


Abstract

Emergence of autonomous vehicles (AVs) offers the potential to fundamen-

tally transform the way how urban transport systems be designed and deployed,

and alter the way we view private car ownership. In this paper we advo-

cate a forward-looking, ambitious and disruptive smart cloud commuting system

(SCCS) for future smart cities based on shared AVs.

Employing giant pools of AVs of varying sizes, SCCS seeks to supplant and

integrate various modes of transport – most of personal vehicles, low ridership

public buses, and taxis used in todays private and public transport systems – in

a unified, on-demand fashion, and provides passengers with a fast, convenient,

and low cost transport service for their daily commuting needs.

To explore feasibility and efficiency gains of the proposed SCCS, we model

SCCS as a queueing system with passengers’ trip demands (as jobs) being served

by the AVs (as servers). Using a 1-year real trip dataset from Shenzhen China,

we quantify (i) how design choices, such as the numbers of depots and AVs, affect

the passenger waiting time and vehicle utilization; and (ii) how much efficiency

gains (i.e., reducing the number of service vehicles, and improving the vehicle

utilization) can be obtained by SCCS comparing to the current taxi system.

Our results demonstrate that the proposed SCCS system can serve the trip

demands with 22% fewer vehicles and 37% more vehicle utilization, which shed

lights on the design feasibility of future smart transportation systems.
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Chapter 1

Introduction

1.1 Motivation

In most urban cities today, there are two primary modes of transit: i) Public

transit services such as buses, subways which run along fixed routes with fixed

timetables, and have limited coverage areas. These limitations mean that one

cannot take public transport between any two arbitrary points in a city. ii)

private transit services such as taxis, shared-van shuttles, (mobile app-based)

ride-hailing services (e.g., Uber or Lyft) are largely “on-demand” – although

their service may not be immediate or real-time. However, taxi and ride-hailing

services can be expensive, limiting them mostly for ad hoc use, namely, occasional

short trips.

The emergence of autonomous vehicles1 (AVs) although will offer new po-

tentials to address the challenges facing the current urban transit systems, and

challenge and transform how we view and design public and private transport

systems in future smart cities. For instance, with their autonomy, would it

still make sense to take “self-driving” cars to work, but have them spend most

time parked, when in fact they can go somewhere by themselves? We envisage

a forward-looking, ambitious and disruptive cloud commuting based transport

system – smart cloud commuting system (SCCS) – for future smart cities based

1Colloquially known as “self-driving cars” – however in our study we will use the term AVs
to refer to not only passenger cars, but also “self-driving” shuttles, vans or busses; namely,
AVs of varying sizes.
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on shared AVs.

Employing giant pools of AVs of varying sizes, SCCS seeks to supplant and

integrate various modes of transport – most of personal vehicles, taxis, and low

ridership public buses used in today’s private and public transport systems – in

a unified, on-demand fashion, and provides passengers with a fast, convenient,

and low cost transport service for their daily commuting needs.

1.2 Smart Cloud Commuting System(SCCS)

As alluded in the introduction, today’s urban transit systems suffer many

well-known shortcomings. Taking taxis as an example, Fig. 1.1 shows that on

average more than 60% of taxis are idle over time. Now imagine a (perhaps

not-so-distant) future where we live in a smart city with autonomous vehicles or

“self-driving” cars. How would the transport systems, both public and private,

be designed in such a smart city? What transport services would be needed or

plausible? Our envisaged SCCS is a bold attempt to re-imagine and re-design

transport for future smart cities by fusing information technologies with AVs

to offer a new kind of mobility-as-a-service that targets more specifically daily

commuting needs for most (if not all) users in cities and metro areas (urban

and suburban). Similar to today’s (mobile-app-based) ride-hailing services, each

AV is controlled by (centralized) dispatch servers residing in the cloud. Once a

passenger requests a trip, the cloud servers will arrange an AV to pick up and

send the passenger to the destination. When a trip demand is completed, the

vehicle can be re-used for other passengers. Employing giant pools of shared AVs

of varying sizes, SCCS aims to provide users with a fast, convenient, and low

cost transport service to meet their daily commuting needs. The scale and the

resulting abilities to maximize system efficiencies via shared AVs differentiate our

envisaged SCCS from today’s ride-hailing services, which are designed primarily

to serve ad hoc trips. In other words, the AVs in SCCS cannot be replaced by the

vehicles with drivers like taxis and Uber cars. One key difference between AVs

and taxis or Uber cars is that each taxi or Uber car with a driver is maximizing
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its own gain, and each taxi/Uber car acts as a selfish player without caring much

on the global gain in terms of transit system efficiency. etc. While with AVs,

SCCS system can be designed to maximize a global system efficiency.

Figure 1.1: Idling taxis

We postulate the following four key aspects of system efficiency gains that

could potentially be achieved in a smart cloud commuting system with shared

AVs. (i) Temporal multiplexing gain through time-sharing of AVs: by leveraging

“bursty” travel demands and sharing of AVs over time, the number of AVs needed

would be significantly less than what would be if every user had his or her

personal AV. This is analogous to the statistical multiplexing gain attained by

a packet-switched data network. (ii) Payload multiplexing gain through ride-

sharing among users: By utilizing AVs of varying sizes to enable ride-sharing

among users (similar to todays car-pooling, shared shuttle or transit services,

but leveraging the autonomy of AVs), the number of AVs needed can be further

reduced. (iii) Elastic demand gain through smart trip scheduling: Many travel

demands are elastic in nature (a trip to a store for grocery shopping now may

not be crucial and thus can be delayed, say, for 30 minutes). Even for peak

hour travel demands, as long as a user can reach her destination within a desired

time window, the trip can be scheduled dynamically to leverage such elasticity

to achieve additional system efficiency gain. (iv) Road network efficiency gain

through intelligent control of AVs: With fewer vehicles on the road through

shared AVs, road congestion can be alleviated or avoided, thus shortening trip

times. Road network efficiency gain can be further increased by packing more
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AVs during peak demands (e.g., by reducing inter-car spacing) without creating

safety issues, and by intelligent routing of AVs through less congested roads.

As a first attempt at studying the feasibility of the envisaged SCCS, in this

paper we focus primarily on the first aspect of the system efficiencies, namely,

temporal multiplexing gain through time-sharing of AVs, that can be potentially

achieved through SCCS. In particular, by modeling SCCS as a queueing system,

we investigate how various design choices – such as the numbers of vehicles and

the number/locations of depots – affect the quality of services (QoS) of passengers

(e.g., waiting time) and the overall system performance (e.g., vehicle utilization).

Notice that SCCS does not necessarily require the presence of depots. In this

paper, we explore the trade-off between the centralized and decentralized SCCS

system design. Clearly, current system design like Uber is using a fully decen-

tralized approach. We use the number of depots as a parameter to control the

trade-off and evaluate the system effiency gain. When the number of depots is

sufficiently large, it becomes a decentralized system. For this study, we utilize

a real-world, taxi trip dataset from Shenzhen, China over a period of one year.

One interesting and important feature of this dataset lies in that due to the lim-

ited area coverage (and the fact that the public transit capacity cannot meet the

demands during the peak hours), many residents in the city rely on taxis for daily

commuting needs (see Fig. 1.2). This feature enables us to study the feasibility

of the proposed SCCS to meet daily commuting needs and compare its system

performance with that of the existing taxi system.

Figure 1.2: Request pattern
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1.3 Contribution

We postulate the four key aspects of system efficiency gains that could poten-

tially be achieved in a smart cloud commuting system with shared AVs (see

Section 1.2). This paper constitutes a first attempt at exploring the feasibility

and efficiency gains of the proposed SCCS; due to space limitation, we focus

primarily on the temporal multiplexing gain through time-sharing of AVs. To

this end, we model SCCS as a queueing system with passengers’ trip demands

(as jobs) being served by the AVs (as servers). Using a 1-year real trip dataset

from Shenzhen China, we quantify (i) how various design choices – such as the

number of shared AVs and number and locations of depots (where idle AVs are

stationed) – affect the passenger waiting time and vehicle utilization; and (ii)

how much system efficiency gain (e.g., in terms of number of AVs and vehicle

utilization) can be attained through SCCS.

• Utilizing a large-scale taxi trip dataset, we develop generative models to

capture the arrival and service patterns of urban taxi trip demands over

different time periods of the day.

• By modeling SCCS as an M/G/k queuing system, we propose an theoreti-

cal framework to estimate the average waiting time of all passengers, given

the total number of AVs and the number/locations of depots.

• We investigate the impacts of different design choices, e.g., number of AVs

and number/locations of depots, on passenger waiting time and vehicle

utilizations.

• We quantify the temporal multiplexing efficiency gain of time-sharing AVs

achieved via SCCS, and compare that with the current urban taxi system.

The evaluation results obtained using the 1-year taxi trip dataset demon-

strate that the proposed SCCS system can serve the trip demands with

22% less vehicles and 37% more vehicle utilization.

The rest of the paper is organized as follows. In Section ??, we motivate the

proposed SCCS and outline a queueing system model for its feasibility study. In
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Section III we present the overall methodology and detail the modeling frame-

work. In Section IV we describe the evaluation results using the Shenzhen taxi

datasets. The related work is discussed in Section V, and the paper is concluded

in Section VI.
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Chapter 2

Problem Statement

2.1 Modeling SCCS as a Queuing System

SCCS can be viewed as a queuing system. Passengers request for commute

services from SCCS. Their requests will be placed in a queue, if the servers (i.e.

AVs) are busy. Fig.2.1 shows the queuing model of SCCS, an arrival event is a

request received from a passenger, and a service event is the process of an AV

taking the passengers to the destination. As a queueing system, there are three

components charactering the system performances, including the arrival pattern,

service pattern and number of servers. Arrival pattern is the distribution of

Figure 2.1: Queuing system

the arrival events coming into the queuing system. We can use arrival rate and

arrival interval to capture the arrival pattern of a queuing system. Service pattern

captures the distribution of the service time.
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Definition 1 (Arrival interval A) The arrival interval is the time period be-

tween each two successive trip requests.

Definition 2 (Arrival rate λ) The arrival rate is the number of trip requests

arriving the system within a unit time slot.

Definition 3 (Service time S) The service time is the time period when a self-

driving vehicle is dispatched to serve a passenger.

If the passengers’ requests arrive the queue while all of the AVs are busy, the

requests will be placed in a queue to wait for the next available AV. The waiting

time indicates how long a passenger waits in a queue, which characterizes the

quality of experience of the passenger in SCCS.

Definition 4 (Waiting time W ) The waiting time is the time period from the

arrival of a passenger request to an AV being dispatched to the passenger.

2.2 Problem Definition

Thanks to the fast development of location sensing technologies, the in-

creasing prevalence of embedded sensors inside mobile devices, vehicles has led

to an explosive increase of the scale of urban mobility datasets, including the

trip demands data of passengers in urban areas.

Definition 5 (Trip demand) A trip demand of a passenger indicates the in-

tent of a passenger to travel from a source location src to a destination location

dst from a given starting time ts with an expected trip duration ∆t, which can be

represented as a 4-tuple 〈src, dst, ts,∆t〉.

Fig. 1.2 shows the temporal distribution of urban taxi trip demands for

each 10-minute time interval in Shenzhen from 03/04/2014− 03/06/2014, which

exhibits a clear diurnal pattern. Such pattern is driven by the daily commuting

needs between residential and working locations. Given such strong diurnal

8



pattern, we divide each day into a few time intervals, and focus on the daily

dynamics of trip demands over intervals.

Problem definition. Given the total number of available self-driving vehicles k

and the number of depots d, we aim to (1) estimate the impact of design choices

(in k and d) on passenger waiting time and vehicle utilization; and (ii) evaluate

the efficiency gains of SCCS comparing to the current taxi system, in terms of

numbers of vehicles needed and the vehicle utilization.
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Chapter 3

System Architecture

3.1 Overview

Fig. 3.1 illustrates our solution framework, that takes two sources of urban

data as inputs and contains four key analytical stages: (1) trip demands extrac-

tion, (2) depots deployment, (3) arrival and service pattern extraction (4) system

performance evaluation.

Figure 3.1: Framework

• Stage 1 (Trip demands extraction) This stage aims to extract the

passengers’ trip demands from the collected taxi GPS data. In our datasets,
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each taxi trajectory consists of a sequence of time-stamped GPS points,

where a GPS point is collected every 40 seconds on average. A GPS data

point includes the time stamp, latitude, longitude, and binary indicator

(indicating if a passenger is aboard). Moreover, the raw trajectory data

are noisy, with spatial errors from the groud-truth locations, due to the

accuracy limit of the GPS devices. By cleaning the taxi GPS data, we

can extract the passenger taxi trips, indicated by four key elements: (1)

starting location src, (2) ending location dst, (3) starting time ts, (4) trip

duration ∆t. As a result, each trip represents a passenger demand.

• Stage 2 (Depots deployment) Given the number of depots d and the

number of AVs k, this stage aims to identify the depot locations and assign

AVs to depots. First, the urban area is divided into d grids with equal

sizes. Second, the trip demands extracted in stage 1 can be aggregated

into each grid based on the source locations. Then, for each grid with trip

demands, we will deploy a AV depot. To reduce the dispatching distance,

the depot location is obtained by the average geo-location of all trip source

locations inside the grid. If the location is not exactly on a road segment,

the depot location will be shifted to the nearest road network.

• Stage 3 (Arrival/Service pattern extraction) With a particular SCCS

system design (from stage 2), this stage will examine the arrival and ser-

vice patterns. The trip requests arrive in a sequence of time stamps, i.e.,

{ts1 , ts2 , ..., tsm}. We will quantify the arrival pattern of such time sequence.

Moreover, with all trip durations (as system service times), we will char-

acterize the service pattern.

• Stage 4 (System performance estimation) With generative models for

arrival and service patterns of the urban trip demands, we can naturally

view the taxi service system as a queuing system, with trip demands as the

customers and taxis as the servers. In Stage 4, by modeling the SCCS as

an M/G/k queueing system, we will quantify the average waiting time of

passengers and vehicle utilizations.
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3.2 Data Description

Our analytical framework takes two urban data sources as input, including (1)

taxi trajectory data and (2) road map data. For consistency, both datasets are

collected in Shenzhen, China in 2014. We introduce the details of these datasets

below.

Taxi trajectory data are GPS records collected from taxis in Shenzhen, China

during 2014. There were in total 17, 877 taxis equipped with GPS sets, where

each GPS set generates a GPS point every 40 seconds on average. Overall, a total

of 51, 485, 760 GPS records are collected on each day, and each record contains

five key data fields, including taxi ID, time stamp, passenger indicator, latitude

and longitude. The passenger indicator field is a binary value, indicating if a

passenger is aboard or not.

Table 3.1: Road Map Data in Shenzhen

Type Counts Type Counts
Motorway 563 Secondary 868

Trunk 258 Tertiary 1,393
Primary 745 Unclassified 16,829

Road map data. In our study, we use Google GeoCoding [1] to retrieve a

bounding box of Shenzhen, which is defined between 22.44◦ to 22.87◦ in latitude

and 113.75◦ to 114.63◦ in longitude. The covered area covers a total of 1, 300km2.

Within such a bounding region, we crawl road map data in Shenzhen from Open-

StreetMap [3]. The road map data contain six levels of road segments, which are

detailed in Table 3.1 and visualized in Fig.??.

3.3 Demands Extraction

In stage 1, we clean and extract the urban trip demands from the raw trajectory

data.

Trajectory data cleaning. The trajectory data are noisy in nature. First of

all, the GPS locations are with errors of around 15 meters. Secondly, there are
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GPS points outside the bounding box of Shenzhen. We conduct two steps to

clean the noisy trajectory data, including map-matching and spatial filtering.

Map-matching is a process that project the noisy GPS locations back to the

road segments, which has been extensively studied in the literature We apply

the map-matching technique [7] to our dataset. Secondly, we apply a simple

spatial filtering step to remove GPS records that are outside the bounding region

of Shenzhen.

Trip demand extraction. The passenger indicator field in the taxi trajectory

data is the key enabler to extract the taxi trip demands. A taxi trip can be

represented as a sequence of taxi GPS points with the passenger indicator as 1.

The first and last GPS locations of the taxi trip capture the source/destination

locations (src, dst) of a trip demand, and the corresponding time stamps char-

acterize the trip starting/ending time ts/te. The trip duration can be obtained

as the elapsed time from ts to td, i.e., ∆t = te− ts. Once we have all trip demand

tuples 〈src, dst, ts,∆t〉, we observe that there are a small number of trip demands

with extremely short or long trip durations. From the size of the bounding region

of Shenzhen and the road map, any trip could be done within 2 hours (including

the rush hours with traffic congestion). Moreover, people would not take a taxi

trip shorter than 2 minutes in general. Thus, we simply filter out those noisy

taxi trips longer than 2 hours or shorter than 2 minutes, which may be due to

the issues with hardware or data collection processes.

After the two steps, we obtain a total of 595, 501 daily trip demands from

our trajectory data. Fig.?? and Fig.?? show the geo-distributions of source and

destination locations in Shenzhen during the morning rush hours 6–9AM on

March 6th, 2014.

3.4 Depots Deployment

Given the number of depots d and total number of available vehicles k, our

system deployment model works as follows: (1) road map partitioning, (2) depot

placement, (3) vehicles assignment.

13



Step 1: Road map partitioning. We first get the boundary of Shenzhen

from OpenStreetMap, which is defined between 22.44◦ to 22.87◦ in latitude and

113.75◦ to 114.63◦ in longitude. Then, we partition the area of the city into d

grids with the sizes.

Step 2: Depot placement. After the regions are divided, we try to deploy

one depot in each region, and totally d depots will be deployed. First, we aggre-

gate the trip demands extracted in stage 1 into each grid. In SCCS, the request

in a grid will be served by the depot in that region. We allocate those demands

into grids based on their source locations. Then, to reduce the dispatching dis-

tances, in each grid, the center location of all the source demand locations are

calculated to place the depot. Moreover, if the center source locations is not on

the road network, it will be shifted to the nearest road segment. Fig.3.2 shows

the result of road map partition and depot deployment. Note that one region is

in the ocean, and we do not deploy a depot in that region.

Step 3: Vehicle assignment. After deploying the depots, the vehicles are

assigned to each depot according to the portion of demands in the region. Let N

be the total demands in the urban area, Ni be the number of demands in region

i. The total number of vehicles assigned to region i is thus ki = k ·Ni/N .

Figure 3.2: Depot placement in Shenzhen

3.5 Arrival/Service Pattern

SCCS ststem can be viewed as a queuing system. Each trip demand and the

14



(a) 12am-6am (b) 6am-12pm

(c) 12pm-6pm (d) 6pm-12am

Figure 3.3: Arrival rate ( #requests/s )

corresponding trip represent a customer arrival event and a service event, respec-

tively. Self-driving vehicles are the servers in the system. Now we characterize

the arrival pattern and service pattern from the trips.

Arrival pattern analysis. We chose the time unit as one second, and count the

number of arrived trip demands over each second in demand data we obtained

from Stage 1. Fig.3.3 shows the distributions of the arrival rate in four different

intervals of a day. The x-axis represents the arriving rates and the y-axis is the

percentage of demands. The blue dots are obtained from original demands data,

which nicely fit Poisson distributions. The green curves are the best fitting curves

with Poisson distribution. The parameters λ’s of Poisson distributions are the

mean arrival rates, which are listed in Table 3.2 for different time intervals in a

day.

Table 3.2: Parameters of arrival rate distributions

Time slot 12am-6am 6am-12pm 12pm-6pm 6pm-12am
λ 4.1375 7.6189 8.4415 9.0023
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Service pattern analysis. As shown in Fig.3.4, the service time of an AV

include three time intervals. The first part is pickup time, namely, the passenger

sends a request to the cloud servers to request a trip service. The cloud servers

arrange a vehicle to pick the passenger up, if there is an available vehicle in the

depot, otherwise, the passenger would wait in the queue. After the vehicle picked

Figure 3.4: Service process in SCCS

up the passenger, it will take the customer to the destination, during which the

passenger experiences in-vehicle time. When the trip is completed, the vehicle

returns to the nearest depot to the passenger dropoff location, which is the return

time.

Note that a complete service time include all three time intervals, i.e.,

pickup, in-vehicle, and return times. Though passenger does not experience

the return time, it is counted, because the vehicle is still “reserved” and cannot

serve other passengers (on the trip back to the depot)1.

Since each request will be served by a vehicle from the depot in the source

region, and the destination of the demand may be in a different region, a vehicle

balancing approach is required. We adopt a simple schedule-based approach for

vehicle rebalancing: Every 12 hours, the vehicles will be rebalanced to the initial

numbers of vehicles. Moreover, the on-road travel time can be estimated by

OSRM API [2] from one place to another. Thus, the picking up time and the

returning time of each demand can be estimated by the API.

1Note that the system can be further designed to allow vehicles to direct pick up the next
passengers without going back to depot, which require more complex system design model. To
simplify our feasibility and performance gain analysis, we adopt this simple model, and leave
it for our future work to evaluate more complex system design.
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(a) 1 depot (b) 2 depots

(c) 3 depots (d) 4 depots

(e) 8 depots (f) 16 depots

Figure 3.5: Service time(k = 12000)

To extract the service time pattern from the demand data, we choose the unit

time as minute. Taking k = 12000 as an example, Fig.3.5 show the distributions

of service time given different number of depots: 1,2,3,4,8,16 depots, in the 12pm-

6pm time slot on March 5th in 2014. The x-axis represents the service time and

the y-axis is the percentage of demands. The black dots are from the raw demand

data, which cannot be fitted by a simple distribution. Hence, the service pattern

follows a general distribution, denoted as G in queueing theory. The average

service times with different number of depots are listed in Table 3.3.

17



Table 3.3: Average service time

# Depots 1 2 3 4 8 16

S(min) 58.45 51.67 49.80 41.31 31.60 29.38

3.6 Estimating the system performance

Now, we are in a position to introduce our queuing theory based approach

to estimate the average waiting time in SCCS, given the number of available

vehicles k.

We have shown that the trip demands arrival rate follows a Poisson dis-

tribution, but the service pattern is general. When k vehicles are available in

SCCS, we can denote this queuing system as an M/G/k queue. It is still an

open question to exactly quantify the features of such a queue, such as waiting

time [8]. We employ the approximation algorithm [10] to estimate the average

waiting time in M/G/k queue by adjusting the mean waiting time in a corre-

sponding M/M/k queue. Equation (3.1) shows the approximation function of

the average waiting time in M/G/k queue. where E[WM/G/k] and E[WM/M/k]

are the expected waiting times of the M/G/k and M/M/k queues, respectively.

The M/M/k queue has the same mean service time as the M/G/k queue.

E[WM/G/k] =
C2 + 1

2
E[WM/M/k] (3.1)

where C is the coefficient of variation of the service time distribution in M/G/k

queue. In M/M/k queue, the average waiting time can be calculated in Eq (3.2).

E[WM/M/k] =
Erc(k, ρ)S

k − ρ
, k > ρ (3.2)

where ρ is the utilization in a queuing system, which equals to λS, and Erc(k, ρ) is

the Erlang C formula(Eq (3.3)), which indicates the probability that an arriving

customer has to wait, which is also the proportion of time that all k servers are
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busy. k > ρ ensures the system can reach the steady state.

Erc(k, ρ) =

kρk

(k−ρ)k!∑k−1
k=0

ρn

n!
+ kρk

(k−ρ)k!

(3.3)

Finally, we can approximate the average waiting time in M/G/k queue.

Taking one depot deployment as an example, the arrival rate in 12pm − 6pm

slot is 5.0594, and the average service time of the system is 3536.45249, so the

utilization ρ = 17876.4137, and the coefficient of variation of the service time

distribution C = 0.5563. Given the number of vehicles k = 18000, we can first

get Erc(18000, 17876) = 0.2547, which means that 25.47% of the time when all

of the servers are busy. Finally the approximate average waiting time is 4.0134

seconds.
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Chapter 4

System Evaluation

In this chapter, we use real taxi trip data to conduct experiments to evaluate

(1) the performance of the design choices of number of available vehicles k and

the number depots d. (2) the efficiency gain in SCCS comparing with current

taxi system.

4.1 Evaluation settings

Time intervals in a day. We observe that the trip demand arrival and

service patterns change dramatically over time intervals in a day. In our eval-

uations, we divide a day into 4 time intervals, we have the cutting-off times as

[12am, 6am, 12pm, 6pm]. and evaluate how the granularities affect the perfor-

mances of our proposes models.

Baselines. We compare the performances of our SCCS system (in different

design choices) with the current taxi system. To evaluate how our SCCS system

performs when serving the same set of trip demands in our taxi data, we employ

a data-driven simulation approach as follows: The real world trip demands arrive

by the order of their starting times. If there are available vehicles in its regional

depot, the waiting time of this demand will be 0. Otherwise, the waiting time is

the time interval from the starting time to the moment when a vehicle returns to

that depot. The results introduced below show that our SCCS can achieve several

efficiency gains comparing with the current transit system in vehicle utilization
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and number of vehicles needed.

Metrics. For the design choices, we use the customer in system time and

vehicle idle rate to evaluate the performance of the system. The efficiency gain

is evaluated by the number of vehicles needed, and the utilization of the vehicles

while serving the same amount of demands in our system and current urban taxi

transit system.

4.2 Design choices

4.2.1 Number of AVs

From the passengers’ perspectives, the service process consists of two parts:

passenger waiting time and in-vehicle time. The passenger waiting time includes

the system waiting time W 1 (as defined in Sec ??-B) and the picking up time.

We denote the total service time passenger experienced as the in-system time,

namely, the total of waiting time, pickup time, and in-vehicle time. The in-

system time is what passenger actually experiences, and is considered as the

quality of service the passenger received.

Taking 16 depots as an example, given the number of vehicles 9000, 10000,

11000, 12000, 15000, 20000. We can simulate the whole service in our SCCS

system, and get the passenger in-system time, which is shown in Fig.4.1. We can

observe that as we increase the number of vehicles, the passenger in-system time

decreases.

Moreover, Fig. 4.2 shows the average in-system time and the idle rate for

different numbers of AVs. With the increase of the total number of vehicles, the

in-system time decreases, which is because the waiting time becomes shorter.

However, the idle rate, which characterizes the portion of time that a vehicle

stays idle in the depot (Eq (4.1)), increases due to the increasing number of

over-deployed AVs.

1Note that the system waiting time is different from the passenger waiting time, where the
former is the time from the request arrival to the time a vehicle is dispatched, and the latter
includes both the system waiting time and pickup time.
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(a) 9000 vehicles (b) 10000 vehicles

(c) 11000 vehicles (d) 12000 vehicles

(e) 15000 vehicles (f) 20000 vehicles

Figure 4.1: the impact of total number of taxis

Ridle =

∑k
i=1 T

i
idle

k · T
, (4.1)

with T as the total amount of time in a day (i.e., 24 hours), and T iidle is the

amount of time the vehicle i spent in depot during the day.

Fig. 4.2 clearly indicates the trade-off between the waiting time and the idle

rate when changing the number of vehicles.

22



Figure 4.2: Tradeoff

4.2.2 Number of depots

The number of depots in our system can also have effects on the customer’s

experience. Taking k = 12000 for example, Fig. 4.5 shows the change of the

customer in-system time according to the number of depots, when we fixed the

number of AVs to be 12000. Fig. 4.5(a)–(f) shows that as we increase the number

of depots, the passenger in-system time distribution evolutes from high to low

in-system time. Moreover, Fig. 4.3–4.4 indicates how the average in-system,

waiting time changes, over different numbers of depots. The phenomena occurs

because the increase of the number of depots can reduce the picking up time and

the waiting time for each service.

Figure 4.3: Average in-system time Figure 4.4: Average passenger waiting
time
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(a) 1 depot (b) 2 depots

(c) 3 depots (d) 4 depots

(e) 8 depots (f) 16 depots

Figure 4.5: The impact of number of depots (k=12,000)

4.3 System efficiency gains

By comparing our SCCS with the current taxi system, we now show that

the SCCS system can achieve efficiency gains in several aspects, including (1)

the higher vehicle utilization, (2)the less number of vehicles needed.

4.3.1 Utilization of vehicles

In Fig. 1, we show that most of the taxis are idling on the road over days,

which means the utilization of the taxis in current taxi system is low. At each
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time slot, e.g., in 1 hour, we can obtain a ratio of in-service vehicle vs the total

number of vehicles. We quantify the utilization of the vehicles as average ratio

of in-serve vehicles over all time slots, defined as follows.

U =

∑Tslots
i=1 (N busy

i /Ni)

Tslots
, (4.2)

where Tslots is the total number of time slots in a day, N busy
i and Ni are the

number of in-service and all vehicles at time slot i.

The utilization of the vehicles in our system is shown in Fig. 4.6 when d = 16.

Taking k = 11000 as an example, the utilization is 79.1%, while the utilization

of the taxis in Shenzhen was 42.02%.

Figure 4.6: utilization of vehicles

4.3.2 Number of vehicles needed

We can count the number of taxis in Shenzhen taxi system from our tra-

jectory data, which was in total 9, 606 taxis. When using SCCS to serve the

same trip demands, the number of vehicles would have impacts on the trade-off

between the passenger in-system time Tin−system and the vehicle idle rate Ridle

(see Fig. 4.2). Notice that the Tin−system implies the Quality of Experience (QoE)

of a passenger. The smaller Tin−system is, the better QoE is. On the other hand,

Ridle indicates the system operation cost. A large Ridle infers a low utilization of

vehicles, which will increase system operation cost, thus the passengers’ travel

cost. So we define a measure V-value in Eq.(4.3) as a combination of the two
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measures to quantify the system performance.

Vk = αTin−system + (1− α) ·Ridle, (4.3)

with α as a design trade-off parameter within [0, 1], which captures the design

trade-off between the passenger QoE and passenger travel cost. The smaller

V-value indicates better performance. Taking 32 depots and α = 0.01 as an

example, the V-values are listed in Table 4.1. The most appropriate number of

vehicles in 32 depots is 7500, which shows a 22% reduction on needed vehicles.

Table 4.1: V-values

# Vehicles 7k 7.5k 8k 9k 12k 20k
V 0.465 0.426 0.429 0.462 0.586 0.801
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Chapter 5

Related Work

To the best of our knowledge, we are the first to propose a Smart Cloud

Commuting System (SCCS) for future smart cities with AVs, and quantify its

feasibility and efficiency gains. In this section, we introduce two research areas

that are related to our work, including (1) mobility-on-demand system, and (2)

urban computing.

5.1 Mobility-on-demand system (MoD)

MoD ( [4, 15–17, 19, 22, 24]) is an emerging concept in solving urban trans-

portation problems, such as unbalanced supply-demand rates and traffic con-

gestion. MoD aims to provide transit supplies, such as shuttle/taxi services

according to dynamic urban trip demands. In [16], authors design a simulation

platform to explore the performance of autonomous vehicle based MoD system

under various vehicle dispatching models. In another work [4], a general math-

ematical model is proposed, which could make real-time assignment decision in

high-capacity ride-sharing system. This model is designed to handle a large

number of passenger demands and dynamically generate optimal assignment so-

lution to urban trip demands. In [22] and [17], authors propose two spatial

queueing-theoretical models, that capture salient dynamic and stochastic fea-

tures of customer demand, for Autonomous mobility-on-demand system which

has autonomous vehicles in it. Differing from these works with focus on the
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(ride-sharing) dispatching algorithms for load balancing of vehicles, we employ

real world data (rather than simulation) to analyze the underlying trip demand

patterns and evaluate design trade-offs and efficiency gains under a unifying

SCCS framework.

5.2 Urban Computing

Urban Computing is a thriving research area which integrates urban sensing, data

management and data analytic together as a unified process to explore, analyze

and solve crucial problems related to people’s everyday life [5,6,9,11–14,18,20,21,

23]. For examples, [11] presents a data-driven optimization framework to deploy

charging stations and charging points with the goal of minimizing the seeking

and waiting time of electric vehicle drivers. [18] develops novel models to predict

future crowd flow traffic in subway stations. [20] introduces a method to estimate

the travel time in a road segment using sparse trajectories data. [21] proposes

a model to discover urban function zones by exploring latent activity trajectory

data. In [23], the authors propose a method to diagnose the noises environment

in New York city by extracting ubiquitous data over the city. Differing from these

works, in this paper, we propose a future smart cloud commuting system (SCCS)

with shared autonomous vehicles, and quantitatively evaluate the feasibility and

efficiency gains of SCCS.
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Chapter 6

Conclusion

In this thesis, we advocate a Smart Cloud Commuting System (SCCS) for

future smart cities with shared AVs to meet daily commuting demands of a

large urban city. We have outlined four aspects of system efficiencies that can

potentially be attained via the envisaged SCCS. As a first attempt at studying its

feasibility, in this paper we develop generative models to capture fundamental

trip demand arrival and service patterns, and develop a novel framework to

explore the impact of design choices on the temporal multiplexing gains (through

time-sharing of AVs) that can be achieved by SCCS. We conducted extensive

evaluations using a large scale urban taxi trajectory dataset from Shenzhen,

China. The results demonstrate that SCCS can reduce the number of vehicles

by 22%, and improve the vehicle utilization by 37%.

As part of our future work, we plan to further incorporate the vehicle re-

balancing algorithms that allow vehicles to serve other passengers without going

back to depots in this study. Furthermore, we will extend our current modeling

framework to investigate the other three aspects of the system efficiencies afforded

by the envisaged SCCS by the effects of ride-sharing, smart trip scheduling and

AV routing, and so forth.
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