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Abstract 

 Maintaining an efficient and reliable infrastructure requires continuous monitoring 

and control. In order to accomplish these tasks, algorithms are needed to process large sets 

of data and for modeling based on these processed data sets. For this reason, 

computationally efficient and accurate modeling algorithms along with data compression 

techniques and optimal yet practical control methods are in demand. These tools can help 

model structures and improve their performance. In this thesis, these two aspects are 

addressed separately. A principal component analysis based adaptive neuro-fuzzy 

inference system is proposed for fast and accurate modeling of time-dependent behavior of 

a structure integrated with a smart damper. Since a smart damper can only dissipate energy 

from structures, a challenge is to evaluate the dissipativity of optimal control methods for 

smart dampers to decide if the optimal controller can be realized using the smart damper. 

Therefore, a generalized deterministic definition for dissipativity is proposed and a 

commonly used controller, LQR is proved to be dissipative. Examples are provided to 

illustrate the effectiveness of the proposed modeling algorithm and evaluating the 

dissipativity of LQR control method. These examples illustrate the effectiveness of the 

proposed modeling algorithm and dissipativity of LQR controller. 
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1. Overview 

 Structural health monitoring and control is a branch of civil engineering science, 

which deals with identifying the status and properties of structures and controlling their 

behavior for a better performance under a variety of expected conditions. The purpose of 

structural health monitoring is to provide an understanding of the behavior of a structure or 

identify certain properties of a structure, which helps assess integrity, reliability and 

performance of the structure. In structural control, however, the focus is on improving the 

performance of a structure by modifying current structural elements or adding additional 

components if needed. The research outlined in the following thesis presents a new 

algorithm for structural health monitoring and a study on dissipativity of controllers used 

for control of civil structures. 

 Maintaining an efficient and reliable structure requires continuous monitoring and 

assessment of the state of its components. System identification can be used to model the 

behavior of a structure when it is equipped with a control device. An efficient non-

parametric system identification method provides fast and accurate models of structures 

based on an input-output model framework, without the need for constructing detailed 

models as in finite element method. The challenge, however, is to create new algorithms 

for fast system identification. In this thesis, a new system identification method is proposed 

which is based on Principal Component Analysis (PCA). PCA is used to compress time-

series input-output data of a structure, which reduces the computation time needed to 

create a model based on these data. This method can also be integrated in a structural 

control strategy. 
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 As mentioned before, maintaining an efficient and reliable structure may demand 

improving its behavior under lateral loads using smart dampers. Smart dampers dissipate 

energy from a structure with real-time changeable damping properties. The challenge is to 

compute the optimal force, which is needed to be produced by the damper to decrease the 

vibration induced by lateral loads. LQR control method is commonly used to compute the 

optimal force. However, the optimal force needs to be dissipative; otherwise, the damper 

cannot produce the force. 

 This thesis encompasses the results of research conducted on two independent 

topics. A computationally efficient and accurate method of system identification is 

proposed and analyzed: PCA-based adaptive neuro-fuzzy inference system (PANFIS). 

Furthermore, a generalized definition of a dissipative force is proposed and the 

dissipativity of the LQR control method is proved, verified with simulation results and 

compared with PID method of control.  
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2. PCA-based neuro-fuzzy model for system identification of smart structures  

2.1. Introduction 

 Smart control strategies constitute an important class of strategies used in the field 

of engineering (Housner et al. 1997, Spencer et al. 1997, Symans et al. 1999, Soong et al. 

2002). The implementation of smart control devices such as magnetorheological (MR) 

dampers in structures has led to an increase in the buildings’ ability to withstand 

destructive environmental forces such as strong winds or earthquake. However, it is 

generally known that even if the structure is assumed to behave linearly, there are 

nonlinearities introduced due to the implementation of various actuators and dampers (Kim 

et al.2009). Therefore, it is challenging to model the structure integrated with nonlinear 

actuators. Creating effective models for capturing nonlinear behavior of smart structures 

demands considerable amount of effort in terms of devising new models or using 

combinations of already available approaches as more efficient methods. With this in 

mind, this chapter proposes a method that efficiently identifies nonlinear behavior of 

seismically excited buildings equipped with smart dampers. 

System identification (SI) is an essential part for synthesis of smart structures 

because it produces mathematical models for control system design using data measured 

from the structures. SI is used to reliably predict how a structure behaves using the inputs 

and outputs measured from the structure under a variety of dynamic loading scenarios such 

as far- and near-field earthquakes. SI can be separated into two categories: parametric and 

nonparametric approaches (Bani-hani et al. 1999). A parametric approach identifies the 
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properties of the structural system, including stiffness and damping elements that are 

intrinsically imbedded in the structure and its materials (Jalili-Kharaajoo 2004). The 

nonparametric SI method is used to train the input-output function of the structural system 

as a black box model (Filev 1991). It does not require accurate information about the 

structure. Thus, the nonparametric approach is easily applicable to nonlinear modeling of 

the structural system. This has successfully been performed with neural networks as well 

as fuzzy logic systems. 

A fuzzy inference system, most commonly used as a nonparametric approach of 

modeling a system, uses fuzzy set theory to create a set of rules. It can be effective in 

dealing with nonlinearities and uncertainties of dynamic systems (Gu and Oyadiji 2008). 

Since the work of Zadeh (1965), fuzzy logic has been applied to many SI problems 

(Takagi and Sugeno 1985, Yan and Langari 1998, Kim et al. 2011). A number of studies 

on Takagi-Sugeno (TS) fuzzy models have been conducted in recent years, which deal 

with effective representations of nonlinear systems with the aid of fuzzy sets, fuzzy rules, 

and a set of local linear models (Filev 1991, Gopalakrishnan et al. 2010, Johansen and 

Babuska 2003). Fuzzy logic theory has been used mainly for nonlinear fuzzy control 

system design in the field of large-scale infrastructures (Guo et al. 2011, Kim et al. 2009, 

Mitchell et al. 2012).  However, estimating the parameters of a fuzzy inference system 

requires many trials and errors. Hence, these fuzzy model parameters are determined using 

neural networks. 
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Development of artificial neural networks (ANN) was inspired by the cognitive 

mechanism of the human brain (Wang et al. 2009). The ANN consists of linked nodes. 

Each node computes an output from its input. The node output is then used as another 

input for other nodes, and a link is created between each node. ANNs improve the 

performance of each node by adjusting the parameters of the network, resulting in a more 

accurate model. Although ANN is effective in modeling nonlinear dynamic systems, it is 

challenging to design the ANN models in a transparent way because it is a black box 

modeling framework.  

An integration of favorable features of both ANN and fuzzy logic models produces 

an effective nonlinear SI model, an adaptive neuro-fuzzy inference system (ANFIS). Its 

application for SI in civil engineering applications has been studied in many other 

researches; however, it still is a relatively new research topic (Gu and Oyadiji 2008, 

Gopalakrishnan 2010, Schurter et al. 2000, and Ozbulut et al. 2007). An advantage of this 

modeling technique is its ability to create effectively a nonlinear function using adjustable 

parameters, including types of the membership functions (MF), the number of MFs, step 

size of the learning process, and number of epochs. However, the ANFIS modeling 

technique can be computationally expensive or time-consuming (Wang et al. 2009). It 

would be disadvantageous when dealing with real-time situations and/or with large sets of 

data. To resolve these issues, principal component analysis (PCA) is incorporated in the 

ANFIS model to reduce the computation load. 
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PCA, first introduced in the context of data fitting by Pearson (1901), has been 

mainly used as a method for dimensional reduction of measurement data in diverse fields 

such as psychology, biology, chemistry, economics, genetics, and geology among other 

areas (Jollife 2002). Using this method, the contribution of each measurement to the 

variation of the whole data set can be determined. Such a process can be used to decrease 

the amount of data needed for further use by discarding redundant data or variables that are 

less important. There are some examples of implementation of PCA in the control and 

health monitoring field of civil engineering. Sharifi et al. (2010) applied PCA to sensor 

fault isolation and detection. Kuzniar and Waszczyszyn (2006) used PCA to identify 

natural periods from data measured from a building. Mujica et al. (2010) and Park et al. 

(2007) applied PCA to assess and detect damages in civil infrastructure.  

 The use of PCA as a means of data compression for an efficient training of an 

ANFIS model significantly reduces computation time. Warne et al. (2004) proposed a 

hybrid PCA-ANFIS measurement system for monitoring product quality in the coating 

industry by inferring the ‘Anchorage’ of polymer-coated substrates. Avci and Turkoglu 

(2009) proposed an intelligent diagnosis system based on PCA and ANFIS for the heart 

valve diseases. Polat and Gundes (2007) suggest using PCA and ANFIS together to 

diagnose lymph disease. These studies use PCA for dimensional reduction of large data 

sets, which are inherently different from time series of different types. In the previously 

proposed approaches, variables are combined together regardless of their type to find a 

combination with the maximum variance. However, input-output variables need to be 

separate when using ANFIS modeling technique, so that ANFIS can accurately capture the 
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effect of each input and output variable to produce a more accurate model. Therefore, the 

previously proposed approaches are not helpful for use in combination with ANFIS for 

modeling based on time series of various types. Compression of time series of various 

types using PCA for modeling with ANFIS, introduces a new challenge addressed in this 

chapter. In this work, PCA is implemented as a time series data compression method in 

which parts of the data are effectively removed during the compression process; however, 

the majority of the variation within the data is conserved for modeling purposes. 

 

2.2. PCA-based adaptive neuro-fuzzy inference system (PANFIS)  

 PANFIS is an integrated model of PCA, ANN and fuzzy inference systems. It is a 

nonlinear learning model that uses a least-squares method as well as back-propagation 

methods to train the fuzzy inference system’s MFs and its associated parameters using the 

PCA-based compressed input and output data sets.   

 

2.2.1. Takagi-Sugeno fuzzy model 

  Takagi-Sugeno (TS) fuzzy model is the backbone for the proposed PANFIS control 

system. In 1985, Takagi and Sugeno proposed an effective way for modeling complex 

nonlinear dynamic systems by introducing linear equations in consequent parts of a fuzzy 

model, which is called a TS fuzzy model (Takagi and Sugeno 1985). It has led to the 

reduction of computational costs because it does not need any defuzzification procedures. 
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The fuzzy inference system used in the PANFIS model is of the TS fuzzy model form. It 

typically takes the following form 

( )
1 2

1, 2, ,

1

:

, , , 1,2, ,

i
j FZ j FZ j FZ i j

i
FZ j FZ FZ r

R IF u is P and u is P and u is P

Then z f u u j N= =



 
, (2-1) 

where jR is the thj fuzzy rule, rN is the number of fuzzy rules, ,i jP are fuzzy sets centered 

at the operating thj point, and	 i
FZu are premise variables that can be either input or output 

values. The equation of the consequent part 1( , , )i
FZ j FZ FZz f u u=   can be any linear 

equation. Note that the equation (2-1) represents the thj local linear subsystem of a 

nonlinear system, i.e. a linear system model that is operated in only a limited region. All of 

the local subsystems are integrated by blending operating regions of each local subsystem 

using the fuzzy interpolation method as a global nonlinear system 

( ) ( )
( )

1

1

1

, ,r

r

N i i
j FZ j FZ FZj

FZ N i
j FZj

W u f u u
y

W u
=

=

  =





, (2-2) 

where ( ) ( )
,1 i j

ni i
j FZ P FZi

W u uμ
=

= ∏ and ( )
,i j

i
P FZuμ is the grade of membership of i

FZu in ,i jP . 

These parameters are optimized by the back propagation neural network. A typical 

architecture of fuzzy rules for a model with n membership functions for each input and 2n  

rules is shown in Figure 2-1. 
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Figure 2-1. Typical fuzzy rules layout. 

 

Optimization of the parameters of the model is the main challenge in the 

application of a fuzzy model. Therefore, incorporating neural networks to create an 

adaptive neuro-fuzzy inference system allows these parameters to be optimized during 

computation, which is explained below. 

 

2.2.2. ANFIS ARCHITECTURE 

 The architecture of a typical ANFIS model is shown in Figure 2-2. This figure 

represents two inputs and one output architecture with n MFs for each input, which is only 

for illustrative purposes; the model used has two MFs for each input. 
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Figure 2-2. ANFIS architecture with n MFs for each of the two inputs. 

 

Each layer has particular tasks to complete before the data moves to the next layer. In the 

first layer (layer 1), the function of the node is represented by 

( )
,

1,

i j

j i
FZ P FZF uμ= , (2-3) 

The Gaussian MF used in the examples of this chapter has the following form 

( ) ( )( ),

2 2
1 2exp 2

i j

i
P FZu u a aμ = − − , (2-4) 

where 1a  and 2a  are adjustable parameters of the Gaussian function. This MF is applied to 

each input in layer 1. The second layer (layer 2) then outputs the product of all inputs of 

layer 2, known as the firing strengths 

( ) ( ) ( )
, , ,

2, 1 2

i j i j i j

j i
FZ P FZ P FZ P FZF u u uμ μ μ= ×  , (2-5) 

The third layer (layer 3) takes a ratio of layer 2 firing strengths in order to normalize the 

layer 2 outputs 2, j
FZF  as follows 

1st layer 2nd layer 
3th layer 4th layer 
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( )
,

3, 2,

1 i j

nj j i
FZ FZ P FZi

F F uμ
=

= ∏ . (2-6) 

The fourth layer (layer 4) then applies a node function to the normalized firing strengths 

( )4, 3, 3, 1 , ,j j j i
FZ FZ j FZ j FZ FZF F f F f u u = × =   , (2-7)  

where 3a , 4a  and 5a  are function parameters for the consequent. The last layer summates 

the layer inputs 

( ) ( )
( )

,

,

1

15

1

, ,
i j

i j

n i i
P FZ j FZ FZj i

FZ n i
P FZj i

u f u u
F

u

μ

μ
=

=

  =
 ∏

 ∏


. (2-8)  

 The output of the system 5
FZF  is then used in a hybrid learning algorithm to create a 

linear combination of the consequent parameters 3a , 4a  and 5a . The key parameters for 

this simulation include the number of iterations or epochs, the number of MFs and their 

type, as well as the step size of the function or algorithm. Types of MFs can vary from a 

generalized bell function, Gaussian functions, sigmoidal functions, trapezoidal function, as 

well as other forms. Each change of variables will yield different output results (Filev 1991 

and Kim et al. 2011). The fuzzy inference system sets up rules based on the number of 

MFs used in simulation. 

 For a system with n MFs for each input, fuzzy rules are set up as shown in Figure 

2-1, where FZy corresponds to 5
FZF . Each number in layer 4 of Figure 2-2 represents one of 

the n2 fuzzy regions that are created with n MFs in the ANFIS model.  The fuzzy region is 

defined by the premise, and the output is generated through the consequent.  
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Although ANFIS is very effective in modeling complex nonlinear systems, it 

requires much computational effort. Such a problem can be addressed through the 

integration of principal component analysis. 

 

2.2.3. Principal component analysis (PCA) 

 PCA was introduced by Pearson (1901) in the context of data fitting and was 

developed independently by Hotelling (Jollife 2002). Hotteling’s method of derivation of 

principal components using Lagrange multipliers and eigenvalue/eigenvector analysis is 

explained in this section. 

Suppose
.obsV is a matrix representing N  observations of p random variables, 

organized as p rows and N  columns, where the mean of random variable i is subtracted 

from each element of row i. The covariance matrix for this matrix of measurement data 

.obsV  can be constructed as  

. . .

1
obs

T
obs obsN

=VC V V , (2-9) 

where each element , , , 1, ,i jc i j p=  of the covariance matrix 
.obsvC , is the covariance 

between thi and thj variables. Element , ,i jc i j=  of the covariance matrix is the covariance 

between thi  and thi  variable which is the same as the variance of the thi  variable. It is 

often desirable to find a linear transformation of observation matrix 
.obsV  , with the 

following form 
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. .tran obs=V QV  , (2-10) 

which results in the maximum variances between linear combinations of p random 

variables among all other permissible linear combinations of them. Q  is a transformation 

matrix. It is desirable for the transformation matrix Q to be a unit norm matrix, that is

T =Q Q I . In other words, the goal is to find Q , with the constraint T =Q Q I , such that the 

covariance matrix 
.tranVC of the transformed set of data .tranV   is maximized, 

{ }
.tran

Max V
Q

C . (2-11) 

The function to be maximized, 
.tranVC  can also be written as 

. .

1
tran obs

T

N
=V VC QC Q . (2-12) 

By employing the constraint condition, the objective function is formulated as follows 

.

1
( )

obs

T T

N
λ− −VQC Q Q Q I , (2-13) 

where λ  is the Lagrange multiplier. Differentiating with respect to Q gives 

.

1
obsN

λ − = 
 

VC I Q 0 , (2-14) 

where I is an p p×  identity matrix, λ  is an eigenvalue of the covariance matrix of the 

original data,  and Q  is found to be the corresponding matrix of eigenvectors of all the 

eigenvaluesλ . Therefore, the eigenvectors of 
.obsvC  (i.e. Q ) transforms 

.obsvC to a 

covariance matrix: the off-diagonal elements are zero and the diagonal elements have the 

maximum value. It is possible to examine each row as observations of random variables in 
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terms of their contribution (corresponding element in matrix of eigenvectors, Q ) to the 

covariance matrix. The variables with larger eigenvectors contribute more to the variation 

of the measurements. Therefore, it is possible to discard variables that contribute less than 

a threshold and decrease the dimensions of data needed for further analysis.  

 

2.2.4. PCA-based ANFIS system identification 

 In the context of structural system identification, complex behavior of structures 

can be estimated using black box modeling framework with measured data. The measured 

data can include inputs and outputs to the structure. The input data may contain time series 

of earthquake signals and forces of control devices such as smart dampers. The output data 

may contain structural responses such as accelerations and displacements. In practice, the 

amount of measurement data for long periods can be huge. Hence, sometimes it is difficult 

to apply signal processing techniques (e.g. vibration analysis, system identification, 

structural health monitoring, control system designs, among others) to the lengthy data 

sets. Therefore, it is crucial to decrease the number of data points in these input-output 

time series. This can lead to a significant reduction in training time of ANFIS models or 

other machine learning techniques. The dimensional reduction approach mentioned in the 

previous section can be used to decrease the number of variables in input-output data sets 

(Warne et al. 2004, Avci et al. 2009, and Polat et al. 2007). In the context of structural 

system identification, the direct implementation of PCA to input-output data sets results in 

a linear combination of variables with different units (e.g. acceleration, displacement, 

force, etc.). However, the input-output variables need to remain separate, not combined, so 
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that ANFIS can capture the effects of each of the input and output variables to produce a 

more accurate model. Another implementation of PCA is suggested which is reasonable 

for use in this context.  

 Ground acceleration constitutes an important part of the inputs to the structure. To 

improve the computational efficiency of modeling, it seems reasonable to find only a short 

duration of ground acceleration within which large variations occur. These large variations 

may result in a broad range of behavior of the structure, which then helps to perform a 

more accurate and efficient system identification. 

To find a short duration of earthquake signal with maximum variations among 

other durations, it is proposed to divide earthquake acceleration ( ), [0, ]g t t T∈x  to tN

number of time series 
( 1) ( )

( ), , , 1,...,i t
t t

i it t T T i N
N N

 −∈ = 
 

v
 

with equal lengths called 

segments, where each segment is small enough for favourable training time and large 

enough for reasonably accurate training of the ANFIS model. Then, PCA can be applied to 

the following matrix of the time series segments 

1

2

1
(0, )

1 2
( , )

1
( , )

t

t t

t
N

t

T
N

T T
N N

N T T
N

 
 
 
 
 =  
 
 − 
  

v

v
v

v


, (2-15) 
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to find principal components of the time series with the length of tT N . 

Figure 2-3 represents the application of PCA to a time series. A five seconds long 

signal is divided into n  segments using the window functions (applied point by point) and 

then the PCA is performed. The PCA coefficients ( pα ) in (c) show where the important 

signal component is located within the whole data sets: indices of 1, 4, and 3n − . 

 

 (a) An illustrative times series 

(b) Window functions 
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               (c) PCA coefficient ( pα ) for each segment 

Figure 2-3. Application of PCA to times series 
 

 These results suggest that major contributions to the variation of the earthquake 

record is related to the data segments having an index of 1, 4 and 3n − . Hence, instead of 

training the ANFIS model using the whole time series, the ANFIS model can be trained 

using segments added with the above PCA coefficients and the corresponding input-output 

segments. Therefore, the architecture of PANFIS can be as in Figure 2-4. It should be 

noticed that PCA is only applied to the earthquake time series to find the major 

contributing part, and the rest of the process of modeling is exactly the same as ANFIS, 

only the training data set is much smaller. In the following section, the effectiveness of the 

PANFIS modeling is demonstrated with examples. 
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Figure 2-4. PANFIS architecture. 

 

2.3. Example 

 To demonstrate the effectiveness of the PCA-based adaptive neuro-fuzzy inference 

system (PANFIS) approach, a three-story building structure equipped with a 

magnetorheological (MR) damper is investigated.   

 

2.3.1. Magnetorheological (MR) damper 

 In recent years, smart structures have emerged from many engineering fields 

because the performance of structural systems can be improved without either significantly 

increasing the mass of the structure or requiring high cost of control power. They may be 

called intelligent structures, adaptive structures, active structures, and the related 

technologies adaptronics, structronics, etc. The reason to use these terminologies is that a 

smart structure is an integration of actuators, sensors, control units, and signal processing 

1st layer 2nd layer 
3th layer 4th layer 
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units with a structural system. The materials that are commonly used to implement the 

smart structure: piezoelectrics, shape memory alloys, electrostrictive, magnetostrictive 

materials, polymer gels, magnetorheological fluid, etc. (Hurlebaus and Gaul 2006).  

Semiactive control systems have been applied to large structures because the 

semiactive control strategies combine favorable features of both active and passive control 

systems.  Semiactive control devices include variable-orifice dampers, variable-stiffness 

devices, variable-friction dampers, controllable-fluid dampers, shape memory alloy 

actuators, piezoelectrics, etc. (Hurlebaus and Gaul 2006). In particular, one of the 

controllable-fluid dampers, magnetorheological (MR) damper has attracted attention in 

recent years because it has many useful characteristics. 

In general MR dampers consists of a hydraulic cylinder, magnetic coils, and MR 

fluids that typically contain micron-sized magnetically polarizable particles floating within 

oil-type fluids as shown in Figure 2-5. The MR damper can be operated as a passive 

damper; however, when a magnetic field is applied to the MR fluid, the fluid changes into 

a semi-solid state in a few milliseconds. This is one of the most unique aspects of the MR 

damper compared to active systems: malfunction of an active control system might occur if 

some control feedback components, e.g., wires and sensors, are broken for some reasons 

during severe earthquake event; while a semiactive system can still be operated as a 

passive damping system even when the control feedback components are not functioning 

properly. Its characteristics are summarized in (Kim et al. 2009).  
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Figure 2-5. Schematic of the prototype 20-ton large-scale MR damper (Yang et al. 

2002). 

 

To fully exploit the behavior of MR dampers, a mathematical model is needed that 

portrays the nonlinear behavior of the MR damper. However, this is challenging because 

the MR damper is a highly nonlinear hysteretic device. As shown in Figure 2-6, the MR 

damper force ( )MRf t  predicted by the modified Bouc-Wen model is governed by the 

following differential equations. Spencer et al. (1997) provides more detailed discussion of 

this model. 

0
( )MR a b a a af c u k u u= + − , (2-16) 

( )1
( )

n n
BW a b BW BW a b BW a bz u u z z u u z A u uγ β−= − − − − + −      , (2-17) 

{ }1
( )

( )b BW b a b a b
a b

u z c u k u u
c c

α= + + +
+

  , (2-18) 

a b MRuα α α= + , (2-19) 
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1 2a a a MRc c c u= + , (2-20) 

1 2b b b MRc c c u= + , (2-21) 

( )MR MR MRu u vη= − − . (2-22) 

where BWz and α called evolutionary variables, describe the hysteretic behavior of the MR 

damper; bc is the viscous damping parameter at high velocities; bc is the viscous damping 

parameter for the force roll-off at low velocities; aα , bα ,
1bc ,

2bc , 
1ac and 

2ac are parameters 

that account for the dependence of the MR damper force on the voltage applied to the 

current driver; bk controls the stiffness at large velocities; ak represents the accumulator 

stiffness; 
0au is the initial displacement of the spring stiffness ak ; γ , β and Aare 

adjustable shape parameters of the hysteresis loops, i.e., the linearity in the unloading and 

the transition between pre-yielding and post-yielding regions; M Rv  and MRu  are input and 

output voltages of a first-order filter, respectively and η  is the time constant of the first-

order filter.  
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 Figure 2-6. Modified Bouc-Wen model of the MR damper (Spencer et al. 1997). 

 

The structure itself is assumed to behave linearly; however, the addition of the MR 

damper introduces nonlinearities, which necessitate developing a mathematical model to 

portray this behavior, which is usually the key part in the design of semiactive control 

systems. 

 

2.3.2. Integrated structure-MR damper system 

 A typical example of a building structure employing an MR damper is depicted in 

Figure 2-7.  
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Figure 2-7. A three-story building employing an MR Damper (Kim et al. 2011). 
 

The associated equation of motion is given by  

( , , , )
iMR i i MR gt v x+ + = −Mx Cx Kx Γf x x MΛ    , (2-23)  

where gx denotes the ground acceleration; M  the mass matrix, K  the stiffness matrix, C   

the damping matrix, and the vector x the displacement relative to the ground, x the 

velocity, x the acceleration; ix and ix are the displacement and the velocity at the thi floor 

level relative to the ground, respectively; 
iMRv is the voltage level to be applied; alsoΓand 

Λ are location vectors of control forces and disturbance signal, respectively. The second 

order differential equation can be converted into a state space model 

( , , , )

( , , , )

MR i i i g

MR i i i

t v x
t v

= + −

= + +

z Az Bf x x E

y Cz Df x x n

  


, (2-24) 

in which the following parameters are used 
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1 1− −

 =  − − 

0 I
A

M K M C
, (2-25) 

1−

 =  
 

0
B

M F
, (2-26) 

1 1− −

 
 =  
− −  

I 0

C 0 I

M K M C

, (2-27) 

1−

 
 =  
  

0

D 0

M F

, (2-28) 

 =  
 

0
E

F
, (2-29) 

where F is the location matrix of Chevron braces within the building structure, n  is the 

noise vector, ix  and ix are the displacement and the velocity at the thi floor level of the 

three-story building structure, respectively. Properties of the three-story building structure 

are adopted from Dyke et al. (1996). 

 

2.3.3. Simulation 

 To demonstrate the effectiveness of the PANFIS model, a set of input-output data is 

generated from a building structure equipped with an MR damper, illustrated in Figure 2-8. 

The approach proposed in Section 2.2. is then applied, i.e. PCA is first used to compress 

the five-seconds-long artificial earthquake signal to a one-second-long signal. The 

segments of the signal along with the corresponding PCA coefficients (α ) are illustrated 

in Figure 2-9. It should be noted that the sum of squares of the PCA coefficients is equal to 

one. In this example, the two components (b) and (c) of artificial earthquake shown in 
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Figure 2-9 are used with the corresponding MR damper forces and acceleration responses 

to train the ANFIS model, reducing the computation load significantly. 

 

(a) Artificial earthquake 

(b) MR damping forces 

(c) Structural responses 

Figure 2-8. A set of input and output for training the PANFIS model. 
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(a) 0.08pα = −  (b) 0.98pα =  

(c) 0.26pα =  (d) 0.01pα = −  

(e) 0.01pα = −  

 

Figure 2-9. Five segments of the artificial earthquake with corresponding PCA 

coefficients. 

 

 The architecture of the PANFIS model is determined via trial-and-error. The 

number of MFs used in the model was increased from two to eight for both earthquake and 
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MR damper force and two MFs for each was found to be resulting in accurate and efficient 

model. Gaussian MFs are used as the design variables. Maximum number of epochs is 150 

and the step size is chosen as 0.001. Although the architecture of the PANFIS model can 

be optimized through an optimization procedure, it is beyond the scope of the present 

chapter.  

 Figure 2-10 compares the dynamic response of the original simulation model with 

that of the trained PANFIS model. Note that the original simulation model is an analytical 

model of the building equipped with an MR damper subjected to the artificial earthquake 

signal. As seen, overall good agreements between the original data and the identified 

PANFIS model is found. The modeling errors are quantified using indices defined later. As 

previously discussed, the performance of the PANFIS model can be improved by 

increasing input parameters, which can also significantly increase computation time.  

 

Figure 2-10. Training: Artificial earthquake. 
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It is necessary to validate the trained model using data that have not been used for 

training the model to assess whether the trained model can be used for a range of possible 

earthquakes. Figures 2-11 through 2-14 show the four earthquake signals for the 

validation: El Centro, Kobe, Hachinohe, and Northridge.  

 

 

Figure 2-11. 1940 El Centro earthquake signal. 
 

 

 

Figure 2-12. Kobe earthquake signal. 
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Figure 2-13. Hachinohe earthquake signal. 
 

 

 

Figure 2-14. Northridge earthquake signal. 

 

Figures 2-15 through 2-18 show comparisons of the actual accelerations at the 

third-story level and the predicted responses obtained from the PANFIS for the validating 

earthquakes. It is clear from the figures that the validated responses correlate well with the 

actual accelerations, meaning that the proposed PANFIS model is effective in modeling the 

nonlinear dynamic response to various earthquake signals. The accuracy of the identified 

model can be improved by increasing either the number of MFs or the step size. However, 

these increased parameters (i.e., overtraining) may not be an efficient approach for 
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validating the developed model using other data sets.  Furthermore, it is not guaranteed 

that a larger number of MFs results in better performance of the PANFIS system (Mitchell 

et al. 2012). 

 

 

Figure 2-15. Validation: El Centro earthquake. 

 

 

Figure 2-16. Validation: Northridge earthquake. 
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Figure 2-17. Validation: Kobe earthquake. 
 

 

Figure 2-18. Validation: Hachinohe earthquake. 

 

In order to quantify the error and the relationship between the predicted response 

and the actual response of the structure, six indices are introduced. The first index, 1J  is the 

maximum error of the estimated data. 

( )1 ˆJ Max y y= −  , (2-30) 

where ŷ  is the estimation and y  is the actual structural response data. The next index, 2J  

is the minimum error of the predicted data 

( )2 ˆJ Min y y= −  . (2-31) 
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Root-mean-square error (RMSE) index, 3J  is defined as 

( )2

3

ŷ y
J RMSE

N
−

= =


. (2-32)  

An index, 4J  is also used for evaluating the fitting rate of the predicted data as follows.  

( )4

ˆvar( )
1

var

y y
J

y
 −

= −  
 


 . (2-33)  

Note that if the PANFIS model produces the same responses as the simulation model, the 

fitting rate 4J  would be 100%. 

The training time is considered as another index 5J  

5 training timein minutesJ ≡ , (2-34) 

which depends on the modeling method (ANFIS and PANFIS) and training data (the set of 

compressed artificial earthquake, control force and displacements) based on which the 

model is generated. 

To compare the validation results of ANFIS and PANFIS, an index, 6J  is defined. It is 

simply the absolute value of the difference between the fitting rate index 4J  of the ANFIS 

and PANFIS results 

6 4 4
ANFIS PANFISJ J J= − . (2-35) 
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The evaluations of the training results are provided in Table 2-1. It is evident form  6J  that 

the accuracy of the PANFIS model is close to that of ANFIS, while PANFIS’s training 

time is 35.13% of ANFIS’s, proving to be an efficient method. 

 

Table 2-1. Training time and indices for ANFIS and PANFIS. 
 

 

 

 

 

 

 

The validation errors are also provided in Table 2-2 for ANFIS and PANFIS models. It 

shows that the PANFIS model performs slightly better than ANFIS with a significant 

decrease in computation time (approximately 64.87% less than ANFIS). 

 

 

 

 

 

 

 

 

System 

Number 
of MFs 
for each 

input 

1J
(m/s2) 

2J  

(m/s2) 

3J  

(m/s2)

4J  

(%) 

5J  

(min.) 

6J  

(%) 

ANFIS 2 16.78 0 2.973 73.22 2.068 
1.68 

PANFIS 2 16.87 51.131 10−× 3.058 74.90 0.7265 
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Table 2-2. Validation of the trained ANFIS model. 

 

 

 

 

 

 

 

 

 

 

Index 
El Centro Northridge Kobe Hachinohe 

ANFIS PANFIS ANFIS PANFIS ANFIS PANFIS ANFIS PANFIS

1J ( 2

m
s

) 7.814 7.574 33.50 25.97 21.49 19.24 7.567 7.284 

2J  ( 7
2

10
m
s

− ) 7.137 0.025 35.17 5.281 21.22 43.68 60.91 4.845 

3J ( 2

m
s

) 1.301 1.249 1.785 1.969 3.278 3.445 1.054 0.736 

4J (%) 66.86 69.38 62.31 64.33 45.69 44.79 58.58 67.38 

6J (%) 3.769 3.14 2.01 13.06 
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2.4. Conclusion 

 

 In this chapter, an efficient PCA-based adaptive neuro-fuzzy inference system 

(PANFIS) is proposed for a fast nonlinear system identification of seismically excited 

building structures that are equipped with magnetorheological (MR) dampers. To fully 

exploit their advantages, Takagi-Sugeno fuzzy model, principal component analysis, and 

artificial neural networks are integrated to create the PANFIS system. The proposed model 

yields accurate results for the system identification of smart structures with significantly 

reduced time of computation compared to ANFIS. To train the input-output mapping 

function of the PANFIS model, an artificial earthquake signal and an MR damper force 

signal are used as a disturbance input signal and a control input, respectively, while the 

acceleration response is used as output data. Furthermore, a variety of earthquake records 

and their associated responses are used to validate the trained model. This approach can be 

applied to an integrated model of a building structure equipped with nonlinear MR devices 

without decoupling the identification procedure of the highly nonlinear MR damper from 

that of the primary building structure. It is demonstrated through the simulation results that 

the proposed PANFIS model is effective in identifying the nonlinear behavior of the 

seismically excited building-MR damper system while significantly decreasing the training 

time. 
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3. Dissipativity analysis of LQR controller applied to semi-active damping devices 

3.1. Introduction 

 Semi-active dampers have attracted much attention in the field of structural control 

of various civil structures (Housner et al. 1997, Spencer et al. 1997, Symans et al. 1999, 

and Soong et al. 2002). These devices can be controlled to dissipate energy from structural 

systems subjected to external excitations, while actuators are designed to input energy to 

and dissipate energy from structural systems. Hence, it is important to analyze the 

dissipativity of the controller to implement an efficient semi-active control system into the 

structure. Dissipativity of the force produced by a smart damper can be expressed loosely 

by an inequality of the form 0d du v < , where du  is the damper force and dv  is the velocity 

at the point of action of the damper force. A control force can be defined as dissipative if it 

satisfies the inequality. The inequality describes the negative rate of injection of energy or 

equivalently, positive rate of dissipation of energy. Study on dissipativity of controllers 

designed for smart dampers helps evaluate or improve the performance of those 

controllers. Clipped optimal control strategy is commonly used for semi-acitve damping 

devices in structural control of civil structures. Therefore, the primary controller of this 

strategy is analyzed for dissipativity. 

Clipped optimal control is one of the frequently used control strategies for the 

application of smart dampers to civil structural systems (Dyke et al. 1996, Dyke et al. 

1998, Spencer et al. 2000, Erkus et al. 2002, Ramallo et al. 2002, and Johnson et al. 2006). 
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In this control strategy, the structure is assumed to behave linearly and a linear quadratic 

regulator (LQR) is considered as a primary controller, which is then clipped by a secondary 

controller if the control variable is not dissipative. Based on the dynamic model of the 

smart damper, a signal (e.g. voltage) is produced to induce the clipped control force in the 

damper (Figure 3-1). Note that in general, smart dampers are designed only to dissipate 

energy, therefore the controller needs to command dissipative forces.  

The resulting controller, though effective in reducing structural responses, has not 

been proven to be optimal with respect to any criteria. Therefore, a definition of 

disspativity may be beneficial to evaluate or design a controller, which is consistent with 

the dissipative nature of smart dampers. 

Figure 3-1. Architecture of the clipped optimal control strategy 

 

A study of the literature suggests that the definition of dissipativity of the primary 

controller in a clipped optimal control strategy has not been extensively examined 

(Johnson et al. 2007). A stochastic index has been proposed by Inaudi (2000), [ 0]d dP u v < , 

which helps estimate the probability of a control force being dissipative.  This index, 

however, has not been generalized for integration into an optimal controller design. 
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Johnson et al. (2007) provides significant insight into dissipativity of LQR controllers, as it 

provides a deterministic definition for a dissipative force and proposes two generalized 

stochastic dissipativity indices defined based on dynamic time-history analyses. The 

generalized stochastic dissipativity indices proposed by Johnson et al. (2007) are not 

properly defined to be applied to the cases where the control variable is not a scalar, and 

also do not have a proper form to be used in a state-space formulation of the LQR design 

problem. Improved generalized definitions or indices are needed for deterministic 

evaluation of the dissipativity of controllers. These definitions or indices can also be used 

to integrate a deterministic dissipativity constraint into design of optimal controllers for 

smart dampers. This integration may pose a challenge due to nonlineaity of the constraint, 

which is addressed and investigated in this chapter. 

There exists only two studies on integration of the disipativity of smart dampers 

with the optimal design of controllers for these devices (Johnson et al. 2000, Johnson et al. 

2007). Johnson et al. (2007) implements a weak form of the energy dissipation rate ( d du v ) 

in the objective function of a LQR control design problem resulting in minor 

improvements in performance. In another study, Johnson et al. (2007) proposes and 

integrates stochastic indices of dissipativity as constraints into a LQR control design 

problem. These stochastic indices are generalized to be appended to an eigenvalue problem 

(EVP) representation of an LQR problem in terms of linear matrix inequalities (LMIs). 

This problem is then analyzed numerically for specific cases. However, there is no 

deterministic analytical studies on dissipativity of controllers used for semi-active dampers 

applied to large civil structures. 
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In this chapter, a generalized deterministic definition of dissipativity is proposed for 

further analytical study. This generalization allows for appendage of a deterministic 

dissipativity constraint to LQR control design problem for analytical investigation. First-

order conditions of optimality are then used to obtain an LQR optimal controller. The LQR 

controller is found to be optimal and dissipative with respect to the generalized 

deterministic form of dissipativity definition proposed. This result justifies the 

effectiveness of clipped optimal control for smart dampers with LQR as the primary 

controller. 

 

3.2. Model definition 

 To design a LQR optimal controller for civil structural systems, the state-space 

formulation of dynamic behavior of civil structures may be required. The structure can be 

assumed to behave linearly. The smart damper forces can also be assumed as external 

forces. The smart damper’s nonlinear behavior is not included in the model. The associated 

set of second-order ordinary differential equations of motion of the structure is given by  

+ + = −Mx Cx Kx Γu Λw  , (3-1)

where w  denotes the disturbance signal which can be the forces due to the ground 

acceleration in seismic response problems or wind excitation forces; M  is the mass matrix, 

K  is the stiffness matrix, C  is the damping matrix, and x  is the vector of displacements 

of floors relative to the ground, x  is the velocity, x  is the acceleration; and Γ  and Λ  are 

location vectors of control forces and disturbance signals, respectively. The set of second-
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order ordinary differential equations as in Eq. (3-1) can be transformed into the state space 

model 

,

= + +
= + +

z Az Bu Ew

y Cz Du Hn


 (3-2)

where measurement noise is also taken into consideration. The parameters used in Eq. (3-

2) are as follows 

1 1− −

 =  − − 

0 I
A

M K M C
, (3-3)

1−
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 

0
B

M F
, (3-4)

1 1− −

 
 =  
− −  

I 0

C 0 I

M K M C

, (3-5)

1−

 
 =  
  

0

D 0

M F

, (3-6)

 =  
 

0
E

L
. (3-7)

where F is the location vector of control elements such as dampers, actuators and etc., 

within the building structure, n  is the measurement noise vector, L  is a location matrix 

defined according to the disturbance considered, H  is a location matrix defined 

appropriately for measurement noise, z  and z  are the vector of displacements and the 

velocities of floor levels of the building structure,  and y  is the vector of outputs of the 
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structure. 

This model is used to formulate a generalized deterministic definition of 

dissipativity of controllers used for semi-active dampers. 

 

3.3. Dissipativity: definitions and indices 

 In this section, the definitions on dissipative forces are described in the context of 

civil engineering structural control problems. 

 

3.3.1. Strictly dissipative force 

3.3.1.1. Definition 

 A formal definition of a strictly dissipative force given by Johnson et al. (2007) is 

as follows. Consider a continuous external force ( , )f x t , which is applied to a system on a 

surface region x ∈ Ω . Let ( , )v x t  be the velocity of the surface (with positive velocity in 

the same direction as positive forces). The rate of energy added to the system by the force 

( , )f x t  is given by 

( , ) ( , )
E f x t v x t d
t Ω

∂ = Ω
∂  , (3-8)

( , )f x t  is called a strictly dissipative force if the rate of energy added is negative for all 

0t ≥ . Or, without loss of generality, 
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( , ) ( , ) ( ) 0for all 0 ( , ) is strictly dissipativef x t v x t d t t f x tε
Ω

Ω ≤ < ≥ ⇔ , (3-9)

where ( )tε  is strictly negative. When the external force is a point load applied at point 0x  

on the system, Eq. (3-9) can be simplified to 

where ( )v t  is the velocity of point 0x , and the location parameter 0x  is dropped for 

simplicity. The definition given in Eq. (3-10) is more suitable for a civil engineering 

control problem, since the control force can generally be modelled as a point load. This 

condition simply states a necessary and sufficient condition. The force is dissipative if and 

only if the direction of the force and the velocity are opposite. 

 

3.3.1.2. Example 

 A familiar example to illustrate this condition might be a simple dashpot element 

which provides a force cf  proportional to the relative velocity of the two ends of the 

damper ( )dv t  such as 

where 0c >  is the damping coefficient. Using Eq. (3-11), the definition given in Eq. (3-10) 

results in 

( ) ( ) ( ) 0 for all 0 ( ) is strictly dissipativef t v t t t f tε≤ < ≥ ⇔ , (3-10)

( )c df cv t= − , (3-11)

2( ) ( )c d df v t cv t= − , (3-12)
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which is always less than or equal to zero and proves that the force provided by the damper 

in this example is dissipative as defined in Eq. (3-10). 

 

3.3.1.3. Proposed definition 

 Since state-space models are commonly used in the context of structural control, a 

generalized state-space formulation for the dissipativity condition given in Eq. (3-10) is 

proposed. In the state-space model (3-2), the control force acting on states of the structure 

model is given by Bu , therefore the Eq. (3-10) can be generalized as follows 

 

where ( )tε  is strictly negative and G  is a positive semi-definite matrix appropriately 

chosen to define (strict) dissipativity condition for control forces. A common practice is to 

use displacement or drift responses as the first set of variables in state vector z  and 

velocities as the second set of variables in state vector. Therefore, defining matrix G  as  

results in a set of equations, each in the form of Eq. (3-10). The matrix g  is positive-

definite. The number of columns of g  is equal to the number of states with respect to 

which the control forces are defined to be dissipative. 

 

( ) ( ) 0
T tε≤ <Bu Gz , (3-13)

 =  
 

0 0
G

0 g
, (3-14)
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3.3.2. Time index for dissipative control forces 

 To calculate the percentage of time that the primary controller is commanding 

dissipative forces, Johnson et al. (2007) defines a time index 

where ( )H ⋅  is the Heaviside unit step function defined as follows 

T  is the total time during which the controller is commanding control forces, au  is the 

control force, and dv  is the velocity at the point of action of the damper force. According 

to this definition, higher values of %D  implies more dissipativity of au . 

 

3.3.3. Probability of dissipativity of the control force 

 For a linear system with stationary Gaussian response, Inaudi (2000) gives the 

probability that the control force is strictly dissipative as 

where ( )acos ⋅  is the inverse cosine function, ρ  is the correlation coefficient between au  

and dv . Values of pD  higher than or equal to 50% implies dissipative characteristic of au . 

 

 

 

[ ]% 0

1
1

T

a dD H u v dt
T

= −  , [ ]% 0,1D ∈ , (3-15)

1 0
( )

0 0

s
H s

s
≥

=  <
, (3-16)

( ) ( )acos
0p a dD P u v

ρ
π

= < = , [ ]0,1pD ∈ , 
(3-17)
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3.3.4. Expected value of the energy flow rate 

 The dissipative force conditions given by Eq. (3-10) and (3-13) are deterministic. 

Stochastic definitions can also be given for dissipativity of control forces. The expected 

value of Eq. (3-10) is proposed by Johnson et al. (2007) to be used to define the 

dissipativity of the primary control force as follows 

where [ ]E ⋅  is the expected value operator and ( )tεμ  is strictly negative. Generalized form 

of Eq. (3-18) as developed in this chapter is given as  

( ) [ ]( ) is strictly dissipative ( ) ( )
Tt E E t t  ≤ = <  εu Bu Gz ε μ 0 , (3-19)

It should be noted that the conditions stated in Eq. (3-18) and (3-19) are necessary but not 

sufficient conditions for dissipativity of the control force and lower value of ( )tεμ  only 

imply that the control force is dissipating more energy. Another index is proposed by 

Johnson et al. (2007) as 

called the mean energy flow rate, and is normalized as follows 

where neD  is called the normalized mean energy flow rate. Negative-definiteness of eD  

and neD  provide necessary but not sufficient conditions for dissipativity of the control 

force. 

( ) ( ) ( ) ( ) ( )isstrictlydissipative 0a a du t E u t v t E t tεε μ ≤ = <       , (3-18)

[ ]e a dD E u v= , (3-20)

[ ]
2 2

a d
ne

a d

E u v
D

E u E v
=

      
. (3-21)
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In this section, the relevant definitions and indices were reviewed. In the next 

section, the dissipative LQR optimal control problem is examined. 

3.4. Dissipative LQR optimal control problem 

 Before analyzing the dissipativity of the LQR controller, a typical LQR optimal 

control problem is examined. 

 

3.4.1. LQR optimal control problem 

 LQR is frequently used in the field of structural control of buildings and/or bridges 

for an efficient performance. Thus, LQR is assumed to be the primary controller strategy in 

this chapter. The LTI system as in Eq. (3-2) is considered without the disturbance and 

measurement noise 

where z  is the state vector, u  is the control vector, (here, the vector of control forces) and 

y  is the vector of outputs of the system. The goal is to find control variable u , which 

satisfies the optimization problem 

= +
= +

z Az Bu

y Cz Du


, (3-22)

( )
( )

min

subject to Eq. 3-22

1

2
T T dt + 

 u
z Qz u Ru

, 
(3-23)
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where 0T= ≥Q Q , and 0T= >R R  are weighting matrices. The design parameters should 

satisfy the following inequalities for the problem defined by Eq. (3-22) and (3-23) to be 

well posed 

The Hamiltonian for this problem can be defined as 

where λ  is the vector of costate variables and has the same dimension as the state vector. 

Optimal states and costates are derived from the following necessary conditions given by 

Geering (2007) as  

where *  denotes optimality. Assuming  

and substituting for Hamiltonian in Eq. (3-28) results in 

Equations (3-26), (3-27), and (3-30) lead to the following Riccati differential equation 

 = ≥ 
 

Q 0
W 0

0 R
. (3-24)

( )1 1

2 2
T T TH = + + +z Qz u Ru λ Az Bu , (3-25)

* H= ∇λz , (3-26)

* H= −∇ zλ , (3-27)

*
0

H∂ =
∂u

. (3-28)

* *=λ Kz , (3-29)

* 1 *T−= −u R B Kz . (3-30)
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1T T−+ + − + =K A K KA KBR B K Q 0 , (3-31)

from which the control gain K  is obtained. It should be noted that since the objective 

function is quadratic and the constraint is affine, the necessary conditions stated in Eq. (3-

26)-(3-28) are also sufficient. 

 In following sections, a review of a specific optimal control problem is provided. 

The results of this problem are used to investigate the dissipative LQR optimal control 

problem. To investigate the dissipativity of the LQR controller, LQR optimal control 

problem is defined subject to the system dynamics equality constraint as in Eq. (3-22) and 

the controller dissipativity inequality constraint as in Eq. (3-13), and then the optimal 

controller is obtained. The objective function is convex. The system dynamics constraint is 

affine and assuming Eq. (3-29) is satisfied, the dissipativity constraint can also be convex. 

Therefore, conditions provided are necessary and sufficient conditions of optimality. The 

controller can then be verified to be dissipative according to condition stated in Eq. (3-13). 

 

3.4.2. Optimal control problem Σ  with state constraint 

 A review of a specific optimal control problem is given in this section and the first-

order necessary conditions for optimality of this problem are given in the next section. It is 

desired to minimize the following cost functional 

subject to system dynamics constraint 

( ) ( )( ){ }min , ,L t t t dtu
x u , (3-32)

( ) ( )( ), ,t t t=z f x u , (3-33)
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and inequality constraint 

( ), t ≤g x 0 . (3-34)

 

3.4.3. First-order necessary optimality conditions for problem Σ  

 In this section, first-order necessary conditions for optimality of problem Σ  are 

provided. A more detailed analysis of this problem can be found in Geering (2007). 

Two cases are considered for this problem. The inequality constraint can be active during a 

specific time interval, which is considered as case I and inactive for the rest of the time, 

considered as case II. The first-order necessary conditions for optimality for case I are as 

follows 

* H= ∇ λz , (3-35)

( ) ( )* * T l
lH μ= −∇ − ∇z zλ g , (3-36)

( ) ( )*
*

0,
T l

l
H H H μ∂ = = +

∂
g

u
, (3-37)

* 0lμ ≥ , (3-38)

( ), l= =g 0 g 0 . (3-39)

The first-order necessary conditions for optimality for case II are as follows 
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* H= ∇ λz , (3-40)

* H= −∇zλ , (3-41)

*
0

H∂ =
∂u

, <g 0  (3-42)

<g 0 , (3-43)

where 

and ( )lg  is the thl  time derivative of the constraint g , in which u appears explicitly. Scalar 

lμ  is the corresponding costate variable. 

 

3.4.4. Dissipative LQR optimal control problem 

 In this section, the dissipative LQR optimal control problem is introduced and 

using the results of section 3.4.3., the commonly used LQR control variable is found to be 

dissipative. 

The dissipative LQR optimal control problem is defined as follows: Find control variable 

u , which satisfies the optimization problem 

( ) ( )( ) ( ) ( )( ), , , ,TH L t t t t t t= +x u λ f x u , (3-44)

( )
( ) ( )subject to 3-13 ,and 3-22

1
min

2
T T dt + 

 u
z Qz u Ru

. 
(3-45)
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It is assumed that ( ) 0tε =  in the dissipativity inequality constraint. Due to specific 

properties of the inequality constraint, case I in this problem is found to be equivalent to 

case II. Therefore, only case I is examined in detail. 

 

3.4.4.1. Dissipativity constraint active 

Condition stated in Eq. (3-35) yields 

The control variable u  appears explicitly in the inequality constraint ( )T=g Bu Gz , 

therefore 

according to which 

Therefore, conditions states in Eq. (3-36) and (3-37) result in 

Using Eq. (3-39), Eq. (3-49) and (3-50) can be simplified. Assuming * ≠z 0 , transposing 

both sides of (3-49) and multiplying both sides of (3-49) by *z  yields 

* *= +z Az Bu . (3-46)

( )Tl =g Bu Gz , (3-47)

( )l T∇ =zg G Bu . (3-48)

* * * * *T Tμ+ + + =λ A λ Qz G Bu 0 , (3-49)

* * * *T Tμ+ + =Ru B λ B Gz 0 . (3-50)
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( ) ( ) ( ) ( )* * * * * * * * *T T T TT μ+ + + =λ z λ Az z Q z Bu Gz 0 . (3-51)

Equation (44) has to hold irrespective of the initial state at all times, which along with Eq. 

(39) lead to 

* * *T+ + =λ A λ Qz 0 . (3-52)

Therefore, conditions (3-36) and (3-41) are equivalent. Based on condition (3-39), Eq. (3-

37) and (3-42) are also equivalent. Therefore, following conditions are to hold for both 

cases I and II considered for the problem. 

* *= +z Az Bu , (3-53)

* * *T+ + =λ A λ Qz 0 , (3-54)

* *T+ =Ru B λ 0 , (3-55)

which were derived in section 4.1. for LQR optimal control problem. Same process as in 

section 4.1. yields the following controller 

 

Using dissipativity constraint states in Eq. (3-13), control variable (3-49) and assuming 

0ε = , the left-hand side of the dissipativity constraint becomes 

 

* 1 *T−= −u R B Kz . (3-56)
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( ) 1T T T−= −Bu Gz z KBR B Gz , (3-57)

which is examined if it is a negative semi-definite matrix. The solution to the Riccati 

differential equation is positive semi-definite 

≥K 0 . (3-58)

One of the conditions for well-posedness of the LQR problem is for the weighting matrix 

R to be positive definite. Matrix TBB  is also positive semi-definite and matrix G  can 

only be defined meaningful if defined positive semi-definite. Therefore the matrix in Eq. 

(3-50) is a negative semi-definite matrix which implies the LQR controller is dissipative 

with respect to the definition of dissipativity as in Eq. (3-13). 

 

3.6. Numerical example 

3.6.1. Model Parameters 

 The model investigated in this chapter is an eight-story building (Yang 1982), with 

the following parameters  
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8 8345,600 kg×=M I , (3-59)

8 8

2 1 0

1 2 0 kN
340,400

0 2 1 m

0 1 1 ×

− 
 − =

− 
 − 

K







, (3-60)

8 8

2 1 0

1 2 0 Ns
2,937,000

0 2 1 m

0 1 1 ×

− 
 − =

− 
 − 

C







, (3-61)

[ ]1 15 1
T

×=F 0 , (3-62)

8 8×=L I , (3-63)

16 16×=H I . (3-64)

 The Q  matrix for LQR optimal control design is defined as a diagonal one with the 

following elements 

12 4 2 15 2 15
7 1 7 110 10 10 10 10 1 10− − − − − −

× × =  q 1 1 . (3-65)

 

3.6.2. Evaluation indices 

 The indices for evaluation of the control performance are as follows 

1 %J D= , (3-66)

as defined in Eq. (3-15). 

defined in Eq. (3-17).  

 Mean energy flow rate as in Eq. (3-19) is also used 

2 pJ D= , (3-67)
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( )3

T
eJ D E  = =  Bu Gz , (3-68)

and normalized as in Eq. (3-21) 

4 neJ D= . (3-69)

 To investigate how strict the dissipativity constraint is, another normalized index is 

defined as  

( )( )
( )( )5

T

T

Max
J

Max
=

Bu Gz

Bu Gz
. (3-70)

where ⋅  is the absolute value operator. If the controller produces significant actuating 

force at any time during simluation, this index will have a value of one. Otherwise, it will 

have a value less than one. 

The ratio of the total dissipated energy to the total input energy is 

( ) ( )( )
( )6

T T

T

H dt
J

dt

 − =




Bu Gz Bu Gz

Bu Gz
, (3-71)

 The ratio of the root-mean-square (RMS) of the total dissipated energy over the 

RMS of the total input energy is 

( ) ( )( )
( )( )

1 22

0

7 1 22

0

T T T

T T

H dt
J

dt

  −   =
 
 
 





Bu Gz Bu Gz

Bu Gz

, (3-72)

 

 Following indices are also defined to evaluate the ratio of controlled  over 
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uncontrolled responses of the structure. 

( )
( )

8

8

8

Max

Max

c

u

z
J

z
= , (3-73)

( )
( )

8

9

8

Mean

Mean

c

u

z
J

z
= , (3-74)

( )
( )

8

10

8

Max

Max

c

u

z
J

z
=




 , (3-75)

( )
( )

8

11

8

Mean

Mean

c

u

z
J

z
=




. (3-76)

where 8z  and 8z  are the displacement and acceleration of the eighth story level, 

respectively. 

 Since drift is an important variable in the design of structures, 12J  and 13J  are 

defined as the maximum and mean drift of all the floors 

( )12 1Max , 1, 2, ,7.i iJ z z i+= − =   , (3-77)

( )13 1Mean , 1, 2, ,7i iJ z z i+= − =  . (3-78)

 A summary of the simulation results is presented in Table 3-1. As discussed in 

sections 3.3.2., higher values of 1J  close to 100% imply higher dissipativity of the control 

force. As observed form Table 3-1, LQR proves to produce a more dissipative force 

compared to PID control method. 

 In section 3.3.3., it was mentioned that values of 2J  higher than 50% indicates the 
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dissipative characteristic of the control force. According to Table 3-1., LQR method proves 

to be dissipative according to index defined in section 3.3.3., whereas PID method proves 

not to be dissipative. 

 Index 3J , defined in section 3.3.4., gives the mean value of the input energy to the 

structures. Results in Table 3-1. suggest that the mean input energy produced by PID 

control method is positive, thus proving it to actuating rather than dissipating. Normalizing 

index 3J  gives index 4J , which implies the dissipativity of LQR and proves PID contorl 

method to be actuating. 

 A control variable satisfying Eq. (3-13) results in a normalized 5J  index less than 

or equal to zero. On the other hand, control variable producing large actuating forces 

results in a 5J  index of one. Comparing values of 5J  for LQR and PID shows how PID is 

actuating the structure compared to LQR. 

 Values of normalized indices 6J  and 7J  closer to one imply higher dissipativity of 

the LQR controller compared to PID contorller as observed from Table 3-1. 

 Both LQR and PID control methods show comparable performances in reducing 

the structural responses as observed from indices 8J  through 13J  with LQR performing 

slightly better in 80% of the cases. 
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Table 3-1. Summary of indices for uncontrolled, LQR controlled and PID controlled 

responses. 

 

3.6.3. Time-history results 

 Figures 3-2 and 3-3 show the effectiveness of LQR and PID controllers in 

Index 
Control 

method 

Excitation 

El Centro Kobe Hachinohe Northridge 

1J (%) LQR 84.33 82.09 84.7 84.2 
PID 39.99 40.72 38.72 40.65 

2J  (%) LQR 61.71 62.8 62.78 63.57 
PID 37.86 37.93 35.78 35.59 

3J  LQR -0.044 -0.322 -0.044 -0.142 
PID 0.5534 3.491 0.2336 1.063 

4J  LQR -0.3597 -0.3913 -0.3909 -0.4135 
PID 0.3722 0.3702 0.4321 0.4375 

5J  LQR 0.0452 0.0282 0.1019 0.0462 
PID 1 1 1 1 

6J  LQR -0.9840 -0.9873 -0.9826 -0.9853 
PID -0.2753 -0.2635 -0.2553 -0.2798 

7J  LQR 0.999 0.9994 0.9979 0.9990 
PID 0.2054 0.1663 0.1448 0.1869 

8J  LQR 0.2167 0.2246 0.2929 0.4191 
PID 0.2438 0.3555 0.3278 0.3114 

9J  LQR 0.1659 0.1787 0.1899 0.1461 
PID 0.1692 0.2197 0.1434 0.1218 

10J  LQR 0.3414 0.3860 0.3752 0.4726 
PID 0.4120 0.5660 0.4287 0.5345 

11J  LQR 0.2688 0.3407 0.2033 0.2078 
PID 0.3477 0.4161 0.2224 0.2350 

12J  LQR 0.0115 0.0328 0.0094 0.0415 
PID 0.0148 0.0512 0.0125 0.0361 

13J  LQR 0.0012 0.0018 0.0020 0.0014 
PID 0.0021 0.0037 0.0020 0.0023 
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decreasing maximum displacements and maximum accelerations at different floor levels 

for four different earthquakes. LQR controller performs slightly better than PID in all 

cases. Favorable performance of LQR controller is theoretically guaranteed, since LQR 

was proved to minimize the quadratic cost functional in (3-23) and (3-25). This can be 

observed from Figures 3-2 and 3-3, where LQR demonstrates consistent favorable 

performance for different earthquakes. Favorable performance coupled with dissipativity 

justifies the wide use of LQR as primary controller for clipped optimal control strategy. 

 

 

 

 

 

Figure 3-2. Maximum displacement for each story for different earthquakes 

(from left to right: El Centro, Kobe, Hachinohe and Northridge earthquakes). 
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Figures 3-4, 3-5, 3-6, and 3-7 show the time-history of uncontrolled, LQR, and PID 

controlled displacements at top floor level of the eight story building. The LQR controller 

shows better performance with dissipativity compared to PID controller as quantified in 

Table 3-1. and illustrated in following figures. 

 

 

 

Figure 3-3. Maximum acceleration for each story for different earthquakes 

(from left to right: El Centro, Kobe, Hachinohe and Northridge earthquakes).  

 

Figure 3-4.  Comparision of displacements at the top floor level: El Centro earthquake. 
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Figure 3-7. Comparision of displacements at the top floor level: Northridge earthquake. 

 

Figures 3-8 through 3-11 demonstrate the time-history of the generalized deterministic 

 

Figure 3-5.  Comparision of displacements at the top floor level: Kobe earthquake. 

 

Figure 3-6.  Comparision of displacements at the top floor level: Hachinohe earthquake. 



62 
 

dissipativity constraint defined in Eq. (3-13). Negative values of ( )T
Bu Gz  imply the 

dissipativity of the controller. Figures 3-8 through 3-11 illustrate the dissipativity of the 

LQR controller and very low dissipativity of the PID controller during the simulation. 

 

 

 

Figure 3-9. Time-history of the dissipativity constraint: Kobe earthquake. 

 

 

Figure 3-8. Time-history of the dissipativity constraint: El Centro earthquake. 
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3.7. Conclusion 

 In this chapter, a generalized deterministic definition for dissipativity of control 

forces is proposed. The proposed definition enables incorporating a dissipativity constraint 

to the design of dissipative optimal controllers. This definition is implemented in the 

design of an LQR optimal controller. A set of first-order optimality conditions are used to 

find the dissipative LQR optimal controller. Due to the specific nature of the proposed 

definition, the controller is found to be the commonly used LQR controller. Therefore, 

 

Figure 3-10.  Time-history of the dissipativity constraint: Hachinohe earthquake. 

 

Figure 3-11.  Time-history of the dissipativity constraint: Northridge earthquake. 
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LQR is found to be dissipative with respect to the generalized deterministic definition 

proposed, which verifies the advantage of clipped optimal control strategy with LQR as 

primary controller. This controller is consistent with the disipative nature of the semi-

active damping devices and yields favorable performance. Simulation results demonstrate 

that the LQR effectively generates dissipative control forces for hazard mitigation of 

structures.  
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4. Summary 

 In this thesis, a new algorithm for system identification of smart structures called 

PANFIS is proposed which combines principal component analysis and adaptive neuro-

fuzzy inference system. The main advantage of this algorithm is low computation time for 

modeling without much loss in accuracy due to data compression. In this thesis, a 

generalized deterministic definition for dissipativity of control variables is defined and 

used to prove the strict dissipativity of a LQR controller, supported by numerical 

simulation. 
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5. Recommendations and future work 

 In this thesis an efficient algorithm for system identification of smart structures is 

proposed. This method can be recommended to be implemented in control devices 

embedded in a large-scale smart structure for health monitoring to evaluate efficiency of 

the algorithm. The study on dissipativity of LQR controller can be expanded to a study of 

dissipativity of a smart damper, such as MR damper to evaluate its dissipative 

characteristic. Currently these exists no extensive experimental study of various smart 

dampers, which does not help spread the significant properties of these devices. 

 A combination of an efficient system identification algorithm and an analtically 

proven control method can also be suggested for further research. For example, application 

of PANFIS and LQR together seems to be promising, however, due to their differing 

formulations, combining them seems to be challenging. 

  



67 
 

6. References 

 

Adeli H and Kim H 2004 “Wavelet-Hybrid Feedback-Least Mean Square Algorithm for Robust 
Control of Structures,” Journal of Structural Engineering, 130(1): 128-137. 

Avci E, Turkoglu I 2009 “An intelligent Diagnosis System Based on Principal Component 
Analysis and ANFIS for the Hearth Valve Diseases,” Expert Systems with Applications, 
36(2): 2873-2878 

Avriel M. 1976 Nonlinear Programming: analysis and Methods. Prentice Hall Inc. 

Bani-Hani K, Ghaboussi J and Schneider S P 1999 “Experimental Study of Identification and 
Control of Structures using Neural Network Part 1: Identification,” Earthquake 
Engineering and Structural Dynamics, 28(9): 995-1018. 

Chen Y, Yang B, Abraham A and Peng L 2007 “Automatic Design of Hierarchical Takagi-
Sugeno Type Fuzzy Systems using Evolutionary Algorithms,” IEEE Transactions on 
Fuzzy Systems, 15(3): 385-397. 

Du H and Zhang N 2008 “Application of Evolving Takagi-Sugeno Fuzzy Model to Nonlinear 
System Identification,” Applied Soft Computing, 8(1): 676-686. 

Dyke S J, Spencer B F Jr, Sain M K and Carlson J D 1996 “Modeling and Control of 
Magnetorheological Dampers for Seismic Response Reduction,” Smart Materials and 
Structures, 5(5): 565-575. 

Dyke S J, Spencer B F Jr, Sain M K, Carlson J D 1998 “An Experimental Study of MR Dampers 
 for Seismic Protection,” Smart Materials and Structures, 7(5):693–703. 

Erkus B, Abe M, Fujino Y 2002 “Investigation of semi-active control for seismic protection of 
 elevated highway bridges”. Engineering Structures, 24(3):281–293. 

Filev D P 1991 “Fuzzy Modeling of Complex Systems,” International Journal of Approximate 
Reasoning, 5(3): 281-290. 

Geering H P. 2007 Optimal Control With Engineering Applications. Springer. 

Gopalakrishnan K and Khaitan S K 2010 “Finite Element Based Adaptive Neuro-Fuzzy 
Inference Technique for Parameter Identification of Multi-Layered Transportation 
Structures,” Transport, 25(1): 58-65. 

Gu Z and Oyadiji S 2008 “Application of MR Damper in Structural Control Using ANFIS 
Method,” Computers & Structures, 86(3-5): 427-436 

Housner G, Bergman L, Caughey T, Chassiakos A, Claus R, Masri S, Skelton R, Soong T, 
Spencer B, Yao J 1997 “Structural control: past, present, and the future,” ASCE Journal 



68 
 

of Engineering Mechanics, 123(9): 897-971. 

Hung S L, Huang C S, Wen C M and Hsu Y C 2003 “Nonparametric Identification of a Building 
Structure from Experimental Data using Wavelet Neural Network,” Computer-Aided 
Civil and Infrastructure Engineering, 18(5): 356-368. 

Hurlebaus S and Gaul L 2006 “Smart Structure Dynamics,” Mechanical Systems and Signal 
 Processing, 20(2): 255-281. 

Inaudi J A 2000 “Performance of variable-damping systems: theoretical analysis and 
 simulation,”  Proceedings of 3rd International Workshop on Structural Control, Paris, 
 France, July 6-8, 2000; 301–316. 

Jalili-Kharaajoo M 2004 ”Nonlinear system identification using ANFIS based on emotional 
learning,” Lecture notes in computer science, 3315: 697-707 

Jang J-S R 1993 “ANFIS: Adaptive-network-based Fuzzy Inference System,” IEEE Transactions 
on Systems, Man and Cybernetics 23(3): 665-685 

Jang J-S R, Sun C-T, Mizutani E 1997 Neuro-Fuzzy and Soft Computing, Upper Saddle River, 
New Jersey, USA: Prentice Hall. 

Johansen TA and Babuška R 2003 “Multiobjective Identification of Takagi-Sugeno Fuzzy 
Models,” IEEE Transactions on Fuzzy Systems, 11(6): 847-860. 

Johansen T A 1994 “Fuzzy Model Based Control: Stability, Robustness, and Performance 
Issues,” IEEE Transactions on Fuzzy Systems, 2(3): 221-234. 

Johnson E A. 2000 “Nonlinear seismic benchmark problem: dissipativity and the 9-Story 
 benchmark  building,” Second European Conference on Structural Control 
 (2ECSC), Champs-sur-Marne, France, July 3-6, 2000. 

Johnson E A, Erkus B 2007 “Dissipativity and performance analysis of smart dampers via LMI 
 synthesis,” Journal of Structural Control and Health Monitoring, 14:471-496. 

Johnson E A, Baker G A, Spencer B F Jr, Fujino Y 2007 “Semiactive damping of stay cables,” 
ASCE Journal of Engineering Mechanics, 133(1): 1-11. 

Jollife I T 2002 Principal component analysis, Springer. 

Kim Y, Hurlebaus S and Langari R 2011 “MIMO Fuzzy Identification of Building-MR Damper 
System,” Journal of Intelligent and Fuzzy Systems, 22(4): 185-205 

Kim Y, Hurlebaus S, Sharifi R and Langari R 2009 “Nonlinear Identification of MIMO Smart 
Structures,” ASME Dynamic Systems and Control Conference, Oct. 12-14, Hollywood, 
California. 

Kim Y and Langari R 2007 “Nonlinear Identification and Control of a Building Structure with a 



69 
 

Magnetorheological Damper System,” American Control Conference, July 11-13, New 
York. 

Kim Y, Langari R and Hurlebaus S 2009 “Semiactive Nonlinear Control of a Building with a 
Magnetorheological Damper System,” Mechanical Systems and Signal Processing, 
23(2): 300-315. 

Kuzniar K and Waszczyszyn Z 2006 “Neural networks and Principal Component Analysis for 
Identification of Building Natural Periods,” j. Comput. Civ. Eng., 20(6), 431-436  

Langari R 1999 “Past, Present and Future of Fuzzy Control: A Case for Application of Fuzzy 
Logic in Hierarchical Control,” in: Proceedings, 18th International Conference of the 
North American Fuzzy Information Processing Society-NAFIPS, New York City, New 
York, USA, 760-765. 

Lin J W and Betti R 2004 “On-line Identification and Damage Detection in Non-linear Structural 
Systems using a Variable Forgetting Factor Approach,” Earthquake Engineering and 
Structural Dynamics, 33(4): 419-444. 

 
Mitchell R, Kim Y and El-Korchi T 2012 “System Identification of smart structures using a 

wavelet neuro-fuzzy model,” Journal of Smart Materials and Structures, 21(11): 1-12. 
 
Mujica LE, Rodellar J, Fernandez A and Guemes A 2010 “Q-statistic and T2-statistic PCA-based 

measures for damage assessment in structures,” Structural Health Monitoring, 10(5): 
539-553 

 
Ozbulut O E, Mir C, Moroni M O, Sarrazin M, Roschke P N 2007 “A Fuzzy Model of 

Superelastic Shape Memory Alloys for Vibration Control in Civil Engineering 
Applications,” Smart Materials and Structures, 16(3): 818-829. 

 
Palau C V, Arregui F J and Carlos M 2012 “Burst Detection in Water Networks Using Principal 

Component Analysis,” Journal of Water Resource Planning and Management, 138(1): 
47-54 

 
Park S, Lee J, Yun C, Inman D 2007 “Electro-Mechanical Impedance-Based Wireless Structural 

Health Monitoring Using PCA-Data Compression and k-means Clustering Algorithms,” 
Journal of Intelligent Material, Systems and Structures, 19(4): 509-520  

 
Pearson K 1901 “On lines and planes of closest fit to systems of points in space,” Philosophical 

Magazine, 2(6): 559-572 
 
Polat K, Gunes S 2007 “Automatic Determination of Diseases Related to Lymph System from 

Lymphography Data Using Principal Component Analysis (PCA), Fuzzy Weighting Pre-
Processing and ANFIS” Expert Systems with Application, 33(3): 636-641 

Ramallo J C, Johnson E A, Spencer BF Jr 2002 “ ‘Smart’ base isolation systems,” ASCE 
 Journal of Engineering Mechanics, 128(10):1088–1099. 



70 
 

Ramallo J C, Yoshioka H and Spencer B F Jr. 2004 “A Two-step Identification Technique for 
Semiactive Control Systems,” Structural Control and Health Monitoring, 11(4): 273-
289. 

Schurter K C and Roschke P 2000 “Fuzzy Modeling of Magnetorheological Damper Using 
ANFIS,” The 9th IEEE International Conference on Fuzzy Systems, May 2000, (1):122-
127. 

Sharifi R, Kim Y and Langari R 2010 “Sensor Fault Isolation and Detection of Smart 
Structures,” Smart Materials and Structures, 19(10): 5001-5016 

Smyth A W, Masri S F, Chassiakos A G and Caughey T K 1999 “On-line Parametric 
Identification of MDOF Nonlinear Hysteretic Systems,” ASCE Journal of Engineering 
Mechanics, 125(2): 133-142. 

Soong T T, Spencer B F Jr 2002 “Supplemental energy dissipation: state-of-the-art and state-of-
 the-practice,” Engineering Structures, 24(3):243–259. 

Spencer B F Jr., Dyke S J, Sain M K and Carlson J D 1997 “Phenomenological Model for 
Magnetorheological Dampers,” ASCE Journal of Engineering Mechanics, 123(3): 230-
238. 

Spencer B F Jr, Johnson E A, Ramallo J C 2000 “ ‘Smart’ Isolation for Seismic Control,” JSME 
 International Journal Series C, 43(3):704–711. 

Spencer B F Jr, Sain M K 1997 “Controlling Buildings: A New Frontier in Feedback,” IEEE 
 Control Systems Magazine, 17(6):19–35. 

Symans M D, Constantinou M C 1999 “Semi-active Control Systems for Seismic Protection of 
 Structures: a state-of-the-art Review,” Engineering Structures, 21(6):469–487. 

Takagi T and Sugeno M 1985 “Fuzzy Identification of Systems and Its Applications to Modeling 
and Control,” IEEE Transactions on Systems, Man, and Cybernetics, 15(1): 116-132. 

Wang L, Fu K 2009 Artificial Neural Networks, Wiley Encyclopedia of Computer Science and 
Engineering. 

 
Wang H, Haiyan H 2009 “Hierarchical Fuzzy Identification of MR Damper,” Proc. SPIE 7493, 

Second International Conference on Smart Materials and Nanotechnology in 
Engineering, Oct. 2009, Weihai, China. 

Wang L and Langari R 1995 “Decomposition Approach for Fuzzy Systems Identification,” in: 
Proceedings, the 34th IEEE Conference on Decision and Control, New Orleans, LA, 
USA, 261-265. 

 
Warne K, Prasad G, Siddique N H, Maguire L P 2004 “Development of a Hybrid PCA-ANFIS 

Measurement System for Monitoring Product Quality in the Coating Industry” Systems, 
Man and Cybernetics, IEEE international Conference, Deny, UK, Oct. 10-13, 4: 3519-
3524. 



71 
 

Yager R R and Filev D P 1993 “Unified Structure and Parameter Identification of Fuzzy 
Models,” IEEE Transactions on Systems, Man, and Cybernetics, 23(4): 1198-1205. 

Yan G and Zhou L L 2006 “Integrated Fuzzy Logic and Genetic Algorithms for Multi-objective 
Control of Structures using MR Dampers,” Journal of Sound and Vibration, 296(1-2): 
368-382. 

Yang G, Spencer B F Jr., Carlson J D and Sain M K 2002 “Large-scale MR Fluid Dampers: 
Modeling and Dynamic Performance Considerations,” Engineering Structures, 24(3): 
309-323. 

Yang JN. 1982 “Control of tall building under earthquake excitation,” Journal of Engineering 
Mechanics Division, 108(EM5), 833-49 

Yang Y N and Lin S 2004 “On-line Identification of Non-linear Hysteretic Structures using an 
Adaptive Tracking Technique,” International Journal of Non-Linear Mechanics, 39(9): 
1481-1491. 

Yang Y N and Lin S 2005 “Identification of Parametric Variations of Structures based on Least 
Squares Estimation and Adaptive Tracking Technique,” ASCE Journal of Engineering 
Mechanics, 131(3): 290-298. 

Yen J and Langari R 1998 Fuzzy Logic-Intelligence, Control, and Information, Upper Saddle 
River, New Jersey, USA: Prentice Hall. 

 Zadeh L A 1965 “Fuzzy Sets,” Information and Control, 8(3): 338-353. 

 

 

 


