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Abstract 
 

Manufacturers of cast metal parts are interested in the development of a feedback control 

system for use with the Precision Sand-Casting (PSC) process.  As industry demands the ability 

to cast more complex geometries, there are a variety of challenges that engineers have to address.  

Certain characteristics of the mold, such as thick-to-thin transitions, extensive horizontal or flat 

surfaces, and sharp corners increase the likelihood of generating defective casts due to the 

turbulent metal-flow during fills. Consequently, it is critical that turbulent flow behavior within 

the mold be minimized as much as possible.   

One way to enhance the quality of the fill process is to adjust the flow rate of the molten 

metal as it fills these critical regions of the mold.  Existing systems attempt to predict the 

position of the metal level based on elapsed time from the beginning of the fill stage.  

Unfortunately, variability in several aspects of the fill process makes it very difficult to 

consistently predict the position of the metal front.  A better approach would be to imbed a 

sensor that can detect the melt through a lift-off distance and determine the position of the metal-

front.  The information from this sensor can then be used to adjust the flow rate of the aluminum 

as the mold is filled. 

This thesis presents the design of a novel non-invasive sensor monitoring system.  When 

deployed on the factory floor, the sensing system will provide all necessary information to allow 

process engineers to adjust the metal flow-rate within the mold and thereby reduce the amount of 

scrap being produced.  Moreover, the system will exhibit additional value in the research and 

development of future mold designs. 
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1 Problem Statement 
Casting producers in the automotive industry are faced with several engineering 

challenges regarding the production of cast aluminum engine blocks.  Due to the complex design 

of a modern engine block, it is very difficult to produce a part with such a complicated geometry 

by material-removal processes.  As an alternative, it is often easier to employ a material-forming 

process to manufacture such intricate parts.  One option for creating parts like engine blocks is 

Precision Sand Casting (PSC) [1].  Precision sand casting (PSC) is a material forming process 

capable of producing parts with complex geometries that exhibit excellent mechanical properties, 

dimensional precision, and good surface finish.  As a result, PSC has been employed extensively 

by the aerospace and automotive industries in applications with significant structural demands.   

As an example, PSC makes it possible to cast an aluminum engine block while 

maintaining sufficient dimensional accuracy as compared to producing the same part through 

machining processes.  In production, the sand mold for the engine block shape is composed of 

several individual pieces called cores.  Figure 1.1 is a photo of an engine block mold that has 

been partially disassembled to show some of these cores.   

 

 
Figure 1.1:  Partially disassembled core package for an eight-cylinder, v-block engine 

 

The cores are carefully assembled by several industrial robots and inspected frequently to 

ensure that the cores remain intact and fit together tightly.  Once the sand mold has been fully 
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assembled, molten aluminum is injected into the mold by a pumping system at a rate of 

approximately 5 to 7.5 lbs/second.  After the metal within the mold has been given time to 

solidify, the sand is broken away to reveal the cast aluminum engine block.  

For all the advantages of PSC, there are still many challenges that metallurgists and 

process engineers must address to consistently produce quality castings.  Several of these 

challenges arise from the complexity of the parts being cast through PSC.  As an example, 

current engine blocks include several design aspects that can make them very difficult to cast, 

including thin metal walls and large volume transitions.  Figure 1.2 identifies one such instance 

of extreme volume-transition on the engine block; the point at which the skirts (outlined in 

yellow) branch from the bulk of the engine block.  This location presents a significant problem 

because when molten aluminum is being pumped at a high flow rate to fill the bulk of the part 

and then reaches the reduced volume of the skirts, the result is a significant increase in metal 

velocity.  This high velocity can cause several problems, including metal penetration into the 

walls of the mold or the dislodging of the sand within the cavity, resulting in scrap parts [1], [2]. 

 

 
Figure 1.2: Side profile of a V-block engine with skirt areas highlighted 

 
Problems such as these could be avoided if the flow-rate of the molten aluminum through 

these regions could be adjusted as necessary.  The problem in implementing this strategy is that 

it is very difficult to know or predict where the molten aluminum is within a sand mold at any 

time.  For one thing, it is impossible to monitor the process visually since the cavity is 

completely encased in sand.  Efforts have been made in the past to adjust metal flow-rate based 
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on elapsed time.  However, several elements of the process, including the variable permeability 

of the molds, melt temperature and the working condition of the melt delivery system are too 

inconsistent from pour to pour to accurately predict the location of the metal front based solely 

on time.   

Therefore, the goal of this project was to create a system that could accurately determine 

the position of an aluminum molten-metal front within a sand mold and do so consistently 

despite the aforementioned sources of variability.  Such a system would provide the necessary 

information to allow process engineers to adjust the metal flow-rate within the mold and reduce 

the amount of scrap being produced.  The system could exhibit additional value in the research 

and development of future mold designs as a tool used to validate theoretical models of molds 

being filled with molten metal. 
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2 Background 
This section will provide background information about eddy current testing.  

Additionally, it will also formulate the theory behind the induction of eddy-currents in a 

conductive material and the operation of a tuned-circuit oscillator. 

2.1 Eddy Current Application 

Eddy current testing (ECT) is an ideal inspection technique for electrically conducting 

media.  An eddy current is the circular flow of electric charge within a conductive medium that 

arises in response to the presence of a time-varying (AC) magnetic field.  The behavior of these 

eddy currents is directly related to the material properties of the domain in which they exist.  By 

controlling the application of the AC magnetic field, these eddy currents can provide valuable 

information about a metallic material, including its surface hardness and the presence of any 

corrosion or defects both on and below the surface.  As a result, ECT has established itself in 

several manufacturing markets as a proven method for the non-destructive evaluation (NDE) of 

metal components, including the automotive and aircraft industries in particular [3], [4].   

 The existence of eddy currents was first demonstrated by Jean-Bernard Léon Foucault in 

1830.  Foucault showed that when a conductor is moved within a constant (static) magnetic field, 

eddy currents are generated in the conductor and provide a force that opposes the conductor’s 

direction of motion.  The actual experiment that demonstrated this consisted of a copper disc 

rotating within a static magnetic field and Foucault observed that as the number of revolutions 

per minute (RPM) of the disc was increased, the applied force required to maintain the targeted 

RPM increased as well due to the retarding force generated by the eddy currents [4]. 

 To complement the work of Foucault, the discovery that eddy currents can be generated 

within a stationary conductor when subjected to a changing magnetic field stemmed from the 

independent discovery of electromagnetic induction by Michael Faraday and Joseph Henry in 

1831.  The phenomenon arose from their observations that the AC magnetic field of an excitation 

source (called the primary coil) creates an electromotive force (EMF) within a nearby conductor 

(called the secondary coil) located in the vicinity of the primary coil.  Furthermore, if a load is 

connected across the terminals of the secondary to create a closed circuit, a current will flow 
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within this circuit to generate a secondary magnetic field whose magnitude is equal to that of the 

primary, but with a phase difference of 180° [3], [7].   

 The principles of electromagnetic induction can be applied to explain the generation of 

eddy currents in a stationary conductor.  What if the conductor that comprises the secondary in 

the aforementioned system is a sheet of metal instead of a wire?  An EMF will still be generated 

in the sheet of metal due to the AC magnetic field from the primary, and electric currents will 

flow in closed loops (called eddys) across the surface of the sheet.  The distributed nature of the 

induced eddy currents present in the sheet can be thought of as a transformer with several 

secondary components, all of which are connected to a load that represents the resistivity of the 

metallic material.  The superposition of the secondary magnetic fields produced by these eddys 

produces a total field that opposes the primary field in magnitude and phase [7].   

The nature of eddy currents generated by electromagnetic induction makes ECT a very 

powerful technique in evaluating metallic components for several reasons.  First, ECT is a non-

contacting inspection technique, meaning that the excitation source and the test specimen are not 

in physical contact with one another.  Second, eddy currents can only arise within conductive 

materials and cannot exist in high-resistivity materials such as wood, concrete, ceramics, plastics, 

silica, etc.  The result of these two qualities is that ECT is ideally suited for applications 

involving the inspection of metals where the excitation source (called the probe) and metallic 

sample are separated by one of these high-resistivity materials mentioned earlier.  These 

materials will not distort the AC magnetic field generated by the probe, allowing the field from 

the source to interact with the metallic specimen as if they were separated by air [5].   

It is this characteristic of ECT that makes it an ideal technique for the detection of 

aluminum within a precision sand mold.  Because the sand is one of these high-resistivity 

materials, we can expect that the AC magnetic field of a probe placed on the outer surface of the 

mold will be able to interact with the aluminum, generating eddy currents within the melt as it 

fills the mold. 

ECT encompasses a variety of ways to detect the effect of the eddy currents on the total 

magnetic field.  One approach is to use separate pickup probes around the primary probe and 

monitor induced voltages to detect changes in the magnetic field.  Another is to use the primary 

probe as a transceiver (transmitter and receiver) and monitor its impedance for changes that can 

be correlated to the interactions between the primary and the test specimen.  While the former 
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technique requires less sophisticated circuitry to generate the AC magnetic field and detect 

changes in voltages of the pickup probes, it also requires more total components to comprise the 

system.  Conversely, the latter technique involves only a single probe, but also requires a more 

complex circuit design that will both drive the probe and detect the most minute changes in its 

impedance [3] [4]. 

 
 

2.2 Eddy Currents 

 

Eddy current phenomena can be described mathematically through the combination of 

Maxwell’s equations and the appropriate boundary conditions for the solution space of interest.  

The necessary equations include Ampére’s law 

 

ttotal ∂
∂

+=×∇
EJB μεμ         (2.1) 

 
Faraday’s law, 
 

t∂
∂

−=×∇
BE             (2.2) 

 
Gauss’s equation, 
 

ε
ρ

=⋅∇ E          (2.3) 

 
and the divergence of the magnetic flux density, B, 
 

0=⋅∇ B          (2.4) 
 
where Jtotal is the total current density present in the system, ρ is the free charge in the system, µ 

and σ are the material-dependent permeability and conductivity and ε is equal to the permittivity 

of free space.  Jtotal is the sum of the impressed current density within the probe coil, Js, and the 

induced eddy current density, Je, within the targeted region 

 
est JJJ +=otal             (2.5) 
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Additionally, Je is related to the induced electric field, E, within the target region by Ohm’s law 

 
EJe σ=           (2.6) 

 
 
Substitution of (2.5) and (2.6) into (2.1) yields 
 

t∂
∂

++=×∇
EEJB s μεμσμ              (2.7) 

 
  The coupled relationship between B and E can be simplified through the introduction of 

the magnetic vector potential, A, and the electric scalar potential, φ .  The inclusion of these 

concepts helps us decouple the relationship between B and E and express the behavior of the 

eddy currents in terms of these potentials.  As shown further below, once the solution has been 

obtained in terms of A or φ , B and E can be calculated from these potentials. 

 Because of the solenoidal nature of the magnetic field described by (2.4), we can express 

the magnetic flux density, B, as the curl of another vector.  This vector is the magnetic vector 

potential, A, and the relationship between A and B is 

 
BA =×∇              (2.8) 

 
To define the electric scalar potential, φ , we substitute (2.8) into (2.2) and rearrange to produce 
 

0AE =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+×∇
t

        (2.9) 

 
Here, the combined vector field in the bracket is an expression for a conservative vector field.  

Because of this, the expression within the parenthesis in (2.9) can be set equal to the negative 

divergence of a scalar field, φ , to eventually yield an expression for E in terms of φ  and A; 

 

t∂
∂

−−∇=
AE φ               (2.10) 

 
 
We can now modify (2.7) and (2.3) by substituting (2.8) and (2.10).  This yields two expressions 
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ttt ∂
∂

∇−∇−=
∂
∂

+
∂
∂

+×∇×∇
φμεφμσμμεμσ sJAAA 2

2

         (2.11) 

 
and 
 

( ) φ
ε
ρ 2∇+=⋅∇

∂
∂

− A
t

        (2.12) 

 
 
The double curl operation on A can be re-written with the following identity 
 

( ) AAA 2∇−⋅∇∇=×∇×∇             (2.13) 
 
resulting in 
 

( )
ttt ∂

∂
∇−∇−=

∂
∂

+
∂
∂

+∇−⋅∇∇
φμεφμσμμεμσ sJAAAA 2

2
2            (2.14) 

 
Finally, if we define the divergence of A through the Lorentz gauge for lossy materials 
 

t∂
∂

−−=⋅∇
φμεμσφA                     (2.15) 

 
 
and apply (2.15) to both (2.14) and (2.12), the result is two separate equations that define an 

eddy current system 

 

sJAAA μμσμε =
∂
∂

+
∂
∂

+∇−
tt 2

2
2               (2.16) 

 
 

ε
ρφμσφμεφ =

∂
∂

+
∂
∂

+∇−
tt 2

2
2             (2.17) 

  

Since we are primarily interested in the magnetic vector potential due to the excitation 

current density, Js, we would like to find a solution for (2.16).  If we assume that the Js is 

sinusoidal and of the form 
tje ωα=sJ         (2.18) 
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where α is the amplitude of the sinusoid and ω is its frequency in radians per second.  

Consequently, A will also be sinusoidal due to the linearity of the system and each of the first 

and second derivatives with respect to time in (2.16) can be replaced with jω and –ω2, 

respectively.  These substitutions yield 

 

sJAAA μωμσμεω −=−+∇ j22              (2.19) 

 

In many eddy current testing applications, the frequency of the sinusoidal excitation 

current, f, is usually less than 500 kHz.  Additionally, typical conductivities (σ) of test specimens 

are often larger than 0.5e7 S/m.  The result of these observations is that the magnitude of the 

imaginary part in (2.19) will dominate the magnitude of the real part.  Therefore, the real part is 

omitted for low frequencies, and (2.19) becomes an elliptical equation 

 

sJAA μωμσ −=−∇ j2       (2.20) 

 
  

The final step is to employ one of several possible numerical techniques, including the 

finite element method (FEM) or finite-differences time-domain (FDTD), to determine the values 

of A for discrete points within the solution space.  In most cases, the type of numerical solution 

will be dictated by the nature of the geometries in the solution space, with the FDTD being best 

suited for regular, flat geometries and FEM being idea for irregular geometries and curves. 

Once the values of A are known, they can then be used to calculate the impedance of the 

probe coil, Z, by integrating the dot product of A along the path of the wire in the probe coil and 

scaling the result by jω/I, in accordance with the following expression 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∫

wire

dl
I
jZ Aω                (2.21) 

 
Therefore, if the value of the magnetic vector potential at the probe terminals is perturbed 

by the presence of a nearby metal target, we will ultimately observe a change in the impedance 

of the probe [8].   
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From a practical standpoint, the impedance of the probe is something that we can actually 

measure, as opposed to the magnetic vector potential which is a fictitious quantity altogether.  

One way to perform this measurement is to design an oscillator that is sensitive to changes in this 

impedance so that any changes in the reactive part will produce a shift in the natural frequency of 

the oscillator that can be measured [9], [10]. 

 

 

2.3 Oscillator 

To enable the detection of the most minute changes in probe impedance due to the 

presence of molten aluminum, a tuned-circuit oscillator was selected as the drive circuit topology 

for the system.  The idea was that by using the probe as the inductance in an LC tuning circuit, 

any changes in inductance due to the presence of molten aluminum would cause a shift in the 

natural frequency of the oscillator.  If the oscillator could be designed to remain stable over a 

range of operating conditions, and yield adequate resolution, it would provide a very simple and 

inexpensive means of detecting the position of the molten aluminum. 

The basic representation of a feedback oscillator is pictured in Figure 2.1.  The diagram 

encompasses three primary blocks: (1) an Amplifier, A, (2) an amplitude-limiting mechanism, 

L(v), and (3) a frequency-determining network, β(ω).   

 

 
 

Figure 2.1:  System diagram of the feedback oscillator 
 
 

 The closed-loop gain of the above system is given by combining the equations describing 

the forward-gain transmission and the feedback voltage.  Equation (2.22) defines the closed-loop 

gain, G, to be: 

 



 11

)()(1
)(

1

3

ωβ⋅⋅−
⋅

==
vLA

vLA
v
vG            (2.22) 

 
 If the oscillations are to be self-sustaining, there must be an output response with no input 

excitation (v1 = 0).  This means that the denominator in equation (2.22) must be equal to zero and 

that the feedback must be regenerative.  The expression for this condition is given in equation 

(2.23) below and we can see that in order for this to be true, the open-loop transmission 

(A*L(v)*β(ω)) must be equal to unity, implying that whatever is present at the start of the loop 

returns unaffected at the end [11].  

0)()(11 =⋅⋅−= ωβvLAv           (2.23) 

 

In the case of small signals where the limiting factor is assumed insignificant (L(v) ≈ 1), 

the result is a simplified version of the Barkhausen criterion for oscillation given in equation 

(2.24). 

 
1)( =⋅ ωβA            (2.24) 

 
)()()( ωβωβωβ iR j+=        (2.25) 

 
 Because the frequency-determining network described by β(ω) is comprised of reactive 

components and yields complex-conjugate roots, the left-hand side of equation (2.24) has both a 

real part and an imaginary part, as seen in equation (2.25).  To satisfy Equation (2.24), the 

imaginary part must be equal to zero.  It is this frequency, ω, where βi = 0 at which the tuned 

circuit will oscillate [11]. 

 To physically realize this feedback oscillator, we need to choose the amplifier element 

(A) for the system, as well as the topology of the feedback network (β(ω)).  Several 

combinations of amplifier elements and feedback networks have been thoroughly investigated, 

each with their share of benefits and detriments associated with their implementation.  These 

combinations are delineated primarily by their different feedback networks, as most amplifier 

elements are universally applicable.   

The feedback networks are comprised of some combination of inductors and capacitors to 

provide the series or parallel resonant condition required.  What is unique about these 

combinations are where the networks are tapped to provide the feedback in the system.  Two of 
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the best examples of this are the Hartley oscillator and the Colpitts oscillator.  The feedback 

networks of these two circuits are pictured in Figure 2.2. 

 
 

Figure 2.2:  The Hartley (a) and Colpitts (b) frequency-selective networks 
 

 
The Hartley network consists of two inductors (or a single, center-tapped inductor) and a 

single capacitor.  In this circuit, the feedback to the amplifier is tapped at the node between the 

two inductors.  On the other hand, the Colpitts network encompasses a single inductor and two 

capacitors with the feedback being tapped from the node between the capacitors. 

Because the probe coil in our system is essentially an inductor, and we are interested in 

the affect of the molten aluminum on the inductance of the coil, the Colpitts topology was 

selected for the feedback network.  Choosing the network containing a single inductor guarantees 

that any change in the inductive leg of the network is due to the probe coil and not a secondary 

inductor as might be the case with the Hartley topology. 

Having chosen the feedback network, the next step is to choose the amplification 

element, A, in the feedback system.  Two of the more common choices for this amplification are 

the Bipolar Junction Transistor (BJT) and the Metal-Oxide Semiconductor Field Effect 

Transistor (MOSFET).  For this design, the BJT was selected for a specific reason concerning 

the small-signal model of the MOSFET.  Figure 2.3 shows the small-signal transistor model of 

both the MOSFET and the BJT for frequencies less than 200 kHz (at higher frequencies, several 

additional parasitic capacitances must be included). 
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Figure 2.3:  Low frequency small-signal models for the MOSFET (a) and the BJT (b) 
 
 

As we can see in Figure 2.3, the input (gate) of the MOSFET is modeled as a Gate-to-

Source capacitance (CGS) where as the input to the BJT is a resistor (rπ).  The problem with the 

MOSFET is that this capacitive input can affect the total capacitance of the feedback network, 

ultimately causing the natural frequency of the oscillator to drift during operation.  It is very 

important that the steady-state behavior of the oscillator be as stable as possible, and it is for this 

reason that the BJT was selected for our feedback oscillator. 

The feedback network and BJT were combined to yield the common-base Colpitts 

oscillator circuit pictured in Figure 2.4.   

 
Figure 2.4:  Common-base Colpitts oscillator circuit 

 

In this design, the feedback from the Colpitts network is routed to the emitter terminal of 

the BJT.  If we substitute the BJT small-signal model from Figure 2.3(b) into the oscillator 

circuit, the result is the small-signal equivalent circuit pictured in Figure 2.5. 
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Figure 2.5:  Small-signal model of the common-base Colpitts oscillator 

 
 
To define the new circuit element, rπ, we need to calculate the transconductance, gm, of 

the BJT given by  

 

T

C
m V

Ig =         (2.26) 

 
where IC is the bias collector current from the large signal model and VT is the thermal voltage (at 

room temperature, VT  ≈ 26mV). 

 Using the value of gm, we then calculate rπ from 

 

m

fe

g
h

r =π         (2.27) 

 
where hfe is the small-signal current gain of the transistor obtained from the datasheet.  

Furthermore, we can calculate the small-signal collector current, ic, from 

 
πvgi mc =          (2.28) 

 
where vπ is the voltage across the resistor, rπ.  

If we combine rπ and RE into a parallel equivalent resistance, R, and replace the reactive 

elements with generalized impedance elements (C1→Z1, C2→Z2, L1→Z3), we can apply 

Kirchhoff’s laws to the circuit in Figure 2.5 to produce the following system of equations 
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0)()( 2211321 =⋅−+⋅++ iZRZgiZZZ m         (2.29) 

 
0)()( 2212 =⋅++⋅− iZRiZ          (2.30) 

 
 If we put this system of equations into matrix form and find the system determinant, we 

can then produce an expression for the natural frequency of the oscillator by setting the 

imaginary terms of the determinant equal to zero and solving for ω.  The determinant of this 

system is given as 

 

)()1( 3213121 ZZZRZZRgZZ m ++⋅+++⋅=Δ             (2.31) 

 

Assuming that the impedances of Z1, Z2 and Z3 are all purely reactive, the imaginary part 

of the system determinant is given by 

 
0)( 321 =++⋅ ZZZR                   (2.32) 

where 

1
1

1
Cj

Z
ω

=           (2.33) 

 

2
2

1
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Z
ω

=           (2.34) 

 
LjZ ω=3           (2.35) 

 
By substituting (2.33)-(2.35) into (2.32) and solving for ω, the result is  
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=ω               (2.36) 

 

We can now see that if the inductance of the probe changes due to the presence of the 

moving metal front, the result will be a shift in the natural frequency of the oscillator that can be 

measured and ultimately related to metal-front position. 
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Furthermore, we can also determine the gain requirements of the oscillator by setting the 

real part of the determinant in equation (2.31) equal to zero and substituting (2.33)-(2.35), which 

(after rearranging terms) results in   

 

12
2 =− RgLC mω               (2.37) 

 

If we substitute equation (2.36) into equation (2.37) and rearrange the terms once again, 

the result is an expression for the appropriate ratio of capacitances C1 and C2 based on the 

transconductance of the transistor amplifier.  This expression is given by   

 

Rg
C
C

m≤
1

2          (2.38) 

A complete derivation of the expressions for the natural frequency and gain requirements 

for this Colpitts oscillator is provided in Appendix A [11], [12], [13]. 
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3 System Design 
 

Figure 3.1 is a block diagram of the system created to meet the design objectives.  As the 

sand mold is filled with aluminum, the coupling between the coil and the melt changes the 

inductance of the coil.  Within the circuit-portion of the system, this change in inductance affects 

the natural frequency of the oscillator circuit according to (2.36).  In turn, the shift in frequency 

is converted to a change in DC voltage and is logged by a Data Acquisition (DAQ) system for 

further processing via a computer. 

 
Figure 3.1:  System block diagram of the melt-level monitoring system 

 

The sub-sections to follow will detail the design and operation of each block in this 

system diagram. 

 

3.1 Coil Design 

A system that can be deployed on the production lines with minimal impact on the 

existing process (ie, redesign or relocation of components on the existing casting apparatus) is 

required.  The ideal situation would be to have the sensor on a pneumatic actuator that would 

bring the coil to the surface of the mold when ready to cast the part.  Additionally, the coil must 

be located in an area only four inches deep, meaning that the coil cannot be longer than a few 

inches.   

In accordance with the sponsor’s design constraints, a six inch (6”) diameter ring was the 

selected geometry for the sensing coil.  The ring geometry was chosen instead of a more 
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sophisticated geometry to facilitate quick fabrication and expedite the development of the system 

circuitry. 

Figure 3.2 shows both a 3D CAD drawing of the former and a photo of the actual coil.  

The former is made out of grey PVC plastic and consists of two pieces: (1) the primary section 

upon which the windings of the coil are located, and (2) a removable ring that shields the 

windings of the coil from the environment when the sensor is deployed.  The ring is fastened to 

the former by eight nylon screws.  Non-conductive materials were selected for both the former 

and the fasteners to minimize possible distortions of the magnetic field pattern due to eddy 

current generation in the conductive materials.  

 
 

               
 

Figure 3.2:  3D CAD model and actual photo of the ring coil 
 
 

The coil is six inches (6”) in diameter, one inch (1”) in length and is wound with 16-

AWG wire.  There are two layers of windings with each layer consisting of 16 turns, resulting in 

a total of 32 turns.  The measured electrical characteristics of this coil are summarized in Table 

3.1. 

 
Table 3.1:  Electrical characteristics of ring coil, measured with an LCR meter at three different test 

frequencies 
 

Frequency, f (kHz) Series Inductance, Ls (µH) Series Resistance, Rs (Ω) Quality factor, Q 
1 284.95 0.491 3.6 
10 284.41 0.655 27.3 
100 309.87 4.593 42.3 
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As an AC current flows through its windings, an alternating magnetic field is created in 

the space surrounding the coil.  As explained in the background, it is the interaction of this 

changing magnetic field with the molten metal that is central to the system’s behavior.  In our 

case, the AC current is sinusoidal which means that the behavior of the coil’s magnetic field is 

sinusoidal as well.   

Figure 3.3 is comprised of several images from an electromagnetic simulation product 

called Maxwell 3D (Ansoft Corporation).  The structure being simulated is the 6” diameter, ring 

coil geometry wound on a PVC former that is pictured in Figure 3.3a.  Maxwell 3D employs a 

Finite Element Method (FEM) solver which divides the solution space into a multitude of much 

smaller elements called tetrahedra, collectively referred to as a mesh.  Boundary conditions for 

the various structures in the solution space are then applied to these tetrahedral and an iterative 

numeric method is carried out to calculate the field quantities of interest.  The goal of this 

iterative method is to minimize the error between the expected total energy in the system 

(obtained from the excitation source(s) assigned to the structure) and the actual total energy 

calculated from the sum of the individual tetrahedral.     

 

 
Figure 3.3:  B-field plots of 6” dia. ring coil, excited by a 75kHz sinusoid with 1.12 A·turns amplitude 
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When using an FEM solver to simulate a particular system, structural and material 

boundaries often require extensive mesh refinements (decreasing the size of the local tetrahedral) 

to accurately determine the field quantities in these regions.  Due to this face, the coil structure 

pictured in Figure 3.3a is that of a single, solid copper ring instead of 32 individual windings of 

copper wire.  The reason for doing this is that if a 32 turn coil structure was simulated, the 

software would generate an extremely fine mesh in the regions between adjacent windings.  

Since a finer mesh requires a larger amount of computing resources (memory, CPU speed), a 32 

turn structure would take weeks to accurately simulate, and would probably crash the computer.  

Therefore, the better option is the single ring structure where the current excitation is set as the 

peak amplitude of the AC current through the coil multiplied by the 32 turns.  The result is that 

the single ring will represent the superposition of 32 identical loops of wire, all driven by the 

same current. 

The specific parameters for the current excitation were that the coil would be driven by a 

75kHz sinusoid with an RMS amplitude of 1.12 ampere-turns (32 turns multiplied by 35mA, 

determined through simulation to be the expected RMS current passing through the coil) and an 

initial direction counter-clockwise with respect to the positive z-axis.  The simulation was 

configured to stop upon reaching 0.0001 percent error or after 15 iterations, whichever comes 

first.  For each iteration, the number of tetrahedra in the mesh would be increased by 30%.  

Figures 3.3b, 3.3c and 3.3d are vector plots of the magnetic flux density, B, in the region 

surrounding the coil structure.  The plots illustrate some important characteristics of the B-field 

from a ring coil structure, specifically the fact that the field is directionally uniform in the region 

between the windings and diverges from the axis of the coil in the positive z-direction.  The 

resulting pattern is called the magnetic dipole pattern due to its similarity to that of a rectangular, 

permanent bar magnet. 

In conjunction with this field pattern, the magnitude of the magnetic flux density 

decreases with increasing distance from the area between the windings.  To illustrate this, Figure 

3.4 is a plot of the magnetic flux density, BZ, along the z-directed axis of the coil according to 

the following equation: 
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where iRMS is the 35mA current through the coil, N is the number of turns (32) and r is the radius 

of the coil (3”).  In addition, Figure 3.4 also depicts the simulated value of BZ along the axis for 

comparison.  The magnitude of BZ is at a maximum in the area within the windings of the 

loop/ring of wire and falls off with the cube of the distance from the center of the coil along its 

axis.  It is clear from Figure 3.4 that the analytical expression compares quite well with the 

simulated results. 

 
Figure 3.4:  Magnitude of the normalized magnetic flux density, BZ, along the axis of a loop/ring geometry 

 

Since it is the normal component of the vector field that contributes to the induction of 

eddy currents with the molten metal, this combination of divergence and decay means that as the 

distance between the melt and coil increases, the interaction (mutual coupling) between them 

will decrease and the coil will be less sensitive to the presence of the metal. 
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3.2 Circuit Design 

3.2.1 Oscillator 

Figure 3.5 is a schematic diagram of the Colpitts oscillator used in this system.  The 

inductor, L1, in the circuit is the coil described in the previous section and the capacitors C1 and 

C2 comprise the reactive voltage divider that provides feedback to the BJT amplifier. 

 

 
Figure 3.5:  Common-base Colpitts oscillator circuit 

 

The primary concern when choosing the components for this circuit was to maximize the 

long-term stability of the oscillator when operated over a range of conditions, including 

temperature fluctuations, component variations, etc.  If the oscillator’s stability is susceptible to 

these variations, the repeatability of the system will be compromised and its overall performance 

will degrade as a result.  To avoid this, careful attention was paid to both the biasing of the BJT, 

as well as the thermal specification of the capacitors in the feedback network. 

 The BJT in the oscillator is biased by the voltage divider comprised of R1 and R2, as well 

as the emitter resistor, RE.  Careful consideration was given to the values of these resistors in the 

hope of minimizing the circuit’s susceptibility to the aforementioned variations.  There are two 

characteristics of a BJT whose values vary due to ambient temperature, as well as from one 

component to the next.  These characteristics are the DC current gain (hFE) of the transistor and 

the base-to-emitter voltage drop (VBE), both of which can cause significant variability in the DC 
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operating point of the oscillator.  However, if a transistor is properly biased through the 

appropriate selection of resistor values, the influence of the transistor’s environment can be 

minimized.   

To analyze how these parameters influence the operation of the transistor, we can derive 

the equations that describe the large-signal (DC) behavior of the oscillator.  First, we replace the 

resistive bias network of R1 and R2 in Figure 3.5 with its Thévenin equivalent resistance, RTH, 

and voltage, VTH, given by 
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resulting in the circuit pictured in Figure 3.6. 

 

 
Figure 3.6:  Common-base Colpitts oscillator with a Thevenin equivalent for the bias network 

 
 
 Second, we need to replace the BJT with its large-signal model for the active region of 

operation, pictured in Figure 3.7. 
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Figure 3.7:  BJT large-signal model for operation in forward active region 
 
 
 If we combine the Thévenin equivalent circuit with the large-signal model in Figure 3.7, 

replace the inductance with a short circuit and capacitors with open circuits, the result is the 

complete large-signal circuit or the oscillator shown in Figure 3.8. 

 
Figure 3.8:  Large-signal model of the common-base Colpitts oscillator 

 
 
 By applying Kirchhoff’s voltage law to the loop identified in Figure 3.8, as well as the 

fact that IB = IC / hFE, we obtain the following equation 
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If we rearrange terms, we can produce an expression for IC 
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 We now drop the 1/hFE term in (3.5) under the assumption that 1/hFE << 1.  Therefore, the 

equation for the bias collector current, IC, is 
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To reiterate, VBE and hFE are the two values in the equation whose influence we would 

like to minimize.  Let us first consider VBE, located in the numerator of (3.6).  If the value of the 

Thévenin equivalent voltage (VTH) is close to the typical value of VBE (~0.7V), even the smallest 

variations in VBE could have a significant impact on the value of IC.  However, if VTH is much 

larger than VBE, the influence of these variations can be reduced considerably.  In the circuit 

from Figure 3.5, the values of R1 and R2 are 220kΩ and 620kΩ, respectively.  Therefore, 

according to (3.2) and (3.3), RTH = 162.4kΩ and VTH = 11.07 V.  Because this Thévenin voltage 

is so large relative to the normal values of VBE over the temperature range of interest, any 

fluctuations will have almost no impact on the numerator of (3.6) [14], [15].   

Furthermore, the influence of hFE is mitigated through the appropriate selection of these 

resistances.  If we consider (3.6) once again, we see that if the value of RE is selected to be larger 

than the ratio of RTH/hFE, then any fluctuations in hFE will not have a significant affect on the DC 

operating point of the oscillator.  Using RTH = 162.4kΩ and assuming that hFE is approximately 

equal to 200 based on our expected collector current of 2mA, we see that RE should be chosen to 

be much larger than 812 Ω.  In accordance with this criteria, the value of RE in our Colpitts 

oscillator is 5kΩ [14], [15]. 

In addition to the biasing of the transistor, careful attention should be given to the thermal 

specifications of the capacitors in the tuning network.  Capacitors with NPO thermal 

characteristics ought to be selected due to their categorization as thermally-stable over a wide 

range of ambient temperatures [16].  Figure 3.9 shows the thermal characteristics for various 

classifications of capacitors.   



 26

 

 
Figure 3.9:  Thermal characteristic for several class I dielectrics used in capacitors [16] 

 
 
As we can see, the NPO class exhibits almost no change in capacitance over the given 

temperature range.  Ceramic capacitors with NPO temperature ratings are composed of class I 

dielectrics.  These capacitors are primarily comprised of titanium dioxide (TiO2) with small 

amounts of various ferroelectric oxides (i.e. CaTiO3 or SrTiO) added to create temperature 

compensating characteristics.  It is the inclusion of these components that make NPO capacitors 

exhibit such thermally-stable behavior [16]. 

With the transistor properly biased, the next step was to choose the appropriate values of 

C1 and C2 for the tuning network.  To determine the values of these components, we must use 

both (2.36) and (2.38) to configure the circuit at the frequency we desire while ensuring that the 

gain requirement is met to maintain the oscillations.  The expression of (2.38) dictates that based 

on the gain requirement of the oscillator, the ratio of C2/C1 should be less than or equal to 

126.35.  Expressed in another way, C2 must be no larger than approximately 126 times the value 

of C1.  
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Given this upper bound of 126, the next question was what ration should be chosen.  

Smaller ratios will result in the class D amplification by the BJT in the oscillator, while larger 
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ratios will result in class A amplification.  For this system, a ratio of C2/C1 = 45 was chosen, 

meaning that the amplifier would be operating in class A mode.  

Based on prior experimentation with the 6” ring coil, a target frequency of 75kHz was 

chosen to maximize both the coupling of the ring coil to the melt and the capabilities of the 

signal conditioning circuitry to be discussed later on.  Knowing the target frequency and the 

inductance of the coil (L = 290µH), as well as the appropriate ratio of the capacitive divider, we 

can calculate the appropriate capacitances by rearranging (2.36).  Given the wide difference 

between the two values, the parallel combination of C1 and C2 in (2.36) can be approximated by 

C1 alone.  With all of this taken into account, an expression for C1 is given 
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         (3.8) 

 
After substituting values, we find that C1 is equal to 15.53nF and C2 is 45 times larger.  

Based on the availability of standard-value capacitors with NP0 thermal characteristics, a 15nF 

capacitor was selected for C1, and a 680nF capacitor for C2. 

Figure 3.10 is an oscilloscope screen shot of the output waveform of this Colpitts 

oscillator, taken from the collector of the BJT.   

 

 
 

Figure 3.10:  Oscilloscope screen-shot of the output waveform from the oscillator 
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This signal is a sinusoidal waveform with a period, T, of 13µs and a DC bias of +15V 

(VCC).  This period corresponds to a frequency of 76.9kHz which is quite close to our target 

frequency of 75kHz, differing by less than 3%. 

 

3.2.2 Signal Conditioning 

The second half of the system circuitry is dedicated to converting the frequency-shift of 

the output waveform from the oscillator into a signal representation that can be easily acquired 

by a data acquisition system, such as a DC voltage.  The AD650 is an integrated circuit that is 

usually employed as voltage-to-frequency (V/F) converter, though it can also be configured as a 

frequency-to-voltage (F/V) converter [17].   

Figure 3.11 shows the system block diagram of how the AD650 F/V converter operates.  

The primary components in the diagram are a comparator, a so-called one-shot with a switch, a 

constant current source and an integrator.   

 

 
 

Figure 3.11:  System diagram of the F/V converter [17] 
 
 
The way it works is that when the input signal (Fin) crosses the threshold value of the 

comparator, the one-shot is triggered and switches the current source to the input of the 

integrator for a specific amount of time, tOS, determined by the value of the one-shot timing 

capacitor, COS.  The current source supplies charge to the capacitor of the integrator (CINT) at the 

rate specified by α (coulombs/sec) until the one-shot times out and switches the current source to 

the output of the integrator.  Since the output of the current source is a low impedance node, the 
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current source has no impact on the integration circuit and the current source is effectively off.  

Figure 3.12 is a plot of the current supplied to the integrator as a function of time.  This current 

can be thought of as a series of charge packets occurring with frequency Fin = 1/T at a constant 

amplitude of α for a specific length of time, tOS.   

 

 
 

Figure 3.12:  Current supplied to the integrator in the F/V converter as a function of time, t [17] 
 

 
The average current supplied to the integrator, Iavg, can be calculated by dividing the area 

of the charge packet (tOS x α) by the period, T.  The average output voltage of the integrator, 

Voutavg, is simply the average current scaled by the integration resistor, RINT, which gives 
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OS

outavg R
T
tV ×=

α        (3.9) 

 
 If we substitute Fin for 1/T, then the expression in (3.9) becomes a function of the input 

frequency explicitly 

 
inINTOSoutavg FRtV ×××= α            (3.10) 

 
 In practice, RINT is usually comprised a fixed value resistor in series with a potentiometer 

to account for any discrepancies in tOS and α.   

 To minimize the ripple in the output voltage, it is recommended that tOS occupy the 

majority of the total period, T.  As a result, tOS is chosen to be 90% of the minimum period 

expected at the input to the converter.  After choosing tOS, the appropriate value for COS can be 

determined from the follow equation provided in [17]: 
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 Once COS has been determined, the value of RINT can be determined from (3.10) since tOS, 

α, Fin and Voutavg are all known (Voutavg is the desired DC output at the frequency of interest). 

The final step is to choose the appropriate value for the integration capacitor, CINT.  The 

AD650 application note referenced in [17] advises that the time constant of the integrator be 

some fraction of the system response time that the chip is being used for.  This ensures that the 

F/V converter will be able to resolve step changes in the input faster than they are predicted to 

occur.  The equation provided to determine CINT is 
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where larger values of N will yield faster settling times and increased accuracy [17]. 

 Figure 3.13 is a detailed connection diagram of the AD650 configured as an F/V 

converter.  The first step in choosing the appropriate components for a given application is to 

calculate tOS based upon the maximum expected frequency of Fin.  Since the Colpitts oscillator is 

designed to have a natural frequency around 75kHz, a maximum expected frequency of 80kHz 

was chosen (T = 12.5µs).  To incorporate an additional safety factor, tOS was chosen to be 90% 

of the period, yielding tOS = 11.25µs.  Using (3.11), COS = 1.8nF was selected for the one-shot 

capacitor. 



 31

 
 

Figure 3.13:  AD650 configured for operation as an F/V converter [17] 
 

  
The next step was to determine the values of R1 and R3 that sum to RINT.  RINT can be 

calculated from (3.10) knowing that Voutavg ≈ 9.5V, tOS = 11.25µs, Fin = 75kHz and α = 1mA.  

The result is that RINT should be approximately equal to 11.26kΩ, meaning that resistances of R1 

= 9.1kΩ and R3 = 5kΩ would be sufficient.   

The final step was to calculate an appropriate value for CINT using (3.12).  Without 

knowing the actual response times of the casting processes for which the system might be 

implemented on, a worst-case value of between 1.5-2 seconds was chosen.  Choosing N = 100 to 

assure that the F/V converter response time be less than that of the casting system, and having 

already determined that RINT ≈ 11.26kΩ, this means that CINT should be within the range of 1.33-

1.78µF.  In our configuration, the value of CINT was chosen to be 1.5 µF. 

The remaining challenge is to interface the output of the oscillator with the input of the 

F/V converter.  At its output, the signal from the oscillator is sinusoidal with a DC offset of 

+15V, while the input to the F/V converter requires a +5V pulse-train signal (+2.5V amplitude 

square wave with a +2.5V DC offset).  This sinusoid from the oscillator must be conditioned into 

a new signal that is appropriate for the F/V converter without losing or affecting the information 

contained by the original waveform. 

 To accomplish this, a zero-crossing detector with a DC-blocking network ahead of its 

input was selected and implemented, pictured in Figure 3.14. 
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Figure 3.14:  DC-blocking network and zero-crossing detector 

 
 

 The blocking network ahead of the detector will remove the +15V DC offset from the 

oscillator output signal so that the sinusoid does indeed cross zero as required for the detector to 

function properly.  Furthermore, the network also attenuates the sinusoid to ensure that the input 

to the detector is within its ±15V input range.  The detector itself is simply a comparator that 

produces a +5V pulse-train output with a frequency identical to that of the input sinusoid. 

 Let us first examine this blocking network in greater detail to better understand its 

functionality.  The network ahead of the comparator is pictured in Figure 3.15 with the oscillator 

output waveform being modeled as the voltage source VOSC and the eventual input voltage to the 

detector labeled VDetect. 

 

 
Figure 3.15:  DC-blocking network 

 

 What we would like to do is derive an expression for the transfer function, H(ω), of this 

network and examine its magnitude and phase response over a range of potential input 
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frequencies.  The first step is to calculate the Thévenin equivalent circuit of the voltage source 

VOSC and resistive-divider to the left of the dashed line in Figure 3.15.  Since the resistances 

comprising the divider are identical, the Thévenin voltage (VTH) is simply half of VOSC and the 

Thévenin resistance (RTH) is the parallel combination of two 240kΩ resistors, resulting in RTH = 

120kΩ.  Figure 3.16 depicts an updated schematic of the blocking network having substituted 

these Thévenin equivalent elements. 

 
Figure 3.16:  DC-blocking network with Thevenin equivalent substituted 

  From this simplified schematic, it can be shown fairly easily that the transfer function of 

this network is 
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 The final step is to substitute VTH = VOSC /2 to yield the final expression 
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 Figure 3.17 depicts the magnitude and phase responses of the transfer function in (3.14) 

generated in MATLAB.  The important pieces of information to extract from these plots come 

from the magnitude response, specifically at low frequencies approaching DC and at the natural 

frequency of the oscillator.  At frequencies approaching 0 Hz (DC), the magnitude response is 

steadily decreasing, indicating that only very small fractions of these frequency components are 

passed by the network.  Therefore, we can see why this is called a DC blocking network since 

the magnitude response at 0 Hz is -34.5 dB. 



 34

 
Figure 3.17:  Bode magnitude and phase plots of the DC-blocking network transfer function 

 
 Furthermore, we can see that at the natural frequency of the oscillator (~75kHz or 471 

krad/sec), this network should attenuate an input signal of this frequency by -8.46 dB, or by a 

factor of 7.  In practice, the actual attenuation provided by this network upon the oscillator output 

signal was a factor of 12.  This discrepancy between the expected and actual attenuation factors 

can likely be attributed to the omission of both the output resistance of the oscillator, as well as 

the input resistance of the comparator.  If this output resistance is inordinately high (~50kΩ to 

150kΩ) and/or the input resistance is abnormally low (~10kΩ to 50kΩ), the result would be a 

predictive attenuation factor closer to the actual value.  Ultimately, the actual attenuation factor 

would suffice in keeping the input signal to the zero-crossing detector within the input range of 

the comparator (±15V).  Figure 3.18 is an oscilloscope screen-shot depicting the input and output 

waveforms associated with the blocking capacitor. 
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Figure 3.18:  Oscilloscope screen-shot depicted the decoupling and attenuation by the blocking network 
 
 

Following the blocking network in Figure 3.14 is the LM311 comparator used as the 

zero-crossing detector.  This comparator generates a square wave version of the incoming 

sinusoid whose frequencies are identical to one another.  As the sinusoid crosses zero with a 

positive slope, the output of the comparator switches to its high-state of +5V.  Conversely, when 

the sinusoid crosses zero with a negative slope, the comparator switches to its low-state, which in 

our case is ground.  Figure 3.19 is an oscilloscope screen-shot showing these input and output 

waveforms associated with this detector. 

 
 

 
 

Figure 3.19:  Oscilloscope screen-shot of the input and output waveforms of the zero-crossing detector 
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The pulse train that results at the output of the comparator is the input signal to the F/V 

converter that produces a DC output voltage that is proportional to the frequency of the input. 

 Once the performance of the system was validated on a bread-board, the design was 

committed to a printed circuit board (PCB) in preparation for eventual packaging and industrial 

testing.  The first step was to capture a schematic detailing the circuit components that would be 

included on the PCB.  All of the circuit blocks described to this point, including the oscillator, 

zero-crossing detector and F/V converter, were drawn-up using a schematic editor. 

 In addition, a separate block of circuitry was designed and included to provide the 

voltage buses required by the rest of the system circuitry.  Pictured in Figure 3.20, this block is 

comprised of a transformer to step-down the line voltage, two bridge rectifiers to produce 

positive and negative voltage buses, and several linear regulators to provide the required voltage 

levels. 

 
Figure 3.20:  Power circuitry for PCB layout 

 
 With all of these blocks included in the schematic, a netlist detailing the interconnects 

amongst the components was generated by the software and exported to a layout editor.  A two-

layer, 0.062” thick board made of FR-4 material was selected with dimensions of 6.25” L x 

3.375” W and the components were arranged with respect to their functional blocks.  Once the 

components were placed, the traces were routed manually, utilizing both layers to exercise some 

control over the path and proximity of the traces with respect to one another.  The widths of the 

ground and power traces prior to the voltage regulators was chosen to be 0.032”, while the traces 
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for the regulated voltage buses and the oscillator were chosen to be 0.016”.  Lastly, all signal 

traces associated with the zero-crossing detector and F/V converter were chosen to be 0.008”.   

Figures 3.21 and 3.22 are CAD images of the top (red traces) and bottom (blue traces) layers of 

the board layout, respectively.  All of the components will be located on the top-layer side of the 

board. 

 

 
 

Figure 3.21:  CAD drawing of the top layer PCB traces 
 

 

 
Figure 3.22:  CAD drawing of the bottom layer PCB traces 
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Once complete, the CAD layout was then sent to a manufacturer to produce the PCB and 

the appropriate parts were ordered from a variety of distributors.  Upon arrival, the circuit board 

was assembled, soldered, tested and adjusted to confirm its operation and readiness for industrial 

deployment.  Figure 3.23 is a photo of the completed circuit board. 

 

 
 

Figure 3.23:  Completed system circuitry 
 

At this point, the coil and circuitry were ready for experimental validation in a simulated 

casting situation to asses the capabilities of the system. 
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4 Experimental Validation 

4.1 Methodology 

To assess the performance of the overall system, a number of experiments were 

conducted at Metal Casting Technology, Inc. (MCT) in Milford, NH.  Of particular interest was 

the accuracy and repeatability of the system to help the process engineers decide whether or not 

to deploy the sensor on their casting lines. 

A total of thirty identical molds were poured at a rate of five molds per day over a three 

week period.  For each pour, the ring coil would be located at the exact same position relative to 

the mold cavity, separated by 3.5” of actual sand used in precision sand casting.  Each mold was 

wired with five k-type thermocouples (TCs) to serve as discrete indicators of metal front position 

for eventual comparison with the output from the sensor.  In production, the inclusion of 

thermocouples would be impractical; they are solely intended to help validate the system’s 

capabilities in a controlled environment. 

Five discrete data points per mold from thirty molds provided 150 comparisons between 

the predicted position of the metal front by the coil sensor and the actual position indicated by 

the thermocouples.  From this population of data, an isoplot can be generated using thirty 

random samples to assess the repeatability of the system. 

 

4.2 Mold Design 

The sand molds used in this thirty mold experiment were designed to simulate the casting 

of a part with a simple geometry being filled from bottom to top.  The geometry was kept simple 

in an attempt to ensure that the thirty molds are as identical as possible, thereby minimizing any 

error due to mold variability. 

Figure 4.1 is a drawing of the mold used in the experiment, including the location of the 

thermocouples and ring coil.  The mold itself consists of a downsprue, runner, gate, part cavity 

and overfill riser.  When the mold is being filled with molten aluminum, the metal is poured 

from a ceramic crucible into the downsprue.  While in the downsprue, gravity forces the metal 

into the runner where it travels horizontally through the runner to the gate and enters the cavity 
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from below.  Once the cavity is completely filled, the excess metal collects in the overfill riser 

and serves as a visual indicator to stop pouring. 

 

 
Figure 4.1:  Drawing of the half-grate mold used in the 30 mold experiment 

  

As mentioned previously, each mold is wired with five thermocouples located at specific 

positions relative to the bottom of the cavity assembly (see Figure 4.1, dashed blue line). The 

positions of the thermocouples relative to this point of reference are 7”, 8”, 9”, 10” and 11”, 

respectively.  The thermocouples are sandwiched between the two halves of the mold cavity 

assembly so that they protrude approximately 0.25” into the mold cavity.  Lastly, the ring coil 

was positioned on the exterior of the mold so that the center of the coil was located 7” from the 

same point of reference used for the thermocouples (the position of the coil in Figure 4.1 is not 

exact). 

Figure 4.2 is an interior photo of the fill cavity.  The regular-box geometry keeps the 

molten metal front at a constant distance of 3.5” from the sensor throughout the pour.  Although 

the eventual goal is to use the sensor for more irregular surface geometries, this simple shape 

was used to understand the system’s base-line capabilities.  The dimensions of the cavity are 

16.5”L x 7.125”W x 0.75”D as indicated in Figure 4.2. 
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Figure 4.2:  Fill cavity of the half-grate mold 
 
 
 The molten aluminum is fed into the cavity through the gate pictured in Figure 4.3.  The 

placement and geometry of the gate affects the way that the cavity is filled with molten metal 

and can have a major impact on the material properties as and overall quality of the final casting.  

For our purposes, the design of the gate was not critical and a simple, rectangular structure was 

used to reduce the anticipated turbulent flow within the mold.  The runner pictured in Figure 4.4 

is a basic, horizontal channel connecting the gate and the downsprue. 

 

 

 
 

Figure 4.3:  Gate of the half-grate mold connecting the runner and the fill cavity 
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Figure 4.4:  Runner connecting the bottom of the downsprue to the gate 
 
  
 

4.3 Execution 

The molds were poured at a rate of five per day, two days per week over a three week 

period.  The pour schedule was arranged in this manner to allow for environment variability 

within the experiments, including temperature, humidity, power quality and concurrent 

experimentation/production activities.  In an industrial application, a system such as this sensor 

would need to operate under a range of conditions.  Therefore, including these sources of 

environmental variability is critical for assessing the sensitivity of the system to these 

environmental factors.  An additional variable was added to the experiment by pouring the molds 

at different rates.  In theory, this variable should not affect the accuracy of the system and may 

emphasize a secondary ability of the system to monitor the flow rate of the melt in addition to its 

position within a mold. 
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Figure 4.5:  Molten aluminum being poured into the downsprue of one mold from the experiment 
 
 

As each mold was being poured, the voltage signals from both the sensing system and the 

thermocouples (TCs) were logged by a LabView-based Data Acquisition (DAQ) system.  After 

the acquisition was complete, the data was analyzed to determine how well the system could 

resolve the position of the metal front.  This analysis would require the separate decomposition 

of both the thermocouple data and the sensor data to generate an isoplot of actual versus 

predicted metal-front position to gauge the accuracy of the sensor. 

 The first step in analyzing the data was to use the thermocouple signals to determine the 

exact times that the melt reached specific positions within the mold.  Thermocouples were used 

because there should be a noticeable jump in temperature when the thermocouple comes in 

contact with the molten aluminum.  Figure 4.6 confirms these expectations and shows the five 

thermocouple signals from one of the thirty molds (i.e., Mold 7). 
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Figure 4.6:  Plot of the thermocouple signals from Mold 7 

 
 

The problem with using thermocouples for this purpose is that while the response is very 

noticeable, it is not instantaneous.  Instead, there is a short delay between when the metal touches 

the thermocouples and when it settles at the actual temperature.  This delay is due to the thermal 

time-constant of the thermocouples which dictates how the device will respond to an impulse of 

temperature change.  To account for this delay, it was decided that a thermocouple would be 

assumed to be in contact with the metal after the first perceptible jump in temperature had 

occurred between two consecutive samples.  Figure 4.7 is a close-up of the signal response from 

the thermocouple at the 11” position from Mold 7 to illustrate this methodology. 
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Figure 4.7:  Close-up of the signal from the 11" thermocouple of Mold 7 

 
 

 Between the samples acquired at 7.911 and 7.922 seconds, there is a 20°F change in 

temperature.  Since this is the first large change in the output from the thermocouple, the 7.922 

second sample is assumed to be the time at which the molten metal physically contacts the 

thermocouple positioned 11” from the point of reference.  This same concept was employed for 

all the thermocouple signals in the experiment.  The increase in temperature prior to the 7.911 

second sample is likely due to the presence of hot air preceding the metal front. 

Knowing the times that the metal had reached the thermocouples, the next step was to 

determine the position that the sensor would have provided at these same instants.  To 

accomplish this, a method of calibration was necessary so that the DC voltage output from the 

sensor could be shifted and scaled to represent metal-front position.   

 The apparatus in Figure 4.8 was created to simulate a molten metal-front.  While 

acquiring data from the sensor, the aluminum plate shown in the figure is moved into the coil’s 

field-of-view at a constant speed of 1.4 inches per second.  The dimensions of this aluminum 

plate are identical to those of the fill cavity within the sand molds, except for its thickness (1/8”): 

16.5”L x 7.125”W. 
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Figure 4.8:  Apparatus used for calibrating the system for the 30 mold experiment 
 
 

Once the acquisition is complete, the sensor signal logged by the DAQ is augmented by 

multiplying the time scale by the speed of the sample.  The result of this multiplication is that the 

voltage versus time data set is converted to voltage versus metal position.  The inverse of this 

plot (position versus voltage) is exactly what is needed as a calibration standard for the 

remaining thirty molds. 

Figure 4.9 shows this plot of metal position versus voltage, as well as the 7th degree 

polynomial fit generated by MATLAB from one such calibration run.  The coefficients listed in 

Figure 4.9 define a polynomial fit that can be used to convert the voltage output from the sensor 

signal into appropriate metal-front positions. 
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where P1 = 8.219e-4, P2 = -4.979e+6, P3 = 1.093e+8, P4 = -9.202e+8, P5 = -1.692e+9, P6 = 

8.450e+10, P7 = -5.526e+11 and P8 = 1.201e+12.  
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Figure 4.9:  Plot of aluminum position versus sensor output voltage for calibration run #4 

 
  

As an example, consider the sensor signal from mold 7 shown in Figure 4.10 (this mold is 

the same one that was used earlier when describing the decomposition of the thermocouple 

signals).   

 

 
Figure 4.10:  Plot of the sensor output signal and thermocouple traces/trigger times 
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First, the sensor output is captured at the same instant that the thermocouples come in 

contact with the metal.  Next, the polynomial fit obtained earlier is used to convert those voltages 

to positions based upon the calibration standard.  Finally, these positions are subtracted from the 

positions of the thermocouples to obtain the difference between the two.  For this particular 

mold, the times, ideal positions and predicted positions are organized in Table 4.1. 

 
Table 4.1:  TC trigger times, actual and predicted metal front positions, and the error for Mold #7 

 
Thermocouple trigger 

times (seconds) 
Thermocouple positions 

(inches) 
Predicted position by 

sensor (inches) 
Measurement error 

(inches) 
6.600 7 7.092 0.092 
7.033 8 8.257 0.257 
7.178 9 8.751 0.249 
7.556 10 10.141 0.141 
7.922 11 11.411 0.411 

 
 

This procedure was conducted for all thirty molds, resulting in 150 comparisons of 

predicted versus actual metal front position (5 comparisons per mold).  From this pool of 150 

data points, 30 points were randomly selected to generate an isoplot and observe the repeatability 

of the system.  This isoplot is shown in Figure 4.11.  The horizontal axis corresponds to the fixed 

positions of the thermocouples while the vertical axis referrers to the metal-front position from 

the sensing system.  The 45° line in the plot represents the best-case scenario where the sensor 

and thermocouples detect the metal at the exact same times and agree perfectly.  When the 30 

points are added to the plot, we see that there is measurable deviation between the data points 

and the ideal line. 
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Figure 4.11: Isoplot of 30 random samples from the 30 mold experiment 
  
 

To determine the total measurement error, ΔM, of the system, the procedure is to find the 

second-furthest data point from the ideal line and draw a limit line through this point that is 

parallel to the ideal line.  Next, a mirror-image of this limit line is drawn on the alternate side of 

the ideal line to create a set of boundary lines.  Lastly, the ends of the area between the boundary 

lines are capped with semi-circles of radius equal to ΔM/2.  The resulting geometry is the green 

line in Figure 4.11.  The distance between the boundary lines is the metric ‘ΔM’ that represents 

the total measurement error of the system with 95% confidence (because the boundary lines 

contain 29 of the 30 samples).  For the plot in Figure 4.11, the total measurement error is 0.63”, 

giving the sensing system a statistical accuracy of ±0.315” with 95% confidence.   

The total measurement error could be attributed to a variety of individual sources.  Two 

of these sources may have come from the calibration apparatus described earlier, including the 

solid aluminum target sample and the linear-motor used to move the sample.  Regarding the use 

of solid aluminum, the electrical conductivity of solid aluminum differs from molten aluminum 

due to both the increased temperature of the molten metal, as well as its liquid state (lack of 
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crystalline structure).  Therefore, the eddy currents induced in the solid sample may differ from 

those in the molten metal enough to introduce some amount of error at the calibration phase.  

Furthermore, it was later determined that the noise present on the calibration signal (see Figure 

4.9, blue trace) was due to the magnetic field created by the linear-motor used to move the 

aluminum sample.  The better approach would have been to move the sample into the coil’s field 

of view in discrete increments, make individual measurements of the DC output voltage from the 

system and then curve-fit the resulting data points to generate a polynomial expression for the 

calibration curve.   

Other sources of error may be attributed to the molds used in the experiment.  For 

example, it is extremely unlikely that all 30 molds were identical in every way, particularly when 

considering the placement of the thermocouples within the mold.  Locating these thermocouples 

the slightest amount off from their intended position would contribute a significant amount of 

error to the accuracy of the system.  Furthermore, any inaccuracies in the placement of the coil 

sensor on the exterior of the mold would introduce similar concerns. 

As mentioned previously in the section, the timing-ambiguity associated with the thermal 

time-constant of the thermocouples required an approximation as to when the metal actually 

reached specific positions within the mold.  The better option for future validation experiments 

would be to use contact probes instead of thermocouples to obtain an instantaneous indication of 

metal position. 

Lastly, processing the data from the 30 molds by hand undoubtedly introduced some 

amount of round-off error to the calculated values.  The solution to this problem for future 

experiments would be to streamline the processing of sensor data by creating a single computer 

program, thereby eliminating user input from the calculations. 

 

4.4 Extensions 

4.4.1 Block Mold Experiment 

At the conclusion of the 30 mold experiment, the decision was made to test the system on 

an engine block mold.  The primary motivation for the additional experimentation was to make a 

qualitative observation on the effect of the irregular geometry on the sensor output signal and 
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contemplate whether or not these irregularities could be detected consistently in a production 

application. 

Figure 4.12 is a photo of the partially disassembled engine block mold used in this 

experiment.  The complete mold package for this eight-cylinder block consists of nine individual 

sand cores, as well as several cast iron chills (cylinder liners and crankshaft area).  To ensure a 

complete casting, 175 lbs of molten aluminum was prepared in a nearby furnace. 

 

 
 

Figure 4.12:  Partially disassembled engine block mold 
 
 One particular area of interest within the mold was the volume transition from the skirts 

to the bulk of the block, highlighted by the red rectangle in Figure 4.13.  Assuming that the 

delivery rate of the molten aluminum to the downsprue remains fairly constant, there should be a 

noticeable change in the velocity of the metal front as it transitions from the skirts to the bulk.  If 

the sensing system can detect this change in fill velocity, it could serve as an indicator of metal 

front position within the mold.  

 



 52

 
 

Figure 4.13:  Small-to-large volume transitions between skirts and bulk of the engine block (red rectangle) 
 
 The coil sensor was positioned on the mold package so that this particular area of interest 

would be within its field-of-view.  Furthermore, contact probes were positioned in half-inch 

increments along a vertical path from the skirts into the bulk of the engine block.  Figure 4.14 is 

a photo of these contact probes protruding out from the end core of the engine block (and into the 

mold cavity).  Contact probe #5 (circled in the photo) marks the volume transition from the skirts 

to the bulk of the block that is of interest to us and will provide a time-stamp to help us know 

where to inspect the sensor output signal for any interesting responses.    
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Figure 4.14:  Vertical arrangement of contact probes along interior of end core 
 
 Figure 4.15 is a photo of the coil sensor placed on the exterior of the mold package.  The 

vertical-arrangement of wires at the center of the coil are the opposite ends of the contact probes 

mentioned previously.   
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Figure 4.15:  Placement of coil sensor on the exterior of the core package 
 
 In total, three engine block molds were prepared in this manner.  Each mold was poured 

on a separate day, primarily due to the preparatory work involved and the time required to melt 

the 175 lbs of aluminum.  Figure 4.16 is a plot of the sensor and contact probe data from one of 

the castings.  If we focus on the area highlighted by the dashed red rectangle, we notice that there 

is a change in the slope of the sensor output signal near the point where the molten metal 

triggered the #5 contact probe.  Specifically, the slope is steeper prior to the #5 contact probe 

being triggered and becomes shallower afterwards.  This suggests that the velocity of the metal 

front decreased once the skirts had been filled and the metal entered the bulk of the engine block.  

In addition, this change in slope is quite pronounced and could serve as a fairly reliable indicator 

of metal front position. 
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Figure 4.16:  Plot of sensor output voltage and contact probe signals from block mold #1 

 
 
 While the system was indeed able to provide information about a large discontinuity in 

cavity volume, it would be much more difficult to detect the smaller features of the engine block, 

including surface features and smaller volume transitions.  However, as molds become thinner, 

the system could be able to resolve some of these smaller features and provide useful 

information regarding their formation. 

 

4.4.2 System Hardware and Software 

Following the successful use of contact probes in the block mold experiment, the 

packaging of the system hardware was redesigned to incorporate an auxiliary contact probe box 

that would interface with the sensor enclosure and relay the data to the computer.  Figure 4.17 

depicts these pieces of hardware, including the contact probe box (black) and the sensor 

enclosure (silver).   

 



 56

 
 

Figure 4.17:  Updated system hardware, including contact probe box (black) 
 
 
 Additionally, new software was created to streamline the processing of the experimental 

data and provide a graphical user interface (GUI) to the user.  The code for this software was 

written in M-code for use with the MATLAB computing environment.  Three separate files were 

created, including one for calibrating the system, one for acquiring and scaling data based on a 

calibration standard, and one for statistically analyzing a population of data points.  Figure 4.18 

is a screen shot of the user interface from the calibration software. 

 

 
 

Figure 4.18:  Screenshot of calibration software GUI 
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5 Project Conclusions 

5.1 Summary 

Based on the results of the experiment, the molten-metal level sensing system is well 

suited for determining the position of an aluminum metal-front within a 3.5” thick precision sand 

mold to within ±0.315” of its true position.  It can be inferred from these results that the system 

could be used on molds made of similarly non-metallic materials (ie, ceramic) thinner than 3.5” 

with equal or better accuracy.  Furthermore, when used with molds thinner than 3.5”, the 

viewing range of the sensing system will expand to provide better coverage of the mold cavity 

being cast.  Conversely, we can expect the accuracy of the system to be worse than the ±0.315” 

margin, and for the viewing range to be limited when used on molds with thicknesses greater 

than 3.5”.   

Although the mold used for the experiment simulated a flat surface geometry, the system 

could be used for casting parts with curved or irregular surfaces where the distance between the 

melt and the coil may vary spatially.  The key to maintaining the accuracy of the system when 

used with these types of geometries lies with the calibration method.  Therefore, one possible 

approach would be to create a calibration mold of the part and place several contact probes at 

various positions of interest along the surface closest to the coil.  Once this mold is cast, the 

position data from the contact probes could be compared to the sensor output voltage and the 

result would be a calibration curve of sensor voltage versus metal position.  To resolve even the 

smallest surface discontinuities, the contact probes should be placed extremely close together 

and the thinnest possible wire should be used for the probes.  

Regarding the intended application of this system, the sensor may be able to provide a 

reasonably accurate indication of metal front position over a limited range within the 6” thick 

precision sand mold of an engine block.  Due to the thickness of the mold and the irregular 

surface geometry of the block, error margins of ±0.5” to 0.75” could be expected from the 

current system.  These margins may be unacceptable based upon the criteria required by the 

manufacturing engineers to improve their processes.  However, while the current system may not 

provide a solution to the problem at hand, subsequent mold designs with thinner sand shells 

would provide excellent opportunities to take advantage of this technology. 
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Overall, the system has been developed to a point where both the ring coil and the system 

circuitry would be ready for deployment in an industrial environment, either as a research tool or 

on a production line.  It is designed to withstand the harshness and variation present in a foundry 

environment, and has been tested within such an environment to confirm these capabilities.  To 

protect the design and applicability of the system, a patent application has been submitted for this 

technology. 

 

5.2 Recommendations 

There are several recommendations that can be made to improve upon the current melt-

level monitoring system.  A few of these recommendations have already been mentioned within 

this thesis, including the creation of a computer program for processing the experimental data.  

This program would not only eliminate any human error in the calculations, but the user interface 

to the program could encompass a standardized data display to help the user make meaningful 

sense of the data. 

In addition, an alternative method of calibrating the system for use with various mold 

geometries was introduced.  This method would fill an actual mold with molten metal and 

generate a set of discrete data points using contact probes to produce a sensor voltage versus 

metal position curve that can be used for calibration purposes.  Employing a highly accurate 

calibration method will be critical if the system is expected to provide useful information, 

particularly when applied to complicated part geometries. 

The next recommendation concerns the design of the ring coil.  Depending upon the 

application, it would be advisable to lengthen the coil to create a more solenoidal geometry.  

Doing so would encourage the magnetic field to emanate further out in the axial direction before 

looping back to the opposite end of the solenoid, thereby coupling more magnetic energy to the 

melt and ultimately increasing the sensitivity of the coil.  In conjunction with elongating the coil, 

the diameter of the coil could be increased to widen the effective aperture of the coil at a given 

liftoff of interest.  However, it should be mentioned that the implementation of a larger diameter 

coil will only succeed if the metal-front is known to remain horizontally flat throughout the fill 

process. 
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Another recommendation would be to adjust the parameters and components of the 

Colpitts oscillator to increase the current through the coil.  An increase in this current could 

translate to an increase in the magnitude of the magnetic flux density in the region surrounding 

the coil, thereby creating larger eddy currents in the molten aluminum and eliciting a larger 

system response.  

Lastly, I would recommend that the engineers and technicians experiment with the 

system to discover additional uses for this technology.  There are so many parts being made with 

not only the precision sand process, but other processes involving non-metallic mold structures.  

The melt-level monitoring system is designed to be reconfigured for use with various types and 

shapes of coils as new applications come about.  Once the inductance of a new coil has been 

measured, the capacitive network of the oscillator must be augmented to keep the natural 

frequency below 80kHz and the emitter resistance much be adjusted to keep the collector voltage 

from distorting.  Once this is complete, the system is ready to be deployed as presented in this 

text. 
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Appendices 

Appendix A – Derivation of Expressions for the Colpitts oscillator 

 
Figure A.1: Small-signal model of the colpitt’s oscillator used in the system 

 
System of Equations: 
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Calculate the determinant of the 2x2 coefficient matrix: 
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Separate terms into real and imaginary parts: 
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Substitute the appropriate expressions for the complex impedances: 
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The expressions for the real and imaginary parts of the determinant become: 
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If we set the imaginary part of the determinant equal to zero and solve for ω, the result is the 

expression for the natural frequency of the oscillator: 
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Similarly, if we set the real part of the determinant equal to zero and substitute the expression for 

the natural frequency, the result is the gain requirement for sustained oscillation: 
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Appendix B – CAD Drawing of the Coil Former 
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Appendix C – Complete Schematic of the System Circuitry 
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Appendix D – CAD drawing of Printed Circuit Board (PCB) 
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