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Abstract 
 
 
 

Polarizable force field has been successfully used in molecular modeling for 

years, especially in biological and protein simulations. In this research thesis, 

development of a new polarizable force field ―POSSIM (POlarizable Simulations with 

Second order Interaction Model) involving electrostatic polarization is described                  

and parameters for several protein residues were produced.                       

 
 

In this research thesis, the POSSIM force field was extended to the side chains 

of the following residues: lysine, glutamic acid, prontonated hisidine, phenylalanine and 

tryptophan. This work involved producing parameters for methyl ammonium, acetate 

ion, imidazolium cation, benzene and pyrrole molecules. The parameters fitting 

procedure starts from the molecular complex with dipolar electrostatic probes of a 

many-body system to produce polarizabilities, compute the energies, then charges and 

Lennard-Jones parameters are produced by fitting to gas-phase dimerization 

calculations, followed by the torsional parameters fitting and end up with the pure liquid 

simulations. In all the cases, three-body energies, dimerization energies and distances 

agree well to the accurate quantum mechanical results. The final parameters obtained 

assured the error of less than 2% in the heat of vaporization and average volume results 

compared with the available experimental data. 

 

Unlike the quantum mechanical calculations, the polarizable force field       

                                                 i 



 computations require a relatively small amount of computational resources. Moreover, 

compared to fixed-charges empirical force fields, polarizable force fields are much more 

accurate in a number of energy calculations. In the following chapters, the results 

obtained with this particular polarizable force field are discussed. 
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Chapter 1      Introduction 
 
 
 

Computational chemistry has been widely and successfully used in chemistry and 

biochemistry research[1][2]. It permits to predict and explain both structures and energetics 

of biomolecules. The main issue in computational chemistry methods is usually 

calculating energies of the molecular systems. Even if a project is focused on structure 

prediction, this is usually done by finding the potential energy minimum. Quantum 

mechanics (QM) has been an approach to energy calculations for decades[3]. However, 

application of QM to protein simulations is problematic for a number of reasons. First, 

QM calculations need prohibitively large computational resources when dealing with 

large size systems. Second, QM calculations can produce different results when using 

different levels of theory, and the deviation can be very noticeable for both large and 

small systems. 

 
Empirical force fields are used to overcome the above difficulties. A force field is 

a group of functions and parameters which describe molecular system energetics. They are 

derived from quantum mechanical calculations and experimental data. Many traditional 

force fields used for macromolecular systems use Hamiltonians (total energy expressions) 

which contain several functionally common parts: valence bond stretching, valence angle 

bending, torsional energies, Coulomb and Lennard-Jones terms for non-bonded 

interactions. Eq.(a) is common to such force fields including AMBER
[4]

, 

CHARMM
[5][6]

, and OPLS
[7]

, among others. The standard forms of these force fields 
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use fixed Coulomb charges
[8]

. 

 
 
 
 
 
 
 
 
 
 
 
 
 

There are also some additional or alternative terms beyond Eq.(a). A number of 

force field including higher order terms, for example, to treat the bond and valence 

terms
[9][10][11][12][13][14]

, while others involved the alternative use of a Morse function 

for bonds
[15][16]

. For non bonded portion of potential energy, the alternate form 

involves both treatment of both van der Waals and electrostatic interactions. For 

example, a buffered LJ 14-7 term is used in MMFF force field, the exponential term 

used by Buckingham potential for repulsion treatment
[17]

. However, although this kind 

of alternative can treat repulsive wall more accurately
[18]

, the harmonic internal terms 

in earlier force fields suggest that for biomolecular simulations near room temperature, 

the 12-6 LJ terms appears to be adequate. 

Such fixed-charges force fields have achieved success in some subjects. For 

example, a Monte Carlo simulation of efavirenz(Sustiva) bound to HIV-1 reverse 

transcriptase(HIV-RT) calculated by MC/FEP using MCPRO provided confidence in the 

predicted structure for the efavirenz/HIV-RT complex(Figure 1)
[22][24].

 Another 

successful case is the folding of U(1-17)T9D heptadecapeptide. The backbone RMSD 

between the simulated structure by MCPRO, OPLS-AA force field, and the NMR 
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structure is 2.5Å(Figure 2)
[22][23].

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A configuration from a Monte Carlo simulation of efavirenz(Sustiva) bound to HIV-1 
reverse transcriptase (HIV-RT). 
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Figure 2. Folding of the U(1-17)T9D heptadecapeptide using MCPRO, the OPLS-AA force field, GB/SA 
hydration, and the CRA backbone sampling algorithm. Left: start of the MC run. Middle: after 24 million 

MC steps. Right: NMR structure 1e0q. The backbone RMSD is 2.5Å between the computed  
and NMR  structures. 

 

However, all the fixed-charges force fields described above have a very significant 

shortcoming. These models cannot describe redistribution of atomic partial charges. 

Therefore, they are not able to reproduce the response to changes in the electrostatic 

environment. Here is an example of showing that the absence of polarization can be fatal to 

the calculations. The inhibitor SCH66336 (4-{2-[4-(3,10-dibromo-8-chloro-6,11-dihydro-

5H-benzo[5,6]cyclohepta[1,2-B]pyridin-11-yl)piperdin-1-yl]-2-oxoethyl} piperidine-1-

carboxamide) is known to form a stable binding with the protein farnesyl transferase 

(Figure 3). Calculations of this complex’s formation energy were carried out with the 

OPLS-AA and the PFF. The binding energy results from non-polarizable OPLS-AA and 

PFF are +55.84 kcal/mol and –28.04kcal/mol, respectively. The negative value of energy 

from PFF agrees with the existence of the stable protein-inhibitor complex. It can be 

concluded that explicit polarization is essential in 
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researching (at least in some cases) farnesyl transferase inhibition. This is why it has 

been widely acknowledged that including polarization into a force field calculation is 

very often desirable or even crucial. There are several ways to deal with this problem 

in terms of the functional form. Some examples include fluctuating charge, Drude 

oscillator and induced dipole models. The induced point dipole method is probably the 

most traditional one due to its intuitive physical basis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. SCH66336 (magenta) in complex with farnesyl transferase, PDB 1O5M 
 
 
 

The explicit inclusion of polarizability is showing next significant 

improvement in the non bonded interactions of force field
[19][20][21]

. Briefly, a term 

that describes the energy determined by polarization of charge distribution is included 

into the potential energy function. 

 

In this research thesis, we are presenting a polarizable force field based on 

induced point dipoles which is designed for organic and protein simulations. In order 

to avoid the usual problem of large CPU time and memory consumption in polarizable 
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calculations, we employ an approximation described in the background part. 
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Chapter 2      Background 
 

 

2.1 Introduction 
 
 

This chapter includes the necessary theoretical background of PFF(polarizable 

force field). First of all, the basic theories of OPLS-AA force field were introduced, and 

followed by the transition from empirical force field to polarize force field. The last 

part of the background explains the parameterization procedure for producing 

parameters in POSSIM software package. 

 

2.2 From Fixed-Charges Force Field to Polarizable Force Field 
 
 

2.2.1 OPLS-AA fixed-charges force field 
 
 
 

OPLS-AA fixed-charges force field developed by Prof. W.L.Jorgensen 

group
[1]

 is the basic foundation of the polarizable force field introduced in this research 

thesis. Thus, a brief introduction about OPLS-AA is necessary and helpful. 

 

In OPLS-AA force field, the total energy of the system Etot is calculated 

as following equation: 

 

Etot=Eelectrostatic+Evdw+Estretch+Ebind+Etorsion .................(1) 
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In this equation, Eelectrostatic is the electrostatic interaction, which includes the 

dipole-dipole, dipole-charge, charge-charge contributions. Evdw is the nonelectrostatic 

part of the nonbonded inter- and intramolecular energy; Estretch is the harmonic bond 

stretching energy and the Ebend is the angle bending energy; Etorsion is the Fourier 

expansion for the torsional energy(Figure 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The energy contributions in molecular structure. 
 
 
 

The non-bonded part is computed as a sum of both the Coulomb and 

Lennard-Jones contributions for intra- and intermolecular interactions: 
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As shown in Equation(2), geometric combining rules for the Lennard-Jones 

coefficients are employed: σij=(σiiσjj)
1/2

 and εij=(εiiεjj)
1/2

. The summation runs over all the 

pairs of atoms i < j on molecules A and B or A and A for the intra molecular interactions. 

Moreover, in the latter case, the coefficient fij is equal to 0.0 for any i-j pairs connected by 

a valence bond (1-2 pairs) or a valence bond angle (1-3 pairs). fij = 0.5 for 1,4-interactions 

(atoms separated by exactly 3 bonds) and fij = 1.0 for all the other cases. 

 

The bond stretching energy is computed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

The angle bend is computed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here the subscripts eq are used to denote the equilibrium values of the bond length r and 

angle Θ. 
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And the torsional energy is obtained as follows: 
 
 
 
 
 
 
 
 
 

 

This is the summation of the all the dihedral angles i with values fi. 
 

 

2.2.2 Polarizable Force Field 
 
 
 

Now let’s consider the polarizable force field. When calculating the 

interaction between two particles in a two-body system, the equation ―E(1-2)=E(12)-

E(1)-E(2) is used(Figure 5-a). But in a many-body system, the way calculating the 

interaction energies will be different. For example, if there is a third particle(Figure 5-

b), it will affect the interaction between particle 1 and 2 so that the interaction between 1 

and 2 will be different with the previous simple isolated two-body system showed in 

Figure 5-a. This ―different  here is the so-called ―polarizable . The existence of third 

particle makes particle 1 and 2 polarizable and the interaction between them is changed. 
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Figure 5. (a)The interaction Energy in two-body system is calculated by E(1-2)=E(12)-E(1)-E(2).  

 
(b)The existence of third particle makes particle1 and 2 polarizable. 

 

 

For the polarizable force field, an additional term Epol was added to Etot[2].  

The electrostatic polarization is taken into account of the induced point dipole moment. 

 

Following component is added to the Etot: 

 
 
 
 
 
 
 
 
 

In equation(6), μi represents the induced dipole moment on the ith polarizable 

site. Ei
0
 is the electrostatic field produced by permanent charges only in the absence of the 

induced dipoles. The induced dipole moment depends on the total electrostatic field 

(produced by both the permanent charges and other dipoles) as shown in Equation (7). 
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Here, αi  is the polarizability of the ith site. The total field Ei
tot

  is computed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

where 
 
 
 
 
 
 
 

is the dipole-dipole interaction tensor, and I is the unit tensor. Thus, 
 
 
 
 
 
 

 

or with A=α
-1

(I-αT), 
 
 
 
 
 
 
 
 
 

 

And a system of linear equations is supposed to be solved in order to determine 

the values of induced dipole moments μi and substituted into the Equation (2). 

 

To avoid any unphysical growth of the induced dipoles at close distances to
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each other and to the permanent electrostatic charges, a cutoff procedure is 

involved, which is for the small interatomic distances Rij[3]. In this program, 

the ―perceived  of ―effective  distance is modified if it is under a cutoff Rcut. 

 
 
 

 

Where, 
 
 
 
 
 
 
 

 

At this point, the effective distance w is used in polarization energy 

calculation can never be zero. 

 

Using direct matrix inversion with elimination method, or iteratively, the system 

in Equation (11) can be solved. First, the left side of the Equation (10) is calculated by 

substituting an initial guess for μ into the right side, then the cycle is repeated until the 

desired level of self-consistency is obtained. The latter technique or the extended 

Lagrangian method is widely used in the computational application of molecular systems, 

because they are less demanding in terms of the computational resources[4]. 

 
However, even with those methods employed, the CPU-time is still huge when 

dealing with large size biomolecular systems. To avoid this problem, only a relatively 

small part of the large system is treated as polarizable atomic sites. The other atoms are 

treated in the other way, which is, no polarizability, as a dielectric continuum medium. 

 
 

Moreover, most of the liquid-phase simulations with explicitly included atomic 
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polarizabilities are performed with molecular dynamics rather than the Monte Carlo 

technique due to the following two facts: First, in spite of its general computational 

simplicity, Monte Carlo with explicit polarization requires to solve Eq.(7) every time 

when even only one molecule is moved in the system. Second, the configurations 

number of an average Monte Carlo computation is greater than that of a molecular 

dynamics computation. As a consequence, for polarizable systems, utilization of Monte 

Carlo becomes unpractical. 

In order to reduce the computational resources to apply the dipole polarization 

system, we proposed an approximation described as follows. 

 

Equation (14) provides the iterative procedure that usually is employed in 

solving Equation (11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now let us start to consider the first- and the second-order approximations
[5]

 

(Equations 14a and 14b, respectively). Equation (6) is still used to calculate the energy. 

 

The first-order approximation is utilized by other researchers and found it has a good 

level of computational efficiency but the improvement of accuracy is limited, 
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comparing to pairwise-additive non-polarizable force fields
[6]

. 

 
In this POSSIM software, we use a higher level of theory, the second-order 

approximation(Equation 14b), which not only retains a greater part of the dipole-dipole 

interactions than the first-order approximation but also reduces the computational 

resource comparing to the full-scale polarization model. In fact, the time needed to find 

the dipole moment vector (μ) will be equal to that for just one interaction in the full 

scale point dipole method if Equation (14b) is replaced by equation(7). Thus, the 

computational cost is dramatically decreased by this approximation. 

Another issue that should be pointed out here is the usage of Monte Carlo 

simulations. As we mentioned above, the proposed approximation can significantly 

reduce the computing resource. In consequence, this allows the utilization of Monte 

Carlo simulations. The Metropolis sampling
[7]

 was involved when carrying out the 

MC runs. When generating the trial configurations, an attempt of either moving one 

molecules or changing the volume is made at each step and the following value is 

calculated: 

 

C =[E (new)-E(old)]/RT     ............(15) 
 
 
 

where E(old) is the energy of the last accepted configuration, E(new) is the energy of 

the new attempted configuration. R is the universal gas constant, and T is the temperature 

in K. When there is a new random attempt volume move, the following value is calculated: 

 

C= [E(new)-E(old)]/RT-Nmol log[V(new)/V(old)] ...............(16) 
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Where Nmol is the total number of molecules. If the random number≤exp(-C), the 

attempt is accepted; if the random number > exp(-C), reject the attempt moving. 
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2.3 Parameterization of the Polarizable Force Field. 
 
 

 

From eq.(1), we know that the total energy is formed by several parts, 

Eelectrostatic, Evdw, Estretch, Ebind and Etorsion. So the procedure of producing 

parameters of force field follows eq.(1) and includes the following stages, the 

parameters of different energies are fitted
[2]

: 

 

First, fitting the electrostatic polarizabilities. 
 

 

Second, fitting the permanent electrostatic charges. 
 
 
 

Third, fitting the Lennard-Jones parameters. 
 

 

Fourth, fitting the torsional parameters. 
 

 

Final step, Liquid simulations and the fine-tuning of the force field. 
 
 
 

All the procedures were performed from POSSIM (POlarizable Simulations with 

Second Order Interaction Model). 

 

2.3.1 Fitting the electrostatic polarizabilities. 
 

 

The electrostatic polarizabilities fitting were finished in 3-body model. Two 

dipolar probes were applied to the target molecules as the electrostatic perturbation, 

consisting of two opposite charges of magnitude 0.78e , 0.58 Å apart (for a dipole moment 

of 2.17 D similar to that of nonpolarizable models for liquid water such as SPC/E11 ), 
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and located at the position that hydrogen bonds to the molecule were formed. The 

perturbations formed were the same as with the previous generation polarizable force 

field (PFF0)
[8][9]

 . Density functional theory (DFT) with the B3LYP method and cc-

pVTZ(-f)
[11]

 basis set was used to calculate the change in the electrostatic potential at a 

set of grid points outside the van der Waals surface of the molecules and the energy of 

the perturbed system for each perturbation. All calculations were finished by Jaguar 

electrostatic code
[10]

. The minimum of the deviations of the three-body energy 

produced in PFF was obtained by fitting the polarizability alpha in the three-body 

system. Figure 6 shows the two- and three-body energies of a molecule with dipolar 

probes. The 3-body energies are calculated by Equation(17): 

 

E(3body ) = E(1+2+3) - E(1+2) - E(1+3) - E(2+3) + E(1) + E(2) + E(3)......(17) 
 
 
 

In equation 17, the central molecule for which the parameters are being produced in 

PFF is marked as 1, while the two dipolar probes are denoted as 2 and 3. In non-

polarized fixed-charges force field, the three-body energy equals to 0, because no 

many-body interactions are involved. From previous work it has been revealed that the 

three-body energy is independent of the permanent charges but depends upon the 

polarizability values
[5]

. Therefore, in our force field the very first parameter was fitted 

is the polarizabilities of atoms in the molecule. 
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Figure 6. Calculating two- and three-body energies of a molecule with dipolar probes. 
 

 

2.3.2 Fitting the permanent electrostatic charges. 
 
 
 

We have used the same quantum mechanical systems as above, except 

that two-body energies were employed as the fitting target: 

 

E(2body ) = E(1 + 2) - E(1) – E(2)………….(18) 
 
 
 

The polarizability values obtained from previous step are constants in this step. In the 

two body system, the charges were adjusted to get the minimum deviations comparing 

to ab initio energies. The Rcut of all the cases are set to 0.8 Å, including dipoles and 

charges of the molecules. 
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2.3.3 Fitting the Lennard-Jones parameters. 
 
 
 

Accurate binding energies are obtained from JAGUAR calculations of 

hydrogen-bonding interaction energies and distances. Here, the geometries were first 

optimized in LMP2/6-31** and cc-pVTZ(-f) level and then calculate the binding 

energies in cc-pVTZ(-f) and cc-pVQZ level. 

 

In this step, we tried to reproduce the dimerization energies and the 

geometries as close as possible to the quantum mechanical calculations. The accurate 

quantum mechanical dimerization energies and the optimized geometries can be 

obtained from JAGUAR by using MP2 optimizations with a cc-pVTZ(-f) basis set. 

Then the geometries were utilized in our polarized force field to reproduce the 

dimerization energies and geometries
[12]

. The binding energy calculations in JAGUAR 

consist of the LMP2 binding energy of cc-pVTZ(-f) basis set(Eccpvtz) and the LMP2 

binding energy of cc-pVQZ(-g) basis set (Eccpvqz). 

 

Following is the form of binding energy calculation
[13]

: 
 

 

Ebind = C1·Eccpvtz + C2·Eccpvqz ............... (19a) 

C1 = a1/( a1 - a2); C2 = - a2/( a1-a2 )  ................ (19b) 

a1 = exp(-2.7); a2 = exp(-1.8) ................ (19c) 

     

In the calculation procedure, the Hartree-Fock energies are further corrected for basis 
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set superposition error by the counterpoise methods. Ebind is the target hydrogen-

bonded energy, and the hydrogen-bond distances were obtained from the LMP2/cc-

pVTZ(-f) optimizations. 

 

2.3.4 Fitting the torsional parameters. 
 
 
 

Finally, the torsional parameters defined in eq (5) were adjusted in single 

molecule models. The major dihedral angles were fixed at different values to obtain 

different torsional energies for the molecule. Torsional parameters V were adjusted to 

minimize the error of torsional energies comparing to QM. The relative quantum 

mechanical torsional energies were calculated from the LMP2/cc-pVTZ(-f) basis set. 

 

2.3.5 Liquid simulations and fine-tuning of the force field. 
 
 
 

The last step of the parameterization is the pure liquid simulations run in 

POSSIM, where all the parameters obtained in previous step were final tuned. Each 

liquid model was a cubic cell with periodic boundary conditions and formed by 216 

molecules. All the simulations were performed in NPT ensembles(constant 

temperature, pressure and the number of the molecules), where the temperature was set 

at 25°C, the pressure was 1 atm. The calculations were achieved by the Monte Carlo 

technique, and the heat of vaporization was calculated by the equation below: 
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H(vap)= E(gas) - E(liq) + RT …………….(20) 
 
 
 

av.V= V/216 
 
 
 

All of the calculations were finished by at least 1 ×10
6
 Monte Carlo configurations 

of averaging were followed by more than 5 ×10
6
 configurations of averaging for the 

thermodynamic properties. 

 
 

In order not to slow down the computation, there are only 216 particles in 

one liquid model. As a result, some of the molecules are near the edge of the sample, 

that is near its surface. To avoid surface effects in our computations, the system size 

has to be extremely large to ensure that the surface has only a small influence on the 

bulk properties, but this system would be a huge cost of computing resources. Surface 

effects can be avoided for all system sizes if periodic boundary condition is applied
[14]

. 

In periodic boundary conditions, the cubical simulation box is replicated throughout 

space to form an infinite lattice. In the simulation procedure, when a molecule moves in 

the central box, its periodic image in every one of the other boxes moves exactly the 

same way with same orientations. Thus, when a molecule leaves the central box, one of 

its images will enter through the opposite face. Overall, there are no walls at the 

boundary of the central box, and the system has no surface. The central box simply 

forms a convenient coordinate system for measuring locations of the N molecules. 
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Figure 7 shows the three-dimensional version of such a periodic model. As 

a particle moves through a boundary, all its corresponding images move across their 

corresponding boundaries. The number of particles in the central box is constant. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Periodic boundary conditions. The central box is outlined by a thicker line. 
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Chapter 3    Results and Discussion 
 
 

3.1 Introduction 
 
 

In the present work, we explored the electrostatic, gas and liquid properties for 

several amino acids residues(Figure 8) in POSSIM software package. The polarizable force 

field parameters of the following molecules were obtained: methyl ammonium, acetate ion, 

imidazolium cation, benzene and pyrrole, which are the residues of lysine, glutamic acid, 

prontonated hisidine, phenylalanine and tryptophan, respectively. 

 
 

Figure 8. Chemical structures of the amino acids with the residues circled. 
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3.2 Electrostatic parameterization in a many-body system. 
 

The first step of POSSIM force field parameters production is fitting the 

polarizabilities in three-body system in which the dipolar probes are involved. After 

the parameterization was done in the first three steps (electrostatic part fitting, gas-

phase Lennard-Jones parameters fitting and torsional parameters fitting), fine tuning 

and some adjustments are needed in pure liquid simulations. Table 1 presents the 

three-body energies resulted from final parameters comparing to QM calculations, 

showing in rms deviations. 

The polarizabilites of following atoms were fitted: carbon in benzene, 

nitrogens in pyrrole, nitrogens in imidazolium cation, -COO- group in acetate acid, -

NH3 group in methyl ammonium. 

It is demonstrated that in all cases, a very small rms deviation no greater 

than 0.22 kcal/mol can be obtained by fitting the polarizabilities for particular 

atoms. This is concluding that POSSIM is adequate enough to reproduce an explicit 

many-body characteristic such as three-body energies. 

 

Table 1.Three-Body Energy Deviations from Quantum Mechanical Data(kcal/mol) 

molecules error(kcal/mol) 

C6H6 0.22 

C4H5N 0.18 

C3H5N2
+
 0.12 

CH3COO
-
 0.12 

CH3NH3
+
 0.27 
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The charges of same particular atoms which are mentioned above 

were adjusted in two body system in order to get closer two-body energies 

comparing to QM. We pointed out the atoms whose polarizabilities were fitted 

in many-body model in Figure 9. 

 

 

   

Figure 9. The polarizabilities of circled atoms were fitted in 3 -body system. 

 

It should be noted that we did the parameterization of polarizabilities in 

three-body system before the two-body system. The reason for this procedure is 

that the charges of atoms actually do not affect the three-body while it impacts 

two-body energies, so the three-body fitting came out before the two-body 

fitting. 
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3.3 Gas-Phase Dimerization Energies and Distances. 
 

The next step of developing the POSSIM PFF is fitting the Lennard-

Jones parameters in dimer models to reproduce the gas-phase dimerization 

energies and geometries. This was done with high accuracy quantum mechanical 

results for hydrogen bonding interactions as objectives. Table 2 and 3 are 

showing the comparison between both the POSSIM results and quantum 

mechanical results, including dimerization energies and distances of different 

dimer models. The QM results were carried out by the calculation of LMP2/cc-

PVTZ(-f) and LMP2/cc-pVQZ basis sets. 

The Lennard-Jones parameters fitted in this step are the sigma and 

epsilon used in eq.2. The geometries of dimers were first optimized in LMP2/6-

31G** level, then followed by LMP2/cc-PVTZ(-f) optimizations. In the case of 

benzene, there are two dimer geometries. In both of them, the O atom from the 

water molecule serves as the electron donor and the H atom of benzene serves as 

the electron acceptor. And the Lennard-Jones parameters of carbon atoms and H 

atoms are fitted in POSSIM. In imidazolium, there is one type of dimer, where 

oxygen in water is electron donor while the hydrogen of water molecule is 

acceptor, the other one is the hydrogen connected to nitrogen is electron acceptor 

and the oxygen in water is donor. The epsilon and sigma of two nitrogens and the 

hydrogen which is binding to one of the nitrogen were adjusted in this case. In 

pyrrole, only one dimer is built, where the hydrogen which is connected to 
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nitrogen points to the oxygen atom of water, the parameters of nitrogen were 

fitted in POSSIM. In CH3COO-, two H atoms in water molecule are pointing to 

the two O atoms of CH3COO-. And the H atom connecting to N in CH3NH3+ is 

the electron acceptor and the O in water is donator. All of the dimer models were 

shown in Figure 10. 

The dimerization energies and distances between the molecules are 

calculated in POSSIM and shown in Table 2 and 3. The results from POSSIM are 

compared with those of quantum mechanical calculations. An average error no 

great than 0.5 Å of distances between the heavy atoms were obtained, while the 

error of dimerization energies were acceptable. 

 

Table 2. Gas-Phase Dimerization Energies and distances(kcal/mol, Å) 
 
  

Dimer 
models 

Energy(QM) 
kcal/mol 

Energy(POSSIM) 
kcal/mol 

error Distance(QM)Å  Distance(POSSIM) 
Å  

error 

C6H6-H2O-1 

C6H6-H2O-2 

-2.97 

-1.21 

-3.33 

-0.96 

0.36 

0.25 

2.59 

3.47 

2.66 

3.85 

0.07 

0.38 

C4H5N-H2O -4.13 -3.73 0.40 1.93 1.59 0.34 

C3H5N2
+
-

H2O 

-18.14 -17.92 0.24 2.75 2.75 0.00 

CH3COO
-
-

H2O 

-20.21 -20.17 0.04 2.83 2.92 0.09 

CH3NH3
+
-

H2O 

-19.63 -20.10 0.47 2.69 2.81 0.12 
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Figure 10.    The Gas-phase dimers of benzene, pyrrole, methyl ammonium, acetate ion,  

imidazolium cation with water. 
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3.4 Torsional parameters fittings 
 
 

In benzene, we fixed the dihedral angles of C-C-C-C at 0°, 15° and H-C-C-C at 

150°, 180°. For imidazolium cation and pyrrole, the dihedral angle was H-N-C-C and 

the angle values are 150
o
 and 180

o
.  It is H-C-C-O fixed at 150º and 180º in CH3COO

- 
 

and H-C-N-H at 120º and 150º in CH3NH3
+
. All of the dihedral angles are shown in 

Figure 11. 

 

Figure 11. Torsional angles were shown in red lines. 

 

 

 

 

Table 3. Torsional Energy(kcal/mol) 
  
                          

Dihedral angles errors 

C6H6, C-C-C-C 

C6H6, H-C-C-C 

0.09 

0.0 

C4H5N,H-N-C-C 0.42 

C3H5N2
+
,H-N-C-C 0.30 

CH3COO
-
,H-C-C-O 0.14 

CH3NH3
+
,H-C-N-H 0.0006 
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We calculated the differences between two different dihedral angles and 

compared them to the QM running results. For example, in the benzene model, two 

dihedral types C-C-C-C and H-C-C-C were involved. First, C-C-C-C dihedral was fixed 

at 0ºthen fixed at 15º, the energy difference under the two situations were obtained, 

which are 1.74 kcal/mol in QM and 1.65 kcal/mol in POSSIM force field. From Table 

4, we can see that the errors between QM and POSSIM are very small and in a 

reasonable range. It is revealed that the torsional fitting is done and we can move to the 

final step— pure liquid simulations. 
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3.5 Pure Liquid Simulations-The Fine Tuning of the Force Field. 
 

 

In pure liquid simulations, the heat of vaporization and molecular density are 

calculated by equation 20. The results of liquid state heat of vaporization and average 

volume are shown in Tables 5 and 6. The POSSIM and QM results are very close to 

each other and successfully obtained average errors less than 2%. All the liquid models 

are 216 molecules cubic cell and at 25ºC room temperature. As mentioned before, all of 

the calculations were finished by at least 1 × 10
6
 Monte Carlo configurations of 

averaging were followed by more than 5 × 10
6
 configurations of averaging for the 

thermodynamic properties. Figure 12 is showing one of the liquid models, which is 

formed by 216 benzene molecules. 

 
 

Overall, the models presented here are all performing well in pure liquid 

simulations. So it is clearly revealed that the POSSIM program involving second-order 

approximation is an absolutely good one for reproducing high accuracy gas-phase and 

liquid properties. 

 

Table 4. Liquid state Heats of Vaporization(in kcal/mol, at 25
o
C) 

 ∆Hvap(exp.) ∆Hvap(POSSIM) V(exp.) V(POSSIM) 

C6H6 liquid 8.09 7.85 148.40 149.28 

C4H5N liquid 10.43 10.80 115.75 113.63 
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Figure 12. A liquid model formed by 216 benzene molecul
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Chapter 4      Summary and Conclusion 
 
 
 
 

 

A complete parameter fitting procedure was carried out by POSSIM 

software package, which takes electrostatic polarizability into account and allows a 

reduction of the computing time and resources. This proposed method was applied to 

several small molecules that are important in chemical reactions and protein 

simulations, benzene, imidazole and pyrrole. 

 

The explicit treatment of electrostatic polarization in empirical force field 

provides a more efficient way to make polarizable calculations affordable and accurate. 

The fast polarization technique proposed by my research advisor and being developed in 

our lab has yielded a very good level of accuracy when compared to high-level quantum 

mechanical calculations. 

 

Before each stage of parameter fitting except pure liquid simulation, all the 

systems were simulated and the geometries were optimized by JAGUAR quantum 

mechanical calculations. The results from JAGUAR software were set as target and 

comparison for POSSIM simulations. We obtained acceptable errors in gas-phase 

dimerization and torsional parameters fitting, and less than 0.22 kcal/mol error in the 

property of three-body system. Finally, an average error of no more than 2% in the heat of 

vaporization and volume in pure liquid simulations were received. 
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Moreover, the present method significantly reduces the total CPU time, so 

the liquid state Monte Carlo calculations were able to carried out. Each liquid system 

was finished by at least 1x10
6
 configurations for equilibrium and 5x10

6
 for averaging 

as shown in Figure 13. 

 
 

The results presented in this research report are not the end to our POSSIM 

development. We are looking forward to lowering the errors by adjusting the 

parameters. Several other molecules like water, methane, ethane, methanol, have been 

successfully tested in POSSIM force field and published. The ultimate goal of this 

parameter development project is to create a complete fast polarizable POSSIM force 

field for proteins and protein-ligand systems. 

 
       
 
 
 
 
 
 
 
 
   
 
                                                                                                                                                                   
 
 
 
                                                                                                
 
      
 

 
 
 
 
 
Figure 13. The last 25 jobs of liquid simulation of Benzene. The fluctuating blues lines represents 

the equilibrium of simulation is successfully done. 
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