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ABSTRACT 

Because of the increasingly demanding tasks that robotic systems are asked to 

perform, there is a need to make them more reliable, intelligent, versatile and self-

sufficient. Furthermore, throughout the robotic system’s operation, changes in its internal 

and external environments arise, which can distort trajectory tracking, slow down its 

performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic 

systems are inevitable. They have diverse characteristics, magnitudes and origins, from 

the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural 

vibrations to air/underwater environmental change. This thesis presents an on-line 

environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that 

provides a robotic system the capabilities to achieve demanding requirements and 

manage the ever-emerging changes. The CDIA scheme is structured around a priori 

known dynamic models of the robotic system and the changes (faults). In this approach, 

the system monitors its internal and external environments, detects any changes, 

identifies and learns them, and makes necessary corrections into its behavior in order to 

minimize or counteract their effects. A comprehensive study is presented that deals with 

every stage, aspect, and variation of the CDIA process. One of the novelties of the 

proposed approach is that the profile of the change may be either time or state-dependent. 

The contribution of the CDIA scheme is twofold as it provides robustness with respect to 

unmodeled dynamics and with respect to torque-dependent, state-dependent, structural 

and external environment changes. The effectiveness of the proposed approach is verified 

by the development of the CDIA scheme for a SCARA robot. Results of this extensive 

numerical study are included to verify the applicability of the proposed scheme.  
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1 INTRODUCTION 

Robotic systems play an essential role in our society, and their presence and our 

dependence on them are increasingly growing. Manufacturing industry has been able to 

make tremendous leaps only due to the advances in robot technology. Robotic systems 

are the best and most of the time the only replacement to human beings in applications 

where human presence is either not possible or harmful. Such applications include space 

and underwater exploration, radioactive environments, automated bomb detonation, fire-

hazardous environments and many more (Figure 1). 
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Figure 1 - Robotic system. 

 

1.1 Problem Statement 

The external operational environment of robotic systems either willingly or 

unwillingly evolves constantly (Figure 2). Some autonomous robotic systems have to 

operate both in air and water. Atmospheric pressure, temperature, and humidity are 

constantly varying, and of course wind can exert extreme forces on the system. The 

internal environment in robotic system is very unstable as well, and it can exert even 

larger dynamic changes (Figure 2). Friction, degradation/wear, noise, vibration, and etc. 

are regular guests in any robotic system.  
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Figure 2 - Internal & external changes. 

 

Changes (faults) can make the system unsafe and less reliable. Productivity of the 

robotic system can degrade because changes can impose performance limitations on the 

system and may also require frequent system shut downs for its maintenance. In the case 

of technologically challenging applications, like space or underwater technology, where a 

system’s full automation is expected, the presence of changes can limit what engineers 

can accomplish in their designs. The bottom line effect of the changes is on 

environmental and human safety, cost, and ability of creation of autonomous systems.  

1.2 Goals 

Fortunately, all of the above-described situations can be managed by giving the 

system self-diagnostic capabilities, which allow it to detect any changes, analyze them 

and handle them appropriately. The system’s ability to learn how its environment has 

changed makes it more self-sufficient and intelligent, and improves its behavioral 
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decisions. Self-diagnosis of the system can be accomplished by the introduction of either 

analytical or hardware redundancy. In the hardware redundancy approach, additional 

physical instrumentation is introduced, sensors for instance. In the analytical redundancy 

approach, additional software is introduced which usually employs model-based 

techniques [17][26]. Analytical redundancy is less expensive, much easier to upgrade and 

has more potential. It requires a lot of computational resources because of its on-line 

application. Recent improvements in digital processing technology provide tools for its 

present-day development and implementation, which was not visible even a decade ago.  

Because the exact dynamic models of the changes in the robot are never known a 

priori, they should be accounted for in the control design. In robotic systems, the primary 

source of the changes is at a manipulator’s joints. Due to the highly nonlinear nature of 

joint change dynamics in the robotic systems, any linear models used by a change-

monitoring scheme cannot accurately represent their dynamics, and as joint velocities and 

accelerations reach high values, such models fail to capture the salient features of robot 

motion. In earlier works in change monitoring a number of nonlinear models have been 

proposed in [15][16][21][25][26], but most of these models have limitations and do not 

reflect the whole spectrum of the possible changes and change configurations.   

A change is classified as any deviation in the robotic system’s environment from the 

originally anticipated one [10]. All of the earlier researched change models ignore two 

very important factors in the change dynamics. First, the presence of change is not only 

time dependent, but it also depends on other parameters in the change dynamics (states 

for instance). Second, the torque-dependent changes should not be ignored and should be 

treated separately from the state-dependent changes. They affect a robotic system’s 

behavior just as extremely as state-dependent changes do, and by treating them separately 
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additional improvements are possible (Section 3.8). In this thesis a change model is 

proposed that addresses both of these factors.  

This thesis goal was to design an analytical redundancy model-based technique that 

makes a robotic system more intelligent, self-sufficient, improves its performance, life 

span, and on top of all can be very cost efficient.  

1.3 Contributions and Innovations 

The current research effort makes a number of major steps. It brings the automated 

change (fault) diagnosis and accommodation area to the whole new level by introducing 

the Change Detection, Isolation, and Accommodation (CDIA) approach.  

Unlike well-investigated FDA (Fault Detection and Accommodation [17]), and FDI 

(Fault Detection and Isolation [21]) schemes that follow the evolution of the change 

(fault) just up to the accommodation stage, CDIA is an all-encompassing approach that 

manages the changes (faults) throughout the whole life cycle of the robotic system.  

Moreover, unlike the FDI, FDA and other conventional treatments of the internal 

fault, CDIA deals with the general concept of the changes in both internal and external 

environments.  

CDIA can be divided into four distinct stages: (i) detection, (ii) isolation, (iii) 

accommodation, and (iv) idle-monitoring. The idle-monitoring is a new concept that 

makes CDIA a complete scheme by monitoring the evolution of the change well after the 

accommodation stage. It allows dynamic repetition of the CDIA stages.  

The isolation stage has been enhanced by constructing a bank of isolation filters from 

all the combinations of a priori known types of changes (faults). In previous treatments, 
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each filter corresponded to a specific change (faults) type, but in the proposed approach 

each filter corresponds to the combined dynamics of multiple changes that occur in the 

system simultaneously.  

The CDIA is developed based on the innovative approach that models the change 

(fault) history profile as parametric. The new model reflects the true dynamics of the 

change in a way that previous models were not able to. Its structure resonates 

improvements in each of the stages of CDIA, but especially in isolation stage by allowing 

minimization of the number of the isolation filters and narrowing down the isolation 

effort.  

1.4 What is CDIA? 

As an example, Figure 3 depicts arbitrary change dynamics development in the single 

state. This scenario can repeat itself multiple times, depending on the history of the 

change (Section 2.2.2).  
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Figure 3 - CDIA scenario. 

 
During the detection stage, changes (faults) are monitored and detected using a 

detection/approximation observer, which is robust with respect to unmodeled dynamics. 

The detection/approximation observer is also used to approximate changes whose 

dynamics are not found to be equivalent to any a priori known change scenarios. The 

dynamics of the change can be approximated using on-line approximation techniques, 

which include: multi-layer neural networks, polynomials, rational functions, spline 

functions, radial-basis-function (RBF) networks, adaptive fuzzy systems, etc [3][17]. 

From the past experience, RBF networks performed very well in robotic applications. For 

this reason, they are employed in this thesis for approximation purposes [17].  

The isolation stage of the CDIA employs a bank of isolation filters. There are 

multiple numbers of a priori known types of change dynamics. In a general situation, 

t Idle-Monitoring 
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these changes may occur one type at a time, in multiple and concurrent combinations, or 

in multiple and asynchronous combinations. Therefore, the bank of isolation filters 

consists of all combinations of the concurrent a priori known types of changes plus one 

previously unknown type, which can be approximated by the detection/approximation 

observer. Once the change has been detected, the bank of isolation filters is activated and 

every filter in the bank is compared with the occurred change. After the change had been 

either identified or approximated, the control law is modified accordingly in order to 

counteract its effects.  

Because the change presence is not constant in the system, after the change had been 

accommodated the system continues to monitor its presence. If it is determined that the 

change is not present any longer or reached insignificant magnitude, the whole CDIA 

scheme is modified in order to reflect the new conditions. 

1.5 Outline of the Thesis 

Chapter 2 describes the dynamic model of the robotic system and of the changes. The 

general framework of the proposed scheme is studied in Chapter 3. This chapter 

thoroughly investigates every stage of CDIA. Simulation studies are presented in Chapter 

4, which is followed by the final Chapter 5. This chapter summarizes this thesis and sets 

up directions for future work. 
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2 DYNAMIC MODELS 

The mathematical models are the essential elements of the CDIA design. Initially, 

this chapter presents the well-studied dynamic structure of the robotic system. The 

second part of this chapter, concentrates on the dynamical structure, configuration and 

nomenclature of the changes (faults) in the robotic system. Innovations like parametric 

change history profiling and decoupled torque-dependent and state-dependent change 

model are introduced and thoroughly analyzed.  

2.1 Robotic System 

The dynamic motion of the manipulator arm in a robotic system is produced by the 

torques generated by the actuators. This relationship between the input torques and the 

time rates of change of the robot arm components configurations, represent the 

dynamicmodel of the robotic system [1]. This thesis analyses an n-degree of freedom 
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robot configuration. Figure 4 provides a pictorial representation of a SCARA robotic 

system, which is analyzed in detail in Chapter 4. 

 

 

Figure 4 - SCARA robot diagram. 

 
 

The dynamic model of the robotic system can be derived using either Lagrangian, 

or Newton-Euler methods [1]. Both methods lead to the identical system of differential 

equations, which have been extensively studied in the literature on robots [1][2][4]. A 

general healthy n-degree of freedom robotic system is described by the following system 

of differential equations: 

 

( ) ( ) ( ) ( ) ττθθηθθθθθ =+++ tGVM ,,,, ����

,     (2.1) 

 

2l

x

2θ

1l

3θ 1θ
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where nR∈θθθ ���,,  denote the vectors of joint positions, velocities, and accelerations, 

respectively, nR∈τ  is the vector of input torques, ( ) nRG ∈θ  is the vector of gravitational 

torque, ( ) nRV ∈θθ �,  is the vector representing Coriolis and centripetal forces, 

( ) nnRM ×∈θ  is the inertia matrix whose inverse exists, and ( ) nRt ∈,,, τθθη �  denotes the 

unmodeled dynamics. It is assumed that the unmodeled dynamics are bounded. It is 

impossible to achieve a mathematical model that is a perfect mirror image of the actual 

physical system. Unmodeled dynamics are always present; therefore they have to be 

considered in the CDIA design in order to reflect the true dynamics of the system.  

 The presented model was derived for robotic systems operating in the air 

environment. It can be modified to describe robotic systems operating in the underwater 

environment or any other environments by including additional dynamics for instance 

drag, turbulence, etc. 

2.2 Changes 

Any additional dynamics, which were not present initially in the system, are 

considered to be a change (fault). This section reviews changes (faults) in a robotic 

system, categorizes them and introduces an innovative change modeling approach. 

Throughout this thesis the terms change and fault are being used interchangeably. The 

term fault falls under the definition of the change, and it has been extensively used in the 

control and robotics communities referring specifically to the undesirable changes in the 

internal dynamics. The term change is a more general term, which includes both internal 

and external variations of the changes, and does not concentrate only on undesirable 



 12

changes or faults. The use of the term change may bring additional confusions with 

regards to its definition. Because the term fault is so widely accepted in the control and 

robotics communities, it will be therefore used in the rest of this thesis.  

2.2.1 Fault Magnitudes and Categories 

There are faults, which are referred to as catastrophic. Catastrophic faults affect the 

system in such a way that it cannot function any further, and any ordinary control 

techniques cannot counteract their effects. An example of component catastrophic fault is 

a break of a joint or a link section. An example of actuator catastrophic fault is a short 

circuit in electric motor, permanently damaging the wiring. This type of faults is the 

worse case fault scenario and its effects on the system are obviously devastating. The 

only way they can be corrected is by direct operator (human) involvement and 

replacement of the system components. This thesis concentrates only on the faults of 

smaller magnitudes, or non-catastrophic, which can be accommodated with ordinary 

control techniques. This type of faults includes different variations of friction, 

misbalances in the joint or actuator, water/air external environment switch and many 

more. These faults can significantly affects the system’s performance as well, which can 

be expressed in the loss of productivity, reduced life expectancy of the system, and 

unsafe environment for people and outside environment. 

Faults can be separated into two distinct categories: those that change the nonlinear 

dynamics of the nominal model, and those that do not. The second category depends only 

on time, and not on the states or the inputs, and therefore can be modeled as additive. 

There are very effective techniques that can accommodate such faults, which include 
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robust control and adaptive control. Faults belonging to the first category have nonlinear 

dynamics and are beyond of the capabilities of the conventional techniques. They are 

more difficult to handle because they depend both on the system’s states and the inputs. 

The purpose of this is to device a very effective method that specifically deals with the 

state and input dependent faults, while being robust with respect to the unmodeled 

dynamics. 

2.2.2 Parametric Fault History 

It is reasonable to assume that faults are not continuously present in the system and 

emerge only after the system has been in operation for some time or once one of the 

system parameters exceeded a certain threshold value. Coulomb/Sticktion friction is 

present in the system only at low velocities [23][24][25], and as the joint velocity exceeds 

a certain velocity value, it approaches zero. Therefore, it would be incorrect to apply a 

conventional approach and use time to express the fault history profile of 

Coulomb/Sticktion friction, since only velocity affects its presence. Viscous friction has 

significant effects only after the system had been in operation for certain time. Even then, 

its effects are significant only after the velocity exceeds a certain value. In this case, both 

time and velocity govern its behavior.  

Thus, the presence of faults is both state and time dependent, and their presence and 

magnitude is affected by a number of parameters. A general representation of the fault 

dynamics is taken to be  

 

( ) ( ) ( )τθθτθθ ,,,,, �� fpPBtF −= ,       (2.2) 
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where ( ) nnn RRRRf →×× +:,, τθθ �  denotes the fault dynamics, and ( ) nnRpPB ×∈−  

represents the state and/or time dependent fault profile that has the following structure 

 

( ) ( ) ( ) ( )
��
�

��
� −−−=− nnn pPpPpPdiagpPB βββ ...,, 222111 , 

( )
�
�
� ∈

=−
otherwise

Ppif
pP jj

jjj 0
1

β , 

 

where ( )jjj pP −β  represents the state and time history of the fault in the jth state, jp  is 

some parameter (for example time, or velocity), and jP  is a region in this parameter  

history where the fault is present. The instance of the fault is declared when the value of 

the jp  traverses into the jP  region. diag(   ) denotes a matrix whose diagonal elements 

are the entries of the vector included in the brackets. 

The combined state and time dependent approach to model the fault history 

profile has advantages over the traditional approaches which model fault history profile 

as only time dependent [17][18][20][21][26][28]. The time history profiling is a special 

case in the parametric history profiling general framework. This approach provides a 

more accurate mathematical representation of a real fault phenomenon. With this 

approach, if the history profile of the fault can be learned by the monitoring system, 

faults can be avoided by staying away from the regions of the profile ( jP ) where it is 

present. In addition, [21] and similar treatments consider parameters only to effect the 

dynamics of the fault, the history of the fault is separated and is only time dependent. By 
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treating fault dynamics and the history as two dependent entities, a more complete and 

thorough fault model is shaped. 

2.2.3 Fault Nomenclature 

Decades of research on the mechanical systems unveiled a major portion of the 

common faults. Many of them have been extensively studied and well modeled. This 

knowledge is used to improve the design of the new mechanical systems, and it can be 

employed in the design of the control systems and the CDIA in particular.  

Let us assume that there are N types of a priori known faults, which may appear in 

the system, or a set of a priori known faults is 

 

( ) ( )
�
�
�

�
�
�=Α τθθτθθ ,,,...,,,1

��
Nff .  

 

Faults may occur one at a time, in multiple concurrent combinations, or in multiple 

asynchronous combinations. This leads to a conclusion that for N types of a priori known 

faults there are 12 −N  possible concurrent combinations (the combination with no faults 

present is excluded), or a collection of instances of all a priori known faults can be 

described by 

 

( ) ( ) ( )
�
�
�

�
�
�=ΑΡ

−
τθθτθθ ,,,...,,,

121
��

Nff \  {∅ }, 
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where ( )ΑΡ  is a power set of Α. Therefore a complete set of faults in the system is  

 

( ) ( ){ }ΑΡ=Φ ,,,0 τθθ �f , 

 

where 0f  is an unknown fault type (Section 3.1). 

2.2.4 Fault Dynamics 

Each fault is assumed to be linearly parameterized, which can be expressed in the 

following form 
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where n
m RC

i
∈  is a vector of the weights or parameters and nnn

m RRRRW
i

→×× +:  is a 

vector of dynamic functions. Consequently, the dynamics of a fault [ ]12,1 −+∈ NNm  

are cumulative dynamics of a combination consisting of [ ]Nv ,1∈  types of concurrent 

faults: 

 

( )

[ ] [ ] [ ] =+++=
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s

i
mm ii

WCdiag τθθ �  for m = 1,2, . . . , 2N - 1 . 

 

Hence, throughout this thesis any reference to a fault pointing to a complete fault 

dynamics, but not to any specific type of fault dynamics.  

2.2.5 State and Torque-dependent Faults 

It is important to be able to differentiate between torque and state-dependent 

faults. It corresponds to a more comprehensive fault models and in turn allows the CDIA 

to separately pinpoint faults related to the actuator or the component. It is the fact that the 

faults might occur either in the actuator or the joint or in both at the same time (Figure 5).  
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Figure 5 - Input signal – output effect diagram. 

 

Therefore, the fault dynamics can be represented as 

 

( ) ( ) ( )τθθτθθ
τθ mmm fff += �� ,,, , 

 

where ( )τ
τmf  and ( )θθ

θ
�,mf  represent torque-dependent and state-dependent faults 

respectively. 

 This thesis treats state and torque-dependent faults as two separate entities. In a 

similar treatment in [20], torque is assumed to be a function of input states only and thus 

the possibility of faults in the actuator are not explicitly presented. The work in [18][22] 

does consider faults due to input torque but does not separate (decouple) actuator faults 

from component faults and treat them as one entity. Adaptation in this case is structured 

around states only. These approaches eliminate the possibility of separate actuator and 

component fault isolation.   
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2.2.6 Summary 

Summarizing this section’s analysis of the faults in the robotic system, we arrive at 

the following comprehensive model of the robotic system: 

 

( ) ( )
�

( ) ( ) ( )[ ]
����� ������ ��

�
������ ������� ��
����

DynamicsFault

mmm

Torque
InputDynamicssSystemRobotic

ffpPBGVM τθθτθθηθθθθθ
τθ +−+=+++ ,,),()(

'
  (2.4) 
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3 CDIA ARCHITECTURE 

In this chapter CDIA’s, architecture is analyzed in details. Figure 3 offers a graphic 

representation of its architecture. CDIA consists of four distinct stages: (i) detection, (ii) 

isolation, (iii) accommodation, and (iv) idle-monitoring, each of which are described in 

sections 3.2, 3.4, 3.5, 3.6, and 3.7 respectively. Sections 3.1 and 3.3 discuss and analyze 

vital mechanisms in the CDIA design that make it robust and effective. Imbedded in the 

gray regions are the key results of the analysis in each section.  These results can be used 

as guidelines for the implementation of the CDIA scheme.  
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Figure 6 - CDIA architecture. 

  

The CDIA scheme can be made as sophisticated and complicated, as the designer 

would need, depending on the system, hardware, and other requirements. Each of the 

CDIA stages is the building block of the scheme, where the order of their implementation 

has to be preserved. Each instance of the fault may require dedication of a separate CDIA 

process, consisting of the isolation, accommodation and idle-monitoring stages. 

Therefore, the duration and the number of the separate processes are very 

dynamic. In the present design of the CDIA, a very important assumption is made which 

is based on both the analytical and the hardware capabilities of the system. It is assumed, 

that the presented scheme is fast enough to detect and isolate any fault combination set 

before the next set may occur. With this assumption, the analyzed schemes for a single 
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set of multiple faults can be applied to the multiple random fault situations without any 

modifications. 

3.1 Detection/Approximation Observer 

The detection/approximation observer is a multifunction mechanism that bonds the 

entire CDIA scheme together. While the system is healthy it is used to monitor it for 

faults and detect them if they do occur. During the subsequent stages, it is used to 

approximate and accommodate unknown fault dynamics, and to monitor the system for 

fault absence. Each of the detection/approximation observer application becomes evident 

in later sections. It is carefully designed to be robust with respect to unmodeled 

dynamics, and state and torque-dependent faults.  

In section 2.2.4 the parametric structure of the fault dynamics was analyzed.  Based 

on it, the approximated torque-dependent and state-dependent fault dynamics in an n-

degree of freedom system can be represented by the following equations:  
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where ( ) nRtH ∈ , ( ) n
i RtL ∈ , and ( ) n

i RtS ∈  are the vectors of the weights or parameters. 

In equation (3.1) the velocity and the position dynamics are decoupled for analytical 

purposes. It does not affect the approximation effort, although it allows detecting the 

position-dependent faults and the velocity-dependent faults individually. Both velocity-

dependent and position-dependent dynamics of the fault are approximated using RBF 
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neural network structures composing the ( ) nRQ
i

∈θ  and ( ) nRZ
i

∈θ�  vectors, and are 

structured as follows  
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where ija , ijb  are centers of the gaussian networks for position and velocity neurons 

respectively in the jth state and the ith neuron. Likewise, ijσ , ijω are widths of the gaussian 

networks for position and velocity neurons respectively in the jth state and the ith neuron 

[17][31]. Going along with the same architecture as the approximated fault dynamics 

above, the true state-dependent and torque-dependent fault dynamics (equation (2.3) 

decoupled) are assumed to have an equivalent form: 
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T
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where nRH ∈* , nRL
i
∈*  and nRS

i
∈*  represent the weight of the true fault dynamics and 

are assumed to be constants. In fact, the real values of the weights are never known, but it 

is assumed that *H , *
i

L , and *
i

S  represent their counterparts that constrain the fault to 
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exhibit identical behavior. Therefore, ( )tH , ( )tL
i

 and ( )tS
i

 can be varied in time in order 

to approximate the values of *H , *
i

L , and *
i

S  respectively. This makes τf̂  and θf̂  the on-

line approximators of τf  and θf  respectively. Through the next part of the analysis, the 

notation ‘ ( )∗∗ ’ will be replaced with ‘ ∗ ’ for reasons of simplicity. Therefore equation 

(2.4) can be rewritten as 
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In order to find expressions for updating τf̂  and θf̂ , initially ( )0
i

H , ( )0
i

L  and ( )0
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S  are 

set so that 0ˆ =τf and 0ˆ =θf  at 0=t . In the state space form, equation (3.4) can be 

rewritten as 
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Following the above-presented analysis, the detection/approximation observer is 

proposed 
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where  

 [ ]ndiag γγγγ ...21=  

 

is a positive definite stability matrix [1][2].  

3.2 Detection 

Let θθ �� −= ˆ
0e  denote the state estimation error, which will serve also as the 

residual vector [2][17]. During the detection stage, the CDIA monitors the system for the 

presence of the faults. While the system is healthy or no fault is present, the true system 

dynamics is represented as follows  

 

τθ 11 −− +�
�
��

�
� +−= MGVM��        (3.7) 

 

Unmodeled dynamics η  is excluded from the equation. Its presence will be addressed in 

details in the next section. Consequently, while the system is healthy, the approximation 

model has the following form 
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� +−= −− θθγτθ ���� ˆˆ 11 MGVM .     (3.8) 

 

Therefore, by calculating the estimation error 0e  from equations (3.7) and (3.8), it is 

established that for a fully observable system, while it is healthy, or there is no fault 

present the estimation error must be zero or ( ) 00 =te . This consequently means that 

0* =H , 0* =
i

L , and 0* =
i

S . The estimates of the faults are also set to zero ( 0=H , 

0=iL , 0=iS ) in order to detect any difference between the nominal dynamics in the 

detection/approximation observer and the real system.  

As a result of the above analysis, if ( ) 00 ≠te , ii Pp ∈  and the additional 

dynamics are present in the system and a fault is declared.  By subtracting the estimated 

model (3.8) from the true model (3.5) of unhealthy system, we obtain 
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The detection/approximation observer will be in detection mode until the residual vector 

exceeds the dynamic detection threshold at time tdt analyzed below. tdt is the point in the 

time history when the fault was detected.  
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3.3 Dynamic Detection Threshold  

The unmodeled dynamics η are always present in the system, and can be 

mistakenly identified by the CDIA as a fault. In order to avoid such false alarms and to 

improve performance, a detection threshold is introduced. Prior to the fault occurrence, 

from the equation (3.9) the error equation is given by    

 
ηγ 1

00
−+−= Mee� .         
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0

1
000 exp0exp ηγγ   (3.10) 

By introducing the upper bound on each element of η , given by ( ) j
t

j ηη sup0 = , and 

taking into account that ( ) 000 =e , we arrive at 
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Define the detection threshold vector ( ) [ ]ndddtD ,...,,,, 21=θθ �  to be  
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 . 

 

Therefore, a fault is declared if  
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( ) njfortde jj
,...,2,10 =>  , 

 

(once any element of the residual vector exceeds the corresponding element of the 

detection threshold). Detection delay can be observed on the plot below. Because the 

detection threshold is dynamic, detection delay is small in comparison with the isolation 

time.  

 

 

Figure 7 - Detection delay; 

( _ _ _ threshold, _____ velocity approximation error). 

 

The detection threshold is dynamic with respect to both time and the states. Such 

design minimizes the detection time and brings additional advantages. It gives the system 

the ability to distinctly determine the point in the fault history profile where the fault 

emerges. Until such point, the systems approximation efforts are put on hold, therefore 

preserving system’s computational resources.  
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Only time-varying version of the dynamic detection threshold is also derived. By 

introducing the upper bound, given by ( )
jt

j M ηη 1
0 sup −= , and taking into account that 

( ) 000 =e , from equation (3.10), we arrive at 

 

( ) 0
1

9 exp ηγγ −

��
�

��
� −−Ι≤ te  

 

Define the time-varying detection threshold vector ( ) [ ]t
n

tt
t dddtD ,...,,,, 21=θθ �  to be  

 

( ) ( ) 0
1exp ηγγ −

��
�

��
� −−Ι≡ ttDt  . 

 

It minimizes the detection time, but only during the initial stages of the operation. The 

plot below depicts its performance 
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Figure 8 - Time-varying detection threshold performance; 

( _ _ _ threshold, _____ velocity approximation error). 

3.4 Approximation 

This thesis considers only abrupt faults; therefore a fault occurrence implies that 

Ι=B . Once the fault has been detected, from equations (3.5) and (3.6), the complete 

error equation is given by 

 

0
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Let *~ HHH −= , iii
LLL *~ −= , and *~
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In accordance to Lyapunov stability theory [2], the global stability of the system 

is guaranteed if it can be shown that some function U is globally positive definite (for 

( ) 0,0 >≠ tUt ), and if its derivative ( )tU�  is globally negative definite or semi-definite 

(for ( ) 0,0 ≤≠ tUt � ) [2]. We use the stability analysis to accomplish two goals 

simultaneously: first to show that the system approximation error does converge to zero, 

and second to derive adaptation laws that make it to converge to zero. It is being done in 

a backward way, by assuming that the approximation error can be stable, and using 

Lyapunov stability analysis to establish rules that force this convergence to zero. If the 

approximation error does gradually converge to zero, consequently the weight in the 
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detection/approximation filters will mimic the behavior of the weights in the true fault 

dynamics. A Lyapunov function of the following form is employed: 
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where nnR ×∈ΥΨΓ ,,  are adaptive gain matrices gains. Therefore 
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we obtain ηγ 1−−−= MeeeU TT� . When 0=η , one acquires 

 

0≤−= eeU T γ� ,  

 

which is negative semi-definite, and therefore the approximation error will converge to 

zero. When 0≠η , one acquires  
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where ( )∗minλ  denotes the smallest eigenvalue. Choose ( )
µ

γλµ
2
1: 1
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−> M , i.e. 

( )γλ
µ

min

1
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−

>
M

, then 22
0 ηβα +−= eU� . Results of this analysis guarantee the uniform 

boundedness of the velocity estimation error and the weights in the neural network. 

Furthermore it leads to the conclusion that the overall system remains stable.  Following 

the previous analysis, the approximation observer’s architecture will be  
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Approximation in the isolation filters is identically structured using the same 

approximation rules as in the detection/approximation observer.  

3.5 Isolation 

  Once the fault has been detected, the entire bank of isolation filters including the 

detection/approximation observer is activated, and the detected fault is compared with 

each filter. If one of the isolation filters is found to be equivalent to the detected fault, the 

exact nature and the source of the fault become known. Throughout this process, the 

detection/approximation observer keeps approximating the true fault dynamics just in 

case none of the filters in the bank is equivalent. After the fault function is extracted 

either by matching it with one of the filters in the isolation bank or using neural networks 
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in the approximation observer, it can be used to reconfigure the control input and 

accomplish fault accommodation. 

It is preferable to accommodate the system using the fault dynamics extracted 

from one of the isolation filters. Let us consider the situation when the fault is found to be 

equivalent to one of the isolation filters, excluding the detection/approximation observer. 

It takes a certain isolation time tis after the detection time tdt to determine which fault had 

occurred. At this point, the weights of the isolation filter are adjusted to mimic the actual 

fault function. After tis accommodation is based on the precisely known fault function, 

and therefore it requires minimal adaptation activity, and the approximation error is kept 

at minimum. Most importantly, the operator and the system will have the knowledge of 

the magnitude and the nature of the fault.  

In situations when the approximation observer is used to extract the fault function, 

the neural networks in approximation observer will be active indefinitely past tis for as 

long as there is the need to accommodate the fault. The exact dynamics and the nature of 

the fault will never be known. In addition, it is not known whether the detected fault is 

just one type of fault or a combination of many faults. 

An isolation time tis is not a set quantity and it is different for each isolation effort. 

Initially it should be set to the predetermined minimal value tis(min). If none of the isolation 

filters are found to be equivalent on the interval [ tdt, tis ], then the fault is declared 

unknown and the detection/approximation observer is used to accommodated it. If more 

than one fault is found to be equivalent on the interval [ tdt, tis ], then tis is increased  until 

the true fault dynamics is distinguished from the similar ones on the interval.  

The following isolation filter is proposed 
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Therefore the isolation bank would have the following structure: 
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Let θθ �� −= mme ˆ  denote the state estimation error in the mth filter. After the fault 

occurrence, by subtracting the approximated dynamics in the mth filter (3.11) from the 

true dynamics (3.5), the error equation is given by 
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is the equivalency deviation between the true fault dynamics and the mth  isolation filter 

dynamics. *
imC  and *

imW  are the vectors of weights and dynamic functions respectively 

belonging to the true dynamics. After multiplying both sides of equation (3.12) by 

)exp( tγ  and rearranging it, we obtain 
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By introducing the upper bound, given by ( )
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Define the isolation threshold vector ( ) [ ]
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Therefore, for tdt < tis, dynamics in the filter m in the jth state are equivalent to the true 

dynamics within a margin 
jmµ~  if  
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The above formulation provides a robust mechanism for successful fault isolation. In the 

absence of an acceptable equivalent, detection/approximation filter should be employed 

to accommodate the fault.  

3.6 Accommodation 

In the absence of faults, without any loss of generality a PD-computed-torque 

approach can be used to accomplish tracking [2]. Under healthy conditions, the nominal 

input torque 0τ τ=  is given by 
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where n
ddd R∈θθθ ��� ,,  are the vectors of desired joint positions, velocities, and 

accelerations, respectively, and nn
p RK ×∈  and nn

v RK ×∈  are negative definite matrices, 

which are designed, so that exponential convergence of the tracking errors is achieved. 

 Applying the proposed torque and stage-dependent fault models, the input should 

have the following structure 
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where ε   is some constant, whose value is dictated by the nominal input torque. The new 

input has capabilities to self-correct failures. The fault approximator will be able to 

mimic the faults and provide appropriate modifications to the input torque in order to 

accommodate them.   

3.7 Idle-Monitoring 

  After a fault had been accommodated, in most situations it may disappear after 

certain period. Velocity and position-dependent faults may disappear from the system 

because the velocity or position reached regions where the fault is simply not present. 

There can be a multiple of other causes for a fault to become absent from the system. 

There is no need to spend resources on accommodation of something that is not present 
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anymore, plus there is no need to keep the system thinking that the fault is there, if in 

reality it is not there. This fact suggests a need for idle-monitoring system after the fault 

had been accommodated. It should be able to make a determination if the fault is just at 

low values or disappeared. If it did disappear, it should change the control, detection, and 

isolation scheme in order to monitor for its future occurrences. This can be accomplished 

by introducing idle-monitoring threshold nR∈ρ . The accommodated fault is declared 

absent, if  

 

njandttforc prj

s

i

m
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1
=≥<�

=
ρ

 , 

 

where tpr is the maximum idle time. Once this happens, the control law is reconfigured so 

this fault is not accommodated any further, and the bank of isolation filters is updated so 

it includes this fault dynamics again (isolation it was removed from the isolation bank). 

3.8 CDIA Performance Analysis 

The performance of CDIA can be optimized with additional modifications. Some of 

them are described in this section.  

As it has been presented in section 2.2.3, faults may occur in multiple concurrent 

combinations. In addition, faults may occur at different points in the change history, or 

for instance one combination may occur at t = 2 seconds and another at t = 11 seconds. If 

the most recent fault combination m (where ( )12...,2,1 −= Nm ) was successfully 
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isolated, then there is no need to observe for the types of faults that were a part of this 

combination. They are already present in the system, they were isolated, and trying to 

observe and isolate them is an unnecessary use of resources. At this stage, the bank of 

isolation filters should consist of 12 −−mN  filters.  

As it was presented in Section 2.2.2, some faults do not have time dependent history. 

Their presence can depend on either one of the states, or a number of the states. For 

instance, some frictions occur only if velocity exceeds a certain value, so as long as the 

velocity is below some upper bound, this type of fault cannot occur. Consequently, if 

some fault had been detected in the system before this triggering parameter threshold had 

been reached, there is no need to activate the isolation filters for such faults. Therefore, 

the number of isolation filters can be reduced even more, thus reducing the number of the 

possible faults and increasing the efficiency of the scheme. This is one of the advantages 

of modeling fault history not as only time dependent, but as parameter-dependent. 
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4 SIMULATION 

In this chapter the previously presented modeling techniques are applied to SCARA 

robotic system (Figure 9). This simulation study demonstrates that the presented scheme 

is effective when applied to a real life robotic system. The simulation was conducted 

using Matlab [50]. The sample of the Matlab code used is available in the Appendix. 

4.1 SCARA Robot  

The Selective Compliance Assembly Robot Arm (SCARA) robot was selected for 

the simulation studies because of its extensive use in the industry. Figure 4 depicts a 

general representation of the SCARA robot. This robotic system comes in many different 

configurations, and the presented configuration reflects its general structure. This system 

offers a considerable generality for the scheme simulation because it encapsulates both 

translational and rotational types of joint and its dynamics strongly depend on position, 
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velocity, acceleration, and time. Traditionally, SCARA robots have one translational 

vertical axis, two rotational axes that provide motion in the horizontal plane, and usually 

one additional axis for the tool rotation in the wrist. The overall SCARA robot structure 

is very rigid in both the vertical and horizontal axes, which allows very smooth and well 

guided motion of the links. It has the highest speed of any other robot configuration in the 

industry, which ranges in 2000-5000 mm/s. The repeatability rate is also very high, which 

explains its high popularity in the manufacturing industry. Successful application of the 

CDIA to the SCARA robot assures the generality of the modeling and control scheme 

proposed. Examples of robotic systems belonging to the general class of SCARA robot 

include the Adept One, the IBM 7545, the Intelledex 440, and the Rhino SCARA [4][51]. 

 

Figure 9 - SCARA robot. 

 

The dynamic model of the SCARA robot can be represented with the same system 

of differential equations as any general robotic system presented in section 2.1, which is 
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Detailed derivation is presented in Appendix 6.1, which is based on general model 

analyzed in [5]. Values of the parameters used during simulation of the SCARA robot are 

listed in the Table 1 below. These are reasonable estimates of the real robotic system. 

 

Link Weights: 
 
m1 
m2 
m3 
 

 
 
50 kg 
40 kg 
30 kg 

Link Dimensions: 
 
l1 
l2 
l3 (radius of the shaft) 
x4 
 

 
 
0.425 m 
0.375 m 
0.020 m 
0.356 m 

Maximum Ranges: 
 
p1 
p2 
p3  
p4 
 

 
 

5/6π   rad 
7/9π   rad 
3/2π   rad 
0.200 m 

Maximum Velocities: 
 
V1 
V2 
V3  
V4 
 

 
 
10/3π rad/sec 
5π      rad/sec 
55/3π rad/sec 
1.200 m 

Table 1 - SCARA parameters 

 
 

The presented model is an idealized representation of the real physical system. 

The following assumptions had been made: no friction, rigid links, rigid structure of the 

joints (rigid motor shafts, no backslashes, rigid gearing), no load at the end of the 

effecter, link masses are at distant ends, gravity is g, fault free operating conditions. This 
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model can be improved, which can lead to a better controller design. On the other hand, a 

more thorough model will have more complicated mathematical structure, which can 

make its analysis and controller design very difficult or even impossible. 

In the SCARA dynamic model state 4 is decoupled from the other three states. 

One might ask why does it even have to be considered? If state 4 is ignored in the design 

of the CDIA and the fault does occur specifically in the state 4, then it will never be 

detected and accommodated for that matter. In addition, a complete model of the SCARA 

robot is being analyzed in this simulation. Ignoring either one of the states sets it apart 

from the true mechanical system, and we want the simulation to be as realistic as 

possible.  

The best approach to determine the upper bound of unmodeled dynamics is 

through experimental study. Because this thesis includes only simulation study and no 

testing in the field was conducted, it had to be derived in an analytical fashion. It was 

established that joint velocities exert the largest effect on the magnitude of the unmodeled 

dynamics. Though, the maximum allowable by robot design join velocities were used as 

a base for the unmodeled dynamics upper bound vector multiplied by some factor.  

Running simulations and observing the newly designed upper bound verses the 

unmodeled dynamics helped to carefully adjust both the multiplication factor, and each 

value in the upper bound vector.  

4.2 Fault Models 

In the joints (components), the most common and ever present type of faults is 

friction. Friction has been extensively analyzed and varieties of models are available. 



 50

Friction models in the works by C. Canudas de Wit [23][24][25] provide an excellent 

reflection of friction in the real joint. The table below lists most common and noteworthy 

friction models.  

 

Coulomb / Sticktion )sgn()( θαθ �� =f  

Asymmetries  θβθαθ ���
jjf += )sgn()(  

Position Dependence  �
�
��

�
� += ϕθθ 0sin)( wkf f  

Downward Bend )sgn(exp)( 10 θθβααθ ���

�
�
�

�

�
�
�

�
�
�

	


�

�−+=f  

Viscous θαθ ��
2)( =f  

Table 2 - Component Fault Dynamics. 

  

 
In SCARA manipulators, actuators are generally electric motors. Faults in rotating 

electric motors may be classified as electric faults, rotational faults and vibration faults. 

Rotational faults include windage, friction, brush friction, core faults, stray-load faults. 

Table 3 reflects most of the rotational faults in the motor. The electric faults in motors 

include the I 2R faults in the field circuits and armature circuits [8][9], and their 

mathematical model can be summarized with 
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Electric  τατ =)(f ,   ∞≤≤<− Kα1  

Table 3 - Actuator Fault Dynamics. 

 

where K is some maximum value that α  can reach. The class of vibration faults includes 

sub-synchronous, synchronous, and super-synchronous faults, vertical motor bearing 

faults, and critical speeds faults [8][9]. Because of the shear complexity of such faults, 

there are no adequate mathematical models available and the best available method for 

their determination is experimental measurements. 

4.3 Numerical Study 

The first stage of the numerical study analyzes performance of the 

detection/approximation (DA) observer. Figure 10 - Figure 15 demonstrate results of 

such study with an example of actuator and component fault detection and 

accommodation in a SCARA robot. The previously described fault dynamics are applied 

in this simulation.  As shown in Figure 14 and other plots, the proposed scheme is able to 

detect both actuator and component faults, learn their dynamics and make appropriate 

modifications to the control law, which in turn accomplishes accommodation.  

 



 52

 
Figure 10 - DA observer: position error (States 1 & 3). 
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Figure 11 - DA observer: position error (States 2 & 4). 
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Figure 12 - DA observer: velocity error (States 5 & 7). 
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Figure 13 - DA observer: velocity error (States 6 & 8). 
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Figure 14 - DA observer: velocity estimation error (States 5&7). 
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Figure 15 - DA observer: velocity estimation error (States 6&8). 
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During the second stage of the numerical study (Figure 16 - Figure 21), isolation 

performance of the CDIA scheme was analyzed. Three a priori known types of faults 

were included in the isolation filter bank, thus  

 

�������������

filtersof
numberTotal

Observer
IsolationDetection

filters
Isolation

8112
/

3 =+− . 

 

Selected faults were I 2R, Coulomb / Sticktion, Position Dependence, which coincide with 

torque, velocity, and position dependent faults. Plots below present the simulation results, 

which point out the effectiveness of the scheme. 
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Figure 16 - Isolation: position error (States 1 & 2). 
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Figure 17 - Isolation: position error (States 2 & 4). 
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Figure 18 - Isolation: velocity error (States 4 & 6). 
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Figure 19 - Isolation: velocity error (States 6 & 8). 
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Figure 20 - Isolation: velocity estimation error (States 5 & 7). 
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Figure 21 - Isolation: velocity estimation error (States 6 & 8). 
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5 CONCLUSIONS AND RECOMENDATION 

Both internal and external changes (faults) can distort trajectory tracking, slow down 

a system’s performance, decrease a system’s capabilities, and even bring the system to a 

total halt. An innovative approach to model changes in non-linear systems was 

developed. Change (fault) profiles are modeled not only as time-dependent, but also as 

state-dependent. The new modeling technique was used to develop a very effective 

approach that both monitors the robotic system’s health and its environment, and 

provides significant improvements to its performance. It is robust with respect to 

unmodeled dynamics, and torque dependent and state dependent changes. Change 

Detection, Isolation, and Accommodation (CDIA) can be easily reshaped to work with a 

wide variety of systems and changes. Its application requires minimal amount of 

additional hardware, and it also can be directly applied to already existing robotic 

systems. One of the great advantages of the approach is that it can be applied to 
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hydraulic, electrical or other types of robotic systems with minor modifications. This 

approach gives robotic system the tools to be aware of its constantly changing internal 

and external environment, identify or learn any changes, and accommodate them.  

CDIA is an invaluable tool for autonomous systems. Examples are space, underwater 

technology, and hazardous environments. Maintenance is an important factor in the 

systems operation, especially in the areas where human access to the system is either 

limited or impossible. CDIA transforms regular robotic system to a much more intelligent 

system, capable of self-monitoring and self-correcting. It provides the system with tools 

to eliminate or decrease the need for maintenance for non-catastrophic changes. This has 

huge rewards not only in extreme environments. Maintenance is a very expansive 

exercise, and therefore the elimination of it provides operational cost cuts.   

CDIA utilization is impossible without the use of the present day state of the art 

computational devices. The key idea of CDIA is its on-line in real-time execution. There 

are an enormous number of computational processes that have to be executed in real time 

in parallel to the operation of the real system.  Therefore, CDIA received a significant 

attention in the last ten to fifteen years due to the advances in the DSP and other 

computer technologies. The tremendous leap in the computer technology of the recent 

years created opportunities for cheaper and better implementation of the CDIA 

technology. In addition to that, there has been a tremendous advances in neural networks 

and fuzzy logic, which also stimulated new researches and improvement in the CDIA.  

A few recommendations, which directly follow from the presented work, can be 

made. This thesis analyzed full state feedback scenario, and the situations when feedback 

from not all of the state is available should also be investigated. Application of CDIA to 
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under-actuated robotic systems is yet another direction for research. In the future CDIA 

can be extended to other robotic systems (underwater for instance), and to general 

systems. The solid proof of the effectiveness and performance capabilities of the CDIA 

can be obtained by conducting a field test on the real robotic system.  

The CDIA is a versatile base for the intelligent self-monitoring and correcting 

control systems that can grow on top of it. Work can be done in a number of directions to 

make it more advance and custom. It can be reshaped to work with other types of robotic 

systems that employ not only electric actuators, but hydraulic for instance. The CDIA can 

be applied to work not only with robots, but also with any control system where its self-

correcting features are needed. Conducting a broader research on the dynamics of the 

changes can expand the bank of isolation filters and make it even more effective.  
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6 APPENDIX  

6.1 SCARA Robot Dynamic Model 

PARAMETERS: 

i  – link number, 

mi  – mass of the ith link, 

li  – length of the ith link, 

θi  – displacement of the ith link, 

ri  – distance from the joint to the center of mass of the ith link 

Izi  – moment of inertia of the ith link in z direction relative to a frame attached at the 

center of mass of the link and aligned with the principle axes of the link. 
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ASSUMPTIONS: 

1. Fault free operating conditions (no friction), 

2. Rigid links, 

3. Rigid structure of the joints (rigid motor shafts, no backslashes, rigid gearing), 

4. Link 3 can be estimated to be a cylindrical rod, therefore 
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7. Link 3 has vertical translational motion  

344 mM =� , 

8. Centers of mass of links 1 and 2 are at the distant ends 
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6.2 Simulation Code 

Main 

% SRMain
% Scara Robot - AdeptOne-XL
clear all
clc
global M Mi VG a1 a2 a3 Fa Fc FA FC Kpv Ke Ka Kc c sgm k n0 thh ind acc und td

% SETUP
%=======================================================================================
k=7; % Number of neurons per state
tf=2; % Simulation time

step=0.005; % Time step
tt=0:step:tf; %
m1=50; m2=40; m3=30; % Weights of the links (kg)
l1=0.425; l2=0.375; % Lenghts of the links (m)
j3=m3*0.02^2/2; % Moments of inertia of the 3rd link
g=9.8; % Gravitational acceleration
P=pi*[5/6 7/9 3/2 0.2/pi]; % Maximum joint range
V=pi*[10/3 5 55/3 1.2/pi]; % Maximum joint speed
P0=pi*[1/2;-2/3;-1/2;-0.1/pi]; % IC(Initial conditions)-position
V0 =zeros(4,1); % IC-velocity
Ve0=zeros(4,1); % IC-velocity estimates
H0 =zeros(4,1); % IC-actuator fault weights
L0 =zeros(k*8,1); % IC-component neurons
X0 =[P0;V0;Ve0;H0;L0]; % IC-vector
n0=pi*[30;5;55/3;1.2/pi]*5e-5; % Modeling uncertanty upper-bound
ind=[(17:4:(16+k*8));(18:4:(16+k*8));(19:4:(16+k*8));(20:4:(16+k*8))];%

a1=(m2+m3)*l2^2; % Inertia matrix
a2=(m2+m3)*l2*l1; %
a3=a1+(m1+m2+m3)*l1^2; %
M=zeros(4,4); %
M(1:3,1:3)=j3; %
M(2,2)=a1; %
M(4,4)=m3; %
VG=[0;0;0;g*m3]; % Coriolis/centripetal/gravity matrix
Fa=zeros(4,1); % Initial actuator faults
Fc=zeros(4,1); % Initial component faults
FA=-[7;10;10;0.9]; % Actuator faults
FC=[1e2;1e2;1e-2;1e1]; % Component faults

fprintf(' Generating DESIRED TRAJECTORY\n\n'); % Calculating desired trajectory
for i=0:(tf/step) %

xd(i+1,:)=srt(i*step)'; %
end %

Kpv=[diag([30 60 90 60]) diag([10 25 45 25])]; % Position/Velocity gains
Ke=[1e2;1e2;1e2;1e2]; % Estimator error gains
Ka=[1e1;1e1;1e0;1e0]; % Actuator adaptation gains
Kc=repmat([1e1;1e1;1e-1;1e5],k*2,1); % Component neuron gains
c=[linspace(-P(1),P(1),k) linspace(-V(1),V(1),k); % Neuron centers

linspace(-P(2),P(2),k) linspace(-V(2),V(2),k); %
linspace(-P(3),P(3),k) linspace(-V(3),V(3),k); %
linspace(-P(4),P(4),k) linspace(-V(4),V(4),k)]; %

sgm=1e-3; % Neuron weights
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% SYSTEM SYMULATION
%========================================================================================

options=odeset('JConstant','on','RelTol',1e-4,'AbsTol',1e-4);
disp(' Integrating HEALTHY SYSTEM'); % > Healthy System integration
[t,x1]=ode23s('srh',tt,[P0;V0],options); %
disp(' Integrating FAULTY SYSTEM'); % > Faulty System integration
[t,x3]=ode23s('srf3',tt,[P0;V0],options); %

Fa=zeros(4,1);Fc=zeros(4,1);
sys=ss(zeros(4,4),ones(4,4),ones(4,4),zeros(4,4));
thh=ones(4,1)*100;
time(1)=0;
x2(1,:)=X0';
for i=1:(tf/step)

tl=(i-1)*step; % Initial time of ith subinterval
tr=i*step; % Final time of ith subinterval
[t,x]=ode23s('srd6',[tl:(tr-tl)/2:tr],X0,options); % Integration
x2(i+1,:)=x(3,:); % Sssign to vector x2 value @tr
time(i+1)=tr; % Save next entry in time vector
X0=x2(i+1,:); % Assign x@tr to be x@0 (IC) for

next time subinterval
clc
fprintf('\n\n Integrating ACCOMODATED SYSTEM t=%.4f',time(i+1));
u(:,i+1)=exp(Ke*tr).*(Mi*n0);
th1=lsim(sys,u',time ,zeros(1,4));
thh=exp(-Ke*tr).*th1(i,:)';
thd(:,i+1)=thh;

end
t=time;

% Output
%========================================================================================
figure(1)
subplot(221),plot(t,x1(:,1)-xd(:,1),':',t,x2(:,1)-xd(:,1),t,x3(:,1)-xd(:,1),'--')
title('State 1');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');%axis([0 20 -1 2]);
subplot(222),plot(t,x1(:,2)-xd(:,2),':',t,x2(:,2)-xd(:,2),t,x3(:,2)-xd(:,2),'--')
title('State 2');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');
subplot(223),plot(t,x1(:,3)-xd(:,3),':',t,x2(:,3)-xd(:,3),t,x3(:,3)-xd(:,3),'--')
title('State 3');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');
subplot(224),plot(t,x1(:,4)-xd(:,4),':',t,x2(:,4)-xd(:,4),t,x3(:,4)-xd(:,4),'--')
title('State 4');ylabel('Position Error (m)');xlabel('Time (s)')
legend('Healthy','Accommodation','No Accomodation');

figure(2)
subplot(221),plot(t,x1(:,5)-xd(:,5),':',t,x2(:,5)-xd(:,5),t,x3(:,5)-xd(:,5),'--')
title('State 5');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(222),plot(t,x1(:,6)-xd(:,6),':',t,x2(:,6)-xd(:,6),t,x3(:,6)-xd(:,6),'--')
title('State 6');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(223),plot(t,x1(:,7)-xd(:,7),':',t,x2(:,7)-xd(:,7),t,x3(:,7)-xd(:,7),'--')
title('State 7');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');
subplot(224),plot(t,x1(:,8)-xd(:,8),':',t,x2(:,8)-xd(:,8),t,x3(:,8)-xd(:,8),'--')
title('State 8');xlabel('Time (s)');ylabel('Velocity Error (m/s)');
legend('Healthy','Accommodation','No Accomodation');

figure(3)
subplot(221),plot(t,x2(:,5)-x2(:,9 ),t,thd(1,:),'r--',t,-thd(1,:),'r--')
title('State 5');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(222),plot(t,x2(:,6)-x2(:,10),t,thd(2,:),'r--',t,-thd(2,:),'r--')
title('State 6');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(223),plot(t,x2(:,7)-x2(:,11),t,thd(3,:),'r--',t,-thd(3,:),'r--')
title('State 7');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
subplot(224),plot(t,x2(:,8)-x2(:,12),t,thd(4,:),'r--',t,-thd(4,:),'r--')
title('State 8');grid;xlabel('Time (s)');ylabel('Velocity Adaptation Error');
beep
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Trajectory Generator 

% FUNCTION SRTRAJECTORY
function [xd]=srtrajectory(t)

pt=pi*[5/6 1/3 7/9 1/3 1/2 1/3 0.2/pi 1.2/pi];

xd=[pt(1)*sin(pt(2)*t); pt(3)*sin(pt(4)*t);
pt(5)*sin(pt(6)*t); pt(7)*sin(pt(8)*t);
pt(1)*pt(2)*cos(pt(2)*t); pt(3)*pt(4)*cos(pt(4)*t);
pt(5)*pt(6)*cos(pt(6)*t); pt(7)*pt(8)*cos(pt(8)*t);
-pt(1)*pt(2)^2*sin(pt(2)*t); -pt(3)*pt(4)^2*sin(pt(4)*t);
-pt(5)*pt(6)^2*sin(pt(6)*t); -pt(7)*pt(8)^2*sin(pt(8)*t)];

Healthy System Simulator 

% FUNCTION SRh
function xdot=SRh(t,x)
global M VG a1 a2 a3 U Kpv

% SYSTEM
%========================================================================================
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

% CONTROLLER
%========================================================================================
xd=srtrajectory(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity/Position error
U=M*(xd(9:12)-Kpv*epv)+VG; % Input

xdot(1:4,1)=x(5:8);
xdot(5:8,1)=Mi*(U-VG);

System with the Faults 
 
% FUNCTION SRMODELF
function xdot=SRMODELF(t,x)
global M VG a1 a2 a3 F FC Kpv

% SYSTEM
%========================================================================================
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

if t>4
Fa=FA; % Actuator faults

end
if t>2
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Fc=FC.*(-sign(x(5:8)).*(1+0.05*exp(-1e6*abs(x(5:8))))+20*x(5:8)+10*sin(0.2*x(1:4)+pi))
end
und=(cos(5*x(1:4))+sin(15*x(5:8))).*[1e-4;1e-4;1e-3;1e-6]; % Modeling uncertanty

% CONTROLLER
%========================================================================================
xd=srtrajectory(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity error
U=M*(xd(9:12)-Kpv*epv)+VG; % Healthy system input
xdot(1:4,1)=x(5:8); % System
xdot(5:8,1)=Mi*(U-F-VG-und); % System

 

 
Detection/Accommodation 
 
% FUNCTION SRD1

function xdot=SRD1(t,x)
global M Mi VG a1 a2 a3 Fa Fc FA FC Kpv Ke Ka Kc c sgm k ind acc und thh n0 td

% SYSTEM
%========================================================================================
M(1,1)=a3+2*a2*cos(x(2)); % Inertia matrix
M(1,2)=a1+a2*cos(x(2));
M(2,1)=M(1,2);
Mi=inv(M); % Inertia matrix inverse
VG(1,1)=-a2*sin(x(2))*x(6)*(x(6)+2*x(5)); % Coriolis, centripetal
VG(2,1)=a2*sin(x(2))*x(5)^2; % and gravity forces matrix

if t>4
Fa=FA; % Actuator faults

end
if t>2

Fc=FC.*(-sign(x(5:8)).*(1+0.05*exp(-1e6*abs(x(5:8))))+20*x(5:8)+10*sin(0.2*x(1:4)+pi))
end

n=(cos(5*x(1:4))+sin(15*x(5:8))).*[1e-4;1e-4;1e-3;1e-6]*und;% Modeling uncertanty

% CONTROLLER
%========================================================================================
QZ=exp(-([repmat(x(1:4),1,k) repmat(x(5:8),1,k)]-c).^2.*sgm);
fc=sum((QZ.*x(ind))')';

xd=srt(t); % Desired trajectory
epv=x(1:8)-xd(1:8); % Velocity error
ea=x(9:12)-x(5:8); % Adaptation error
U=M*(xd(9:12)-Kpv*epv)+VG; % Nominal input
U=U+acc*(inv(diag(1-x(13:16)))*(U+fc)-U); % Full input

xdot(1:4,1) =x(5:8);
xdot(5:8,1) =Mi*((1-Fa).*U-Fc-VG-n);
xdot(9:12,1) =Mi*((1-x(13:16)).*U-fc-VG)-Ke.*ea;
if sum((abs(ea)>abs(thh)))>0

xdot(13:16,1)=Ka.*U.*(Mi*ea);
xdot(17:(16+k*8),1)=Kc.*QZ(:).*repmat((Mi*ea),k*2,1);

else
x(13:(16+k*8),1)=zeros((4+k*8),1);
xdot(13:(16+k*8),1)=zeros((4+k*8),1);
td=t;

end
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