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Abstract 

Correlations between variables in biological data reflect underlying processes, but data 

science problems in this domain include how to perform dimension reduction or integrate data in 

ways that do not lose information and how to use such data for discovery and prediction tasks. In 

part 1, this dissertation details the generation of a dataset for machine learning from US air 

quality and cause-specific mortality records. An innovative CCA-derived epidemiological 

analysis is then presented for novel quantification of exposure-outcome associations, achieving 

stronger and significant quantification of air quality and health outcome association through 

covariation vs more commonly used multiple linear regression. Conceptual understanding of 

covariation modeling then guides alignment of single-nucleus RNAseq datasets by CCA-based 

features to extract new insights into relationships between regional cell states and disease. In part 

2, the problem of extracting information from a knowledge graph is considered for the task of 

predicting drug indication status for target-disease pairs using as input features aggregated 

association evidence scores from the Open Targets platform. In part 2, first, an innovative new 

approach for the task leveraging local network topology is shown to achieve improved prediction 

performance over previously published works. The second work in part 2 is another novel 

approach for the same classification task which achieves further improved performance by 

integration of external biological data resources via a feature engineering informed by 

collaborative filtering and network embedding concepts. In part 3, the problem of transforming 

raw biological data with correlated features into data structures for knowledge discovery is 

further explored with illustration of how such preparations can generate custom data structures 

which are suited for feature generation as shown in part 2. Innovations in this work include the 

development of new integration strategies for biological data (part 1, 2, 3), development of 

multiple novel indication status prediction methods for use in the Open Targets platform (part 2), 

and generation of new data-derived networks for knowledge discovery (part 3). 
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1  | Introduction 

 

Biological research is often exploratory, with aims including identification of novel disease 

mechanisms or further understanding of fundamental functions or processes. The application of 

methods from data science are particularly suited for these aims, but a fundamental challenge in 

the application of data science in biomedical research is the necessity to align diverse approaches 

from mathematics, computer science, and statistics with equally complex knowledge sets and 

information sources for domain-specific application. This dissertation engages with this 

challenge across tasks including correlated variables analysis (Part I & III), data integration 

strategy (Part II), and network analysis (Part II & III). The unifying theme across the projects 

presented in the dissertation is the requirement to take a systematic approach in such works 

starting from the parallel formulation of a research aim as simultaneously a biological domain 

question and a data science problem. For each problem, then, a first step is to identify suitable 

data and appropriate methods. Methods for data analysis in this work are then applied with 

evaluation both for biological insights resulting from an analysis and their analytical validity.   

1.1 Motivation 

The central motivation for each of the works in this dissertation is to apply data science methods 

to extract new insights from biological datasets. In problem 1, the focus is on understanding and 

applying canonical correlation analysis (CCA) methods to datasets with intercorrelated features 

firstly to quantify associations between dataset covariance of air quality and mortality measures 

and secondly for preprocessing to identify corresponding cell states from RNAseq data. In 

problem 2, the works focus further on data sets integration approaches including network 
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embedding techniques applied for extraction of information from a public aggregated evidence 

data resource. In problem 3, work on network creation and analysis is presented that illustrates 

the diversity of network information which can be extracted from biological datasets for use in 

applications such as described in problem 2 and validation approaches.       

1.2  Canonical Correlation Analysis (CCA) 

Canonical correlation analysis was first described in 1936 by Hotelling as a method by which to 

examine latent (canonical) relationships between multi-dimensional vectors X = (x1, x2, …xn) 

and Y = (y1,y2, …yn) which have non-zero Pearson correlations (ρ) among variables such that 

ρ(xi, xj), ρ(yq, yr), ρ(xk, yp) are non-zero for some variables [11, 12]. Non-zero intercorrelations 

imply that linear combinations of variables in the two sets may be predictable by or predictive of 

the others. The mathematical procedure underlying CCA seeks to find linear combinations of X 

and Y with maximal correlations with each other, and these linear combinations may then be 

used to examine and characterize relationships between multidimensional X and Y domains, 

with correlations between X and Y sets in the canonical dimensions taken to represent latent 

factors accounting for correlated set covariations [11, 12]. CCA is specifically suited for the 

situation where we have multiple intercorrelated exposure measures and multiple interrelated 

health effects with the relationship between variable sets being driven by complex, 

multidimensional latent phenomena, broadly, the effects and interactions of air pollutants on 

interdependent body systems in individuals with a wide range of susceptibilities and underlying 

health conditions. Unmeasured latent phenomena can be further explored through canonical 

weight comparisons as will be shown, by focusing on statistically significant high magnitude 

cross-set collaborations as will be further detailed in the following sections. CCA-based methods 

have found recent use in single-cell RNA seq analysis workflows, where this procedure is 
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applied as a processing step for multi-dataset integration to identify correlated cell states from 

the canonical weights – the application of this procedure is facilitated by the measurement of 

gene expression using standard nomenclature in these expression datasets.   

1.3  Network Construction and Link Prediction in Biological Data 

Resources 

Problem 2 of the dissertation concerns extracting information from aggregated knowledge 

resources and integration of data from knowledge base sources with orthogonal data resources. 

Work for problem 2 uses aggregated information available from the Open Targets Platform. 

Open Targets is a public-private research initiative that began with the formation of the Centre 

for Therapeutic Target Validation (CTTV), a collaboration between GSK, the Wellcome Sanger 

Trust, and the European Bioinformatics Institute (EMBL-EBI) (www.opentargets.org). CTTV 

was renamed to the Open Targets Initiative in 2016 and the aim of work by this organization is to 

advance the development of methods for exploring and integrating large volumes of scientific 

data for the support of target validation analyses. Open Targets makes available both a web-

based search platform and an application-programming interface (API) where systematically 

aggregated association evidence may be searched and/or downloaded. The foundation of 

searches in Open Targets is its defined ‘target’ entity, which is a protein, protein complex, or 

RNA molecule. Targets in Open Targets are named by their official Human Gene Nomenclature 

(HGNC) gene name and annotation by ENSEMBL stable ID is also recorded. The use of these 

standardized identifiers facilitates aggregation of information from diverse scientific sources and 

integration of Open Targets summary information with other data. [13-15]. The works presented 

include an application of machine learning for predicting target-disease therapeutic status from 

evidence on the Open Targets Platform and a work demonstrating a novel framework for 
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integrating additional biological information with this resource to improve prediction 

performance for indication status.    

1.4  Generation and Network Analysis of Biological Data 

In Problem 2, biological information networks are used together with network embedding to 

assign similarity scores between genes. Networks are representations of information where 

relationships among nodes/entities are shown with edge connections. A set of nodes connected 

by edges is called a graph, and the study of graphs in mathematics has a long history, with the 

first recognized theorem of graph theory dating back to Leonard Euler’s solution to the 

Konigsburg bridge problem in 1736 [16]. In biomedical science, network methods are 

increasingly applied for the study of gene expression datasets where large gene regulatory 

network (GRN) models can be readily derived from high-throughput gene expression datasets 

which produce gene expression measures for multiple samples and/or cells [17]. With the rapid 

expansion of available datasets, generation of numerous networks becomes possible but further 

steps remain to effectively explore network topology, derive novel insights, and identify suitable 

networks for algorithmic use and mining as in the framework from Problem 2. Work for Problem 

3 is a network analysis performed for human brain single nucleus datasets which demonstrates a 

breadth of network analysis directions.    

1.5  Dissertation Task and Contributions to Data Science 

An overview of dissertation tasks and contributions to Data Science is the following:  

Problem 1: CCA for Correlation Analysis and Derived Feature Embeddings 

• Novel dataset derived from integration of US EPA and State-level mortality data 

resources engineered specifically for ML algorithms 
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• Innovative CCA-derived epidemiological analysis provides a novel quantification of 

exposure-outcome association which more strongly and significantly quantifies air 

quality and health outcomes relationships through covariation models then linear 

regression. 

• Alignment of multiple datasets by CCA-based features leveraged to extract new 

insights into regional cell state biologies and their relationship to disease states from 

transcriptomic data, overcoming the challenges of comparing results from unsupervised 

clustering. 

Problem 2: Link Prediction in Evidence Networks Using Local Information and Features 

Generated by New Collaborative Filtering Methods  

• Created new search procedure based on ML using local graph topology for predicting 

drug-target relationships from Open Targets platform aggregated association score data 

using platform API which outperforms previously published approaches for this task. 

• Lead development of novel feature engineering project for use with Open Targets 

association evidence which expands the utility of the platform information network 

and achieves a substantial improvement in performance for drug-target relationship 

prediction over all previously published methods for this task.  

• Application of collaborative filtering concepts in paper 2 for omics datasets integration 

for query applications is especially significant because the volume, size, and variability 

of public Omics data archives creates challenges in access and processing times for 

query and data mining applications which are met by work in paper 2. 

Problem 3: Network Construction for Data Mining and Biological Insight 
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• Gene co-expression network topologies vary with multiple factors including disease state, 

tissue of interest, and cell type. Such networks can be used as inputs for custom feature 

generation as shown in problem 2.  

• For this problem, multiple novel gene networks are created from single-cell RNAseq 

transcriptomic data to achieve association rule learning, classification, and 

clustering tasks. 

• Data mining performed from these networks derives new insights into cell-specific and 

regional brain biology.    
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2  | Canonical Correlation Analysis (CCA) for                               

  Correlation Analysis and Feature Embedding 

 

2.1  Air Quality and Cause-Specific Mortality in the United                                                                 

States: Association Analysis by Regression and CCA for 1980-2014  

2.1.1 Background 

Passed in 1970 and subsequently amended in 1977 and 1990, the United States Clean Air Act 

§7401 et seq. (1970) requires that the United States Environmental Protection Agency (EPA) set 

national air quality standards for six air pollutants: ground-level ozone, particulate matter, carbon 

monoxide, lead, sulfur dioxide, and nitrogen dioxide. To date, numerous studies have associated 

air pollution exposure with increased risk for adverse health events, specifically including 

incidences of cardiovascular events and strokes [18-23].  Notably, negative health impacts of air 

pollution exposure have been linked at levels of exposure even below current federal regulatory 

limits in the United States, including a study of all-cause mortality in Medicare beneficiaries 

where higher levels of exposure to small-diameter particulates and ozone in air pollution, 

although within federal regulatory limits, were linked with all-cause mortality [18]. Revision of 

federal standards may be undertaken based on evidence of exposure-outcome associations, but 

this requires quantified risk estimates for each level of exposure to inform this process. With 

respect to air pollution, quantifying such associations can present a considerable analytical 

challenge due to correlations among both exposure and outcome variables. This is because air 

pollution exposures are typically not single-exposure events and each pollutant type impacts 

morbidity and mortality risk via multiple interdependent organ systems and interactions with 
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individual underlying health conditions. Thus, it is a considerable challenge to assess air 

pollution effects on populations health: each health outcome is not independent of eachother and 

neither is each pollutant exposure.  

Despite these challenges, dose-response and predictive models are necessary. One of the most 

common approaches for such analyses is multiple linear regression with interaction effects, 

where pollutant measures are the independent variables and the dependent/response variables are 

health effects [24]. Yet such models do not fully capture relationships between interrelated 

responses. This challenge motivates this work which compares multiple linear regression with an 

alternative approach to association analysis, canonical correlation analysis. 

2.1.2 State of the Art 

As noted in background above, regression model are commonly applied to quantify linear 

associations between exposure (independent/predictor) variables (features) and outcomes 

(dependent/response) measures, and these methods have been widely applied in the study of air 

pollution effects on human health [18-23]. Multiple linear regression is a parametric method 

whose parameter estimates provide coefficient estimates which are interpretable as the strength 

of association between exposure and outcome. Commonly reported outputs of such models are 

estimates of additional mortality predicted from unit increases in air pollutants, or quantifications 

of the relative contributions of specific measured air pollutants to a variety of health outcomes. 

Canonical correlation analysis (CCA), which is a method for examining associations among 

multi-dimensional vectors, offers a complementary perspective.  

Canonical correlation analysis was first described in 1936 by Hotelling as a method by which to 

examine latent (canonical) relationships between multi-dimensional vectors X = (x1, x2, …xn) 
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and Y = (y1,y2, …yn) which have non-zero Pearson correlations (ρ) among variables such that 

ρ(xi, xj), ρ(yq, yr), ρ(xk, yp) are non-zero for some variables [11, 12]. Existence of non-zero 

intercorrelations implies that linear combinations of variables in the two sets may be predictable 

by or predictive of the others. The procedure underlying CCA seeks to find linear combinations 

of X and Y with maximal correlations with each other. In effect, these linear combinations may 

be used to examine and characterize possible latent relationships between multidimensional X 

and Y domains, with correlations between X and Y sets in the canonical dimensions taken to 

represent latent factors accounting for correlated set covariations [11, 12]. CCA is specifically 

suited for the situation where we have multiple intercorrelated exposure measures and multiple 

interrelated health effects with the relationship between variable sets being driven by complex, 

multidimensional latent phenomena, broadly, the effects and interactions of air pollutants on 

interdependent body systems in individuals with a wide range of susceptibilities and underlying 

health conditions. A notable strength in applying CCA for questions in environmental 

epidemiology as we present here is that CCA does not require assumption of independence pf 

predictors or application of domain knowledge to generate or interpret interaction terms. 

Unmeasured latent phenomena can be further explored through canonical weight comparisons as 

will be shown, by focusing on statistically significant high magnitude cross-set collaborations as 

will be further detailed in the following sections. 

CCA has been further extended in recent years to kernel [25] and deep [26] adaptations of this 

method. In kernel CCA and deep CCA, data sets are projects into high-dimensional kernel or 

embedding spaces before CCA is performed, with these approaches permitting non-linear 

representation of latent relationships between datasets. Kernel and deep adaptations of CCA 

permit extension of this method to model complex variable interrelationships, but step away 
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from the use of canonical weights as interpretable coefficients (as work in this dissertation will 

move in the next discussed work). Thus challenges of both kernel and deep CCA are appropriate 

kernel selection, interpretability, and overfitting. The further development of kernel and deep 

CCA should then necessarily be driven by requirements of its applications. In epidemiology use 

as demonstrated here, interpretability of canonical coefficient relationships is an essential aspect 

of this project. In the following work, we will show an application of CCA where interpretability 

is approached from a different perspective.  

2.1.3 Problem Definition 

The problem defined for this analysis is that we aim to quantify associations between two sets of 

variables which are not independent of each other (air pollution measures and cause-specific 

mortality rates) which are interrelated by complex latent phenomena. To characterize this problem 

and provide a benchmark against which to compare our analysis and its interpretations, the work 

first outlines correlation relationships among variables within and between sets and results from 

multiple linear regression for single mortality rates are presented. We then seek to approach our 

problem by applying CCA to find combinations of air quality and cause-specific mortality rates 

which are maximally correlated and consider their canonical weight in significantly correlated 

dimensions. 

2.1.4 Challenges 

One significant challenge in this analysis comes from the lack of a readily available data set 

suited for our analysis. CCA requires that the two variable sets to be intercorrelated share a 

common identifier for pairwise analysis. While the EPA is mandated by the federal government 

to collect air quality measures, it is not within the scope of this agency to monitor health 
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outcomes. In order to perform this analysis, then, a significant part of the work was to identify 

and integrate appropriate data resources and develop a strategy and workflow for dataset 

integration.  

2.1.5 Proposed Method 

Proposed methods for this work include first identification, preprocessing, and integration of 

public datasets suitable for our task followed by implementation and analysis. Data sources for 

this study were selected to provide a set of variables quantifying air pollution exposure and a 

second set of variables quantifying cause-specific mortality rates. The common identifier used to 

join these records was the combination of United States federal county code and year. The Air 

Quality feature set used for this work was obtained from AirData, a website maintained by the 

United States EPA which offers public access to air quality measurements from outdoor 

monitors at 4000 sites across the United States, Puerto Rico, and the United States Virgin 

Islands. Available tables from AirData are annual and daily summary tables with measurements 

of ambient air quality rating, regulated pollutant quantities, particulate concentrations, 

meteorological conditions, ozone precursors, and lead. For this analysis, ‘Annual Summary’ 

tables are used for the time period 1980-2014 [27]. The Cause-Specific Mortality data set used 

for this analysis came from United States county-level age-standardized rates for the years 1980-

2014 aggregated by the Institute for Health Metrics and Evaluation (IHME). IHME reports 

estimates for US county-level mortality rates for 21 causes of death including chronic respiratory 

diseases, cardiovascular disorders, and other causes. This dataset is made publicly available 

through the Global Health Data Exchange and is the product of a significant body of work to 

collect and report these data: age-standardized mortality rates reported for males, females, and 

combined genders as number of deaths per 100,000 people in this population are estimates 



21 
 

generated from review of death records from the National Center for Health Statistics, population 

counts from the US Census Bureau, and the Human Mortality Database referenced using the 

cause list from the Global Burden of Disease Study [28]. Age-standardization of mortality rates is 

a particularly important step in ensuring comparability of data across county locations, as 

population age demographics vary across the US – this dataset was selected for integration with 

EPA records because of its systematic methods as well as its broad coverage of the US regions for 

which EPA data is available.    

2.1.6 Analysis and Methodology 

Data pre-processing and table joins were implemented in Python, version 3.6 using year and 

county cod as the unique row identifier. The final .csv for the integrated dataset contained 31,019 

data rows uniquely identified by county location and year with sets of mortality rates and air 

quality measurements. Mortality rates used in this analysis were the following: male and female 

age-adjusted mortality rates for the following causes: all (ALL), respiratory disorders (RESP), 

cardiovascular diseases (CVD), and lower respiratory and other common infectious diseases 

(INF). These causes of mortality were selected for inclusion based on previous studies linking air 

pollution exposure with systemic inflammation and adverse effects on the cardiovascular and 

respiratory systems [18-23]. The set of air quality measurement data included the following fields: 

median annual Air Quality Index (AQI); maximum annual AQI; the proportion of recorded days 

on which AQI fell into each of the following categories: Good (0-50), Moderate (51-100), 

Unhealthy for Sensitive Groups (101-150), Unhealthy (151-200), Very Unhealthy (201-300), and 

Hazardous (301-500); and the proportion of days on which the AQI was attributed to one of the 

following pollutants: Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Ozone, Particulate 

Matter (PM10), and Sulfur Dioxide (SO2). AQI is a summary measure of air quality, with the 
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scores ranging from 0 to 500, with lower values corresponding to better air quality. Only year-

county rows with complete data for both mortality and air quality data sets were included in the 

final analysis. Project code is archived on github: (https://github.com/erinteeple/CCA_air). 

The first step in analysis of the integrated datasets was to perform an initial exploration of the 

data. Figure 1 from the publication of this analysis is show which presents Pearson correlations. 

Linear correlations  

  

REF [4] Fig. 1: Pearson correlations mortality rates and air quality exposure measures.  
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among and between air quality measures and mortality rates are observed. These multiple 

intercorrelations confirm that this dataset is suitable for analysis by CCA. Also included in this 

initial exploration was to examine whether there are relationships between year and any of the 

studied cause-specific mortality rates. Figure 2 shows relationships between year and each of the 

cause-specific mortality rates included in our analysis. By these plots, mean mortality rates by 

cause were observed to exhibit different general trends for males and females particularly with 

respect to changes in respiratory causes of mortality, thus it was decided to perform separate 

analyses for males and females. 

 

REF [4] Fig. 2: Box plots showing 

variations in age-standardized mortality 

rates per 100,000 persons for time period 

1980-2014 by gender and cause: M: male; 

F: female; ALL:  all causes; RESP: 

respiratory; CVD:  cardiovascular; INF: 

infectious disease.  
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In regards to air pollution exposure features, formal relationships between those variables 

warrants specific consideration and discussion. Proportions of days in each AQI rating category 

were combined into a single measure, proportion of days on which the AQI was in the good or 

moderate air quality categories. Similarly, median AQI, maximum AQI, and proportion of days 

on which AQI was good or moderate have a natural relationship and capture interrelated exposure 

patterns. These are non-independent and separate linear regression models using each of these 

AQI summary measures. A further consideration in using annual summary data is that reporting 

of proportions of specific pollutants reflects only the proportion of days on which the maximal 

AQI is attributed to that maximal type of pollution, meaning that air pollutants present at other 

levels of exposure are not captured by this reporting convention and the specific magnitude of 

exposure is not captured. To compensate for this lack of information, interaction terms were 

added in the linear regression models between AQI summary measure sand pollutant proportion 

terms. 

Multiple Linear Regression Analysis: Multiple linear regression analysis is a multivariate 

parametric statistical model in which we examine linear relationships between a dependent 

variable and one or more independent variables [24]. Analyses of this type produce coefficient 

estimates for each predictor which quantify estimate magnitude and direction of a given predictor 

contribution to the dependent variable value, with confidence intervals indicating a probability-

based range for this estimate (e.g. if the estimated of a coefficient includes 0 then no relationship 

between that predictor and the outcome is possible). In a multiple linear regression model, the 

adjusted R-squared value quantifies the ability of the model to explain variation in the dependent 

variable (mortality rate in this analysis) from the independent variables (air quality features). 
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Canonical Correlation Analysis: CCA is formulated as follows: for a data matrix M composed of 

feature sets X and Y which have p and q measurements, respectively, for each of N observations:  

 

𝑀 = [ X | Y ] {
 X ∶ N ∗  𝑝
 Y ∶ N ∗  𝑞

 
(1) 

 

CCA seeks independent, linear combinations of the X and Y set variables 𝑈𝑎 and 𝑉𝑏which 

maximize 𝑐𝑜𝑟𝑟(𝑈, 𝑉): 

𝑈𝑎 =   𝑎T 𝑋 = ∑ 𝑎𝑖

𝑝

𝑖=1

𝑋𝑖 

 

(2) 

𝑉𝑏 =   𝑏T 𝑌 = ∑ 𝑏𝑖

𝑞

𝑖=1

𝑌𝑖 

 

(3) 

𝑐𝑜𝑟𝑟(𝑈, 𝑉) =
𝑐𝑜𝑣(𝑈, 𝑉)

√𝑣𝑎𝑟(𝑈) 𝑣𝑎𝑟(𝑈)
 

(4) 

  

For the analysis of intercorrelated mortality rates and intercorrelated air quality measures, where 

correlations between observation sets are mediated through biological mechanisms, we can see 

that this method generates a correlation between sets with an intuitive interpretation which is 

correlation between covarying set variables [29].  
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The results of multiple linear regression are compared with CCA for quantification of 

relationships between air pollution exposure and multiple cause of mortality. Proportion of 

variance in specific mortality rates explained using multiple linear regression is compared with 

cross-set correlation magnitude and significance in the canonical dimensions as well as the weight 

coefficients assigned in each model to particular air quality variables (βi in linear models and 

canonical weights in CCA). Interpretation of the variable weights in CCA is quite different from 

parameter estimates in multiple linear regression. This is because in a multiple linear regression 

model, the variable coefficient for an independent variable is an estimate of a true linear 

contribution parameter of that variable to the dependent variable value derived from the 

regression model. In contrast, variable canonical weights in CCA are those which are assigned in 

a specific canonical dimension in the correlated projection. The canonical weights assigned to 

variables in the two sets indicate relative contributions in the correlated project in a given 

dimension. As such, these weightings are most informative taken relatively and together for both 

sets and in relation to the magnitude and significance of their specific correlated projection – this 

will be further explained by example in this and the subsequent work in this dissertation.       

2.1.7 Experiments 

For these experiments, data integration is first performed in Python and multiple linear regression 

and CCA analyses use R and Python [12, 30]. Adjusted R-squared values for regression models 

predicting annual mortality from year only as a benchmark are compared with models predicting 

annual mortality from year plus air quality measures. Table 1 from the referenced publication 

summarizes results of this first set of experiments including adjusted R-squared values for 

regression models predicting annual mortality i) from year only and ii) from year plus air quality 

measures, including interaction terms between proportions of days on which the leading pollutant 
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was of a specific type. For assessment of model performance, we apply the general linear test [31] 

and observe that compared with year-only models, a significantly greater proportion of variation 

in mortality is explained by models which include year together with air quality measures. These 

results show significant associations between air quality exposures and different cause-specific 

mortality rates (Table 1).  

 

 

REF [4] Table 1: 

Mortality rate 

prediction. 

 

 

 

 

Air quality measure coefficient confidence intervals are then shown in in Table 2 from the 

referenced publication. From this table, it can be seen that for some air quality measure variables, 

the coefficient intervals include 0 (no effect), and some coefficient estimates are negative, which 

runs counter to our expectation that higher air pollution exposures are significantly positively 

associated with worse health outcomes. For examples, surprisingly, ozone has a negative 

coefficient interval for female respiratory mortality, but several considerations should be taken 

into account in the interpretation of this result. Particularly, other variables in the regression 

model are correlated both with ozone level and with the mortality outcome, such as year, which 
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can be seen in our exploratory plots where there are trends which differ for cause specific 

mortality which are changing over the study period, and looking at predictive model for 

respiratory mortality alone may bias results if related mortality rates such as cardiovascular events 

are also affected by the exposure and being recorded as the proximate cause of death. 

 

REF [4]Table 2: Linear 

model coefficients. 
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Given these considerations, CCA provides a complementary perspective to multiple linear 

regression from the same data set. Table 3 from the reference publication summarizes the results 

of CCA. By CCA, we observe a statistically significant and high magnitude correlation of 0.91 

between the sets of air quality exposure measurements and all-cause mortality variables. As 

shown in reference Table 3, in the first canonical dimension, positive canonical weights are 

assigned to multiple adverse air quality measures together with positive weights assigned to 

multiple cause of mortality rates. In addition, in this first canonical dimension, a negative 

(protective) weight is assigned to the proportion of days on which AQI is rated as good or 

moderate. Where multiple linear regression find low-moderate proportions of variation explained 

in individual cause-specific mortality rates for air quality measures, CCA quantifies strong 

significant correlation between variations in air quality across the United States and variations in 

cause-specific mortality. Relative to the formulation of CCA, effects of air pollution on human 

physiology are captured as a latent phenomena relating covariations between the mortality and air 

quality data matrices.   

REF [4] Table 3: CCA coefficient 

estimates. 
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2.1.8 Conclusions 

The results and scientific contributions of this work can be summarized as follows:  

1) A novel 34-year national county-level air pollution exposure - mortality outcomes 

dataset is created and made publicly available. The approach uses federal county 

identifiers, permitting easy integration with other geographically coded data sets for 

investigators who may wish to build on this work. 

2) We identify significant associations between variations in cause-specific mortality and 

air quality measures, with impacts on human health shown to occur even within 

regulated pollution exposure levels.  

3) We explore the use of CCA alongside multiple linear regression for environmental 

epidemiology applications and show its use in relating complex exposure patterns with 

multiple correlated outcomes. 

4) These findings have important public health and policy implications: associations 

between worse air quality and cause-specific mortality can inform regulatory limit 

revision efforts. We show that covariation in interrelated outcomes can be used to 

quantify harm alongside quantitation of specific cause effects. 

5) The publication reporting the data science framework for this analysis highlights how 

this method can be adapted more broadly for application in environmental epidemiology 

and public health research.       

In summary, the first work in this dissertation demonstrates strong and significant first- and second-

dimension canonical correlations relating variations in air pollution exposure and multiple causes 

of mortality using data from the United States for the period 1980-2014. These results complement 

and extend our understanding of results from multiple linear regression analysis. Of particular note, 
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relationships between air pollution exposure and mortality are shown to occur across locations 

subject to United States federal regulatory limits which are under continual monitoring. Harm to 

human health from air pollution at a range of exposure limits has been shown by other investigators 

[18-23]. This work provides further confirmation of the relationship between air quality and health 

outcomes.   

2.2 CCA Application: Integrated Label Transfer Oligodendrocyte 

Population Profiling in Parkinson’s Disease and Multiple 

System Atrophy 

2.2.1 Background 

The second work in this dissertation applies CCA-derived methods in a different context, but 

shared between these two applications is the task of relating two sets of data with common 

observations (data rows) but for two matrices of intercorrelated features. For this second work, 

CCA is applied to generate embedded projects of data rows so that label applied to one matrix 

can be transferred to another. In this case, the data used is single-nucleus RNAseq data 

(snRNAseq). For this data type, gene expression (RNA transcripts) are quantified at the single 

cell level from processed tissue. Integration of expression data across samples and data sets is 

frequently performed with the goal of transfering cell type labels. Clustering of cells by gene 

expression is also performed, often followed by comparisons within clusters to identify 

differences in gene expression among similarly labelled cells. Label transfer saves type by not 

requiring that samples of the same general type be re-labelled. Another potential use for label 

transfer methods is to identify cell states which might be shared by samples from different 

anatomic regions or be altered under disease conditions. The analysis presented here presents a 

work of this type, with alignment between accomplished through the application of CCA not for 
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examination of correlated features, but rather for derivation of an embedding which is then used 

for the purpose of clustering similar cell states. this work describes integrated analysis of 

oligodendrocyte lineage nuclei sequenced from human brain putamen region tissue samples for 

healthy Control (n = 3), Parkinson’s Disease (PD; n = 3) and Multiple System Atrophy (MSA; n 

= 3) subjects with label transfer to substantia nigra region tissue samples for healthy Control (n = 

5) subjects. 

PD and MSA are both progressive neurodegenerative diseases. PD and MSA are both 

synucleinopathies, which are disorders in which nervous system aggregates of α-synuclein, the 

protein encoded by the SNCA gene, are found in different cell types where they are linked with 

cell death and dysfunction. Tissue histology and genetic analyses have suggested that 

oligodendrocyte cell biology may be linked with synucleinopathy pathogenesis. The motivation 

for this work is to use snRNAseq data to examine oligodendrocyte population heterogeneity in 

disease and healthy control brain tissue, identify disease-associated differences in cell states and 

gene expression, and to relate our finding to another disease-relevant tissue dataset. Our task in 

this work is to group related populations of cells across datasets with varying number of cells but 

the same genes quantified in each dataset. CCA is applied for the purpose of embedding cells so 

that cell states shared between datasets can be identified for label transfer and as will be shown, 

the results of this work provide novel insights relating regional variations in oligodendrocyte 

biology to disease features of PD and MSA. This application of CCA further provides insight 

guiding how CCA may be further developed in its kernel and deep forms for embedding tasks, 

where CCA coefficient interpretability is not a primary concern of the domain application. 

2.2.2 State of the Art 
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As background for this analysis, a brief explanation is needed on the development and ongoing 

refinement of single nucleus RNAseq technologies in molecular biology. snRNAseq permits 

individual cell-level resolution transcription profiling and has dramatically expanded our ability 

to understand activities and variations of cells all over the body, and particularly in the brain and 

nervous system with their heterogeneous, densely packed, interacting cell populations. Cells are 

the foundational unit of multicellular organisms, with all cells in an individual organisms sharing 

common DNA but varying in their transcription of this code, as reflected by differences in RNA 

transcripts, which are quantified at the cell level by snRNAseq methods [32]. snRNAseq data 

and methods have particular potential for improving our understanding of central nervous system 

cell biology, as the cells in the brain form dense, interconnected, and diverse networks which 

support dynamic and complex processes such as memory encoding, vision processing, and motor 

control and coordination, with these activities distributed over macro and microscopic anatomic 

tissue regions [32]. Sequencing of nuclei in a tissue sample generates a matrix of cell-level gene 

transcript counts which is called a unique molecular identifier (UMI) count matrix. In the 

analysis of snRNAseq data, variations in gene expression between cells are used both to cluster 

cell types (by similar patterns of gene expression) and also for differential expression analysis to 

compare between cells in a particular cluster or other grouping. Standard data pre-processing 

steps for UMI count matrices consist of filtering to remove low quality rows (e.g. rows with very 

few counts or very many more than other data rows which are taken to represent empty droplets 

or those with more than one cell) and data rows with high numbers of mitochondrial genes [33]. 

Sequencing depth variations can result in different total counts of genes being detects in different 

cells. Normalization of UMI count matrices is therefore undertaken as a preprocessing step to 

support comparability and clustering workflows within and between datasets. Normalization 



34 
 

methods that are commonly used are to log-transform the UMI counts matrix followed by scale 

factor multiplication [33] as well as an alternative, sctransform, which takes sequencing depth as 

a covariate in a generalized linear model and yields the residuals of a regularized negative 

binomial regression for use as effectively normalized data [34]. The sctransform modelling 

framework has been proposed as a method by which to remove technical characteristics from 

data while preserving cell-to-cell biological heterogeneity as sequencing depth can vary. Joint 

analysis of multiple samples has additional challenges, in particular, the need to integrate 

different datasets so that cell subpopulations are matched. A workflow developed and 

implemented by Stuart et al. 2019 presents a comprehensive strategy for such integrations [35]. 

This method applies concepts from statistical learning and combines single cell datasets through 

the application of canonical correlation analysis (CCA) and mutual nearest neighbors profiling 

for the task of identifying ‘anchors’, pairwise correspondences of cell states between datasets. 

Based on this integration procedures, processed reference datasets may also be used to transfer 

predicted cell type labels to a query sample through anchor-based transformation, as well. While 

presented as an efficient method for labelling cell types, in the application presented for this part 

of the dissertation, we first create an integrated reference constructed from Control, MSA, and 

PD putamen data and enlist label trans methods using Control substantia nigra data as our query.  

2.2.3 Problem Definition 

This work in the dissertation describes a complementary application of CCA where instead of 

interpretation of canonical weights being using to explore quantitative relationships between two 

intercorrelated sets of variables, CCA is applied for feature generation before clustering. The 

problem in this work and generally in snRNAseq data analysis is to take two or more UMI count 

matrices and assign a cell type label to each sequenced nucleus using gene expression data. For a 
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given data matrix, many methods exist for clustering – the cluster solution which is desired for 

snRNAseq is the one that resolves known cell types and/or subpopulations of interest. In order 

for cell populations to be compared between multiple data matrices, cells of similar types must 

be clustered together while cells of the same type are not to be separated due to variation 

between datasets, variation due to treatment or disease effects, and variation due to differences in 

tissue type.  

Integration of multiple sample data matrices is necessary to move beyond descriptive summary 

of samples. Alignment of multiple datasets allows for identification of corresponding cell states 

based on gene expression. Once cells are aligned, population proportion and differential 

expression comparisons can be performed. The dimensions of UMI count matrices are a further 

consideration for data integration and clustering work. Data matrices typically contain transcript 

information for up to several thousand cells and 10-16000 genes and gene co-expression patterns 

differ by cell type, with some genes expressed predominantly or exclusively in specific cell types 

and other genes expressed variably among many cell types. Clustering of snRNAseq data can be 

performed using common and straightforward methods – a very straightforward method for this 

is that after quality filtering and normalization of data sets, those genes which have the greatest 

variation among cells are identified (typically about the top 2000 most variable genes); PCA is 

performed on this subset of highly variable genes for dimension reduction; an elbow plot is used 

to determine how many principle components to include in clustering, and unsupervised 

clustering is applied to the PC-transformed data for community detection. In Seurat, the package 

used for this work, the basic clustering procedure is to use a KNN graph constructed from 

Euclidean distance in PC space where edge weights are computed between pairs of cells from the 

overlap in their local neighborhoods (e.g. Jaccard distance) followed by application of the 
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Louvain clustering algorithm which partitions the graph into clusters based on iterative 

optimization of cluster modularity, with a resolution parameter which can be varied impacting 

cluster size [33, 35]. Once cluster identities are assigned from dimension-reduced features, 

analysis returns to the normalized data matrix for cluster profiling and intra-cluster comparison 

of gene-level expression.      

The scope of this work is not to propose an alternative method for integration and clustering of 

single cell data but rather to present an application in a specific use case which is enabled by 

assignment of cell state correspondences using CCA-based embedding. CCA-based embeddings 

for single cell data were introduced to address the interest in finding pairwise correspondence in 

cell states. Due to the requirement that input data matrices related by CCA must share 

observation N and the fact that snRNAseq data matrices contain different numbers of cells, this 

issue is resolved in the CCA-based analysis of single cell data by transposing matrices so that N 

reflects the genes for which measurements are obtained from both sets [35, 36] while canonical 

weights assigned to cells are used to related them [36].     

2.2.4 Challenges 

Two issues generally in unsupervised clustering which come up when working with snRNAseq 

data are that (1) while it is possible to vary resolution and try a number of different algorithms, it 

is not possible to define in advance what populations will be clustered out and (2) variability due 

to sample characteristics and treatment effects can separate similar cell types into different 

clusters. Cell composition differences in different samples can also have effect. With respect to 

tissues from the brain as in this analysis, neuron proportions in a sample vary by location and for 

a sample with many neurons and few other cell types, application of the above workflow for 

unsupervised clustering will lead to selection of highly variable genes that are variable in the 
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data and clustering is likely to separate neurons and neuron subtypes and if we wanted to 

compare clusters in such a dataset with clusters derived from a dataset with fewer neurons and 

greater proportions of other cell types (such as astrocytes or oligodendrocytes), we would not 

have direct correspondence in clustered cell states. The same problem arises if a treatment effect 

or disease state is causing greater variability that cell type differences. This issue of aligning cell 

populations of interest and transferring cell type labels has motivated the development of label 

transfer workflows. In this work, we apply such a workflow as a demonstration of a novel use 

case for CCA with follow up validation analyses used to obtain new insights into disease 

biology. 

2.2.5 Proposed Method 

CCA-based integration and clustering were performed for snRNAseq data obtained from human 

post-mortem brain putamen region tissue samples. Samples were obtained through partnerships 

with licensed organizations with completed pre-mortem consent for donation and ethical 

committee approval for sample acquisition and use. Samples came from nine human donors (n 

=3 per group, PD, MSA, and Control). Methods for sample processing and sequencing are 

detailed in related publications. Putamen samples gene-count matrices were analyzed using R 

version 4.0.0/RStudio for CCA-based sample integration and unsupervised clustering using 

Seurat Package version 4.0.1. Cell clusters corresponding between samples identified by this 

workflow were assigned broad type annotations based on cluster-level gene feature expression 

patterns (oligodendrocyte precursor cell (OPC; VCAN), oligodendrocyte (OLIGO; MOG, MBP), 

neuron (NEUR; RBFOX3, SNAP25, GAD1, GAD2, NRGN), astrocyte (ASTRO; GFAP, AQP4, 

GJA1), microglia (MICRG; CSF1R), and vascular leptomeningeal cells (VLMC; SLC6A13)) 

(Reference publication Fig. 2). Differential expression analysis was applied at cluster level for 
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pairwise comparisons of disease and control sample gene expression using the Seurat 

FindMarkers() function and MAST [37]. Pathway enrichment analysis is an approach that 

compares overlaps of sets of differentially expressed genes with genes linked with biological 

functions which can be applied to identify pathways characteristic of particular cell populations 

and pathways differentially affected in disease states. For this analysis, pathway analyses were 

performed for gene sets of interest using Qiagen Ingenuity Pathway Analysis (IPA) software [38] 

with significance cutoff adjusted p-value<0.05 and abs(log2 fold change) cutoff 0.35 and 

functional enrichments for cell cluster profiles were queried using the Enrichr platform [39].  
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REF [1] Figure 2: Putamen sample 

nuclei integrated and clustered. 

Plots are UMAP of principle 

components coloured by cluster 

identity. Expression levels for 

type-specific markers are shown in 

violin plots by cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following CCA-based integration and profiling of putamen brain samples, we then applied the 

transformation of gene-count matrices derived from this analysis to an independent dataset with 

the aim of identifying cell populations in the dataset from another brain region that might be 

linked with disease-specific transcriptional alterations identified from the reference data. Data 

used for this exploratory analysis comes from work by Agarwal et al. 2020 for substantia nigra 

samples from 5 human donors (NCBI interface: 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140231. For this data, sample 

integration and cell types annotation was performed as for putamen so that broad cell types 

assignments could be compared after label transfer. (Reference publication Fig. 2). Label transfer 

was performed for annotated data in Seurat using the functions FindTransferAnchors and 

TransferData. Two sets of labels were assigned in substantia nigra data – broad types and 

numbered cluster identities, which are clusters identified by the application of the Louvain 

clustering method which capture heterogeneities within broad cell populations. 

2.2.6 Experiments 

The aims of this analysis were to profile cell states in human putamen, identify disease-related 

transcriptional changes in these populations, and then to apply label transfer methods to relate 

these findings to data from another brain region, substantia nigra, which is particularly affected 

in PD. A first step in comparing the two datasets was to assess broad populations of cells 

(Publication Figure 3). Table 1 from the reference publication shows these proportions. We see 

from these that oligodendrocytes are the most common cell type in all samples. Subsequent 

analyses focus on findings in this cell type. 
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REF [1] Figure 3: Substantia nigra 

sample nuclei integrated and 

clustered. Plots are UMAP of 

principle components colored by 

cluster identity. Expression levels for 

type-specific markers are shown in 

violin plots by cluster. 
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REF [1] Table 1: Broad Cell Types Proportions 

 

Cell Type 

 

Tissue Source -   

Condition 

Mean Proportion 

± Standard 

Deviation 

Oligodendrocyte Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

66.5±14.3 

64.2±24.5 

64.6±13.2 

63.8±16.9 

Neuron Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

14.5±6.6 

13.9±14.8 

18.7±12.1 

5.5±5.5 

Astrocyte Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

9.4±5.9 

12.6±7.4 

7.4±1.4 

16.0±8.6 

Microglia Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

4.1±0.8 

6.3±2.1 

4.8±1.2 

5.4±3.7 

OPC Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

5.1±1.6 

2.4±0.3 

3.8±1.5 

8.4±4.5 

VLMC Putamen - Control 

Putamen – PD 

Putamen - MSA 

Subst. Nigra - Control 

0.4±0.4 

0.7±0.5 

0.7±0.5 

0.9±0.4 
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Putamen data includes both healthy and disease state samples. Louvain clustering before 

annotation identified eight clusters subsequently annotated as oligodendrocyte type. Differential 

gene expression comparisons were performed for all oligodendrocytes and for oligodendrocyte 

subclusters. Notable results of these analyses include identification in PD of prominent 

differences in unfolded protein response and stress signaling in comparison to Control which are 

not observed in MSA (Reference publication Fig. 4) as well as pronounced increases in SNCA 

gene expression oligodendrocyte subclusters number 4-OLIGO and 5-OLIGO particular to PD 

(Reference publication Fig. 5).     

 

 

REF [1] Figure 4: Pathway 

enrichments for oligodendrocyte 

nuclei differentially expressed 

genes. (grey dot: p-adj>0.05) 
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REF [1] Figure 5: 

Comparative proportions 

and average expression of 

SNCA in oligodendrocyte 

lineage clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer of cell type annotations to substantia nigra was then performed to determine how 

oligodendrocyte population heterogeneity might relate to results from putamen.Label transfer 

performance was evaluated at two levels – first, accuracy of broad types annotations was 

assessed by comparing transferred broad types labels with broad types labels already assigned to 

substantia nigra data. As can be seen from the confusion matrix in reference publication Fig. 6, 
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classification accuracy for oligodendrocytes was highly concordant, with 98% accuracy. 

Interestingly, some other cell types had lower classification accuracies – contributing factors in 

such inaccuracies include both biological and analytical method aspects. Here, though we focus 

on oligodendrocytes.  

  

REF [1] Figure 6: Prediction of 

broad cell types from putamen 

reference and confusion matrix 

with class accuracies. 
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We then applied label transfer from putamen reference data to substantia nigra to predict  

oligodendrocyte subcluster population membership in substantia nigra data. Interestingly, in 

substantia nigra oligodendrocytes, 4-OLIGO types comprises a greater than expected proportion 

of all oligodendrocytes (Reference publication Fig. 7). Classification accuracies were imperfect 

among different cell types in broad classification, but assessment of classification accuracy in 

this situation is more challenging because population heterogeneity lacks a ground truth for this 

prediction. To compare the populations then, we compared sets of genes which are more highly 

expressed in this cluster versus others within the respective datasets – this comparison confirms a 

high degree of similarity of the clusters as seen in the significant overlap between marker gene 

sets for OL4 in putamen and OL4-predicted in substantia nigra (Reference publication Figure 

7).The interpretation of these gene sets is further enhanced by matching them with cellular 

functions as is done in the functional enrichment analysis shown in reference publication Fig. 7. 
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REF [1] Figure 7: Predictions shown in 

UMAP project and predicted nuclei 

population proportions. Overlap of markers 

for 4-OLIGO cluster and functional 

enrichments. 
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2.2.7 Conclusions 

This work is included to show the successful alternative application of CCA for identification of 

corresponding cells states as a preprocessing step in single-cell RNAseq analysis. Understanding 

the derivation and relatedness of these cell states between datasets guides this successful 

application. Results and scientific contributions of the work are summarized here:  

1) In this study, through application and evaluation of label transfer methods, we 

successfully generalize a comparison analysis of PD and MSA disease versus control 

putamen region single cell data to another brain region particularly affected in PD. 

2) This analysis newly identifies an expanded subpopulation of oligodendrocytes observed 

to overexpress SNCA in putamen in PD. From this result, it remains to be further 

understood how functional activities in oligodendrocyte subpopulations relate to α-

synuclein biology and synucleinopathy disease processes.   

While oligodendroglial inclusions of α -synuclein protein, the product of expression of gene 

SNCA, are reported as prominent neuropathology findings in MSA and in PD, neuronal α -

synuclein protein aggregations are prominent; varying degrees of neuronal and oligodendroglial 

involvement are reported in both disorders [40-42]. Multiple studies have linked SNCA mutations 

and SNCA gene duplications and triplications with familial PD [43-45]. Studies have also found 

associations between genetic variants within the SNCA locus with MSA [46, 47]. Yet the 

connections between SNCA, its functions in CNS cell populations, and the pathobiology of PD, 

MSA, and other synucleinopathies remains incompletely understood. This work provides new 

insight into SNCA expression patterns by linking disease-specific changes in oligodendrocytes in 

PD with regional cellular population heterogeneity. In the third section, further work with single-

cell RNAseq data will be presented. In the third section, cell-gene tables will be used for network 



49 
 

analysis of gene expression patterns. Preceding this, the second section discuss tasks in evidence 

aggregation for gene-disease relatedness which demonstrate the usefulness of transforming 

biological datasets such as single cell RNAseq into networks.    
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3  | Link Prediction in Aggregated Evidence 

       Networks Using Local Information and                                            

       Integration of Related Information Networks                                             

       by Collaborative Filtering 

 

3.1 A Target-Specific Evidence Function for Indication Expansion 

Queries in the Open Targets Platform 

3.1.1 Background 

Open Targets is a public-private research initiative that began with the formation of the Centre for 

Therapeutic Tagret Validation (CTTV), a collaboration between GSK, the Wellcome Sanger Trust, 

and the European Bioinformatics Institute (EMBL-EBI) (www.opentargets.org). CTTV was 

renamed to the Open Targets Initiative in 2016 and the aim of work by this organization is to 

advance the development of methods for exploring and integrating large volumes of scientific data 

for the support of target validation analyses. Open Targets makes available both a web-based search 

platform and an application-programming interface (API) where systematically aggregated 

association evidence may be searched and/or downloaded. Since the creation of CTTV and its 

renaming as the Open Targets Initiative, a number of pharmaceutical companies have joined this 

collaboration to provide input on platform design and use, including Sanofi, Biogen, and Takeda 

[13-15]. The foundation of searches in Open Targets is its defined ‘target’ entity, which is a protein, 

protein complex, or RNA molecule. Targets in Open Targets are named by their official Human 

Gene Nomenclature (HGNC) gene name and annotation by ENSEMBL stable ID is also recorded. 

The use of these standardized identifiers facilitates aggregation of information from diverse 

scientific sources and integration of Open Targets summary information with other data. Disease 
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terms in Open Targets are standardized through use of the Experimental Factor Ontology (EFO) 

classification system where hierarchical relationships are mapped between disease terms, for 

instance stroke and myocardial ischemia are each subtypes of vascular disease as well as subtypes 

of neurological and cardiac disease respectively [13-15]. Table 1 from the reference publication 

shows the types of evidence aggregation scores compiled in Open Targets for Target-Disease pairs. 

Evidence aggregation in Open Targets at the time of this first work included data for 6,752,528 

target-disease associations. A challenge which has remained is how to effectively use this 

systematically aggregated information. 

REF [3] Table 1. Association evidence scores in Open Targets  

Association Type Evidence Sources 

Genetic Association 

Genomics England PanelApp, ClinVar (EVA), PheWAS, 

Gene2Phenotype, Genomics England PanelApp, Open Targets 

Genetics Portal, Uniprot, ClinGen 

Somatic Mutation Cancer Gene Census, ClinVar somatic (EVA), IntOGen 

Pathways & Systems 

Biology 
Reactome, Sysbio, SLAPenrich, PROGENy, Project Score  

RNA Expression Expression Atlas 

Text Mining EuropePMC 

Animal Models PhenoDigm: mouse-human similarity score   

Known Drug 

ChEMBL: Bin score by trials phase:   

[(0); (I); (II); (III); (IV)] 

 

3.1.2 State of the Art 

Drug repositioning describes work aimed at identifying greater numbers of therapeutic uses for 

compounds outside of an initially identified set of indications [48]. Ongoing challenges for 

repositioning analyses include a need for more complete and nuanced integrated data resources and 

further conceptualized and validated scientific approaches for high volume screening pipelines [49, 
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50]. Association scores published on the Open Targets platform provide evidence summary 

information which is generated by Open Targets analysts through the systematic processing of 

published scientific information. Open Targets can be queried by EFO disease term to obtain targets 

with non-zero association scores of the reported types and target entities can be queried to return 

disease terms with non-zero associations in one of the seven categories as shown in Table 1. 

Association scores range between zero to 1 and can be sorted to screen for types and relative 

strength of evidence connecting target and disease pairs. An important consideration in the 

comparison and interpretation of these association scores is that their distribution reflects state of 

knowledge on these relationships, not absolute truth. Furthermore, there exists considerable overlap 

between scores for target-disease pairs with known drugs and those which do not have known drugs. 

And these association scores are further complicated by the practice in Open Targets of propagating 

association scores up through the EFO hierarchy, so that direct and indirect associations are 

included. 

These considerations underly the ongoing challenge of using the Open Targets platform to identify 

true opportunities for indication expansion from aggregated evidence where score magnitude and 

type do not suffice for this purpose when taken for consideration on their own. Previous work 

examining the use of Open Targets for drug repositioning searches includes application of 

association score cutoffs to estimate potential indications by therapeutic area [51] and a ligand -

receptor composite association score analysis for g- protein-coupled receptor targets [52]. Machine 

learning strategies have also been trialed for prediction of target therapeutic status [53]: in this work 

by Ferrero et al., input data for this prediction task was table with one row per target and input 

features were computed as a pan-disease term score which was defined as the mean of association 

scores across disease terms, excluding literature and known drug associations which achieved an 
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AUC of 0.76 for their best-performing model. However, this model predicts only target indication 

status, not indications which is the prediction which is useful for drug repurposing. This analysis 

approaches that task, examining how association evidence may be used to discriminate between 

target-disease pairing with and without a known drug. 

3.1.3 Problem Definition 

In drug repurposing, a compound and its target(s) are known, but not all diseases which might 

have clinical benefit are known. The features available from Open Targets for making disease 

predictions are different types of aggregated association evidence scores. This is a positive and 

unlabeled problem – we have labels for known target-indication pairs for a given compound and 

it is not possible to evaluate all other indications to know the true negatives but we would like to 

predict potential positives from our available information. The magnitude of association 

evidence cannot be assumed to linearly relate to the likelihood of a target-disease pair having a 

known drug because association evidence scores reflect the state of knowledge and caudal 

relationships and information such as participation of targets in disease pathobiology is not 

encoded in this resource.    

3.1.4 Challenges 

The nonlinearity of association scores, missing information from unstudied target-disease 

relationships, and absence of biological information thus presents a main challenge when using 

Open Targets association evidence for searches to identify new indications. In this project, we 

engage with these challenges by hypothesizing that patterns in association evidence types might 

more effectively identify target-specific drug indications. 

3.1.5 Proposed Method 
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The approach taken in this work is to leverage patterns in association evidence to identify disease 

terms with similar types of association evidence to predict new druggable target-disease pairs. We 

compare performance of several core machine learning methods, benchmarking model performance 

against a harmonic sum overall summary score of all available evidence (excluding known drug 

status). It is also informative to understand if any specific type of association evidence is most 

predictive of druggable target-disease relationships. Such an understanding could guide heuristic 

use of association score evidence, so we include in our work examination of feature importance 

scores for trained target-specific models. 

To generate input data for this analysis, starting from the list of targets included in the Open Targets 

platform, the Open Targets API was used to obtain tables of disease terms for each target and labels 

for whether a given target-disease pair had a known drug.  Known drug status was used as the target 

label and the other association scores were used as input features for model training. Prediction 

performance was compared for four different models: logistic regression, decision tree, random 

forest, and xgboost methods. The benchmark overall score used for prediction was computed as the 

harmonic sum of all association scores, which is a method used for summarization in Open Targets. 

Targets eligible for inclusion in this analysis were those listed in the “20.09_target_list.csv” 

reference file from Open Targets, with targets used for predictive models required to have a 

minimum of 1 target-disease pair with a known drug and at least 15 non-zero target-disease 

associations without a known drug (n=1220 targets). For training and validation, since target-

disease pairs with known drugs were less common than those without, target-disease-drug data rows 

were resampled in 1:1 ratio to generate target data tables.      

3.1.6 Experiments 
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Python version 3.6 and R/Rstudio was used for Open Targets API queries [54], data preprocessing, 

and model training and evaluation. Classification models and feature importance scores analyses 

use Python sklearn (logistic regression, decision tree, and random forest) ) [30] and xgboost libraries 

[55]. Data tables were split into training (2/3) and test (1/3) sets. Model training used 3-fold cross-

validation. Best-performing models identified from validation were applied to the held-out test data 

to compute test AUC. Feature importance scores for targets, methods, and association evidence 

types were then recorded for the best-performing models. Harmonic sum association scores used  

for benchmarking performance were calculated according to the following formula (with 

association scores sorted in descending order):   

𝑠1 +
𝑠2

22
+

𝑠3

32
+ ⋯ +

𝑠𝑖

𝑖2
  (1) 

This is the formular used in Open Targets for Overall score calculation. In this work, an overall 

score is recalculated excluding known drug association as this is the variable to be predicted so the 

overall score used for benchmark analyses is comprised of association scores for literature, RNA 

expression, genetic association, somatic mutation, animal model, and affected pathway evidence.  

A. Target Prediction Performance and Important Features 

Mean test AUC (± Standard Deviation) for all targets was compared for overall harmonic sum 

(0.401 ± 0.221), logistic regression (0.762 ± 0.132), decision tree (0.920 ± 0.109), random forest 

(0.923 ± 0.110), and xgboost (0.922 ± 0.110) (Fig. 1A from referenced publication). Not 

unexpectedly, nonlinear models with more flexible decision boundaries are found to have better 

performance versus linear regression and harmonic sum. Feature importance scores for these 

models also offer an interesting result. As can be seen in Fig. 2B from the reference publication, 

feature weight and rank comparisons reveal that considerable heterogeneity among targets exists 
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for the feature types which are scored as most important for target therapeutic status prediction. A 

related question then is whether models which highly weight certain types of evidence are better-

performing – from the density plots in Fig. 1C, we observe that high-performing models of all core 

types weight different types of evidence among targets.      

B. Indication Expansion Filtering by Evidence Function  

The proposed application of this work is to use the trained models to make predictions on potential 

novel target-indication pairs using association evidence. Best-performing models of each type were 

therefore applied to the set of all target-disease pairs with and without known drugs. This procedure 

yields an exploratory result, which can be visualized by t-SNE as shown in Figure 2 from the 

reference publication which shows this plot for target SCN9A in which each point represents a 

target-disease association colored either by known drug status (top left) association evidence type 

(middle and upper row right), or target evidence function output score (bottom row). Evidence 

function score were found to highlight novel target-indication pairs not readily identifiable form 

single association score evidence.  
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REF [3] Fig. 1. Test set AUC by model (a). 

Feature importance and rank distributions 

by evidence type (b). Association evidence 

rank plotted by model AUC performance. 

Color indicates relative density by model 

and association evidence rank: low (blue) to 

high (yellow) (c).  
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REF [3] Fig. 2. t-SNE plots for association evidence from target-disease pairs linked with target 

‘SCN9A’. ‘Label’ plot shows known_drug status (top row, left; red for existing known drug for 

that target-disease pair). Color scaled from blue (scores closer to 0) to red (scores closer to 1). Note 

that trained evidence functions (bottom row) assign greater scores to known drug pairs and a 

number of candidate indications. 
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3.1.7 Conclusions 

The results and scientific contributions of this work can be summarized as follows: 

1) This work presents a novel method for predicting target-disease therapeutic status from 

association evidence patterns which outperforms (by AUC) previously published prediction 

methods. 

2) Our approach can supplement existing Open Targets platform association evidence score 

comparisons.   

3) We show that heterogeneity exists among targets with respect to which types of association 

evidence are most important for distinguishing among target-disease pairs with and without drug 

indications. The import implication of this result is that heuristic reliance of one type of 

association evidence over others does not identify all target-disease pairs with a known drug. 

Further work is needed to make integrated use of Open Targets aggregated evidence combine with 

other data resources. Given the complex and multidimensional interactions which occur among 

targets across different cell types, cell states, tissues, developmental stages, and numerous other 

conditions, network-based methods for modelling these relationships become an attractive 

solution. 

3.2 Empowering the Discovery of Novel Target-Disease 

Associations via Machine Learning Approaches in the Open 

Targets Platform  

3.2.1 Background 
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As detailed in the preceding section, Open Targets (https://www.targetvalidation.org/) is a 

public-private research partnership which provides platform and API access to systematically 

aggregated evidence resources linking target and disease pairs [15]. Evidence is summarized 

using association scores, which range between 0 – 1 and are reported for genetic, somatic 

mutation, pathway biology, transcriptomics, text mining, animal model, and known drug status. 

An overall score is also computed as the harmonic sum of ordered association evidence [14]. 

Evidence aggregation in Open Targets is ongoing, with consolidated evidence provided in the 

21.04 release for more than 11 million target-disease pairs (https://blog.opentargets.org/next-gen-

platform-released/). The purpose of this organization is to provide processed aggregated data for 

data mining and algorithmic exploration by academic and industry scientists [13]. As shown in 

the preceding dissertation work, association evidence features can be used to discriminate 

between target-disease pairs with and without known drug at the target level and such trained 

models have the potential to identify EFO terms with similar association evidence patterns which 

may be opportunities for drug repurposing. As noted in the previous work, a limitation of the 

current Open Targets platform is that target-disease association scores reflect only the state of 

current knowledge and discovery work would benefit from connecting Open Targets information 

with orthogonal data resources as detailed in this section.     

3.2.2 State of the Art  

Previous work using Open Targets association scores to predict known drug status is mentioned 

in the previous section. These previously described works focus on the use of Open Targets 

association evidence to predict whether a particular target-disease pairing has or might have a 

suitable drug. Yet the persistent need that remains is for integration of Open Targets platform 

associations which summarize current states of knowledge and biological information resources 
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which can be searched to enhance discovery workflows where the task is not focused on 

successful identification of known druggable target-disease relationships but rather identification 

of potential druggable target-disease relationships.  

3.2.3 Problem Definition 

In previous work, association scores used as predictors comprise a small feature set  [53] and 

success at the task of identifying whether a target-disease pair has a known drug is of limited 

further use beyond the prediction task. The more useful output is whether a target-disease pair 

might be suited for drug targeting. Furthermore, a wide selection of biological data resources can 

be considered to expand the features used for prediction tasks using Open Targets data, but this 

requires development of an integration strategy, since we would want to use target-target 

relationships for a target-disease prediction task. For the problem definition in this work, we 

consider Open Targets as an information network with EFO term and target nodes linked by 

association score edges. Thinking about Open Targets data in this way, connectivity among EFO 

terms is extensive through disease term hierarchies. But targets lack target-target biological 

interaction edges. Fig. 1A from the reference publication depicts this network interpretation of 

Open Targets. The first aspect of this problem is to generate target-target relatedness. The next is 

use such graph information to generate target-disease relatedness features from biological target-

target information sources. We can understand the value of such newly generated features as 

encoding undiscovered relationships generated out of biological data [56, 57]. The motivating 

hypothesis of this work is that newly generated features encoding unaggregated biological 

relationships could boost prediction performance for target disease drug status prediction by 

machine learning models and provide enhanced insights for discovery applications.   
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REF [2] Figure 1. Overview of Open Targets data and generation of newly computed features. 

Open Targets association evidence network edge weights are annotated for evidence from 

multiple sources (A). Novel target-disease association features generated from target-target 

similarity and target-disease matrices compared with factors used in calculation of a user-item 

matrix (B). Target-disease arrays are generated for each information source and association 

evidence for known drug status (C).   
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3.2.4 Challenges 

The two challenges to be addressed in this work are first, identification of relevant high quality 

and comprehensive target-target relationship score data resources and second, the conversion of 

target-target information into target-disease relationship features. Target-target relationships can 

take several potentially relevant forms: expression of targets in the same tissue location (where 

their biological activities may interact and influence one another), participation of targets in the 

same pathway or process (where their biological effects may be interacting), and/or targets may 

have known protein-protein physical interactions (e.g ligand receptor or other pairings). Public 

data resources used to quantify target-target relationships for this work were Genotype-Tissue 

Expression (GTEx) [58]; Gene Ontologies on Molecular Function (MF), Cellular Component 

(CC) and Biological Process (BP) annotations [59, 60]. Semantic similarity between Gene 

Ontology (GO) terms is a method in bioinformatics research to study gene functional similarities 

[61]. Protein-protein interactions information was less directly available as functional 

interactions among targets were available in protein-protein interaction (PPI) network form from 

the STRING database (version11) [62]. Protein-protein networks were therefore embedded for 

this work using the Node2Vec algorithm [63], and from these embeddings, target-target 

relatedness may be computed as angular distance. One further challenge not specifically 

addressed in this work is consideration of how to derive and validate novel target-target 

information resources – this question will be explored in the third and concluding of the 

dissertation. For this project, we use established biological target-target data resources.  

3.2.5 Proposed Method 

Methods for this work can be broken down into several sequential parts: target-target edge 

scoring, generation of new target-disease scores from target-target scores and Open Targets 
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associations, machine learning model training and evaluation for known drug status prediction 

using open Targets association scores and newly generated features, and validation of novel 

prediction quality. 

Target-Target edge scoring: As noted above, multiple data resources were selected for use to 

quantify target-target relationships: Genotype-Tissue Expression (GTEx) which captures 

expression of pairs of genes in the same tissues  [58]; Gene Ontologies on Molecular Function 

(MF) , Cellular Component (CC) and Biological Process (BP) annotations [59, 60]. Target-

Target associations scored by these resources indicate co-occurrence of targets in the same tissue 

(Gtex) or semantic similarity (GO MF, CC, and BP). Calculation of semantic similarity of targets 

from GO resources was developed as a method to study gene similarities [61]. GO ontologies are 

non-overlapping and organize biological domain knowledge with respect to three areas: MF 

ontologies describe molecular-level activities such as transports or catalysis performed by single 

gene products or functional complexes; CC ontologies describe cellular structure locations, and 

BP ontologies refer to larger processes involving coordinated activities of multiple gene products 

(http://geneontology.org/docs/ontology-documentation/). Protein-protein interactions 

information for targets is available in protein-protein interaction (PPI) network form from the 

STRING database (version11) [62] and embedded for this work using the well-established 

Node2Vec algorithm [63].  

Generation of target-disease scores from target-target data resource scores and Open Targets 

Association evidence: To combine target-target information with target-disease information from 

Open Targets, a collaborative filtering approach is used [64]. To understand how this is 

calculated to make logical sense, it is helpful to think of how in a recommender system, the 

product of an item-factor matrix and a user-factor matrix is a user-item matrix is a user item 
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matrix (Fig. 1B from reference publication). Factors are quantities which have variability among 

and meaningful relationships with items and users. Latent factors are unmeasured and can be 

learned from data, but in this case, we define factors as relationships with genes from the 

specified data resources between genes-genes and between diseases and genes for Open Targets 

known drug association scores. This process is a feature generation step and is performed for 

gene-gene associations from each of the referenced sources (GTex, GO MF, GO CC, GO BP , 

and STRING). However, since these features are both generated from Open Targets target-

disease known drug association scores and known drug status is being used as the target for 

prediction allocation of target-disease pairs for training and testing sets is done before this step 

so that test set target-disease associations are set to 0 before feature generation so this 

information is not encoded in a manner that constitutes so-called “data peaking”. Figure 1C from 

the reference publication shows the matrix multiplications procedure for feature encoding from 

the data resources used. 

Model training and evaluation for prediction of known drug status from Open Targets 

association evidence and novel features and prediction quality assessment: Three core machine 

learning models were trialed for use of Open Targets association evidence only and Open 

Targets association evidence plus the newly generated features. Trained models were compared 

by prediction performance and feature importance scores were compared for Open Targets 

association scores and newly generated features. This was followed by validation of prediction 

scores for target-disease pairs without known drugs including case studies using external 

literature information.    
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3.2.6 Experiments 

Data sources access and processing: Association evidence data for target-disease direct 

associations was downloaded from the Open Targets platform via their API. Disease terms 

included in downstream workflows were filtered to remove nonspecific terms by removing terms 

with therapeutic area “measurement”, “phenotype”, “biological process”, and “cell proliferation 

disorders”. Filtered data then included 1,378,786 target-disease associations for 24,064 unique 

targets with 990 of these unique targets having at least one indication in clinical trials. For model 

training and evaluation, 229,228 target-disease pairs were allocated and split into training 

(159,249 target-disease pairs for 693 unique targets) and testing (69,979 target-disease pairs for 

297) sets in a 70%:30% ratio. 23,074 target-disease pairs were held out for validation. 

Feature generation: Open Targets association features genetic, somatic mutation, affected 

pathway, RNA expression, and animal model were used as a benchmark set of predictors. 

Known indication association was used as the target variable, binarized to label 1 if a target-

disease pair has a known drug in clinical trial or approved or label 0 otherwise  (Reference Fig. 

2). New features were generated using a collaborative filtering-derived approach. For this 

procedure, first each data source (gene ontologies (MF, CC, BP), GTex, and embedded PPI 

networks was used to generate a target-target similarity matrix. The similarity matrix was 

computed from semantic similarity (ontologies), co-expression in tissues (GTex), and embedded 

networks representing physical interactions of gene products (PPI). From each of the target-

target similarity matrices for each data source, for each target, a set of 1000 most similar targets 

was identified. New features for target-disease similarity were then computed as the product of 

this array of target-target similarities and the matrix of Open Targets known drug association 

scores for these 1000 most similar targets. This procedure yielded a new set of target-disease 
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associations for the target whose 1000 most similar targets were used in the calculation. Note 

that since known-drug status is the target for prediction and known drug status is used for feature 

generation, masking of test cases was required before feature generation; target-disease test cases 

with known drugs were masked by assignment of association score value 0 before feature 

generation. Fig.2 from the reference publication provides a schematic overview of the process.  

 

REF [2] Figure 2. Workflow schematic for feature generation and therapeutic status prediction 

evaluation. 
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Model training and prediction performance evaluation  

Machine learning models logistic regression, random forest (RF) [65] and XGBoost [55] were 

trained using 5-fold cross-validation. Models were trained to predict whether a target-disease 

pair had a known drug or not. We compared performance of models trained using OT features 

only with models trained using OT plus newly generated features. In 5-fold cross-validation,  

The best-performing model based on validation set AUPR (area under precision-recall) was 

found to be XGBoost using OT plus computed features (validation set AUPR=0.73 and test set 

AUPR 0.69). AUPR is used to compare model performance for this task where we evaluate 

performance in an unbalanced dataset (more negative than positive instances) and are 

particularly interested in correctly identifying positive instances. OT features-only models 

perform especially poorly by AUPR – this suggests that newly computed features introduce 

important information useful for model fitting in this prediction task.  

REF [2] Table 1. Number of data instances used for training and validation after removal of all-

zero value rows.  Held-out testing data comprised of 46290 instances (7382 positive: 38907 

negative). 

Set Fold1 Fold2 Fold3 Fold4 Fold5 

Train  

Positive 

Negative 

Total 

 

15137 

70945 

86082 

 

14382 

67020 

81402 

 

15120 

70210 

85330 

 

14435 

73575 

88010 

 

14918 

71941 

86859 

Validation 

Positive 

Negative 

Total 

 

3369 

18132 

21501 

 

4085 

20313 

24398 

 

3404 

18424 

21828 

 

4098 

15344 

19442 

 

3561 

16194 

19755 
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REF [2] Table 2. Known drug status prediction (± standard deviation across 5 folds)   

Train Set 

Method LogReg RF XGB 

OT Association Evidence  

AUROC 0.7603 (±0.0088) 0.8685 (±0.0075) 0.8784 (±0.0051) 

AUPR 0.0685 (±0.0025) 0.2074 (±0.0093) 0.2072 (±0.0103) 

Computed Features + OT Association Evidence  

AUROC 0.8867 (±0.0027) 0.9262 (±0.0019) 0.9406 (±0.0018) 

AUPR 0.6442 (±0.0069) 0.7500 (±0.0070 ) 0.7969 (±0.0065) 

  

Validation Set 

Method LogReg RF XGB 

OT Association Evidence  

AUROC 0.7625 (±0.0357) 0.8143 (±0.0314) 0.8076 (±0.0335) 

AUPR 0.0707 (±0.0102) 0.0872 (±0.0118) 0.0888 (±0.0177) 

Computed Features + OT Association Evidence  

AUROC 0.8864 (±0.0076) 0.9103 (±0.0140) 0.9137 (±0.0142) 

AUPR 0.6452 (±0.0226) 0.7092 (±0.0459) 0.7264 (±0.0457) 

 

Validation of prediction performance and feature importance scoring: Feature importance 

comparisons are useful to compare relative contributions of different features to model 

performance. In this work, for the best-performing model, feature importance was assessed by 

calculating average decrease in AUPR by randomly shuffling variables in model training. By this 

method, an important feature is one which decreases AUPR. Feature importance scores obtained 

by this method identify features generated from embedded protein-protein interaction networks 
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as most important and all computed features are scored more highly than OT association features 

for this task.   

 

REF [2] Figure 4B. Feature 

importance scores indicate the 

feature types we generated 

strongly predict known drug 

therapeutic status. 

 

 

 

 

 

 

 

3.2.7 Conclusions 

This work builds on and extends the scientific contributions of the previous work in this section: 

1) This work presents a second novel method for predicting target-disease therapeutic status from 

association evidence patterns which outperforms the performance of models trained with OT 

platform association evidence features. 

2) Our approach can supplement existing Open Targets platform association evidence score 

comparisons and can be readily adapted for integration of other network information sources.   
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3) We show that integration of computed features based on functional network interactions 

achieves improved prediction performance, highlighting the utility of supplementary biological 

knowledge representation when using OT association evidence. 

These results motivate the next section of the dissertation which examines methods for the 

generation of biological network information from single-cell RNA seq data which can be another 

source of information on gene-gene relationships within cell states. 
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4  | Derivation of Biological Information 

       Networks in Validation and Discovery in                                             

       Single-Cell RNAseq 

 

As a broad introduction, networks are representations of information where relationships among 

nodes/entities are shown with edge connections. A set of nodes connected by edges is called a 

graph, and the study of graphs in mathematics has a long history, with the first recognized 

theorem of graph theory dating back to Leonard Euler’s solution to the Konigsburg bridge 

problem in 1736 [16]. In biomedical science, network methods are increasingly applied for the 

study of gene expression datasets where large gene regulatory network (GRN) models can be 

readily derived from high-throughput gene expression datasets which produce gene expression 

measures for multiple samples and/or cells [17]. As background on gene expression datasets for 

readers with diverse scientific backgrounds, genes are sequences of nucleotides in DNA and 

RNA. Polymeric DNA stores living organisms’ genome, which is the complete DNA sequence 

carrying instructions for development, growth, and function of cells – this is stored in cells as 

chromosomes. RNA is transcribed from DNA, and RNA transcripts have a number of functions 

essential to cell survival and proliferation, including not only acting as code templates for protein 

synthesis which is the most well-recognized function of RNA but also functioning in gene 

expression regulation and other activities. Substantial variation exists in what DNA is actively 

being transcribed into RNA at a given time in different cells and tissues, and factors such as cell 

type, tissue, development stage of the organism, growth, disease states, and external and internal 

stimulation all influence gene expression patterns. High throughput sequencing of RNA 

generates data tables where transcripts aligned to genes yield counts of gene transcripts over 
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sample or cell. These matrices can be analyzed to understand which genes are underactive 

transcription and what differences in transcription may be present between two or more 

comparison conditions. Humans are estimated to have about 20,000 genes [66], so typically next 

generation sequencing data tables have more features than instances/samples.  

This chapter focuses on the application of network analysis methods for the study of single-

nucleus RNA sequencing (snRNAseq) datasets. Sequencing methods for snRNAseq generate for 

analysis a data matrix which has counts of gene expression transcripts at the level of individual 

cells (e.g. each gene is a feature and each cell can be considered a unit of observation). From a 

matrix of cells with varying patterns of gene expression, it then becomes possible to generate a 

gene-gene co-expression network in which genes share an edge if they are expressed in the same 

cells and no edge if they are not. One commonly used procedure for construction of a gene-gene 

network from an expression datasets is to calculate pairwise correlations between each two cells 

from their cell vectors. Correspondingly, cell-cell networks based on gene expression patterns 

can also be generated from such matrices. Once such network representations have been 

produced, these have many potential uses and an array of available methods to study them. For 

example, a gene-gene network can be studied to understand which sets of genes are transcribed 

together, and returning to the cell-gene table, one can identify cell subsets where the co-

expression of multiple genes can be observed. This approach is suited to identify processes 

perturbed in disease states (e.g. is a gene co-expression pattern observed more frequently in cells 

from one state or another). Another use is to cluster related cells in a cell-cell network generated 

from gene expression data.  

4.1 Derivation and Validation of SNCA Region-Specific                                                       

Gene Networks . 



74 
 

4.1.1 Background 

In this work, single nucleus RNAseq data from the Allen Cell Types Database for post-mortem 

tissue from the human middle temporal gyrus ((MTG, 15,928 nuclei) [67] and Anterior 

Cingulate Cortex (ACC, 7,258 nuclei) [68] are used to derive a conserved gene-gene co-

expression network for the SNCA gene. Expression patterns for this SNCA gene network are 

then studied for expression patterns among different cell types, and a second validation dataset 

published by Agarwal et al., 2020 for matched brain cortex (Middle Frontal Gyrus (MFG); 

10,706 nuclei) and Substantia Nigra (SN) samples (5943 nuclei) [69] is explored to validate the 

biological conservation this network across different brain regions.  

 

SNCA is the gene for alpha-synuclein (αSyn) protein, a protein which is characteristically found 

in nervous system aggregates in Parkinson’s Disease (PD), Lewy Body Dementia (LBD), 

Multiple System Atrophy (MSA), and Pure Autonomics Failure (PAF), disorders collectively 

termed synucleinopathies [70-74]. Intriguingly, the synucleinopathies differ in which nervous 

system regions and cell locations are the primary sites of αSyn pathology, and other 

neurodegenerative disorders may have features of αSyn pathology, as well, for example up to 

50% of Alzheimer’s Disease patients have evidence of αSyn aggregates in post-mortem studies  

[70]. Epidemiological studies of SNCA-implicated diseases support polygenetic inheritance, 

environmental factors, and epigenetics as contributing to lifetime risk, with genetic variants 

linked with synucleinopathy risk including not only SNCA overexpression and structural 

modification variants [75], but also gene mutations linked to mitochondrial dysfunction, 

lysosomal storage disorders, oxidative stress responses, and alterations in potassium channel 

function [76-78]. Susceptibility genes shown to increase PD susceptibility in particular include 

GBA, PARK2, PARK7, PINK1, and LRRK2, which connect PD risk with the multiple pathways 
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[79-82]. The specific processes by which αSyn aggregates form among different cell types, in 

diverse brain regions, and among different neurodegenerative diseases remain areas of ongoing 

research and motive the presented analysis.   

 

4.1.2 State of the Art 

Weighted gene co-expression network analysis (WGCNA) is a framework developed for 

biological network generation and data mining which begins with the construction of a Pearson 

correlation-based gene network followed by downstream exploratory analyses. WGCNA was 

first described by Horvath and Zhang [83]. By this method, gene coexpression similarity (sim) is 

defined for a given pair of genes i and j as simij using correlation: simij = cor(xi, xj) where x is an 

expression vector across multiple instances. In the case of single-nucleus or single-cell data, x is 

an expression vector of a gene across cells. Computing simij for all gene pairs yields similarity 

matrix S = [simij] and thresholding applied to matrix S yields network adjacency matrix A =  [aij]. 

Choices can be made in how to threshold S to obtain A. For example, one can use a cutoff value 

for simij to dichotomize adjacency as 1 or 0. Alternatively, since the determination of an optimal 

threshold for a given analysis is non-obvious and can impact results, soft thresholding is the 

approach used in the WGCNA framework. By soft thresholding, a power function is applied to 

for thresholding rather than a cutoff value: aij = (simij)
β where β is a parameter selected as the 

smallest value achieving approximate scale free topology based on the scale free topology 

criterion plot (insert from CRAN doc ref) for a given dataset. Selecting higher values of β creates 

greater separation in the transformation of similarity to adjacency values. 

Once calculated, adjacency matrix A is the relatedness network structure for genes within the 

input dataset. From this, clustering can be applied to identify groups of genes expressed together 
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within samples (cells in the case of single nucleus or single cell data). In WGCNA, gene 

clustering is performed using network proximity, where genep and geneq are defined to have 

greater proximity if they are more interconnected. The topological overlap measure (TOM) [56] 

is applied in WGCNA to quantify interconnectedness and is calculated as the overlap of 

adjacency neighborhoods for pairs of genes including all m-step neighbors with a value 

normalized to fall between 0-1. Larger values of m have the impact of including larger 

neighborhoods in the quantification of overlap. The selection of m is made empirically based on 

resulting cluster sizes. The TOM matrix contains the calculated similarity of each gene pair. In 

WGCNA, 1-TOM is then generated and is termed the dissimilarity matrix (dissTOM). In the 

dissimilarity matrix, higher numbers indicate greater dissimilarity. For clustering gene sets into 

modules (groups of co-expressed genes), WGCNA uses average linked hierarchical clustering 

applied to the dissimilarity matrix which in the formulation of this framework was observed to 

lead to more distinct gene modules [83]. In R, clustering of the dissimilarity matrix ix performed 

using function flashClust(dissTOM, method= “average”) which takes as input a dissimilarity 

structure [84] and outputs a clustering tree where modules of co-expressed genes are identified 

by selecting a cut height for the clustering tree branches. Average linkage clustering calculates 

the distance between two clusters as the average distance between objects from a first cluster and 

objects from a second cluster. In biological systems, smaller distinctive function gene sets are 

often related through larger and less cohesive functional systems which provides further intuition 

for this formulation [85, 86]. In the following work, we apply the WGCNA framework to profile 

SNCA biology in several single cell datasets, with attention to the reproducibility and biological 

relevance of these data-derived networks.                     

4.1.3 Problem Definition 
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WGCNA requires parameter tuning during analysis, and the quality and scientific meaning of the 

outputs of these analyses generally requires further steps for interpretation and understanding.  

This work is an application of the WGCNA framework to human brain single cell datasets to 

identify genes co-expressed with SNCA in different brain regions. This analysis is followed by 

profiling of gene expression patterns by cell types in the datasets used, identification of 

conserved co-expression patterns across brain regions, and validation of the biological 

significance of the identified SNCA coexpression gene set (module) with respect to functional 

annotations of protein-protein interaction networks generated using module genes and 

identification of genes linked with genetic risk for Parkinson’s Disease among  genes in the 

identified networks.   

4.1.4 Challenges 

Genes identified by WGCNA as being in the same co-expression cluster (module) with SNCA 

could be correlated with one another by random chance rather than having a true functional 

interaction. Therefore, a substantial remaining challenge when applying this method is to 

validate analysis outputs relative to the domain-specific question for which the work is 

undertaken.  

In this work, we aim to better understand expression of SNCA and its participation and 

connection to different cell functions by the following additional analyses applied to our 

identified SNCA module genes:  

1) Gene expression data provides only a partial view of cellular activities, since RNA 

transcription precedes, rather than being concurrent with the presence of protein in cells or 

enaction of its other functional activities. Thus one challenge in understanding the quality and 
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significance of clustered gene sets is how they relate to cell functions. To follow up this issue, a 

conserved network of genes co-expressed with SNCA is combined in this analysis with a 

reference network of protein-protein interactions followed by identification of functional 

pathways linked to this larger network. 

2) Genes identified as being coexpressed with SNCA are compared with genes linked with 

known PD risk variants to assess genetic evidence for the relatedness of these expression patterns 

to synucleinopathy disease risk. 

3) Functional experiments were undertaken for selected network genes to assess the effects of 

modulating their expression on SNCA expression in vitro. This experimental work will be 

included in the manuscript resulting from this analysis but is out of scope for the dissertation. 

(Figure 8 reporting in vitro validation results is therefore not included for review as part of the 

dissertation). 

4) A major consideration in the generalizability of WGNCA-derived gene networks is how the 

data used to derive a particular network relates to other datasets and questions. The initial 

derivation of the set of SNCA co-expressed genes is performed in cortex, where the dominant 

cell type is neurons. This challenge is addressed in this work through the inclusion of a 

validation dataset which comes from human midbrain (substantia nigra).        

4.1.5 Proposed Method 

Data sources: Publicly available single-nucleus RNAseq data from the Allen Cell Types 

Database [68] was downloaded and processed for human middle temporal gyrus (MTG; 15,928 

nuclei) and anterior cingulate cortex (ACC; 7,283 nuclei). ACC and MTG samples come from 

frozen human brain samples for 8 healthy donors ranging in age from 24-66 years. For the 
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presented analyses, included genes were filtered to include only protein-coding genes, excluding 

those on the X and Y chromosomes [87]. Validation of results from ACC and MTG were 

performed using independent single nucleus RNAseq dataset from matched samples of cortex 

and substantia nigra (SN) for 5 human donors [69]: (middle frontal gyrus (MFG); 10,706 nuclei) 

and substantia nigra (SN) samples (5943 nuclei). 

SNCA Module Detection Using WGCNA: WGCNA was performed for ACC and MTG data in R 

using the WGCNA package [83]. For each, MTG ad ACC, the gene-gene co-expression matrix 

was generated from normalized cell-gene arrays extracted from the Seurat data objects for data 

from these locations after loading the files. Following the WGCNA framework as described 

above, a scale free-topology fit index was plotted as a function of potential values for the soft 

thresholding power, and a soft threshold power of 8 was selected empirically for optimal 

transformation of each co-expression similarity matrix into a topological overlap matrix (TOM). 

As discussed, selection of this relatively high value supports greater separation between genes 

with relatively high and low correlations. The TOM matrix reflects relationships of topological 

similarity between genes. The dissimilarity matrix (1 – TOM) is used to represent dissimilarity, 

and as discussed, this dissimilarity matrix is used to cluster groups of genes into co-expression 

modules based on its better performance for distinct modules when in biological systems there 

are multiple overlying higher processes in which these coexpression sets participate [83]. 

Hierarchical clustering and dynamic cutting were then applied to identify modules of co-

expressed genes. The dynamic tree cutting algorithm (deep split = 2) was used to detect gene 

modules (e.g. clusters of densely interconnected genes in the computed co-expression network).  

The modules containing the SNCA gene (the cluster of genes co-expressed with SNCA) was 

then identified for ACC and MTG, respectively as these are of particular interest for this 
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analysis. ACC and MTG SNCA modules were then overlapped to find common genes between 

them and to identify a robust module with conserved expression across sample locations for 

further downstream use. Statistical comparison of module overlaps was performed in R using the 

Hypergeometric test function phyper(), where q = number of genes overlapping between MTG 

and ACC; m = gene MTG module size; n = total number of genes (estimated to be 20,000) – 

MTG genes to find number of non-MTG genes; and k = gene ACC module size.  

SNCA Module Protein-Protein Interaction (PPI) Network: As noted above, genes in a WGCNA-

derived SNCA co-expression module conserved across MTG and ACC locations could be 

correlated with SNCA by random chance. To explore functional relationships that might underly 

coexpression, a protein-protein interaction (PPI) network was then generated from genes in the 

overlap set of the co-expression modules for ACC and MTG. PPI network generation is 

performed for a given gene set using reference information on known protein-protein interactions 

to link genes by their physical interactions [88]. NetworkAnalyst and the STRING database were 

used to generate and visualize this PPI network and to identify additional interacting proteins 

connected within the resulting network [88].  

Single Nuclei RNA-Seq Analysis of Human MTG and ACC: Single-cell RNA-Seq analyses for 

MTG and ACC were performed in R using the Seurat package, version 3.0 [35]. A standard data 

pre-processing workflow was applied using cutoffs 200 < nFeatureRNA < 9500 and percent.mt < 

0.01 for MTG and 200 < nFeatureRNA < 8500 and percent.mt < 0.01 for ACC, with cutoffs 

selected based on initial QC plots. Data were normalized using global-scale log normalization, 

scaling by a factor of 10,000 for each data set. Identification of highly variable features, linear 

dimension reduction by PCA transformation, and cell clustering were performed using standard 

Seurat package workflows with PCA dimensions optimized to achieve separations by cell type 
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markers (n = 17). Cell type annotations for each cluster were determined by cluster marker 

visualizations and marker distributions quantified using feature and violin plots.  SNCA 

expression within each cluster was examined by labelling nuclei by expression level of the 

SNCA gene. Differential SNCA expression was then compared by examining cluster staining on 

TSNE plots and by using dot plots to compare differences in mean expression by cluster and 

proportion of cells within each cluster expressing SNCA. 

SNCA Module Gene Ontology and Comparison with PD Genome-Wide Association Studies: 

Genes identified from the SNCA module and PPI interaction network were also compared with a 

list of genes identified as being nearest genes to single nucleotide polymorphisms (SNPs) linked 

with significantly increased risk for Parkinson’s Disease in genome-wide association studies 

[78]. We then compared the set of nearest genes with the 197-gene union set of the ACC and 

MTG modules and the ACC and MTG co-expression module PPI network. Statistical tests for 

overlap enrichment were performed in R using the hypergeometric test. Overlap visualizations 

for each of these comparisons were generated using Venny [89]. The Ingenuity Pathway 

Analysis (IPA) tool (Qiagen) was used to identify networks and processes involving genes for 

the robust SNCA module obtained from the intersection of the ACC and MTG locations and the 

intersection of this module with genes represented in the PPI network analysis and by 

comparison with nearest genes adjacent to PD GWAS loci [38]. The Enrichr online tool was 

used to perform DisGeNET queries for the overlap sets for the SNCA PPI network and the PD-

GWAS nearest genes. Disease enrichment p-values are calculated in Enrichr using the Fisher 

exact test, which is a test of proportion which models the probability of any gene belonging to 

any set as a binomial distribution, and with adjusted p-values reflecting deviation from an 

expected rank based on prior results obtained from multiple trials of random gene sets [90, 91]. 
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Validation of SNCA and Co-expression Module Expression Patterns Using Independent Cortex 

and Substantia Nigra Single Nucleus RNA-Seq Data: Single-nucleus RNA-Seq integration and 

cell type annotations were performed for validation MFG and Substantia Nigra data separately in 

R using the Seurat package, version 3.0. A similar workflow as for ACC and MTG samples was 

followed. Pre-processing cut-offs were selected based on initial QC plots: 200< nFeatureRNA < 

6000 and percent.mt < 5. Data were normalized at the individual sample level and then 

integrated using the Seurat functions FindIntegrationAnchors and IntegrateData as described in 

the Seurat data integration workflow with the number of PCs used for clustering (n = 20) chosen 

to optimize separation between clusters. Broad cell types were assigned for each cluster based on 

marker expression levels as for ACC and MTG, and SNCA gene expression was similarly 

compared by FeaturePlot and DotPlot for each region and cell type cluster.  

For comparison with the ACC-MTG SNCA module, a SNCA co-expression module was also 

derived by WGCNA. As for ACC and MTG regional data, a normalized cell-gene array was 

extracted from the Seurat data object, including only protein coding genes. The plot of the scale-

free topology fit index versus potential soft thresholding values was examined to choose a soft 

threshold power of 2 for transformation of the co-expression matrix and deep split =2 for 

dynamic tree cutting. Statistical comparison of module overlaps between the ACC-MTG SNCA 

co-expression module intersection set and the substantia nigra SNCA co-expression module was 

also performed in R as for the overlap enrichment testing for the ACC and MTG modules.   

Genes identified by WGCNA as being part of the SNCA co-expression module conserved across 

MTG and ACC locations and for the Substantia Nigra could be correlated with SNCA by 

random chance rather than having a true functional interaction with SNCA. A protein-protein 

interaction (PPI) network was thus created for genes identified as belonging to the conserved 



83 
 

SNCA co-expression module for ACC-MTG in order to integrate the identified robust module 

with information on known protein-protein interactions and to determine hub genes/proteins 

within this network [88]. A second PPI network was also identified for genes identified as 

belonging to the SNCA co-expression modules for ACC-MTG-SN. NetworkAnalyst and the 

STRING database were used to generate and visualize this PPI network and to identify additional 

interacting proteins connected within the network generated for the robust SNCA co-expression 

module genes [88]. Functional ontology analysis for this shared PPI network was then performed 

using the Cytoscape ClueGo application [92, 93].  

Statistics and Reproducibility: Data used in this study is publicly available; sources are detailed 

below in section titled ‘Data Availability’. Analysis code is available as supplementary files. 

Statistical methods are presented in each of the above sections in the context of their use and 

interpretation. Supplemental files provide gene lists for ACC, MTG, SN SNCA co-expression 

modules as identified by WGCNA as well as PPI networks identified from 197-gene overlap of 

ACC-MTG modules and 29-gene overlap of ACC-MTG-SN modules.  

4.1.6 Experiments 

Identification of a conserved SNCA co-expression module for human MTG and ACC regions: 

Prior to clustering and nuclei type annotations, WGCNA and hierarchical clustering was applied 

to normalized gene count transcription matrices for all nuclei to identify clusters of genes co-

expressed with SNCA for MTG (n = 427 genes) and ACC (n = 333 genes) samples. From these 

SNCA co-expression clusters for MTG and ACC, we identified a statistically significant 

intersection set of 197 genes (hypergeometric p-value = 5.3e-247), which consisted of genes in 

the SNCA-containing co-expression clusters for both MTG and ACC. This intersection set of 

SNCA-co-expressed genes comprises a robust co-expression module for cortical SNCA (Fig. 1). 
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The robust and statistically significant overlap between ACC and MTG suggests the 

conservation of the SNCA co-expression module across different regions of the cortex.    

    

Cell types annotations in MTG and ACC: Nuclei-gene matrices for MTG and ACC samples from 

the Allen Cell Types Database were filtered and processed using the Seurat package workflow to 

annotate cell type for nuclei in these gene count transcription matrices (Fig. 2) [35, 94]. For each 

location (ACC and MTG), nuclei were clustered based on highly variable genes using an unbiased 

graph-based clustering approach. Cell types for these unbiased clusters were annotated using broad 
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expression markers for excitatory/glutamergic neurons (GLUT; SLC17A); inhibitory/GABAergic 

neurons (GABA; GAD2), astrocytes (ASTRO; GFAP), oligodendrocytes (OD; MOG), 

oligodendrocyte precursor cells (OPC; PDGFRA), and microglia (MG; CSF1R) (Figure 3). These 

annotations confirmed the presence of all major cell types in both ACC and MTG with a higher 

percentage of excitatory neurons observed in MTG (67.3% clustered nuclei) versus ACC (55.6% 

clustered nuclei). Neuronal nuclei comprised the majority of sample nuclei for both ACC and MTG 

samples (Fig. 3; Table 1).   
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Identification of increased SNCA and SNCA co-expression module gene expression in excitatory 

(glutamatergic) neurons in ACC and MTG: We then sought whether SNCA and the conserved 197 

genes in the co-expression module were differentially expressed by cell type in ACC and MTG. 

To explore this question, we plotted heatmaps and feature plots from the annotated, normalized 

single cell data (Fig. 4).  Genes in the SNCA co-expression module were observed to be most 

highly expressed in excitatory neurons in comparison to inhibitory neurons and other cortical cell 

types for both ACC and MTG samples. Expression levels for genes in the 197-gene co-expression 

module for the annotated cell type clusters are presented for MTG (Fig. 4A) and ACC (Fig. 4D).  

Alongside the observed increased expression of SNCA co-expression module genes, greater 

expression of SNCA itself was also observed in excitatory neurons in comparison to inhibitor 

neurons and all other non-neuronal cell types (MTG: Fig. 4B, C; ACC: Fig. 4E, F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 

 

 

 

 



90 
 

Pathway analysis identifying that SNCA co-expression module genes are implicated in synaptic 

biology and dopamine processing: Synaptogenesis, nitric oxide, calcium and ephrin A signalling, 

as well as dopamine feedback pathways were found to be the top pathways significantly enriched 

for among genes co-expressed with SNCA in ACC and MTG when this gene set was analysed 

using IPA (Fig. 5A). Pathway analysis for the 197-gene conserved SNCA co-expression module 

also identified statistically significant enrichment for molecular targets of the upstream regulators 

Levodopa, Histone Deacetylase (HDAC1), cAMP Responsive Element Binding Protein 1 

(CREB1), and SNCA, among others (Fig. 5B). Gene ontology (GO) analysis further identifies 

cellular localization, synaptic transmission, and ion transport as among functions enriched for in 

the set of 197 conserved SNCA-co-expressed genes (Fig. 5C) [95, 96]. In the network shown in 

Fig. 5C, nodes correspond to gene sets and edges represent overlap between gene sets; edge width 

proportionate to the number of overlapping genes. The identified pathways and regulators found 

to be enriched for among SNCA-co-expressed genes are central to synaptic biology and dopamine 

processing, supporting a role for αSyn as a multifunctional protein acting at the intersection of 

multiple cellular pathways.  

SNCA is found to be the major hub protein in the substantia nigra-specific PPI network derived 

from co-expression module genes: To obtain further insight into the functional pathways 

connecting SNCA and its co-expressed genes, the 197 genes in the conserved co-expression 

module were then used to generate a protein-protein interaction network using NetworkAnalyst 

[88], restricting our network model to substantia nigra-specific interactions. Network analysis 

yielded a network of 1495 proteins connecting the genes in our identified module via known 

protein-protein interactions (Fig. 6A). Although SNCA was not found to be a top hub in the 

WGCNA network for either ACC or MTG, SNCA was empirically found to be the top hub of this  



91 
 

 

 



92 
 

 

 

 

 



93 
 

 



94 
 

protein-protein interaction network by both degree and betweenness criteria (Fig. 6B), further 

establishing SNCA as a central participant in interacting neural pathways. Interaction pathways 

within this PPI network potentially offer opportunities for targeted intervention to modulate SNCA 

expression or biomarker identification to monitor SNCA expression pathways in the CNS. We 

also used this network to identify other top hubs (Fig.6B); top PPI network hubs ordered by degree 

(highest to lowest) are the following: SNCA, FHL2, LNX1, ACTN1, PIK3R1, NR3C1, SH3GL2, 

NEDD4L, QKI, and FBXW7.   

SNCA co-expression module genes are also observed to be differentially expressed in CNS tissues 

for PD Case versus Control Samples: To further explore whether SNCA and its 197-gene 

conserved co-expression module might be altered in the synucleinopathy Parkinson’s Disease 

(PD), differential expression of these 197 SNCA co-expression module genes was queried for in 

archival studies comparing PD case and control samples obtained for human cortex, putamen, 

substantia nigra, and dopaminergic neuron tissues. Records for this search were extracted from 

OmicSoft DiseaseLand Database (release HumanDisease_B37 20171220_v7) using an adjusted 

p-value cutoff of 0.05. Heatmap comparison of these search results reveals numerous significant 

differences in PD case versus control expression of SNCA co-expression module genes as well as 

tissue-specific variations in SNCA module gene expression (Fig. 7A). Consistent with our findings 

in MTG and ACC, frontal cortex samples have a number of genes with significantly increased 

expression for PD samples versus controls, and in addition, dopaminergic neurons are also found 

to have increased expression of these genes for PD versus Control samples (Fig. 7A; tissue sample 

type annotation indicated by x-axis color bar).   
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SNCA protein-protein interactome is enriched for genes associated with PD-risk loci: We then 

examined which pathways within the present SNCA PPI network might be of particular relevance 

to synucleinopathy biology, focusing specifically on PD, for which population-level genomic 

analyses have previously identified a number of risk variants with high statistical significance. 

Among 86 unique genes mapped as the nearest genes to highly significant variants linked with PD 

risk in Nalls et. al, 2019, meta-analysis of genome-wide association studies (GWAS) [78], 16 were 

found in our SNCA PPI network (hypergeometric p = 0.0006), demonstrating significant 

enrichment of the SNCA PPI network for genes most closely linked with significant PD-GWAS 

risk loci (Fig. 7B). Genes that not only have protein-protein pathway interactions with SNCA but 

which are also near to single nucleotide polymorphisms with highly statistically significant 

population-level genomic associations with PD are particularly interesting genes, as these 

characteristics together support a potential causal genetic contribution to disease risk. DisGeNET 

queries for the overlap sets for the SNCA PPI network and the PD-GWAS nearest gene set 

confirms enrichment for Parkinson’s Disease-linked genes, as well as other neurodegenerative 

disorders (Fig. 7B) [97]. We also repeated DisGeNET queries excluding SNCA, GBA, and 

LRRK2 to confirm enrichment for PD-linked genes. This identification of a particular set of genes 

with potential causal associations with PD from within the SNCA PPI network not only provides 

further validation of our network but also highlights the value of this newly identified network, as 

each node and edge represent potential targets for measuring or modulating SNCA-related 

activities relevant to other synucleinopathies, as well.     

SNCA and SNCA co-expression module genes have enriched expression in excitatory 

(glutamatergic) neurons in independent samples from human MFG and in neuronal and 

oligodendrocyte lineage populations in SN: In MFG samples, SNCA and ACC-MTG SNCA co-
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expression module genes were similarly found to have enriched expression in GLUT neurons in 

contrast to GABA neurons and other glial cell types, providing validation of our experimental 

findings in an independent cortex data set (Fig. 9A,B). In SN samples, interestingly, ACC-MTG 

SNCA co-expression module gene expression was observed to be selectively increased in the 

single cluster which expressed neuronal cell type marker RBFOX3 (Fig. 9C cluster 12) as well as 

in clusters 3 and 7 which expressed oligodendrocyte lineage markers (Fig. 9C). Dot plot profiling 

to examine SNCA expression by cluster revealed that while SNCA expression was highest in 

neuronal nuclei in SN, SNCA was also expressed at low levels in clusters expressing 

oligodendrocyte lineage markers (Fig. 9D).  

SNCA co-expression module and PPI network conserved across ACC, MTG, and SN is highly 

enriched for exocytosis and selective autophagy functions: WGCNA and hierarchical clustering 

applied to normalized gene count transcription matrices for all nuclei identified clusters of genes 

co-expressed with SNCA for SN (n = 1206) (Fig. 10A). Overlapping ACC, MTG, and SN modules 

produced a conserved set of 29 genes co-expressed with SNCA for all three regions (Fig.10B). As 

for conserved ACC-MTG module genes, these 29 genes were used to generate a PPI network 

which likewise had SNCA as its top hub gene (Fig.10C). The MTG-ACC-SN SNCA co-expression 

module PPI network was found to be enriched for exocytic processes, neurotransmitter uptake, 

selective autophagy, and mitochondrial protein localization functions (Fig. 10D).  
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4.1.7 Conclusions 

Among the cell groupings identified in our analysis, we observed conserved patterns of 

differential neuronal SNCA expression in ACC and MTG regions, with high SNCA expression 

observed in excitatory (glutamergic; GLUT) neurons and low expression in inhibitory 

(gabaergic; GABA) neurons. These observations were found to be consistent for GLUT and 

GABA type neurons identified in MFG samples. A protein-protein interaction network was then 

constructed for genes in the identified conserved SNCA co-expression module based on known 

protein-protein interaction pathways.  

Significant and novel scientific contributions of this work are the following: 

- This analysis newly identifies a protein-protein interaction network conserved across 

cortical regions which is significantly enriched for PD genetic risk loci [78] and contains 

a number of genes observed to be differentially expressed in PD versus control brain 

tissue samples. 

- The separate PPI network corresponding to the SN-specific WGCNA SNCA module is 

shown to be a subnetwork of the ACC-MTG PPI network enriched for exocytosis, 

neurotransmitter uptake, selective autophagy, and mitochondrial membrane protein 

localization functions. Separately deriving SNCA networks in tissues of different 

underlying cell type compositions enables our new identification of a subnetwork 

comprising SNCA functional biology shared by neurons and oligodendrocytes.     

- This work demonstrates derivation and validation of gene co-expression networks 

suitable for integration with external resources as shown in the preceding section.    

-    
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4.2 Further Discussion 

As demonstrated in the preceding section of the dissertation, data-derived biological networks 

can also be further transformed to serve as input to exploratory workflows using methods such as 

graph embedding for feature engineering. The research work in this section is an application of 

network analysis to identify a functional interactome for a gene of interest and validate the 

quality of the derived network and its biological significance. Once generated and validated it 

becomes apparent how such a custom network can be integrated to further refine performance in 

data mining or prediction tasks. 

 

5  | Conclusion 

Data science and artificial intelligence offer great potential for advancing biomedical research 

and drug development. However, adapting data science ideas and methods for domain-specific 

research and development requires thoughtful management, complementary data resources, and 

interdisciplinary problem formulations. The work presented in this dissertation reflects problem 

solving across several important areas in works of this type: data preprocessing, integration, 

exploratory analysis, network modeling, and formulation of evaluation and validation 

procedures.  

The work included in this dissertation engages with both scientific and data science challenges 

and makes a number of significant contributions to data science specifically. Repeating the 

outlined summary from section 1.5: 

Problem I: CCA for Correlation Analysis and Derived Feature Embeddings 
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• Novel dataset derived from integration of US EPA and State-level mortality data 

resources engineered specifically for ML algorithms 

• Innovative CCA-derived epidemiological analysis provides a novel quantification of 

exposure-outcome association which more strongly and significantly quantifies air 

quality and health outcomes relationships through covariation models then linear 

regression. 

• Alignment of multiple datasets by CCA-based features leveraged to extract new 

insights into regional cell state biologies and their relationship to disease states from 

transcriptomic data, overcoming the challenges of comparing results from unsupervised 

clustering. 

Problem II: Link Prediction in Evidence Networks Using Local Information and Features 

Generated by New Collaborative Filtering Methods  

• Created new search procedure based on ML using local graph topology for predicting 

drug-target relationships from Open Targets platform aggregated association score data 

using platform API which outperforms previously published approaches for this task. 

• Lead development of novel feature engineering project for use with Open Targets 

association evidence which expands the utility of the platform information network 

and achieves a substantial improvement in performance for drug-target relationship 

prediction over all previously published methods for this task.  

• Application of collaborative filtering concepts in paper 2 for omics datasets integration 

for query applications is especially significant because the volume, size, and variability 
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of public Omics data archives creates challenges in access and processing times for 

query and data mining applications which are met by work in paper 2. 

Problem III: Network Construction for Data Mining and Biological Insight 

• Gene co-expression network topologies vary with multiple factors including disease state, 

tissue of interest, and cell type. Such networks can be used as inputs for custom feature 

generation as shown in problem 2.  

• For this problem, multiple novel gene networks are created from single-cell RNAseq 

transcriptomic data to achieve association rule learning, classification, and 

clustering tasks. 

• Data mining performed from these networks derives new insights into cell-specific and 

regional brain biology.    

While a number of new biological insights were obtained alongside the above-listed data science 

contributions, these could not have been obtained except by innovative use of data science 

concepts and methods and their translation into methods for biomedical research. The 

overarching theme across the projects presented in this dissertation is the necessity in 

translational data science work to take a systematic approach which begins with the parallel 

formulation of the biological domain question and data science problem. While complementary 

in the end results, the foundations and conventions of these parts of the work can also be 

understood presented separately as found for the data science aspects of these works in this 

dissertation.  
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6 | Future Directions 

 

In a recent overview article, Ferrero et al. offered a set of strategic recommendations for adapting 

organizational structure and culture to make effective use of data science in drug industry work.  

Among these, their first recommendation was to recognize data science as a separate core 

discipline focused on access, integration, and knowledge extraction from internal and external 

data resources, standing alongside longer-established industry domains including biology, 

medicine, and chemistry [98]. While new computational methods are constantly being 

introduced across disciplines, data science work focuses particularly on advancing methods that 

deal with several core information attributes colloquially referred to as the five V’s: methods 

which manage large volumes of information, deal with variety in data sources, perform with 

reasonable computing times (velocity), yield valid and reliable results (veracity), and which 

fulfill the original task purpose (value) [99]. Searching among computational methods to find 

those which are most suited to a particular task, identifying limitations and potential sources of 

bias or error in diverse analytical systems, and managing large volumes of data are each the 

particular concerns and contributions of data scientists on project teams.  

Conceptually separating data science considerations in biomedical research applications 

positions these ideas to be involved at project initiation, where they have the best opportunity to 

fully understand the concepts and scope of a project.  Process models such as the CRISP-DM 

workflow are used across industries to conceptualize how data science work interfaces with 

domain-specific applications and tasks [100, 101]. As detailed in the CRISP-DM model, first-

step involvement of multiple team perspectives in project development serves several important 

purposes: first, and most importantly, it is an opportunity for communication among different 
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domain experts about the aims and scope of a work. These discussions then guide identification 

of potentially relevant existing data resources, and discussions about formats for newly generated 

data. Discussions should also be had at this point about evaluation criteria. For instance, a 

laboratory research team may be most interested in generating data for inferential analysis, 

biological hypothesis testing, or knowledge extraction from one or more data resources rather 

than a specific prediction task. For data science-driven projects, shared understanding of 

concepts and methods among all experts provides the foundation for discussions of exploratory 

and analytical results that will be necessary to avoid missing unique insights. Bringing such ideas 

together early in a project is particularly important since customization of methods developed for 

applications outside of biology and medicine may take considerable time.  Framing needs as data 

questions and identifying both analysis and domain application objectives provides an optimal 

foundation for project progress and success.  

Data Resource Selection Informed by Problem Understanding: As is readily demonstrated in the 

number and variety of data resources used in this dissertation, unified, scientific data 

management is a major concern for the application of data science methods in biomedical 

research domains, as well as more broadly for business organizations and medical institutions 

[102]. At all levels, systematic protocols for data storage facilitate communication and 

collaboration and ensure that important and impactful findings can be validated, reproduced, and 

extended.  Good data stewardship practices provide a foundation for ongoing and future work, 

enhances experiment value, reduces duplication, and are necessary for legal documentation. Yet 

developing and implementing data strategies that extend within and across organizations remains 

a significant challenge. The FAIR (Findable, Accessible, Interoperable, Reusable) guidelines are 

a set of principles set out to guide organizational data management [103-105]. A particular 
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emphasis of the FAIR guidelines are recommendations to select data formats and storage 

protocols that make results more widely accessible. For example, standardized metadata 

annotation protocols make stored data more findable through topic and key word searches. As 

can be seen in the preceding works, integration of country-level air quality and mortality datasets 

is made possible through the encoding of county codes, omics data is integrated using standard 

gene nomenclatures, and archiving published datasets supports validation and extension of initial 

analysis results. It should be noted that retroactive data cleaning and processing is time-

consuming, expensive, and is recognized as a significant barrier in implementing AI- and 

machine learning internal data mining in many drug industry applications [103].  

Data Structures that Influence Discovery: Biological systems, disease pathways, and other 

relevant scientific phenomena can be represented and studied using numbers, symbols, and 

algorithms, but these representations are just that, representations and models, which may to 

varying degrees reflect the trues area of scientific and business interest. The FAIR guidelines 

highlight the need for data to be both discoverable and easy to access and manipulate [103-105] 

while an overarching theme of work in this dissertation is the opportunities that exist in at each 

stage of analysis for thoughtful and creative use of concepts and strategies from data science to 

extract knowledge and achieve novel insights. At the organizational level, vast archives of 

previous experimental and clinical data exist. Available, searchable, and easy to manipulate 

stored data opens up greater possibilities for integration and analysis where there is 

communication on aims of analysis, collaborative understanding of information contained in 

different datasets, and collaboration to formulate how data science strategies can be applied.  
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