

AUTOMATED ON-LINE DIAGNOSIS AND CONTROL CONFIGURATION

IN ROBOTIC SYSTEMS USING MODEL BASED ANALYTICAL

REDUNDANCY

by

Vitaly M. Kmelnitsky

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements of the

Degree of Master of Science

in

Mechanical Engineering

by

January 2002

APPROVED:

__
Dr. Michael A. Demetriou, Mechanical Engineering Dept., Advisor

__
Dr. David J. Olinger, Mechanical Engineering Dept., Committee Member

__
Dr. Zhikun Hou, Mechanical Engineering Dept., Committee Member

__
Dr. Nikos A. Gatsonis, Mechanical Engineering Dept., Committee Representative

 i

ABSTRACT

Because of the increasingly demanding tasks that robotic systems are asked to

perform, there is a need to make them more reliable, intelligent, versatile and self-

sufficient. Furthermore, throughout the robotic system’s operation, changes in its internal

and external environments arise, which can distort trajectory tracking, slow down its

performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic

systems are inevitable. They have diverse characteristics, magnitudes and origins, from

the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural

vibrations to air/underwater environmental change. This thesis presents an on-line

environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that

provides a robotic system the capabilities to achieve demanding requirements and

manage the ever-emerging changes. The CDIA scheme is structured around a priori

known dynamic models of the robotic system and the changes (faults). In this approach,

the system monitors its internal and external environments, detects any changes,

identifies and learns them, and makes necessary corrections into its behavior in order to

minimize or counteract their effects. A comprehensive study is presented that deals with

every stage, aspect, and variation of the CDIA process. One of the novelties of the

proposed approach is that the profile of the change may be either time or state-dependent.

The contribution of the CDIA scheme is twofold as it provides robustness with respect to

unmodeled dynamics and with respect to torque-dependent, state-dependent, structural

and external environment changes. The effectiveness of the proposed approach is verified

by the development of the CDIA scheme for a SCARA robot. Results of this extensive

numerical study are included to verify the applicability of the proposed scheme.

 ii

ACKNOWLEDGEMENTS

I would like to express great appreciation and thanks to Worcester Polytechnic

Institute and to all the people who I came in contact with during the five years of my

undergraduate and graduate studies. This thesis would not be possible without Professor

Michael Demetriou, who envisioned this research and advised me through it every step of

the way.

My greatest thanks and dedication is to my parents, who are my greatest

inspiration and support.

 iii

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 PROBLEM STATEMENT 2
1.2 GOALS 3
1.3 CONTRIBUTIONS AND INNOVATIONS 5
1.4 WHAT IS CDIA? 6
1.5 OUTLINE OF THE THESIS 8

2 DYNAMIC MODELS 9

2.1 ROBOTIC SYSTEM 9
2.2 CHANGES 11
2.2.1 Fault Magnitudes and Categories 12
2.2.2 Parametric Fault History 13
2.2.3 Fault Nomenclature 15
2.2.4 Fault Dynamics 16
2.2.5 State and Torque-dependent Faults 17
2.2.6 Summary 19

3 CDIA ARCHITECTURE 20

3.1 DETECTION/APPROXIMATION OBSERVER 22
3.2 DETECTION 27
3.3 DYNAMIC DETECTION THRESHOLD 29
3.4 APPROXIMATION 32
3.5 ISOLATION 37
3.6 ACCOMMODATION 41
3.7 IDLE-MONITORING 42
3.8 CDIA PERFORMANCE ANALYSIS 43

4 SIMULATION 45

4.1 SCARA ROBOT 45
4.2 FAULT MODELS 49
4.3 NUMERICAL STUDY 51

5 CONCLUSIONS AND RECOMENDATION 65

6 APPENDIX – SIMULATION CODE 68

7 BIBLIOGRAPHY 76

 iv

LIST OF FIGURES

FIGURE 1 - ROBOTIC SYSTEM. 2

FIGURE 2 - INTERNAL & EXTERNAL CHANGES. 3

FIGURE 3 - CDIA SCENARIO. 7

FIGURE 4 - SCARA ROBOT DIAGRAM. 10

FIGURE 5 - INPUT SIGNAL – OUTPUT EFFECT DIAGRAM. 18

FIGURE 6 - CDIA ARCHITECTURE. 21

FIGURE 7 - DETECTION DELAY; 30

FIGURE 8 - TIME-VARYING DETECTION THRESHOLD PERFORMANCE; 32

FIGURE 9 - SCARA ROBOT. 46

FIGURE 10 - DA OBSERVER: POSITION ERROR (STATES 1 & 3). 52

FIGURE 11 - DA OBSERVER: POSITION ERROR (STATES 2 & 4). 53

FIGURE 12 - DA OBSERVER: VELOCITY ERROR (STATES 5 & 7). 54

FIGURE 13 - DA OBSERVER: VELOCITY ERROR (STATES 6 & 8). 55

FIGURE 14 - DA OBSERVER: VELOCITY ESTIMATION ERROR (STATES 5&7). 56

FIGURE 15 - DA OBSERVER: VELOCITY ESTIMATION ERROR (STATES 6&8). 57

FIGURE 16 - ISOLATION: POSITION ERROR (STATES 1 & 2). 59

FIGURE 17 - ISOLATION: POSITION ERROR (STATES 2 & 4). 60

FIGURE 18 - ISOLATION: VELOCITY ERROR (STATES 4 & 6). 61

FIGURE 19 - ISOLATION: VELOCITY ERROR (STATES 6 & 8). 62

FIGURE 20 - ISOLATION: VELOCITY ESTIMATION ERROR (STATES 5 & 7). 63

FIGURE 21 - ISOLATION: VELOCITY ESTIMATION ERROR (STATES 6 & 8). 64

 v

LIST OF TABLES

TABLE 1 - SCARA PARAMETERS 48

TABLE 2 – COMPONENT FAULT DYNAMICS. 50

TABLE 3 - ACTUATOR FAULT DYNAMICS. 51

 vi

LIST OF SYMBOLS

A - a set of a priori known changes
a - center of the position-dependent gaussian network neurons
B - matrix of change history profiles
b - center of the velocity-dependent gaussian network neurons
C - parameters of the fault m
D - dynamic detection threshold
d - element of the dynamic detection threshold vector
e - state estimation error
f - change (fault) dynamics
F - general representation of the change
G - gravitational torque
h - parameters in the torque-dependent neuron
H - matrix consisting of parameters from the torque-dependent neuron
j - matchability factor
J - identification threshold
k - total number of neurons or dynamic functions
l - parameters of the position dependent neuron
L - matrix consisting of parameters from the position dependent neurons
l() - length of the robot link
M - inertia matrix
m() - weight of the robot link
n - total number of states (degrees of freedom)
N - total number of known changes
p - change profile parameter
P - region in the parameter p history where change is present
q - dynamic function in position dependent neuron
Q - matrix of dynamic functions from position dependent neuron
r - element of the isolation threshold vector
R - isolation threshold vector
s - parameters of the velocity dependent neuron
S - matrix consisting of parameters from the position dependent neuron
tdt - detection time

 vii

tis - isolation time
tpr - change absence limit
v - number of types of changes in combination
U - Lyapunov function
V - coriolis and centripetal forces
w - width of the velocity gaussian network neurons
w - parameters in change dynamics
ω - dynamic functions of ith change
x - displacement of the fourth link of the SCARA robot
z - matrix of dynamic functions for the velocity dependent neuron
Z - dynamic function in velocity dependent neuron
β - change history profile of the ith the state
θ - joint displacement
τ - input torque
τo - nominal input torque
η - unmodeled dynamics
ηo - upper bound of unmodeled dynamics

mµ - equivalency deviation between the true fault dynamics and the mth isolation
filter dynamics

mµ~ equivalency margin for the mth isolation filter
Φ - set of all the changes in the system
ρ - Idle-monitoring threshold
σ - width of the position gaussian network neuron
γ - detection/approximation stability matrix
Υ - matrix of velocity-dependent approximation gains
Γ - matrix of torque-dependent approximation gains
Ψ - matrix of position-dependent approximation gains
()τ torque-dependent
()θ - state-dependent
(^) - estimate
diag() - matrix whose diagonal elements are the entries of the vector

 1

1 INTRODUCTION

Robotic systems play an essential role in our society, and their presence and our

dependence on them are increasingly growing. Manufacturing industry has been able to

make tremendous leaps only due to the advances in robot technology. Robotic systems

are the best and most of the time the only replacement to human beings in applications

where human presence is either not possible or harmful. Such applications include space

and underwater exploration, radioactive environments, automated bomb detonation, fire-

hazardous environments and many more (Figure 1).

 2

Figure 1 - Robotic system.

1.1 Problem Statement

The external operational environment of robotic systems either willingly or

unwillingly evolves constantly (Figure 2). Some autonomous robotic systems have to

operate both in air and water. Atmospheric pressure, temperature, and humidity are

constantly varying, and of course wind can exert extreme forces on the system. The

internal environment in robotic system is very unstable as well, and it can exert even

larger dynamic changes (Figure 2). Friction, degradation/wear, noise, vibration, and etc.

are regular guests in any robotic system.

 3

Figure 2 - Internal & external changes.

Changes (faults) can make the system unsafe and less reliable. Productivity of the

robotic system can degrade because changes can impose performance limitations on the

system and may also require frequent system shut downs for its maintenance. In the case

of technologically challenging applications, like space or underwater technology, where a

system’s full automation is expected, the presence of changes can limit what engineers

can accomplish in their designs. The bottom line effect of the changes is on

environmental and human safety, cost, and ability of creation of autonomous systems.

1.2 Goals

Fortunately, all of the above-described situations can be managed by giving the

system self-diagnostic capabilities, which allow it to detect any changes, analyze them

and handle them appropriately. The system’s ability to learn how its environment has

changed makes it more self-sufficient and intelligent, and improves its behavioral

Actuator
I2R
Windage
Brush friction
Core faults
Stray-load
Vibration, etc.

Component
Coulumb/Sticktion friction
Asymmetries
Position dependent friction
Dow nward bend
Viscous friction, etc

Structural
Elongation
Vibration
Deformation, etc

External Environment
Heat
Vibration
Pressure
Wind
Water/Air environments
Obstacles
etc.

 4

decisions. Self-diagnosis of the system can be accomplished by the introduction of either

analytical or hardware redundancy. In the hardware redundancy approach, additional

physical instrumentation is introduced, sensors for instance. In the analytical redundancy

approach, additional software is introduced which usually employs model-based

techniques [17][26]. Analytical redundancy is less expensive, much easier to upgrade and

has more potential. It requires a lot of computational resources because of its on-line

application. Recent improvements in digital processing technology provide tools for its

present-day development and implementation, which was not visible even a decade ago.

Because the exact dynamic models of the changes in the robot are never known a

priori, they should be accounted for in the control design. In robotic systems, the primary

source of the changes is at a manipulator’s joints. Due to the highly nonlinear nature of

joint change dynamics in the robotic systems, any linear models used by a change-

monitoring scheme cannot accurately represent their dynamics, and as joint velocities and

accelerations reach high values, such models fail to capture the salient features of robot

motion. In earlier works in change monitoring a number of nonlinear models have been

proposed in [15][16][21][25][26], but most of these models have limitations and do not

reflect the whole spectrum of the possible changes and change configurations.

A change is classified as any deviation in the robotic system’s environment from the

originally anticipated one [10]. All of the earlier researched change models ignore two

very important factors in the change dynamics. First, the presence of change is not only

time dependent, but it also depends on other parameters in the change dynamics (states

for instance). Second, the torque-dependent changes should not be ignored and should be

treated separately from the state-dependent changes. They affect a robotic system’s

behavior just as extremely as state-dependent changes do, and by treating them separately

 5

additional improvements are possible (Section 3.8). In this thesis a change model is

proposed that addresses both of these factors.

This thesis goal was to design an analytical redundancy model-based technique that

makes a robotic system more intelligent, self-sufficient, improves its performance, life

span, and on top of all can be very cost efficient.

1.3 Contributions and Innovations

The current research effort makes a number of major steps. It brings the automated

change (fault) diagnosis and accommodation area to the whole new level by introducing

the Change Detection, Isolation, and Accommodation (CDIA) approach.

Unlike well-investigated FDA (Fault Detection and Accommodation [17]), and FDI

(Fault Detection and Isolation [21]) schemes that follow the evolution of the change

(fault) just up to the accommodation stage, CDIA is an all-encompassing approach that

manages the changes (faults) throughout the whole life cycle of the robotic system.

Moreover, unlike the FDI, FDA and other conventional treatments of the internal

fault, CDIA deals with the general concept of the changes in both internal and external

environments.

CDIA can be divided into four distinct stages: (i) detection, (ii) isolation, (iii)

accommodation, and (iv) idle-monitoring. The idle-monitoring is a new concept that

makes CDIA a complete scheme by monitoring the evolution of the change well after the

accommodation stage. It allows dynamic repetition of the CDIA stages.

The isolation stage has been enhanced by constructing a bank of isolation filters from

all the combinations of a priori known types of changes (faults). In previous treatments,

 6

each filter corresponded to a specific change (faults) type, but in the proposed approach

each filter corresponds to the combined dynamics of multiple changes that occur in the

system simultaneously.

The CDIA is developed based on the innovative approach that models the change

(fault) history profile as parametric. The new model reflects the true dynamics of the

change in a way that previous models were not able to. Its structure resonates

improvements in each of the stages of CDIA, but especially in isolation stage by allowing

minimization of the number of the isolation filters and narrowing down the isolation

effort.

1.4 What is CDIA?

As an example, Figure 3 depicts arbitrary change dynamics development in the single

state. This scenario can repeat itself multiple times, depending on the history of the

change (Section 2.2.2).

 7

Figure 3 - CDIA scenario.

During the detection stage, changes (faults) are monitored and detected using a

detection/approximation observer, which is robust with respect to unmodeled dynamics.

The detection/approximation observer is also used to approximate changes whose

dynamics are not found to be equivalent to any a priori known change scenarios. The

dynamics of the change can be approximated using on-line approximation techniques,

which include: multi-layer neural networks, polynomials, rational functions, spline

functions, radial-basis-function (RBF) networks, adaptive fuzzy systems, etc [3][17].

From the past experience, RBF networks performed very well in robotic applications. For

this reason, they are employed in this thesis for approximation purposes [17].

The isolation stage of the CDIA employs a bank of isolation filters. There are

multiple numbers of a priori known types of change dynamics. In a general situation,

t Idle-Monitoring

f

Isolation/Approximation

Accommodation/Idle-Monitoring

Monitoring/Detection

Accomodated
Not Accomodated

Threshold

 8

these changes may occur one type at a time, in multiple and concurrent combinations, or

in multiple and asynchronous combinations. Therefore, the bank of isolation filters

consists of all combinations of the concurrent a priori known types of changes plus one

previously unknown type, which can be approximated by the detection/approximation

observer. Once the change has been detected, the bank of isolation filters is activated and

every filter in the bank is compared with the occurred change. After the change had been

either identified or approximated, the control law is modified accordingly in order to

counteract its effects.

Because the change presence is not constant in the system, after the change had been

accommodated the system continues to monitor its presence. If it is determined that the

change is not present any longer or reached insignificant magnitude, the whole CDIA

scheme is modified in order to reflect the new conditions.

1.5 Outline of the Thesis

Chapter 2 describes the dynamic model of the robotic system and of the changes. The

general framework of the proposed scheme is studied in Chapter 3. This chapter

thoroughly investigates every stage of CDIA. Simulation studies are presented in Chapter

4, which is followed by the final Chapter 5. This chapter summarizes this thesis and sets

up directions for future work.

 9

2 DYNAMIC MODELS

The mathematical models are the essential elements of the CDIA design. Initially,

this chapter presents the well-studied dynamic structure of the robotic system. The

second part of this chapter, concentrates on the dynamical structure, configuration and

nomenclature of the changes (faults) in the robotic system. Innovations like parametric

change history profiling and decoupled torque-dependent and state-dependent change

model are introduced and thoroughly analyzed.

2.1 Robotic System

The dynamic motion of the manipulator arm in a robotic system is produced by the

torques generated by the actuators. This relationship between the input torques and the

time rates of change of the robot arm components configurations, represent the

dynamicmodel of the robotic system [1]. This thesis analyses an n-degree of freedom

 10

robot configuration. Figure 4 provides a pictorial representation of a SCARA robotic

system, which is analyzed in detail in Chapter 4.

Figure 4 - SCARA robot diagram.

The dynamic model of the robotic system can be derived using either Lagrangian,

or Newton-Euler methods [1]. Both methods lead to the identical system of differential

equations, which have been extensively studied in the literature on robots [1][2][4]. A

general healthy n-degree of freedom robotic system is described by the following system

of differential equations:

() () () () ττθθηθθθθθ =+++ tGVM ,,,, ����

, (2.1)

2l

x

2θ

1l

3θ 1θ

 11

where nR∈θθθ ���,, denote the vectors of joint positions, velocities, and accelerations,

respectively, nR∈τ is the vector of input torques, () nRG ∈θ is the vector of gravitational

torque, () nRV ∈θθ �, is the vector representing Coriolis and centripetal forces,

() nnRM ×∈θ is the inertia matrix whose inverse exists, and () nRt ∈,,, τθθη � denotes the

unmodeled dynamics. It is assumed that the unmodeled dynamics are bounded. It is

impossible to achieve a mathematical model that is a perfect mirror image of the actual

physical system. Unmodeled dynamics are always present; therefore they have to be

considered in the CDIA design in order to reflect the true dynamics of the system.

 The presented model was derived for robotic systems operating in the air

environment. It can be modified to describe robotic systems operating in the underwater

environment or any other environments by including additional dynamics for instance

drag, turbulence, etc.

2.2 Changes

Any additional dynamics, which were not present initially in the system, are

considered to be a change (fault). This section reviews changes (faults) in a robotic

system, categorizes them and introduces an innovative change modeling approach.

Throughout this thesis the terms change and fault are being used interchangeably. The

term fault falls under the definition of the change, and it has been extensively used in the

control and robotics communities referring specifically to the undesirable changes in the

internal dynamics. The term change is a more general term, which includes both internal

and external variations of the changes, and does not concentrate only on undesirable

 12

changes or faults. The use of the term change may bring additional confusions with

regards to its definition. Because the term fault is so widely accepted in the control and

robotics communities, it will be therefore used in the rest of this thesis.

2.2.1 Fault Magnitudes and Categories

There are faults, which are referred to as catastrophic. Catastrophic faults affect the

system in such a way that it cannot function any further, and any ordinary control

techniques cannot counteract their effects. An example of component catastrophic fault is

a break of a joint or a link section. An example of actuator catastrophic fault is a short

circuit in electric motor, permanently damaging the wiring. This type of faults is the

worse case fault scenario and its effects on the system are obviously devastating. The

only way they can be corrected is by direct operator (human) involvement and

replacement of the system components. This thesis concentrates only on the faults of

smaller magnitudes, or non-catastrophic, which can be accommodated with ordinary

control techniques. This type of faults includes different variations of friction,

misbalances in the joint or actuator, water/air external environment switch and many

more. These faults can significantly affects the system’s performance as well, which can

be expressed in the loss of productivity, reduced life expectancy of the system, and

unsafe environment for people and outside environment.

Faults can be separated into two distinct categories: those that change the nonlinear

dynamics of the nominal model, and those that do not. The second category depends only

on time, and not on the states or the inputs, and therefore can be modeled as additive.

There are very effective techniques that can accommodate such faults, which include

 13

robust control and adaptive control. Faults belonging to the first category have nonlinear

dynamics and are beyond of the capabilities of the conventional techniques. They are

more difficult to handle because they depend both on the system’s states and the inputs.

The purpose of this is to device a very effective method that specifically deals with the

state and input dependent faults, while being robust with respect to the unmodeled

dynamics.

2.2.2 Parametric Fault History

It is reasonable to assume that faults are not continuously present in the system and

emerge only after the system has been in operation for some time or once one of the

system parameters exceeded a certain threshold value. Coulomb/Sticktion friction is

present in the system only at low velocities [23][24][25], and as the joint velocity exceeds

a certain velocity value, it approaches zero. Therefore, it would be incorrect to apply a

conventional approach and use time to express the fault history profile of

Coulomb/Sticktion friction, since only velocity affects its presence. Viscous friction has

significant effects only after the system had been in operation for certain time. Even then,

its effects are significant only after the velocity exceeds a certain value. In this case, both

time and velocity govern its behavior.

Thus, the presence of faults is both state and time dependent, and their presence and

magnitude is affected by a number of parameters. A general representation of the fault

dynamics is taken to be

() () ()τθθτθθ ,,,,, �� fpPBtF −= , (2.2)

 14

where () nnn RRRRf →×× +:,, τθθ � denotes the fault dynamics, and () nnRpPB ×∈−

represents the state and/or time dependent fault profile that has the following structure

() () () ()
��
�

��
� −−−=− nnn pPpPpPdiagpPB βββ ...,, 222111 ,

()
�
�
� ∈

=−
otherwise

Ppif
pP jj

jjj 0
1

β ,

where ()jjj pP −β represents the state and time history of the fault in the jth state, jp is

some parameter (for example time, or velocity), and jP is a region in this parameter

history where the fault is present. The instance of the fault is declared when the value of

the jp traverses into the jP region. diag() denotes a matrix whose diagonal elements

are the entries of the vector included in the brackets.

The combined state and time dependent approach to model the fault history

profile has advantages over the traditional approaches which model fault history profile

as only time dependent [17][18][20][21][26][28]. The time history profiling is a special

case in the parametric history profiling general framework. This approach provides a

more accurate mathematical representation of a real fault phenomenon. With this

approach, if the history profile of the fault can be learned by the monitoring system,

faults can be avoided by staying away from the regions of the profile (jP) where it is

present. In addition, [21] and similar treatments consider parameters only to effect the

dynamics of the fault, the history of the fault is separated and is only time dependent. By

 15

treating fault dynamics and the history as two dependent entities, a more complete and

thorough fault model is shaped.

2.2.3 Fault Nomenclature

Decades of research on the mechanical systems unveiled a major portion of the

common faults. Many of them have been extensively studied and well modeled. This

knowledge is used to improve the design of the new mechanical systems, and it can be

employed in the design of the control systems and the CDIA in particular.

Let us assume that there are N types of a priori known faults, which may appear in

the system, or a set of a priori known faults is

() ()
�
�
�

�
�
�=Α τθθτθθ ,,,...,,,1

��
Nff .

Faults may occur one at a time, in multiple concurrent combinations, or in multiple

asynchronous combinations. This leads to a conclusion that for N types of a priori known

faults there are 12 −N possible concurrent combinations (the combination with no faults

present is excluded), or a collection of instances of all a priori known faults can be

described by

() () ()
�
�
�

�
�
�=ΑΡ

−
τθθτθθ ,,,...,,,

121
��

Nff \ {∅ },

 16

where ()ΑΡ is a power set of Α. Therefore a complete set of faults in the system is

() (){ }ΑΡ=Φ ,,,0 τθθ �f ,

where 0f is an unknown fault type (Section 3.1).

2.2.4 Fault Dynamics

Each fault is assumed to be linearly parameterized, which can be expressed in the

following form

()

()
()

()

()
()

()

�

�

�

�

=

=

=

=

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=
s

i

nnn
m
n

m
n

mm

mm

nnn
m
n

s

i

m
n

n
m

s

i

m

s

i
n

mm

m

ii

ii

ii

ii

ii

ii

wc

wc

wc

wc

wc

wc

f
1

22222

11111

1

222
1

2

1
1111

,,

.

.

,,

,,

,,

.

.

,,

,,

,,

τθθ

τθθ

τθθ

τθθ

τθθ

τθθ

τθθ

�

�

�

�

�

�

�

()
()

()�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=�
=

nnn
m

m

m

s

i

m
n

m

m

i

i

i

i

i

i

w

w
w

c

c
c

τθθ

τθθ
τθθ

,,
.
.

,,
,,

..00
.....
.....
0..0
0..0

3

2222

1111

1

2

1

�

�

�

[] () ,,,
1
�

=

=
s

i
mm ii

WCdiag τθθ � for 12,...,2,1 −= Nm , (2.3)

 17

where n
m RC

i
∈ is a vector of the weights or parameters and nnn

m RRRRW
i

→×× +: is a

vector of dynamic functions. Consequently, the dynamics of a fault []12,1 −+∈ NNm

are cumulative dynamics of a combination consisting of []Nv ,1∈ types of concurrent

faults:

()

[] [] [] =+++=

=+++==

���

�

∈∈∈

=
∈∈

=
∈∈

=
∈∈

∈∈∈∈

vv

ii

vb

ii

va

ii

s

i
vgvg

s

i
vbvb

s

i
vava

vgvbvavim

WCdiagWCdiagWCdiag

fffff

111

...

...,, τθθ �

[] () ,,,
1
�

=

=
s

i
mm ii

WCdiag τθθ � for m = 1,2, . . . , 2N - 1 .

Hence, throughout this thesis any reference to a fault pointing to a complete fault

dynamics, but not to any specific type of fault dynamics.

2.2.5 State and Torque-dependent Faults

It is important to be able to differentiate between torque and state-dependent

faults. It corresponds to a more comprehensive fault models and in turn allows the CDIA

to separately pinpoint faults related to the actuator or the component. It is the fact that the

faults might occur either in the actuator or the joint or in both at the same time (Figure 5).

 18

Figure 5 - Input signal – output effect diagram.

Therefore, the fault dynamics can be represented as

() () ()τθθτθθ
τθ mmm fff += �� ,,, ,

where ()τ
τmf and ()θθ

θ
�,mf represent torque-dependent and state-dependent faults

respectively.

 This thesis treats state and torque-dependent faults as two separate entities. In a

similar treatment in [20], torque is assumed to be a function of input states only and thus

the possibility of faults in the actuator are not explicitly presented. The work in [18][22]

does consider faults due to input torque but does not separate (decouple) actuator faults

from component faults and treat them as one entity. Adaptation in this case is structured

around states only. These approaches eliminate the possibility of separate actuator and

component fault isolation.

Actuator Joint

input
signal

actuator
torque

output
torque

effect

Robot

 19

2.2.6 Summary

Summarizing this section’s analysis of the faults in the robotic system, we arrive at

the following comprehensive model of the robotic system:

() ()
�

() () ()[]
����� ������ ��

�
������ ������� ��
����

DynamicsFault

mmm

Torque
InputDynamicssSystemRobotic

ffpPBGVM τθθτθθηθθθθθ
τθ +−+=+++ ,,),()(

'
 (2.4)

 20

3 CDIA ARCHITECTURE

In this chapter CDIA’s, architecture is analyzed in details. Figure 3 offers a graphic

representation of its architecture. CDIA consists of four distinct stages: (i) detection, (ii)

isolation, (iii) accommodation, and (iv) idle-monitoring, each of which are described in

sections 3.2, 3.4, 3.5, 3.6, and 3.7 respectively. Sections 3.1 and 3.3 discuss and analyze

vital mechanisms in the CDIA design that make it robust and effective. Imbedded in the

gray regions are the key results of the analysis in each section. These results can be used

as guidelines for the implementation of the CDIA scheme.

 21

Figure 6 - CDIA architecture.

The CDIA scheme can be made as sophisticated and complicated, as the designer

would need, depending on the system, hardware, and other requirements. Each of the

CDIA stages is the building block of the scheme, where the order of their implementation

has to be preserved. Each instance of the fault may require dedication of a separate CDIA

process, consisting of the isolation, accommodation and idle-monitoring stages.

Therefore, the duration and the number of the separate processes are very

dynamic. In the present design of the CDIA, a very important assumption is made which

is based on both the analytical and the hardware capabilities of the system. It is assumed,

that the presented scheme is fast enough to detect and isolate any fault combination set

before the next set may occur. With this assumption, the analyzed schemes for a single

 Fault diagnosis logic

Identification/Decision logic Idle-monitoring logic

Operator

Detection/
Approximation
observer

Approximator

Detection

logic
U

U U X X X

X

Controller Xd
U

+

U0

f

X

+

U

Nominal
model

Identification filter – 2N

X

e e0

Identification filter - 1

DYNAMIC SYSTEM

Bank of N a priori
known fault dynamics.

I
s
o
l
a
t
I
o
n

B
a
n
k

 22

set of multiple faults can be applied to the multiple random fault situations without any

modifications.

3.1 Detection/Approximation Observer

The detection/approximation observer is a multifunction mechanism that bonds the

entire CDIA scheme together. While the system is healthy it is used to monitor it for

faults and detect them if they do occur. During the subsequent stages, it is used to

approximate and accommodate unknown fault dynamics, and to monitor the system for

fault absence. Each of the detection/approximation observer application becomes evident

in later sections. It is carefully designed to be robust with respect to unmodeled

dynamics, and state and torque-dependent faults.

In section 2.2.4 the parametric structure of the fault dynamics was analyzed. Based

on it, the approximated torque-dependent and state-dependent fault dynamics in an n-

degree of freedom system can be represented by the following equations:

()

()
()

()

()
()

()

()[] τ

τ

τ
τ

τ

τ
τ

ττ tHdiag

th

th
th

th

th
th

tf

nnnn

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

.

.

..00
.....
.....
0..0
0..0

.

.,ˆ
2

1

2

1

22

11

 23

()

() ()

() ()

() ()

() ()
() ()

() ()��
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

�

�

�

�

�

�

=

=

=

=

=

=

nn

k

i
n

k

i

k

i

nn

k

i
n

k

i

k

i

ii

ii

ii

ii

ii

ii

zts

zts

zts

qtl

qtl

qtl

tf

θ

θ

θ

θ

θ

θ

θθθ

�

�

�

�

1

22
1

2

1
111

1

22
1

2

1
111

.

.
.
.,,ˆ (3.1)

() ()
() ()

() ()

() ()
() ()

() ()
��

==

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=
k

i

nnn

k

i

nnn ii

ii

ii

ii

ii

ii

zts

zts
zts

qtl

qtl
qtl

1

222

111

1

222

111

.

.
.
.

θ

θ
θ

θ

θ
θ

�

�

�

()

()

()

()
()

()

()
()

()

()
()

()�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

= ��
==

nn

k

i

nnn

k

i

n i

i

i

i

i

i

i

i

i

i

i

i

z

z
z

ts

ts
ts

q

q
q

tl

tl
tl

θ

θ
θ

θ

θ
θ

�

�

�

.

.

..00
.....
.....
0..0
0..0

.

.

..00
.....
.....
0..0
0..0

22

11

1

2

1

22

11

1

2

1

()[] () ()[] ()

()[] () ()[] () ,
1

11

�

��

=

==

�
�
�

�
�
� +=

+=

k

i

k

i

k

i

iiii

iiii

ZtSdiagQtLdiag

ZtSdiagQtLdiag

θθ

θθ

where () nRtH ∈ , () n
i RtL ∈ , and () n

i RtS ∈ are the vectors of the weights or parameters.

In equation (3.1) the velocity and the position dynamics are decoupled for analytical

purposes. It does not affect the approximation effort, although it allows detecting the

position-dependent faults and the velocity-dependent faults individually. Both velocity-

dependent and position-dependent dynamics of the fault are approximated using RBF

 24

neural network structures composing the () nRQ
i

∈θ and () nRZ
i

∈θ� vectors, and are

structured as follows

() ()
�
�

�

�

�
�

�

� −
−= 2

2

exp
ij

ijj
jij

a
q

σ
θ

θ ,

() ()
,,...,2,1,...,2,1exp 2

2

njandkifor
b

z
ij

ijj
jij ==

�
�

�

�

�
�

�

� −
−=

ω
θ

θ
�

�

where ija , ijb are centers of the gaussian networks for position and velocity neurons

respectively in the jth state and the ith neuron. Likewise, ijσ , ijω are widths of the gaussian

networks for position and velocity neurons respectively in the jth state and the ith neuron

[17][31]. Going along with the same architecture as the approximated fault dynamics

above, the true state-dependent and torque-dependent fault dynamics (equation (2.3)

decoupled) are assumed to have an equivalent form:

() [] τ

τ

τ
τ

τ

τ
τ

ττ
*

2

1

*

*
2

*
1

*

2
*
2

1
*
1

.

.

..00
.....
.....
0..0
0..0

.

. Hdiag

h

h
h

h

h

h

f

nnnn

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

≅ , (3.2)

 25

()

()

()

()

()
()

()��
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

+

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

≅

�

�

�

�

�

�

=

=

=

=

=

=

nn

k

i
n

k

i

k

i

nn

k

i
n

k

i

k

i

ii

ii

ii

ii

ii

ii

zs

zs

zs

ql

ql

ql

f

θ

θ

θ

θ

θ

θ

θθθ

�

�

�

�

1

*

22
1

*
2

1
11

*
1

1

*

22
1

*
2

1
11

*
1

.

.
.
.,

()
()

()

()
()

()
��

==

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=
k

i

nnn

k

i

nnn ii

ii

ii

ii

ii

ii

zs

zs
zs

ql

ql
ql

1

*

22
*
2

11
*
1

1

*

22
*
2

11
*
1

.

.
.
.

θ

θ
θ

θ

θ
θ

�

�

�

()
()

()

()
()

()�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

+

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

= ��
==

nn

k

i

nnn

k

i

n i

i

i

i

i

i

i

i

i

i

i

z

z
z

s

s
s

q

q
q

l

l
l

θ

θ
θ

θ

θ
θ

�

�

�

.

.

..00
.....
.....
0..0
0..0

.

.

..00
.....
.....
0..0
0..0

22

11

1

*

*
2

*
1

22

11

1

*

*
2

*
1

[] () [] ()��
==

+=
k

i

k

i
iiii

ZSdiagQLdiag
1

*

1

* θθ �

 [] () [] ()�
=

�
�
�

�
�
� +=

k

i
iiii

ZSdiagQLdiag
1

** θθ � , (3.3)

and

[] ,,...,2,11,.. ***
2

*
1

* njhhhhH
j

T
n =∀−≠=

where nRH ∈* , nRL
i
∈* and nRS

i
∈* represent the weight of the true fault dynamics and

are assumed to be constants. In fact, the real values of the weights are never known, but it

is assumed that *H , *
i

L , and *
i

S represent their counterparts that constrain the fault to

 26

exhibit identical behavior. Therefore, ()tH , ()tL
i

 and ()tS
i

 can be varied in time in order

to approximate the values of *H , *
i

L , and *
i

S respectively. This makes τf̂ and θf̂ the on-

line approximators of τf and θf respectively. Through the next part of the analysis, the

notation ‘ ()∗∗ ’ will be replaced with ‘ ∗ ’ for reasons of simplicity. Therefore equation

(2.4) can be rewritten as

[] [] [] ,
1

�

=
�
�
�

�
�
� ++�

�
��

�
� +=

=+++

k

i
iiii

ZSdiagQLdiagBHdiagBI

GVM

τ

ηθ��
 (3.4)

In order to find expressions for updating τf̂ and θf̂ , initially ()0
i

H , ()0
i

L and ()0
i

S are

set so that 0ˆ =τf and 0ˆ =θf at 0=t . In the state space form, equation (3.4) can be

rewritten as

[]

[] () [] () .
1

**1

*11

�
=

−

−−

�
�
�

�
�
� ++

+�
�
��

�
� ++�

�
��

�
� ++−=

k

i
iiii

ZSdiagQLdiagBM

HdiagBIMGVM

θθ

τηθ

�

��

 (3.5)

Following the above-presented analysis, the detection/approximation observer is

proposed

 27

[]

[] [] �
�
��

�
� −−�

�
��

�
� ++

+�
�
��

�
� ++�

�
��

�
� +−=

�
=

−

−−

θθγ

τθ

��

��

ˆ

ˆ

1

1

11

k

i
iiii ZSdiagQLdiagM

HdiagIMGVM

 (3.6)

where

 []ndiag γγγγ ...21=

is a positive definite stability matrix [1][2].

3.2 Detection

Let θθ �� −= ˆ
0e denote the state estimation error, which will serve also as the

residual vector [2][17]. During the detection stage, the CDIA monitors the system for the

presence of the faults. While the system is healthy or no fault is present, the true system

dynamics is represented as follows

τθ 11 −− +�
�
��

�
� +−= MGVM�� (3.7)

Unmodeled dynamics η is excluded from the equation. Its presence will be addressed in

details in the next section. Consequently, while the system is healthy, the approximation

model has the following form

 28

�
�
��

�
� −−+�

�
��

�
� +−= −− θθγτθ ���� ˆˆ 11 MGVM . (3.8)

Therefore, by calculating the estimation error 0e from equations (3.7) and (3.8), it is

established that for a fully observable system, while it is healthy, or there is no fault

present the estimation error must be zero or () 00 =te . This consequently means that

0* =H , 0* =
i

L , and 0* =
i

S . The estimates of the faults are also set to zero (0=H ,

0=iL , 0=iS) in order to detect any difference between the nominal dynamics in the

detection/approximation observer and the real system.

As a result of the above analysis, if () 00 ≠te , ii Pp ∈ and the additional

dynamics are present in the system and a fault is declared. By subtracting the estimated

model (3.8) from the true model (3.5) of unhealthy system, we obtain

[] [] [] �
�

�
�
�

� −�
�
	

�
� ++−−= �

=

−
k

i
iiii

ZdiagSQdiagLBHdiagBMee
1

***1
00 ητγ� . (3.9)

The detection/approximation observer will be in detection mode until the residual vector

exceeds the dynamic detection threshold at time tdt analyzed below. tdt is the point in the

time history when the fault was detected.

 29

3.3 Dynamic Detection Threshold

The unmodeled dynamics η are always present in the system, and can be

mistakenly identified by the CDIA as a fault. In order to avoid such false alarms and to

improve performance, a detection threshold is introduced. Prior to the fault occurrence,

from the equation (3.9) the error equation is given by

ηγ 1

00
−+−= Mee� .

 () () () ()() () ()�
−−−+−=�

t

dTTTMTteete
0

1
000 exp0exp ηγγ (3.10)

By introducing the upper bound on each element of η , given by () j
t

j ηη sup0 = , and

taking into account that () 000 =e , we arrive at

 () ()() ()[]�
−−−≤�

t

dTTMTtte
0

0
1

0 exp ηγ

Define the detection threshold vector () []ndddtD ,...,,,, 21=θθ � to be

() ()() ()[]�
−−−≡

t

dTTMTttD
0

0
1exp,, ηγθθ �

 .

Therefore, a fault is declared if

 30

() njfortde jj
,...,2,10 => ,

(once any element of the residual vector exceeds the corresponding element of the

detection threshold). Detection delay can be observed on the plot below. Because the

detection threshold is dynamic, detection delay is small in comparison with the isolation

time.

Figure 7 - Detection delay;

(_ _ _ threshold, _____ velocity approximation error).

The detection threshold is dynamic with respect to both time and the states. Such

design minimizes the detection time and brings additional advantages. It gives the system

the ability to distinctly determine the point in the fault history profile where the fault

emerges. Until such point, the systems approximation efforts are put on hold, therefore

preserving system’s computational resources.

 31

Only time-varying version of the dynamic detection threshold is also derived. By

introducing the upper bound, given by ()
jt

j M ηη 1
0 sup −= , and taking into account that

() 000 =e , from equation (3.10), we arrive at

() 0
1

9 exp ηγγ −

��
�

��
� −−Ι≤ te

Define the time-varying detection threshold vector () []t
n

tt
t dddtD ,...,,,, 21=θθ � to be

() () 0
1exp ηγγ −

��
�

��
� −−Ι≡ ttDt .

It minimizes the detection time, but only during the initial stages of the operation. The

plot below depicts its performance

 32

Figure 8 - Time-varying detection threshold performance;

(_ _ _ threshold, _____ velocity approximation error).

3.4 Approximation

This thesis considers only abrupt faults; therefore a fault occurrence implies that

Ι=B . Once the fault has been detected, from equations (3.5) and (3.6), the complete

error equation is given by

0
111111

0
ˆˆ efMfMMfMfMMe γττ θτθτ −−−−++= −−−−−−

�

 33

[] []

[] [] [] [] η

ττγ

−�
�
�

�
�
� +−�

�
�

�
�
� ++

+−+−=

��
==

−−

−−

k

i

k

i
iiiiiiii

ZSdiagQLdiagMZSdiagQLdiagM

HdiagMHdiagMe

1

**

1

11

*11
0

[] []

[] [] [] [] .
1

**

*1
0

�
�
�

�
−

�
�
�

�

�
�
�

�
�
�
	

�
� −+�

�
	

�
� −+

�
�
�

�
�
�
	

�
� −+−=

�
=

−

η

τγ

k

i
iiiiii

ZSdiagSdiagQLdiagLdiag

HdiagHdiagMe

Let *~ HHH −= , iii
LLL *~ −= , and *~

iii
SSS −= . Consequently one has

 [] [] [] .~~~
1

1
00 �

�

�
�
�

� −�
�
	

�
� +++−= �

=

− ητγ
k

i
iiii

ZSdiagQLdiagHdiagMee�

In accordance to Lyapunov stability theory [2], the global stability of the system

is guaranteed if it can be shown that some function U is globally positive definite (for

() 0,0 >≠ tUt), and if its derivative ()tU� is globally negative definite or semi-definite

(for () 0,0 ≤≠ tUt �) [2]. We use the stability analysis to accomplish two goals

simultaneously: first to show that the system approximation error does converge to zero,

and second to derive adaptation laws that make it to converge to zero. It is being done in

a backward way, by assuming that the approximation error can be stable, and using

Lyapunov stability analysis to establish rules that force this convergence to zero. If the

approximation error does gradually converge to zero, consequently the weight in the

 34

detection/approximation filters will mimic the behavior of the weights in the true fault

dynamics. A Lyapunov function of the following form is employed:

0~~
2
1~~

2
1~~

2
1

2
1

1

1

1

11
00 ≥Υ+Ψ+Γ+= ��

=

−

=

−−
k

i

T
k

i

TTT
iiii

SSLLHHeeU ,

where nnR ×∈ΥΨΓ ,, are adaptive gain matrices gains. Therefore

��
=

−

=

−− Υ+Ψ+Γ+=
k

i

T
k

i

TTT
iiii

SSLLHHeeU
1

1

1

11
00

~~~
�����  

 

[ ] [ ] [ ]

η

τγ

1
0

1

1

1

11

1

1
0

1

1
0

1
000

~~~

~~~

−

=

−

=

−−

=

−

=

−−

−Υ+Ψ+Γ+

+−−−−=

��

��

MeSSLLHH

ZSdiagMeQLdiagMeHdiagMeee

T
k

i

T
k

i

TT

k

i

T
k

i

TTT

iiii

iiii

���

 

[ ] [ ] [ ]

[ ] [ ] [ ] η

τγ

1
0

1

1

1

1
0

1

1

1

1
0

11
000

~~~

~~~

−

=

−

=

−

=

−

=

−−−

−Υ+−Ψ+

+−Γ+−−=

���

�

MeSdiagSSZdiagMeLdiagL

LQdiagMeHdiagHHdiagMeee

T
k

i

T
k

i

T
k

i

T

k

i

TTTT

iiiiii

ij

��

�

  

[ ] [ ]

[ ] η

τγ

1
0

1

1

1

1
0

1

1

1

1
0

1
0

1
00

~~~

~~

−

=

−

=

−

=

−

=

−−−

−Υ+−Ψ+

+−�
�
�

�
�
�
�

�
−Γ+−=

���

�

MeSSSZdiagMeLL

LQdiagMeHdiagMeHee

T
k

i

T
k

i

T
k

i

T

k

i

TTTT

iiiiii

ii

��

�

 35

[]

[]

[] .~

~

~

1

1
0

1

1

1
0

1

1
0

1

1
000

�

�

=

−−

=

−−

−−

−

�
�
�

�
�
� −Υ+

+�
�
�

�
�
� −Ψ+

+�
�
��

�
� −Γ+

+−−=

k

i

TT

k

i

TT

TT

TT

iii

iii

SZdiagMeS

LQdiagMeL

HdiagMeH

Meee

�

�

� τ

ηγ

By setting

[]

[]

[]

[]

[]

[]

kifor

eMZdiagS

eMQdiagL

eMdiagH

orZdiagMeS

orQdiagMeL

ordiagMeH

ii

i

ii

ii i

TT

TT

TT

,...,2,1

,

,

,

0
1

0
1

0
1

1
0

1

1
0

1

1
0

1

=

Υ=

Ψ=

Γ=

=Υ

=Ψ

=Γ

−

−

−

−−

−−

−−

�

�

�

�

�

� ττ

we obtain ηγ 1−−−= MeeeU TT� . When 0=η , one acquires

0≤−= eeU T γ� ,

which is negative semi-definite, and therefore the approximation error will converge to

zero. When 0≠η , one acquires

 36

()

()

() 212
0

1
min

22
012

0min

1
0

2
0min

1
000

22
1

22

ηµ
µ

γλ

µ
η

µ
γλ

ηγλ

ηγ

−−

−

−

−

+��
�

�
��
�

�
−−=

��

�
	

��

�
�

++−≤

+−≤

−−=

MeM

e
Me

Mee

MeeeU TT�

where ()∗minλ denotes the smallest eigenvalue. Choose ()
µ

γλµ
2
1: 1

min
−> M , i.e.

()γλ
µ

min

1

2

−

>
M

, then 22
0 ηβα +−= eU� . Results of this analysis guarantee the uniform

boundedness of the velocity estimation error and the weights in the neural network.

Furthermore it leads to the conclusion that the overall system remains stable. Following

the previous analysis, the approximation observer’s architecture will be

 37

[] [] []
[]

[]
[]

[]

()
()

()

() () ()[]
() () ()[]

() () ()[]
[]
[]

[]

()
()

()

() () ()[]
() () ()[]

() () ()[]�
�
�
�
�
�
�
�
�
�

�

��
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

	

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

Υ

Υ
Υ

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

Ψ

Ψ
Ψ

=

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	

Γ=

−�
�

�

�
� ++�

�

�

�
� ++�

�

�

�
� +−=

−

−

−

−

−

−

−
=

−−−
�

T
n

T
n

T
n

k

T
n

T
n

T
n

k

k

i

kkkkk

kkkkk

iiii

zzz

zzz
zzz

Z

Z
Z

eMZdiag

eMZdiag
eMZdiag

S

S
S

qqq

qqq
qqq

Q

Q
Q

eMQdiag

eMQdiag
eMQdiag

L

L
L

eMdiagH

eZSdiagQLdiagMHdiagIMGVM

θθθ

θθθ
θθθ

θ

θ
θ

θθθ

θθθ
θθθ

θ

θ
θ

τ

γτθ

���

���

���

�

�

�

�

�

�

�

�

�

�

��

..
.
.

..

..

.

.
.
.

.

.

..
.
.

..

..

.

.
.
.

.

.

ˆ

21

21

21

0
1

0
1

0
1

21

21

21

0
1

0
1

0
1

0
1

0
1

111

222

111

2

1

2

1

2

1

222

111

2

1

2

1

2

1

Approximation in the isolation filters is identically structured using the same

approximation rules as in the detection/approximation observer.

3.5 Isolation

 Once the fault has been detected, the entire bank of isolation filters including the

detection/approximation observer is activated, and the detected fault is compared with

each filter. If one of the isolation filters is found to be equivalent to the detected fault, the

exact nature and the source of the fault become known. Throughout this process, the

detection/approximation observer keeps approximating the true fault dynamics just in

case none of the filters in the bank is equivalent. After the fault function is extracted

either by matching it with one of the filters in the isolation bank or using neural networks

 38

in the approximation observer, it can be used to reconfigure the control input and

accomplish fault accommodation.

It is preferable to accommodate the system using the fault dynamics extracted

from one of the isolation filters. Let us consider the situation when the fault is found to be

equivalent to one of the isolation filters, excluding the detection/approximation observer.

It takes a certain isolation time tis after the detection time tdt to determine which fault had

occurred. At this point, the weights of the isolation filter are adjusted to mimic the actual

fault function. After tis accommodation is based on the precisely known fault function,

and therefore it requires minimal adaptation activity, and the approximation error is kept

at minimum. Most importantly, the operator and the system will have the knowledge of

the magnitude and the nature of the fault.

In situations when the approximation observer is used to extract the fault function,

the neural networks in approximation observer will be active indefinitely past tis for as

long as there is the need to accommodate the fault. The exact dynamics and the nature of

the fault will never be known. In addition, it is not known whether the detected fault is

just one type of fault or a combination of many faults.

An isolation time tis is not a set quantity and it is different for each isolation effort.

Initially it should be set to the predetermined minimal value tis(min). If none of the isolation

filters are found to be equivalent on the interval [tdt, tis], then the fault is declared

unknown and the detection/approximation observer is used to accommodated it. If more

than one fault is found to be equivalent on the interval [tdt, tis], then tis is increased until

the true fault dynamics is distinguished from the similar ones on the interval.

The following isolation filter is proposed

 39

[] �
�
��

�
� −−+�

�
��

�
� +−= �

=

−− θθγθ ����

m

s

i
mmm ii

WCdiagMGVM ˆˆ
1

11 , (3.11)

Therefore the isolation bank would have the following structure:

[] [] []

[]
[]

[] �
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

−+�
�
	

�
� +−

−+�
�
	

�
� +−

−+�
�
	

�
� +−

=

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

−�
�
	

�
� ++�

�
	

�
� ++�

�
	

�
� +−=

−
=

−−
−−

=

−−

=

−−

−

=

−−−

�

�

�

�

12
1

1212
11

2
1

22
11

1
1

11
11

12

2

1

0
1

111

.

.

ˆ

.

.

ˆ

ˆ

ˆ

N
i

N
i

N

ii

ii

N

iiii

eWCdiagMGVM

eWCdiagMGVM

eWCdiagMGVM

eZSdiagQLdiagMHdiagIMGVM

s

i

s

i

s

i

k

i

γ

γ

γ

θ

θ

θ

γτθ

��

��

��

��

Let θθ �� −= mme ˆ denote the state estimation error in the mth filter. After the fault

occurrence, by subtracting the approximated dynamics in the mth filter (3.11) from the

true dynamics (3.5), the error equation is given by

�
�
��

�
� ++−=++−= −−−

mmmm MeMMee µηγµηγ 111
� , (3.12)

where

[] [] [] []���
===

�
�
�

�
�
� −=−=

s

i
mmm

s

i
mm

s

i
mmm iiiiiii

WCdiagCdiagWCdiagWCdiag
000

*µ ,

 40

is the equivalency deviation between the true fault dynamics and the mth isolation filter

dynamics. *
imC and *

imW are the vectors of weights and dynamic functions respectively

belonging to the true dynamics. After multiplying both sides of equation (3.12) by

)exp(tγ and rearranging it, we obtain

() () ()

() () �
�
��

�
� +=�

�
��

�
��

�
�
��

�
� +=+

−

−

mm

mmm

Mtet
dt
d

Mtetet

µηγγ

µηγγγγ

1

1

expexp

expexpexp �

() ()�� �
�
��

�
� +=�

�
��

�
�� −

t

m

t

m dtMtdtet
dt
d

0

1

0

expexp µηγγ .

By introducing the upper bound, given by ()
jt

j M ηη 1
0 sup −= , and the equivalency

margin ()
jm

t
jm M µµ 1sup~ −= , we arrive at

() () �
�
��

�
� +≤�

�
��

�
� �� m

tt

m dttdtet
dt
d µηγγ ~expexp 0

00

,

() ()

() .~exp

,~expexp

0
1

0
1

�
�
��

�
� +

��
	

�
� −−Ι≤

�
�
��

�
� +

��
	

�
� Ι−≤

−

−

mm

mm

te

tet

µηγγ

µηγγγ

Define the isolation threshold vector () []
nmmmm rrrtR ,...,,,,,

21
=τθθ � to be

 41

() () �
�
��

�
� +

��
	

�
� −−Ι≡ −

mm ttR µηγγτθθ ~exp,,, 0
1�

.

Therefore, for tdt < tis, dynamics in the filter m in the jth state are equivalent to the true

dynamics within a margin
jmµ~ if

[]isdtmm tttforre
jj

,∈∀≤
.

The above formulation provides a robust mechanism for successful fault isolation. In the

absence of an acceptable equivalent, detection/approximation filter should be employed

to accommodate the fault.

3.6 Accommodation

In the absence of faults, without any loss of generality a PD-computed-torque

approach can be used to accomplish tracking [2]. Under healthy conditions, the nominal

input torque 0τ τ= is given by

() ()[] ()
�� ��� ��

�

������� �������� ��

����

torquecomputedtracking

ddvdp GVKKM θθθθθθθθθτ +++−+−=),()(0 ,

 42

where n
ddd R∈θθθ ��� ,, are the vectors of desired joint positions, velocities, and

accelerations, respectively, and nn
p RK ×∈ and nn

v RK ×∈ are negative definite matrices,

which are designed, so that exponential convergence of the tracking errors is achieved.

 Applying the proposed torque and stage-dependent fault models, the input should

have the following structure

()[] () ()

() ε

ε

τ

θθτ

τ

θ

≤+

>+

�
�

�

�
�

�

�
��
�

�	

 −�

�

�

�
� +

=

−

thif

thiftftHdiagI

i

i

1

1,,ˆ

0

0

1
�

,

where ε is some constant, whose value is dictated by the nominal input torque. The new

input has capabilities to self-correct failures. The fault approximator will be able to

mimic the faults and provide appropriate modifications to the input torque in order to

accommodate them.

3.7 Idle-Monitoring

 After a fault had been accommodated, in most situations it may disappear after

certain period. Velocity and position-dependent faults may disappear from the system

because the velocity or position reached regions where the fault is simply not present.

There can be a multiple of other causes for a fault to become absent from the system.

There is no need to spend resources on accommodation of something that is not present

 43

anymore, plus there is no need to keep the system thinking that the fault is there, if in

reality it is not there. This fact suggests a need for idle-monitoring system after the fault

had been accommodated. It should be able to make a determination if the fault is just at

low values or disappeared. If it did disappear, it should change the control, detection, and

isolation scheme in order to monitor for its future occurrences. This can be accomplished

by introducing idle-monitoring threshold nR∈ρ . The accommodated fault is declared

absent, if

njandttforc prj

s

i

m
ji ,...,2,1

1
=≥<�

=
ρ

 ,

where tpr is the maximum idle time. Once this happens, the control law is reconfigured so

this fault is not accommodated any further, and the bank of isolation filters is updated so

it includes this fault dynamics again (isolation it was removed from the isolation bank).

3.8 CDIA Performance Analysis

The performance of CDIA can be optimized with additional modifications. Some of

them are described in this section.

As it has been presented in section 2.2.3, faults may occur in multiple concurrent

combinations. In addition, faults may occur at different points in the change history, or

for instance one combination may occur at t = 2 seconds and another at t = 11 seconds. If

the most recent fault combination m (where ()12...,2,1 −= Nm) was successfully

 44

isolated, then there is no need to observe for the types of faults that were a part of this

combination. They are already present in the system, they were isolated, and trying to

observe and isolate them is an unnecessary use of resources. At this stage, the bank of

isolation filters should consist of 12 −−mN filters.

As it was presented in Section 2.2.2, some faults do not have time dependent history.

Their presence can depend on either one of the states, or a number of the states. For

instance, some frictions occur only if velocity exceeds a certain value, so as long as the

velocity is below some upper bound, this type of fault cannot occur. Consequently, if

some fault had been detected in the system before this triggering parameter threshold had

been reached, there is no need to activate the isolation filters for such faults. Therefore,

the number of isolation filters can be reduced even more, thus reducing the number of the

possible faults and increasing the efficiency of the scheme. This is one of the advantages

of modeling fault history not as only time dependent, but as parameter-dependent.

 45

4 SIMULATION

In this chapter the previously presented modeling techniques are applied to SCARA

robotic system (Figure 9). This simulation study demonstrates that the presented scheme

is effective when applied to a real life robotic system. The simulation was conducted

using Matlab [50]. The sample of the Matlab code used is available in the Appendix.

4.1 SCARA Robot

The Selective Compliance Assembly Robot Arm (SCARA) robot was selected for

the simulation studies because of its extensive use in the industry. Figure 4 depicts a

general representation of the SCARA robot. This robotic system comes in many different

configurations, and the presented configuration reflects its general structure. This system

offers a considerable generality for the scheme simulation because it encapsulates both

translational and rotational types of joint and its dynamics strongly depend on position,

 46

velocity, acceleration, and time. Traditionally, SCARA robots have one translational

vertical axis, two rotational axes that provide motion in the horizontal plane, and usually

one additional axis for the tool rotation in the wrist. The overall SCARA robot structure

is very rigid in both the vertical and horizontal axes, which allows very smooth and well

guided motion of the links. It has the highest speed of any other robot configuration in the

industry, which ranges in 2000-5000 mm/s. The repeatability rate is also very high, which

explains its high popularity in the manufacturing industry. Successful application of the

CDIA to the SCARA robot assures the generality of the modeling and control scheme

proposed. Examples of robotic systems belonging to the general class of SCARA robot

include the Adept One, the IBM 7545, the Intelledex 440, and the Rhino SCARA [4][51].

Figure 9 - SCARA robot.

The dynamic model of the SCARA robot can be represented with the same system

of differential equations as any general robotic system presented in section 2.1, which is

 47

τθθθθ =++ GVM),()(��� , (4.1)

where

[]TF4321 ττττ = ,

[]Tx4321 θθθθ = ,

[]TgmG 3000= ,

() ()

()

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

+
�
�
�

	

�

�

++
++

�
�
�

	

�

�

++
++

�
�
�

�

	

�

�

++

+++
+++

=

3

333

3
2
232

22132

2
232

3

22132

2
232

2
232

22132

2
1321

000
0

0)(
cos)(

)(

0

cos)(
)(

)(

cos)(2
)(

)(

m
III

Ilmm
llmm

lmm

I

llmm
lmm

lmm
llmm
lmmm

M

zzz

z

z

θ

θθ

θ ,

() ()
()

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+
−+−

=

0
0

sin)(
2sin)(

),(
2

122132

12222132

θθ
θθθθ

θθ
�

���

�
llmm

llmm

V .

 48

Detailed derivation is presented in Appendix 6.1, which is based on general model

analyzed in [5]. Values of the parameters used during simulation of the SCARA robot are

listed in the Table 1 below. These are reasonable estimates of the real robotic system.

Link Weights:

m1
m2
m3

50 kg
40 kg
30 kg

Link Dimensions:

l1
l2
l3 (radius of the shaft)
x4

0.425 m
0.375 m
0.020 m
0.356 m

Maximum Ranges:

p1
p2
p3
p4

5/6π rad
7/9π rad
3/2π rad
0.200 m

Maximum Velocities:

V1
V2
V3
V4

10/3π rad/sec
5π rad/sec
55/3π rad/sec
1.200 m

Table 1 - SCARA parameters

The presented model is an idealized representation of the real physical system.

The following assumptions had been made: no friction, rigid links, rigid structure of the

joints (rigid motor shafts, no backslashes, rigid gearing), no load at the end of the

effecter, link masses are at distant ends, gravity is g, fault free operating conditions. This

 49

model can be improved, which can lead to a better controller design. On the other hand, a

more thorough model will have more complicated mathematical structure, which can

make its analysis and controller design very difficult or even impossible.

In the SCARA dynamic model state 4 is decoupled from the other three states.

One might ask why does it even have to be considered? If state 4 is ignored in the design

of the CDIA and the fault does occur specifically in the state 4, then it will never be

detected and accommodated for that matter. In addition, a complete model of the SCARA

robot is being analyzed in this simulation. Ignoring either one of the states sets it apart

from the true mechanical system, and we want the simulation to be as realistic as

possible.

The best approach to determine the upper bound of unmodeled dynamics is

through experimental study. Because this thesis includes only simulation study and no

testing in the field was conducted, it had to be derived in an analytical fashion. It was

established that joint velocities exert the largest effect on the magnitude of the unmodeled

dynamics. Though, the maximum allowable by robot design join velocities were used as

a base for the unmodeled dynamics upper bound vector multiplied by some factor.

Running simulations and observing the newly designed upper bound verses the

unmodeled dynamics helped to carefully adjust both the multiplication factor, and each

value in the upper bound vector.

4.2 Fault Models

In the joints (components), the most common and ever present type of faults is

friction. Friction has been extensively analyzed and varieties of models are available.

 50

Friction models in the works by C. Canudas de Wit [23][24][25] provide an excellent

reflection of friction in the real joint. The table below lists most common and noteworthy

friction models.

Coulomb / Sticktion)sgn()(θαθ �� =f

Asymmetries θβθαθ ���
jjf +=)sgn()(

Position Dependence �
�
��

�
� += ϕθθ 0sin)(wkf f

Downward Bend)sgn(exp)(10 θθβααθ ���

�
�
�

�

�
�
�

�
�
�

	

�

�−+=f

Viscous θαθ ��
2)(=f

Table 2 - Component Fault Dynamics.

In SCARA manipulators, actuators are generally electric motors. Faults in rotating

electric motors may be classified as electric faults, rotational faults and vibration faults.

Rotational faults include windage, friction, brush friction, core faults, stray-load faults.

Table 3 reflects most of the rotational faults in the motor. The electric faults in motors

include the I 2R faults in the field circuits and armature circuits [8][9], and their

mathematical model can be summarized with

 51

Electric τατ =)(f , ∞≤≤<− Kα1

Table 3 - Actuator Fault Dynamics.

where K is some maximum value that α can reach. The class of vibration faults includes

sub-synchronous, synchronous, and super-synchronous faults, vertical motor bearing

faults, and critical speeds faults [8][9]. Because of the shear complexity of such faults,

there are no adequate mathematical models available and the best available method for

their determination is experimental measurements.

4.3 Numerical Study

The first stage of the numerical study analyzes performance of the

detection/approximation (DA) observer. Figure 10 - Figure 15 demonstrate results of

such study with an example of actuator and component fault detection and

accommodation in a SCARA robot. The previously described fault dynamics are applied

in this simulation. As shown in Figure 14 and other plots, the proposed scheme is able to

detect both actuator and component faults, learn their dynamics and make appropriate

modifications to the control law, which in turn accomplishes accommodation.

 52

Figure 10 - DA observer: position error (States 1 & 3).

 53

Figure 11 - DA observer: position error (States 2 & 4).

 54

Figure 12 - DA observer: velocity error (States 5 & 7).

 55

Figure 13 - DA observer: velocity error (States 6 & 8).

 56

Figure 14 - DA observer: velocity estimation error (States 5&7).

 57

Figure 15 - DA observer: velocity estimation error (States 6&8).

 58

During the second stage of the numerical study (Figure 16 - Figure 21), isolation

performance of the CDIA scheme was analyzed. Three a priori known types of faults

were included in the isolation filter bank, thus

�������������

filtersof
numberTotal

Observer
IsolationDetection

filters
Isolation

8112
/

3 =+− .

Selected faults were I 2R, Coulomb / Sticktion, Position Dependence, which coincide with

torque, velocity, and position dependent faults. Plots below present the simulation results,

which point out the effectiveness of the scheme.

 59

Figure 16 - Isolation: position error (States 1 & 2).

 60

Figure 17 - Isolation: position error (States 2 & 4).

 61

Figure 18 - Isolation: velocity error (States 4 & 6).

 62

Figure 19 - Isolation: velocity error (States 6 & 8).

 63

Figure 20 - Isolation: velocity estimation error (States 5 & 7).

 64

Figure 21 - Isolation: velocity estimation error (States 6 & 8).

 65

5 CONCLUSIONS AND RECOMENDATION

Both internal and external changes (faults) can distort trajectory tracking, slow down

a system’s performance, decrease a system’s capabilities, and even bring the system to a

total halt. An innovative approach to model changes in non-linear systems was

developed. Change (fault) profiles are modeled not only as time-dependent, but also as

state-dependent. The new modeling technique was used to develop a very effective

approach that both monitors the robotic system’s health and its environment, and

provides significant improvements to its performance. It is robust with respect to

unmodeled dynamics, and torque dependent and state dependent changes. Change

Detection, Isolation, and Accommodation (CDIA) can be easily reshaped to work with a

wide variety of systems and changes. Its application requires minimal amount of

additional hardware, and it also can be directly applied to already existing robotic

systems. One of the great advantages of the approach is that it can be applied to

 66

hydraulic, electrical or other types of robotic systems with minor modifications. This

approach gives robotic system the tools to be aware of its constantly changing internal

and external environment, identify or learn any changes, and accommodate them.

CDIA is an invaluable tool for autonomous systems. Examples are space, underwater

technology, and hazardous environments. Maintenance is an important factor in the

systems operation, especially in the areas where human access to the system is either

limited or impossible. CDIA transforms regular robotic system to a much more intelligent

system, capable of self-monitoring and self-correcting. It provides the system with tools

to eliminate or decrease the need for maintenance for non-catastrophic changes. This has

huge rewards not only in extreme environments. Maintenance is a very expansive

exercise, and therefore the elimination of it provides operational cost cuts.

CDIA utilization is impossible without the use of the present day state of the art

computational devices. The key idea of CDIA is its on-line in real-time execution. There

are an enormous number of computational processes that have to be executed in real time

in parallel to the operation of the real system. Therefore, CDIA received a significant

attention in the last ten to fifteen years due to the advances in the DSP and other

computer technologies. The tremendous leap in the computer technology of the recent

years created opportunities for cheaper and better implementation of the CDIA

technology. In addition to that, there has been a tremendous advances in neural networks

and fuzzy logic, which also stimulated new researches and improvement in the CDIA.

A few recommendations, which directly follow from the presented work, can be

made. This thesis analyzed full state feedback scenario, and the situations when feedback

from not all of the state is available should also be investigated. Application of CDIA to

 67

under-actuated robotic systems is yet another direction for research. In the future CDIA

can be extended to other robotic systems (underwater for instance), and to general

systems. The solid proof of the effectiveness and performance capabilities of the CDIA

can be obtained by conducting a field test on the real robotic system.

The CDIA is a versatile base for the intelligent self-monitoring and correcting

control systems that can grow on top of it. Work can be done in a number of directions to

make it more advance and custom. It can be reshaped to work with other types of robotic

systems that employ not only electric actuators, but hydraulic for instance. The CDIA can

be applied to work not only with robots, but also with any control system where its self-

correcting features are needed. Conducting a broader research on the dynamics of the

changes can expand the bank of isolation filters and make it even more effective.

 68

6 APPENDIX

6.1 SCARA Robot Dynamic Model

PARAMETERS:

i – link number,

mi – mass of the ith link,

li – length of the ith link,

θi – displacement of the ith link,

ri – distance from the joint to the center of mass of the ith link

Izi – moment of inertia of the ith link in z direction relative to a frame attached at the

center of mass of the link and aligned with the principle axes of the link.

 69

m1

m2

m3

m4

θ4

θ1 θ3 θ2

l1 l2

r1

r2

x

z

y

d3

GENERAL DYNAMIC MODEL:

τθθθθ =++ GVM),()(���

where

[]TF4321 ττττ = ,

[]Tx4321 θθθθ = ,

[]TgmG 3000= ,

 70

()

() ()
()

�
�
�
�

�

�

�
�
�
�

�

�

+
+++

=

4

2

22

000
0
0cos
0coscos2

m

M
δδδ
δβθγβ
δθγβθγβα

θ ,

()
() ()

()

�
�
�
�
�

�

�

�
�
�
�
�

�

� +−

=

0
0

sin
2sin

,
2

12

2122

θθγ
θθθθγ

θθ
�

���

�V ,

.43

221421321

2
2

24
2
23

2
2432

4
2

13
2

12
2

11
2

11

zz

zzz

z

II
rmlmllmll

mrmlmlIII
mlmlmlmrI

+=
++=

+++++=

++++=

δ
γ
β
α

ASSUMPTIONS:

1. Fault free operating conditions (no friction),

2. Rigid links,

3. Rigid structure of the joints (rigid motor shafts, no backslashes, rigid gearing),

4. Link 3 can be estimated to be a cylindrical rod, therefore

,
2
1 2

333 dmI z =

5. Diameter of the link 3 (d3) is much less then the length of the links 1 and 2

(1l , 2l), therefore 3zI is negligible in comparison with 2
1l , 2

2l , and 21ll .

6. No load at the end effecter

,0

0

4

4

=�

=�

zI
m

 71

7. Link 3 has vertical translational motion

344 mM =� ,

8. Centers of mass of links 1 and 2 are at the distant ends

.0
0

2

1

22

11

=
=
=
=�

z

z

I
I

lr
lr

DYNAMIC MODEL:

()
()
()

3

3221

32
2
2

321
2

1

zI
mmll

mml
mmml

=
+=

+=

++=

δ
γ
β
α

() ()

()

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

+
�
�
�

	

�

�

++
++

�
�
�

	

�

�

++
++

�
�
�

�

	

�

�

++

+++
+++

=

3

333

3
2
232

22132

2
232

3

22132

2
232

2
232

22132

2
1321

000
0

0)(
cos)(

)(

0

cos)(
)(

)(

cos)(2
)(

)(

m
III

Ilmm
llmm

lmm

I

llmm
lmm

lmm
llmm
lmmm

M

zzz

z

z

θ

θθ

θ

() ()
()

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+
−+−

=

0
0

sin)(
2sin)(

),(
2

122132

12222132

θθ
θθθθ

θθ
�

���

�
llmm

llmm

V .

 72

6.2 Simulation Code

Main

% SRMain
% Scara Robot - AdeptOne-XL
clear all
clc
global M Mi VG a1 a2 a3 Fa Fc FA FC Kpv Ke Ka Kc c sgm k n0 thh ind acc und td

% SETUP
%===
k=7; % Number of neurons per state
tf=2; % Simulation time

step=0.005; % Time step
tt=0:step:tf; %
m1=50; m2=40; m3=30; % Weights of the links (kg)
l1=0.425; l2=0.375; % Lenghts of the links (m)
j3=m3*0.02^2/2; % Moments of inertia of the 3rd link
g=9.8; % Gravitational acceleration
P=pi*[5/6 7/9 3/2 0.2/pi]; % Maximum joint range
V=pi*[10/3 5 55/3 1.2/pi]; % Maximum joint speed
P0=pi*[1/2;-2/3;-1/2;-0.1/pi]; % IC(Initial conditions)-position
V0 =zeros(4,1); % IC-velocity
Ve0=zeros(4,1); % IC-velocity estimates
H0 =zeros(4,1); % IC-actuator fault weights
L0 =zeros(k*8,1); % IC-component neurons
X0 =[P0;V0;Ve0;H0;L0]; % IC-vector
n0=pi*[30;5;55/3;1.2/pi]*5e-5; % Modeling uncertanty upper-bound
ind=[(17:4:(16+k*8));(18:4:(16+k*8));(19:4:(16+k*8));(20:4:(16+k*8))];%

a1=(m2+m3)*l2^2; % Inertia matrix
a2=(m2+m3)*l2*l1; %
a3=a1+(m1+m2+m3)*l1^2; %
M=zeros(4,4); %
M(1:3,1:3)=j3; %
M(2,2)=a1; %
M(4,4)=m3; %
VG=[0;0;0;g*m3]; % Coriolis/centripetal/gravity matrix
Fa=zeros(4,1); % Initial actuator faults
Fc=zeros(4,1); % Initial component faults
FA=-[7;10;10;0.9]; % Actuator faults
FC=[1e2;1e2;1e-2;1e1]; % Component faults

fprintf(' Generating DESIRED TRAJECTORY\n\n'); % Calculating desired trajectory
for i=0:(tf/step) %

xd(i+1,:)=srt(i*step)'; %
end %

Kpv=[diag([30 60 90 60]) diag([10 25 45 25])]; % Position/Velocity gains
Ke=[1e2;1e2;1e2;1e2]; % Estimator error gains
Ka=[1e1;1e1;1e0;1e0]; % Actuator adaptation gains
Kc=repmat([1e1;1e1;1e-1;1e5],k*2,1); % Component neuron gains
c=[linspace(-P(1),P(1),k) linspace(-V(1),V(1),k); % Neuron centers

linspace(-P(2),P(2),k) linspace(-V(2),V(2),k); %
linspace(-P(3),P(3),k) linspace(-V(3),V(3),k); %
linspace(-P(4),P(4),k) linspace(-V(4),V(4),k)]; %

sgm=1e-3; % Neuron weights

 73

% SYSTEM SYMULATION
%==

options=odeset('JConstant','on','RelTol',1e-4,'AbsTol',1e-4);
disp(' Integrating HEALTHY SYSTEM'); % > Healthy System integration
[t,x1]=ode23s('srh',tt,[P0;V0],options); %
disp(' Integrating FAULTY SYSTEM'); % > Faulty System integration
[t,x3]=ode23s('srf3',tt,[P0;V0],options); %

Fa=zeros(4,1);Fc=zeros(4,1);
sys=ss(zeros(4,4),ones(4,4),ones(4,4),zeros(4,4));
thh=ones(4,1)*100;
time(1)=0;
x2(1,:)=X0';
for i=1:(tf/step)

tl=(i-1)*step; % Initial time of ith subinterval
tr=i*step; % Final time of ith subinterval
[t,x]=ode23s('srd6',[tl:(tr-tl)/2:tr],X0,options); % Integration
x2(i+1,:)=x(3,:); % Sssign to vector x2 value @tr
time(i+1)=tr; % Save next entry in time vector
X0=x2(i+1,:); % Assign x@tr to be x@0 (IC) for

next time subinterval
clc
fprintf('\n\n Integrating ACCOMODATED SYSTEM t=%.4f',time(i+1));
u(:,i+1)=exp(Ke*tr).*(Mi*n0);
th1=lsim(sys,u',time ,zeros(1,4));
thh=exp(-Ke*tr).*th1(i,:)';
thd(:,i+1)=thh;

end
t=time;

% Output
%==
figure(1)
subplot(221),plot(t,x1(:,1)-xd(:,1),':',t,x2(:,1)-xd(:,1),t,x3(:,1)-xd(:,1),'--')
title('State 1');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');%axis([0 20 -1 2]);
subplot(222),plot(t,x1(:,2)-xd(:,2),':',t,x2(:,2)-xd(:,2),t,x3(:,2)-xd(:,2),'--')
title('State 2');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');
subplot(223),plot(t,x1(:,3)-xd(:,3),':',t,x2(:,3)-xd(:,3),t,x3(:,3)-xd(:,3),'--')
title('State 3');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');
subplot(224),plot(t,x1(:,4)-xd(:,4),':',t,x2(:,4)-xd(:,4),t,x3(:,4)-xd(:,4),'--')
title('State 4');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');

figure(2)
subplot(221),plot(t,x1(:,5)-xd(:,5),':',t,x2(:,5)-xd(:,5),t,x3(:,5)-xd(:,5),'--')
title('State 5');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(222),plot(t,x1(:,6)-xd(:,6),':',t,x2(:,6)-xd(:,6),t,x3(:,6)-xd(:,6),'--')
title('State 6');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(223),plot(t,x1(:,7)-xd(:,7),':',t,x2(:,7)-xd(:,7),t,x3(:,7)-xd(:,7),'--')
title('State 7');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(224),plot(t,x1(:,8)-xd(:,8),':',t,x2(:,8)-xd(:,8),t,x3(:,8)-xd(:,8),'--')
title('State 8');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');

figure(3)
subplot(221),plot(t,x2(:,5)-x2(:,9),t,thd(1,:),'r--',t,-thd(1,:),'r--')
title('State 5');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(222),plot(t,x2(:,6)-x2(:,10),t,thd(2,:),'r--',t,-thd(2,:),'r--')
title('State 6');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(223),plot(t,x2(:,7)-x2(:,11),t,thd(3,:),'r--',t,-thd(3,:),'r--')
title('State 7');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(224),plot(t,x2(:,8)-x2(:,12),t,thd(4,:),'r--',t,-thd(4,:),'r--')
title('State 8');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
beep

 74

Trajectory Generator

% FUNCTION SRTRAJECTORY
function [xd]=srtrajectory(t)

pt=pi*[5/6 1/3 7/9 1/3 1/2 1/3 0.2/pi 1.2/pi];

xd=[pt(1)*sin(pt(2)*t); pt(3)*sin(pt(4)*t);
pt(5)*sin(pt(6)*t); pt(7)*sin(pt(8)*t);
pt(1)*pt(2)*cos(pt(2)*t); pt(3)*pt(4)*cos(pt(4)*t);
pt(5)*pt(6)*cos(pt(6)*t); pt(7)*pt(8)*cos(pt(8)*t);
-pt(1)*pt(2)^2*sin(pt(2)*t); -pt(3)*pt(4)^2*sin(pt(4)*t);
-pt(5)*pt(6)^2*sin(pt(6)*t); -pt(7)*pt(8)^2*sin(pt(8)*t)];

Healthy System Simulator

% FUNCTION SRh
function xdot=SRh(t,x)
global M VG a1 a2 a3 U Kpv

% SYSTEM
%==
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

% CONTROLLER
%==
xd=srtrajectory(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity/Position error
U=M*(xd(9:12)-Kpv*epv)+VG; % Input

xdot(1:4,1)=x(5:8);
xdot(5:8,1)=Mi*(U-VG);

System with the Faults

% FUNCTION SRMODELF
function xdot=SRMODELF(t,x)
global M VG a1 a2 a3 F FC Kpv

% SYSTEM
%==
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

if t>4
Fa=FA; % Actuator faults

end
if t>2

 75

Fc=FC.*(-sign(x(5:8)).*(1+0.05*exp(-1e6*abs(x(5:8))))+20*x(5:8)+10*sin(0.2*x(1:4)+pi))
end
und=(cos(5*x(1:4))+sin(15*x(5:8))).*[1e-4;1e-4;1e-3;1e-6]; % Modeling uncertanty

% CONTROLLER
%==
xd=srtrajectory(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity error
U=M*(xd(9:12)-Kpv*epv)+VG; % Healthy system input
xdot(1:4,1)=x(5:8); % System
xdot(5:8,1)=Mi*(U-F-VG-und); % System

Detection/Accommodation

% FUNCTION SRD1

function xdot=SRD1(t,x)
global M Mi VG a1 a2 a3 Fa Fc FA FC Kpv Ke Ka Kc c sgm k ind acc und thh n0 td

% SYSTEM
%==
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

if t>4
Fa=FA; % Actuator faults

end
if t>2

Fc=FC.*(-sign(x(5:8)).*(1+0.05*exp(-1e6*abs(x(5:8))))+20*x(5:8)+10*sin(0.2*x(1:4)+pi))
end

n=(cos(5*x(1:4))+sin(15*x(5:8))).*[1e-4;1e-4;1e-3;1e-6]*und;% Modeling uncertanty

% CONTROLLER
%==
QZ=exp(-([repmat(x(1:4),1,k) repmat(x(5:8),1,k)]-c).^2.*sgm);
fc=sum((QZ.*x(ind))')';

xd=srt(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity error
ea=x(9:12)-x(5:8); % Adaptation error
U=M*(xd(9:12)-Kpv*epv)+VG; % Nominal input
U=U+acc*(inv(diag(1-x(13:16)))*(U+fc)-U); % Full input

xdot(1:4,1) =x(5:8);
xdot(5:8,1) =Mi*((1-Fa).*U-Fc-VG-n);
xdot(9:12,1) =Mi*((1-x(13:16)).*U-fc-VG)-Ke.*ea;
if sum((abs(ea)>abs(thh)))>0

xdot(13:16,1)=Ka.*U.*(Mi*ea);
xdot(17:(16+k*8),1)=Kc.*QZ(:).*repmat((Mi*ea),k*2,1);

else
x(13:(16+k*8),1)=zeros((4+k*8),1);
xdot(13:(16+k*8),1)=zeros((4+k*8),1);
td=t;

end

 76

7 BIBLIOGRAPHY

[1] H. Assada, J. J. E. Slotime, Robot Analysis and Control, A Wiley Interscience, 1986.
[2] J. J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
[3] Y. H. Kim, F. L. Lewis, High-Level Feedback Control with Neural Networks, World

Scientific Publishing Co. Pte. Ltd., 1998.
[4] Robert J. Schilling, Fundamentals of Robotics: Analysis and Control, Prentice Hall,

1990.
[5] Richard M. Murray, Zexiang Li, and S. Shankar Sastry, A Mathematical Introduction

to Robotic Manipulators, CRC Press Inc., 1994.
[6] Felix L. Chernousko, Nikolai N. Bolotnik, and Valery G. Gradetsky, Manipulation

Robots: Dynamics, Control, and Optimization, CRC Press Inc., 1994.
[7] R. Ortega, A. Loria, P. Nicklasson, H. Sira, Passivity-based control of Euler-

Lagrange systems: mechanical, electrical, and electromechanical applications,
Springer, 1998.

[8] D. P. Sen Gupta, J. W. Lynn, Electrical Machine Dynamics, The Macmillan Press
Ltd, 1980.

[9] L. W. Matsch Late, J. D. Morgan, Electromagnetic and Electromechanical Machines,
Haprer & Row Publishers Inc, 1986.

[10] B. J. Chalmers, Electic Motor Handbook, Butterworth & Co. Ltd., 1988.
[11] F. L. Lewis, S. Jagannathan, Neural Network Control of Robot Manipulators and

Non-Linear Systems, Taylor & Francis, 1999.
[12] Janos J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel

Dekker, 1998.
[13] D. V. Richardson, Rotating Electric Machinery and Transformer Technology,

Reston Publishing Company, Inc., 1982.

 77

[14] R. P. Grimaldi, Discrete and Combinatorial Mathematics: an Applied
Introduction, Addison-Wesley Publishing Company, Inc., 1994.

[15] C. De Persis, and Alberto Isidori, “A Geometric Approach on Nonlinear Fault
Detection and Isolation,” IEEE Transactions on Automation Control, vol. 46, no. 6,
2001

[16] X. Zhang, M. M. Polycarpou, and T. Parisini, “Fault Isolation in a Class of
Nonlinear Uncertain Input-Output Systems,” Proceedings of the American Control
Conference, 2001.

[17] M. M. Polycarpou, and A. J. Helmicki, “Automated Fault Detection and
Accommodation: A Learning Systems Approach,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 25, no. 11, pp. 1447-1458, 1995.

[18] A. T. Vemuri, M. M. Polycarpou, and S. A. Diakourtis, “Neural Networks Based
Fault Detection in Robotic Manipulators,” IEEE Transactions on Robotics
Automations, vol. 14, no. 2, pp. 342-348, 1998.

[19] M. Feemster, D. M. Dawson, A. Behal, and W. Dixon, “Tracking Control in the
Presence of Nonlinear Dynamic Friction Effects: Robot Extension,” IEEE
International Conference on Control Applications, pp. 1169-1174, 1999.

[20] A. T. Vemuri, and M. M. Polycarpou, “Neural-Network-Based Robust Fault
Diagnosis in Robotic Systems”, IEEE Transactions on Neural Networks, vol. 8, no. 6,
pp. 1410-1416, 1997.

[21] X. Zhang, T. Parisini, and M. Polycarpou, “Robust Parametric Fault Detection
and Isolation for Nonlinear Systems”, Proceedings of the 38th Conference on
Decision and Control, pp. 3102-3107, 1999.

[22] A. B. Trunov, and M. M. Polycarpou, “Robust Nonlinear Fault Diagnosis:
Application to Robotic Systems,” IEEE International Conference on Control
Applications, pp. 1424-1430, 1999.

[23] C. Canudas de Wit, P. Noel, A. Aubin, B. Brogliato, and P. Drevet, “Adaptive
Friction Compensation in Robot Manipulators: Low-Velocities”, IEEE, pp. 1352-
1357, 1989.

[24] C. Canudas de Wit, H. Olsson, K. J. Astrom, P. Lischinsky, “A New Model for
Control of Systems with Friction”, IEEE Transactions on Automatic Control, vol. 40,
no. 3, 1995.

[25] C. Canudas de Wit, and S. S. Ge, “Adaptive Friction Compensation for Systems
with Generalized Velocity/Position Friction Dependency,” IEEE Proceedings of the
36th Conference on Decision & Control, pp. 2465-2470, 1997.

[26] M. M. Polycarpou, A. B. Trunov, “Learning approach to non-linear fault
diagnosis: Detectability Analysis”, IEEE Transactions on Automatic Control, vol. 45,
no. 6, 2000.

[27] J. Anshul, M. A. Demetriou, “A Neural Network Based Actuator Fault Detection
and Diagnostic Scheme for a SCARA Manipulator,” IEEE Proceedings of the 15th
International Symposium on Intelligent Control, pp. 297-302, 2000.

[28] M. A. Demetriou, M. M. Polycarpou, “Incipient Fault Diagnosis of Dynamical
Systems Using Online Approximators,” IEEE Transactions on Automatic Control,
vol. 43, no. 11, 1998.

[29] B. Armstrong-Helouvry, “Dynamic Friction in Control of Robot”, IEEE, pp.
1202-1207, 1994.

 78

[30] M. H. Terra, and R. Tinos, “Fault Detection and Isolation in Robotic Systems via
Artificial Neural Networks,” Proceedings of the 37th IEEE Conference on Decision &
Control, 1998.

[31] M. H. Terra, and R. Tinos, “Fault Detection and Isolation in Robotic
Manipulators via Neural Networks: A Comparison Among Three Architectures for
Residual Analysis,” Journal of Robotic Systems, pp. 357-374, 2001.

[32] A. A. Jain, and M. A. Demetriou, “A Neural Network Based Actuator Fault
Detection and Diagnostic Scheme for a Scara Manipulator,” Proceedings of the 15th
IEEE International Symposium on Intelligent Control, pp. 297-301, 2000.

[33] F. Caccavale, “Experiments of Observer-based Fault Detection for an Industrial
Robot,” Proceeding of the IEEE International Conference on Control Applications,
pp. 480-484, 1998.

[34] F. Caccavale, and I. D. Walker, “Observer-based Fault Detection for Robot
Manipulators,” Proceedings of the IEEE International Conference on Robotics and
Automation, 1997.

[35] P. Tomei, “Robust Adaptive Friction Compensation for Tracking Control of
Robots,” Proceedings of the IEEE International Conference on Control Application,
pp. 875-879, 1999.

[36] A. Alessandri, M. Caccia, and G. Veruggio, “A Model-based Approach to Fault
Diagnosis in Unmanned Underwater Vehicles,”IEEE, 1998.

[37] A. B. Trunov, and M. M. Polycarpou, “Automated Fault Diagnosis in Nonlinear
Multivariable Systems Using a Learning Methodology,” IEEE Transactions on
Neural Networks, vol. 11, no. 1, 2000.

[38] M. A. Demetriou, and M. M. Polycarpou, “Fault Detection, Diagnosis and
Accommodation of Dynamical Systems with Actuator Failures via On-Line
Approximators,” Proceedings of the American Control Conference, pp. 2879-2883,
1998.

[39] K. Kiguchi, and T. Fukuda, “Fuzzy Neural Friction Compensation Method of
Robot Manipulation During Position/Force Control,” Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 372-377, 1996.

[40] M. C. Pan, H. V. Brussel, and P. Sas, “Intelligent Joint Fault Diagnosis of
Industrial Robots,” Mechanical Systems and Signal Processing, pp. 571-588, 1998.

[41] P. Goel, G. Dedeoglu, S. I. Roumeliotis, G. S. Sukhatme, “Fault Detection and
Isolation in a Mobile Robot Using Multiple Model Estimation and Neural Network,”
Proceeding of the IEEE International Conference on Robotics & Automation, 2000.

[42] J. J. Gonzalez, and G. R. Widmann, “A New Model for Nonlinear Friction
Compensation in the Force Control of Robot Manipulators,” Proceeding of the IEEE
International Conference on Control Application, pp. 201-203, 1997.

[43] C. Canudas de Wit, “Comments on “A New Model for Control of Systems with
Friction”,” IEEE Transactions on Automatic Control, vol. 43, no. 8, 1998.

[44] Yi Xion, and Mehrdad Saif, “Robust Fault Isolation Observe Design”,
Proceedings of the American Control Conference, pp. 2077 – 2081, 1999.

[45] Krishna K. Busawon, and Mehrdad Saif, “A State Observer for Nonlinear
Systems”, IEEE Transactions on Automatic Control, vol. 14, no. 11, 1999.

 79

[46] Marius Ghetie, and Mehrdad Saif, “On-line Fault Detection and Isolation Using
Unbalanced Residual”, Proceedings of the 38th Conference on Decision and Control,
pp. 4480 – 4485, 1999.

[47] Gang Tao, Shuhao Chen, S. M. Joshi, “An Adaptive Control scheme for systems
with unknown actuator failures”, Proceedings of the American Control Conference,
pp. 1115-1120, vol. 2, 2001.

[48] A. Taware, Gang Tao, C. Teolis, “Neural-hybrid control of systems with
sandwiched dead-zones”, Proceedings of the American Control Conference, pp. 594
–599, vol.1, 2001.

[49] A. T. Vermuri, M. M. Polycarpou, and A. R. Ciric, “Fault Diagnosis of
Differential-Algebraic Systems,” IEEE Transaction on Systems, Man, and
Cybernetics – Part A: Systems and Humans”, vol. 31, no. 2, 2001.

[50] Matlab (2001). Natick, MA: Mathworks.
[51] www.adaptec.com, 2001.
[52] www.ci.nyc.ny.us, 2001.
[53] www.adapt.com, 2001.

http://www.adaptec.com/
http://www.nypd.com/
http://www.adapt.com/

	INTRODUCTION
	Problem Statement
	Goals
	Contributions and Innovations
	What is CDIA?
	Outline of the Thesis

	DYNAMIC MODELS
	Robotic System
	Changes
	Fault Magnitudes and Categories
	Parametric Fault History
	Fault Nomenclature
	Fault Dynamics
	State and Torque-dependent Faults
	Summary

	CDIA ARCHITECTURE
	Detection/Approximation Observer
	Detection
	Dynamic Detection Threshold
	Approximation
	Isolation
	Accommodation
	Idle-Monitoring
	CDIA Performance Analysis

	SIMULATION
	SCARA Robot
	Fault Models
	Numerical Study

	CONCLUSIONS AND RECOMENDATION
	APPENDIX
	SCARA Robot Dynamic Model
	Simulation Code

	BIBLIOGRAPHY

