in encoding I and output in encoding II becomes

constant as HD(encI(r), encII(s)) = 4.

The cost of using two different encodings is an additional reordering layer which

coverts encoding II back to encoding I. This is because the following operations such

as MixColumns and ShiftRows are based on encoding I. A straightforward idea for

reordering is the bit rotation which can be implemented using AND, LSL, LSR and

OR instructions. AND instruction is used to pick out each single bit in encoding

II by zeroing the other bits. Then we shift it to its position in encoding I. Finally,

we combine all bits together to form encoding I. The disadvantage is that it is time

consuming and it still causes side channel leakage. Instead, we can implement the

reordering layer as a 16x16 lookup table R. The reordering table take the encoding

II as input and output encoding s̄3s3s̄2s2s̄1s1s0s̄0 = R(encII(s)). Note that, the

output of R is a variant of encoding I by swapping the two LSBs. This is because

HD(encI(s), encII(s)) is either 2 or 4 but HD(s̄3s3s̄2s2s̄1s1s0s̄0, encII(s)) is constant

as 4. Then, the output of R is XORed with 0x03 which swaps the two LSBs back

to encoding I.

93

4.2.2.3 MixColumns with Constant HW/HD

The MixColumns operation can be implemented as XOR operations between the

intermediate data. Unlike the XOR operation in KeyAddition, all the data involved

in the MixColumns operation are sensitive and must hence be encoded in balanced

encoding scheme to avoid the information leakage. Thus we need to design a new

constant XOR operation instead of reusing the XOR from the KeyAddition.

After the S-box substitution, the data in MixColumns operation are represented

in encoding I. Denote the two operands of the constant XOR are as follows: x :

x̄3x3x̄2x2x̄1x1x̄0x0 and y : ȳ3y3ȳ2y2ȳ1y1ȳ0y0. The XOR result is z : z̄3z3z̄2z2z̄1z1z̄0z0.

The constant XOR can be implemented using the following steps:

Step 1: Divide the operand x into two parts and construct two new bytes as xL :

x̄3x3x̄2x2x̄3x3x̄2x2 and xR : x̄1x1x̄0x0x̄1x1x̄0x0. In AVR microcontroller, this

step can be easily done by AND, SWAP and OR instructions. For operand y,

we construct yL and yR in the same way. The following code to the generate

xL can also be applied to the generation of xR, yL and yR.

Input: r1 = x
Output: xL

1: ldi r16, 0xF0
2: ldi r17, 0xF0
3: and r16, r1 . Cut off the right nibble of x
4: and r17, r1 . Cut off the right nibble of x
5: swap r17 . Swap the left nibble to the right
6: or r16, r17 . Generate xL

Step 2: Do the regular XOR operation between xL and 0xA5 to generate x′L :

x3x3x2x2x̄3x̄3x̄2x̄2 = xL⊕ (10100101)b. Then zL = x′L⊕yL = z̄3z3z̄2z2z3z̄3z2z̄2.

We also can generate zR with the similar operations.

94

Input: r16 = xL, r18 = yL
Output: zL

1: ldi r17, 0xA5
2: eor r16, r17 . Convert xL to xL’
3: eor r16, r18 . Generate zL

Step 3: Combine the most significant nibble of zL and the least significant nibble

of zR to construct z : z̄3z3z̄2z2z̄1z1z̄0z0.

Input: r1 = zL, r2 = zR
Output: z

1: ldi r16, 0xF0
2: ldi r17, 0x0F
3: and r16, r1 . Cut off the least significant nibble of zL
4: and r17, r2 . Cut off the least significant nibble of zR
5: or r16, r17 . Generate z

Note that all above instructions operate on constant Hamming weight representa-

tions. Furthermore, there are no transitions that feature a non-constant Hamming

distance in any operands. Hence, while costly, this XOR operation is free of Ham-

ming weight or Hamming distance leakages in the operands.

4.2.3 Evaluation Results

To verify the balanced encoding scheme, we performed side channel evaluation on

three implementations and compared the results between them.

2Prince The first implementation is the unprotected nibble-parallel Prince imple-

mentation from [SCE14], in which the 16-nibble states are stored in 8 registers.

All round operations process two nibbles in parallel in order to achieve better

performance. This implementation feature should result in slightly increased

noise if the adversary only predicts a single nibble.

95

Balanced Prince The second implementation is the protected Prince using encod-

ing I only. In this case, the precharge phase is added to the S-box lookup to

achieve not only constant HW but constant HD as well.

Double-Balanced Prince The third one is also the protected Prince but using

both encoding I and encoding II. This implementation differs from the second

one in that the constant HD is obtained by using encoding II at the S-box

output followed by a reordering layer.

We used an 8-bit AVR microcontroller to run the implementations. The perfor-

mance and memory usage of the implementations are presented below. An automatic

power measurement platform was established using a PC, a differential probe and

an Tektronix DPO5000 series oscilloscope. A total of 100,000 power traces with

random plaintext inputs were obtained for each implementation. Each implementa-

tion was analyzed using Hamming weight based CPA as a reference attack. Next,

Mutual Information is used as a metric to quantify the leakage and compare the im-

plementations. To make our numbers more reliable, we use 10-fold cross-validation

on the computation of the mutual information.

4.2.3.1 Implementation Results

First we compare the performance of the three analyzed implementations. Table 4.3

compares the computation time per encrypted block and resource consumption in

terms of code size and RAM usage. The code size increases significantly for the

protected implementations, i.e. by a factor of 3. At the same time the performance

decreases by a factor of 7. This is because each round operation costs more resources

in order to obtain constant activity.

Table 4.4 shows the contribution of specific operations to the overall resource

96

Table 4.3: Performance comparison of three Prince implementations.

Implementation Encryption Time Code Size RAM Usage

in clock cycles in Bytes in Bytes

2Prince [SCE14] 3253 1574 24

Balanced 28214 3700 472

Double-Balanced 29498 4100 472

consumption. In particular, the code size and performance are broken down into

the KeyAddition (KA), byte substitution (SB), and the mixing (M) operations of

the Prince cipher. For example, the S-box of the protected implementations and

the unprotected one are of the same size (256 byte, not included in the table code

size calculation), but the unprotected one performs two S-box lookups in parallel.

Similarly, either a precharge phase (for the Balanced implementation) or a reordering

layer (for the Double-Balanced implementation) had to be added in order to gain

constant Hamming distance transitions, also resulting in a significant increase in

memory and clock cycles. Additionally, the conversion between normal data and

balanced encoded data for the plaintext and ciphertext also adds overhead. The

worst overhead is due to the M-Layer, or more precisely the constant leakage XOR,

which uses 58 more clock cycles than regular XOR instruction.

4.2.4 CPA Results

We first performed CPA on all of the three implementations. Each CPA predicts

the Hamming weight of the output of a single S-box. To compare the leakage of the

implementations—rather than distinguishing the correct key—we use the Hamming

weight of the all 16 S-box outputs under a known key as the power model. The

results are presented in Figure 4.12. The correlation between the measurements

and power model is greatly reduced in the protected scenarios. For the unprotected

97

Table 4.4: Performance and cost comparison for the KeyAddition (KA), byte sub-
stitution (SB), and the mixing (M) layers for the three analyzed implementations.

Implementation Operation Performance Code Size

in clock cycles in Bytes

2Prince [SCE14]

KA 72 80

SB 41 36

M 162 286

Balanced

K 57 68

SB 90 62

M 2156 1193

Double-Balanced

KA 57 68

SB & RO 180 129

M 2156 1193

implementation, the correlation coefficients range from 0.6 to 0.8 which is only

about 0.1 to 0.3 in the protected implementations. Note that a few of the 16

nibbles feature a much stronger leakage than the others in the protected cases (cf.

Fig. 4.12.2 and Fig. 4.12.3). This might be an implementation artifact and not due to

the countermeasure itself. Similarly, the double-balanced implementation features

its strongest leakage in the reordering layer. The results show that the balanced

encoding scheme is effective in reducing the Hamming weight leakage. However,

due to differences in the leakage of individual bits, the leakage does not completely

disappear.

Figure 4.13 compares the trend of the correlation coefficients of the implemen-

tations (vertical axis) over the number of power traces (horizontal axis). We can

observe that the correct subkey hypothesis can be easily distinguished from the

wrong key guesses with as little as one hundred traces for the unprotected Prince in

Figure 4.13.1. However, for both Balanced Prince and Double-Balanced Prince in

98

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

SB MKA

4.12.1: 2Prince

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

KA SB M

4.12.2: Balanced

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time us

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

MKA SB RO

4.12.3: Double-Balanced

Figure 4.12: Result of CPA of three Prince implementations on the S-box output.
The unprotected implementation (1) leaks significantly stronger than the two pro-
tected implementations (2) and (3). (KA: KeyAddition; SB: S-box Lookup; RO:
reordering M: Mixing Layer)

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

4.13.1: 2Prince

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

4.13.2: Balanced

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

4.13.3: Double-Balanced

Figure 4.13: CPA results for the Hamming weight of the S-box output for the
unprotected implementation (1) and the two protected implementations (2) and
(3). The vertical axis indicates the absolute value of the correlation coefficient; The
horizontal axis indicates the number of traces used. The comparison of the three
plots shows the significant improvement resulting from the balanced encodings, if
applied correctly. Plot (1) clearly shows the effect of the ghost peaks mentioned in
Section 2.3.

Figures 4.13.2 and 4.13.3, the correlation coefficient is significantly smaller and it is

hard to distinguish the correct key hypothesis, even for as many as 50,000 observa-

tions. Note that this problem is not obvious in Figure 4.12, since that figure only

contains correlations for the correct subkey hypotheses.

4.2.4.1 Mutual Information Based Leakage Analysis

To compare the implementations in a leakage-model independent setting, we apply

the mutual information based methodology introduced in Section 2.3 during the first

99

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB

4.14.1: 2Prince

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n MKA SB

4.14.2: Balanced

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB RO

4.14.3: Double-Balanced

Figure 4.14: Mutual information between the state and the leakage for the unpro-
tected (1), Balanced (2), and Double-Balanced (3) implementations during the first
round.

0 25 50 75 100 125 150 175 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

MKA SB

4.15.1: 2Prince

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

SB MKA

4.15.2: Balanced

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time us

M
ut

ua
l I

nf
or

m
at

io
n

SB RO MKA

4.15.3: Double-Balanced

Figure 4.15: First order mutual information between the state and the leakage for
the unprotected (1), Balanced (2), and Double-Balanced (3) implementations during
the first round.

round of the Prince implementation. We apply it in two different ways: First, by

using classical univariate templates with an individual mean and variance for each

possible nibble state; Next, by using reduced univariate templates with an individual

mean for each nibble state, but a common variance for all templates. The latter

approach allows to only evaluate first-order leakages.

Figure 4.14 shows the mutual information for all 16 state nibbles for the first

round, as derived from full univariate templates. Figure 4.15 shows the mutual in-

formation for all 16 state nibbles only for the first order leakage, as derived from

the reduced univariate templates. Both plot families behave very similar, with the

first-order MI being slightly lower in all cases. This indicated that the implementa-

tions on the AVR feature significant non-linear components in the leakage function.

100

The first-order MI is more appropriate to predict the resistance against first-order

attacks such as DPA and CPA. More interestingly, the leakage drops significantly

for the protected implementations. In fact, the mutual information goes down by

as much as 50%. Especially the leakage of the S-box operation drops even more

strongly, from .5 for the unprotected implementation to as low as .1 for the pro-

tected ones. That is, there is a single nibble that exhibits a huge leakage for the

protected implementations. This is always the first nibble. To remove the leakage,

we reordered the nibbles for the computation of the S-box. Surprisingly, whichever

nibble is computed first, it exhibits this strong leakage. We claim this to be an

implementation artifact. Similarly, there is a leakage right before the KeyAddition

starts. Again, we do not have a good explanation for this leakage. However, unlike

the S-box leakage, this one is not problematic, as information before the KeyAd-

dition is plaintext, i.e. known to the attacker. As hinted at by the CPA results,

both Figures 4.14.3 and 4.15.3 show that the Reordering layer still leaks a significant

amount of information.

As a result, the Balanced implementation has a weaker leakage than the one

of the Double-Balanced implementation. The stronger leakage for the second im-

plementation occurs in the reordering layer. This was not expected, since it is

implemented to have a constant Hamming weight and Hamming distance.

In summary, the balanced implementation is a better choice for devices that

have a strong Hamming weight leakage and is a valuable new addition to the family

of countermeasures in software. The Double-Balanced implementation is slightly

less efficient, but suffers from the strong leakage of the reordering layer. A more

careful implementation of the reordering layer could reduce the maximum leakage of

the Double-Balanced implementation. One should be able to avoid the reordering

layer completely by customizing operations in the MixColumns layer, but we did

101

not further explore this route.

4.3 Conclusion

In this chapter, we investigate approaches to protect emerging cryptosystems, par-

ticularly for resource-constrained applications where lightweight cryptography will

be deployed.

First, we present the first practical threshold implementations using only two

shares. We showed that lightweight ciphers have several features making them

good targets for threshold implementations. We explain how using two shares can

actually yield smaller cipher implementations that need less randomness and still

show perfect first-order resistance. While moving to two shares makes implementing

the nonlinear functions of a cipher more cumbersome, resulting in either a loss in

throughput, increase in circuit size, or even both, it allows to reduce the overhead of

the sequential part of the implementation by only doubling the state and key size.

Since the area of low-area crypto implementations usually depends mainly on the

sequential part, significant improvements are possible. However, one need note that

the results highlight that two-share implementations provide provable resistance

against a “low” order of attack but also leak strong higher-order leakage.

Then, we propose a balanced encoding countermeasure for software and perform

the first practical evaluation. While promising in theory, its standalone effectiveness

on the modern microcontroller platform used for this study is significant, especially

for CPA, but far from perfect. The countermeasure is of high relevance, as it is

orthogonal to other software countermeasures such as shuffling and masking, i.e. it

can be applied in addition to those. This is of high relevance for platforms that

feature high signal-to-noise ratios, such as modern microcontrollers.

102

Chapter 5

Leakage Detection

The TVLA procedure using the t-test has become a popular leakage detection

method. To protect against environmental fluctuation in laboratory measurements,

we propose a paired t-test to improve the standard procedure. We take advantage of

statistical matched-pairs design to remove the environmental noise effect in leakage

detection. Higher-order leakage detection is further improved with a moving aver-

age method. We compare the proposed test with standard t-test on synthetic data

and physical measurements. Our results show that the proposed tests are robust to

environmental noise.

5.1 Motivation

More than 15 years after the proposal of DPA, standardized side channel leakage

detection is still a topic of controversial discussion. While Common Criteria (CC)

testing is an established process for highly security critical applications such as

banking smart cards and passport ICs, the process is slow and costly. While appro-

priate for high-security applications, CC is too expensive and too slow to keep up

with the innovation cycle of a myriad of new networked embedded products that are

103

currently being deployed as the Internet of Things. As a result, an increasing part

of the world we live in will be monitored and controlled by embedded computing

platforms that, without the right requirements in place, will be vulnerable to even

the most basic physical attacks such as straightforward DPA.

A one-size-fits-most leakage detection test that is usable by non-experts and

can reliably distinguish reasonably-well protected cryptographic implementations

from insecure ones could remedy this problem. Such a test would allow industry

to self-test their solutions and hopefully result in a much broader deployment of

appropriately protected embedded consumer devices. The TVLA test was proposed

as such a leakage detection test in [CDG+13, GJJR11]. The TVLA test checks if an

application behaves differently under two differing inputs, e.g. one fixed input vs.

one random input. As the original DPA, it uses averaging over a large set of obser-

vations to detect even most nimble differences in behavior, which can potentially be

exploited by an attacker.

Due to its simplicity, it is applicable to a fairly wide range of cryptographic im-

plementations. In fact, academics have started to adopt this test to provide evidence

of existing leakages or their absence [BGG+15, BGN+14a, BGN+14b, CEvMS15b,

LMW14, MH15, NLD15, STE15]. With increased popularity, scrutiny of the TVLA

test has also increased. Mather et al. [MOBW13] studied the statistical power and

computation complexity of the t-test versus mutual information (MI) test, and found

that t-test does better in the majority of cases. Schneider and Moradi [SM15] for

example showed how the t-test higher-order moments can be computed in a sin-

gle pass. They also discussed the tests sensitivity to the measurement setup and

proposed a randomized measurement order. Durveaux and Standaert [DS16] eval-

uate the convenience of the TVLA test for detecting relevant points in a leakage

trace. They also uncover the implications of good and bad choices of the fixed case

104

for the fixed-vs-random version of the TVLA test and discuss the potential of a

fixed-vs-fixed scenario.

However, there are other issues besides the choice of the fixed input and the

measurement setup that can negatively impact the outcome for the t-test based

leakage detection. Environmental effects can influence the t-test in a negative way,

i.e., will decrease its sensitivity. In the worst case, this means that a leaky device

may pass the test only because the environmental noise was strong enough. This

is a problem for the proposed objective of the TVLA test, i.e. self-certification by

non-professionals who are not required to have a broad background in side channel

analysis.

In this work, we propose the adoption of the paired t-test for leakage detection,

especially in cases where long measurement campaigns are performed to identify

nimble leakages. We discuss several practical issues of the classic t-test used in

leakage detection and show that many of them can be avoided when using the paired

t-test. To reap the benefits of the locality of the individual differences of the paired

t-test in the higher-order case, we further propose to replace the centered moments

with a local approximation. These approximated central moments are computed

over a small and local moving window, making the entire process a single-pass

analysis. In summary, we show that

• the paired t-test is more robust to environmental noise such as temperature

changes and drifts often observed in longer measurement campaigns, resulting

in a faster and more reliable leakage detection.

• using moving averages instead of a central average results in much better per-

formance for higher public key and multivariate leakage detection if common

measurement noise between the two classes of traces is present, while intro-

105

ducing a vanishingly small inaccuracy if no such common noise appears. The

improvement of the moving averages applies both to the paired and unpaired

t-tests.

5.2 Methodology

This section introduces paired t-test and shows its superiority in a leakage model

with environmental noise. The paired t-test retains its advantage of being a straight-

forward one-pass algorithm by making use of moving or local averages. By relying

on the difference of matched pairs, the method is inherently numerically stable while

retaining computational efficiency and parallelizability of the original t-test.

5.2.1 Paired T-Test

Welch’s t-test works well when the measurement noises rA and rB are independent

between the two sets of measurements. However, two sets of measurements can also

share common variation sources during a measurement campaign. For example,

power consumption and variance may change due to common environmental factors

such as room temperature. While these environmental factors usually change slowly,

such noise variation is more pronounced over a longer time period. With hard to

detect leakages, often hundreds of thousands to millions of measurement traces

are required for detection. These measurements usually take many hours and the

environmental fluctuation is of concern in such situations. For example, for the

DPAv2 contest, there are one million template traces collected over 3 days and 19

hours, which show a clear temporal pattern [HKSS12]. Figure 5.1 (a subgraph of

Figure 2 in [HKSS12]) shows the average power consumption at 2373-th time point

on the traces of DPAv2, using mean values over 100 non-overlapping subsequent

106

0 2000 4000 6000 8000 10000
1050

1100

1150

1200

1250

1300

1350

1400

Po
we

r C
on

su
mp

tio
n

Fixed average (Window size=100)

Figure 5.1: Power consumption moving averages at a key-sensitive leakage point on
the DPAv2 template traces

traces.

Testing labs usually try to control the environmental factors to reduce such

temporal variation. However, such effort can be expensive and there is no guarantee

that all noise induced by environmental factors can be removed. Instead, we can deal

with these environmental noise through statistical design. Particularly, we can adopt

the matched-pairs design (Section 15.3 in [KNNL05]), where the measurements are

taken in pairs with one each from the groups A and B. Then a paired t-test can

be applied on such measurements, replacing the unpaired t-test (2.3). With n such

pairs of measurements, we have n difference measurements D = LA−LB. The paired

difference cancels the noise variation from the common source, making it easier to

detect nonzero population difference. The null hypothesis of µA = µB is equivalent

to that the mean difference µD = 0, which is tested by a paired t-test. Let D̄ and

s2
D denote the sample mean and sample variances of the paired differences D1, ...,

107

Dn. The paired t-test statistic is

tp =
D̄√
s2D
n

, (5.1)

with the degree of freedom n − 1. The null hypothesis of non-leakage is rejected

when |tp| exceeds the threshold of 4.5.

To quantify the difference between the two versions of t-test, we can compare

the paired t-test (5.1) and the unpaired t-test (2.3) here with nA = nB = n.

First, without common variation sources under model (2.4), V ar(D) = V ar(LA)+

V ar(LB) = σ̃2
A + σ̃2

B. Here σ̃2
A = σ2

A + V ar[V (k,xA)] and σ̃2
B = σ2

B + V ar[V (k,xB)].

Notice that D̄ = L̄A − L̄B, so for large n, the paired t-test and unpaired t-test are

equivalent with tu ≈ tp ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B)/n. The paired t-test works even

if the two group variances are unequal σ̃2
A 6= σ̃2

B. The two versions of the t-test

perform almost the same in this case.

However, the paired t-test detects leakage faster if there are common noise vari-

ation sources. To see this, we explicitly model the common environmental factor

induced variation not covered by model (2.4).

LA = V (k,xA) + rA + rE LB = V (k,xB) + rB + rE, (5.2)

where rE is the noise caused by common environmental factors, with mean zero

and variance σE. The rA and rB here denote the random measurement noises ex-

cluding common variations so that rA and rB are independent, with zero means

and variance σ2
A and σ2

B respectively. Again we denote σ̃2
A = σ2

A + V ar[V (k,xA)]

and σ̃2
B = σ2

B + V ar[V (k,xB)]. Then tu ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B + 2σ2
E)/n while

tp ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B)/n. The paired t-test statistic |tp| has a bigger value

108

than the unpaired t-test |tu|, thus identifies the leakage more efficiently. The differ-

ence increases when the environmental noise σE increases. Hence, the paired t-test

performs as well or better than the unpaired test. However, the matched-pairs de-

sign of the paired t-test cancels common noise found in both pairs, making the test

more robust to suboptimal measurement setups and environmental noise.

5.2.2 Higher-Order and Multivariate Leakage Detection

The t-test can also be applied to detect higher public key leakage and multivariate

leakage [GJJR11, SM15]. For d-th public key leakage at a single time point, the t-

test compares sample means of (LA−L̄A)d and (LB−L̄B)d. Under the matched-pairs

design, the paired t-test would simply work on the difference

D = [(LA − L̄A)d − (LB − L̄B)d] (5.3)

to yield the test statistic (5.1): tp = D̄/
√
s2
D/n. Multivariate leakage combines

leakage observation at multiple time points. A d-variate leakage combines leakage

L(1), ..., L(d) at the d time points t1, ..., td respectively. The combination is done

through the centered product CP (L(1), ...,L(d)) = (L(1)− L̄(1))(L(2)− L̄(2)) · · · (L(d)−

L̄(d)). The standard d-variate leakage detection t-test compares the sample means of

CP (L
(1)
A , ...,L

(d)
A) and CP (L

(1)
B , ...,L

(d)
B) with statistic (2.3). The paired t-test (5.1)

uses the difference D = [CP (L
(1)
A , ...,L

(d)
A)− CP (L

(1)
B , ...,L

(d)
B)] .

However, these tests (including the paired t-test) do not eliminate environmental

noise effects on the higher public key and multivariate leakage detection. The cen-

tering terms (the subtracted L̄) in the combination function also need adjustment

due to environmental noises, which are not random noise but follow some temporal

patterns. Actually, as thoroughly explained in [DCE16], we showed that it is opti-

109

Table 5.1: Computation Accuracy between our incremental method and Two-pass
algorithm

1st public key 2nd public key 3rd public key 4th public key 5th public key

Our method 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

Two Pass 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

mal to calculate the centering means L̄(1) and L̄(2) as moving averages from traces

with a window of size nw around the trace to be centered, rather than the average

over all traces when there are strong environmental noise at the price of a very small

statistical efficiency loss when no environmental noises exist. The details of proof

can be found in [DCE16].

5.2.3 Computational Efficiency

The paired t-test also has computational advantages over Welch’s t-test. As pointed

out in [SM15], computational stability can become an issue when using raw moments

for large measurement campaigns. The paired t-test computes mean D̄ and variance

s2
D of local differences D. In case there is no detectable leakage, LA and LB have the

same mean. Hence, the differences D are mean-free. Even computing D̄ =
1

ni

∑
di

is thus numerically stable. The sample variance s2
D can be computed as s2

D =

D2− (D̄)2, where only the first term D2 is not mean-free. We used the incremental

equation from [Péb08, eq. (1.3)] to avoid numerical problems. Moreover, by applying

the incremental equation for D̄ as well, we were able to exploit straightforward

parallelism when computing D̄ and variance s2
D.

The situation essentially remains the same for higher public key or multivariate

analysis: The differences D are still mean-free in the no-leakage case. Through

the use of local averages, the three-pass approach is not necessary, since moving

averages are used instead of global averages. Computing moving averages is a local

110

operation, as only nearby traces are considered. When processing traces in large

blocks of e.g. 10k traces, all data needed for local averages is within the same file

and can easily be accessed when needed, making the algorithm essentially one-pass.

Similarly as in [SM15], we also give the experimental results using our method on

100 million simulated traces with ∼ N (100, 25). Specifically, we compute the second

parameters s2
D using the difference leakages: D = LA − LB for first public key test

while D = [(LA − L̄A,nw)d − (LB − L̄B,nw)d] for d -th public key tests with moving

average of window size nw = 100. Table 5.1 shows our method matches the two-pass

algorithm which computes the mean first and then the variance of the preprocessed

traces. Note that D is not normalized using the central moment CM2 and thus the

second parameter is significantly larger than that in [SM15]. In the experiments,

the same numerical stability is achieved without an extra pass, by focusing on the

difference leakages.

5.3 Experimental Verification

To show the advantages of the new approach, the performances of the paired t-test

(5.1) and the unpaired t-test (2.3) on synthetic data are compared.

First, we generate data for first public key leakage according to model (5.2),

where the environmental noise rE follows a sinusoidal pattern similar to Figure 5.1.

The sinusoidal period is set as 200, 000 traces, and the sinusoidal magnitude is

set as the pure measurement noise standard deviation σA = σB = 50. Hamming

weight (HW) leakage is assumed in model (5.2). The first group A uses a fixed

plaintext input corresponds to HW = 5, while the second group B uses random

plaintexts. The paired t-test (5.1) and the unpaired t-test (2.3) are applied to the

first n = 30000, 60000, ..., 300000 pairs of traces. The experiment is repeated 1000

111

times, and the proportions of leakage detection (rejection by each t-test) are plotted

in Figure 5.2.

Figure 5.2: T-test comparison for 1O leakage with and without a sinusoidal drift
rE.

Without any environmental noise rE, the paired and unpaired t-tests perform

the same. Their success rate curves overlap each other. With the sinusoidal noise

rE, the unpaired t-test uses many more traces to detect the leakage, while the paired

t-test does not suffer from such performance degradation.

Notice that the environmental noise rE often changes slowly as in Figure 5.1.

Hence, its effect is small for easy to detect leakage, when only a few hundreds or a

few thousands of traces are needed. However, for hard to detect leakage, the effect

has to be considered. We set a high noise level σA = σB = 50 to simulate a DUT

with hard to detect first-public key leakage. This allows the observable improvement

by paired t-test over the unpaired t-test.

Second, we also generate data from the 2nd-public key leakage model. The noise

levels at the two leakage points, for both groups A and B, are set as σ1 = σ2 = 10

which are close to the levels in the physical implementation reported by [DZFL14].

112

We use the same sinusoidal environmental noise rE as before. The first group A uses

a fixed plaintext input corresponding to HW = 1, while the second group B uses

random plaintexts. The proportions of leakage detection are plotted in Figure 5.3.

Figure 5.3: T-test comparison for 2O leakage with a sinusoidal drift rE.

Again, we observe a serious degradation of t-test power to detect the leakage,

when the environmental noise rE is present. The paired t-test detects the leakage

more often than the unpaired t-test in Figure 5.3. However, the paired t-test also

degrades comparing to the case without environmental noise rE. That is due to

the incorrect centering quantity for the 2O test as discussed in Section 5.2.2. Using

the proposed method of centering at the moving average with window size 100, the

paired MA-t-test has a performance close to the case where all environmental noise

rE is removed.

5.4 Practical Application

To show the advantage of the paired t-test in real measurement campaigns, we

compare the performances of the unpaired and paired t-tests when analyzing an

113

unprotected and an protected hardware implementation. The analysis focuses on

the non-specific fixed vs. random t-test. We apply both tests to detect the first

public key leakage in the power traces acquired from an unprotected implementation

of the NSA lightweight cipher Simon [BSS+13]. More specifically, a round-based

implementation of Simon128/128 was used, which encrypts a 128-bit plaintext block

with a 128-bit key in 68 rounds of operation. The second target is a masked engine

of the same cipher. It is protected using three-share Threshold Implementation (TI)

scheme, which is a round based variant of the TI Simon engine proposed in [STE15].

Both implementations are ported onto the SASEBO-GII board for power trace

collection. The board is clocked at 3 MHz and a Tektronix oscilloscope samples

the power consumption at 100MS/s. Since Simon128/128 has 68 rounds, one power

trace has about 68 × 1
3MHz

× 100MS/s ≈ 2300 time samples to cover the whole

encryption and hence in the following experiments 2500 samples are taken in each

measurement. The measurement setup is a modern setup that features a DC block

and an amplifier. Note that the DC block will already take care of slow DC drifts that

can affect the sensitivity of the unpaired t-test, as shown in Section 5.3. However,

the DC block does not affect variations of the peak-to-peak height within traces,

which are much more relevant for DPA. As the following experiments show, the

paired t-test still shows improvement in such advanced setups.

5.4.1 Solving the Test-Order Bias

In [SM15], a random selection between fixed and random is proposed to avoid effects

caused by states that occur in a fixed public key, which we refer to as test public

key. For the paired (MA-)t-test, it is preferable to have a matching number of

observations for both sets. We propose a fixed input sequence which is a repetition

of ABBA such that all the AB or BA pairs are constructed using neighboring inputs.

114

For example in a sequence ABBAABBA....ABBAABBA, one alternately obtains

AB and BA pairs with least variation. This ensures that all observations come

in pairs and that the pairs are temporally close, so they share their environmental

effects to a maximal possible degree. Moreover—even though the sequence is fixed

and highly regular, the predecessor and successor for each measurement are perfectly

balanced, corresponding to a 50% probability of being either from the A or B set.

This simpler setup removes the biases observed in [SM15] as efficiently as the random

selection method. Experimental data of this section has been obtained using this

scheme.

Note that the paired t-test can easily be applied in a random selection test public

key as well: After the trace collection, one can simply iteratively pair the leakages

associated with the oldest fixed input and the oldest random input and then remove

them from the sequence until no pairs can be constructed. An efficient way to

do this is to separate all leakage traces into two subsets: LA = {lA,1, ...lA,nA
} and

LB = {lB,1, ...lB,nB
} where lA,i and lB,i are the traces associated with i-th fixed input

and i-th random input respectively in a chronological public key and thus can be

straightforwardly paired. Note that the cardinality of both sets are not always the

same and hence only n = min(nA, nB) AB pairs can be found. This approach is

of less interest because time delay between fixed data and random data in a pair

varies depending on the randomness of the input sequence.

5.4.2 First-Order Analysis of an Unprotected Cipher

We first apply both paired and unpaired t-test to the unprotected engine which has

strong first public key leakage that can be exploited by DPA with only hundreds

of traces. Usually the trace collection can be done quickly enough to avoid effects

of environmental fluctuation in the measurements. However, to show the benefits

115

of the paired t-test in this scenario, a hot air blower is used to heat up the crypto

FPGA in SASEBO-GII board while the encryptions are executed. We designed two

conditions to take the power measurements.

1. Normal Lab Environment, where measurements are performed in rapid

succession, making the measurement campaign finish within seconds.

2. Strong Environmental Fluctuation, where a hot air blower was slowly

moved towards and then away from the target FPGA to heat up and let it

cool down again;

In each condition, 1000 measurements are taken alternately for the fixed plaintext

and random plaintexts and later equally separated into two groups. In each group,

the measurements are sorted in chronological public key such that the j-th measure-

ments of both groups are actually taken consecutively and share common variation.

As explained in Section 5.4.1, the two measurements are a matched-pair and there

are now 500 such pairs. Then both t-tests are applied to the first n = 5, 6, 7, ..., 500

pairs of measurements. For each n, the t-test returns a t-statistic vector of 2500

elements corresponding to 2500 time samples in the power traces because it is a

univariate t-test. Our interest is the time sample that has the maximum t-statistic

and thus the following results only focus on this specific time sample.

Figure 5.4 shows the t-statistics at the strongest leakage point as n increases. In

Figure 5.4.1 where there is no environmental fluctuation, both unpaired and paired

t-test have the same performance as the t-statistic curves almost overlap. However,

in Figure 5.4.2 where the varying temperature changed the power traces greatly, the

paired t-test (blue solid line) shows robustness and requires less traces to exceed the

threshold of 4.5 while the performance of the unpaired t-test is greatly reduced in

the sense that more traces are needed to go beyond the threshold. Figure 5.5 shows

116

0 50 100 150 200 250 300
2

4

6

8

10

12

14

16

18

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired T−test

Paired T−test

5.4.1: No Environment Fluctuation

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired T−test
Paired T−test

5.4.2: Environment Fluctuation

Figure 5.4: T-test comparison for 1O leakage on unprotected Simon for a single
measurement campaign of up to 300 pairs of traces. The paired t-test performs
as well or better in both scenarios. However, the paired t-test is more robust to
environmental noise.

the detection probability of the t-tests in the same scenario. First, 1000 repetitions

of the above experiment are performed and the number of experiments that result in

a t-statistic above 4.5 is counted. Detection probability equals this number divided

by 1000. Figure 5.5.1 shows the detection probability of two tests under normal lab

condition. With more than 30 pairs, both tests can detect the first public key leakage

with the same probability. With more than 60 pairs the detection probability rises

to 1 for both tests which shows the efficiency of both tests on the normal traces.

Figure 5.5.2 shows that paired t-test (solid line) is still robust in spite of varying

environmental factors. With less than 100 pairs, the detection probability of paired

t-test is already 1 while unpaired t-test requires much more traces to achieve the

same probability.

In summary, the paired t-test is more robust and efficient in detecting first public

key leakage when the power traces are collected in a quickly changing environment.

117

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Number of Traces

D
et

ec
tio

n
P

ro
ba

bi
lit

iy

Paired t−test

Unpaired t−test

5.5.1: No Environment Fluctuation

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of Traces

D
et

ec
tio

n
P

ro
ba

bi
lit

iy

Paired t−test
Unpaired t−test

5.5.2: Environment Fluctuation

Figure 5.5: T-test detection probability for 1O leakage. Again, the paired t-test
performs at least as well as the unpaired, while being much more robust in the
presence of environmental noise.

5.4.3 Second-Order Analysis on a Protected Design

In public key to validate the effectiveness of the paired t-test in a longer measurement

campaign, where environmental fluctuations are very likely to occur, a first-public

key-leakage-resistant Simon engine protected by a three-share Threshold Implemen-

tation scheme is used as the target. Five million power traces are collected in a room

without windows and without expected fluctuations in temperature over a period 5

hours. As before, one measurement campaign is performed in a stable lab environ-

ment where the environmental conditions are kept as stable as possible. In the other

scenario, we again used the hot air blower in intervals of several minutes to simulate

stronger environmental noise. This is because the environmental noise might not be

strong during the 5-hour collection period. However, in scenarios where hundreds of

millions of measurements are needed and taken over a period of several days, then

environmental fluctuation can be found, as in Figure 5.1.

As before, the 5 million traces are equally divided into two groups for fixed and

random plaintext respectively. The first public key t-test does not indicate any leak-

age (|t| < 3), as expected. Figure 5.6 shows the t-statistics of the second public key

118

0 1M 2M 3M 4M 5M
−1

0

1

2

3

4

5

6

7

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired MA−T−test
Paired MA−T−test
Unpaired T−test
Paired T−test

5.6.1: No Environment Fluctuation

0 1M 2M 3M 4M 5M
−1

0

1

2

3

4

5

6

7

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired MA−T−test
Paired MA−T−test
Unpaired T−test
Paired T−test

5.6.2: Environment Fluctuation

Figure 5.6: T-test detection probability for 2O leakage

t-tests as the number of traces increases in both the stable lab environment and the

simulated lab environment noise scenario. In the first experiment in a stable envi-

ronment, depicted in Figure 5.6.1, we compare both tests using global average and

moving average. The curve of four tests almost overlap and they perform about the

same with about three million traces needed to achieve a t-statistic above 4.5. This

shows that paired t-test works as well as unpaired one for constant collection envi-

ronment. Also, the moving average based tests perform very similar to the global

average based tests, with a minor improvement in the relevant many-traces case.

Figure 5.6.2 depicts the results for the experiment with strong environmental fluc-

tuations. The paired MA-t-test performs best and goes beyond 4.5 faster than the

unpaired one. The other two tests using global average are still below the threshold

with 5 million traces. The paired t-test still clearly outperforms the unpaired t-test.

In sum, the paired t-test based on moving average is the most robust to fluctuation

and significantly improves the performance of higher public key analysis.

119

5.5 Conclusion

Welch’s t-test has recently received a lot of attention as standard side channel secu-

rity evaluation tool. In this work we showed that noise resulting from environmental

fluctuations can negatively impact the performance of Welch’s t-test. The resulting

increased number of observations to detect a leakage are inconvenient and can, in

the worst case, result in false conclusions about a device’s resistance. We proposed

a paired t-test to improve the standard methodology for leakage detection. The

resulting matched-pairs design removes the environmental noise effect in leakage

detection. Furthermore, we showed that moving averages increase the robustness

against environmental noise for higher public key or multivariate analysis, while not

showing any negative impact in the absence of noise. The improvement is shown

through mathematical analysis, simulation, and on practical power measurements:

both paired and unpaired t-test with and without the moving averages approach are

compared for first public key and second public key analysis. Our results show that

the proposed (moving average based) paired t-test performed as well or better in all

analyzed scenarios. The new method does not increase computational complexity

and is numerically more stable than Welch’s t-test.

120

Chapter 6

Conclusion and Future Direction

Emerging computing technologies and applications have posed a serious challenge to

the conventional cryptography and many efforts have been dedicated to the design

of reliable algorithms for the future. Post-quantum cryptography will protect the

data communication when large-scale quantum computers are available; lightweight

cryptography tailored for constrained environment will secure billions of devices in

the Internet of Things. However, side channel analysis remains a threat when these

new algorithms are running on physical devices.

6.1 Summary

In this dissertation, we investigate the side channel security of several emerging

cryptosystem from three major aspects in the study of side channel analysis, namely

leakage exploitation, leakage mitigation and leakage detection.

In terms of leakage exploitation, we propose the first differential power analysis

of a QC-MDPC McEliece Implementation. We show that the leakages of a key

rotation operation can be efficiently exploited to recovers the majority of the private

key bits. Then, we designed an algebraic step to exploit the key structure leading

121

to the full key recovery. In order to counteract the attack, we apply the state-of-

the-art Threshold Implementation that is leakage resistant with a formal proof and

concrete attack proof. This is so far as we know the first application of Threshold

Implementation in public key cryptography.

With respect to leakage mitigation, we propose the first practical threshold im-

plementations using only two shares. We show how using two shares can actually

yield smaller cipher implementations with less randomness and perfect first order

resistance. Applying it on lightweight ciphers will secure the Internet of Thing with

low cost. We also propose a balanced encoding countermeasure for software and

perform the first practical evaluation. It is an effective hiding countermeasure to

achieve constant leakage so as to bring down the SNR and can be combined with

masking schemes for better leakage resistance.

Eventually, we propose a paired t-test to improve the standard methodology for

leakage detection. The resulting matched-pairs design removes the environmental

noise effect in leakage detection. Furthermore, we showed that moving averages

increase the robustness against environmental noise for higher order or multivariate

analysis, while not showing any negative impact in the absence of noise.

6.2 Future direction

In addition to the topics discussed in the previous sections, we would continue

our research on post-quantum cryptography and investigate other post-quantum

public key algorithms from the perspective of side channel vulnerability. In fact,

there exist many post-quantum candidate schemes. In the first round submission

for the post-quantum cryptography standardization by NIST, there are already 69

candidates which are based on different hard problems such as Lattice-based and

122

Code-based algorithms of which we are particularly interested in LWE schemes. We

will implement one of these schemes and attempt to exploit the power leakage for

key recovery. Further, we will investigate efficient countermeasures to protect the

physical implementations of such schemes.

123

Bibliography

[AGS14] A. Aysu, E. Gulcan, and P. Schaumont. SIMON Says: Break Area
Records of Block Ciphers on FPGAs. Embedded Systems Letters,
IEEE, 6(2):37–40, June 2014.

[AHPT11] Roberto Avanzi, Simon Hoerder, Dan Page, and Michael Tunstall.
Side-channel attacks on the McEliece and Niederreiter public-key cryp-
tosystems. Journal of Cryptographic Engineering, 1(4):271–281, 2011.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Sren S.
Thomsen, and Tolga Yalçin. PRINCE – A Low-Latency Block Cipher
for Pervasive Computing Applications. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology — ASIACRYPT 2012, pages
208–225. Springer Berlin Heidelberg, 2012.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
Post-quantum key exchange for the TLS protocol from the ring learn-
ing with errors problem. In 36th IEEE Symposium on Security and
Privacy, 2015.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis with a Leakage Model. In Marc Joye and Jean-Jacques
Quisquater, editors, Cryptographic Hardware and Embedded Systems
— CHES 2004, volume 3156 of Springer LNCS, pages 135–152, 2004.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma al-
gebra system. I. The user language. Journal of Symbolic Computation,
24:235–265, 1997.

[BDN+14] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent
Rijmen, and Gilles Van Assche. Efficient and First-Order DPA Re-
sistant Implementations of Keccak. In Aurlien Francillon and Pankaj
Rohatgi, editors, Smart Card Research and Advanced Applications,
LNCS, pages 187–199. Springer, 2014.

124

[BGG+15] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz,
and Franois-Xavier Standaert. On the cost of lazy engineering for
masked software implementations. In Marc Joye and Amir Moradi,
editors, Smart Card Research and Advanced Applications, volume 8968
of Lecture Notes in Computer Science, pages 64–81. Springer Interna-
tional Publishing, 2015.

[BGN+14a] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. A More Efficient AES Threshold Implementation. In
David Pointcheval and Damien Vergnaud, editors, Progress in Cryp-
tology –AFRICACRYPT 2014, volume 8469 of LNCS, pages 267–284.
Springer, 2014.

[BGN+14b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen. Higher-order threshold implementations. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology —
ASIACRYPT 2014, volume 8874 of LNCS, pages 326–343. Springer,
2014.

[BGN+15] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Trade-Offs
for Threshold Implementations Illustrated on AES. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
34(7):1188–1200, July 2015.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems - CHES 2007:
9th International Workshop, Vienna, Austria, September 10-13, 2007.
Proceedings, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C.A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems (Corresp.).
IEEE Transactions on Information Theory, 24(3):384–386, May 1978.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The simon and speck families of
lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404,
2013.

[CDG+13] J Cooper, E DeMulder, G Goodwill, J Jaffe, G Kenworthy, and P Ro-
hatgi. Test vector leakage assessment (tvla) methodology in practice.
In International Cryptographic Module Conference, 2013.

125

[CESY14] Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye. Bal-
anced encoding to mitigate power analysis: a case study. In Interna-
tional Conference on Smart Card Research and Advanced Applications,
pages 49–63. Springer, 2014.

[CEvMS15a] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Stein-
wandt. Differential power analysis of a mceliece cryptosystem. In
International Conference on Applied Cryptography and Network Secu-
rity, pages 538–556. Springer, 2015.

[CEvMS15b] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Stein-
wandt. Masking Large Keys in Hardware: A Masked Implementation
of McEliece. In Selected Areas in Cryptography — SAC 2015. Springer
LNCS, August 2015. Preprint available at http://eprint.iacr.org/
924.

[CEvMS16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Stein-
wandt. Horizontal and vertical side channel analysis of a mceliece cryp-
tosystem. IEEE Transactions on Information Forensics and Security,
11(6):1093–1105, 2016.

[CFE16] Cong Chen, Mohammad Farmani, and Thomas Eisenbarth. A tale
of two shares: why two-share threshold implementation seems worth-
whileand why it is not. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 819–
843. Springer, 2016.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and PraveenKumar Vad-
nala. Secure Conversion between Boolean and Arithmetic Masking of
Any Order. In Lejla Batina and Matthew Robshaw, editors, Cryp-
tographic Hardware and Embedded Systems CHES 2014, volume 8731
of Lecture Notes in Computer Science, pages 188–205. Springer Berlin
Heidelberg, 2014.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks.
In Advances in Cryptology – CRYPTO’99, pages 398–412. Springer,
1999.

[CK10] Jean-Sebastien Coron and Ilya Kizhvatov. Analysis and improvement
of the random delay countermeasure of ches 2009. In Stefan Man-
gard and Francois-Xavier Standaert, editors, Cryptographic Hardware
and Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 95–109. Springer Berlin Heidelberg, 2010.

126

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side
Channel Cryptanalysis of a Higher Order Masking Scheme. In Pas-
cal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems - CHES 2007: 9th International Workshop,
Vienna, Austria, September 10-13, 2007. Proceedings, pages 28–44,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[CZ06] Zhimin Chen and Yujie Zhou. Dual-rail random switching logic: a
countermeasure to reduce side channel leakage. In Cryptographic Hard-
ware and Embedded Systems-CHES 2006, pages 242–254. Springer,
2006.

[DCE16] A Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, faster,
and more robust t-test based leakage detection. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design, pages
163–183. Springer, 2016.

[DCRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova,
Ventzislav Nikov, and Vincent Rijmen. Masking AES with d+1 Shares
in Hardware. In Benedikt Gierlichs and Y. Axel Poschmann, editors,
Cryptographic Hardware and Embedded Systems – CHES 2016: 18th
International Conference, pages 194–212. Springer Berlin Heidelberg,
2016.

[DS16] Franois Durvaux and Franois-Xavier Standaert. From improved
leakage detection to the detection of points of interests in leakage
traces. accepted at Eurocrypt 2016, 2016. preprint available at
http://ia.cr/2015/536.

[DSVC14] F. Durvaux, F.-X. Standaert, and N. Veyrat-Charvillon. How to certify
the leakage of a chip? In to appear in the proceedings of Eurocrypt
2014. Springer LNCS, 2014.

[DZFL14] A.Adam Ding, Liwei Zhang, Yunsi Fei, and Pei Luo. A statistical
model for higher order dpa on masked devices. In Lejla Batina and
Matthew Robshaw, editors, Cryptographic Hardware and Embedded
Systems CHES 2014, volume 8731 of Lecture Notes in Computer
Science, pages 147–169. Springer Berlin Heidelberg, 2014.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mah-
moud Salmasizadeh, and Mohammad T Manzuri Shalmani. On the
Power of Power Analysis in the Real World: A Complete Break of the
Keeloq Code Hopping Scheme. In Advances in Cryptology–CRYPTO
2008, pages 203–220. Springer, 2008.

127

[Gal62] Robert Gallager. Low-density Parity-check Codes. Information The-
ory, IRE Transactions on, 8(1):21–28, 1962.

[GJJR11] G Goodwill, B Jun, J Jaffe, and P Rohatgi. A testing methodology
for side-channel resistance validation. In NIST Non-Invasive Attack
Testing Workshop, Sept. 2011.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented
masking: Compact masked hardware implementations with arbitrary
protection order. In Proceedings of the 2016 ACM Workshop on The-
ory of Implementation Security, pages 3–3. ACM, 2016.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-
magnetic analysis: Concrete results. In Cryptographic Hardware and
Embedded SystemsCHES 2001, pages 251–261. Springer, 2001.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction
via Low-bandwidth Acoustic Cryptanalysis. In International Cryptol-
ogy Conference, pages 444–461. Springer, 2014.

[HDD14] Philippe Hoogvorst, Guillaume Duc, and Jean-Luc Danger. Software
Implementation of Dual-Rail Representation. In 2nd International
Workshop on Constructive Side-Channel Analysis ande Secure Design
— COSADE 2011, February 24-25 2014.

[HKSS12] Annelie Heuser, Michael Kasper, Werner Schindler, and Marc
Stöttinger. A new difference method for side-channel analysis with
high-dimensional leakage models. In Orr Dunkelman, editor, Topics
in Cryptology – CT-RSA 2012, volume 7178 of Lecture Notes in Com-
puter Science, pages 365–382. Springer Berlin Heidelberg, 2012.

[HMP10] Stefan Heyse, Amir Moradi, and Christof Paar. Practical Power Anal-
ysis Attacks on Software Implementations of McEliece. In Nicolas
Sendrier, editor, Post-Quantum Cryptography – PQCrypto 2010, vol-
ume 6061 of Lecture Notes in Computer Science, pages 108–125, Berlin
Heidelberg, 2010. Springer.

[HP10] W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting
Codes. Cambridge University Press, United Kingdom, 2010.

[HvMG13] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller Keys for
Code-Based Cryptography: QC-MDPC McEliece Implementations on
Embedded Devices. In Guido Bertoni and Jean-Sébastien Coron, ed-
itors, Cryptographic Hardware and Embedded Systems – CHES 2013,
volume 8086 of Lecture Notes in Computer Science, pages 273–292,
Berlin Heidelberg, 2013. Springer.

128

[HZL12] Yang Han, Yongbin Zhou, and Jiye Liu. Securing lightweight block
cipher against power analysis attacks. In Ying Zhang, editor, Future
Wireless Networks and Information Systems, volume 143 of Lecture
Notes in Electrical Engineering, 2012.

[IIES14] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait A Minute! A fast, Cross-VM Attack on AES. In Inter-
national Workshop on Recent Advances in Intrusion Detection, pages
299–319. Springer, 2014.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Michael Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science,
pages 388–397, Berlin Heidelberg, 1999. Springer.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. In-
troduction to differential power analysis. Journal of Cryptographic
Engineering, 1(1):5–27, 2011.

[KNNL05] Michael H Kutner, Christopher J Nachtsheim, John Neter, and
William Li. Applied linear statistical models. In Applied linear statis-
tical models. McGraw-Hill Irwin New York, 2005.

[KNPW13] Sebastian Kutzner, PhuongHa Nguyen, Axel Poschmann, and Huax-
iong Wang. On 3-Share Threshold Implementations for 4-Bit S-boxes.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and
Secure Design, volume 7864 of Springer LNCS, pages 99–113, 2013.

[Knu92] Donald E. Knuth. Two Notes on Notation. The American Mathemat-
ical Monthly, 99(5):403–422, May 1992.

[Koc96] Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Annual International Cryptology
Conference, pages 104–113. Springer, 1996.

[KP09] M. Kirschbaum and T. Popp. Evaluation of a DPA-Resistant Pro-
totype Chip. In Computer Security Applications Conference, 2009.
ACSAC ’09. Annual, pages 43–50, Dec 2009.

[LMW14] Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-
Level Masking under a Path-Based Leakage Metric. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embed-
ded Systems – CHES 2014, volume 8731 of Springer LNCS, pages
580–597, 2014.

129

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic
Coding Theory. Deep Space Network Progress Report, 44:114–116,
January 1978.

[MH15] Amir Moradi and Gesine Hinterwälder. Side-channel security analysis
of ultra-low-power fram-based mcus. In Constructive Side-Channel
Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers,
pages 239–254, 2015.

[MM12] Amir Moradi and Oliver Mischke. How Far Should Theory Be from
Practice? In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2012: 14th Inter-
national Workshop, Leuven, Belgium, September 9-12, 2012. Proceed-
ings, pages 92–106, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[MOBW13] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik.
Does my device leak information? an a priori statistical power anal-
ysis of leakage detection tests. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology - ASIACRYPT 2013, volume 8269 of
Lecture Notes in Computer Science, pages 486–505. Springer Berlin
Heidelberg, 2013.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huax-
iong Wang. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Kenneth G. Paterson, editor, Advances
in Cryptology — EUROCRYPT 2011, volume 6632 of LNCS, pages
69–88. Springer, 2011.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S.
L. M. Barreto. MDPC-McEliece: New McEliece variants from Mod-
erate Density Parity-Check codes. In Proceedings of the 2013 IEEE
International Symposium on Information Theory (ISIT), pages 2069–
2073. IEEE, 2013.

[NLD15] Erick Nascimento, Julio Lopez, and Ricardo Dahab. Efficient and
secure elliptic curve cryptography for 8-bit avr microcontrollers. In
Rajat Subhra Chakraborty, Peter Schwabe, and Jon Solworth, edi-
tors, Security, Privacy, and Applied Cryptography Engineering, vol-
ume 9354 of Lecture Notes in Computer Science, pages 289–309.
Springer International Publishing, 2015.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In Peng

130

Ning, Sihan Qing, and Ninghui Li, editors, Information and Commu-
nications Security, volume 4307 of Lecture Notes in Computer Science,
pages 529–545. Springer Berlin Heidelberg, 2006.

[Péb08] Philippe Pébay. Formulas for robust, one-pass parallel computation
of covariances and arbitrary-order statistical moments. Sandia Report
SAND2008-6212, Sandia National Laboratories, 2008.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic:
Dpa-resistance without routing constraints. In JosyulaR. Rao and
Berk Sunar, editors, Cryptographic Hardware and Embedded Systems
— CHES 2005, volume 3659 of Lecture Notes in Computer Science,
pages 172–186. Springer Berlin Heidelberg, 2005.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel
Attacks: A Formal Security Proof. In Thomas Johansson and PhongQ.
Nguyen, editors, Advances in Cryptology — EUROCRYPT 2013, vol-
ume 7881 of Lecture Notes in Computer Science, pages 142–159.
Springer Berlin Heidelberg, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and
Ingrid Verbauwhede. Consolidating Masking Schemes. In Advances in
Cryptology–CRYPTO 2015, pages 764–783. Springer LNCS, 2015.

[RGN13] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved
security of assembly code against power analysis: A case study on
balanced logic. In eprint, 2013. https://eprint.iacr.org/2013/554.pdf.

[RHHM17] Mélissa Rossi, Mike Hamburg, Michael Hutter, and Mark E Marson. A
side-channel assisted cryptanalytic attack against qcbits. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems,
pages 3–23. Springer, 2017.

[SCE14] Aria Shahverdi, Cong Chen, and Thomas Eisenbarth. AVRprince
- An Efficient Implementation of PRINCE for 8-bit Microproces-
sors. Technical report, Worcester Polytechnic Institute, 2014. http:

//users.wpi.edu/~teisenbarth/pdf/avrPRINCEv01.pdf.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms On a Quantum Computer. SIAM J. Com-
put., 26(5):1484–1509, 1997.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology
- a clear roadmap for side-channel evaluations. In Tim Gneysu and
Helena Handschuh, editors, CHES, volume 9293 of Lecture Notes in
Computer Science, pages 495–513. Springer, 2015.

131

[SMG15] Tobias Schneider, Amir Moradi, and Tim Gneysu. Arithmetic addition
over boolean masking - towards first- and second-order resistance in
hardware. International Conference on Applied Cryptography and
Network Security – ACNS 2015, 2–5 June 2015.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A uni-
fied framework for the analysis of side-channel key recovery attacks.
Advances in Cryptology — EUROCRYPT 2009, pages 443–461, 2009.

[SSMS10] Abdulhadi Shoufan, Falko Strenzke, H.Gregor Molter, and Marc
Stöttinger. A Timing Attack against Patterson Algorithm in the
McEliece PKC. In Donghoon Lee and Seokhie Hong, editors, In-
formation, Security and Cryptology – ICISC 2009, volume 5984 of
Lecture Notes in Computer Science, pages 161–175. Springer, Berlin
Heidelberg, 2010.

[STE15] Aria Shahverdi, Mostafa Taha, and Thomas Eisenbarth. Silent Simon:
A Threshold Implementation under 100 Slices. In Hardware Oriented
Security and Trust (HOST), 2015 IEEE International Symposium on,
pages 1–6, May 2015.

[STM+08] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and
Abdulhadi Shoufan. Side Channels in the McEliece PKC. In Johannes
Buchmann and Jintai Ding, editors, Post-Quantum Cryptography –
PQCrypto 2008, volume 5299 of Lecture Notes in Computer Science,
pages 216–229, Berlin Heidelberg, 2008. Springer.

[Str10] Falko Strenzke. A Timing Attack against the Secret Permutation in
the McEliece PKC. In Nicolas Sendrier, editor, Post-Quantum Cryp-
tography – PQCrypto 2010, volume 6061 of Lecture Notes in Computer
Science, pages 95–107, Berlin Heidelberg, 2010. Springer.

[TH08] Stefan Tillich and Christoph Herbst. Attacking State-of-the-Art Soft-
ware Countermeasures – A Case Study for AES. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded
Systems – CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 228–243. Springer, Berlin Heidelberg, 2008.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology
for a secure dpa resistant asic or fpga implementation. In Proceedings
of the conference on Design, automation and test in Europe, page
10246. IEEE Computer Society, 2004.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against Side-Channel Attacks: A

132

Comprehensive Study with Cautionary Note. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 740–757.
Springer, Berlin Heidelberg, 2012.

[vMG14a] Ingo von Maurich and Tim Güneysu. Lightweight Code-based Cryp-
tography: QC-MDPC McEliece Encryption on Reconfigurable De-
vices. In Design, Automation and Test in Europe – DATE 2014, pages
1–6. IEEE, 2014.

[vMG14b] Ingo von Maurich and Tim Güneysu. Towards Side-Channel Resis-
tant Implementations of QC-MDPC McEliece Encryption on Con-
strained Devices. In Michele Mosca, editor, Post-Quantum Cryptog-
raphy, volume 8772 of Lecture Notes in Computer Science, pages 266–
282. Springer, 2014.

[vMOG15] Ingo von Maurich, Tobias Oder, and Tim Güneysu. Implementing
QC-MDPC McEliece Encryption. ACM Trans. Embed. Comput. Syst.,
14(3):44:1–44:27, April 2015.

[WOS14] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert.
The Myth of Generic DPA...and the Magic of Learning. In Josh Be-
naloh, editor, Topics in Cryptology – CT-RSA 2014, volume 8366
of Lecture Notes in Computer Science, pages 183–205, International
Publishing, 2014. Springer.

133

