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ABSTRACT

Because of the increasingly demanding tasks that robotic systems are asked to
perform, there is a need to make them more reliable, intelligent, versatile and self-
sufficient. Furthermore, throughout the robotic system’s operation, changes in its internal
and external environments arise, which can distort trgjectory tracking, slow down its
performance, decrease its capabilities, and even bring it to atotal halt. Changesin robotic
systems are inevitable. They have diverse characteristics, magnitudes and origins, from
the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural
vibrations to air/underwater environmental change. This thesis presents an on-line
environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that
provides a robotic system the capabilities to achieve demanding requirements and
manage the ever-emerging changes. The CDIA scheme is structured around a priori
known dynamic models of the robotic system and the changes (faults). In this approach,
the system monitors its internal and external environments, detects any changes,
identifies and learns them, and makes necessary corrections into its behavior in order to
minimize or counteract their effects. A comprehensive study is presented that deals with
every stage, aspect, and variation of the CDIA process. One of the novelties of the
proposed approach is that the profile of the change may be either time or state-dependent.
The contribution of the CDIA scheme is twofold as it provides robustness with respect to
unmodeled dynamics and with respect to torque-dependent, state-dependent, structural
and external environment changes. The effectiveness of the proposed approach is verified
by the development of the CDIA scheme for a SCARA robot. Results of this extensive

numerical study are included to verify the applicability of the proposed scheme.
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1 INTRODUCTION

Robotic systems play an essential role in our society, and their presence and our
dependence on them are increasingly growing. Manufacturing industry has been able to
make tremendous leaps only due to the advances in robot technology. Robotic systems
are the best and most of the time the only replacement to human beings in applications
where human presence is either not possible or harmful. Such applications include space
and underwater exploration, radioactive environments, automated bomb detonation, fire-

hazardous environments and many more (Figure 1).



Figure 1 - Robotic system.

1.1 Problem Statement

The externa operational environment of robotic systems either willingly or
unwillingly evolves constantly (Figure 2). Some autonomous robotic systems have to
operate both in air and water. Atmospheric pressure, temperature, and humidity are
constantly varying, and of course wind can exert extreme forces on the system. The
internal environment in robotic system is very unstable as well, and it can exert even
larger dynamic changes (Figure 2). Friction, degradation/wear, noise, vibration, and etc.

are regular guests in any robotic system.
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Figure2 - Internal & external changes.

Changes (faults) can make the system unsafe and less reliable. Productivity of the
robotic system can degrade because changes can impose performance limitations on the
system and may also require frequent system shut downs for its maintenance. In the case
of technologically challenging applications, like space or underwater technology, where a
system’s full automation is expected, the presence of changes can limit what engineers
can accomplish in their designs. The bottom line effect of the changes is on

environmental and human safety, cost, and ability of creation of autonomous systems.

1.2 Goals

Fortunately, all of the above-described situations can be managed by giving the
system self-diagnostic capabilities, which allow it to detect any changes, analyze them
and handle them appropriately. The system’s ability to learn how its environment has

changed makes it more self-sufficient and intelligent, and improves its behavioral



decisions. Self-diagnosis of the system can be accomplished by the introduction of either
analytical or hardware redundancy. In the hardware redundancy approach, additional
physical instrumentation is introduced, sensors for instance. In the analytical redundancy
approach, additional software is introduced which usualy employs model-based
techniques [17][26]. Analytical redundancy is less expensive, much easier to upgrade and
has more potential. It requires a lot of computational resources because of its on-line
application. Recent improvements in digital processing technology provide tools for its
present-day development and implementation, which was not visible even a decade ago.

Because the exact dynamic models of the changes in the robot are never known a
priori, they should be accounted for in the control design. In robotic systems, the primary
source of the changes is at a manipulator’s joints. Due to the highly nonlinear nature of
joint change dynamics in the robotic systems, any linear models used by a change-
monitoring scheme cannot accurately represent their dynamics, and as joint velocities and
accelerations reach high values, such models fail to capture the salient features of robot
motion. In earlier works in change monitoring a number of nonlinear models have been
proposed in [15][16][21][25][26], but most of these models have limitations and do not
reflect the whole spectrum of the possible changes and change configurations.

A change is classified as any deviation in the robotic system's environment from the
originally anticipated one [10]. All of the earlier researched change models ignore two
very important factors in the change dynamics. First, the presence of change is not only
time dependent, but it also depends on other parameters in the change dynamics (states
for instance). Second, the torque-dependent changes should not be ignored and should be
treated separately from the state-dependent changes. They affect a robotic system’'s

behavior just as extremely as state-dependent changes do, and by treating them separately



additional improvements are possible (Section 3.8). In this thesis a change model is
proposed that addresses both of these factors.

This thesis goal was to design an analytical redundancy model-based technique that
makes a robotic system more intelligent, self-sufficient, improves its performance, life

span, and on top of al can be very cost efficient.

1.3 Contributions and Innovations

The current research effort makes a number of major steps. It brings the automated
change (fault) diagnosis and accommodation area to the whole new level by introducing
the Change Detection, | solation, and Accommodation (CDIA) approach.

Unlike well-investigated FDA (Fault Detection and Accommodation [17]), and FDI
(Fault Detection and Isolation [21]) schemes that follow the evolution of the change
(fault) just up to the accommodation stage, CDIA is an all-encompassing approach that
manages the changes (faults) throughout the whole life cycle of the robotic system.

Moreover, unlike the FDI, FDA and other conventiona treatments of the internal
fault, CDIA deals with the general concept of the changes in both internal and external
environments.

CDIA can be divided into four distinct stages. (i) detection, (ii) isolation, (iii)
accommodation, and (iv) idleemonitoring. The idle-monitoring is a new concept that
makes CDIA a complete scheme by monitoring the evolution of the change well after the
accommodation stage. It allows dynamic repetition of the CDIA stages.

The isolation stage has been enhanced by constructing a bank of isolation filters from

all the combinations of a priori known types of changes (faults). In previous treatments,



each filter corresponded to a specific change (faults) type, but in the proposed approach
each filter corresponds to the combined dynamics of multiple changes that occur in the
system simultaneously.

The CDIA is developed based on the innovative approach that models the change
(fault) history profile as parametric. The new model reflects the true dynamics of the
change in a way that previous models were not able to. Its structure resonates
improvements in each of the stages of CDIA, but especialy in isolation stage by allowing
minimization of the number of the isolation filters and narrowing down the isolation

effort.

1.4 What is CDIA?

As an example, Figure 3 depicts arbitrary change dynamics development in the single
state. This scenario can repeat itself multiple times, depending on the history of the

change (Section 2.2.2).
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Figure 3 - CDIA scenario.

During the detection stage, changes (faults) are monitored and detected using a
detection/approximation observer, which is robust with respect to unmodeled dynamics.
The detection/approximation observer is aso used to approximate changes whose
dynamics are not found to be equivalent to any a priori known change scenarios. The
dynamics of the change can be approximated using on-line approximation techniques,
which include: multi-layer neural networks, polynomials, rational functions, spline
functions, radial-basis-function (RBF) networks, adaptive fuzzy systems, etc [3][17].
From the past experience, RBF networks performed very well in robotic applications. For
this reason, they are employed in this thesis for approximation purposes [17].

The isolation stage of the CDIA employs a bank of isolation filters. There are

multiple numbers of a priori known types of change dynamics. In a general situation,



these changes may occur one type at atime, in multiple and concurrent combinations, or
in multiple and asynchronous combinations. Therefore, the bank of isolation filters
consists of all combinations of the concurrent a priori known types of changes plus one
previously unknown type, which can be approximated by the detection/approximation
observer. Once the change has been detected, the bank of isolation filtersis activated and
every filter in the bank is compared with the occurred change. After the change had been
either identified or approximated, the control law is modified accordingly in order to
counteract its effects.

Because the change presence is not constant in the system, after the change had been
accommodated the system continues to monitor its presence. If it is determined that the
change is not present any longer or reached insignificant magnitude, the whole CDIA

scheme is modified in order to reflect the new conditions.

1.5 Outline of the Thesis

Chapter 2 describes the dynamic model of the robotic system and of the changes. The
general framework of the proposed scheme is studied in Chapter 3. This chapter
thoroughly investigates every stage of CDIA. Simulation studies are presented in Chapter
4, which is followed by the final Chapter 5. This chapter summarizes this thesis and sets

up directions for future work.



2 DYNAMIC MODELS

The mathematical models are the essential elements of the CDIA design. Initialy,
this chapter presents the well-studied dynamic structure of the robotic system. The
second part of this chapter, concentrates on the dynamical structure, configuration and
nomenclature of the changes (faults) in the robotic system. Innovations like parametric
change history profiling and decoupled torque-dependent and state-dependent change

model are introduced and thoroughly analyzed.

2.1 Robotic System

The dynamic motion of the manipulator arm in a robotic system is produced by the
torques generated by the actuators. This relationship between the input torques and the
time rates of change of the robot arm components configurations, represent the

dynamicmodel of the robotic system [1]. This thesis analyses an n-degree of freedom



robot configuration. Figure 4 provides a pictorial representation of a SCARA robotic

system, which is analyzed in detail in Chapter 4.

Figure 4 - SCARA robot diagram.

The dynamic model of the robotic system can be derived using either Lagrangian,
or Newton-Euler methods [1]. Both methods lead to the identical system of differential
equations, which have been extensively studied in the literature on robots [1][2][4]. A

genera healthy n-degree of freedom robotic system is described by the following system

of differential equations:

M(e) G+v(e.0)+cle)+n (0.6..t)=1 2.1)
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where 6,6,00R" denote the vectors of joint positions, velocities, and accelerations,
respectively, 7 O R" isthe vector of input torques, G(H)D R" isthe vector of gravitational
torque, V(H,G)D R" is the vector representing Coriolis and centripetal forces,
M (6)0R™ is the inertia matrix whose inverse exists, and 7(6,6,7,t)JR" denotes the
unmodeled dynamics. It is assumed that the unmodeled dynamics are bounded. It is
impossible to achieve a mathematical model that is a perfect mirror image of the actual
physica system. Unmodeled dynamics are aways present; therefore they have to be
considered in the CDIA design in order to reflect the true dynamics of the system.

The presented model was derived for robotic systems operating in the air
environment. It can be modified to describe robotic systems operating in the underwater
environment or any other environments by including additional dynamics for instance

drag, turbulence, etc.

2.2 Changes

Any additional dynamics, which were not present initidly in the system, are
considered to be a change (fault). This section reviews changes (faults) in a robotic
system, categorizes them and introduces an innovative change modeling approach.
Throughout this thesis the terms change and fault are being used interchangeably. The
term fault falls under the definition of the change, and it has been extensively used in the
control and robotics communities referring specificaly to the undesirable changes in the
internal dynamics. The term change is a more general term, which includes both internal

and external variations of the changes, and does not concentrate only on undesirable
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changes or faults. The use of the term change may bring additional confusions with
regards to its definition. Because the term fault is so widely accepted in the control and

robotics communities, it will be therefore used in the rest of this thesis.

2.2.1 Fault Magnitudes and Categories

There are faults, which are referred to as catastrophic. Catastrophic faults affect the
system in such a way that it cannot function any further, and any ordinary control
techniques cannot counteract their effects. An example of component catastrophic fault is
a break of ajoint or a link section. An example of actuator catastrophic fault is a short
circuit in electric motor, permanently damaging the wiring. This type of faults is the
worse case fault scenario and its effects on the system are obviously devastating. The
only way they can be corrected is by direct operator (human) involvement and
replacement of the system components. This thesis concentrates only on the faults of
smaller magnitudes, or non-catastrophic, which can be accommodated with ordinary
control techniques. This type of faults includes different variations of friction,
misbalances in the joint or actuator, water/air external environment switch and many
more. These faults can significantly affects the system’s performance as well, which can
be expressed in the loss of productivity, reduced life expectancy of the system, and
unsafe environment for people and outside environment.

Faults can be separated into two distinct categories: those that change the nonlinear
dynamics of the nominal model, and those that do not. The second category depends only
on time, and not on the states or the inputs, and therefore can be modeled as additive.

There are very effective techniques that can accommodate such faults, which include

12



robust control and adaptive control. Faults belonging to the first category have nonlinear
dynamics and are beyond of the capabilities of the conventional techniques. They are
more difficult to handle because they depend both on the system’s states and the inputs.
The purpose of this is to device a very effective method that specifically deals with the
state and input dependent faults, while being robust with respect to the unmodeled

dynamics.

2.2.2 Parametric Fault History

It is reasonable to assume that faults are not continuousdly present in the system and
emerge only after the system has been in operation for some time or once one of the
system parameters exceeded a certain threshold value. Coulomb/Sticktion friction is
present in the system only at low velocities [23][24][25], and as the joint velocity exceeds
a certain velocity vaue, it approaches zero. Therefore, it would be incorrect to apply a
conventional approach and use time to express the fault history profile of
Coulomb/Sticktion friction, since only velocity affects its presence. Viscous friction has
significant effects only after the system had been in operation for certain time. Even then,
its effects are significant only after the velocity exceeds a certain value. In this case, both
time and velocity govern its behavior.

Thus, the presence of faults is both state and time dependent, and their presence and
magnitude is affected by a number of parameters. A general representation of the fault

dynamicsistaken to be

F.6,7.t)=B(P-p) f(6,6.7), 2.2)

13



where £(6,6,7): R"xR"xR* ~ R" denotes the fault dynamics, and B(P- p)OR™

represents the state and/or time dependent fault profile that has the following structure

B(P-p)=diag| A(R-p)AR-P) - BF-P) |

if o .
56 -n)-[11 "

10 otherwise’

where B, (Pj - pj) represents the state and time history of the fault in the j™ state, p, is
some parameter (for example time, or velocity), and P, is aregion in this parameter

history where the fault is present. The instance of the fault is declared when the value of

the p, traversesinto the P, region. diag( ) denotes a matrix whose diagonal elements

are the entries of the vector included in the brackets.

The combined state and time dependent approach to model the fault history
profile has advantages over the traditional approaches which model fault history profile
as only time dependent [17][18][20][21][26][28]. The time history profiling is a special
case in the parametric history profiling general framework. This approach provides a
more accurate mathematical representation of a real fault phenomenon. With this
approach, if the history profile of the fault can be learned by the monitoring system,

faults can be avoided by staying away from the regions of the profile (P,) where it is

present. In addition, [21] and similar treatments consider parameters only to effect the

dynamics of the fault, the history of the fault is separated and is only time dependent. By

14



treating fault dynamics and the history as two dependent entities, a more complete and

thorough fault model is shaped.

2.2.3 Fault Nomenclature

Decades of research on the mechanical systems unveiled a mgjor portion of the
common faults. Many of them have been extensively studied and well modeled. This
knowledge is used to improve the design of the new mechanical systems, and it can be
employed in the design of the control systems and the CDIA in particular.

Let us assume that there are N types of apriori known faults, which may appear in

the system, or aset of apriori known faultsis

A:{ tle.6r) ... .1 (6.61) } .

Faults may occur one at a time, in multiple concurrent combinations, or in multiple

asynchronous combinations. This leads to a conclusion that for N types of a priori known

faults there are 2" —1 possible concurrent combinations (the combination with no faults
present is excluded), or a collection of instances of all a priori known faults can be

described by

p(A):{ te.6.) ...t (6.67) } \ {0},

15



where P(A) isapower set of A. Therefore acomplete set of faultsin the system is
® ={ ,(6.6.7) P(A) }

where f, isan unknown fault type (Section 3.1).

2.2.4 Fault Dynamics

Each fault is assumed to be linearly parameterized, which can be expressed in the

following form

c W’“(Hl,él,rn) _Cf W' (gligl’rl)_

cy W' (Hz,éz,rz)

I
'M"’

t.(0.6.7)=

_Z C'T W'T (0ﬂ ’gn ' Tn )_ _Cr:n Wr:n (Hn ’gn ' z-n )_

c™ o0 . . O__w?(el,él,rl)_
|0 e . .0 W;T(Hz,éz,rz
>
= . . . . . .
0 0 . . c;f‘__w;‘i‘(en,én,rn)_
= Ydiaglc, |W, (0.67),  form=12...,2%-1, (23)
=
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where C,, OR" isavector of the weights or parametersand W, : R"xR"xR" - R" isa

vector of dynamic functions. Consequently, the dynamics of a fault mD[ N+1, 2" —1]

are cumulative dynamics of a combination consisting of vO[ 1, N | types of concurrent

faults:

F0.67)= f = foy + fon ..+ T, =

Sary

= ;diag[cm]wm +2diag[cw]ww . .+2dia Cynl W, 1, =

=ZS:diag[Cm]Wm (H,Q,T) : form=12,...,2Y-1.
i=1

Hence, throughout this thesis any reference to a fault pointing to a complete fault

dynamics, but not to any specific type of fault dynamics.

2.25 Sate and Torque-dependent Faults

It is important to be able to differentiate between torque and state-dependent
faults. It corresponds to a more comprehensive fault models and in turn allows the CDIA
to separately pinpoint faults related to the actuator or the component. It is the fact that the

faults might occur either in the actuator or thejoint or in both at the same time (Figure 5).

17
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Figure5 - Input signal — output effect diagram.
Therefore, the fault dynamics can be represented as
f.0.6,7)=1,(6.6)+ 1, (r),

where f, (r) and f, (6.6) represent torque-dependent and state-dependent fauits
respectively.

This thesis treats state and torque-dependent faults as two separate entities. In a
similar treatment in [20], torque is assumed to be a function of input states only and thus
the possibility of faults in the actuator are not explicitly presented. The work in [18][22]
does consider faults due to input torque but does not separate (decouple) actuator faults
from component faults and treat them as one entity. Adaptation in this case is structured
around states only. These approaches eliminate the possibility of separate actuator and

component fault isolation.

18



2.2.6 Summary

Summarizing this section’s analysis of the faults in the robotic system, we arrive at

the following comprehensive model of the robotic system:

M(©)6+V(6,6) +G(6)+(6.6)= 1 +B,(P- p)fn(6.6)+ 1., ()

Robotic System's Dynamics Input Fault 5ynamics
Torque

(2.4)
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3 CDIAARCHITECTURE

In this chapter CDIA’s, architecture is analyzed in details. Figure 3 offers a graphic
representation of its architecture. CDIA consists of four distinct stages:. (i) detection, (ii)
isolation, (iii) accommodation, and (iv) idle-monitoring, each of which are described in
sections 3.2, 3.4, 3.5, 3.6, and 3.7 respectively. Sections 3.1 and 3.3 discuss and analyze
vital mechanisms in the CDIA design that make it robust and effective. Imbedded in the
gray regions are the key results of the analysisin each section. These results can be used

as guidelines for the implementation of the CDIA scheme.

20



DYNAMIC SYSTEM

Approximator

Identification filter - 1

Detection/
Approximation
observer

X
L _ k o,
Detection U :
logic
Identification filter — 2"

t

Identification/Decision logic

Idle-monitoring logic

Fault diagnosis logic

Bank of N apriori
known fault dynamics.

Figure 6 - CDIA architecture.

Operator

SO —~"® —O0w —

~oowm

The CDIA scheme can be made as sophisticated and complicated, as the designer

would need, depending on the system, hardware, and other requirements. Each of the

CDIA stagesisthe building block of the scheme, where the order of their implementation

has to be preserved. Each instance of the fault may require dedication of a separate CDIA

process, consisting of the isolation, accommodation and idle-monitoring stages.

Therefore, the duration and the number of the separate processes are very

dynamic. In the present design of the CDIA, a very important assumption is made which

is based on both the analytical and the hardware capabilities of the system. It is assumed,

that the presented scheme is fast enough to detect and isolate any fault combination set

before the next set may occur. With this assumption, the analyzed schemes for a single

21



set of multiple faults can be applied to the multiple random fault situations without any

modifications.

3.1 Detection/Approximation Observer

The detection/approximation observer is a multifunction mechanism that bonds the
entire CDIA scheme together. While the system is healthy it is used to monitor it for
faults and detect them if they do occur. During the subsequent stages, it is used to
approximate and accommodate unknown fault dynamics, and to monitor the system for
fault absence. Each of the detection/approximation observer application becomes evident
in later sections. It is carefully designed to be robust with respect to unmodeled
dynamics, and state and torque-dependent faults.

In section 2.2.4 the parametric structure of the fault dynamics was analyzed. Based
on it, the approximated torque-dependent and state-dependent fault dynamics in an n-

degree of freedom system can be represented by the following equations:

h{t) 7, ] [h@) o o n]
hz(t) I, 0 hz(t) .. 0 T,

f,(r,t)= : = . Ce e : =diag[H(t)]T
hi)zn] o o .. n@l1 |

22



31,0a,6)] | 3s026)
L6 [Ts026)
fle.61)=|= ¥ T
ZMM%@) §%®a@)
L0 6)] [s0)z(@)]
N0 6)] | |s0z6)
1,0a,6)]  [s0)z6)
1,6 o 0 Ta(6)
o Le .. o el
o o .. 0a6)

- iZ:diag[Ll 1] Q (6)+ gdiag[sl (t)] z

k
i=1

(©)

= (diaglL, (] @ (6)+ diags (] z (6)).

(3.1)
0 Tz6)
0 |z 92)

where H(t)OR", L,(t)OR", and S (t)0R" are the vectors of the weights or parameters,

In equation (3.1) the velocity and the position dynamics are decoupled for analytical

purposes. It does not affect the approximation effort, although it alows detecting the

position-dependent faults and the velocity-dependent faults individually. Both velocity-

dependent and position-dependent dynamics of the fault are approximated using RBF
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neural network structures composing the Q (6)OR" and Z (Q)D R" vectors, and are

structured as follows

—a. 2
6,(6,)=o 'MJ
o,
. 2
zij(éj):exp —(9’6;—?”)} for i=12, ...,k and j=12,...,n,
i

where a;, b, are centers of the gaussian networks for position and velocity neurons

respectively in the | state and the i neuron. Likewise, o,

;» w; are widths of the gaussian
networks for position and velocity neurons respectively in the j state and the i neuron
[17][31]. Going along with the same architecture as the approximated fault dynamics
above, the true state-dependent and torque-dependent fault dynamics (equation (2.3)

decoupled) are assumed to have an equivalent form:

hIT1 h; o .. 0 T,
h; T2 0 h; .. 0 T2

t()ol - =l . .. | . |=diagH]T, (32
_hn Tn_ _0 0 hn__ Tn ]
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i:lIIi q, (6,) ;SL Zx(gl)
1Yk a6 [Ys 2 6)
f,0.6)0 = 4=
i a,@)] |2s 26)
_lx G, @) ] _3; Z, él)_
K I, a, (02) k S; Z, 02)
L a,6)] s z(6.)

1, 0 ofa@)] [s o 0 z(6)
o 0fa,©) |0 s 0z6)
:Z . +Z
i=1 ) i=1 ) . ) ) . .
0 0. .1 ]a@) [0 o ..s]|z)

= iZ;diag[L’:] Q(9)+ iZil:diag[sf] z (0)

:i(diag[ﬁ] Q (6)+diagls] z (9)), (33)
and
H =[hl h, h;]T, hz-1 Oj=12 ..., n

where H"OR", L OR" and S’ OR" represent the weight of the true fault dynamics and

are assumed to be constants. In fact, the real values of the weights are never known, but it

is assumed that H”, L, and S represent their counterparts that constrain the fault to
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exhibit identical behavior. Therefore, H(t), L (t) and S (t) can bevaried intimein order

to approximate the valuesof H™, L', and S’ respectively. This makes f and f, theon-
line approximators of f_ and f, respectively. Through the next part of the analysis, the

notation * 0( 0)’ will be replaced with * [ for reasons of simplicity. Therefore equation

(2.4) can be rewritten as

M O+V+G+n=
(3.9

:(| +Bdiag[H'] j” sz:(diag[L*i] Q +diag[s] zi) ,

i=1

In order to find expressions for updating f, and f,, initialy H (0), L (0) and S (0) are

A A

set so that f, =0and f, =0 at t=0. In the state space form, equation (3.4) can be

T

rewritten as

§=-M ‘1(v +G+n )+|v| ‘1(| +B diag[H'] )r+
(35)

+M7B il( diag|L'] Q (6)+diag[s]| z (6) ) .

Following the above-presented analysis, the detection/approximation observer is

proposed
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5:—M'1( V+G )+M'1(I + diag[H] ) r+

) ' (3.6)
+M _12( diag[Li] Q +diag[$] Z, )_V(é_é)

i=1

where

y:diag[yl Yo .- 'yn]

Is apositive definite stability matrix [1][2].

3.2 Detection

Let e, =6-68 denote the state estimation error, which will serve aso as the

residual vector [2][17]. During the detection stage, the CDIA monitors the system for the
presence of the faults. While the system is healthy or no fault is present, the true system

dynamicsis represented as follows
9:—M‘1(V+G j +M7r (3.7)

Unmodeled dynamics 77 is excluded from the equation. Its presence will be addressed in

details in the next section. Consequently, while the system is headlthy, the approximation

model has the following form

27



6=-M '1( V+G )+M'l r—y(é—éj : (3.8

Therefore, by calculating the estimation error e, from equations (3.7) and (3.8), it is

established that for a fully observable system, while it is healthy, or there is no fault

present the estimation error must be zero or | ,(t)=0 | This consequently means that

H" =0, L =0, and S =0. The estimates of the faults are aso set to zero (H =0,

L, =0, S =0) in order to detect any difference between the nominal dynamics in the

detection/approximation observer and the real system.

As aresult of the above analysis, if | &,(t)z0 || p, O P |and the additional

dynamics are present in the system and a fault is declared. By subtracting the estimated

model (3.8) from the true model (3.5) of unhealthy system, we obtain
* k * *
&=-yg-M '{B diaglH'] 7 +BY. (Li diagQ |+ diagz | )—/7} .39
i=1

The detection/approximation observer will be in detection mode until the residual vector
exceeds the dynamic detection threshold at time t4 analyzed below. ty is the point in the

time history when the fault was detected.
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3.3 Dynamic Detection Threshold

The unmodeled dynamics /7 are adways present in the system, and can be
mistakenly identified by the CDIA as a fault. In order to avoid such false alarms and to
improve performance, a detection threshold is introduced. Prior to the fault occurrence,

from the equation (3.9) the error equation is given by

& =-yg+M™n.
t

= gt)=exp(-ye)e(0)+ [exp(-yt=T)) M(T) (T) dT (3.10)

0

By introducing the upper bound on each element of 77, given by (7,), :sup‘nj‘, and
t

taking into account that e,(0)=0, wearrive at

t

= &t)s< [ep(-yt-T)[ M), | aT

0

Define the detection threshold vector D(6,6,t)=[d,.d,, . . . ,d,] tobe

D(6.6.)= [expl-yt-T)[M()n, ] aT

Therefore, a fault is declared if
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‘eoj‘>dj(t) for j=12 ...,n

(once any element of the residual vector exceeds the corresponding element of the
detection threshold). Detection delay can be observed on the plot below. Because the

detection threshold is dynamic, detection delay is small in comparison with the isolation

time.
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Figure 7 - Detection delay;

(__ _threshald, velocity approximation error).

The detection threshold is dynamic with respect to both time and the states. Such
design minimizes the detection time and brings additional advantages. It gives the system
the ability to distinctly determine the point in the fault history profile where the fault
emerges. Until such point, the systems approximation efforts are put on hold, therefore

preserving system’s computational resources.
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Only time-varying version of the dynamic detection threshold is aso derived. By

introducing the upper bound, given by (7,), :sup‘ M ‘1/7‘1, , and taking into account that
t

e,(0)=0, from equation (3.10), we arrive at
& < [I -exp(-yt) } Y™ 1,

Define the time-varying detection threshold vector D, (e,é,t) = [d; dy, ., dtJ to be

D, (t)E[I ~exp(-yt) } y™ 7,

It minimizes the detection time, but only during the initial stages of the operation. The

plot below depictsits performance
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3.4 Approximation

This thesis considers only abrupt faults; therefore a fault occurrence implies that
B=1. Once the fault has been detected, from equations (3.5) and (3.6), the complete

error equation is given by

&=M7T+M*f +Mf,-M I -Mf, -M*f, - ye,
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= -ye, + M diag[H] r—M"ldiag[H*] T+
+M‘1Z(diag[Li] Q +diags] Zi)-M'liZ:(diadU] Q +diag 9] Zi)‘”

o] aubl-ale] )

5ok J-aodc] ) 0 +{aod-aofi] ) -]

Lee H=H-H", L =L -L',,and S =S - S’ . Consequently one has

& ="V +M ‘1[diag[l-|] r+iZ: (diag[l:] Q +diag[§‘] zZ ) —/7} :

In accordance to Lyapunov stability theory [2], the global stability of the system
is guaranteed if it can be shown that some function U is globally positive definite (for
t#0, U(t)>0), and if its derivative U(t) is globaly negative definite or semi-definite
(for t#0, U(t)<0) [2]. We use the stability analysis to accomplish two goals
simultaneoudly: first to show that the system approximation error does converge to zero,
and second to derive adaptation laws that make it to converge to zero. It is being done in
a backward way, by assuming that the approximation error can be stable, and using
Lyapunov stability analysis to establish rules that force this convergence to zero. If the

approximation error does gradually converge to zero, consequently the weight in the
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detection/approximation filters will mimic the behavior of the weights in the true fault

dynamics. A Lyapunov function of the following form is employed:

where I, W, Y OR™ are adaptive gain matrices gains. Therefore

- k. _ k. -
U=gl&g+HT H+Y LWL +>'STY™s

i=1 i=1
- K - K _
= —elye, el M “diag[A]r -] MY diag] (] Q —e]M*Y diag[S |z +
i=1 i=1
+HTT*H +Zk:LITlP‘1I: +Zk:S|TY‘1§| -e'M
i=1 i=1

=—e]ye, —e M "diag[z]H + H " diag[l] *H -e]M ‘fdiag[Q.]E +
i=1

+Zk:LITdiag[LIJ]'1I: - M ‘1Zk:diag[zl]§l +Zk:S|Tdiag[Y]_1§| -gM™y
=1 i=1 i=1

=—e'ye, +( HTF‘l—egM‘ldiag[r] ] I:I—Zk:egM‘ldiag[Ql] I: +
i=L

P LT -y M diaglz | § +Y78TY S —elM
i=1 i=1 i=1



=-gye-eM N+

+(I-'|TF'1—egM'ldiag[r] j A+
+Zk:(LITW'1—egM'1diag[Ql] j L+
+Zk:(SITY‘1—egM‘1diag[Zl] j S .

By setting

H'r*=eM™diagr] or H=rdiag[r] M, |,
LT lP‘lzegM'ldiag[Ql] o L :lPdiag[Ql] M™e, , for i=12 ...k

SITY'1=egM'1diag[Zl] o S =Ydiag[Zl] M, ,
weobtain U =-e"y e—e"M ;7. When 17 =0, one acquires
U=-e"ye<0,

which is negative semi-definite, and therefore the approximation error will converge to

zero. When n # 0, one acquires
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<A (V) el +|&|M 7

2 2
<A (V) & +[M ﬂ‘{%J'%” }

{10 o 14

where A, (0O) denotes the smallest eigenvalue. Choose i : Amm(y)>‘M‘1‘2i, ie.
U

M

2 ) then U = —a'|eo|2 +,8|/7|2. Results of this analysis guarantee the uniform
min y

u>

boundedness of the velocity estimation error and the weights in the neural network.
Furthermore it leads to the conclusion that the overall system remains stable. Following

the previous analysis, the approximation observer’ s architecture will be
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6=-M*( v +6)+M(1+dag[H] )HM_liZ:( diagL | Q +diad S| Z ]-1e,
H =T diag[7]M e,

L] [wdiag[Q |M e, ] Q,(6)] _{qll(é’) q,(6) . . qnl(H)]‘T_

[ | |Wdiag[Q M, Q)] |la,©) .06 - . a,0)
1] |wdsglo]me, 2.6)] [4.6) 0.6 . . a6l
_Sl_ _Ydiag:Zl M e | _2129{ _[211(6'?) 221(6'?) . znl(é)]T_

s | | vdiag[z,|m e, z,6)| |[z.6) 26) . . 26

5] |z ]me, 2.6) |[26) 26) . . 26l

Approximation in the isolation filters is identicaly structured using the same

approximation rules as in the detecti on/approximation observer.

3.5 Isolation

Once the fault has been detected, the entire bank of isolation filters including the
detection/approximation observer is activated, and the detected fault is compared with
each filter. If one of the isolation filtersis found to be equivalent to the detected fault, the
exact nature and the source of the fault become known. Throughout this process, the
detection/approximation observer keeps approximating the true fault dynamics just in
case none of the filters in the bank is equivalent. After the fault function is extracted

either by matching it with one of the filtersin the isolation bank or using neural networks

37



in the approximation observer, it can be used to reconfigure the control input and
accomplish fault accommaodation.

It is preferable to accommodate the system using the fault dynamics extracted
from one of the isolation filters. Let us consider the situation when the fault is found to be
equivalent to one of the isolation filters, excluding the detection/approximation observer.
It takes a certain isolation time t;s after the detection time ty to determine which fault had
occurred. At this point, the weights of the isolation filter are adjusted to mimic the actual
fault function. After tis accommodation is based on the precisely known fault function,
and therefore it requires minimal adaptation activity, and the approximation error is kept
at minimum. Most importantly, the operator and the system will have the knowledge of
the magnitude and the nature of the fault.

In situations when the approximation observer is used to extract the fault function,
the neural networks in approximation observer will be active indefinitely past tis for as
long as there is the need to accommodate the fault. The exact dynamics and the nature of
the fault will never be known. In addition, it is not known whether the detected fault is
just one type of fault or a combination of many faults.

An isolation time tsis not a set quantity and it is different for each isolation effort.
Initially it should be set to the predetermined minimal value tisyin). If none of the isolation
filters are found to be equivaent on the interval [ tg, tis ], then the fault is declared
unknown and the detection/approximation observer is used to accommodated it. If more
than one fault is found to be equivalent on the interval [ tq, tis], then tisisincreased until
the true fault dynamics is distinguished from the similar ones on the interval.

The following isolation filter is proposed
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~

6,=-M(V+e J+m=Y diglc, W, -(8,-6), (3.11)
=

Therefore the isolation bank would have the following structure:

6=-M —1( V+G)+|v|'1(| +diag[ H] jr+l\/l_1zk:( diag[L | @ +diag] s] Zi)_ye“
i=1
i 51 i _M—l(v+G J+M‘1zs:diag[Cl_]W]i Ve
) i=1
o, _M-l(VJrG J+|\/| ‘1Zdiag[Czl]W2, Ve
_ i=1
_52N_1_ ‘M_l(VJ’G j+M_1§diag[CzN—L]W2”-l VG

Let e, = ém — 6 denote the state estimation error in the m™ filter. After the fault

occurrence, by subtracting the approximated dynamics in the m™ filter (3.11) from the

true dynamics (3.5), the error equation is given by
e, :—yem+M‘1/7+M‘1/,1:—yem+M‘1(/7+/,1m ) : (3.12)

where

n =gdiag[c;]wm —gdiag[cm] W, =§(diag{cwj ~diag C, | )wm ,
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is the equivalency deviation between the true fault dynamics and the m™ isolation filter

dynamics. C, and W, are the vectors of weights and dynamic functions respectively

belonging to the true dynamics. After multiplying both sides of equation (3.12) by

exp(yt) and rearranging it, we obtain

exp(yt)e, +y exp(yt)e, =exp(yt)M '1(17 + U, ]

= %(exp( yt) em) =exp(yt)M ‘1(n+um ]

t

= j%(exp( yt) emjdt = ]exp( yt)M '1(/7 + 4, )dt.

By introducing the upper bound, given by (7). :sup‘M‘ln‘j, and the equivalency
t

margin (4,,), =sup/M ™ um‘j , We arrive at
t

t

J'%(exp(yt) emjdt < tJ'exp(yt) dt (/70 + 1, )
= exp(yt) emS[exp(yt)-l ]y‘l (ﬁo+ﬁm )

= ems[l—exp(—yt) }y'l (/70+[1m )

Define the isolation threshold vector R, (6,6,7,t)= [rm1 Ko oo e rmn] to be



Rm(e,é,r,t)s[ | —exp(- yt) }y'l (170 gy J

Therefore, for ty < tis, dynamics in the filter m in the | state are equivalent to the true

dynamics within a margin ,l?mj if

‘emj‘s Mo, for DtD[tdt,tis]

The above formulation provides a robust mechanism for successful fault isolation. In the
absence of an acceptable equivalent, detection/approximation filter should be employed

to accommodate the fault.

3.6 Accommodation

In the absence of faults, without any loss of generality a PD-computed-torque
approach can be used to accomplish tracking [2]. Under healthy conditions, the nominal

input torque 7 =1, isgiven by

r,=M(0) [K,(6-8,)+K,(6-8,)+d,]+Vv(6.6)+G(6)

tracking computed torque
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where 6,,6,,6,0R" ae the vectors of desired joint positions, velocities, and
accelerations, respectively, and K OR™ and K, OR™ are negative definite matrices,

which are designed, so that exponential convergence of the tracking errorsis achieved.
Applying the proposed torque and stage-dependent fault models, the input should

have the following structure

(I +diag[ H ()] j_l[ ro—fe(é’,é,t)} it [1+h(t)|>e

Ty

it [1+h(t)[<e

where £ issome constant, whose value is dictated by the nominal input torque. The new
input has capabilities to self-correct failures. The fault approximator will be able to
mimic the faults and provide appropriate modifications to the input torque in order to

accommodate them.

3.7 Idle-Monitoring

After a fault had been accommodated, in most situations it may disappear after
certain period. Velocity and position-dependent faults may disappear from the system
because the velocity or position reached regions where the fault is simply not present.
There can be a multiple of other causes for a fault to become absent from the system.

There is no need to spend resources on accommodation of something that is not present
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anymore, plus there is no need to keep the system thinking that the fault is there, if in
reality it is not there. This fact suggests a need for idle-monitoring system after the fault
had been accommodated. It should be able to make a determination if the fault is just at
low values or disappeared. If it did disappear, it should change the control, detection, and
isolation scheme in order to monitor for its future occurrences. This can be accomplished
by introducing idle-monitoring threshold pOR". The accommodated fault is declared

absent, if

PICH

<p; for t=t, and j=12,...,n

where ty is the maximum idle time. Once this happens, the control law is reconfigured so
this fault is not accommodated any further, and the bank of isolation filters is updated so

it includes this fault dynamics again (isolation it was removed from the isolation bank).

3.8 CDIA Performance Analysis

The performance of CDIA can be optimized with additional modifications. Some of
them are described in this section.

As it has been presented in section 2.2.3, faults may occur in multiple concurrent
combinations. In addition, faults may occur at different points in the change history, or

for instance one combination may occur at t = 2 seconds and another at t = 11 seconds. If

the most recent fault combination m (where m=12, . . . (2N —1)) was successfully
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isolated, then there is no need to observe for the types of faults that were a part of this
combination. They are aready present in the system, they were isolated, and trying to
observe and isolate them is an unnecessary use of resources. At this stage, the bank of
isolation filters should consist of 2"™ -1 filters.

As it was presented in Section 2.2.2, some faults do not have time dependent history.
Their presence can depend on either one of the states, or a number of the states. For
instance, some frictions occur only if velocity exceeds a certain value, so as long as the
velocity is below some upper bound, this type of fault cannot occur. Consequently, if
some fault had been detected in the system before this triggering parameter threshold had
been reached, there is no need to activate the isolation filters for such faults. Therefore,
the number of isolation filters can be reduced even more, thus reducing the number of the
possible faults and increasing the efficiency of the scheme. Thisis one of the advantages

of modeling fault history not as only time dependent, but as parameter-dependent.



4 SIMULATION

In this chapter the previously presented modeling techniques are applied to SCARA
robotic system (Figure 9). This simulation study demonstrates that the presented scheme
is effective when applied to a rea life robotic system. The smulation was conducted

using Matlab [50]. The sample of the Matlab code used is available in the Appendix.

4.1 SCARA Robot

The Sdlective Compliance Assembly Robot Arm (SCARA) robot was selected for
the smulation studies because of its extensive use in the industry. Figure 4 depicts a
genera representation of the SCARA robot. This robotic system comes in many different
configurations, and the presented configuration reflects its general structure. This system
offers a considerable generaity for the scheme simulation because it encapsulates both

trandational and rotational types of joint and its dynamics strongly depend on position,
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velocity, acceleration, and time. Traditionally, SCARA robots have one transational
vertical axis, two rotational axes that provide motion in the horizontal plane, and usually
one additional axis for the tool rotation in the wrist. The overall SCARA robot structure
is very rigid in both the vertical and horizontal axes, which allows very smooth and well
guided motion of the links. It has the highest speed of any other robot configuration in the
industry, which ranges in 2000-5000 mm/s. The repeatability rate is also very high, which
explains its high popularity in the manufacturing industry. Successful application of the
CDIA to the SCARA robot assures the generality of the modeling and control scheme
proposed. Examples of robotic systems belonging to the general class of SCARA robot

include the Adept One, the IBM 7545, the Intelledex 440, and the Rhino SCARA [4][51].

Figure 9 - SCARA rabot.

The dynamic model of the SCARA robot can be represented with the same system

of differential equations as any general robotic system presented in section 2.1, whichis
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M(6)8+V(6,0)+G=r, (4.1

where
r=[r, 1, 1, FJ,
6=6, 6, 6, x|,

G=[0 0 0 mg|,

(my+m, +my)l7 + (m, +my)l; + ‘s 0
+2(m, +m,)1,l, cos 8, )+ L(m2 +n13)lllzcos(92)J

+(m, +my)17

M@= ((m,+m)I2+ (m, +m,)12 l, 0],
+(m, +m,) 1,1, cos(6,)

I23 I23 I23 0

_(mz +”E)|1|23in(92)92 (‘92 _291)
V(H,Q): (r‘r12+rr13)I1(I)23in(<92)912
0
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Detailed derivation is presented in Appendix 6.1, which is based on general model
analyzed in [5]. Values of the parameters used during simulation of the SCARA robot are

listed in the Table 1 below. These are reasonabl e estimates of the real robotic system.

Link Weights:

50 kg
40 kg
30kg

Link Dimensions:

0.425m
0.375m
0.020 m
0.356 m

Maximum Ranges:

5/6m rad
7/91t rad
321t rad
0.200 m

Maximum Ve ocities:

10/3mtrad/sec
5m  rad/sec
55/3mtrad/sec
1.200 m

Table 1- SCARA parameters

The presented model is an idealized representation of the real physical system.
The following assumptions had been made: no friction, rigid links, rigid structure of the
joints (rigid motor shafts, no backslashes, rigid gearing), no load at the end of the

effecter, link masses are at distant ends, gravity is g, fault free operating conditions. This



model can be improved, which can lead to a better controller design. On the other hand, a
more thorough model will have more complicated mathematical structure, which can
make its analysis and controller design very difficult or even impossible.

In the SCARA dynamic model state 4 is decoupled from the other three states.
One might ask why does it even have to be considered? If state 4 isignored in the design
of the CDIA and the fault does occur specificaly in the state 4, then it will never be
detected and accommodated for that matter. In addition, a complete model of the SCARA
robot is being analyzed in this simulation. Ignoring either one of the states sets it apart
from the true mechanical system, and we want the smulation to be as redlistic as
possible.

The best approach to determine the upper bound of unmodeled dynamics is
through experimental study. Because this thesis includes only ssimulation study and no
testing in the field was conducted, it had to be derived in an analytical fashion. It was
established that joint velocities exert the largest effect on the magnitude of the unmodeled
dynamics. Though, the maximum allowable by robot design join velocities were used as
a base for the unmodeled dynamics upper bound vector multiplied by some factor.
Running simulations and observing the newly designed upper bound verses the
unmodeled dynamics helped to carefully adjust both the multiplication factor, and each

value in the upper bound vector.

4.2 Fault Models

In the joints (components), the most common and ever present type of faults is

friction. Friction has been extensively analyzed and varieties of models are available.
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Friction models in the works by C. Canudas de Wit [23][24][25] provide an excellent
reflection of friction in the real joint. The table below lists most common and noteworthy

friction models.

Coulomb / Sticktion f(8) =a sgn(6)

Asymmetries f(8)=a,sgn(6)+ B,6

Position Dependence f(0) =k sin( w09+¢)

Downward Bend f(0)= {ao +a, exp(—ﬂ|9'| ) ]sgn(é)
Viscous f(8)=a,0

Table 2 - Component Fault Dynamics.

In SCARA manipulators, actuators are generally electric motors. Faults in rotating
electric motors may be classified as electric faults, rotational faults and vibration faults.
Rotational faults include windage, friction, brush friction, core faults, stray-load faults.
Table 3 reflects most of the rotational faults in the motor. The electric faults in motors
include the | °R faults in the field circuits and armature circuits [8][9], and their

mathematical model can be summarized with
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Electric f(r)=ar, -1l<a<K<ow

Table 3 - Actuator Fault Dynamics.

where K is some maximum value that a can reach. The class of vibration faults includes
sub-synchronous, synchronous, and super-synchronous faults, vertical motor bearing
faults, and critical speeds faults [8][9]. Because of the shear complexity of such faults,
there are no adequate mathematical models available and the best available method for

their determination is experimental measurements.

4.3 Numerical Study

The first stage of the numerica study analyzes performance of the
detection/approximation (DA) observer. Figure 10 - Figure 15 demonstrate results of
such study with an example of actuator and component fault detection and
accommodation in a SCARA robot. The previously described fault dynamics are applied
in thissimulation. As shown in Figure 14 and other plots, the proposed schemeis able to
detect both actuator and component faults, learn their dynamics and make appropriate

modifications to the control law, which in turn accomplishes accommodation.
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Position Error (m)
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Time (s)

Figure 10 - DA observer: position error (States1 & 3).
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Position Error (m)

Position Error (m)
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Figure 11 - DA observer: position error (States2 & 4).
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Figure 12 - DA observer: velocity error (States5 & 7).
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Figure 13 - DA observer: velocity error (States6 & 8).
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Figure 14 - DA observer: velocity estimation error (States 5& 7).

56



State 6

5
S
L
=
k=]
3 L
g 0—%
i [
Y
=
O
o
k)
=
_5 ; i i
0 5 10 15 20
Time (s)
State 8
G.E T Li |
3
I
=
O
o
&
(1}
b
=y
L2
o
]
=
-0.2 : A ]
5 10 15 20
Time (s)

Figure 15 - DA observer: velocity estimation error (States 6& 8).
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During the second stage of the numerical study (Figure 16 - Figure 21), isolation
performance of the CDIA scheme was analyzed. Three a priori known types of faults

were included in theisolation filter bank, thus

-1+ 1 = 8

%/_J %/_J
Isolation Detection/ Isolation ~ Total number
filters Observer of filters

Selected faults were | °R, Coulomb / Sticktion, Position Dependence, which coincide with
torque, velocity, and position dependent faults. Plots below present the simulation results,

which point out the effectiveness of the scheme.
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Figure 16 - I solation: position error (States1 & 2).
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Paosition Error (m)

State 2

-
3
2

3
2

Position Error (m)
=
}
-
i - 3
—— .-.- -
.

=1 o o
= Healthy
—— Accommodation
3 , — = No Accomodation
0 5 10 15 20
Time (s)
State 4
0.05 -
i £ i \
L / \ ! :
U L S0 2
=0.05¢
-0.1
Healthy
— Accommodation
_0.15 . — - No Accomodation
0 5 10 18 20
Time (s)

Figure 17 - I solation: position error (States2 & 4).
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Figure 18 - I solation: velocity error (States4 & 6).
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Figure 19 - I solation: velocity error (States6 & 8).
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Velocity Adaptation Error

Velocity Adaptation Error
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Figure 20 - I solation: velocity estimation error (States5 & 7).
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5 CONCLUSIONSAND RECOMENDATION

Both internal and external changes (faults) can distort trgjectory tracking, slow down
a system’s performance, decrease a system'’s capabilities, and even bring the system to a
total halt. An innovative approach to model changes in non-linear systems was
developed. Change (fault) profiles are modeled not only as time-dependent, but also as
state-dependent. The new modeling technique was used to develop a very effective
approach that both monitors the robotic system’s health and its environment, and
provides significant improvements to its performance. It is robust with respect to
unmodeled dynamics, and torque dependent and state dependent changes. Change
Detection, Isolation, and Accommodation (CDIA) can be easily reshaped to work with a
wide variety of systems and changes. Its application requires minimal amount of
additional hardware, and it also can be directly applied to aready existing robotic

systems. One of the great advantages of the approach is that it can be applied to
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hydraulic, electrical or other types of robotic systems with minor modifications. This
approach gives robotic system the tools to be aware of its constantly changing internal
and external environment, identify or learn any changes, and accommodate them.

CDIA isan invauable tool for autonomous systems. Examples are space, underwater
technology, and hazardous environments. Maintenance is an important factor in the
systems operation, especially in the areas where human access to the system is either
limited or impossible. CDIA transforms regular robotic system to a much more intelligent
system, capable of self-monitoring and self-correcting. It provides the system with tools
to eliminate or decrease the need for maintenance for non-catastrophic changes. This has
huge rewards not only in extreme environments. Maintenance is a very expansive
exercise, and therefore the elimination of it provides operational cost cuts.

CDIA utilization is impossible without the use of the present day state of the art
computational devices. The key idea of CDIA isits on-line in real-time execution. There
are an enormous number of computational processes that have to be executed in real time
in parale to the operation of the real system. Therefore, CDIA received a significant
attention in the last ten to fifteen years due to the advances in the DSP and other
computer technologies. The tremendous leap in the computer technology of the recent
years created opportunities for cheaper and better implementation of the CDIA
technology. In addition to that, there has been a tremendous advances in neural networks
and fuzzy logic, which also stimulated new researches and improvement in the CDIA.

A few recommendations, which directly follow from the presented work, can be
made. This thesis analyzed full state feedback scenario, and the situations when feedback

from not all of the state is available should also be investigated. Application of CDIA to
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under-actuated robotic systems is yet another direction for research. In the future CDIA
can be extended to other robotic systems (underwater for instance), and to genera
systems. The solid proof of the effectiveness and performance capabilities of the CDIA
can be obtained by conducting afield test on the real robotic system.

The CDIA is a versatile base for the intelligent self-monitoring and correcting
control systems that can grow on top of it. Work can be done in a number of directionsto
make it more advance and custom. It can be reshaped to work with other types of robotic
systems that employ not only electric actuators, but hydraulic for instance. The CDIA can
be applied to work not only with robots, but also with any control system where its self-
correcting features are needed. Conducting a broader research on the dynamics of the

changes can expand the bank of isolation filters and make it even more effective.
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6 APPENDIX

6.1 SCARA Robot Dynamic Model

PARAMETERS:
i — link number,
m —mass of the i link,

l —length of thei™ link,

8 — displacement of thei™ link,
ri — distance from the joint to the center of mass of thei™ link
I — moment of inertia of thei™ link in z direction relative to a frame attached at the

center of mass of the link and aligned with the principle axes of the link.
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e G < 165
M
my q9 .
i 4
] ® e
R L%
y .
m, @D

GENERAL DYNAMIC MODEL.:
M(8)8+V(6,0)+G=T1
where
r=[r, 7, 1, F],
6=[6, 6, 6, x|,

G=[0 0 0 myg],
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M (8) =

a+pB+2ycosld,) B+ycosd,) 5 0
B+y cosl6,) B 5 0
o o o 0
0 0 0 m,
—ysin(02)92(291 +92)
. '2
V(9,9)= Vsmgez)gl ,
0

a
B=1

I21

2 2 2
22+|z3+|z4+|2rn£%+|2m4+r2m2

+r?m +17m, +17m, +17m,

y=Ll,my +1l,m, +I,myr,

0=1,

+|z4'

ASSUMPTIONS:

1.

2.

3.

Fault free operating conditions (no friction),
Rigid links,
Rigid structure of the joints (rigid motor shafts, no backslashes, rigid gearing),

Link 3 can be estimated to be a cylindrical rod, therefore

. :%msdi

Diameter of the link 3 (ds) is much less then the length of the links 1 and 2
(I,,1,), therefore 1, isnegligible in comparison with 17, 12, and | |,.

No load at the end effecter

= m,=0
= 1,=0,
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7. Link 3 hasvertical trandational motion
= My, =m,,
8. Centersof massof links 1 and 2 are at the distant ends

= =1
r2:|2
l,,=0
l,, =0.

DYNAMIC MODEL:

a=12(m +m,+m,)

B=13(m,+m,)

yzlllz(mz"'ms)

s=1,
_(ml"'mz"'rrk)llz"' (m, +my)I2 + l, O
#2(m, +m) L, 008(6,) % | {4 (m, +my )L, cos(6,)
+(m, +m,)I;

M@ =] ((m,+m)I2+ (m, +my)I? s
+(m, +m,) 1,1, cos(6,)

I23 I23 I23

I 0 0 0

_(mz +”E)|1|23in(92)92 (‘92 _291)
V(H,Q): (r‘r12+rr13)I1(I)23in(<92)912
0
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6.2 Simulation Code

Main

% SRMai n

% Scara Robot - Adept One- XL

clear all

clc

global MM VG al a2 a3 Fa Fc FA FC Kpv Ke Ka Kc ¢ sgmk nO thh ind acc und td

% SETUP

0,

k=7; % Nurmber of neurons per state

tf=2; % Si mul ation tine

st ep=0. 005; % Time step

tt=0:step:tf; %

mL=50; m2=40; m3=30; % Wei ghts of the |inks (kg)

1 1=0. 425; | 2=0. 375; % Lenghts of the links (m

j 3=nB*0. 0272/ 2; % Moments of inertia of the 3rd link

g=9. §; % Gravi tational acceleration

P=pi *[5/6 7/9 3/2 0.2/pi]; % Maxi mum j oi nt range

V=pi *[10/3 5 55/3 1.2/pi]; % Maxi mum j oi nt speed

PO=pi *[1/2;-2/3;-1/2;-0.1/pi]; % 1 C(lnitial conditions)-position

VO =zeros(4,1); %1 Cvelocity

VeO=zeros(4,1); %1 Cvelocity estimtes

HO =zeros(4,1); % 1 Cactuator fault weights

LO =zeros(k*8,1); % | C- conponent neur ons

X0 =[ PO; VO; VeO; HO; LO] ; % | C-vect or

nO=pi *[ 30; 5; 55/ 3; 1. 2/ pi ] *5e-5; % Model i ng uncertanty upper-bound

ind=[(17:4:(16+k*8)); (18:4: (16+k*8)); (19:4: (16+k*8)); (20:4:(16+k*8))]; %

al=(nR+nB) *| 272; % Inertia matrix

a2=(nmR2+nB) *| 2*1 1; %

a3=al+(nl+nmR2+nB) *| 172; %

M:=zeros(4, 4); %

M1:3,1:3)5 3; %

M 2, 2) =al; %

M 4, 4) =n8B; %

VG=[ 0; 0; 0; g*nB] ; % Coriolis/centripetal/gravity matrix

Fa=zeros(4,1); % Initial actuator faults

Fc=zeros(4,1); % Initial conmponent faults

FA=-[7; 10; 10; 0. 9] ; % Actuator faults

FC=[ 1e2; 1e2; 1le- 2; 1el] ; % Conponent faults

fprintf(’ Generating DESIRED TRAJECTORY\n\n'); % Cal cul ating desired trajectory

for i=0:(tf/step) %
xd(i+1,:)=srt(i*step)’; %

end %

Kpv=[ di ag([ 30 60 90 60]) diag([10 25 45 25])]; % Posi tion/ Vel ocity gains

Ke=[ 1e2; 1e2; 1le2; 1e2]; % Estimator error gains

Ka=[ 1el; 1lel; 1e0; 1e0]; % Act uat or adaptati on gains

Kc=repmat ([ 1el; 1el; le-1; 1e5], k*2, 1) ; % Conponent neuron gains

c=[linspace(-P(1),P(1),k) linspace(-V(1),V(1),Kk); % Neuron centers
linspace(-P(2),P(2),k) linspace(-V(2),V(2),k); %
l'i nspace(-P(3),P(3), k) linspace(-V(3),V(3),k); %
i nspace(-P(4),P(4),k) linspace(-V(4),V(4),K)];: %

sgn¥le- 3; % Neur on wei ghts
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% SYSTEM SYMULATI ON

0,

options=odeset (' JConstant','on',"' Rel Tol ', 1le-4,"' AbsTol"'

di sp(' Integrati ng HEALTHY SYSTEM);
[t,x1] =ode23s('srh',tt,[PO; VO], options);
di sp(’ Integrati ng FAULTY SYSTEM);
[t,x3]=0de23s("'srf3",tt,[PO; VO], options);

Fa=zeros(4, 1); Fc=zeros(4,1);

sys=ss(zeros(4,4),ones(4,4),ones(4,4),zeros(4,4));

t hh=ones(4, 1) *100;

tinme(1)=0;

x2(1,:)=X0";

for i=1:(tf/step)
tl=(i-1)*step;
tr=i *step;
[t,x]=0de23s("'srd6',[tl:(tr-tl)/2:tr], X0, options);
x2(i+1,:)=x(3,:);
tinme(i+1)=tr;
X0=x2(i+1,:);

next time subinterval
clc
fprintf('\n\n
u(:,i+1)=exp(Ke*tr).*(M *n0);
thl=lsin(sys,u' ,tinme ,zeros(1l,4));
thh=exp(-Ke*tr).*thl(i,:)";
thd(:,i+1)=thh;

end

t=tine;

% CQut put

05

, le-4);
% > Heal thy System integration
%
% > Faulty Systemintegration
%
%lnitial time of ith subinterval
% Final time of ith subinterval

% I ntegration

% Sssign to vector x2 value @r
% Save next entry in time vector
% Assign x@r to be x@ (1CQ for

I ntegrating ACCOMODATED SYSTEM t =% 4f ', ti me(i +1));

figure(1)

subpl ot (221), plot (t, x1(:,2)-xd(:,2),":",t,x2(:,1)-xd(:,1),t,x3(:,1)-xd(:

title('State 1');ylabel (' Position Error (n)');xlabel (' Time (s)")
| egend(' Heal thy' ,' Accormpdati on',' No Acconodation'); %axis([0 20 -1 2]);

subpl ot (222), plot (t,x1(:,2)-xd(:,2),":",t,x2(:,2)-xd(:,2),t,x3(:,2)-xd(:

title('State 2');ylabel (' Position Error (nm)');xlabel (‘Time (s)")

| egend(' Heal thy', " Accormpdation',' No Acconodation');

subpl ot (223), plot (t, x1(:,3)-xd(:,3),":",t,x2(:,3)-xd(:,3),t,x3(:,3)-xd(:

title('State 3');ylabel ('Position Error (m)');xlabel (‘Time (s)")

| egend(' Heal thy',' Accormbdation',' No Acconodation');

subpl ot (224), plot (t, x1(:,4)-xd(:,4),":",t,x2(:,4)-xd(:,4),t,x3(:,4)-xd(:

title('State 4');ylabel ('Position Error (nm)"');xlabel (' Time (s)")

| egend(' Heal thy',' Accormbdation',' No Acconodation');

figure(2)

subpl ot (221), pl ot (t, x1(:,5)-xd(:,5),":",t,x2(:,5)-xd(:,5),t,x3(:,5)-xd(:

title('State 5');xlabel (" Tine (s)');ylabel ('Velocity Error (ms)');

| egend(' Heal thy',' Accormbdation',' No Acconodation');

subpl ot (222), pl ot (t, x1(:,6)-xd(:,6),":",t,x2(:,6)-xd(:,6),t,x3(:,6)-xd(:

title('State 6');xlabel (" Tine (s)');ylabel ('Velocity Error (ms)');

| egend(' Heal thy', " Accormpdation',' No Acconodation');

subpl ot (223), plot (t,x1(:,7)-xd(:,7),":",t,x2(:,7)-xd(:,7),t,x3(:,7)-xd(:

title('State 7');xlabel (" Tine (s)');ylabel ('Velocity Error (ms)');

| egend(' Heal thy', " Accormpdation',' No Acconodation');

subpl ot (224), pl ot (t, x1(:,8)-xd(:,8),":",t,x2(:,8)-xd(:,8),t,x3(:,8)-xd(:

1T
12),"--")
:3), " --")
4, --T)
:5),"--")
1 6),"--")
OFREEND
1 8),"--")

title('State 8');xlabel (" Tine (s)');ylabel ('Velocity Error (ms)');

| egend(' Heal thy',' Accormbdation',' No Acconodation');

figure(3)

subpl ot (221), plot (t,x2(:,5)-x2(:,9 ),t,thd(1,:),"'r--",

t,-thd(1,:), r--")

title('State 5');grid;xlabel ("Time (s)');ylabel ('Velocity Adaptation Error');

subpl ot (222), pl ot (t, x2(:,6)-x2(:,10),t,thd(2,:),"'r--",

t,-thd(2,:),'r--")

title('State 6');grid;xlabel ("Time (s)');ylabel ('Velocity Adaptation Error');

subpl ot (223), plot (t,x2(:,7)-x2(:,11),t,thd(3,:),"'r--",

t,-thd(3,:), r--")

title('State 7');grid;xlabel ("Time (s)');ylabel ('Velocity Adaptation Error');

subpl ot (224), pl ot (t, x2(:,8)-x2(:,12),t,thd(4,:),"'r--",

t,-thd(4,:),'r--")

title('State 8');grid;xlabel ("Time (s)');ylabel ('Velocity Adaptation Error');

beep
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Trajectory Generator

% FUNCTI ON SRTRAJECTORY
function [xd]=srtrajectory(t)

pt=pi*[5/6 1/3 7/9 1/3 1/2 1/3 0. 2/ pi

xd=[pt (1) *sin(pt (2)*t);
pt(5)*sin(pt(6)*t);
pt(1)*pt(2)*cos(pt(2)*t);
pt (5) *pt (6) *cos(pt (6) *t);

-pt (1) *pt (2) "2*sin(pt(2)*t);
-pt(5) *pt (6)"2*sin(pt(6)*t);

1.2/pi];

pt(3)*sin(pt(4)*t);
pt(7)*sin(pt(8)*t);
pt(3)*pt(4)*cos(pt(4)*t);

pt (7)*pt(8)*cos(pt(8)*t);
-pt(3) *pt(4)"2*sin(pt(4)*t);
-pt(7) *pt(8)"2*sin(pt(8)*t)];

Healthy System Simulator

% FUNCTI ON SRh
function xdot =SRh(t, x)
gl obal M VG al a2 a3 U Kpv

% SYSTEM

05

M1, 1) =a3+2*a2*cos(x(2));
M 1, 2) =al+a2*cos(x(2));
M2, 1)=M1,2);

M =inv(M;

VGE( 1, 1) = a2*si n(x(2) ) *x(6) * (x(6) +2*x(5) ) :

VG 2, 1) =a2*si n(x(2) ) *x(5) *2;

% CONTROLLER

05

% Inertia matrix

% lnertia matrix inverse
% Coriolis, centripetal
% and gravity forces matrix

xd=srtrajectory(t);
epv=x(1:8)-xd(1:8);
U=Mr(xd(9: 12) - Kpv*epv) +VG

xdot (1: 4, 1) =x(5: 8) ;
xdot (5:8,1) =M *(U- VG ;

% Desired trajectory
% Vel ocity/ Position error
% | nput

System with the Faults

% FUNCTI ON SRMODELF
functi on xdot =SRMODELF(t, x)
gl obal M VG al a2 a3 F FC Kpv

% SYSTEM

05

M1, 1) =a3+2*a2*cos(x(2));
M 1, 2) =al+a2*cos(x(2));
M2, 1)=M1,2);

M =inv(M;

VGE( 1, 1) = a2*si n(x(2) ) *x(6) * (x(6) +2*x(5) ) :

VG 2, 1) =a2*si n(x(2) ) *x(5) *2;

if t>4
Fa=FA;

end

if t>2

% Inertia matrix

% lnertia matrix inverse
% Coriolis, centripetal
% and gravity forces matrix

% Actuator faults
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Fc=FC. *(-sign(x(5:8)).*(1+0. 05*exp(- le6*abs(x(5:8)))) +20*x(5: 8) +10*si n( 0. 2*x(1: 4) +pi ))
end
und=(cos(5*x(1:4))+sin(15*x(5:8))).*[ le-4; le- 4; 1e-3; 1le-6]; % Mddel i ng uncertanty

% CONTROLLER
9

xd=srtrajectory(t); % Desired trajectory
epv=x(1: 8)-xd(1:8); % Vel ocity error

U=Mr (xd(9: 12) - Kpv*epv) +VG % Heal t hy system i nput
xdot (1: 4, 1) =x(5:8); % Syst em

xdot (5: 8, 1) =M *( U F- VG und) ; % Syst em

Detection/Accommodation

% FUNCTI ON SRD1

function xdot =SRD1(t, x)
global MM VG al a2 a3 Fa Fc FA FC Kpv Ke Ka Kc ¢ sgmk ind acc und thh nO td

% SYSTEM
Oy
M1, 1) =a3+2*a2*cos(x(2)); % Inertia matrix
M 1, 2) =al+a2*cos(x(2));
M2, 1)=M1,2);
M =inv(M; % Inertia matrix inverse
VG 1, 1) =-a2*si n(x(2)) *x(6) *(x(6) +2*x(5)); % Coriolis, centripetal
V@ 2, 1) =a2*si n(x(2))*x(5)"2; % and gravity forces matrix
if t>4
Fa=FA, % Actuator faults
end
if t>2

Fc=FC. *(-si gn(x(5:8)).*(1+0. 05*exp(-1e6*abs(x(5:8)))) +20*x(5: 8) +10*si n(0. 2*x(1: 4) +pi))
end

n=(cos(5*x(1:4))+sin(15*x(5:8))).*[ 1le-4; 1le-4; le- 3; 1le- 6] *und; % Mddel i ng uncertanty

% CONTROLLER
[

QZ=exp(- ([repmat (x(1:4),1,k) repmat(x(5:8),1,k)]-c)."2.*sgm;
fe=sum((QZ. *x(ind))")";

xd=srt(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Vel ocity error
ea=x(9:12)-x(5:8); % Adapt ati on error
U=Mr(xd(9: 12) - Kpv*epv) +VG % Nomi nal i nput
U=U+acc* (i nv(di ag(1-x(13:16)))*(U+fc)-U); % Ful | i nput

xdot (1:4,1) =x(5:8);
xdot (5:8,1) =M*((1-Fa).*U Fc-VGn);
xdot (9:12,1) =M *((1-x(13:16)).*U-fc-VQ-Ke. *ea;
if sun((abs(ea)>abs(thh)))>0

xdot (13: 16, 1) =Ka. *U. *(M *ea) ;

xdot (17: (16+k*8), 1) =Kc.*QZ(:).*repmat ((M *ea), k*2,1);
el se

x(13: (16+k*8), 1) =zeros((4+k*8), 1);

xdot (13: (16+k*8), 1) =zeros((4+k*8),1);

td=t;
end
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