
Efficient NTRU Implementations

A Thesis
submitted to the Faculty

of the
Worcester Polytechnic Institute

In partial fulfillment of the requirements for the
Degree of Master of Science

in
Electrical & Computer Engineering

by

————————————————
Colleen Marie O’Rourke

April 2002

Approved:

———————————————— ————————————————
Dr. Berk Sunar Dr. Donald Brown
Thesis Advisor Thesis Committee
ECE Department ECE Department

———————————————— ————————————————
Dr. Fred Looft Dr. John Orr
Thesis Committee Department Head
ECE Department ECE Department

Abstract

In this paper, new software and hardware designs for the NTRU Public Key Cryp-

tosystem are proposed. The first design attempts to improve NTRU’s polynomial

multiplication through applying techniques from the Chinese Remainder Theorem

(CRT) to the convolution algorithm. Although the application of CRT shows promise

for the creation of the inverse polynomials in the setup procedure, it does not pro-

vide any benefits to the procedures that are critical to the performance of NTRU

(public key creation, encryption, and decryption). This research has identified that

this is due to the small coefficients of one of the operands, which can be a common

misunderstanding.

The second design focuses on improving the performance of the polynomial multi-

plications within NTRU’s key creation, encryption, and decryption procedures through

hardware. This design exploits the inherent parallelism within a polynomial multi-

plication to make scalability possible. The advantage scalability provides is that it

allows the user to customize the design for low and high power applications. In addi-

tion, the support for arbitrary precision allows the user to meet the desired security

ii

iii

level.

The third design utilizes the Montgomery Multiplication algorithm to develop

an unified architecture that can perform a modular multiplication for GF (p) and

GF (2k) and a polynomial multiplication for NTRU. The unified design only requires

an additional 10 gates in order for the Montgomery Multiplier core to compute the

polynomial multiplication for NTRU. However, this added support for NTRU presents

some restrictions on the supported lengths of the moduli and on the chosen value for

the residue for the GF (p) and GF (2k) cases. Despite these restrictions, this unified

architecture is now capable of supporting public key operations for the majority of

Public-Key Cryptosystems.

Preface

In this work, I detail the research I have conducted in pursuit of my Master’s Degree

at Worcester Polytechnic Institute.

This work would not have possible without the guidance and support of my advi-

sor, Prof. Berk Sunar. He gave me the opportunity to explore and perform research in

field of cryptography. Working with Prof. Sunar has been such a learning experience

and I hope to keep in touch.

I would like to thank my Thesis committee, Profs. Donald R. Brown and Fred

Looft, for their advice and support. They showed enthusiasm about my research and

being a part of my committee.

In addition, I would like to thank the Cryptography Lab, Gunnar Gaubatz, Adam

Elbirt and Selcuk Baktir, for providing a great working environment and assisting me

with any questions I may have had. I am especially grateful to Gunnar Gaubatz

who gave me his VHDL design of his Montgomery Multiplier core. As a result of

his contribution, I was able to take my research one step further and expand off his

design to develop my Unified NTRU & Montgomery Multiplier.

iv

v

Finally, I would like to dedicate this thesis to my father, James O’Rourke, and

my boyfriend of four years, Jeffrey Jacobson. They have provided me with unwaver-

ing support and encouragement during all my years here at Worcester Polytechnic

Institute. I want to thank them both for always being there for me.

Colleen M. O’Rourke

Contents

1 Introduction 1

2 NTRU Public Key Crytosystem 4

2.1 Key Generation . 5

2.2 Encryption . 5

2.3 Decryption . 6

I Software Implementations 7

3 Previous Work 8

4 Initial Implementation 12

4.1 Performance Analysis . 20

5 Application of Chinese Remainder Theorem 22

5.1 Chinese Remainder Theorem . 22

5.2 Useful with NTRU? . 23

vi

CONTENTS vii

II Scalable NTRU Multiplier 25

6 Previous Work 26

7 Hardware Design 27

7.1 Scalability . 28

7.2 Scalable Architecture . 29

7.3 Processing Unit . 37

8 Supported Operations and Limitations 44

9 Performance Analysis 48

III Unified NTRU & Montgomery Multiplier 52

10 Previous Work 53

11 Montgomery Multiplication 55

11.1 Word-Level Montgomery Multiplication

Algorithm . 57

12 High-Radix Montgomery Multiplier Core 60

13 Hardware Design 66

13.1 Unified Architecture . 69

13.2 Control . 72

CONTENTS viii

14 Performance Analysis 77

15 Conclusions 82

List of Figures

7.1 NTRU Multiplier . 28

7.2 Partial product array for N = 7 and u = 3. 29

7.3 NTRU Multiplier . 31

7.4 Processing Unit . 37

7.5 8 by 2-bit Coefficient Multiplier . 38

7.6 8-bit Ling Adder (a) and 4-bit Ling Adder (b) 41

7.7 Partial Full Adder (a) and 4-bit CLA (b) 43

9.1 Gate Count Distribution (a) and Percentage of total area (b) 50

9.2 Speed up distribution . 51

12.1 Gaubatz’s Montgomery Multiplier Core 61

13.1 NTRU & Montgomery Multiplier . 71

14.1 Gate Count (a) and Percentage of Total Area (b) for several operand

lengths . 80

ix

List of Tables

4.1 Two Platform Specifications . 20

4.2 Test Values Used for Performance Analysis 20

4.3 Timings for NTRU on Two Platforms 21

7.1 Initialization Stage . 34

7.2 Execution Stage . 35

7.3 Load/Write Stage . 36

7.4 2 by 1-bit Multiplier Truth Table . 39

7.5 Interpretation of b[j]’s binary bits . 39

9.1 Performance Analysis for Optimized and Scalable Design 49

13.1 Assignment of the f sel signal . 72

14.1 Performance Analysis for Unified Design 78

14.2 Estimated Performance of Unified Design 81

x

List of Algorithms

1 PolyMult(c, b, a, n,N) from [1] . 9

2 Fast Convolution Algorithm from [2] 11

3 StarMultiply(a, b, c,N,M) . 14

4 RandPoly(r,N , NumOnes, NumNegOnes) 14

5 Inverse Poly Fq(a, Fq, N, q) . 16

6 Inverse Poly Fp(a, Fp, N, p) . 17

7 CreateKey(N, q, p, f, g, h, Fp, Fq) . 18

8 Encode(N, q, r,m, h, e) . 18

9 Decode(N, q, p, f, Fp, e, d) . 19

10 NTRU Polynomial Multiplication . 32

11 Word-Level Montgomery Algorithm for GF (p) 58

12 Word-Level Montgomery Algorithm for GF (2k) 59

13 Word-Level Montgomery Algorithm for GF (p), GF (2k), and NTRU . 68

xi

Chapter 1

Introduction

The NTRU Public-Key Cryptosystem is a ring-based cryptosystem that was first

introduced in a rump session at Crypto’ 96 and the first formal paper was published in

CHES ’98 [3]. NTRU is a relatively new cryptosystem that appears to be more efficient

than the current and more widely used public-key cryptosystems, such as RSA [4].

In comparison to RSA, NTRU requires approximately O(N 2) operations and a key

length of O(N), whereas RSA requires O(N 3) operations and a key length of O(N 2)

[3]. Hence, NTRU has a lower complexity and its key size scales at a slower rate.

Although NTRU’s key size may be longer, it can be implemented more efficiently than

RSA because it has a smaller number of multiplications for encryption and decryption.

Therefore, this cryptosystem is a promising alternative to the more established public-

key cryptosystems. However, these more established cryptosystems have received

more public scruntity, whereas, NTRU is still a relatively young cryptosystem.

1

CHAPTER 1. INTRODUCTION 2

NTRU’s core and most time consuming operation for key creation, encryption,

and decryption is the multiplication of two polynomials of degree N − 1 defined over

an integer ring. In order to improve the performance of NTRU, it is necessary to de-

velop software algorithms or a hardware accelerator that will speed up the polynomial

multiplications. In the past couple of years, a few software improvements have been

published that improve the convolution algorithm used for polynomial multiplication.

However, to date, there has been only one published research [2] that implemented

NTRU in hardware. This research focused solely on an encryption engine imple-

mented on an FPGA. The design is not scalable and cannot be used for key creation

or decryption. Since no research has been published that soley enhances the perfor-

mance of the polynomial multiplication in hardware, this presents an opportunity for

this research.

With the knowledge gained from designing an optimized, scalable NTRU polyno-

mial multiplier, this thesis took the next step to develop an unified architecture that

performs modular multiplications in GF (p) and GF (2k) as well as NTRU’s polyno-

mial multiplications. The importance of an unified design is that it allows for:

• algorithm agility,

• resource utilization, and

• compatibility.

Algorithm agility is useful for cases when the current cryptosystem becomes obsolete

CHAPTER 1. INTRODUCTION 3

or when computing power increases and the security of the current cryptosystem

is threatened. With algorithm agility, there will be several back-up cryptosystems,

which utilizes the same hardware, that can be used as a replacement if the case ever

arises. Compatibility is another important feature since it allows support for virtually

any application. For instance, wireless applications may want to utilize cryptosystems

such as, ECC [5, 6], whereas, for smart cards or for other embedded applications

NTRU may be the more reasonable choice. Without the hassle of designing a separate

chip for each application, this unified design supports a wide variety of applications

on a single chip.

A number of unified architectures have been proposed that use the Montgomery

Multiplication algorithm for modular multiplications in GF (p) and GF (2k). However,

this is the first realization to incorporate NTRU’s polynomial multiplication using the

Montgomery Multiplication algorithm.

This report is divided into three parts so that the software and each of the hard-

ware designs can be discussed separately. Each part contains previous work, back-

ground information, design details, and a performance analysis.

Chapter 2

NTRU Public Key Crytosystem

The NTRU Public Key Cryptosystem was fully introduced in [3]. NTRU is set up by

three integers (N, p, q) such that:

• N is prime,

• p and q are relatively prime, gcd(p, q) = 1, and

• q is much much larger than p.

NTRU is based on polynomial additions and multiplications in the ringR = Z[x]/(xN−

1). We use the “∗” to denote a polynomial multiplication in R, which is the cyclic

convolution of two polynomials. After completion of a polynomial multiplication or

addition, the coefficients of the resulting polynomial need to be reduced either mod-

ulo q or p. As a side note, the key creation process also requires two polynomial

inversions, which can be computed using the Extended Euclidean Algorithm. More

4

CHAPTER 2. NTRU PUBLIC KEY CRYTOSYSTEM 5

information about NTRU can be found in [3] and [7]. The procedures are briefly

outlined below.

2.1 Key Generation

For the public key, the user must:

• choose a secret key, a random secret polynomial f ∈ R, with coefficients reduced

modulo p,

• choose a random polynomial, g ∈ R, with coefficients reduced modulo p, and

• compute the inverse polynomial Fq of the secret key f modulo q.

Once the above has been completed, the public key, h, is found as

h = Fq ∗ g (mod q).

2.2 Encryption

The encrypted message is computed as

e = pr ∗ h+m (mod q)

where the message, m ∈ R, and the random polynomial, r ∈ R, has coefficients

reduced modulo p.

CHAPTER 2. NTRU PUBLIC KEY CRYTOSYSTEM 6

2.3 Decryption

The decryption procedure requires three steps:

• a = f ∗ e (mod q)

• shift coefficients of a to the range (− q

2
, q

2
), and

• d = Fp ∗ a (mod p).

The last step of decryption requires the user to compute the inverse polynomial Fp

of the secret key f modulo p. The decryption process outlined above will recover the

original message (d = m).

Part I

Software Implementations

7

Chapter 3

Previous Work

This section introduces NTRU’s polynomial multiplication as presented in [3] and

discusses the two previous contributions that focuses on enhancing the performance

of NTRU’s polynomial multiplication through software. When NTRU was formally

introduced in 1998 [3], Silverman presented the polynomial multiplication as the cyclic

convolution of two polynomials as shown below:

ck =
k

∑

i=0

ai · bk−i +
N−1
∑

i=k+1

ai · bN+k−i =
∑

i+j=k (mod N)

ai · bj

In addition, Silverman presented this convolution algorithm in [8], which is shown in

Algorithm 3. Ultimately, this straightforward method requires N 2 multiplications to

perform a polynomial multiplication for NTRU.

In 1999, Silverman applies a technique presented in [9] to improve NTRU’s polyno-

mial multiplication [1]. Basically, the idea involves sucessively splitting the two poly-

nomial operands in half via the recursive algorithm, which is based off the Karatsuba-

8

CHAPTER 3. PREVIOUS WORK 9

Ofman algorithm [10], shown in Algorithm 1. The polynomials are continually split

in half by Steps 8-19 of Algorithm 1 until the degree of the divided polynomials is

less than CutOff, which is defined by the user to comply with any design constraints.

At this point, the product is computed as a convolution by Steps 1-7. If the degree

of c is larger than N , then Steps 20-24 wraps the terms exceeding a degree of xN−1

to the lower portion by using the property xN ≡ 1 (mod xN − 1). If Algorithm 1 is

recursively called r times, then the number of operations to perform NTRU’s polyno-

mial multiplication is effectively reduced to (3
4
)rN2. This presents great savings over

the straightforward method.

Algorithm 1 PolyMult(c, b, a, n,N) from [1]
Require: N , n, and the polynomial operands, a and b.
1: if n < CutOff then
2: for k = 0 to 2 · n− 2 do
3: c[k] = 0
4: for i = max(0, k − n+ 1) to min(k, n− 1) do
5: c[k] = c[k] + b[i] · a[k − i]
6: end for
7: end for
8: else
9: n1 = n/2
10: n2 = n− n1
11: b = b1 + b2 · xn1

12: a = a1 + a2 · xn1

13: B = b1 + b2
14: A = a1 + a2
15: PolyMult(c1, b1, a1, n1, N)
16: PolyMult(c2, b2, a2, n2, N)
17: PolyMult(c3, B,A, n2, N)
18: c = c1 + (c3− c1− c2) · xn1 + c2 · x2·n1

19: end if
20: if 2 · n− 1 > N and N > 0 then
21: for k = N to 2 · n− 2 do
22: c[k −N] = c[k −N] + c[k]
23: end for
24: end if
25: {PolyMult returns the product polynomial, c, throught the argument list.}

CHAPTER 3. PREVIOUS WORK 10

Finally, in 2001, Bailey et al. [2] introduced a fast convolution algorithm, which

is shown in Algorithm 2, to perform a polynomial multiplication for NTRU. This

algorithm makes the realization that almost every polynomial multiplication involved

with NTRU has one polynomial that is random. The random polynomials are as-

sumed to have binary coefficients. In addition, the random polynomial is assumed to

consist of three smaller polynomials of low Hamming weight [11]:

f(x) = f1(x) ∗ f2(x) + f3(x)

The number of 1’s in each of the smaller polynomials is represented as d1, d2, and

d3, respectively. This fast convolution algorithm reduces the complexity of NTRU’s

polynomial multiplication to (d1+d2+d3)N additions and no multiplications without

compromising the security.

CHAPTER 3. PREVIOUS WORK 11

Algorithm 2 Fast Convolution Algorithm from [2]
Require: b an array of d1+d2+d3 nonzero coefficient locations representing the polynomial f(x) =

f1(x) ∗ f2(x) + f3(x), a the array a(x) =
∑

ai, N the number of coefficients in f(x) and a(x), q
the modulus of the integer operations.

Ensure: c the array where c(x) = f(x) ∗ a(x)
1: {Compute t(x) = a(x) ∗ f1(x)}
2: for j = 0 to d1 − 1 do
3: for k = 0 to N − 1 do
4: t[k + b[j]] = t[k + b[j]] + a[k] mod q
5: end for
6: end for
7: {Compute c(x) = t(x) ∗ f2(x) = a(x) ∗ f1(x) ∗ f2(x)}
8: for j = d1 to d2 − 1 do
9: for k = 0 to N − 1 do
10: c[k + b[j]] = c[k + b[j]] + t[k] mod q
11: end for
12: end for
13: {Zero out t(x)}
14: for k = 0 to N − 1 do
15: t[k] = 0
16: end for
17: {Compute t(x) = a(x) ∗ f3(x)}
18: for j = d2 to d3 − 1 do
19: for k = 0 to N − 1 do
20: t[k + b[j]] = t[k + b[j]] + a[k] mod q
21: end for
22: end for
23: {Compute c(x) = c(x) + t(x)}
24: for k = 0 to N − 1 do
25: c[k] = c[k] + t[k] mod q
26: end for

Chapter 4

Initial Implementation

In order to gain a full understanding of how the NTRU Cryptosystem functioned,

this cryptosystem is first implemented in software using the C Language. For this

implementation, the code was designed for p = 3 since this was the value introduced in

[3]. As an interface, the user was allowed to specify the integer parameters N , q, and

the number of ones and negative ones that would make up the random polynomials

f , g, and r, respectively. The pseudo-code presented in [8] was used as a guideline

to develop the CreateKey, Encode, Decode, and StarMultiply functions. Also,

the techniques introduced in [12] were utilized to design functions that would create

inverse polynomials for the secret key modulo q and modulo p. Lastly, a RandPoly

function was written to generate the random polynomials that were necessary within

NTRU’s procedures. The details and the purpose of these functions are explained in

more detail below.

12

CHAPTER 4. INITIAL IMPLEMENTATION 13

StarMultiply:

This function outlined in Algorithm 3 performs the polynomial multiplication of a ∗

b mod xN − 1. As a note, the M in Step 9 is either p or q depending upon which

one is passed into the function. In contrast to the guideline in [8], Algorithm 3 only

executes Step 9 if the current coefficients of a[i] and b[j] are both non-zero. This,

therefore, eliminates approximately a third of the operations, which are unnecessary.

Also, for the case M = q, Algorithm 3 assumes q = 2w so the reduction is performed

by extracting the lower w bits.

RandPoly:

The RandPoly function, shown in Algorithm 4, generates a random polynomial, r,

whose coefficients are in the subset {-1,0,1}. The user specifies the number of ones

(NumOnes) and the number of negative ones (NumNegOnes) that will make up

the random polynomial, r. Basically, the algorithm works by randomly selecting a

location (position) between 0 and N in the random polynomial vector, r. For each

selected location, if the value is zero the algorithm replaces the zero with a 1 or a −1

until all the specified number of ones and negative ones have been entered into the

vector.

Inverse Poly Fq:

The Inverse Poly Fq function in Algorithm 5 is responsible for generating the in-

verse polynomial of the secret key, f , modulo q. The first 40 lines of Algorithm 5

computes the inverse of the secret key modulo 2. Then, the last couple of lines in the

CHAPTER 4. INITIAL IMPLEMENTATION 14

Algorithm 3 StarMultiply(a, b, c,N,M)
Require: N , the coefficient modulus, M , and the two polynomials to be multiplied, a and b.
1: for k = N − 1 downto 0 do
2: c[k] = 0
3: j = k + 1
4: for i = N − 1 downto 0 do
5: if j = N then
6: j = 0
7: end if
8: if a[i] 6= 0 and b[j] 6= 0 then
9: c[k] = c[k] + (a[i] · b[j]) modM
10: end if
11: j = j + 1
12: end for
13: end for
14: {StarMultiply returns the product polynomial, c, throught the argument list.}

Algorithm 4 RandPoly(r,N , NumOnes, NumNegOnes)
Require: N , NumOnes, NumNegOnes, and polynomial vector to be made random, r.
1: r = 0
2: while NumOnes 6= 0 or NumNegOnes 6= 0 do
3: position = rand() mod N
4: if r[position] = 0 then
5: if NumOnes > 0 then
6: r[position] = 1
7: NumOnes = NumOnes− 1
8: else if NumNegOnes > 0 then
9: r[position] = −1
10: NumNegOnes = NumNegOnes− 1
11: end if
12: end if
13: end while
14: {RandPoly returns the newly generated random polynomial, r, through the argument list}

CHAPTER 4. INITIAL IMPLEMENTATION 15

algorithm finds the inverse polynomial modulo a power of 2, which is q. Algorithm 5

is based off the pseudo-code for “Inversion in (Z/2Z)[X]/(XN − 1)” and “Inversion

in (Z/prZ)[X]/(XN − 1)” provided in [12]. Please seek this reference for more detail

on how this algorithm functions.

Inverse Poly Fp:

The Inverse Poly Fp function in Algorithm 6 is responsible for generating the in-

verse polynomial of the secret key, f , modulo p. Algorithm 6 is based off the pseudo-

code for “Inversion in (Z/pZ)[X]/(XN − 1)” provided in [12]. Please seek this refer-

ence for more detail on how this algorithm functions.

CreateKey:

The CreateKey function, shown in Algorithm 7, is responsible for:

1. creating the inverse polynomial of the secret key modulo q, Fq (Step 3),

2. creating the inverse polynomial of the secret key modulo p, Fp (Step 4), and

3. creating the Public Key, h = p · (Fq ∗ g) mod q (Steps 8-14).

Also, Algorithm 7 assumes q = 2w so the reduction in Step 13 is performed by

extracting the lower w bits.

CHAPTER 4. INITIAL IMPLEMENTATION 16

Algorithm 5 Inverse Poly Fq(a, Fq, N, q)

Require: the polynomial to invert a(x), N , and q.
1: k = 0
2: b = 1
3: c = 0
4: f = a
5: g = 0 {Steps 5-7 set g(x) = xN − 1.}
6: g[0] = −1
7: g[N] = 1
8: loop
9: while f [0] = 0 do
10: for i = 1 to N do
11: f [i− 1] = f [i] {f(x) = f(x)/x}
12: c[N + 1− i] = c[N − i] {c(x) = c(x) · x}
13: end for
14: f [N] = 0
15: c[0] = 0
16: k = k + 1
17: end while
18: if deg(f) = 0 then
19: goto Step 32
20: end if
21: if deg(f) < deg(g) then
22: temp = f {Exchange f and g}
23: f = g
24: g = temp
25: temp = b {Exchange b and c}
26: b = c
27: c = temp
28: end if
29: f = f ⊕ g
30: b = b⊕ c
31: end loop
32: j = 0
33: k = k mod N
34: for i = N − 1 downto 0 do
35: j = i− k
36: if j < 0 then
37: j = j +N
38: end if
39: Fq[j] = b[i]
40: end for
41: v = 2
42: while v < q do
43: v = v ∗ 2
44: StarMultiply(a, Fq, temp,N, v)
45: temp = 2− temp mod v
46: StarMultiply(Fq, temp, Fq, N, v)
47: end while
48: for i = N − 1 downto 0 do
49: if Fq[i] < 0 then
50: Fq[i] = Fq[i] + q
51: end if
52: end for
53: {Inverse Poly Fq returns the inverse polynomial, Fq, through the argument list.}

CHAPTER 4. INITIAL IMPLEMENTATION 17

Algorithm 6 Inverse Poly Fp(a, Fp, N, p)

Require: the polynomial to invert a(x), N , and p.
1: k = 0
2: b = 1
3: c = 0
4: f = a
5: g = 0 {Steps 5-7 set g(x) = xN − 1.}
6: g[0] = −1
7: g[N] = 1
8: loop
9: while f [0] = 0 do
10: for i = 1 to N do
11: f [i− 1] = f [i] {f(x) = f(x)/x}
12: c[N + 1− i] = c[N − i] {c(x) = c(x) · x}
13: end for
14: f [N] = 0
15: c[0] = 0
16: k = k + 1
17: end while
18: if deg(f) = 0 then
19: goto Step 33
20: end if
21: if deg(f) < deg(g) then
22: temp = f {Exchange f and g}
23: f = g
24: g = temp
25: temp = b {Exchange b and c}
26: b = c
27: c = temp
28: end if
29: u = f [0] · g[0]−1 mod p
30: f = f − u · g mod p
31: b = b− u · c mod p
32: end loop
33: j = 0
34: k = k mod N
35: for i = N − 1 downto 0 do
36: b[i] = f [0]−1 · b[i] mod p
37: j = i− k
38: if j < 0 then
39: j = j +N
40: end if
41: Fq[j] = b[i]
42: end for
43: {Inverse Poly Fp returns the inverse polynomial, Fp, through the argument list.}

CHAPTER 4. INITIAL IMPLEMENTATION 18

Algorithm 7 CreateKey(N, q, p, f, g, h, Fp, Fq)
Require: p, q, N and random polynomials, f and g.
1: Inverse Poly Fq(f, Fq, N, q)
2: Inverse Poly Fp(f, Fp, N, p)
3: StarMultiply(Fq, g, h,N, q)
4: for i = 0 to N − 1 do
5: if h[i] < 0 then
6: h[i] = h[i] + q {Make all coefficients in h positive.}
7: end if
8: h[i] = h[i] · p mod q
9: end for
10: {CreateKey returns the Public Key, h, and the inverse polynomial, Fp, through the argument

list.}

Encode:

The Encode function in Algorithm 8 creates the encrypted message, e = (h ∗ r) +

m mod q. This is accomplished by:

1. performing the polynomial multiplication of h ∗ r in Step 1 and

2. adding the message m in Steps 2-4.

Again, the modulo reduction in Step 3 is performed by extracting the lower w bits.

Algorithm 8 Encode(N, q, r,m, h, e)
Require: N , q, Public Key h, message m, and random polynomial r.
1: StarMultiply(r, h, e,N, q)
2: for i = 0 to N − 1 do
3: e[i] = e[i] +m[i] mod q
4: end for
5: {Encode returns the encrypted message, e, through the argument list.}

CHAPTER 4. INITIAL IMPLEMENTATION 19

Decode:

The Decode function in Algorithm 9 is responsible for decrypting the encrypted

message. The decryption procedure is executed by the following three steps:

1. performing the polynomial multiplication of a = f ∗ e mod q (Step 1),

2. shifting the coefficients of a into the range (−q/2, q/2) (Steps 2-9), and

3. performing the polynomial multiplication of d = a ∗ Fp mod p (Step 10).

Algorithm 9 Decode(N, q, p, f, Fp, e, d)
Require: N , q, p, secret key f , inverse polynomial Fp, and encrypted message e.
1: StarMultiply(f, e, a,N, q)
2: for i = 0 to N − 1 do
3: if a[i] < 0 then
4: a[i] = a[i] + q {Make all coefficients positive}
5: end if
6: if a[i] > q/2 then
7: a[i] = a[i]− q {Shift coefficients of a into range (−q/2, q/2)}
8: end if
9: end for
10: StarMultiply(a, Fp, d,N, p)
11: {Decode returns the decrypted message, d, through the argument list.}

CHAPTER 4. INITIAL IMPLEMENTATION 20

4.1 Performance Analysis

In order to grasp how well NTRU performs for different applications, a timing analysis

was conducted for the CreateKey, Encode, and Decode functions on two different

platforms outlined in Tables 4.1. In addition, this timing analysis considered two

levels of security for NTRU, which were the lowest and highest security recommended

in [3]. The test values for the parameters of NTRU used for this performance analysis

are listed in Table 4.2.

First Platform Second Platform
Processor 266 MHz PentiumII 50 MHz ARM7TDMI
Memory 65 MB —
OS Windows 98SE —
Compiler MS Visual C++ ARM Developmental Suite

Table 4.1: Two Platform Specifications

107 NTRU 503 NTRU
N 107 503
q 64 256
p 3 3
NumOnes f 15 216
NumNegOnes f 14 215
NumOnes g 12 72
NumNegOnes g 12 72
NumOnes r 5 55
NumNegOnes r 5 55
NumOnes m 25 165
NumNegOnes m 25 165

Table 4.2: Test Values Used for Performance Analysis

The results of the timing analysis are shown in Table 4.3.

CHAPTER 4. INITIAL IMPLEMENTATION 21

266 MHz PII 50 MHz ARM7TDMI
107 NTRU 503 NTRU 107 NTRU 503 NTRU

CreateKey (ms) 16.2 699.5 91.4 2412.1
Encode (ms) 0.6 15.0 4.9 110.9
Decode (ms) 1.4 29.4 5.7 163.1

Table 4.3: Timings for NTRU on Two Platforms

The CreateKey function takes the longest time because it requires two polynomial

inversions and a polynomial multiplication. In addition, since the Decode function

requires two polynomial multiplications, it takes over two times as long as the Encode

function. Since Encode requires only one polynomial multiplication, it is fair to use

Encode’s timing to estimate the time to perform a single polynomial multiplication.

Altogether, the timing analysis in Table 4.3 shows that NTRU has potential in offering

high performance.

Chapter 5

Application of Chinese Remainder

Theorem

Similar to the efforts of Bailey et al. and Silverman in Chapter 3, this thesis aimed

to improve NTRU’s polynomial multiplication through software by improving the

convolution algorithm. So, for the specific case p = 3, the research explored the

possibility of improving the convolution by applying techniques from the Chinese

Remainder Theorem (CRT).

5.1 Chinese Remainder Theorem

CRT [13] can simplify the operands and modulus used for the polynomial multiplica-

tion by factorizing the modulus, M = xN − 1. If M has t factors such that:

• M =
∏t−1

i=0 mi and

22

CHAPTER 5. APPLICATION OF CHINESE REMAINDER THEOREM 23

• gcd(mi,mj) = 1 for all i 6= j,

then an operand, a, can be broken down into smaller polynomials as well:

a ≡ a0 (mod m0)

a ≡ a1 (mod m1)
...

a ≡ at−1 (mod mt−1)

As a result of CRT, the convolution can now be performed on each of the smaller

polynomials as follows:

c0 = a0 ∗ b0 (mod m0)

c1 = a1 ∗ b1 (mod m1)
...

ct−1 = at−1 ∗ bt−1 (mod mt−1)

This therefore reduces the number of multiplications to the sum of the squares of

the degrees of the factors of M (N 2
0 + N2

1 + · · · + N 2
t−1). The computational cost of

the sum of smaller squares, which are smaller than the degree of M (N), is less than

the straightforward convolution of two large operands N 2. As a note, the reductions

in converting the operands to the CRT residue system can be computed as a series

of additions and subtractions.

5.2 Useful with NTRU?

Ultimately, CRT replaces a small number of integer multiplications with a large num-

ber of additions. Although CRT looks promising for reducing the number of multipli-

cations, the question is whether this technique will be useful for NTRU’s polynomial

CHAPTER 5. APPLICATION OF CHINESE REMAINDER THEOREM 24

multiplication for the case p = 3. In NTRU’s main operations (public key creation,

encryption, and decryption), most of the polynomial multiplications consist of one

operand that has coefficients in the subset {-1,0,1}. So, in reality, the convolution of

two polynomials with one operand with this property is simply a series of additions

and subtractions and no multiplications. Therefore, for the majority of NTRU’s

polynomial multiplicatons, applying CRT to the convolution provides no benefits.

However, this CRT based convolution can be used in the setup phase for the cre-

ation of the inverse polynomials. As presented in Algorithms 5 and 6, the inverse

polynomial functions rely on the polynomial multiplication of two polynomials with

w-bit coefficients. One may argue that the CRT technique can be applied to the

last step of decryption since it requires the multiplication of two polynomials one of

which has w-bit coefficients and the other which has coefficients in the subset {0,1,2}.

However, the convolution of these two polynomials can be performed as a series of

additions, subtractions, or shift operations instead of multiplications because of the

small coefficients within the second polynomial operand. So, once again, there are

no multiplications that CRT can replace with a large number of additions. Since

the application of the CRT based convolution to NTRU’s polynomial multiplication

does not provide any improvement to the core operations in the public key creation,

encryption, and decryption procedures, this thesis decided not to pursue this avenue

any further.

Part II

Scalable NTRU Multiplier

25

Chapter 6

Previous Work

This section reviews the only previous contribution to the design of a hardware im-

plementation for NTRU [2]. Bailey et al. designed an encryption engine on a Xilinx

Virtex 1000EFG860 FPGA [14] platform that performed the polynomial multiplica-

tion of r ∗ h and the addition of the message, m. The system required that all three

operands be serially loaded in the FPGA. Then, a fast convolution algorithm is uti-

lized to perform the polynomial multiplication of r∗h. Further reading and details on

this algorithm is discussed in [2] as well as Chapter 3. Finally, the encryption engine

adds the result of the polynomial multiplication with the message, m, and serially

outputs the encrypted message. The advantage of this design is that Bailey et al.

enhanced the performance of NTRU’s encryption procedure. Yet, the weaknesses of

this design are that it is not scalable and it cannot be used for any other procedure

(key creation and decryption) within NTRU.

26

Chapter 7

Hardware Design

This paper will present an optimized and scalable hardware design that can perform

a polynomial multiplication for NTRU. We fix the parameters p and q to 3 and 256,

respectively. However, this design supports arbitrary polynomial lengths including

N = 503, which is considered to provide a security level comparable to 4096-bit RSA

[2]. In addition, the design takes advantage of the parallel nature of the partial prod-

uct array. Since all polynomials are reduced modulo xN−1, the partial product terms

exceeding xN−1 will be wrapped around and added to the lower portion. Figure 7.1

shows the case N = 5, where the coefficients of the polynomial are represented as

coefficient arrays (e.g. a(x) =
∑N−1

i=0 aix
i ↔ a = (aN−1, · · · , a1, a0)).

27

CHAPTER 7. HARDWARE DESIGN 28

a
4

a
3

a
2

a
1

a
0

x b4 b3 b2 b1 b0

a
4
b

0
a

3
b

0
a

2
b

0
a

1
b

0
a

0
b

0

a3b1 a2b1 a1b1 a0b1 a4b1

a2b2 a1b2 a0b2 a6b2 a3b2

a1b3 a0b3 a6b3 a5b3 a2b2

+ a0b4 a6b4 a5b4 a4b4 a1b4

c
4

c
3

c
2

c
1

c
0

Figure 7.1: NTRU Multiplier

Since each partial product term is reduced modulo q, which is the lower word, then

carry propagation is confined within each column but not across the columns.

7.1 Scalability

Due to the absence of carry propagation across the columns, the independent columns

within the partial product array can be processed in parallel. For the partial product

column k, a single processing unit (PU) performs the following operation:

c[k] = c[k] + a[i] · b[j] (mod q) j = 0, 1, . . . , N − 1 (7.1)

i = −j mod N

which consists of one coefficient multiplication, one coefficient addition, and a re-

duction modulo q. Parallelism can, therefore, be achieved by scaling the number of

processing units (u) across the partial product columns, which is represented by the

boxes in Figure 7.2. Since each processing unit works independently of the other,

CHAPTER 7. HARDWARE DESIGN 29

multiple partial product columns can be processed concurrently.

a6 a5 a4 a3 a2 a1 a0

× b6 b5 b4 b3 b2 b1 b0

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1 a6b1 |
a4b2 a3b2 a2b2 a1b2 a0b2 a6b2 a5b2 |
a3b3 a2b3 a1b3 a0b3 a6b3 a5b3 a4b3 |
a2b4 a1b4 a0b4 a6b4 a5b4 a4b4 a3b4 |
a1b5 a0b5 a6b5 a5b5 a4b5 a3b5 a2b5 |

+ a0b6 a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 ∨
c6 c5 c4 c3 c2 c1 c0

Figure 7.2: Partial product array for N = 7 and u = 3.

In this paper, we define scalable as the ability to replicate or reuse a processing

unit during design time in order to perform multiple operations in parallel without

re-designing the data path of the processing unit. We define arbitrary precision as

the ability to alter the length of the operand polynomials during run time up to the

maximum size supported by the counters within the control unit.

7.2 Scalable Architecture

The scalable NTRU multiplier shown in Figure 7.3 consists of three major compo-

nents, the control unit, the registers, and a row of processing units (processing row).

The control unit orchestrates the computation of the polynomial multiplication and

interacts with memory via the host system. There are four major registers for the

multiplier: two u × 8-bit shift registers, a 2 × 2-bit shift register, and a u × 8-bit

register. Before implementation, the user configures the number of units that makes

up the processing row. The design assumes that the coefficients for each polynomial

CHAPTER 7. HARDWARE DESIGN 30

(a, b, and c) reside in separate memory caches, which are not part of this design. In

addition, it is required that there be u+ (bN+u−1
u
c · u−N) additional slots in Cache

A and bN+u−1
u
c · u−N additional slots in Cache C. We also assume that a memory

read or write can be performed in less than one clock cycle.

The typical sequence of steps conducted by the control unit to perform a single

polynomial multiplication is presented in Algorithm 10. Within the algorithm,

• u is the number of processing units,

• A is a vector that holds u 8-bit coefficients for the polynomial a,

• B is a vector that holds two 2-bit coefficients for the polynomial b,

• C is a vector that holds u 8-bit coefficients for the intermediate result, and

• Save is a vector that holds u 8-bit coefficients for the final result.

The “·” denotes that each element in vector A is multiplied with B1 and reduced

modulo q separately. In addition, the “+” denotes that each element of the vector C

is added with its respective element from the result of (A ·B1 mod q).

C
H

A
P

T
E

R
7
.

H
A

R
D

W
A

R
E

D
E

S
IG

N
31

PU PU PU

DataShift Register “Save”
width = #PUs

Register “C”
width = #PUs

Shift Register “A”
width = #PUs

Shift Register “B”

Cache “A” Cache “B”

Cache “C”

Data Data

Control Unit

Control and
Address

Control and
Address

Control and
Address

control

control

controldoneTo host

resetFrom host

control

Figure 7.3: NTRU Multiplier

CHAPTER 7. HARDWARE DESIGN 32

Algorithm 10 NTRU Polynomial Multiplication
1: if reset = ‘1′ then
2: C = 0
3: Save = 0
4: x = 0 {x is a counter}
5: else
6: A = (a[u− 1], · · · , a[0])
7: B = (b[0], b[1])
8: for j = 1 to dN/ue do
9: for i = 1 to N − 1 do
10: C = C + (A ·B1) mod q {B1 represents upper word of B}
11: A = (Au−2 · · ·A0, a[N − i− 1])
12: B = (B0, b[i+ 1 mod N])
13: end for
14: Save = C + (A ·B1) mod q
15: C = 0
16: (c[x+ u], · · · , c[x]) = Save
17: x = x+ u
18: A = (a[x− 1], · · · , a[x− u])
19: B = (B0, b[1])
20: end for
21: end if

To demonstrate how this algorithm applies to the hardware shown in Figure 7.3,

we will go through the steps for the example shown in Figure 7.2. For clarity, the

description below assumes that:

• the multiplier is configured for three processing units (u = 3),

• the operands, polynomials a and b, and the result, polynomial c, each have

seven coefficients (N = 7),

• the coefficient arrays are now represented as

a(x) =
∑N−1

i=0 a[i]xi ↔ a = (a[N − 1], · · · , a[1], a[0]),

• the vectors A, B, C, and Save in Algorithm 10 correspond to the respective

registers in Figure 7.3, and

CHAPTER 7. HARDWARE DESIGN 33

• the PUs will process bN+u−1
u
c sets of u columns in the partial product array.

In order to take advantage of concurrency, Algorithm 10 is unrolled to execute multiple

steps in parallel within hardware and to split the algorithm into three stages, the

initialization stage, the execution stage, and the load/write stage. The initialization

stage executes steps 1 through 7 in Algorithm 10. Whereas, the processing stage

executes steps 9 through 13. Finally, the load/write stage executes steps 14 through

19 of Algorithm 10.

After the user configures the degree N of the modulus, the reset signal is asserted

by the host system to inform the NTRU multiplier to begin execution of a polynomial

multiplication. At this point, the control unit begins the initialization stage, which is

outlined in Table 7.1. First, at clock cycle 0 (CC0), registers C and Save are cleared.

At CC1, the host system sets the reset signal low and the control unit begins to

serially load the first three (u) coefficients of the polynomial a into register A and the

first two coefficients of polynomial b into register B. It is important to note that only

the upper word of Register B is visible to the processing units. By the end of CC3,

the hardware has finished loading registers A and B, which corresponds to steps 6

and 7 in Algorithm 10. The control unit now begins the execution stage.

CHAPTER 7. HARDWARE DESIGN 34

cycle PU2 PU1 PU0
0 reset = ‘1’

C2 = 0 C1 = 0 C0 = 0
Save2 = 0 Save1 = 0 Save0 = 0

1 reset = ‘0’
A2 = 0 A1 = 0 A0 = a[2]
B1 = 0 B1 = 0 B1 = 0

2 A2 = 0 A1 = a[2] A0 = a[1]
B1 = b[0] B1 = b[0] B1 = b[0]

3 A2 = a[2] A1 = a[1] A0 = a[0]

Table 7.1: Initialization Stage

The execution stage for the first set of columns is outlined in Table 7.2. At

CC4, the processing units (PUs) process their respective inputs and the control unit

latches the output of each PU into register C. In addition, the next coefficient from

polynomials a and b is loaded into their respective registers. The control unit repeats

the operations that occurred in CC4 five (N − 2) more times. Finally, at the end of

CC9, all operations for this stage are completed. At CC10, the control unit begins

execution of the load/write stage to set up the registers for the next set of three

columns and to write the previous columns’ results to Cache C.

CHAPTER 7. HARDWARE DESIGN 35

cycle PU2 PU1 PU0
4 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[1] A1 = a[0] A0 = a[6]
B1 = b[1] B1 = b[1] B1 = b[1]

5 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[0] A1 = a[6] A0 = a[5]
B1 = b[2] B1 = b[2] B1 = b[2]

6 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[6] A1 = a[5] A0 = a[4]
B1 = b[3] B1 = b[3] B1 = b[3]

7 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[5] A1 = a[4] A0 = a[3]
B1 = b[4] B1 = b[4] B1 = b[4]

8 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[4] A1 = a[3] A0 = a[2]
B1 = b[5] B1 = b[5] B1 = b[5]

9 C2 = C2 +A2 ·B1 C1 = C1 +A1 ·B1 C0 = C0 +A0 ·B1

A2 = a[3] A1 = a[2] A0 = a[1]
B1 = b[6] B1 = b[6] B1 = b[6]

Table 7.2: Execution Stage

Finally, the load/write stage is outlined in Table 7.3. Starting at CC10, the PUs

process the last set of inputs from CC9 and the control unit:

• latches the output of each PU into register Save (Algorithm 10, Step 14),

• clears register C (Algorithm 10, Step 15),

• begins serially loading shift register A with the first three coefficients of the first

row of the 2nd set of three columns shown in Figure 7.2, and

• loads a single coefficient into register B (Algorithm 10, Step 19).

For CC11 through CC13, the control unit writes the final result of the previous set

of columns to Cache C. This is done by transmitting the least significant slot of the

Save register (Save0) to Cache C and enabling the register to perform an 8-bit shift

right operation for each one of these clock cycles. By the end of CC12, the hardware

CHAPTER 7. HARDWARE DESIGN 36

has finished loading register A, which corresponds to step 18 in Algorithm 10. During

CC13, as the last coefficient from the Save register is being written to Cache C, the

control unit also begins re-execution of the execution stage for the second column set,

which is followed by another execution of the load/write stage. Finally, the execution

and load/write stages need to executed one more time to process the third (and last)

column set and write its results to Cache C.

cycle PU2 PU1 PU0
10 Save2 = C2 +A2 ·B1 Save1 = C1 +A1 ·B1 Save0 = C0 +A0 ·B1

C2 = 0 C1 = 0 C0 = 0
A2 = a[2] A1 = a[1] A0 = a[5]
B1 = b[0] B1 = b[0] B1 = b[0]

11 c2 = Save0

Save = (0, Save2 · · ·Save1)
A2 = a[1] A1 = a[5] A0 = a[4]

12 c1 = Save0

Save = (0, Save2 · · ·Save1)
A2 = a[5] A1 = a[4] A0 = a[3]

13 c0 = Save0

Table 7.3: Load/Write Stage

In summary, the initialization stage is only executed at the start of a polynomial

multiplication. Then, the execution and load/write stages are executed bN+u−1
u
c

times. Once the last load/write stage has completed, the control unit asserts the

done signal to indicate to the host system that it has completed the polynomial

multiplication.

CHAPTER 7. HARDWARE DESIGN 37

7.3 Processing Unit

M

a[i] b[j]

c[k]

8-by-2 Bit
Coefficient Multiplier

(includes reduction mod q)

8-by-8 Bit Ling Adder
(includes reduction mod q) carry in

b0[j]b1[j]

c[k]

Figure 7.4: Processing Unit

The processing unit (PU), shown in Figure 7.4, is responsible for performing the

operation in (7.1). It consists of a coefficient multiplier and a Ling adder [15], which

is an improved carry look ahead adder [16]. Both of these components incorporate

the reduction modulo q. The components of the processing unit consist solely of

combinational logic and are not dependent upon a rising edge clock signal. The

coefficient multiplier, shown in Figure 7.5, computes M = a[i] · b[j] (mod q) portion

of (7.1). The main hardware consists of eight 2 by 1-bit multipliers, which can be

identified as the boxes shown in Figure 7.5. Each of the 2 by 1-bit multipliers was

designed to behave according to the truth table in Table 7.4. When referring to the

truth table the following should be noted:

C
H

A
P

T
E

R
7
.

H
A

R
D

W
A

R
E

D
E

S
IG

N
38

a
0
[i]a

1
[i]a

2
[i]a

3
[i]a

4
[i]a

5
[i]a

6
[i]a

7
[i]

b
0
[j]

b1[j]

I[0]I[1]I[2]I[3]I[4]I[5]I[6]I[7]

c

I(a
6:0

[i],0)

M

Figure 7.5: 8 by 2-bit Coefficient Multiplier

CHAPTER 7. HARDWARE DESIGN 39

ai[i] b1[j] b0[j] Ii

0 0 0 0
0 0 1 0
0 1 0 d
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 d
1 1 1 0

Table 7.4: 2 by 1-bit Multiplier Truth Table

• The 2-bit representation for b[j] is interpreted differently than its decimal con-

version by this design as shown in Table 7.5.

bit representation integer representation
00 0
01 1
10 2
11 -1

Table 7.5: Interpretation of b[j]’s binary bits

• For the case b[j] = (11)2 = −1, it is necessary that a[i] be converted to its two’s

complement representation in order for the Ling adder to subtract. However,

this multiplier only inverts a[i] to reduce the complexity of the design. The

two’s complement conversion is completed by setting the carry in of the Ling

adder to ‘1’. This is accomplished by the AND gate shown in Figure 7.4.

• For the case b[j] = (10)2 = 2, it should be noted that this operation is not

performed by the main hardware of the multiplier as indicated by the don’t

care condition in Table 7.4. Hence, a multiplexer is needed to pass the left

shifted value of a[i] for when b[j] = 2, otherwise, I is passed to the output from

the main hardware.

CHAPTER 7. HARDWARE DESIGN 40

The reduction modulo q portion of the equation is handled by ignoring any carries that

exceed the 8-bit boundary, which would only occur for the case b[j] = 2. Finally, the

output of the multiplexer, M , is passed on to the 8-bit Ling adder for accumulation.

The 8-bit Ling Adder, in Figure 7.6a, is responsible for computing c[k] = M + c[k]

(mod q) of (7.1) and it was designed in a hierarchical manner similar to [17]. The 8-

bit adder receives two 8-bit inputs, which are split in half, and a carry in. Half of each

operand is then passed to one of the two 4-bit adders, which is further broken down

into four partial full adders (PFA) and one 4-bit carry look ahead (CLA) network

as shown in Figure 7.6b. This four bit adder is based on Ling’s design discussed in

[15, 18]. For this design, the PFA is responsible for generating the propagate (P),

generate (G), and sum (S) signals for the 4-bit CLA network. The logic for these

signals is expressed in Equations (7.2) through (7.4) and the schematic can be viewed

in Figure 7.7a.

P = ai[i] + bi[j] (7.2)

G = ai[i] · bi[j] (7.3)

S = ai[i]⊕ bi[j]⊕ carry (7.4)

The function of the 4-bit CLA is to generate the carries for each of the PFAs. The four

carry outputs, C1 through C4, are computed in hardware by the expressions shown

in Equations (7.5) through (7.8). The schematic of the 4-bit CLA can be viewed in

Figure 7.7b.

C
H

A
P

T
E

R
7
.

H
A

R
D

W
A

R
E

D
E

S
IG

N
41

carry in

carry out

PFA PFAPFAPFA

Four Bit CLA

carry out

op1[0]op1[1]op1[2]op1[3] op2[3] op2[2] op2[1] op2[0]

C2C3 C1

carry in

P[4:0] G[4:0]

C4 C0

in1 in1 in1 in1in2 in2 in2 in2

(a) (b)

M7:4[i] c7:4[k]

new_c
7:4

[k]

M3:0[i] c3:0[k]

new_c3:0[k]

S[3:0]

P P P PG G G GS S S S

Figure 7.6: 8-bit Ling Adder (a) and 4-bit Ling Adder (b)

CHAPTER 7. HARDWARE DESIGN 42

h1 = G[0] + C0 (7.5)

C1 = P [0] · h1

h2 = G[1] +G[0] + (P [0] · C0) (7.6)

C2 = P [1] · h2

h3 = G[2] +G[1] + (P [1] ·G[0]) + (P [1] · P [0] · C0) (7.7)

C3 = P [2] · h3

h4 = G[3] +G[2] + (P [2] ·G[1]) + (P [2] · P [1] ·G[0]) + (P [2] · P [1] · P [0] · C0) (7.8)

C4 = P [3] · h4

Finally, the modulo q reduction is performed by simply ignoring the carry out of the

2nd four bit adder, which received the most significant half of the operands. The

output of this 8-bit adder produces the final result of the partial product operation

shown in (7.1).

C
H

A
P

T
E

R
7
.

H
A

R
D

W
A

R
E

D
E

S
IG

N
43

in1 in2 carry in

P G

S

G[1]

G[0]
C0

P[0]

G[2]

P[1]

P[2]

G[3]

P[3]

C1

C2

C3
C4

(a) (b)

Figure 7.7: Partial Full Adder (a) and 4-bit CLA (b)

Chapter 8

Supported Operations and

Limitations

The NTRU multiplier provides support for all the polynomial multiplications re-

quired by the public key creation, encryption, and decryption procedures of NTRU.

As mentioned earlier, the integer moduli must be set to p = 3 and q = 256. The

polynomial size N , however, can be set to arbitrary lengths depending on the se-

curity requirements. The following indicates which operations are supported in the

public key creation, encryption, and decryption processes, respectively, as well as the

assumptions associated with them.

1. Public Key Creation: h = Fq ∗ g (mod q)

The NTRU multiplier can perform the full operation above assuming that:

• The random polynomial g has coefficients from {−1, 0, 1}, and

44

CHAPTER 8. SUPPORTED OPERATIONS AND LIMITATIONS 45

• The inverse polynomial Fq of the private key f modulo q has been pre-

computed and has coefficient in the range (0, q − 1).

2. Encryption: e = pr ∗ h+m (mod q)

The NTRU multiplier can only perform the multiplication of r ∗ h (mod q). It

is assumed that:

• The random polynomial r has coefficients from {−1, 0, 1},

• The addition of the message m occurs outside of the multiplier and it has

coefficients from {−1, 0, 1},

• The integer multiplication of p occurs outside of the multiplier either:

– After the multiplier has computed r ∗ h (mod q), or

– With the public key, h, prior to encryption.

3. Decryption

Originally, the decryption process for NTRU consists of three steps:

(a) a = f ∗ e (mod q),

(b) Shift coefficients of a from (0, q − 1) to (− q

2
, q

2
), and

(c) d = Fp ∗ a (mod p).

The NTRU multiplier has no problems computing Step (a), while Step (b) is

a simple operation that can be performed outside of the multiplier. However,

CHAPTER 8. SUPPORTED OPERATIONS AND LIMITATIONS 46

Step (c) cannot be computed by the multiplier because the polynomial a’s coef-

ficients are no longer unsigned. In addition, the multiplier does not support the

reduction modulo p. Fortunately, there is a way to slightly modify the steps so

that the NTRU multiplier can perform the polynomial multiplications within

the decryption process. Four steps are now required:

(a) a = f ∗ e (mod q)

The NTRU multiplier can perform the full operation above as long as the

random polynomial, f , has coefficients from {−1, 0, 1}.

(b) Shift coefficients of a from (0, q − 1) to (− q
2
, q

2
)

Outside of the NTRU multiplier, the user needs to shift the coefficients of

a from the range (0, q − 1) to (− q

2
, q

2
).

(c) b = a (mod p)

Again, the NTRU multiplier does not perform this operation. It is assumed

that the user will reduce the coefficients of a modulo p. In the end, b will

have coefficients from {0, 1, 2}.

(d) d = Fp ∗ b (mod p)

As a result of Steps (b) and (c), the two polynomials, b and Fp, are now

compatible for polynomial multiplication by the NTRU multiplier. How-

ever, the multiplier will only reduce the coefficients of d modulo q. Step (d)

requires reduction modulo p, so, it is the responsibility of the user to reduce

the coefficients of d modulo p in order to receive the correct message.

CHAPTER 8. SUPPORTED OPERATIONS AND LIMITATIONS 47

As mentioned earlier, the NTRU multiplier is capable of enhancing the performance

of the polynomial multiplications, whose coefficients need to be reduced modulo q.

However, the multiplier is not capable of reducing the coefficients modulo p = 3,

which outlines the NTRU multiplier’s limitation. The user can implement a modulo

p = 3 reduction circuit outside of the NTRU multiplier at a cost of approximately 50

gates.

Chapter 9

Performance Analysis

This section summarizes the performance of the NTRU multiplier for a range of

processing units. Since this is the first realization of a hardare implementation that

soley performs a polynomial multiplication for NTRU, no comparison on the perfor-

mance of this design can be made. To demonstrate the worst case scenario, the per-

formance analysis was conducted for NTRU’s highest security level (N = 503). The

data in Table 9.1 summarizes the overall numerical results for various performance cri-

teria. The design was modeled using VHDL, simulated for functionality using Mentor

Graphics’ ModelSim 5.5f, and synthesized with Mentor Graphics’ LeonardoSpectrum

tool using fast TSMC 0.35µ technology [19].

48

CHAPTER 9. PERFORMANCE ANALYSIS 49

of processing units 1 2 5 10 15 20 50

gates A’s shift reg 70 129 307 604 900 1196 2975
gates B’s shift reg 33 33 33 33 33 33 33
gates C’s reg 70 140 350 700 1050 1400 3500
gates total for regs 173 302 690 1337 1983 2629 6508
gates for processing row 154 300 684 1379 2065 2754 6907
gates for control 1156 1148 1558 1979 2503 3003 5855
gates total 1483 1750 2932 4695 6551 8386 19270

% processing row 10.4% 17.1% 23.3% 29.4% 31.5% 32.8% 35.8%
% processing row with regs 22.0% 34.4% 46.9% 57.8% 61.8% 64.2% 69.6%
% control 78.0% 65.6% 53.1% 42.2% 38.2% 35.8% 30.4%

Frequency (MHz) 290.9 304.4 201.2 200.2 196.1 197.4 194.4
Clock Period (ns) 3.44 3.29 4.97 5.00 5.10 5.07 5.14

Time for 1 polynomial mult (ms) 0.878 0.421 0.255 0.129 0.088 0.067 0.029

Speed up 1 2.1 3.4 6.8 10.0 13.1 30.5

Table 9.1: Performance Analysis for Optimized and Scalable Design

As expected, the area increases at a linear rate which is seen in Figure 9.1a. It

is interesting to note that as the size of the processing row gets larger, a smaller

percentage of the area is spent on control and the majority of the area is spent on

the main system, which includes the processing row and registers. This behavior,

as shown in Figure 9.1b, occurs because the only elements that require additional

hardware in the control are the relatively small counters so it increases at a slower

rate than the main system. Whereas, the main system increases at a much larger

rate due to multiple replications of the processing unit.

Although the area increases linearly with the size of the processing row, the per-

formance of the NTRU multiplier increases linearly as well. This multiplier can be

clocked at a maximum of 290.9MHz for one processing unit and 194.4MHz for fifty

C
H

A
P

T
E

R
9
.

P
E

R
F
O

R
M

A
N

C
E

A
N

A
L
Y

S
IS

50

Performance Anaylsis

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60

Number of Processing Units

N
u

m
b

er
 o

f
G

at
es

Total

Processing Row

Processing Row

with Registers

Control

Performance Analysis

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0 20 40 60

Number of Processing Units

P
er

ce
n

ta
g

e
o

f
T

o
ta

l A
re

a Control

Processing Row

Processing Row with

Registers

(a) (b)

Figure 9.1: Gate Count Distribution (a) and Percentage of total area (b)

CHAPTER 9. PERFORMANCE ANALYSIS 51

processing units. For this design, the counters are the major bottleneck. Therefore,

as the number of processing units increases, the counters cause a small decline in

frequency. From the data in Table 9.1, it is also noticeable that the frequency tends

to fluctuate. This is due to the optimizations performed by the synthesis tool. With

these measured frequencies shown in Table 9.1, the NTRU multiplier can complete

a polynomial multiplication in 0.9 ms for one processing unit and in only 29 µs for

fifty processing units. This scalable architecture greatly benefits the performance

of NTRU since it provides a speed up that increases linearly with the number of

processing units as shown in Figure 9.2.

Speed Up Performance

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 10 20 30 40 50

Number of Processing Units

S
p

ee
d

 U
p

Figure 9.2: Speed up distribution

Part III

Unified NTRU & Montgomery

Multiplier

52

Chapter 10

Previous Work

This section will review some previous and current contributions to the design of

unified architectures. Although these contributions do not support NTRU, they do

propose unified designs for performing arithmetic in both finite fields, GF (p) and

GF (2k).

The work in [20] introduces a scalable and unified multiplier that uses the Mont-

gomery Multiplication algorithm to compute modular multiplications for fields GF (p)

and GF (2k). This design supports arithmetic in both fields through the introduction

of the “dual-field adder”, which performs addition with and without carry propaga-

tion. In order to avoid designing a dual field multiplier, this work utilizes a word-

level bit-serial version of the Montgomery Multiplication algorithm. Therefore, only

a bit-serial multiplier is necessary in which the multiplier is fed bit-serially and the

multiplicand is fed in word size chunks. Scalability in this design is achieved by in-

53

CHAPTER 10. PREVIOUS WORK 54

creasing the number of fixed area multiplier units so that any operand size can be

supported. In addition, the pipeline depth and word size can be configured to meet

the desired area and performance specifications.

Großschädl’s paper [21] designs a unified multiplier without using Montgomery

Multiplication. Instead, this work utilizes a MSB-first shift-and-add method [22] for

the operations in both fields GF (p) and GF (2k). For this design, one operand is

scheduled bit serially while the other operand is scheduled fully parallel, in which

the full n-bit integer is fed into the system. Therefore, this design is not scalable or

reconfigurable.

Gaubatz has designed a high-radix scalable unified Montgomery Multiplier [23] (a

Master’s Thesis completed May 1, 2002). Similar to Savaş et al. [20], Gaubatz’s design

is based on the word-level Montgomery Multiplication algorithm. In contrast, this

Montgomery Multiplier is high-radix since it has a dual field multiplier that supports

w×w-bit multiplications. In addition, his design utilizes the addition tree method to

reduce the delay path to log 3
2
w (instead of w) in his dual field multiplier and adder.

The word size of the multiplier core and the pipelining depth can be configured before

implementation. Also, Gaubatz’s design is scalable in terms of operand size, which is

achieved through multiple mappings of the multiplier core.

Chapter 11

Montgomery Multiplication

Montgomery Multiplication was introduced by P.L. Montgomery in [24] to improve

the performance of computing the modular multiplication shown below:

c = a · b (mod m)

where a, b, c, and m are integers. The reduction modulo m requires a division which

is very costly to do in hardware. Instead, Montgomery replaces this division with a

series of shift operations, which is very simple to perform in hardware. Montgomery’s

technique requires that each operand be converted into its residue representation by

multiplying it with an integer residue, R, as shown below:

a = a ·R (mod m) (11.1)

b = b ·R (mod m).

55

CHAPTER 11. MONTGOMERY MULTIPLICATION 56

There are two restrictions on choosing a residue, R:

• R ≥ m and

• gcd(R,m) = 1.

After computation of the residues, the Montgomery Multiplication algorithm is exe-

cuted to compute the product, c:

MM(a, b) = a · b ·R−1 (mod m)

= a ·R · b ·R ·R−1 (mod m)

= a · b ·R (mod m)

= c ·R (mod m)

= c (mod m)

As indicated by the bar notation above, the result, c, is in residue form. To convert

the result back to non-residue format, the Montgomery Multiplication algorithm needs

to be executed again as follows:

MM(c, 1) = c · 1 ·R−1 (mod m)

= c ·R · 1 ·R−1 (mod m)

= c (mod m)

Since the initial residue computations in (11.1) require divisions, using this Mont-

gomery algorithm to perform a single modular multiplication will not provide any

benefits over the straightforward method. Ideally, Montgomery’s technique should

be used for applications that require multiple modular multiplications over the same

modulus (e.g. modular exponentiations) because the residue will be preserved for

CHAPTER 11. MONTGOMERY MULTIPLICATION 57

each consecutive multiplication. Therefore, the transformation to and from residue

format is only necessary at the beginning and end of the chain of multiplications.

11.1 Word-Level Montgomery Multiplication

Algorithm

The word-level Montgomery Multiplication algorithm for GF (p) is given in Algo-

rithm 11. The algorithm is a representative of several algorithms that were reviewed

in [25]. Within this algorithm:

• a[i], b[j], c[i], and m[i] represent individual words of the word vector represen-

tations of the long integers a, b, c, and m, respectively,

• the least significant word is denoted by the 0th element of the vector (e.g. m[0]),

• the word size is w bits in length,

• n is the number of words in the vectors,

• m[0]′ = −m[0]−1 mod 2w is precomputed, and

• CS has a total length of 2w + 1 bits such that:

– C, the most significant word, is w + 1 bits long and

– S, the least significant word, is w bits long.

CHAPTER 11. MONTGOMERY MULTIPLICATION 58

After completion of Algorithm 11, a long subtraction of c = c−m may be necessary

if the result, c, is larger than the modulus, m.

Algorithm 11 Word-Level Montgomery Algorithm for GF (p)

1: for j = 0 to n− 1 do

2: CS = (a[0] · b[j]) + c[0]
3: U = S ·m[0]′ mod 2w

4: CS = CS + (m[0] · U)
5: CS À w
6: for i = 1 to n− 1 do

7: CS = CS + (a[i] · b[j]) + (m[i] · U) + c[i]
8: c[i− 1] = S
9: CS À w
10: end for

11: c[n− 1] = S
12: end for

With a few modifications as proposed in [26], Algorithm 11 can be used for polyno-

mials in GF (2k) as well. The modifications, shown in Algorithm 12, include changing

integer multiplications to polynomial multiplications (¯) and additions to word size

XOR operations (⊕). Also, since GF (2) arithmetic eliminates carry propagation,

CS only needs to be 2w bits long and the long subtraction after completion of the

algorithm is no longer necessary.

CHAPTER 11. MONTGOMERY MULTIPLICATION 59

Algorithm 12 Word-Level Montgomery Algorithm for GF (2k)

1: for j = 0 to n− 1 do

2: CS = (a[0]¯ b[j])⊕ c[0]
3: U = S ¯m[0]′ mod 2w

4: CS = CS ⊕ (m[0]¯ U)
5: CS À w
6: for i = 1 to n− 1 do

7: CS = CS ⊕ (a[i]¯ b[j])⊕ (m[i]¯ U)⊕ c[i]
8: c[i− 1] = S
9: CS À w
10: end for

11: c[n− 1] = S
12: end for

Chapter 12

High-Radix Montgomery

Multiplier Core

Gaubatz’s high-radix Montgomery Multiplier Core [23] shown in Figure 12.1 is capa-

ble of performing all operations required by the Montgomery Multiplication algorithm

for both fields GF (p) and GF (2k). The core consists of two w×w-bit dual field mul-

tipliers, a w×w-bit dual field adder, and a three-way dual field adder. The three-way

dual field adder accepts two operands that are 2w bits in length and a third operand

that is w+1 bits in length. The field in which the dual field components will operate is

determined by f sel0. If f sel0 = 1, the units will perform GF (p) arithmetic. Other-

wise, if f sel0 = 0, the units perform GF (2k) arithmetic. The following describes how

each major step of the word-level Montgomery Multiplication algorithm is supported

by the core. Since f sel0 selects between the two fields, Algorithm 11 and 12 are es-

60

CHAPTER 12. HIGH-RADIX MONTGOMERY MULTIPLIER CORE 61

mul1a mul1b sum1 mul2a mul2b

product1

product2

sum2

acc_hi acc_lo

f_sel0

CS
2

CS3

CS
1

Figure 12.1: Gaubatz’s Montgomery Multiplier Core

CHAPTER 12. HIGH-RADIX MONTGOMERY MULTIPLIER CORE 62

sentially the same algorithm to the core. So, for the description below, it is adequate

to only reference Algorithm 11. Also, the steps consisting of the for loop statements

are not described below because they are handled by a control source outside of the

core not by the core itself. As a note, the ⇐ and ⇒ represent the assignment of the

input/output ports of the core by the control source to the variables in Algorithm 11.

Step 2: CS = (a[0] · b[j]) + c[0]

Since the operation above requires a multiplication and an addition, the first multi-

plier is used. The inputs of the core are assigned as follows:

• mul1a⇐ a[0]

• mul1b⇐ b[j]

• sum1⇐ c[0]

After the multiplier and adder have finished processing the inputs, the 2w-bit result

CS in Step 2 is CS1 in Figure 12.1.

Step 3: U = S ·m[0]′ mod 2w

Since the only operation required in Step 3 is a multiplication, the second multiplier

is used. The inputs and output of the core are assigned as follows:

• mul2a⇐ product1

• mul2b⇐ m[0]′

• product2⇒ U

CHAPTER 12. HIGH-RADIX MONTGOMERY MULTIPLIER CORE 63

The S in Step 3 is the lower word of the result, CS1, of Step 2. This lower word of

CS1, which is w bits in length, is transmitted out of the core via product1. So, this is

the reason product1 is assigned to mul2a of the second multiplier. Also, the equation

in Step 3 requires the 2w-bit product of S · m[0]′ (CS2 in Figure 12.1) be reduced

modulo 2w. The reduction modulo 2w is simply the extraction of the lower word of

CS2, which is transmitted out of the core as product2. Since product2 will need to be

accessible many clock cycles later and the second multiplier will need to used again,

prodcut2 is assigned to a variable U .

Step 4: CS = CS + (m[0] · U)

The operation in Step 4 requires a w × w-bit multiplication then a 2w × 2w-bit

addition. As a result, the second multiplier and the three-way adder are used for the

computation of Step 4. The inputs are assigned as follows:

• mul2a⇐ m[0]

• mul2b⇐ U

• sum2⇐ 0

As a note, the result from the operation in Step 2 (CS1), the result of m[0] ·U (CS2),

and sum2 are passed on to the three-way adder. After processing the three inputs,

the three-way adder produces the final result for Step 4, CS3.

Step 5 or 9: CS = CS À w and Step 7: CS = CS + (a[i] · b[j]) + (m[i] · U) + c[i]

For these steps, all of the components of the core are used. So, the inputs are assigned

CHAPTER 12. HIGH-RADIX MONTGOMERY MULTIPLIER CORE 64

as follows:

• mul1a⇐ a[i]

• mul1b⇐ b[j]

• mul2a⇐ m[i]

• mul2b⇐ U

• sum1⇐ c[i]

• sum2⇐ acc hi

For clarification, sum2 receives the shifted result from either Step 5 (when entering

the loop) or Step 9 (when within the loop), which is just the upper w+1 bits, acc hi,

of previous operation in Step 4 or Step 7, respectively. The first multiplier and adder

combination computes (a[i] · b[j]) + c[i] to produce the intermediate result, CS1. The

second multiplier computes the second multiplication (m[i] · U) in parallel with the

first multiplier to produce the second intermediate result, CS2. Finally, the three-way

adder adds the two intermediate results, CS1 and CS2, and sum2 to produce the final

result, CS3.

Step 8: c[i− 1] = S

• acc lo⇒ c[i− 1]

This step simply assigns the lower word of the result from Step 7, acc lo, to the

respective location in the word vector, c, which stores the final integer result of the

CHAPTER 12. HIGH-RADIX MONTGOMERY MULTIPLIER CORE 65

Montgomery Multiplication.

Step 11: c[n− 1] = S

• acc hiw−1···0 ⇒ c[n− 1]

Basically, this step requires that the lower word of the shift operation in Step 9 be

assigned to the respective location in the word vector, c. As mentioned earlier, the

shift operation in Step 9 can be eliminated by just assigning the necessary portion of

the upper word of the result from Step 7, acc hi. Since the lower word, S, is w bits,

only the least significant w bits of acc hi is assigned to the output.

Chapter 13

Hardware Design

This work focuses on designing an unified architecture using Montgomery Multipli-

cation to perform a modular multiplication for finite fields, GF (p) and GF (2k), and

a polynomial multiplication for NTRU. For this design, the integer moduli are fixed

to p = 3 and q = 256 = 28 and the coefficients of the product polynomial for NTRU

are reduced modulo q. The following paragraphs will detail the required conditions

that need to be met in order for the Montgomery Multiplication algorithm to work

for all three cases.

For the application of NTRU to the Montgomery Multiplication algorithm, setting

the residue, R = xN , introduces the unique property shown below:

Since the modulus:

xN − 1 ≡ 0 (mod xN − 1)

xN ≡ 1 (mod xN − 1)

66

CHAPTER 13. HARDWARE DESIGN 67

Then:

R = xN ≡ 1 (mod xN − 1)

So, when this property is applied to Montgomery’s method, the residue of an operand

is simply the operand itself as seen below

b = b ·R (mod xN − 1)

= b · xN (mod xN − 1)

= b · 1 (mod xN − 1)

= b (mod xN − 1)

and the Montgomery product is in non-residue format as shown below

MM(a, b) = a · b ·R−1 (mod xN − 1)

= c · (xN)−1 (mod xN − 1)

= c · (1)−1 (mod xN − 1)

= c (mod xN − 1)

Therefore, NTRU’s operands never need to be converted to and from residue format

to receive the correct result from the Montgomery Multiplication algorithm. However,

other changes are necessary within the algorithm. Since NTRU’s modulus has N +1

words, the inner loop in Algorithm 11 needs to be incremented by one to process all

words of the modulus. Yet, the outer loop does not need to be modified since NTRU’s

operands only has N words. Therefore, only N shifts are needed, which is already

defined within the algorithm. The new algorithm shown in Algorithm 13 includes the

change mentioned above. In addition, the parameter n in Algorithm 11 is changed to

N in Algorithm 13 in order to gain a clear understanding of how NTRU affects the

Montgomery Multiplication algorithm.

CHAPTER 13. HARDWARE DESIGN 68

Algorithm 13 Word-Level Montgomery Algorithm for GF (p), GF (2k), and NTRU
1: for j = 0 to N − 1 do
2: CS = (a[0] · b[j]) + c[0]
3: U = S ·m[0]′ mod 2w

4: CS = CS + (m[0] · U)
5: CS À w
6: for i = 1 to N do
7: CS = CS + (a[i] · b[j]) + (m[i] · U) + c[i]
8: c[i− 1] = S
9: CS À w
10: end for
11: c[N] = S
12: end for

In consequence to increasing the length of the inner loop, the most significant word(s)

of NTRU’s operands will need to be padded with zeroes to match the length of the

modulus. Also as a result of this modification, some restrictions and changes affect

how the Montgomery Multiplication algorithm operates for the GF (p) and GF (2k)

cases as indicated below. If w represents the word size in bits and N represents the

number of words of NTRU’s operands, then the following restrictions must be met:

For GF (p):

R ≥ 2N ·w (residue)

m < 2N ·w (modulus)

For GF (2k):

R(x) ≥ xN ·w (residue)

degreemax(m(x)) ≤ xN ·w (modulus)

In addition, since the length of the inner loop was incremented by one, then the

most significant word(s) of the operands for both cases, GF (p) and GF (2k), and the

CHAPTER 13. HARDWARE DESIGN 69

modulus for GF (p) need to be padded with zeroes to match length of inner loop. Also,

this applies to the modulus of the GF (2k) case only if the modulus is < 2N ·w. With

these new requirements, GF (p) and GF (2k) will work with the algorithm presented

in Algorithm 13.

There is one additional change that is necessary to make NTRU’s polynomial

multiplication work with the Montgomery Multiplication algorithm. Since the integer

multiplications within the polynomial multiplication are reduced modulo q = 28, there

are no carries from one partial product column to the next like the GF (p) case. So,

the upper word of the result from Step 4 and Step 7 in Algorithm 13 needs to be

cleared before it is re-processed in Step 7. The details of how these changes are

applied to the hardware are discussed in the next section.

13.1 Unified Architecture

Since NTRU’s operands and modulus are polynomials whose coefficients are 8-bit

integers, a high-radix and word level design is the most convenient. By extending

Gaubatz’s high-radix word-level Montgomery Multiplier core, this unified architec-

ture provides support for NTRU with minimal change to the hardware as shown in

Figure 13.1. Before implementation, the Montgomery Multiplier core is fixed for a

word size w = 8 bits to support the maximum length of NTRU’s polynomial coeffi-

cients. The required changes mentioned in the previous section do not require any

hardware modifications to the core. Instead, these changes require either a simple

CHAPTER 13. HARDWARE DESIGN 70

change to the control logic or additional hardware outside the core.

The first modification requires that the length of the inner loop in Algorithm 11

be incremented by one as shown in Algorithm 13. Although this modification requires

the control logic to perform an additional iteration, this does not necessarily mean

that the size of the counter has to change. For instance, changing the control to count

from 500 to 501 still requires a 9-bit counter. So, no additional hardware on top of

the original control (no NTRU support) is required to perform this additional loop.

However, there will be cases where the size of the counter does need to change (e.g.

incrementing the count from 511 to 512) and this will require a very small increase

in the hardware. Yet, this can be avoided by careful selection of the operand size.

Therefore, this modification can be considered irrelevant in terms of affecting the

hardware but it is well worth noting for the awareness of the user.

The next modification requires that the “carry word” from the results of Step

4 and Step 7 be cleared when NTRU is selected. This “carry word” is the upper

word of the result from the three-way adder, acc hi. In order to distinguish between

which function the unified architecture needs to support, a two-bit f sel signal is

necessary. The least significant bit of f sel, f sel0, determines whether the multipliers

and adders perform integer multiplications and additions (f sel0 = 1) or polynomial

multiplications and word-size XOR operations (f sel0 = 0). The most significant bit

of f sel, f sel1, determines whether NTRU is the selected (NTRU ⇒ f sel1 = 1,

No NTRU ⇒ f sel1 = 0). Since, NTRU’s polynomial multiplication relies on the

CHAPTER 13. HARDWARE DESIGN 71

mul1a mul1b sum1 mul2a mul2b

product1

product2

sum2

acc_hi

acc_lo

f_sel0

CS2

CS3

CS1

f_sel
1

Figure 13.1: NTRU & Montgomery Multiplier

CHAPTER 13. HARDWARE DESIGN 72

integer multiplication and addition of its coefficients, f sel0 needs to be set to ‘1’ as

well. Refer to Table 13.1 for clarification on the assignment of the f sel signal and

its selected function.

f sel function
00 GF (p)

01 GF (2k)
10 Nothing
11 NTRU

Table 13.1: Assignment of the f sel signal

Now that a way to determine when NTRU is selected by user has been established,

this same signal is used to clear the “carry word” as follows. The “carry word”,

acc hi, is cleared by “AND-ing” each bit with the inverted f sel1 signal as shown in

Figure 13.1. When NTRU is not selected, f sel1 = 0, then after inversion f sel1 is set

to ’1’. As a result, all 9 bits of acc hi are passed through the AND gates unchanged.

However, if NTRU is selected, f sel1 = 1, then after inversion f sel1 is set to ’0’. In

consequence, the AND gates zero out all 9 bits of acc hi just as needed. Therefore,

NTRU can be supported using the Montgomery Multiplier core with the addition of

just 10 gates.

13.2 Control

The control assumes that all data necessary within Algorithm 13 is precomputed

outside of the unified architecture before it is initialized to begin processing. Also,

the control assumes that the word vectors a, b, c, and m reside in separate memory

CHAPTER 13. HARDWARE DESIGN 73

caches. By using the Montgomery Multiplier core and the additional hardware shown

in Figure 13.1, the control executes Algorithm 13 in seven stages. The host system

initializes the unified architecture for processing by asserting the reset signal. At this

point, Algorithm 13 is set up by the control via Stage 0. Then, the outer loop of

Algorithm 13 is performed by executing Stages 1-6 N times. Finally, the inner loop

in Algorithm 13 is performed by executing Stage 4-5 N times. The stages and their

associated operations are explained in detail below. As a note when reviewing the

stages, the control assumes that the word vectors a, b, c, and m reside in separate

memory caches and the core executes the steps of the algorithm the same way as

explained in Section 11.1.

Stage 0: Setup

Stage 0 initializes the indexes i and j to zero and transmits the addresses for a[i],

b[j], and c[i] to the respective caches so that the data will be available for the next

stage.

Stage 1: Step 2: CS = (a[0] · b[j]) + c[0]

Stage 1 is responsible for setting up the core to perform the operation in Step 2 as

follows:

• mul1a⇐ a[0]

• mul1b⇐ b[j]

• sum1⇐ c[0]

CHAPTER 13. HARDWARE DESIGN 74

Since Stage 2 does not require any new data from memory and m[0]′ is precomputed

and stored, this stage does not need to transmit any new addresses to memory.

Stage 2: Step 3: U = S ·m[0]′ mod 28

Stage 2 is responsible for setting up the core to perform the operation in Step 3 as

follows::

• mul2a⇐ product1

• mul2b⇐ m[0]′

In addition to setting up the core, this stage transmits the address of m[0] to memory

so the data will be available for processing in the next stage.

Stage 3: Step 4: CS = CS + (m[0] · U)

Stage 3 is responsible for setting up the core to perform the operation in Step 4 as

follows:

• mul2a⇐ m[0]

• mul2b⇐ product2

• sum2⇐ 0

As mentioned in Section 11.1, product2 needs to be accessible many clock cycles later

and the second multiplier will need to used again. So, prodcut2 is assigned to a

variable U . For this stage, mul2b is assigned product2 instead of U so that the data

is available during this clock cycle. In addition to setting up the core, this stage

CHAPTER 13. HARDWARE DESIGN 75

increments the index i and transmits the new addresses for a[i], b[j], m[i], and c[i] so

that the data will be available for Stage 4.

Stage 4: Step 7: CS = CS + (a[i] · b[j]) + (m[i] · U) + c[i]

As mentioned in Section 11.1, the shift operations for Step 5 and Step 9 are eliminated

by using the upper word result, acc hi, instead of the lower word, acc lo. This stage

is responsible for setting up the core to perform the operation in Step 7 as follows:

• mul1a⇐ a[i]

• mul1b⇐ b[j]

• mul2a⇐ m[i]

• mul2b⇐ U

• sum1⇐ c[i]

• sum2⇐ acc hi

For clarification, sum2 now receives the result of acc hi after it has passed through

the AND gates. Therefore, acc hi will be cleared if NTRU is selected. Also, this stage

prepares for the write operation in Stage 5 by transmitting the address for c[i− 1].

Stage 5: Step 8: c[i− 1] = S

• acc lo⇒ c[i− 1]

In addition to writing the lower word of CS3 to the respective word location of c,

this stage does one of the following two things. If the for loop has not completed,

CHAPTER 13. HARDWARE DESIGN 76

then this stage increments the index i and transmits the addresses for a[i], b[j], c[i],

and m[i] in preparation for re-execution of Stage 4. Otherwise, this stage does not

increment i and just transmits the address for c[i] for Stage 6.

Stage 6: Step 11: c[N] = S

• acc hi8−1···0 ⇒ c[N]

Stage 6 writes the lower 8 bits of acc hi to the N th element in the word vector c.

Also, this stage prepares for the re-execution of the outer loop by incrementing the

index j, re-setting the index i back to zero, and transmitting the addresses for a[i],

b[j], c[i].

Chapter 14

Performance Analysis

This section summarizes the performance of this unified multiplier for a range of

modulus lengths. The data in Table 14.1 summarizes the overall numerical results

for various performance criteria. As a reminder, N defines the max length of the

modulus supported for GF (p) and GF (2k) and the degree of the modulus polynomial

for NTRU. This design was modeled using VHDL, simulated for functionality using

Mentor Graphics’ ModelSim 5.5f, and synthesized with Mentor Graphics’ Leonar-

doSpectrum tool using TSMC 0.35µ technology [19].

77

C
H

A
P

T
E

R
1
4
.

P
E

R
F
O

R
M

A
N

C
E

A
N

A
L
Y

S
IS

78

N: 1 20 100 128 200 300 400 500 600

bits per word (w): 8 8 8 8 8 8 8 8 8

gates for control: 440 636 761 817 809 868 864 878 911

gates added for NTRU support: 10 10 10 10 10 10 10 10 10

Total # of gates: 2504 2700 2825 2881 2873 2932 2928 2942 2975

% core: 82.0% 76.1% 72.7% 71.3% 71.5% 70.1% 70.2% 69.8% 69.0%

% control: 17.6% 23.6% 26.9% 28.4% 28.2% 29.6% 29.5% 29.8% 30.6%

% support for NTRU 0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%

Frequency (MHz): 132.2 131.6 115 130.6 101.8 131.2 88 82.5 80.2

Clock Period (ns): 7.56 7.60 8.70 7.66 9.82 7.62 11.36 12.12 12.47

Equation for # clock cycles (CC): (2N + 4)N + 1

CC for one unified multiplication: 7 881 20401 33281 80801 181201 321601 502001 722401

Time for one unifed multiplication (ms): 0.00 0.01 0.18 0.25 0.79 1.38 3.65 6.08 9.01

Table 14.1: Performance Analysis for Unified Design

CHAPTER 14. PERFORMANCE ANALYSIS 79

As expected, the total area increases as the size of the modulus grows as seen

in Figure 14.1a. This increase in the total area is due to the increase in the control

logic. As the supported modulus length grows, the size of the counters within the

control grows as well. Despite this increase, the area scales at a slow rate as shown

in Figure 14.1a. Although the area dedicated to control increases with the modulus

length, the majority of the area is used for the core as seen in Figure 14.1b, which is

very ideal since it is the main processing hardware of the system.

In order to determine the performance of this unified multiplier for various sup-

ported modulus lengths, several timing estimations were obtained. Table 14.1 outlines

the maximum frequency the system can be clocked for each measured modulus length.

Due to the increase in control logic, the performance of the multiplier decreases as the

size of the modulus grows. The number of clock cycles (#CC) for this architecture

to complete a single unified multiplication is determined by the following equation:

#CC = (2 ·N + 4) ·N + 1

Then, the time for the system to complete a unified multiplication is computed by

multiplying the number of clock cycles with the respective clock period. The timing

results shown in Table 14.1 indicate that the unified multiplier can complete a single

unified multiplication for N = 1 in 50 ns and for N = 600 in a little over 9 ms. In

addition, the performance of this unified multiplier was estimated for three different

applications representing each function the multiplier can now support in Table 14.2.

For the GF (p) case, the unified multiplier would compute a 1024-bit RSA operation

C
H

A
P

T
E

R
1
4
.

P
E

R
F
O

R
M

A
N

C
E

A
N

A
L
Y

S
IS

80

Performance Analysis

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

N

N
u

m
b

er
 o

f
G

at
es

MM_engine core Control NTRU Support Total

Performance Anaylsis

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

0 100 200 300 400 500 600

N

P
er

ce
n

ta
g

e
o

f
T

o
ta

l A
re

a

MM_engine Core Control NTRU Support

(a) (b)

Figure 14.1: Gate Count (a) and Percentage of Total Area (b) for several operand lengths

CHAPTER 14. PERFORMANCE ANALYSIS 81

with a short exponent in about 4 ms. Whereas, the 1024-bit RSA operation with a

long exponent would approximately take 382 ms to complete. For the GF (2k) case,

the unified multiplier required approximately 15ms to complete a 160-bit Elliptic

Curve operation. Finally, for NTRU’s highest security case (N = 503), the unified

multiplier would compute a polynomial multiplication in a little over 6 ms.

1024-bit RSA
short exponent

modular multiplications: 17
Time (ms): 4.33

long exponent
modular multiplications: 1500
Time (ms): 382.25

160-bit ECC
point doublings (9 mod mult per op): 159
point additions (16 mod mult per op): 53
Total # modular multiplications: 2279
Time (ms): 15.26

503 NTRU
Time (ms): 6.08

Table 14.2: Estimated Performance of Unified Design

Chapter 15

Conclusions

This thesis aimed to meet the following objectives. First, we sought to efficiently

enhance the performance of the polynomial multiplications that occur within NTRU’s

procedures. In addition, we wanted to create a design that was scalable as well as

optimized for specific integer moduli. The work, also, aimed to create another design

that was flexible and compatible with various cryptosystems and applications. We

feel we have meet these goals as outlined below.

The software implementations of this thesis provided insight on the functionality

of NTRU, estimations of how fast NTRU can be executed on two different platforms,

and the practicality of applying CRT to the convolution algorithm. After thorough

research, it was discovered that CRT provides no improvement to the convolution

algorithm because of the small coefficients of one of the operands. However, the ben-

efits of applying CRT to the computation of the inverse polynomials can be pursued

82

CHAPTER 15. CONCLUSIONS 83

in future research.

The scalable NTRU multiplier focused on optimizing NTRU’s core and most time

consuming operation, the polynomial multiplication. The architecture was designed

to be scalable to provide high performance by exploiting the parallelism within the

polynomial multiplication. The research has demonstrated that the NTRU multiplier

presents a wide range of time/area configurations. For instance, for embedded ap-

plications where low power consumption is critical, a single processing unit design

can perform a polynomial multiplication in 0.9 ms with less than 1500 gates. This is

reasonable performance for a low powered device. Finally, this work realized that the

current security standards might be obsolete with the future rise of higher computing

power. Therefore, this design exploits arbitrary key lengths to support a wide range

of security levels to keep up with the ever-changing security standards.

For the unified design, this research has demonstrated that the Montgomery Mul-

tiplication algorithm can be used to perform modular multiplications for GF (p) and

GF (2k) and polynomial multiplications for NTRU. In addition, only 10 gates of addi-

tional hardware are required for the Montgomery Multiplier core to provide support

for NTRU. The performance and application analysis demonstrated that all three

types of applications RSA, ECC, and NTRU can be executed by the unified architec-

ture with high performance. It is interesting to note that 503 NTRU offers the best

performance for its security level compared to the other two applications. With an

additional 2 ms over a short exponent 1024-bit RSA operation, 503 NTRU provides

CHAPTER 15. CONCLUSIONS 84

a security level comparable to 4096-bit RSA. Despite the differences in performance

between these applications, this unified design is now capable of supporting a ma-

jority of public-key cryptosystems, such as NTRU [3], RSA [4], Diffie-Hellman [27],

Elliptic Curves [5, 6], etc., to meet the needs of virtually any public-key operation.

Bibliography

[1] J. H. Silverman, “High-Speed Multiplication of Truncated Polynomials,” Tech.

Rep. 10, NTRU Cryptosystems, Inc., January 1999. Version 1.

[2] D. Bailey, D. Coffin, A. Elbrit, J. Silverman, and A. Woodbury, “NTRU in

Constrained Devices,” in Workshop on Cryptographic Hardware and Embedded

Systems — CHES 2001 (Ç. Koç, D. Naccache, and C. Paar, eds.), (Paris, France),

pp. 266–277, Springer-Verlag, May 2001.

[3] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A Ring Based Public Key

Cryptosystem,” in Algorithmic Number Theory: Third International Symposium

(ANTS 3) (J. P. Buhler, ed.), vol. LNCS 1423, pp. 267–288, Springer-Verlag,

June 21–25 1998.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems,” Communications of the ACM, vol. 21,

pp. 120–126, February 1978.

85

BIBLIOGRAPHY 86

[5] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation,

vol. 48, pp. 203–209, 1987.

[6] A. J. Menezes, Elliptic Curve Public Key Cryptosystems. Boston, Massachusetts,

USA: Kluwer Academic Publishers, 1993.

[7] J. Hoffstein and J. H. Silverman, “Optimizations for NTRU,” in Proceedings

of Public Key Cryptography and Computational Number Theory, de Gruyter,

Warsaw, September 2000.

[8] J. H. Silverman, “Communitive NTRU: Pseudo-code Implementation,” Tech.

Rep. 1, NTRU Cryptosystems, Inc., August 1997. Version 2.

[9] H. Cohen, A Course in Computational Algebraic Number Theory. Berlin, Ger-

many: Springer-Verlag, 1993.

[10] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Au-

tomata,” Sov. Phys. Dokl. (English translation), vol. 7, no. 7, pp. 595–596, 1963.

[11] J. Hoffstein and J. Silverman, “Small Hamming Weight Products in Cryptogra-

phy.” preprint, September 2000.

[12] J. H. Silverman, “Almost Inverses and Fast NTRU Key Creation,” Tech. Rep. 14,

NTRU Cryptosystems, Inc., March 1999. Version 1.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. Boca Raton, Florida, USA: CRC Press, 1997.

BIBLIOGRAPHY 87

[14] Xilinx Inc., San Jose, California, USA, VirtexTM 2.5V Field Programmable Gate

Arrays, 1998.

[15] M. Flynn and S. Oberman, Advanced Computer Arithmetic Design. New York:

John Wiley & Sons, INC., 2001.

[16] I. Koren, Computer Arithmetic Algorithms. Prentice-Hall, 1993.

[17] R. Katz, Contemporary Logic Design, ch. 5. Addison-Wesley Publishing Co.,

1993.

[18] H. Ling, “High Speed Binary Adder,” in IBM Journal of Research and Develop-

ment, vol. 25 of 2-3, pp. 156–166, May 1981.

[19] M. Graphics, “ADK HTML Data Book TSMC 0.35 Micron FAST.”

http://ge.ee.wustl.edu/HEP/ADK/HTMLdatabook/TSMC035databook.htm.

[20] E. Savaş, A. F. Tenca, and K. Koç, “A Scalable and Unified Multiplier Archi-

tecture for Finite Fields GF (p) and GF (2m),” in Workshop on Cryptographic

Hardware and Embedded Systems — CHES 2000 (Çetin K. Koç and C. Paar,

eds.), (Berlin, Germany), pp. 277–292, Springer-Verlag, LNCS 1965 2000.

[21] J. Großschädl, “A Bit-Serial Unified Multiplier Architecture for Finite Fields

GF (p) and GF (2m),” in Workshop on Cryptographic Hardware and Embedded

Systems — CHES 2001 (Ç. Koç, D. Naccache, and C. Paar, eds.), (Paris, France),

pp. 206–223, Springer-Verlag, May 2001.

BIBLIOGRAPHY 88

[22] J. Goodman and A. P. Chandrakasan, “An Energy-Efficient Reconfigurable

Public-Key Cryptography Processor,” IEEE Journal of Solid-State Circuits,

vol. 36, pp. 1808–1820, November 2001.

[23] G. Gaubatz, “Versatile Montgomery Multiplier Architectures,” Master’s thesis,

ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts,

USA, May 2002. Work in Progress.

[24] P. L. Montgomery, “Modular Multiplication without Trial Division,” Mathemat-

ics of Computation, vol. 44, pp. 519–521, April 1985.

[25] Ç. K. Koç, T. Acar, and B. Kaliski, “Analyzing and Comparing Montgomery

Multiplication Algorithms,” IEEE Micro, pp. 26–33, June 1996.

[26] Ç. K. Koç and T. Acar, “Montgomery Multplication in GF (2k),” Design, Codes,

and Cryptography, vol. 14, no. 1, pp. 57–69, 1998.

[27] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans-

actions on Information Theory, vol. IT-22, pp. 644–654, 1976.

