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Abstract

Problems combining games and controls for multiple players become widely studied due to the
complexity of the world and the interactions among populations. In this thesis, we propose two
models for fund managers who compete with their relative performance and one Mean Field Game
model with common noise for cost minimization.

For the first model, we consider a group of managers competing for the cash flows based on
their relative performance by choosing between an idiosyncratic and a common risky investment
opportunity. Since investors may choose to invest or withdraw continuously conditional on the real-
time performance of funds, the model is of continuous competition. The unique constant equilibrium
is derived in closed form, which implies that funds generally decrease the investments in their
idiosyncratic risky assets under competition, in order to lower the risk of the relative performance. It
pushes all funds to herd and hurts their after-fee performance. However, sufficiently disadvantaged
funds with poor idiosyncratic investment opportunities or highly risk-averse managers may take
the excessive risk for a better chance of attracting new investments, and their performance may
improve compared to the case without competition, which benefits the investors.

For the second model, we propose a principle agent model where the principle is a policy
maker who decides the optimal capital gain tax rate and agents are fund managers who choose
optimal portfolios in their investment opportunities. The optimal tax rate and unique portfolios
are derived for one policy maker and one representative fund. Moreover, with one policy maker
but N funds competing with each other based on the terminal relative performance, there exist
multiple Nash equilibria and a unique Pareto optimal equilibrium can be found. Our findings also
suggest that managers may take more risks with the higher tax rate, which is different from the
existing literature.

For the third model, we study Mean Field Games with a common noise given by a continuous
time Markov chain or an independent Brownian motion under a quadratic cost structure. The
theory implies that the optimal path under the equilibrium is a Gaussian process conditional on
the common noise. Interestingly, it reveals the Markovian structure of the random equilibrium
measure flow, which can be characterized via a deterministic finite dimensional system. Moreover,
the counterpart N-player game can be embedded in the probability space generated by two Brownian
motions, which concludes the convergence of the N-player game to Mean Field Games, both in the
sense of the processes and the empirical measure.
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Chapter 1

Introduction

1.1 Motivations and Literature Review

The growing complexity of the world makes interactions among populations become increasingly
complicated. Thus, the study to see the pattern with interplay becomes more essential and mean-
ingful. Especially in the control problems with players choosing their optimal strategies, it is worth
a close observation of how interactions change people’s optimal controls and whether there is any
spillover effect on society.

Since each player’s optimal strategy depends on all the other players’ actions, we need to
introduce the idea of Nash equilibrium to define the optimality for all players. The Nash equilibrium
was first introduced by John Forbes Nash Jr. in his famous paper “Non-cooperative games” in 1951.
Since then, the idea is broadly used in various fields that include interplay among players. However,
the pure strategy may not be unique, for example, in the matching pennies game shown in Table
1.1. In this dissertation, we add some restrictions in order to have the unique strategies for all
players.

Heads Tails
Heads +1,+1 -1,-1
Tails -1,-1 0,0

Table 1.1: Payoff matrix for matching pennies game. Pure strategy is not unique.

One application for stochastic controls among multiple players is in the financial industry. As
shown in Table 1.2, the number of participants in the financial industry is increasing dramatically,
even if we only look at the data from mutual funds alone. With more managers involved in
financial companies, investors have more options from funds, which facilitates competition in the
industry. Each fund/manager seeks a better performance to attract new investments and thus
gains more profits. For mutual funds, this kind of competition between fund flows based on relative
performance is well documented in the empirical literature as Gruber (1996), Chevalier and Ellison
(1997), Sirri and Tufano (1998), Patel et al. (1991), Ippolito (1992). However, most of the theoretical
analyses focus on the competition between two funds, or in discrete-time models Browne (2000),
Taylor (2003), Huang et al. (2007), Palomino (2005), Basak et al. (2007), or on incentives for
multiple interacting agents without fund flows Anthropelos et al. (2020), Bielagk et al. (2017), Frei
and Dos Reis (2011), Lacker and Soret (2020), Han et al. (2022), Dal Forno and Merlone (2010),
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Siemsen et al. (2007), Lioui and Poncet (2013). Therefore, we build a continuous time model similar
to Espinosa and Touzi (2015), Basak and Makarov (2015), Lacker and Zariphopoulou (2019), but
instead of the comparison at the terminal time, we consider a competition for fund flows which
happens continuously. Thus the relative performance does not enter into the utility function, but
the dynamics of the assets under management of each fund.

1945 2004
Type of Fund Number of funds Assetsa (millions) Number of funds Assets (billions)

Stock/hybrid funds 49 $794 5100 $4266.9
Bond funds 19 88.0 2100 1246.8
Money market funds 0 - 970 1962.2

Total 68 $882.0 8170 $7475.9

Table 1.2: The mutual fund industry: growth in funds and assets. Source: Table 1 in Bogle (2005).
a Total assets of stock funds in 1945 estimated as 90 percent of industry total.

Competition among funds not only affects the funds themselves, but also the benefits of in-
vestors. Our model supplements the literature on the principal-agent relationship between the
investors and managers, which usually focuses on the case of only one agent Ou-Yang (2003),
Aivaliotis and Palczewski (2014). An interesting result is that, though for most funds the after fee
performance, measured in Sharpe ratios, is lower with competition, compared to the case without
fund flows, the performance of disadvantaged funds may increase in face of competition, which ben-
efits the investors, because after all, fund flows based on relative performance push the manager to
pursue superior returns over other funds.

Another spillover effect of funds’ competition is on the policy makers. To decide the optimal
capital gain tax rate for policy makers, we purpose a model with one policy maker and either one
representative or N funds being the counter-parties. Similar to Basak and Makarov (2015), Lacker
and Zariphopoulou (2019), managers face a utility maximization problem at the terminal date,
which includes the utility brought by the future cash flows based on the relative performance, while
policy makers choose the capital gain tax to maximize their tax incomes under the Markowitz
mean-variance setting. Due to the introduction of taxes, managers’ utility functions are non-
concave, which can be solved by the concavification technique introduced in Bichuch and Sturm
(2014), Seifried (2010). Our findings show that the competition, in general, makes managers less
aggressive so as to avoid the possible loss from poor relative performance and pushes the policy
maker to increase the optimal capital gain tax in order to compensate for the loss of tax incomes.

Economic literature Feldstein (1969), Stiglitz (1975), Yost (2018) shows that an increment in
capital gain tax results in a decrease in managers’ risk-taking. This is due to both income and
substitution effects described in Feldstein and Yitzhaki (1978), Balcer and Judd (1987). The
income effect means that managers tend to be more aggressive to cover the loss from the higher
tax, while the substitution effect refers to the more conservative strategy caused by less marginal
after-tax incomes. Our results show a different pattern that managers tend to be more aggressive
when it is closer to the terminal date while more conservative at the beginning of the period.

After the discussion about multi-player interactions, it is a natural question that what will
happen if we let the number of players approach infinite. This is exactly the starting point of
the Mean Field Game (MFG) theory. MFGs have attracted resurgent attention from numerous
researchers in probability after the pioneering works of Lasry and Lions (2007), Huang et al. (2006).

2



An important recent development in this direction is Mean Field Games with a common noise and
we refer to comprehensive descriptions in the book Carmona et al. (2018) and the references therein.
Meanwhile, Linear-Quadratic (LQ) control problems have been widely recognized in the stochastic
control theory due to their broad applications. The optimal path is Gaussian under the LQ structure
and the problem is also called LQG to emphasize this Gaussian property, see for instance Yong
and Zhou (1999). More importantly, LQ structure leads to solvability in a closed form, namely the
Ricatti system, and this usually sheds light on many fundamental properties of the control theory.
Thus, LQG MFGs are widely studied in Huang (2009/10), Nguyen and Huang (2012), Huang et al.
(2014), Firoozi et al. (2020), Huang et al. (2012), Feng et al. (2019), Huang and Huang (2013),
Bardi and Priuli (2013), Huang et al. (2015), Gao et al. (2020).

We study a class of MFG problems and the counterpart N -player game in the context of
LQ structure with a common noise either as a continuous time Markov chain or an independent
Brownian motion. The path dependence nature of MFGs makes this an infinite dimension problem,
but we show that the solution can be described through a finite dimensional system. Some results
relevant to our first contribution can be found in the recent papers Ahuja (2015), Tchuendom
(2018). However, both papers have their mean field term only via the mean process, but not the
second moment as in our paper, which makes the underlying control problem not a typical LQG
setting and gives extra difficulties. Moreover, Tchuendom (2018) provides the solution via FBSDE,
which is an infinite dimensional system, and Ahuja (2015) provides a finite dimensional system for
the solution from the Master equation.

Our second contribution, yet the more important one compared to the first one, is the proof of
the convergence of the N -player game to MFGs, both in the sense of the processes and the empirical
measure. We embed the generic player’s path of the N -player game to the sample space of the MFG
setting, which enables us to compare the difference of paths and measures between the N -player
game and MFGs in almost sure sense. We show that there exists a hidden algebraic pattern to the
coefficients of value functions invariant to the number of players. This pattern eventually enables
us to reduce the representation of the generic path from a functional of N -dimensional Brownian
motion to a functional of two-dimensional Brownian motion, no matter how large the number N is.
Indeed, the pattern leading to the success of the above embedding procedure is precisely accounted
for the dimension-invariant feature of the mean field terms at the equilibrium, which provides a
new insight distinguished from the ε-Nash equilibrium discussed in the literature, which does not
require the same sample space.

The first model in Chapter 2 is joint work with my advisor Professor Gu Wang and the article is
available on SSRN. The second model in Chapter 3 is joint work with my advisor Professor Stephan
Sturm and the results are still under revision. The last model in Chapter 4 is a joint project with
Professor Qingshuo Song and two other Ph.D. candidates, Jiamin Jian and Peiyao Lai in WPI. The
paper is available on arxiv.

1.2 Some Preliminaries

In this section, we will introduce definitions relevant to the Nash equilibrium under different situ-
ations. For the ease of notation, with positive integer n, v ∈ Rn and D ∈ Rn×n, v−i ∈ Rn−1 is the
vector after removing v’s i-th element, and D−i ∈ R(n−1)×(n−1) is the matrix after removing D’s
i-th row and i-th column.

3
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1.2.1 N-player Game

Consider a complete filtered space
(

Ω,F , {Ft}t≥0 ,P
)

endowed with N + 1 Brownian motions

W1,W2, · · · ,WN and B, which generate the filtration {Ft}t≥0. Denote Ai and Θ as the admissible
set including all the process πi and θ which are integrable with respect to Wi and B respectively.

Let π =
[
π1 . . . πN

]>
and θ =

[
θ1 . . . θN

]>
. The objective functional for each player is given

by Ji (πi, θi;π−i, θ−i).

Definition 1. Let A and ΘN be the Cartesian product of Ai’s, and the N -th Cartesian product
of Θ, respectively. (π∗, θ∗) ∈ A × ΘN is a Nash equilibrium if for every i ∈ {1, · · · , N}, and any
(πi, θi) ∈ Ai ×Θ,

Ji(πi, θi;π
∗
−i, θ

∗
−i) ≤ Ji(π∗i , θ∗i ;π∗−i, θ∗−i).

Furthermore, (π∗, θ∗) is called a constant equilibrium if π∗i and θ∗i are constants for each i ∈
{1, · · · , N}.

Definition 2. (π∗, θ∗) is called Pareto optimal if there does not exist (π, θ) ∈ A × ΘN such that
for all i = 1, · · · , N ,

Ji(πi, θi;π−i, θ−i) ≤ Ji(π∗i , θ∗i ;π∗−i, θ∗−i),

with strict inequality with at least one i.

Definition 3. If there exist multiple Nash equilibria, (π∗, θ∗) is called a Pareto optimal Nash
equilibrium if for it is Pareto optimal among all Nash equilibria.

Note that in Chapter 2 and 3, we seek for maximization of the objective functional, so the Nash
equilibrium achieves maxima of the objective functional. However, in Chapter 4, we search for its
minimum, so ≤ is changed to ≥ in Definition 1. Meanwhile, In the proof of Nash equilibrium in
Chapter 2, the following definition of reaction function is also required.

Definition 4. A function xi = f(x−i) is called the reaction function of player i such that for any
x̃ ∈ R,

Ji(x̃, x−i) ≤ Ji(f(x−i), x−i).

1.2.2 Mean Field Games with Common Noise

The following definitions are for the illustrations of Chapter 4 alone. Consider a complete filtered

space
(

Ω,F , {Ft}t≥0 ,P
)

endowed with 2 Brownian motions W and B, and Y representing the

common noise, which generate the filtration {Ft}t≥0. Denote Lp := Lp(Ω,P) as the space of

random variables X on (Ω,FT ,P) with finite p-th moment with norm ‖X‖p = (E [|X|p])1/p, and
LpF := LpF([0, T ]×Ω) as the space of all F-progressively measurable random processes α = (αt)0≤t≤T
satisfying

E
[∫ T

0
|αt|pdt

]
<∞.

For any polish space (S,B(S), d), denote δx as the Dirac measure on the point x ∈ S. The
collection of all probabilities m on (S,B(S), d) having finite k-th moment is denoted by Pk(S), i.e.
for any m ∈ Pk(S),

[m]k :=

∫
xkm(dx) <∞.
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The equilibrium of Mean Field Games (MFGs) with the common noise yields the conditional
distribution. For real valued random variables X and Z in (Ω,FT ,P), the distribution of X condi-
tional on σ(Z) is denoted by L(X|Z), or equivalently, for any A ∈ FT ,

L(X|Z)(A) = E[IA(X)|Z].

Note that L(X|Z) is σ(Z)-measurable random probability distribution with k-th moment [L(X|Z)]k =
E
[
Xk
∣∣Z], if it exists. We refer to more details on the conditional distribution in Volume II of

Carmona et al. (2018).

Given the objective functional J and some given random measure flow m : (0, T ]×Ω 7→ P2(R),
a generic player chooses the optimal control and controlled process α̂ and X̂. Note that to introduce
MFG Nash equilibrium, it is often convenient to highlight the dependence of the optimal path and
optimal control of the generic player and its associated value on the underlying density flow m,
which are denoted by

X̂t[m], α̂t[m], and V [m],

respectively.

Definition 5. Given an initial distribution L(X0) = m0 ∈ P2(R), a random measure flow m̂ is
said to be a MFG equilibrium measure if it satisfies fixed point condition, for any t ∈ (0, T ],

m̂t = L
(
X̂t[m̂]

∣∣∣ F̃t) , (1.2.1)

almost surely in P, where F̃ is the filtration generated by the common noise. The path X̂ and the
control α̂ associated to m̂ is called as the MFG equilibrium path and equilibrium control, respectively.

Next proposition and definition provide embedding approach to prove a convergence in distri-
bution, which will be used later in Chapter 4 to show the convergence of the generic player of
N -player game to MFGs.

Proposition 6. Suppose
(

Ω(N),F (N)
T ,P(N)

)
is a complete probability space. Let X(N) and X be

random variables of Ω(N) 7→ S and Ω 7→ S, respectively. Then, X(N) is convergent in distribution
to X, denoted by X(N) ⇒ X, if there exists ZN : Ω 7→ S satisfying L(ZN ) = L(X(N)), such that
ZN → X holds almost surely, i.e.

lim
N→∞

d
(
ZN , X

)
= 0,

almost surely in P, where d represents the metric in S.

Definition 7. 1. The value function of player i for i = 1, 2, . . . , N of the Nash game is defined
by V N = (V N

i : i = 1, 2, . . . , N) satisfying the equilibrium condition

V N
i (y, xN ) = JNi (y, xN , α̂

(N)
i , α̂

(N)
−i ) ≤ JNi (y, xN , α

(N)
i , α̂

(N)
−i ), (1.2.2)

for all α
(N)
i ∈ A.

2. The generic player’s path at equilibrium is X̂
(N)
ut , where u := u(N) is a uniform random

variable on the set {1, 2, . . . , N} in Ω(N) independent of (W (N), Y (N)).
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1.3 Outlines

The organization of this dissertation is as follows:
Chapter 2 discusses a model among N mutual fund managers competing for investment flows

based on relative performance. We derive the unique constant equilibrium in closed form and give
the comparison of after-fee Sharpe ratios and Beta coefficients between the solution to the Merton’s
model and ours. Section 2.1 gives an introduction to the model settings. Section 2.2 shows the
main results for N -player game and some numerical results. Section 2.3 includes all the detailed
proofs for Chapter 2.

Chapter 3 builds a model between policy makers and fund managers, where policy makers decide
the best capital gain tax while the latter choose the optimal portfolio to maximize their terminal
after-tax wealth. The unique (Pareto optimal) Nash equilibrium is derived for the managers’
problem. Section 3.1 gives an introduction to the model settings of the policy maker’s problem and
managers’ problem with one or N players. Section 3.2 gives the (Pareto optimal) Nash equilibrium
and sensitivity analysis for managers’ problems. Section 3.3 shows some numerical results for both
one and N managers. Section 3.4 includes all the proofs for Chapter 3.

Chapter 4 studies Mean Field Games with a common noise given by either a continuous time
Markov chain or an independent Brownian motion under a quadratic cost structure. Section 4.1
and Section 4.2 give the solution to MFGs with Markov chain and Brownian motion as the common
noise respectively and proves the convergence of the counterpart N -player game. Section 4.3 gives
the detailed proofs in Chapter 4 and some explicit solutions to the problem without common noise
and extends the model to multidimensional.

Chapter 5 gives the conclusions and future work for the three models described above.
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Chapter 2

Model I: Mutual Funds’ Competitions

2.1 Model

2.1.1 Mutual Fund Investments and Flows

Consider a complete filtered probability space (Ω,F , {Ft}t≥0,P), endowed with N + 1 Brownian
Motions W1,W2, . . . ,WN and B, which generate the filtration {Ft}t≥0. Assume 〈Wi, B〉t = ρimt
and 〈Wi,Wj〉t = ρijt, where ρim ∈ (−1, 1) and ρij ∈ (−1, 1) are constants, for every 1 ≤ i, j ≤ N .
Denote ρ as theN×N matrix with (ρ)ij = ρij and ρm as theN -dimensional vector with (ρm)i = ρim.

Suppose that mutual fund i (i = 1, . . . , N), in addition to a risk-free asset S0, which earns
a constant rate of return r, allocates its assets under management between two risky investment
opportunities: (i) Sm, which is accessible to all investors in the market, e.g. a market index,
following the dynamics

dSmt
Smt

= (r + a)dt+ bdBt, (2.1.1)

with the constants a, b > 0, and (ii) Si, which only fund i can invest in, reflecting the fund manager’s
skill, is described by a geometric Brownian Motion

dSit
Sit

= (r + µi)dt+ σidWit, (2.1.2)

where constants µi, σi > 0. Let λi ..= µi
σi

for 1 ≤ i ≤ N and λm ..= a
b . Denote πit and θit as the

proportions of fund i’s assets invested in Si and Sm at time t, which are integrable with respect
to Wi and B, and denote the collection of all such strategies as Ai and Θ, respectively. Given
(πi, θi) ∈ Ai ×Θ, Rit, the excessive return over the risk-free rate from these investments, follows

dRit = πit

(
dSit
Sit
− rdt

)
+ θit

(
dSmt
Smt

− rdt
)

= πit(µidt+ σidWit) + θit(adt+ bdBt). (2.1.3)

The investors of the fund compensate the manager by management fees ψiXit, where ψi > 0 is a
constant, and Xit is fund i’s value at time t.

Furthermore, assume that the N mutual funds belong to the same peer group, e.g. because they
have the same investment “style” characterized in Brown and Goetzmann (1997), or they belong
to the same family, managed by different managers in the same firm. Therefore, investors can
compare each fund’s return with the rest of the group and move their investment accordingly. If
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fund’s return is higher than the average, it will attract more investment from clients, and the clients
will withdraw if the return is lower. The size of the flow at time t is proportional to Xi

t , and the

after-fee relative return over the industry average (dRit − ψidt)− 1
N

N∑
j=1

(dRjt − ψjdt). Meanwhile,

fund i also attracts cash flows proportional to the fund size and its absolute after-fee return. Thus,
Xi follows

dXit

Xit
= (r − ψi)dt+ dRit + `i(dRit − ψidt) + αi

(dRit − ψidt)−
1

N

N∑
j=1

(dRjt − ψjdt)

 , (2.1.4)

where `i, αi > 0 describe the sensitivity of fund flows to the absolute and relative performance of
fund i compared to its peers. We do not assume the sum of cash flows as zeros. Better performance
of the funds can attract extra investment from new clients, and vice versa.

Note that the manager of each fund is assumed to have the full information about other funds’
investment opportunities and their portfolio choices, which is also assumed in the literature on
competition between asset managers Basak and Makarov (2015), Lacker and Zariphopoulou (2019).
It agrees with the fact that investment strategies of mutual funds are public information, and can
also model the competition in a fund family managed by the same company Kempf and Ruenzi
(2008).

2.1.2 Preferences

The manager of fund i chooses the investment strategies (πi, θi) and maximizes the discounted
expected power utility from management fees over the time interval [0, T ]. Since there are fund flows
based on relative performance, in addition to the fund i’s investment strategy (πi, θi), the welfare
of the manager also depends on the strategies her competitors are taking. Let π = (π1, . . . , πN )>

and θ = (θ1, . . . , θN )>, and manager i’s goal is sup
(πi,θi)∈Ai×Θ

Ji(πi, θi;π−i, θ−i), where

Ji(πi, θi;π−i, θ−i) = E
[∫ T

0
e−βit

(ψiXit)
1−γi

1− γi
dt

]
, (2.1.5)

where βi is the manager i’s subjective discount factor, and γi > 0 ( 6= 1) is the coefficient of relative
risk aversion. Since the utility is homogeneous in the initial value of Xi, without loss of generality,
assume that Xi0 = 1 for each 1 ≤ i ≤ N .

2.2 Main Results

In this section, we want to discuss the Nash equilibrium among the N mutual funds defined in
Definition 1. The following theorem shows that there exists a unique constant equilibrium. Notice
that though the equilibrium (π∗, θ∗) are constants, for each 1 ≤ i ≤ N , Ji(π̃i, θ̃i;π

∗
−i, θ

∗
−i) ≤

Ji(π
∗
i , θ
∗
i ;π
∗
−i, θ

∗
−i) for every (π̃i, θ̃i) ∈ Ai ×Θ, i.e. (π∗i , θ

∗
i ) is optimal among all admissible, may be

stochastic investment strategies, given the constant equilibrium choices of other competitors.

Theorem 8. There exists a unique constant equilibrium

π∗ =AfP
−1
f γ−1λf , (2.2.1)

θ∗ =AmP
−1
m

(
γ−1ηm + CA−1

f π∗
)
, (2.2.2)
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where λf and ηm are two N -dimensional vectors with (λf )i = λi − ρimλm and (ηm)i = λm − ρimλi
respectively, for 1 ≤ i ≤ N . Af , Am and γ are diagonal matrices with the diagonal elements
(Af )ii = N

(N(1+`i)+(N−1)αi)σi
, (Am)ii = N

(N(1+`i)+(N−1)αi)b
and (γ)ii = γi, respectively, for 1 ≤ i ≤

N . Pf , Pm and C are N ×N matrices with

(Pf )ij =

{
1− ρ2

im if i = j,

−cij(ρij − ρimρjm) if i 6= j,
(Pm)ij =

{
1− ρ2

im if i = j,

−cij(1− ρ2
im) if i 6= j.

(2.2.3)

(C)ij =

{
0 if i = j,

cij(ρjm − ρimρij) if i 6= j,
cij =

αi
(1 + `j)N + (N − 1)αj

, 1 ≤ i, j ≤ N. (2.2.4)

Similar to Lacker and Zariphopoulou (2019), Basak and Makarov (2014), we searched for the
equilibria in which portfolios of all funds are constants, and find the unique one. Note that it may
not be the unique equilibrium if the investment strategies are allowed to be stochastic, but it is
a natural choice for fund managers given the homogeneity of the power utilities and the constant
investment opportunities.

Since every fund invests in Sm, fund i has exposure to the risk in Sm through the fund flows
and the investments of other funds. Instead of θi, the manager actually has to choose optimal

effective investment ζi ..= (1+`i)N+(N−1)αi
N θi − αi

N

N∑
j 6=i

θj in Sm. Based on the equilibrium de-

duced in Theorem 8, for each fund i, the optimal effective investment gives ζi =
λm − ρimλi
γib(1− ρ2

im)
+∑

j 6=i

ρjm − ρimρij
(1− ρ2

im)

(1 + `i)N + (N + 1)αi
(1 + `j)N + (N − 1)αj

αiσi
N

π∗j , which consists of the strategy to Merton’s prob-

lem defined in (2.2.5) and the risk premium of competition on the common investment opportunity
described by the second term.

Without fund flows (αi = `i = 0), the expected utility Ji is independent of π−i and θ−i, and
the manager essentially faces the Merton problem with two correlated risky assets, and the optimal
investment strategies for the fund i are also constants (the verification is omitted)

πMi =
λi − ρimλm
γiσi(1− ρ2

im)
, θMi =

λm − ρimλi
γib(1− ρ2

im)
, (2.2.5)

which only depend on the investment opportunities Si and Sm accessible to fund i. With the
possibility of in/out flows, since managers maximize welfare from the management fees proportional
to the assets under management, they care about the total return of the fund, including the flows.
The equilibrium strategies π∗i and θ∗i include hedging component that is against the risk exposure to
other risky investment opportunities, and depend on their correlations and the rates of management
fees of all funds. For example, if λi = ρim = 0, πMi = 0, because Si brings zero expected return, and
cannot be used to hedge the risk in Sm. However, with competition based on relative performance,
even if λi = ρim = 0, as long as Si is not independent to other Sj ’s, π

∗
i is not necessarily zero – Si

is worth the investment, not because of the return it provides, but the hedge it brings against the
risks in other funds’ investments.

In the following we discuss how the competition over flows based relative performance affects
the fund managers’ equilibrium investment strategies and the investment returns for fund investors,
and how they compare the counterpart without competition, or in the other words, the Merton’s
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problem. Note that from fund i’s investors’ point of view, the return on their own investments is

dR∗it − ψidt corresponding to π∗i and θ∗i , instead of
dX∗it
X∗it

, which includes the flows based absolute

performance and relative one of dR∗it − ψidt over the industry average 1
N

N∑
j=1

(dR∗jt − ψjdt). Thus

when we discuss the fund performance and calculate the after-fee Sharpe ratios, the calculations
do not take into account of fund flows. In particular, we compare the volatility of fund investment
with and without competition, denoted as σ∗i and σMi respectively

σ∗i =

√
(π∗i σi)

2 + 2ρimπ∗i θ
∗
i σib+ (θ∗i b)

2, σMi =

√(
πMi σi

)2
+ 2ρimπMi θ

M
i σib+

(
θMi b

)2
, (2.2.6)

and the corresponding after-fee Sharpe ratios of the fund investment

η∗i =
−ψi + π∗i µi + θ∗i a√

(π∗i σi)
2 + 2ρimπ∗i θ

∗
i σib+ (θ∗i b)

2
, ηMi =

−ψi + πMi µi + θMi a√(
πMi σi

)2
+ 2ρimπMi θ

M
i σib+

(
θMi b

)2 . (2.2.7)

We are also interested in how each fund’s return compares to the industry average. Fund’s
performance is measured in terms of difference between the individual fund’s after-fee return dRit−

φidt and the industry average 1
N

N∑
j=1

(dRjt−φjdt). The risk-return trade off of the competition tends

to move individual fund’s investment strategy in different directions: on one hand, the manager
wants to deviate from the industry average, in order to outperform and attract new investments,
which increases future management fees. On the other hand, the risk averse manager may also tend
to mimic the competitors, which decreases the risk of outflows due to poor relative performance, and
as a result, returns from different funds tend to be similar. The second effect of funds’ competition
is referred to as herding Graham (1999), and is discussed in Scharfstein and Stein (1990), Grinblatt
et al. (1995) for institutional investors who have reputation concerns and make investment decisions
based on past performance.

Let θ̄∗ ..= 1
N

∑N
i=1 θ

∗
i and the average logarithmic return of the N funds in equilibrium is

R̄∗t
..= 1

N

∑N
i=1R

∗
it and dR̄∗t =

(
r − 1

N

∑N
i=1 ψi

)
dt + 1

N

∑N
i=1 π

∗
i (µidt + σidWit) + θ̄∗(adt + bdBt).

We use the Beta coefficient of R∗i with respect to R̄∗ to measure the “distance” between fund i and
the industry average, denoted as Beta∗i , and

Beta∗i =
N
(
q′iΣρΣπ∗ +Nq′iΣρmθ̄

∗b+ (π∗)′Σρmθ
∗
i b+Nθ∗i θ̄

∗b2
)

(π∗)′ΣρΣπ∗ + 2N(π∗)′Σρmθ̄∗b+N2
(
θ̄∗
)2
b2

, (2.2.8)

where qi is an N -dimensional vector with zero entries except that (qi)i = π∗i , and Σ is an N × N
diagonal matrix with (Σ)ii = σi. If there is no competition based on relative performance, the Beta
coefficient between the corresponding return RMi and their average R̄M , denoted as BetaMi , can be
similarly calculated. Let θ̄M = 1

N

∑N
i=1 θ

M
i , πM be the N -dimensional vector with

(
πM
)
i

= πMi ,

and qMi be the N -dimensional vector with zero entries except that
(
qMi
)
i

= πMi ,

BetaMi =
N
((
qMi
)′

ΣρΣπM +N
(
qMi
)′

Σρmθ̄
Mb+

(
πM
)′

Σρmθ
M
i b+NθMi θ̄

Mb2
)

(πM )′ΣρΣπM + 2N (πM )′Σρmθ̄Mb+N2
(
θ̄M
)2
b2

. (2.2.9)

The closer Beta∗i (or BetaMi ) is to 1, the more closely fund i mimics the industry average. If this
is the case for most funds, then the herding effect is present.
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The Beta coefficients of Ri with respect to the common investment opportunity dSmt
Smt

= adt +

bdBt with and without competition, denoted as Beta∗mi and BetaMmi, can be computed similarly

Beta∗mi =
π∗i ρimσi + θ∗i b

b
, BetaMmi =

πMi ρimσi + θMi b

b
. (2.2.10)

They measure the “distance” between each fund’s investment and Sm. The further away Beta∗mi
(or BetaMmi) is from 1, the more fund i specializes in its idiosyncratic investment opportunity Si.

2.2.1 The Case of Two Funds

To illustrate the effect on the equilibrium portfolios of the changes in fund investment opportunities,
we start from the case of two funds. In this case (with j = 2 if i = 1 and j = 1 if i = 2)

π∗i =
2

(2(1 + `i) + αi)σiκ1

(
1

γi
(1− ρ2

jm)(λi − ρimλm) +
1

γj

αi(ρ12 − ρ1mρ2m)(λj − ρjmλm)

2(1 + `j) + αj

)
,

(2.2.11)

θ∗i =
2

(2(1 + `i) + αi)bκ2

((
1

γi
(1− ρ2

jm)(λm − ρimλi) +
1

γj

αi
2(1 + `j) + αj

(1− ρ2
im)(λm − ρjmλj)

)
+

α1α2

2(2(1 + `j) + αj)
(1− ρ2

im)(ρim − ρ12ρjm)σiπ
∗
i +

αi
2

(1− ρ2
jm)(ρjm − ρ12ρim)σjπ

∗
j

)
,

(2.2.12)

where κ1 = (1 − ρ2
1m)(1 − ρ2

2m) − α1α2
(2(1+`1)+α1)(2(1+`2)+α2)(ρ12 − ρ1mρ2m)2 and κ2 = (1 − ρ2

1m)(1 −
ρ2

2m) 4+2α1(1+`2)+2α2(1+`1)
(2(1+`1)+α1)(2(1+`2)+α2) . In addition to λi, ρim, λm, π∗i and θ∗i also depend on the investment of

the other fund, the fund’s sensitivity to flows and the correlations between investment opportunities,
while π∗i and θ∗i reduce to πMi and θMi , if αi = `i = 0 for i = 1, 2.

Figure 2.1 shows how equilibrium portfolios change against the idiosyncratic opportunity of
fund 2, summarized by λ2, with ρ1m = 0.3, ρ2m = 0.5, ρ12 = −0.6, α1 = α2 = 0.8, `1 = `2 = 0,
b = 0.15, σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, γ1 = γ2 = 2. As λ2 increases comparing to
λm, π∗2 becomes larger, from negative to positive, while θ∗2 decreases, because ρ2m is positive and
fund 2 decreases the risk exposure to Sm, in order to hedge the increased risk taking in S2, which
coincide with results from the classical Merton problem. It shows that though fund 2’s manager
also needs to hedge against the risk in fund 1’s investment, the risk-return trade off from its own
investment opportunity dominates in the choice of the optimal portfolios.

On the other hand, fund 1’s portfolios also change because the manager’s compensation depends
on the relative performance and thus the portfolios of fund 2. Since in the dynamics of X1t in (2.1.4),
dR2t has a negative coefficient, the increasing λ2 (π∗2) leads to a larger negative exposure to W2,
which is negatively correlated with W1, and fund 1 decreases π∗1 to decrease the total risk exposure.
For the investment in Sm, fund 1 optimizes over the effective exposure ζ1 = 2+α1

2 θ1 − α1
2 θ2. Thus

with larger θ∗2, θ∗1 tends to be larger. On the other hand, fund 1 also tends to increase ζ1 in order to
hedge the increased risk in dR2t, because of the larger π∗2. The combined effect is that θ∗1 becomes
larger as λ2 increases.

In Figure 2.2, ρ12 is changed to 0.6 with other parameters the same as for Figure 2.1. π∗2 and
θ∗2 show the same pattern as in the previous case. On the other hand, since ρ12 becomes positive,
π∗1 and θ∗1 show the opposite trend to the previous case, though the changes with respect to λ2 are
again relatively small, compared to π∗2 and θ∗2.
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Figure 2.1: Equilibrium portfolios with ρ1m = 0.3, ρ2m = 0.5, ρ12 = −0.6, α1 = α2 = 0.8, `1 = `2 =
0, b = 0.15, σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, γ1 = γ2 = 2, against λ2.
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Figure 2.2: Equilibrium portfolios with ρ1m = 0.3, ρ2m = 0.5, ρ12 = 0.6, α1 = α2 = 0.8, `1 = `2 = 0,
b = 0.15, σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, γ1 = γ2 = 2, against λ2.
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Figure 2.3: Equilibrium portfolios with ρ1m = 0.3, ρ2m = 0.5, ρ12 = −0.6, α1 = 0.8, `1 = `2 = 0,
b = 0.15, σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, λ2 = 0.2, γ1 = γ2 = 2, against α2.

Regarding the effect of the sensitivity of fund flows, Figure 2.3 shows how equilibrium portfolios
change against α2, with ρ1m = 0.3, ρ2m = 0.5, ρ12 = −0.6, α1 = 0.8, `1 = `2 = 0, b = 0.15,
σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, λ2 = 0.2, γ1 = γ2 = 2. For fund 2, the fund flows
magnify the return and risk of its own investments as well as those of fund 1 as the benchmark.
As α2 increases, this magnifying effect becomes larger. As a result, π∗2 becomes more negative, so
as to hedge the risk in S1 (notice that λ2 < λ1 and dW2t is positively correlated with −dR1t for
π∗1 > 0). Hence, π∗1 becomes more positive to hedge more risks in the investment of fund 2, even
though α2 does not enter the dynamics of fund 1 directly.

On the other hand, θ∗2 increases with α2, to hedge larger risks in the investment in S2 and the
fund 1’s exposure to S1. Similarly, θ∗1 moves in the opposite direction to π∗1, while the effect is
negligible, because α2 does not directly enter the dynamics of fund 1, and the increase in θ∗2 fulfills
part of the hedging demands from the increase in π∗1, which lowers fund 1’s effective exposure to
Sm, ζ1 = 2+α1

2 θ1 − α1
2 θ2. In Figure 2.4, ρ12 is changed to 0.6. π∗2 and θ∗2 show the opposite pattern

to Figure 2.3, while π∗1 and θ∗1 behave similarly, following the same intuition as above.

Next we examine the comparison of the portfolios with and without competition in the case of
N = 2, λm = 0, ρim = 0, αi = α, `i = `, ψi = ψ for i = 1, 2. In this case, θ∗i = θMi = 0, and each
fund invests in their own investment opportunities, which are correlated with each other – similar
to the models in Basak and Makarov (2015), Lacker and Zariphopoulou (2019), which also leads to
clearer conclusions, and sheds light on the results of N > 2. Let the risk aversion-adjusted Sharpe

ratio for each fund’s idiosyncratic investment opportunity as λi,γi = λi
γi

(i = 1, 2), λ̄ =
λ2,γ2
λ1,γ1

and

without loss of generality assume λ̄ ≤ 1. Then the equilibrium portfolios are

π∗1 =
2
(
λ1,γ1 + α

2(1+`)+αρ12λ2,γ2

)
(2(1 + `) + α)σ1

(
1−

(
α

2(1+`)+α

)2
ρ2

12

) , π∗2 =
2
(
λ2,γ2 + α

2(1+`)+αρ12λ1,γ1

)
(2(1 + `) + α)σ2

(
1−

(
α

2(1+`)+α

)2
ρ2

12

) .
(2.2.13)
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Figure 2.4: Equilibrium portfolios with ρ1m = 0.3, ρ2m = 0.5, ρ12 = 0.6, α1 = 0.8, `1 = `2 = 0,
b = 0.15, σ1 = 0.18, σ2 = 0.13, λm = 0.15, λ1 = 1.5, λ2 = 0.2, γ1 = γ2 = 2, against α2.

Proposition 9. π∗1 < πM1 , η∗1 < ηM1 , and

(i) If ρ12 > 0 and λ̄ < 2αρ12

(2+4`)α+α2(1−ρ2
12)+4`(1+`)

, then π∗2 > πM2 and η∗2 > ηM2 . If ρ12 ≥ 0 and

λ̄ ≥ 2αρ12

(2+4`)α+α2(1−ρ2
12)+4`(1+`)

, then π∗2 ≤ πM2 and η∗2 ≤ ηM2 .

(ii) If ρ12 < 0, π∗2 < πM2 , and if λ̄ < − α
2(1+`)+αρ12, η∗2 > ηM2 . Otherwise η∗2 ≤ ηM2 .

In addition to the total risks in the fund investment, fund managers also care about the risk in
the relative performance, because it affects the fund flows and thus management fees in the future.
On one hand, they want to keep investment strategy πMi which brings the best risk-return trade
off according to their own risk attitude. On the other hand, they may want to invest less in Si,
in order to decrease the risk of poor performance against their competitors. Proposition 9 shows
that for the fund 1 with the larger risk aversion-adjusted Sharpe ratio λ1

γ1
, though S1 is a better

investment opportunity, since it is relatively easier to outperform, the concerns for the risks in the
relative performance dominates and the manager takes less risk (π∗1 ≤ πM1 ). The fund investment is
not taking full advantage of the good investment opportunity, which hurts the fund’s performance
(η∗1 < ηM1 ). The same could happen if γ1 is small, and therefore the manager tends to take large
risk without competition, and has a better chance of outperform the competitor. It is consistent
with the results in Basak and Makarov (2015) that more risk tolerant managers may decrease the
volatility of the fund.

On the other hand, the relatively disadvantaged manager (with smaller λ2 or large risk aversion
γ2) behaves differently under different conditions. If ρ12 ≥ 0, the portfolio choice of the competitor
hedges part of the risk in the fund’s own investment. Thus if λ̄ is small, i.e. the disadvantage is
big, the eagerness for new investments dominates, and the manager increases the fund’s risk for a
better chance of winning the competition. This may not be a bad news for the clients, because the
after-fee Sharpe ratio of the fund actually increases. If λ̄ is sufficiently large, then the peer pressure
is lighter and fund 2 invests similarly to fund 1, by decreasing the risky investment, and thus lowers
the performance. If ρij < 0, the introduction of fund flows increases the total risks in the fund, and
the concern for the fund’s absolute performance leads fund 2 to decrease the investment in S2 to
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hedge against the risk in S1.
π∗2
πM2

is increasing in λ̄, and equals to
2
(

1+ α
2(1+`)+α

ρ12

)
(2(1+`)+α)

(
1−
(

α
2(1+`)+α

)2
ρ2

12

) > 0

at λ̄ = 1 and −∞ at λ̄ = 0. Thus similar to the case of ρ12 > 0, if λ̄ is small (with a threshold
different to the previous case), the big disadvantage leads fund manager 2 to take a large risk
aiming to win the competition. If λ̄ is sufficiently large, then fund 2 already has a good chance of
outperform fund 1. Therefore the decrease in the investment in S2 cannot be too large, especially
if it is negative, because it increases the risk in the relative performance.

Proposition 10. Let ∆ =
(

α
1+`+αρ12 + 2(1+`)+α

1+`+α
1
ρ12

)2
−4 ≥ 0. Then |Beta∗i − 1|−

∣∣BetaMi − 1
∣∣ ≤ 0

for both i = 1 and 2 if and only if one of the following holds: (i) ρ12 ≥ 0, and (ii) ρ12 < 0,

λ̄ ≤
−
(

α
1+`+α

ρ12+
2(1+`)+α

1+`+α
1
ρ12

)
−
√

∆

2 .

The changes in the Beta coefficients can also be characterized in terms of the correlation between
the funds’ investment opportunities and their risk aversion-adjusted Sharpe ratios. Though fund
2 may behave differently according to Proposition 9, in most cases the competition pushes both
funds’ investments closer to their average. If ρ12 > 0 and λ̄ is small, then πM2 is small comparing
to πM1 , and with competition π∗1 and π∗2 move toward each other. If λ̄ is large, then π∗1 and π∗2 both
become smaller positive numbers, and are closer to the average. If ρ12 < 0 and λ̄ is small, π∗2 tends
to be negative with large absolute values. Then with negative correlation between S1 and S2, two
funds actually becomes closer. Only in the case of ρ12 < 0 and sufficiently large λ̄, i.e. fund 2 has
less peer pressure, decrease of the position in S2 is limited, and fund 2 stays sufficiently negatively
correlated with fund 1. As a result, both funds are further away from their average.

2.2.2 The Equilibrium among N Funds

For more than two funds, the equilibrium depends on the model parameters, especially the correla-
tion structure, in a complex way, and explicit characterization is no longer available in terms of the
risk aversion-adjusted Sharpe ratio as in the case of N = 2. For example, it is not likely that the
Beta coefficients of all funds move in the same direction as in Proposition 10. With the explicit so-
lution to the equilibrium, we check the effect of competition by numerical experiments. The results,
which are largely consistent with the conclusions for the case of N = 2, show that the competition
tends to push funds to decrease risk takings in their idiosyncratic investment opportunities, in order
to decrease the risk in the relative performance. This usually leads to worse performance in terms
of Sharpe ratios. However, managers with big disadvantages tend to take larger idiosyncratic risk
in order to beat the average. In terms of herding effect, while the fund flows generally pushes funds
to become closer to the industry average, if no funds are severely disadvantaged and some funds
investment opportunities are negatively correlated, then the competition may push all competitors
to move away from the industry average.

In the case of N = 5, Figure 2.5 plots the funds’ portfolios with competition (π∗i ’s and θ∗i ’s)
and without competition (πMi ’s and θMi ’s), the corresponding Sharpe ratios η∗i ’s and ηMi ’s, and
volatilities σ∗i and σMi , with σi = 0.2, ψi = 0.02, αi = 0.5, `i = 0.1, γi = 2, ρim = 0.1 for every
1 ≤ i ≤ 5, λi’s forming an arithmetic sequence from 0.1 to 0.5, ρij = 0.2 (1 ≤ i 6= j ≤ 5), λm = 0.15,
b = 0.15, r = 0.05. Compared to the case where the managers do not have to care about relative
performance, all the funds have lower after fee Sharpe ratios. The main reason is similar to the case
of N = 2 that the managers are concerned about the risk of under performance. Thus they take
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Figure 2.5: Funds’ portfolios, volatility and Sharpe ratios, with σi = 0.2, ψi = 0.02, αi = 0.5,
`i = 0.1, γi = 2, ρim = 0.1 for every 1 ≤ i ≤ 5, λi’s form an arithmetic sequence from 0.1 to 0.5,
ρij = 0.2 (1 ≤ i 6= j ≤ 5), λm = 0.15, b = 0.15, r = 0.05.

less risk in the idiosyncratic opportunity Si. This change is larger for funds with better investment
opportunities. It lowers the expected return of the fund. On the other hand, even for the case
when θ∗ > θM , since the decrease in π∗i from πMi is much larger than the increase in θ∗i from θMi ,
the total risk that the fund is taking is smaller, and thus the Sharpe ratio decreases, but not as
much.

Figure 2.6 illustrates the case where λi = 0.3 and ρim’s form an arithmetic sequence from −0.2
to 0.6. Similar to the previous case, all the funds take less risk in their idiosyncratic investment
opportunities in face of competition. If Si is more positively correlated with Sm, fund i invests
more in Sm, even from negative to positive amount in some cases. Only for fund 1 with ρ1m < 0,
θ∗1 < θM1 , because the need for hedging the risk in S1 is reduced. Due to the less risk taking in
the fund investment, similar to the previous case, the total risk of the funds and the Sharpe ratios
decrease. Notice that in this case λi/γi is a constant across 5 funds, and the result agrees with
Proposition 9 in the change of Sharpe ratios.

Figure 2.7 illustrates the case where λi’s form an arithmetic sequence from 0.1 to 1.3, γi’s form
an arithmetic sequence from 0.5 to 4, ρim = 0 for every 1 ≤ i ≤ 5, ρi5 = −0.2 (i 6= 5), ρij = 0.2
(1 ≤ i 6= j ≤ 5), and other parameters are the same as in the previous cases. It shows some features
that we do not see in the case of N = 2, due to the complex dependence on the correlation structure.
λi’s have larger differences than in the previous cases, but λi/γi actually become closer than in
Figure 2.5. With negative correlations between the funds’ idiosyncratic investment opportunities,
while other funds behave similarly as in 2.5, the most disadvantaged manager (of fund 1) takes
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Figure 2.6: Funds’ portfolios, volatility and Sharpe ratios, with σi = 0.2, ψi = 0.02, αi = 0.5,
`i = 0.1, γi = 2, λi = 0.3 for every 1 ≤ i ≤ 5, ρij = 0.2 (1 ≤ i 6= j ≤ 5), ρim’s form an arithmetic
sequence from −0.2 to 0.6, λm = 0.15, b = 0.15, r = 0.05.
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Figure 2.7: Funds’ portfolios, volatility and Sharpe ratios, with N = 5, σi = 0.2, ψi = 0.02,
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λm = 0.15, b = 0.15, r = 0.05.

larger risk in the fund’s idiosyncratic investment opportunity, and less in Sm, in order to have a
better chance of beating the competitors and attract new investments. As a result, the total risk
of fund 1’s investments decrease least with competition comparing to the other funds.

Next, we use the Beta coefficient with respect to the industry average and Sm to measure the
herding and specialization effect respectively, of the competition. In particular, if |Beta∗i − 1| <
|BetaMi − 1|, fund i is closer to the industry average, and if |Beta∗mi − 1| > |BetaMmi − 1|, then fund
i tends to focus more on its idiosyncratic investment opportunity rather than Sm, in order to have
a better chance of beating the industry average.

Figure 2.8 illustrates the case with the same parameters as for Figure 2.5. From Figure 2.5, to
hedge the risk from relative performance, the decrease of π∗i from πMi is more than the increase of
θ∗i from θMi . Since ρim > 0 for every 1 ≤ i ≤ 5, combined effect is that each fund’s investment is
further away from Sm (Beta∗mi is further away from 1 than BetaMmi), and at the same time closer to
the industry average. In Figure 2.9, the model parameters are the same as for Figure 2.6. As shown
in Figure 2.6, each fund deceases its investment in the idiosyncratic investment opportunity, and
most of them increase the investment in Sm, except fund 1, because S1 is negative correlated with
Sm. Thus though the Beta coefficients with respect to Rm do not change much with and without
competition, Beta∗i ’s are always closer to 1 than BetaMi ’s. Both the above results show that in
general the competition pushes mutual funds to herd. Also, though θ∗i in most cases are greater
than θMi , because of the positive correlations between Si’s and Sm, each fund is further away from
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Figure 2.8: Funds’ Beta coefficients with and without competition, with N = 5, γi = 2, αi = 0.5,
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Figure 2.9: Funds’ Beta coefficients with and without competition, with N = 5, λi = 0.3, γi = 2,
αi = 0.5, `i = 0.1, σi = 0.2, 1 ≤ i ≤ 5, ρim’s form an arithmetic sequence from −0.2 to 0.6, and
ρij = 0.2 for 1 ≤ i 6= j ≤ 5. λm = 0.15, b = 0.15.

the common investment opportunity.

In Figure 2.10, the model parameters are the same as for Figure 2.7, and the funds’ behaviors
change drastically. While funds 2-5 decreases their investment in their idiosyncratic risk, similarly
to the previous two cases, the disadvantaged fund 1 takes excessive risk by large exposure in S1. It
shifts the industry average so large that |Beta∗i −1| > |BetaMi −1| for every 1 ≤ i ≤ 5, which means
that competition actually increases the risk in relative performance for every fund, even though
most of them choose the optimal portfolios to avoid this. In this case, funds 2-5 take more exposure
in Sm and only fund 1 specializes more in its idiosyncratic risk.

Finally, let us consider a special case in which Sm is the only risky investment opportunity for
each fund and investors only care about the relative performance (`i = 0). With the investment

19



1 2 3 4 5

Fund

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Beta
M

Beta
*

1 2 3 4 5

Fund

0

0.05

0.1

0.15

0.2

0.25

0.3

Beta
m

M

Beta
m

*

Figure 2.10: Funds’ Beta coefficients with and without competition, with N = 5, σi = 0.2, ψi =
0.02, αi = 0.5, `i = 0.1, ρim = 0 for every 1 ≤ i ≤ 5, λi’s form an arithmetic sequence from 0.1 to
1.3, γi form an arithmetic sequence from 0.5 to 4, ρi5 = −0.2 (i 6= 5), ρij = 0.2 (1 ≤ i 6= j ≤ 5),
λm = 0.15, b = 0.15, r = 0.05.

strategy θi in Sm, the dynamics of Xi is

dXit

Xit
=

r − N + (N − 1)αi
N

ψi +
αi
N

N∑
j 6=i

ψj

 dt+

N + (N − 1)αi
N

θit −
αi
N

N∑
j 6=i

θjt

 (adt+ bdBt),

(2.2.14)

which allows more concrete discussions about how close are each fund to the industry average.

Proposition 11. If Sm is the only risky investment opportunity for every fund (as described in
(2.2.14)), then there exists a unique equilibrium θ∗ ∈ ΘN such that for each 1 ≤ i ≤ N ,

θ∗i =
λm
b

(
1

1 + αi

1

γi
+

αi
1 + αi

1

γ̄

)
, (2.2.15)

where γ̄ = N
N∑
i=1

1+ᾱ
(1+αi)γi

and ᾱ = N
N∑
i=1

1
1+αi

− 1.

Notice that in this case, though θ∗i ’s in (2.2.15) are constants, they are unique among all
admissible strategies. Also, if there is no fund flows (αi = 0), the manager is facing essentially
a Merton problem with Sm as the only risky investment opportunity. The optimal strategy is
θMi = λm

bγi
for each 1 ≤ i ≤ N . Comparing to θMi , θ∗i is also of the Merton type. However, the

manager’s risk tolerance shifts to a linear combination between the manager’s own risk tolerance 1
γi

and 1
γ̄ , the average of the risk tolerance of all competing fund managers, weighted by the sensitivity

of fund flows to the relative performance. In the following we compare the fund’s investment and
check the herding effect of competition. Since the return of every fund is driven by a common
Brownian Motion B, to analyze the similarities between each fund and its competitors, it suffices
to compare θ∗i ’s and θMi ’s, and their industry average θ̄∗ and θ̄M , respectively. The next proposition
shows that, relatively more risk averse managers may take larger risk in face of competition. Also, if
the fund with more risk averse manager has larger flow sensitivity to the relative performance, then
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Figure 2.11: θ̂i’s, θ
∗
i ’s and their average if managers only invest in Sm. N = 10, λm = 0.15, b = 0.15,

`i = 0 and γi’s form an arithmetic sequence from 0.5 to 3.2.

in average the investment of the whole group becomes more risky. In the special case of constant
fund flow sensitivities, θ∗i is always closer to the industry average, than the counterpart without
competition.

Proposition 12. (i) If γi > γ̄, θ∗i > θMi , and vice versa.

(ii) If (γi − γj)(αi − αj) ≥ 0 for every pair of 1 ≤ i ≤ j ≤ N , θ̄∗ ≥ θ̄M , and vice versa.

(iii) If αi equals a constant α > 0 for every 1 ≤ i ≤ N , then θ̄∗ = θ̄M , and θ∗i − θ̄∗ =
1

1+α

(
θ̂i − θ̄M

)
.

The intuition for these results is that facing the same investment opportunity, the funds with
more risk averse managers tend to take less risk, and are thus less likely to win in the competition.
Thus the concern for relative performance pushes them to be more aggressive to keep up. On the
other hand, funds with less risk averse managers are at a better position in the competition, and are
thus more concerned about the risk of poor performance. They invest less in Sm to avoid possible
outflow due to the loss in the risky asset. Furthermore, if the high risk aversion is accompanied by
high sensitivity αi of fund flows, then the effect of more risk taking for more risk averse managers
is magnified compared to the effect of less risk taking for less risk averse managers, and the average
risk taking of all funds with competition is higher than the counterpart without.

Figure 2.11 shows θ̂i’s, θ
∗
i ’s and their average, with N = 10, λm = 0.15, b = 0.15 and γi’s

being equally spaced between 0.5 and 3.2. The left panel shows the case of increasing αi’s and
θ̄∗ > θ̄M . In the right panel, αi’s are decreasing, and the inequality is reversed. In both graphs,
similar to previous examples, θ∗i ’s are closer to θ̄∗, compared to the distance between θMi and θ̄M ,
with an exception of 2 out of the 10 funds. In the special case of αi being a constant, Part (iii) of
Proposition 12 confirms that this comparison holds for every fund, and the competition based on
relative performance does have herding effect on the fund investment.

In conclusion, the managers have two considerations in his/her portfolio choice, one is the total
risk taking of the fund, which decides the return, and the other is the risk in the relative per-
formance, which decides the fund flow. Our results show that in most cases the concern for the
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poor relative performance dominates, and managers take less risk in their idiosyncratic investment
opportunity, so that the fund behaves more closely to the industry average but hurts the after-
fee performance compared to the case without competition. It indicates that competition pushes
funds to herd, which agrees with the results in Maug and Naik (2011). However, if the fund is
disadvantaged with poor idiosyncratic investment opportunity or the manager is of relatively high
risk aversion among the group (so that he/she takes low risk without competition), then to beat
the competitors and attract new investment, the fund increases the risk taking in its idiosyncratic
investment opportunity and increases the after-fee performance, which benefits the investors. It
supports the conclusion in Basak and Makarov (2015) that competition can lead to specialization,
which is also discussed in Brennan (1975), Uppal and Wang (2003), Van Nieuwerburgh and Veld-
kamp (2009), Boyle et al. (2012), Liu (2014). It also partially agrees with the results in Basak and
Makarov (2015), Lacker and Zariphopoulou (2019) that more risk averse fund managers tend to
take more risk under competition, than those with lower risk aversion. However, with appropriate
correlation structures, if the funds’ investment opportunities and the managers’ risk aversions are
close to each other, it could happen that every fund is further away from the average, comparing
to the case without competition.

2.3 Appendix

The proof of Theorem 8. The first step is to find the optimal portfolio choice of the fund i, given the
investment strategies π−i and θ−i of other funds. Since we focus on constant equilibria, assume that

π−i and θ−i are constants. Then with X̃it
..= exp

(
−
(
r −

(
1 + `i + N−1

N αi
)
ψi + αi

N

∑N
j 6=i ψj

)
t
)
Xit,

Fubini’s theorem implies that

E
[∫ T

0
e−βit

(ψiXit)
1−γi

1− γi
dt

]
=

∫ T

0
e(−βi+r−(1+`i+

N−1
N

αi)ψi+
αi
N

∑N
j 6=i ψj)tψ1−γi

i

E
[
X̃1−γi
it

]
1− γi

dt (2.3.1)

For any (πi, θi) ∈ Ai×Θ (1 ≤ i ≤ N), let π̃it ..=
(
1 + `i + N−1

N αi
)
σiπit, θ̃it ..=

(
1 + `i + N−1

N αi
)
bθit,

so that π ..= (π1, · · · , πN ) = Af π̃ and θ ..= Amθ̃, where π̃ and θ̃ are N -dimensional vectors with
(π̃)i = π̃i and (θ̃)i = θ̃i. Thus

dX̃it

X̃it

=π̃it(λidt+ dWit) +

θ̃it − N∑
j 6=i

cij θ̃j

 (λmdt+ dBt)−
N∑
j 6=i

cij (π̃j(λjdt+ dWjt)) . (2.3.2)

With φit =

 π̃it

θ̃it −
N∑
j 6=i

cij θ̃j

 , hi =

[
λi
λm

]
, Fit =

[
Wit

Bt

]
, λ−i =

[
· · · λi−1 λi+1 · · ·

]′
, and

W−it =
[
· · · W(i−1)t W(i+1)t · · ·

]′
, the dynamics of X̃ is

dX̃it

X̃it

= φ′it(hidt+ dFit)− π̃′−iCi(λ−idt+ dW−it),

where Ci is an (N − 1)-dimensional matrix with diagonal entries cij for 1 ≤ j ≤ N and j 6= i.
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Lemma 13 shows that φ̂i = 1
γi
w−1
i hi +w−1

i w−iCiπ−i maximizes
E
[
X̃

1−γi
it

]
1−γi . Since it is a constant

strategy independent of t, it also maximizes the discounted expected utility from management fees
for each manager i ∫ T

0
e(−βi+r−(1+`i+

N−1
N

αi)ψi+
αi
N

∑N
j 6=i ψj)tψ1−γi

i

E
[
X̃1−γi
it

]
1− γi

dt.

φ̂i = 1
γi
w−1
i hi + w−1

i w−iCiπ̃−i for 1 ≤ i ≤ N are 2N equations of constants π̃ = (π̃1, · · · , π̃N )

and θ̃ = (θ̃1, · · · , θ̃N ):
Pf π̃ = γ−1λf , Pmθ̃ = γ−1ηm + Cπ̃, (2.3.3)

of which the solution corresponds to the equilibrium strategies of the N funds. Since Lemma
14 shows that Pf and Pm are invertible, there exists a unique solution π̃ = P−1

f γ−1λf , θ̃ =

P−1
m

(
γ−1ηm + Cπ̃

)
. Therefore π∗ = AfP

−1
f γ−1λf , and θ∗ = AmP

−1
m

(
γ−1ηm + CA−1

f π∗
)
.

Lemma 13. Given constant π−i and θ−i, arg max
φi:(πi,θi)∈Ai×Θ

E
[
X̃

1−γi
it

]
1−γi = φ̂i = 1

γi
w−1
i hi +w−1

i w−iCiπ−i,

for every 0 ≤ t ≤ T , where wi =

[
1 ρim
ρim 1

]
, w−i =

[
(ρi)

′
−i

(ρm)′−i

]
, and ρi is the N -dimensional

vector with (ρi)j = ρij.

Proof. We prove the case of 0 < γi < 1 and focus on E
[
X̃1−γi
it

]
because 1 − γi > 0. The case of

γ > 1 follows similarly. Define a stochastic process ξ such that ξ0 = 1 and

− dξt
ξt

=
(
M ′iw−i +M ′−iρ−i − λ′−i

)
Ciπ−idt+M ′idFit +M ′−idW−it, (2.3.4)

where Mi and M−i are two constant vectors to be determined later, which satisfy wiMi+w−iM−i =
hi. Then

dξtX̃it

ξtX̃it

= −
(
M ′iw

′
i +M ′−iw

′
−i − h′i

)
φitdt+ (φ′it −M ′i)dFit − (π′−iCi +M ′−i)dW−it. (2.3.5)

Thus ξtX̂it is a non-negative local martingale, and hence a supermartingale. Therefore (ignoring
the positive 1− γi), by Hölder’s inequality and noticing that X̃i0 = Xi0 = 1,

E
[
X̃1−γi
it

]
≤ E

[
ξtX̃it

]1−γi
E
[
ξ
γi−1

γi
t

]γi
≤ E

[
ξ
γi−1

γi
t

]γi
(2.3.6)

= exp

(
(1− γi)

((
M ′iw−i +M ′−iρ−i − λ′−i

)
Ciπ−i +

1

2γi
M ′iwiMi +

1

2γi
M ′−iρ−iM−i +

1

γi
M ′iw−iM−i

)
t

)
,

(2.3.7)

which is an upper bound for E
[
X̃1−γi
it

]
corresponding to any (πi, θi) ∈ Ai ×Θ.

Next we search for the minimum among all such upper bounds corresponding to different choices
of Mi and M−i, by considering the following constrained minimization problem:

min
{Mi,M−i}

1

2γi
M ′iwiMi +

1

2γi
M ′−iρ−iM−i +

1

γi
M ′iw−iM−i +

(
M ′iw−i +M ′−iρ−i

)
Ciπ−i, (2.3.8)

subject to: wiMi + w−iM−i = hi. (2.3.9)
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The corresponding Lagrangian function, with Lagrange multiplier l, is

L = 1
2γi

(
M ′iwiMi +M ′−iρ−iM−i + 2M ′iw−iM−i

)
+
(
M ′iw−i +M ′−iρ−i

)
Ciπ−i+l

′ (hi − wiMi − w−iM−i) .
(2.3.10)

The first order conditions for Mi, M−i and l are

Mi =γil − w−1
i w−iM−i − γiw−1

i w−iCiπ−i, (2.3.11)

0 =
1

γi
ρ−iM−i +

1

γi
w′−iMi + ρ−iCiπ−i − w′−il, (2.3.12)

0 =hi − wiMi − w−iM−i. (2.3.13)

Plugging (2.3.11) into (2.3.12) implies that

0 =
(
ρ−i − w′−iw−1

i w−i
)

(M−i + γiCiπ−i) . (2.3.14)

Instead of discussing the uniqueness of solutions to the above equation, we pick out one of them
M−i = −γiCiπ−i, Mi = γiφ̂i, l = φ̂i, and verify that the candidate strategy φ̂i can achieve the
upper-bound corresponding to M−i and Mi, which verifies that φ̂i is indeed the maximizer of

E
[
X̃1−γi
it

]
.

The upper bound corresponding to M−i = −γiCiπ−i and Mi = γiφ̂i is

exp

(
(1− γi)

((
M ′iw−i +M ′−iρ−i − λ′−i

)
Ciπ−i +

1

2γi
M ′iwiMi +

1

2γi
M ′−iρ−iM−i +

1

γi
M ′iw−iM−i

)
t

)
(2.3.15)

= exp
(

(1− γi)
((
γiφ̂
′
iw−i − γiπ′−iCiρ−i − λ′−i

)
Ciπ−i +

γi
2

(
φ̂′iwiφ̂i + π′−iCiρ−iCiπ−i − 2φ̂′iw−iCiπ−i

))
t
)

(2.3.16)

= exp

((
−(1− γi)λ′−iCiπ−i +

(1− γi)γi
2

(
φ̂′iwiφ̂i − π′−iCiρ−iCiπ−i

))
t

)
. (2.3.17)

On the other hand, for X̃i corresponding to φ̂i,

X̃it = exp

(
φ̂′i(hit+ Fit)− π′−iCi(λ−it+W−it) +

(
−1

2
φ̂′iwiφ̂i −

1

2
π′−iCiρ−iCiπ−i + φ̂′iw−iCiπ−i

)
t

)
.

Thus,

E
[
X̃1−γi
it

]
= exp

(
(1− γi)

(
φ̂′ihi − π′−iCiλ−i −

1

2
φ̂′iwiφ̂i −

1

2
π′−iCiρ−iCiπ−i + φ̂′iw−iCiπ−i

+
(1− γi)

2
φ̂′iwiφ̂

′
i +

(1− γi)
2

π′−iCiρ−iCiπ−i − (1− γi)φ̂′iw−iCiπ−i
)
t

)
(2.3.18)

= exp

((
−(1− γi)π′−iCiλ−i +

γi(1− γi)
2

(
φ̂′iwiφ̂

′
i − π′−iCiρ−iCiπ−i

))
t

)
, (2.3.19)

which coincides with the upper bound corresponding to M−i = −γiCiπ−i and Mi = γiφ̂i.
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Lemma 14. Pf and Pm are invertible.

Proof. Pf and Pm can be rewritten as Pf = A1PdiagP1PdiagA2, and Pm = P 2
diagA1P2A2, where

A1, A2 and Pdiag are N × N diagonal matrices with (A1)ii = 1
N(1+`i)+(N−1)αi

, (A2)ii = αi and

(Pdiag)ii =
√

1− ρ2
im, and P1 and P2 are N ×N matrices with

(P1)ij =


1
cii

if i = j,

− ρij−ρimρjm√
1−ρ2

im

√
1−ρ2

jm

if i 6= j, (P2)ij =

{
1
cii

if i = j,

−1 if i 6= j,
. (2.3.20)

On the other hand, for i 6= j, Brownian Motions Wi and Wj can be written as

Wit = ρimBt +
√

1− ρ2
imZit, Wjt = ρjmBt +

√
1− ρ2

jmZjt, (2.3.21)

where Zi, Zj are Brownian motions independent of B. Suppose that 〈Zi, Zj〉t = ρzijt, and then

ρij = ρimρjm +
√

(1− ρ2
im)(1− ρ2

jm)ρzij , which implies that
(ρij−ρimρjm)2

(1−ρ2
im)(1−ρ2

jm)
= (ρzij)

2 ≤ 1. Since

cii = αi
(1+`i)N+(N−1)αi

< 1
N−1 , both P1 and P2 are strictly diagonally dominated matrices, and

hence invertible. Therefore Pf and Pm are invertible, because the diagonal matrices A1, A2 and
Pdiag are also invertible.

The proof of Proposition 9. Following (2.2.5) and (2.2.13), with ρ12 ∈ (−1, 1) and λ̄ ≤ 1,

π∗1
πM1

=
2
(

1 + α
2(1+`)+αρ12λ̄

)
(2(1 + `) + α)

(
1−

(
α

2(1+`)+α

)2
ρ2

12

) =
2(2(1 + `) + α)

(
1 + α

2(1+`)+αρ12λ̄
)

4α(1 + `) + α2(1− ρ2
12) + 4(1 + `)2

(2.3.22)

≤ 4(1 + `) + 4α

α2(1− ρ2
12) + 4α(1 + `) + 4(1 + `)2

< 1. (2.3.23)

η∗1 − ηM1 =λ1 −
ψ(2(1 + `) + α)

(
1−

(
α

2(1+`)+α

)2
ρ2

12

)
2λ1,γ1

(
1 + α

2(1+`)+αρ12λ̄
) −

(
λ1 −

ψ

λ1,γ1

)
(2.3.24)

≤−
αψ
((

2 + 4`+ α(1− ρ2
12)
)
− 2ρ12λ̄

)
2(2(1 + `) + α)λ1,γ1

(
1 + α

2(1+`)+αρ12λ̄
) (2.3.25)

<−
αψ
(
2− 2λ̄

)
2(2(1 + `) + α)λ1,γ1

(
1 + α

2(1+`)+αρ12λ̄
) ≤ 0. (2.3.26)

On the other hand,

π∗2
πM2
− 1 =

2
(

α
2(1+`)+αρ12 + λ̄

)
λ̄(2(1 + `) + α)

(
1−

(
α

2(1+`)+α

)2
ρ2

12

) − 1 =

2αρ12

2(1+`)+α +
(
α
(

αρ2
12

2(1+`)+α − 1
)
− 2`

)
λ̄

λ̄(2(1 + `) + α)

(
1−

(
α

2(1+`)+α

)2
ρ2

12

) .
(2.3.27)
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Thus π∗2 ≤ πM2 is equivalent to 2αρ12

2(1+`)+α+
(
α
(

αρ2
12

2(1+`)+α − 1
)
− 2`

)
λ̄ ≤ 0, which, since

αρ2
12

2(1+`)+α < 1,

always holds for ρ12 < 0, or implies that λ̄ ≥ 2αρ12

(2+4`)α+α2(1−ρ2
12)+4`(1+`)

for ρ12 ≥ 0. Finally,

η∗2 − ηM2 =−
ψ
((

4`(1 + `) + α(4`+ 2) + α2(1− ρ2
12)
)
λ̄− 2αρ12

)
2(2(1 + `) + α)λ2,γ2

(
λ̄+ αρ12

2(1+`)+α

) . (2.3.28)

Thus, if ρ12 ≥ 0, λ̄ + αρ12

2(1+`)+α > 0, and η∗2 ≤ ηM2 if and only if λ̄ ≥ 2αρ12

(2+4`)α+α2(1−ρ2
12)+4`(1+`)

. If ρ12 < 0,
((

4`(1 + `) + α(4`+ 2) + α2(1− ρ2
12)
)
λ̄− 2αρ12

)
≥ 0, and η∗2 ≤ ηM2 if and only if

λ̄ ≥ − αρ12

2(1+`)+α .

The proof of Proposition 10. Following (2.2.8) and (2.2.9),

Beta∗1 − 1 =

(
1−

(
α

2(1+`)+α

)2
ρ2

12

)
(1− λ̄2)(

1 + α
2(1+`)+αρ12λ̄

)2
+ 2ρ12

(
1 + α

2(1+`)+αρ12λ̄
)(

α
2(1+`)+αρ12 + λ̄

)
+
(

α
2(1+`)+αρ12 + λ̄

)2 ≥ 0,

(2.3.29)

BetaM1 − 1 =
1− λ̄2

1 + 2ρ12λ̄2 + λ̄2
≥ 0. (2.3.30)

Therefore if λ̄ = 1, Beta∗1 = BetaM1 = 1. Otherwise, since λ̄ < 1, the sign of |Beta∗1− 1| − |BetaM1 −
1| = Beta∗1 − BetaM1 is the same as that of(

1−
(

α

2(1 + `) + α

)2

ρ2
12

)(
1 + 2ρ12λ̄+ λ̄2

)
−
(

1 +
α

2(1 + `) + α
ρ12λ̄

)2

− 2ρ12

(
1 +

α

2(1 + `) + α
ρ12λ̄

)(
α

2(1 + `) + α
ρ12 + λ̄

)
−
(

α

2(1 + `) + α
ρ12 + λ̄

)2

=− 4α(1 + `+ α)

(2(1 + `) + α)2
ρ2

12

(
1 +

(
2(1 + `) + α

1 + `+ α

1

ρ12
+

α

1 + `+ α
ρ12

)
λ̄+ λ̄2

)
. (2.3.31)

If ρ12 ≥ 0, 1 +
(

2(1+`)+α
1+`+α

1
ρ12

+ α
1+`+αρ12

)
λ̄ + λ̄2 ≥ 0, and hence |Beta∗1 − 1| − |BetaM1 − 1| ≤ 0. If

ρ12 < 0, |Beta∗1 − 1| − |BetaM1 − 1| ≤ 0 is equivalent to

1 +

(
2(1 + `) + α

1 + `+ α

1

ρ12
+

α

1 + `+ α
ρ12

)
λ̄+ λ̄2 ≥ 0. (2.3.32)

Since α
1+`+αρ12 + 2(1+`)+α

1+`+α
1
ρ12

is negative and is decreasing in ρ12 ∈ [−1, 0), the maximum value at
ρ12 = −1 is −2, and ∆ ≥ 0. Since λ ≤ 1, the two roots of the left hand side of (2.3.32) are

−
(

α
1+`+αρ12 + 2(1+`)+α

1+`+α
1
ρ12

)
+
√

∆

2
≥ 1 and 0 ≤

−
(

α
1+`+αρ12 + 2(1+`)+α

1+`+α
1
ρ12

)
−
√

∆

2
,

and |Beta∗1− 1| − |BetaM1 − 1| ≤ 0 if λ̄ ≤
−
(

α
1+`+α

ρ12+
2(1+`)+α

1+`+α
1
ρ12

)
−
√

∆

2 , and otherwise the inequality
is reversed.
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On the other hand, algebraic calculations show that Beta∗2−1 = − (Beta∗1 − 1) ≤ 0 and BetaM2 −
1 = −

(
BetaM1 − 1

)
≤ 0. Thus the difference between Beta∗2, BetaM2 and Beta∗1, BetaM1 is at the

numerator, which is now λ̄2− 1. Therefore, the sign of |Beta∗2− 1| − |BetaM2 − 1| = Beta∗1−BetaM1
is the same as (2.3.31), and equivalent conditions for Fund 1 still hold.

The proof of Proposition 11. Let X̃it = exp
(
−
(
r −

(
1 + N−1

N αi
)
ψi + αi

N

∑N
j 6=i ψj

)
t
)
Xit. Then

with ζit = N+(N−1)αi
N θit − αi

N

∑N
j 6=i θjt, X̃i follows

dX̃it

X̃it

= ζit(adt+ bdBt), X̃i0 = Xi0 = 1. (2.3.33)

We first calculate the optimal ζi (or equivalently the optimal θi) given θj ’s (j 6= i) of other funds.
With dξt/ξt = −λmdBt and ξ0 = 1, d(ξtX̃it) = ξtX̃it (ζitb− λm) dBt, which is a non-negative local
martingale, and thus a supermartingale. Then for 0 < γi < 1 (the case of γi > 1 follows similarly),
by Hölder’s inequality, for any θ = (θ1, . . . , θN ) ∈ ΘN ,

E

[
X̃1−γi
it

1− γi

]
=

E
[(
ξtX̃it

)1−γi
ξγi−1
t

]
1− γi

≤
E
[
ξtX̂it

]1−γi
E
[
ξ
− 1−γi

γi
t

]γi
1− γi

≤
exp

(
1−γi
2γi

λ2
mt
)

1− γi
, (2.3.34)

which gives an upper bound of E
[
X̃

1−γi
it

1−γi

]
. On the other hand, with θit =

N

(
λm
γib

+
αi
N

N∑
j 6=1

θjt

)
N+(N−1)αi

, and

thus ζit = λm
γib

, E
[

1
1−γi X̃

1−γi
it

]
=

exp
(

1−γi
2γi

λ2
mt
)

1−γi , which indicates that ζi is the maximizer of E
[
X̃

1−γi
it

1−γi

]
.

Since ζit = λm
γib

is a constant strategy, independent of t, it also maximizes manager i’s expected
utility ∫ T

0
e(−βi+r−(1+N−1

N
αi)ψi+

αi
N

∑N
j 6=i ψj)tψ1−γi

i

E
[
X̃1−γi
it

]
1− γi

dt,

and the optimal strategy given θj ’s (j 6= i) is θit =
N

(
λm
γib

+
αi
N

N∑
j 6=i

θjt

)
N+(N−1)αi

.
To find the equilibrium, it suffices to solve the system of N equations, each representing the

optimal strategy given the portfolio of other funds: PIθt = λm
b γ
−1e, where θt = (θ1t, · · · , θNt)′,

e is the N -dimensional vector with all entries equal to 1, PI the N × N matrix with (PI)i,j ={
N+(N−1)αi

N if i = j

−αi
N if i 6= j,

and γ is defined in Theorem 8. Since PI is strictly diagonally dominated and

thus invertible, there exists a unique solution θ∗ = λm
b P

−1
I γ−1e for every 0 ≤ t ≤ T . Furthermore,

since PI = − 1
NA2(D + ee′), where A2 is the diagonal matrix defined in the proof of Lemma 14, D

is an N ×N diagonal matrix with (D)ii = − 1
cii
− 1, 1 ≤ i ≤ N , by Sherman-Morrison-Woodbury

formula (See equation 2.1.4 in Golub and Van Loan (1996)),

(P−1
I )i,j =

{
1

1+αi
+ 1+ᾱ

N
αi

(1+αi)2 , i = j
1+ᾱ
N

αi
(1+αi)(1+αj)

, i 6= j
,

and this solution reduces to θ∗i = λm
b

(
1

1+αi
1
γi

+ αi
1+αi

1
γ̄

)
for 1 ≤ i ≤ N .
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The proof of Proposition 12. (i) Both θ∗i and θMi are proportion to λm
b , while the coefficient

for θMi is 1
γi

and that for θ∗i is a convex combination between 1
γi

and 1
γ̄ . The claim follows by the

comparing the two coefficients. (ii) Since 1
N

N∑
i=1

(
1

1+αi
1
γi

+ αi
1+αi

1
γ̄

)
= 1

γ̄ , θ̄∗ = λm
bγ̄ , and

θ̄∗ − θ̄M =
λm
b

(
1

γ̄
− 1

N

N∑
i=1

1

γi

)
=
λm
b

(
1 + ᾱ

N

N∑
i=1

1

(1 + αi)γi
− 1

N

N∑
i=1

1

γi

)

=
λm
b

1

N

N∑
i=1

(
1 + ᾱ

1 + αi
− 1

)
1

γi
. (2.3.35)

Since (γi − γj)(αi − αj) ≥ 0 for every pair of i and j,
(

1+ᾱ
1+αi

− 1
)

’s and 1
γi

’s are similarly ordered,

and from Tchebychef’s inequality (Hardy et al. 1952, 2.17.1), the above is greater than or equal to

λm
b

1

N

N∑
i=1

(
1 + ᾱ

1 + αi
− 1

)
1

N

N∑
i=1

1

γi
= 0, (2.3.36)

and the inequality is reversed if (γi − γj)(αi − αj) ≤ 0 for every pair of i and j.

(iii) θ̄∗ = θ̄M follows from (ii). Furthermore, since 1
γ̄ = 1

N

N∑
i=1

1
γi

,

θ∗i − θ̄∗ =
λm
b

 1

1 + α

1

γi
+

N∑
j=1

(
α

N(1 + α)

1

γj

)
− 1

N

∑
j=1

1

γj

 =
λm
b

 1

1 + α

1

γi
− 1

1 + α

1

N

N∑
j=1

1

γj


(2.3.37)

=
1

1 + α

λm
b

 1

γi
− 1

N

N∑
j=1

1

γj

 =
1

1 + α

(
θMi − θ̄M

)
.
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Chapter 3

Model II: Optimal Capital Gain Tax

3.1 Model

3.1.1 Optimization Problems

First, we describe the optimization problem for the managers and the policy makers before giving
the details of the model. We assume that the policy makers can decide the capital gain tax rate
τc ∈ [0, 1] at time 0. The representative fund manager’s problem is, given the τc, choosing the
optimal portfolio π ∈ A to maximize the terminal utility,

Jm(π; τc) = E [u0(AT )] ,

where A is the admissible set for π, u(·) is manager’s utility function, and AT is the terminal after-
tax wealth, which will be discussed in more details below. We assume that the utility function is
of constant relative risk aversion type with risk aversion γ > 0(6= 1), u0(x) = 1

1−γx
1−γ . AT consists

of the performance fees given by the investors and the capital gain taxes deducted at the terminal.
Meanwhile, since investors may not be in the country, policy makers want to maximize the tax

incomes from the funds – both the income tax and the capital gain tax with rate τc. Since income
tax rate τo is related to many other aspects of the society, like employment rate, and is hard to
alter in short time, τo is regarded as constant in our model. Therefore, policy makers face a mean
variance problem, which maximizes the tax incomes collected from time 0 to T by choosing the
optimal τc ∈ [0, 1],

Jp(τc) = E [NT ]− 1

2
wVar [NT ] , (3.1.1)

where NT is the discounted cumulative collected taxes including both income taxes and capital
gain taxes, and w is the risk aversion of the policy makers.

3.1.2 Model Details

Consider a complete filtered probability space (Ω,F , {Ft}t≥0 ,P) which is generated by Brownian

Motion W . Suppose that the fund allocates its asset between the risk-free asset S0, which earns a
constant rate of return r, and its own risky investment opportunity S, which is public information
among market, and follows the dynamics

dSt
St

=(r + µ)dt+ σdWt, (3.1.2)

29



with µ and σ as the excess return and the volatility of the investment opportunity. Denote θ ..= µ
σ

and πt as the proportions of fund’s assets invested in S at time t, which is integrable with respect
to W . Denote the collection of all such strategies as A. The investors of the fund compensate the
manager by management fees ψIt and the performance fees α(IT − I0)+ at the end of the period if
values in their accounts increase, where ψ, α > 0 are constants representing the management and
performance fee rates, and It is the value at time t in investors’ accounts. Given π ∈ A, the values
in manager’s own account Ft and investors’ account It follow

dIt =(r − ψ)Itdt+ πtIt(µdt+ σdWt), (3.1.3)

dFt =ψIt(1− τo)dt+ rFtdt+ πtFt(µdt+ σdWt). (3.1.4)

The terminal after-tax wealth AT and the cumulative tax collected NT can be represented as

AT = FT + α(IT − I0)+ − τc (FT + α(IT − I0)+ − F0)+ ,

NT =

∫ T

0
e−rtτoψItdt+ e−rT τc (FT + α(IT − I0)+ − F0)+ .

Define
dZt = Zt [(r − ψ)dt+ πt(µdt+ σdWt)] , Z0 = 1.

Zt represents the after-fee return rate of manager’s portfolio since It = I0Zt. Accordingly, FT =
AZT and

AT =


AZT , ZT ≤ D

A

(1− τc)AZT + τcD , D
A < ZT ≤ 1

(1− τc)(A+B)ZT + τcD − (1− τc)B , ZT > 1

, (3.1.5)

where

A = F0e
ψT + I0(1− τo)

(
eψT − 1

)
, B = αI0 , D = F0.

Note that the terminal after-tax wealth is a function of ZT alone, and therefore, manager’s value
function is Markovian under the return rate Z. Denote u(ZT ) ..= u0(AT ). For the following
discussions, we will base our analyses on the process Z and the according value function V (t, Z),

V (t, Z) = sup
π∈A

E [u(ZT )|Zt = Z] .

3.1.3 N-player Game

It is natural to extend the model to N funds with one representative policy maker, and each fund
has different risk aversion γi, performance fee rates αi, management fee rate ψi, and initial values for
both investors’ and managers’ account Ii0 and Fi0. Due to the solvability of the model, we assume
γi > 1 for i = 1, · · · , N . This is actually a reasonable assumption due to the empirical results in
Chetty (2006), Friend and Blume (1975), Szpiro (1986), Vissing-Jørgensen and Attanasio (2003).
Dynamics for both processes are the same as (3.1.3) and (3.1.4) except that those parameters are
related to player i. For the tractability of the model, we assume that all managers can invest in
the risk-free asset S0 and the common investment opportunity S, which shares the same dynamic
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as (3.1.2). The admissible set A thus remains the same as well. This reflects the case when
competitions are among passive funds who track one common investment opportunity such as S&P
500.

Competitions are introduced among all managers by combining the relative performances in
the terminal utility functions. For manager i, given πi ∈ A, define

dZit = Zit [(r − ψi)dt+ πit(µdt+ σdWt)] , Zi0 = 1.

Similarly, ZiT represents fund i’s after-fee return rate at terminal, so the relative performance for
manager i is

RiT =
Z−iT
ZiT

, Z−iT =
1

N − 1

N∑
j 6=i

ZjT .

Now manager i’s utility function ui0 is based on the terminal after-tax wealth AiT and the relative
performance RiT with

ui0(x, r) = λi
1

1− γi
x1−γi − (1− λi)ζir, (3.1.6)

with λi ∈ [0, 1] as the weight between the utility brought by the terminal wealth and the relative
performance and ζi ≥ 0 as the sensitivity to the relative performance. Positiveness of ζi reflects
the observation that better relative performance brings cash inflow to the fund as well as builds
fund’s reputations and gains further income, and vice versa. More precisely, −ζir can be changed
to −ζi(r − 1), representing the gain and loss caused by the relative performance, but since ζi is
a constant, it is equivalent to solve (3.1.6). Similarly, each manager chooses πi ∈ A to maximize
their terminal utility,

Jim(πi, π−i; τc) = E [ui0(AiT , RiT )] ,

where π =
[
π1 · · · πN

]
, π−i is the vector in RN−1 by removing the ith element from π, and AiT

is defined as

AiT =


AiZiT , ZiT ≤ Di

Ai

(1− τc)AiZiT + τcDi , Di
Ai
< ZiT ≤ 1

(1− τc)(Ai +Bi)ZiT + τcDi − (1− τc)Bi , ZiT > 1

,

where

Ai = Fi0e
ψiT + Ii0(1− τo)

(
eψiT − 1

)
, Bi = αiIi0 , Di = Fi0.

Note that AiT and RiT can be represented as functions of ZiT and Z−iT , and thus we define

ui(ZiT , Z−iT ) ..= ui0(AiT , RiT ),

which is used in the following discussions instead of ui0.
We will discuss the Pareto optimal Nash equilibrium among N funds as defined in Definition

3. Note that in this Chapter, there is only one risky investment opportunity for managers, so
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θi should be omitted in the definition of Pareto optimal Nash equilibrium. For the existence of
Nash equilibrium, we need to introduce the weighted L2 space L2,φ with the norms ‖f‖φ,2 =(∫

R ‖f(x)‖22φ(x)dx
) 1

2 , where φ is the one-dimensional normal density function with mean 0 and
variance T and ‖ · ‖2 is the Euclidean norm on R2. Note that the space is complete. Denote L2,φ,+

as the subset of L2,φ where functions are non-negative.

In the extension of N -player game, policy maker faces the same problem but Nt becomes the
sum of all managers’ taxes collected,

NT =

N∑
i=1

∫ T

0
e−rtτoψiIitdt+ e−rT τc (FiT + αi(IiT − Ii0)+ − Fi0)+ .

3.2 Main Results

In this section we will present the main results of this paper and discuss their implications. The
following theorems show that there exists an optimal control π̂ for one representative manager or
a unique Pareto optimal Nash Equilibrium for N -player game and an optimal τc for the policy
makers. There exist multiple equilibria if competitions are introduced. The equilibria are totally
ordered, both element-wise and in the sense of the value of utility functions, and thus the Pareto
optimal Nash equilibrium can be found.

3.2.1 Funds’ and Policy Makers’ Problems

Theorem 15. Given the capital gain tax rate τc ∈ [0, 1],

(i) One-player model: the optimal strategy ẐT for the manager is

ẐT = x̂(η̂eψT ξT ),

where ξt is the unique stochastic discount factor ξt = exp
(
−
(
r + 1

2θ
2
)
t− θWt

)
and the unique

η̂ solves E
[
eψT ξT ẐT

]
= 1. Moreover, the according optimal portfolio strategy can be described

as

π̂t =
l̂x(t,Wt + θt)

σl̂(t,Wt + θt)
,

where x̂(·) is defined in (3.2.1)-(3.2.3) in section 3.2.3.1 and

l̂(t, x) =
e−(r−ψ)(T−t)√

2π(T − t)

∫
R
e
− (y−x)2

2(T−t) x̂
(
η̂eψT e−(r+ 1

2
θ2)T−θ(y−θT )

)
dy.

(ii) N-player game with mini γi > 1: the unique Pareto optimal Nash equilibrium for the optimal
strategy π̂ can be described as

π̂it =
(l̂i)x(t,Wt + θt)

σl̂i(t,Wt + θt)
,
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where li is the feedback form of ZiT such that ZiT = li(η̂,WT ), where η̂ uniquely solves
E
[
eψiT ξTZiT

]
= 1 for i = 1, · · · , N and

l̂i(t, x) =
e−(r−ψi)(T−t)√

2π(T − t)

∫
R
e
− (y−x)2

2(T−t) li(η̂, y − θT )dy.

The optimal π̂ for one player model is the result of the concavification, see the general theory
in Bichuch and Sturm (2014) and Seifried (2010). Since u(AT ) with (3.1.5) is a piece-wise concave
function of ZT , but has kinks at D

A and 1, the dual of u(AT ) has different expressions depending
on the relationship between A and (1 − τc)(A + B). Note that τc has two effects on managers’
terminal wealth and according optimal portfolio. On one side, larger τc means less managers’
terminal wealth, and managers’ strategies are more cautious. For example, in the extreme case
when τc = 1, there is a hard stop for managers’ wealth at D = F0, and a hard stop of optimal ZT
at 1. In this case, managers do not try to earn money for both themselves and the investors. On
the contrary, they are aiming for losing certain amount of money and maximize their incomes from
the management fees. On the other hand, larger τc may stimulate managers to be more aggressive
to maintain similar earnings compared to the lower τc case. For example, when τc = 0, managers’
wealth increases more quickly when they try to make profits than when they lose money according
to (3.1.5), and thus their strategies become aggressive to have a better position in the terminal
wealth. Those two effects are summarized as the substitution and income effect in Feldstein and
Yitzhaki (1978), Balcer and Judd (1987).

For N -player game, we solve the fixed point problem for l = Pl where ẐiT = li(η̂,WT ). The
details will be discussed in the section 3.2.3.2. Note that for fixed ω ∈ Ω and η ∈ RN , ZiT (ω)
(or li(η, x)) forms a system of non-linear equations in RN through their reaction functions, and
the solution of Nash equilibrium can be constructed through each point. Hence, the existence
of multiple intersections of the reaction functions for each point gives the possibility of multiple
equilibria for ẐT as well.

Consider one example of two players with λ1 = 0 and τc = 0 for simplicity. The utility functions
are

u1(x1, x2) =− x2

x1
, u2(x1, x2) = − 1

10

(
9

A2
+
x1

x2

)
,

where A2 =

{
x2 , x2 ≤ 1,

2x2 − 1 , x2 > 1.
Define the dual of two functions as

û1(x2, y) = sup
x1≥0

u1(x1, x2)− x1y , û2(x1, y) = sup
x2≥0

u2(x1, x2)− x2y,

The optimal reaction function for player 1 is x∗1 =
√

x2
y , and the optimal reaction function for player

2 is x∗2, which is determined by the maximum of the following two functions and the according
optimal x2:

sup
x2≤1

u2(x1, x2)− x2y =

{
−2
√
y
√

9+x1
10 , y > 9+x1

10 ,

−9+x1
10 − y , y ≤ 9+x1

10 ,
, x2 =

{√
9+x1
10y , y > 9+x1

10 ,

1 , y ≤ 9+x1
10 ,

,

sup
x2>1

u2(x1, x2)− x2y =

{
− 1

10

(
9

2x20−1 + x1
x20

)
− x20y , y ≤ 18+x1

10 ,

−9+x1
10 − y , y > 18+x1

10 ,
, x2 =

{
x20 , y ≤ 18+x1

10 ,

1 , y > 18+x1
10 ,

,
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where x20 solves 1
10

(
18

(2x20−1)2 + x1

x2
20

)
= y. Since y for each equation equals to ηie

ψT ξT for the final

reaction function, y’s are different for each player as long as ηi’s are different. Here, suppose for
fixed WT value, η1e

ψT ξT = 3 and η2e
ψT ξT = 0.1, and the reaction functions are represented in

Figure 3.1 (a). This shows the possible multi fixed points for the pointwise problem with fixed η.
We show in section 3.2.3.2 that the multiple Nash equilibria are totally ordered, in the sense

of both the value function and element-wise comparisons. When γi > 1, after we substitute ZiT as
the reaction function of Z−iT , the utility function of player i is a non-increasing function of Z−iT ,
and therefore smaller ZT makes everyone’s utility larger. Hence, the Pareto optimal strategy is the
smallest fixed point of N reaction functions. Figure 3.1 (b) shows the possible multi fixed points of
the reaction functions for different η’s, which shows the element-wise order of two equilibria. The
smaller one is the Pareto optimal Nash equilibrium. Note that the η’s are not given, but calculated
through the budget constraints E

[
eψT ξTZiT

]
= 1 for all i = 1, · · · , N .
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(a) Reaction functions with y1 = 1/172 and y2 = 3.
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(b) Reaction functions with η’s satisfying the budget
constraints.

Figure 3.1: Reaction functions for both players. (a) shows the possible multiple fixed points for
some fixed η’s (b) shows two different equilibrium points, where both sets of η’s satisfy the budget
constraints. Setting 1 gives η1 = 0.9897, η2 = 1.3699; and Setting 2 gives η1 = 0.8852; η2 = 0.3197.
The left intersection point is the Pareto optimal one. r = 0.05, µ = 0.15, σ = 0.2, ψ1 = ψ2 = 0.02,
T = 1.

Given the optimal portfolio(s) for both 1-player model and N -player games, Jp(τc) is a contin-
uous function of τc. Since τc ∈ [0, 1], there must exist a maximum point in the interval. Therefore,
the following theorem can be concluded.

Theorem 16. Given the optimal π̂ defined in Theorem 15, there exists an optimal τc ∈ [0, 1] such
that Jp achieves its maximum.

As discussed above, τc has a negative effect on managers’ strategies, which brings down the
tax basis since managers are reluctant to gain more profits. However, higher tax rate τc also
means potential higher total tax income. The two effects have the opposite effect on policy makers’
decisions of optimal tax rate. It is hard to get the exact value of the optimal τc due to the complexity
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of Jp as a function of τc. We will discuss in section 3.3 how the optimal τc changes numerically
according to different risk aversions of managers and policy makers.

3.2.2 Sensitivity Analysis

In reality, risk aversions and sensitivity coefficients are hard to estimate, especially for the N -player
game. Estimating other managers’ risk aversions and sensitivity coefficients could have potential
errors, which bring biases in the Pareto optimal Nash equilibrium. In this section, we will show
that the deviations from parameters do not cause huge changes in the optimal strategy, or in other
words, the equilibrium is stable.

Theorem 17. For N -player games with mini γi > 1, consider the parameter triple (γ, ζ, λ) and its
perturbation (γ + ∆γ, ζ + ∆ζ, λ+ ∆λ) where each element is an N -dimensional vector. Denote the
according unique Pareto optimal Nash equilibrium as π̂ and π̂∆ and ∆ = max {‖∆γ‖2, ‖∆ζ‖2, ‖∆λ‖2}.
Then, there exists a function K depending on t, Wt, γ, ζ, λ such that

‖π̂t − π̂∆t‖2 ≤ K(t,Wt, γ, ζ, λ)∆|ln ∆|.

The detailed proof is shown in Appendix 3.4.3. Based on the result of Theorem 17, the optimal
portfolios for N -player games are useful even if managers can only approximate the other managers’
parameters. As long as the approximation is not too far away, the optimal strategy is stable and
applicable. Meanwhile, the difference between two equilibria is measured pointwisely, and thus, K
is function of Wt. As shown in the proof of Theorem 17, K will explode when Wt achieves both
positive and negative extreme value, but it is of order O(W 2

t ). Combining with the density of
Brownian motion at time t, we can conclude that the difference between the optimal π̂’s in L2(P)
is also of order O(∆|ln ∆|).

Meanwhile, the |ln ∆| term actually comes from the perturbation of γ. Hence, the optimal
strategies are more sensitive to the γ. In practice, this gives managers a hint that approximation
of γ is more important than the other two parameters, although it is hard to estimate people’s risk
aversion in general. This also indicates that for the policy makers, they need to take the upper
bound of the perturbations into consideration when deciding the optimal tax rate.

3.2.3 Proof of Theorem 15

We will mainly use the concavification technique to deal with the non-concave property of the
utility function on ZT . Since our models only depend on the terminal wealth, the first step is to
find the optimal terminal wealth ZT or the Pareto optimal Nash equilibrium ZiT in N -player game.
Then based on the martingale property of ZT (ZiT ), the optimal portfolio can be constructed. Note
that the Pareto optimality of ZiT is in the path-wise sense: for each ω ∈ Ω, the Pareto optimal
ẐiT (ω) ≥ Z̃iT (ω) for any Nash equilibrium Z̃iT and i = 1, · · · , N .

3.2.3.1 One-player model

Define x̂(y) as
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(i) If y0 ≤ (1− τc)AD−γ ,

x̂(y) =



(
1

(1−τc)(A+B)

)− 1−γ
γ
y
− 1
γ + B

A+B −
τc

1−τc
D

A+B , y < y0,(
1

(1−τc)A

)− 1−γ
γ
y
− 1
γ − τc

1−τc
D
A , y0 ≤ y < (1− τc)AD−γ ,

D
A , (1− τc)AD−γ ≤ y < AD−γ ,(

1
A

)− 1−γ
γ y

− 1
γ , y ≥ AD−γ ,

(3.2.1)

(ii) If the condition in i) is not satisfied and y1 ≤ AD−γ or (1 − τc)AD
−γ < (1 − τc)(A +

B) [(1− τc)A+ τcD]−γ ≤ AD−γ ,

x̂(y) =


(

1
(1−τc)(A+B)

)− 1−γ
γ
y
− 1
γ + B

A+B −
τc

1−τc
D

A+B , y < y1,

D
A , y1 ≤ y < AD−γ ,(

1
A

)− 1−γ
γ y

− 1
γ , y ≥ AD−γ ,

(3.2.2)

(iii) If conditions in i) and ii) are not satisfied,

x̂(y) =


(

1
(1−τc)(A+B)

)− 1−γ
γ
y
− 1
γ + B

A+B −
τc

1−τc
D

A+B , y < y2,(
1
A

)− 1−γ
γ y

− 1
γ , y ≥ y2,

(3.2.3)

where

y0 =(1− τc)[(1− τc)A+ τcD]−γ


− γ

1−γ

((
1
A

)− 1−γ
γ −

(
1

A+B

)− 1−γ
γ

)
1
A −

1
A+B


γ

, (3.2.4)

y2 =A−γ
(

(1− τc)B − τcA
(1− τc)B − τcD

)γ 
− γ

1−γ

((
1
A

)− 1−γ
γ −

(
1

(1−τc)(A+B)

)− 1−γ
γ

)
1
A −

1
(1−τc)(A+B)


γ

, (3.2.5)

and y1 uniquely solves

1

1− γ
D1−γ − yD

A
=

γ

1− γ

(
y

(A+B)(1− τc)

)− 1−γ
γ

+

(
τc

1− τc
D

A+B
− B

A+B

)
y. (3.2.6)

Proof of Theorem 15 (i): First, let us show the existence and uniqueness of the η̂. The uniqueness

is obvious since ẐT is non-increasing function of η̂, and so is E
[
eψT ξT ẐT

]
. For the existence, in

either case, when η̂ goes to 0, E
[
eψT ξT ẐT

]
goes to infinite, and vice versa. Combining the above

argument, the equation has a unique solution η̂.
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Under each condition, as shown in Lemma 21, the x̂ achieving û(y) = supx u(x)−xy is (3.2.1) -
(3.2.3). Meanwhile, since d(eψT ξtZt) = eψT ξtZt(πtσ− θ)dWt, and eψT ξtZt ≥ 0, it is a supermartin-
gale. Thus,

E
[
eψT ξTZT

]
≤ 1,

and E
[∫ T

0 eψT ξtZt(πtσ − θ)dWt

]
≤ 0. Define

Λ(ηξT ) = sup
ZT≥0

E
[
u(ZT )− ηeψT ξTZT + η +

∫ T

0
ηeψT ξtZt(πtσ − θ)dWt

]
≤ η + E

[
û
(
ηeψT ξT

)]
,

(3.2.7)

due to the conclusions in Lemma 21. Thus, Jm ≤ infη≥0 Λ(ηξT ) ≤ Λ(η̂ξT ) ≤ η̂ + E [û(η̂ξT )], and
the equality in (3.2.7) is achieved with η changed to η̂ when ZT arrives at ẐT = x̂

(
η̂eψT ξT

)
.

After changing to the risk-neutral measure, where dWQ
t = dWt + θdt, we want to show that

Ẑt = l̂(t,WQ
t ). Since dẐt/Ẑt = (r − ψ)dt+ π̂t(µdt+ σdWt), with π̂t =

l̂x(t,WQ
t )

σl̂(t,WQ
t )

,

d ln
(
e−(r−ψ)tẐt

)
= −1

2

(
l̂x

l̂

)2

dt+
l̂x

l̂
dWQ

t .

At the same time, denote l(t, x) ..= e(r−ψ)(T−t) l̂(t, x). Due to the fact that ∂tl + 1
2∂xxl = 0,

d ln
(
l(t,WQ

t )
)

=

(
1

l

∂l

∂t
+

1

l

1

2

∂2l

∂x2
− 1

2

l2x
l2

)
dt+

lx
l
dWQ

t = −1

2

(
l̂x

l̂

)2

dt+
l̂x

l̂
dWQ

t ,

since lx/l = l̂x/l̂. Combining with the fact that ẐT = l̂
(
T,WQ

T

)
, we can conclude that Ẑt and

l̂(t,WQ
t ) are modifications of each other, which verifies the optimality of π̂t.

3.2.3.2 N-player Game

Define ûi(y, z) ..= supx ui(x, z)− xy for fixed z. Denote

ûi1(y, z) = sup
x≤Di

Ai

ui(x, z)− xy , ûi2(y, z) = sup
Di
Ai
<x≤1

ui(x, z)− xy , ûi3(y, z) = sup
x>1

ui(x, z)− xy.
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They can be explicitly calculated in the following expressions.

ûi1 =

 λi
1−γi (Aix

∗
1)1−γi − (1− λi)ζi zx∗1 − x

∗
1y , y ≥ λiAiD−γii + (1− λi)ζi

(
Di
Ai

)2
z,

λi
1−γiD

1−γi
i − (1− λi)ζi AiDi z −

Di
Ai
y , otherwise,

ûi2 =



λi
1−γiD

1−γi
i − (1− λi)ζi AiDi z −

Di
Ai
y , y ≥ λi(1− τc)AiD−γii + (1− λi)ζi

(
Ai
Di

)2
z,

λi
1−γi ((1− τc)Aix∗2 + τcDi)

1−γi − , λi(1− τc)Ai ((1− τc)Ai + τcDi)
−γi + (1− λi)ζiz

(1− λi)ζi zx∗2 − x
∗
2y ≤ y < λi(1− τc)AiD−γii + (1− λi)ζi

(
Ai
Di

)2
z,

λi
1−γi ((1− τc)Ai + τcDi)

1−γi , otherwise,

−(1− λi)ζiz − y

ûi3 =


λi

1−γi ((1− τc)Ai + τcDi)
1−γi − (1− λi)ζiz − y , y ≥ λi(1− τc)(Ai +Bi)·

[(1− τc)Ai + τcDi]
−γi + (1− λi)ζiz,

λi
1−γi ((1− τc)(Ai +Bi)x

∗
3 + τcDi − (1− τc)Bi)1−γi , otherwise,

−(1− λi)ζi zx∗3 − x
∗
3y

where x∗i (i = 1, 2, 3) are functions of y and z and uniquely solve

y = λiA
1−γi
i (x∗1)−γi + (1− λi)ζiz(x∗1)−2, (3.2.8)

y = (1− τc)Aiλi ((1− τc)Aix∗2 + τcDi)
−γi + (1− λi)ζiz(x∗2)−2, (3.2.9)

y = (1− τc)(Ai +Bi)λi ((1− τc)(Ai +Bi)x
∗
3 + τcDi − (1− τc)Bi)−γi + (1− λi)ζiz(x∗3)−2.

(3.2.10)

Denote x̂ik (as a function of y and z) as the optimizer of ûik:

x̂i1 =


x∗1 , y ≥ λiAiD−γii +

(1− λi)ζi
(
Di
Ai

)2
z,

Di
Ai

, otherwise,

, x̂i3 =


1 , y ≥ λi(1− τc)(Ai +Bi)((1− τc)Ai + τcDi)

−γi+

(1− λi)ζiz,
x∗3 , otherwise,

x̂i2 =


Di
Ai

, y ≥ λi(1− τc)AiD−γii + (1− λi)ζi
(
Ai
Di

)2
z,

x∗2 , λi(1− τc)Ai((1− τc)Ai + τcDi)
−γi + (1− λi)ζiz ≤ y < λi(1− τc)AiD−γii + (1− λi)ζi

(
Ai
Di

)2
z,

1 , otherwise.

Hence, ûi(y, z) = maxk=1,2,3{ûik}, and the according value of x to achieve the supremum can be
described as x̂i(y, z): R+ × R+ → R+.

Lemma 18. Given mini γi > 1, for fund i, the reaction function ẐiT of the other parties Z−i has
the following expression,

ẐiT = x̂i

(
eψiT η̂iξT , Z−i

)
, (3.2.11)

for some η̂ satisfying the budget constraint E
[
eψiT ξT ẐiT

]
= 1 for i = 1, · · · , N .
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Since we suppose that ZiT has the feedback form of ZiT = li(η,WT ), li’s form the following
system l = Pl, where each li, it follows

li(η, x) = x̂i

ηieψiT e−(r+ 1
2
θ2)T e−θx,

1

N − 1

N∑
j 6=i

lj(η, x)

 , for all i = 1, · · · , N. (3.2.12)

Define the weighted L2 space L2,φ with the norms ‖f‖φ,2 ..=
(∫

R ‖f(x)‖22φ(x)dx
) 1

2 , where φ is the
one-dimensional normal density function with mean 0 and variance T and ‖ · ‖2 is the Euclidean
norm on R2. Note that the space L2,φ is complete. Denote L2,φ,+ as the subset of L2,φ where
functions are non-negative.

Lemma 19. Given mini γi > 1, for fixed η, there exists a solution to (3.2.12) in L2,φ,+. Further-
more, if there exists multiple fixed points, there exists the unique best fixed point in the sense of the
value of utility functions, i.e. l̂ is the solution to (3.2.12) and

l̂i(η, x) = arg max
l=Pl

ui

li(η, x),
1

N − 1

N∑
j 6=i

lj(η, x)

 .

The detailed proof is in Appendix 3.4.2. For fixed η, we choose the unique best fixed point as
the fixed point generated from η. The next step is to show there exists η such that the budget
constraint is satisfied. By such construction, we can have the solution satisfying Lemma 18 and it
is the best one in the sense of the value of utility functions. In other word, the solution is Pareto
optimal.

Lemma 20. Given mini γi > 1 and the unique best fixed point generated by η, there exists a unique
η̂ such that the budget constraints

E
[
eψiT ξT li(η̂,WT )

]
= 1,

for all i = 1, · · · , N .

Therefore, η̂ and the according l̂ constructed in Lemma 20 give the required Pareto optimal
strategy, and the according portfolio can be derived through the heat kernel. The proof is similar
to the proof for one-player model, which is omitted here.

3.3 Numerical Examples

To illustrate how tax rates change managers’ behaviors and what is the optimal tax rate for policy
makers, it is simpler to present the result of one-player model. The followings are the parameters
that we use for the approximation of one-player model:

r = 0.01 , µ = 0.1 , σ = 0.2 , T = 1 , γ = 2 , F0 = 1 , I0 = 2 , α = 0.2 , w = 10 , ψ = 0.01 , τo = 0.3.

We transform the expression of l̂ to the expectation according to some normal random variables
with normal distribution and use the Monte Carlo simulation to approximate Jp defined in (3.1.1).
For the calculation of π̂t, we use δ = 10−4 and

πt ≈
ln
(
l̂(t,Wt + θt+ δ)

)
− ln

(
l̂(t,Wt + θt)

)
σδ

.
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(a) One sample path of π.
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Figure 3.2: (a) Sample path of π and (b) quadratic variation of Zt with respect to different tax
rates.

Figure 3.2 shows the perspective of managers with respect to different tax rates. The left one
shows one sample path of π according to tax rates. The optimal portfolio is less aggressive with
larger τc at the beginning and increases when the time is closer to the terminal time. Figure 3.2
(b) has a better illustration of this pattern with quadratic variation of Zt. The curves with respect
to different τc come across with each other at around time 0.68. This is the result of substitution
and income effect mentioned in Section 3.2.1: managers incline to be more conservative due to the
less marginal after-tax income with high tax rate, while they also tend to be more aggressive to
overcome the loss from taxes. From figure 3.2, the closer to the terminal time, the more aggressive
managers tend to be, since their utilities are based on the terminal wealth, and their urges to
overcome the tax loss are more intensive.

Figure 3.3 shows how the policy makers’ objective function changes according to different τc.
The left figure shows that Jp achieves the maximum at around τc = 20%. When τc is small, the
extra income brought by the higher tax rates dominates, and the objective function increases with
larger τc. However, since higher τc also prevents managers to invest, which causes a smaller base to
tax on, when τc is closer to 1, this effect dominates, and the objective function drops dramatically.
Same argument works for any combination of managers’ and policy makers’ risk aversion γ and
w, which gives the optimal τc shown in the right figure. The optimal τc is a decreasing function
of w, which means that policy makers with higher risk aversions set the tax rate lower. At the
same time, for fixed policy makers’ risk aversion w, optimal τc is an increasing function of γ. The
phenomenon can be explained by figure 3.2 and figure 3.4. When facing higher tax rate, managers
tend to be more aggressive at the end of the period, which increase the volatility of the market as
shown in Figure 3.2. Since the major part of tax income for policy makers are at the terminal time,
the volatility of NT becomes larger as shown in figure 3.4 (b), and thus push the policy makers
to choose lower tax rate to maximize their utilities. Meanwhile, when comparing figure 3.4 (a)
and (b), we notice that the change of variance is relatively smaller compared to that of the return
(mean) of NT , which gives another reason why policy makers will pursue a smaller τc.
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Figure 3.3: Policy makers’ objective function Jp v.s. different τc with γ = 2, w = 10. (Left)
Optimal τc v.s. managers’ and policy makers’ risk aversion γ and w. (Right)

We want to mention that in most literature like Stiglitz (1975), Yost (2018), Feldstein (1969),
Falsetta et al. (2013) show that increment in capital gain tax would result in the decrease of
managers’ or householders’ risk-taking. However, this is not the case in our model. Managers
increase their risk-taking when τc is larger, which makes policy makers to lower the capital gain
tax to decrease the volatility of their tax income.

For N -player game, we will use the following example with 3 players:

u1(Z1, Z2, Z3) = − 1

10

(
9

A1
+
Z2 + Z3

2Z1

)
, u2(Z1, Z2, Z3) = −1

2

(
1

2A2
2

+
Z1 + Z3

Z2

)
,

u3(Z1, Z2, Z3) = − 1

9A3
3

− Z1 + Z2

3Z3
, Ai =

{
Zi , Zi ≤ 1,

2Zi − 1 , Zi > 1.
(i = 1, 2, 3)

(3.3.1)

Since in both the cases with and without competition (λi = 1), the optimal portfolio is calculated
through the heat kernel based on ZT , it is easier to see how managers change their behaviors with
or without competition based on the distribution of ZT . Figure 3.5 shows that under competition,
managers tend to be less aggressive to avoid the possible loss brought by competition. Thus, the
distributions of optimal ZiT move left compared with the case without competition. The result
coincides with the results shown in Chapter 2. Meanwhile, less aggressive means higher risk aversion
if we use a representative player to stand for theN players. Figure 3.6 shows that managers are away
from the market average with competition. This is due to incentives brought by competition such
that managers are more diversified to have a better chance to beat the other parties. Combining
with figure 3.3, we conclude that competition pushes policy maker to increase optimal tax rates so
as to compensate for the loss of tax incomes.
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(a) Sharpe ratio of NT . (b) Variance of NT .

Figure 3.4: (a) Optimal Sharpe ratio and (b) variance of policy makers’ income NT .

3.4 Appendix

3.4.1 One-player Model

Lemma 21. û(y) = supx u(x)− xy can be expressed as

(i) If y0 ≤ (1− τc)AD−γ,

û(y) =


v1(y) , y < y0,

v2(y) , y0 ≤ y < (1− τc)AD−γ ,
v3(y) , (1− τc)AD−γ ≤ y < AD−γ),

v4(y) , y ≥ AD−γ ,

(3.4.1)

(ii) If the condition of i) is not satisfied and y1 ≤ AD−γ or (1 − τc)AD
−γ < (1 − τc)(A +

B) [(1− τc)A+ τcD]−γ ≤ AD−γ,

û(y) =


v1(y) , y < y1,

v3(y) , y1 ≤ y < AD−γ ,

v4(y) , y ≥ AD−γ ,
(3.4.2)

(iii) If the conditions of i) and ii) are not satisfied,

û(y) =

{
v1(y) , y < y2,

v4(y) , y ≥ y2,
(3.4.3)
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Figure 3.5: Histogram of ZiT (i = 1, 2, 3) with and without competition. Settings are listed in
(3.3.1) with r = 0.05, µ = 0.15, σ = 0.2, ψ1 = ψ2 = ψ3 = 0.02, T = 1.

where

v1(y) =
γ

1− γ

(
y

(A+B)(1− τc)

)− 1−γ
γ

+

(
τc

1− τc
D

A+B
− B

A+B

)
y,

v2(y) =
γ

1− γ

(
y

A(1− τc)

)− 1−γ
γ

+
τc

1− τc
D

A
y,

v3(y) =
1

1− γ
D1−γ − yD

A
, v4(y) =

γ

1− γ

( y
A

)− 1−γ
γ
.

Meanwhile, this is achieved at x = x̂(y) defined in (3.2.1)-(3.2.3) and the unique y0, y1, y2 defined
in (3.2.4)-(3.2.5).

Proof. Define û1 = supx≤D
A
u(x)− xy, û2 = supD

A
<x≤1 u(x)− xy, and û3 = supx>1 u(x)− xy, and
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Figure 3.6: Beta coefficients of funds with respect to the market average with and without com-
petition. Settings are listed in (3.3.1) with r = 0.05, µ = 0.15, σ = 0.2, ψ1 = ψ2 = ψ3 = 0.02,
T = 1.

then û = max{û1, û2, û3}. Denote v5(y) = 1
1−γ [(1− τc)A+ τcD]1−γ − y.

û1 =

{
v4(y) , y ≥ AD−γ ,
v3(y) , y < AD−γ ,

, û3 =

{
v1(y) , y ≤ (1− τc)(A+B) [(1− τc)A+ τcD]−γ ,

v5(y) , y > (1− τc)(A+B) [(1− τc)A+ τcD]−γ .

û2 =


v5(y) , y < (1− τc)A [(1− τc)A+ τcD]−γ ,

v2(y) , (1− τc)A [(1− τc)A+ τcD]−γ ≤ y < (1− τc)AD−γ ,
v3(y) , y ≥ (1− τc)AD−γ ,

Meanwhile, since v2((1 − τc)AD−γ) = v3((1 − τc)AD−γ) and the first order condition for v2 on
(1− τc)A[(1− τc)A+ τcD]−γ ≤ y ≤ (1− τc)AD−γ is

v′2(y) = −(A(1− τc))
1−γ
γ y
− 1
γ +

τc
1− τc

D

A
≤ − 1

A(1− τc)
((1− τc)A+ τcD) +

τc
1− τc

D

A
≤ −1 ≤ −D

A
,

due to A > D, v2 > v3 on this interval. Due to the fact that v′3(y) > v′5(y) and

(v3 − v5)((1− τc)A[(1− τc)A+ τcD]−γ)

=
1

1− γ
D1−γ − 1

1− γ
[(1− τc)A+ τcD]1−γ − (1− τc)(D −A)[(1− τc)A+ τcD]−γ < 0,

by the concavity of f(x) = 1
1−γx

1−γ , v3 < v5 on y ≤ (1− τc)A[(1− τc)A+ τcD]−γ . Combining all
the calculations together, we have

max{û1, û2} =


v5(y) , y < (1− τc)A [(1− τc)A+ τcD]−γ ,

v2(y) , (1− τc)A [(1− τc)A+ τcD]−γ ≤ y < (1− τc)AD−γ ,
v3(y) , (1− τc)AD−γ ≤ y < AD−γ ,

v4(y) , y ≥ AD−γ .
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For the simplification of the following calculations, by the construction of û3 and max{û1, û2}, we
list the following useful comparisons among vi(i = 1, · · · , 5):

(a) For y ≤ (1− τc)(A+B) [(1− τc)A+ τcD]−γ , v5(y) ≤ v1(y).

(b) v3 ≤ v4, v5 ≤ v2, v3 ≤ v2, and v5 ≤ v1 since v4, v2 and v1 are constructed with zero first order
conditions, but v3, v5 are not.

The following discussions are split into 3 cases: i)(1 − τc)(A + B) [(1− τc)A+ τcD]−γ ≤ (1 −
τc)AD

−γ ; ii)(1 − τc)AD
−γ < (1 − τc)(A + B) [(1− τc)A+ τcD]−γ ≤ AD−γ ; iii)(1 − τc)(A +

B) [(1− τc)A+ τcD]−γ > AD−γ .

(i) When y < (1− τc)A [(1− τc)A+ τcD]−γ , by the relationship shown in (a), û(y) = v1(y).

For (1−τc)A [(1− τc)A+ τcD]−γ ≤ y < (1−τc)(A+B) [(1− τc)A+ τcD]−γ , (3.2.4) is equiva-

lent to v1(y0) = v2(y0). By the convexity of f(x) = γ
1−γx

− 1−γ
γ , (1−τc)A [(1− τc)A+ τcD]−γ <

y0 < (1− τc)(A+B) [(1− τc)A+ τcD]−γ . Therefore,

û(y) =

{
v1(y) , (1− τc)A [(1− τc)A+ τcD]−γ ≤ y < y0,

v2(y) , y0 ≤ y < (1− τc)(A+B) [(1− τc)A+ τcD]−γ .

For (1−τc)(A+B) [(1− τc)A+ τcD]−γ ≤ y < (1−τc)AD−γ , by (b), v5 ≤ v2, and û(y) = v2(y).

For (1− τc)AD−γ ≤ y < ADγ , due to the concavity, A > D and y ≥ (1− τc)AD−γ ,

1

1− γ

[
((1− τc)A+ τcD)1−γ −D1−γ

]
< D−γ(1− τc)(A−D) ≤ y

(
1− D

A

)
,

and thus, û(y) = v3(y). Note the above inequality does not require the upper bound of y.

For y > AD−γ , since by (b), v4(y) ≥ v3(y) ≥ v5(y), and thus û(y) = v4(y). In conclusion, û
can be expressed as (3.4.1).

(ii) For y < (1− τc)A [(1− τc)A+ τcD]−γ , as shown in the calculations of case i), û(y) = v1(y).

For (1− τc)A [(1− τc)A+ τcD]−γ ≤ y < (1− τc)AD−γ , if y0 ≤ (1− τc)AD−γ ,

û(y) =

{
v1(y) , (1− τc)A [(1− τc)A+ τcD]−γ ≤ y < y0,

v2(y) , y0 ≤ y < (1− τc)AD−γ ,

and the following calculations for the other intervals are the same as case i).

Now we consider the case when y0 > (1− τc)AD−γ . For (1− τc)A [(1− τc)A+ τcD]−γ ≤ y <
(1− τc)AD−γ , û(y) = v1(y).

For (1 − τc)AD−γ ≤ y < (1 − τc)(A + B) [(1− τc)A+ τcD]−γ , note that y0 > (1 − τc)AD−γ
indicates

[(1− τc)A+ τcD]−γ >
A

A+B
D−γ , (3.4.4)

since (1 − τc) [(1− τc)A+ τcD] (A + B) ≥ y0 > (1 − τc)AD−γ , where the first inequality is

due to the concavity of f(x) = − γ
1−γx

− 1−γ
γ . Meanwhile, y1 defined in (3.2.6) uniquely solves

v1(y) = v3(y), and y1 is in this interval because
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(a) The monotonicity of (v1 − v3)(y):

(v1 − v3)′ =− 1

(A+B)(1− τc)

(
y

(1− τc)(A+B)

)− 1
γ

+

(
τc

1− τc
D

A+B
− B

A+B
+
D

A

)
≤− (1− τc)A+ τcD

(1− τc)(A+B)
+

(1− τc)A+ τcD

(1− τc)(A+B)
− A−D

A
< 0.

(b) v1 − v3 < 0 at y = (1− τc)(A+B) ((1− τc)AC + τcD)−γ . If not, it is equivalent to say

1
1−γ

(
(1− τc)A+ τcD)1−γ −D1−γ

)
(1− τc)(A−D)

> [(1− τc)AC + τcD]−γ
A+B

A
≥ D−γ ,

where the last inequality is due to (3.4.4), and it contradicts the concavity of the function
y = 1

1−γx
1−γ .

(c) v1 − v3 ≥ 0 at y = (1− τc)AD−γ since v1 ≥ v2 = v3 at this point.

Hence, in this interval,

û(y) =

{
v1(y) , (1− τc)AD−γ ≤ y < y1,

v3(y) , y1 ≤ y < (1− τc)(A+B) [(1− τc)A+ τcD]−γ .

For y ≥ (1− τc)(A+B) ((1− τc)A+ τcD)−γ , it is the same as (i),

û(y) =

{
v3(y) , (1− τc)(A+B) ((1− τc)A+ τcD)−γ ≤ y < AD−γ

v4(y) , y ≥ AD−γ
.

In conclusion, if y0 ≤ (1− τc)AD−γ , û can be expressed as (3.4.1). Otherwise, û is (3.4.2).

(iii) For y < (1− τc)A [(1− τc)A+ τcD]−γ , it is the same as (i) and (ii).

For (1 − τc)A [(1− τc)A+ τcD]−γ ≤ y < (1 − τc)AD−γ , the expression of û has the same
result as in case (ii) depending on whether y0 < (1− τc)AD−γ .

For (1 − τc)AD
−γ ≤ y < AD−γ , according to the calculation in case (ii), if y1 > AD−γ ,

û(y) = v1(y). Otherwise,

û(y) =

{
v1(y) , (1− τc)AD−γ ≤ y < y1,

v3(y) , y1 ≤ y < AD−γ .

For AD−γ ≤ y < (1− τc)(A+B) [(1− τc)A+ τcD]−γ , note that case (iii) indicates that

(1− τc)(A+B) ≥ A, (3.4.5)

since A
(1−τc)(A+B) ≤

(
D

(1−τc)A+τcD

)γ
< 1. Meanwhile, v1(y2) = v4(y2) for y2 defined in (3.2.5)

and

y2 ≤ A−γ(1− τc)(A+B) ≤ (1− τc)(A+B) [(1− τc)A+ τcD]−γ ,
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due to the concavity of f(x) = − γ
1−γx

− 1−γ
γ , A > D and (3.4.5). Meanwhile, at y = y2,

(v1 − v4)′ =

((
1

A

)− 1−γ
γ

−
(

1

(1− τc)(A+B)

)− 1−γ
γ

)
y
− 1
γ

2 − (1− τc)B − τcD
(1− τc)(A+B)

=− 1

γ

(1− τc)B − τcD
(1− τc)(A+B)

< 0.

Therefore, if y1 < AD−γ , v1 < v3 = v4 at y = AD−γ , which gives û(y) = v4(y). Otherwise,
v1 ≥ v3 = v4 at y = AD−γ . which gives y2 > AD−γ , and thus

û(y) =

{
v1(y) , AD−γ ≤ y < y2,

v4(y) , y2 ≤ y < (1− τc)(A+B) [(1− τc)A+ τcD]−γ .

For y ≥ (1 − τc)(A + B) [(1− τc)A+ τcD]−γ , note that v4 ≥ v1 in this interval due to the
uniqueness of y2 and its negative first order derivative at this point. Combining with (b), we
have v4 ≥ v1 ≥ v5 on this interval. Hence, û(y) = v4(y).

In conclusion, if y1 < AD−γ , û is (3.4.2). Otherwise, it is (3.4.3).

Combine all three cases and the results are same as the third case (3.4.1) - (3.4.3).

3.4.2 N-player Game

Proof of Lemma 18: Note that x̂i(y, z) achieves supremum of ui(x, z) − xy. Due to the non-
negativeness of eψiT ξtZit and

d(eψiT ξtZit) = eψiT ξtZit(πitσ − θ)dWt,

it is a supermartingale. Therefore,

E
[
eψiT ξTZiT

]
≤ 1 , E

[∫ T

0
eψitξtZit(πitσ − θ)dWt

]
≤ 0.

Define

Λi

(
eψiT ηiξT

)
= sup
{ZiT }

E
[
ui(ZT )− ηieψiT ξTZiT + ηi +

∫ T

0
eψitηiξtZitπitσdWt

]
≤ ηi + E

[
ûi0

(
eψiT ηiξT , Z−i

)]
,

due to the conclusions in Lemma 21. Meanwhile, since

Jim ≤ inf
ηi≥0

Λi

(
eψiT ηiξT

)
≤ Λ

(
eψiT η̂iξT

)
≤ η̂i + E

[
ûi0

(
eψiT η̂iξT , Z−i

)]
,

the equality with ηi changed to η̂i is achieved when ZiT arrives ẐiT defined in (3.2.11).

Define the ε-truncated operator Pε: L
2,φ,+ → L2,φ,+ satisfying

lε =Pεlε, (3.4.6)

where lε is N -dimensional function with ith element as liε = li ∨ ε
N−1 ∧

ε−1

N−1 . Denote x̂iε =

x̂i ∨ ε
N−1 ∧

ε−1

N−1 . Note that Pε is actually an operator mapping from Uε to Uε, where

Uε =
{
f ∈ L2,φ,+ : ε ≤ |f | ≤ ε−1

}
⊂ L2,φ,+. (3.4.7)
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Lemma 22. Given mini γi > 1, for fixed ηi (i = 1, · · · , N), x̂iε(y, z) satisfies the following proper-
ties:

(i) x̂iε is a continuous function except some negligible set, and for fixed z, x̂iε is a piecewise convex
function which has the expression among 1, Di

Ai
, ε, ε−1 and x∗i defined in (3.2.8), (3.2.9) and

(3.2.10).

(ii) For fixed y, x̂i is a non-decreasing function of z.

(iii) For arbitrary δ > 0, define

U1δ =

{
(x, y) : (x, y) /∈ O ((x0, y0), δ) , lim inf

(x,y)→(x0,y0)
x̂iε(x, y) 6= lim sup

(x,y)→(x0,y0)
x̂iε(x, y)

}
,

U2δ =

{
(x, y) : x̂iε(x, y) /∈ O(1, δ) ∪O

(
Di

Ai
, δ

)
∪O (ε, δ) ∪O

(
ε−1, δ

)}
,

There exist F1(ε, δ) <∞ and F2(ε, δ) > 0 such that for ε ≤ y ≤ ε−1 and (x, y) ∈ U1δ,∣∣∣x̂iε (Gie−θx, z(1)
)
− x̂iε

(
Gie

−θx, z(2)
)∣∣∣ ≤ F1(ε, δ)

∣∣∣z(1) − z(2)
∣∣∣ , (3.4.8)

and furthermore, if (x, y) ∈ U2δ,∣∣∣x̂iε (Gie−θx, z(1)
)
− x̂iε

(
Gie

−θx, z(2)
)∣∣∣ ≥ F2(ε, δ)

∣∣∣z(1) − z(2)
∣∣∣ . (3.4.9)

Remark 23. Note that limδ→0 F1(ε, δ) =∞ and limδ→0 F2(ε, δ) = 0.

Proof. (i) Note that x̂ik (k = 1, 2, 3) is a continuous function of y and z, and hence, the only
points where x̂iε is not continuous are those where the values of x∗i and x∗j or x∗i and 1 or Di

Ai
meet, which has measure 0.

Meanwhile, note for x∗1 in (3.2.8),

1 = −
(
γiλiA

1−γi
i (x∗1)−γi−1 + 2(1− λi)ζiz(x∗1)−3

) ∂x∗1
∂y

,

∂2x∗1
∂y2

=
γi(γ + 1)λiA

1−γi
i (x∗1)−γi−2 + 6(1− λi)ζiz(x∗1)−4

γiλiA
1−γi
i (x∗1)−γi−1 + 2(1− λi)ζiz(x∗1)−3

∂x∗1
∂y

.

It is easy to see that
d2x∗1
dy2 > 0. Similar results can be found for x∗2 and x∗3. Thus, the second

part of the statement is obvious since x∗i are convex and there are only finite possibilities of
the expression of x̂iε based on ûik (k = 1, 2, 3).

(ii) For x̂ik (k = 1, 2, 3), take x̂i1 as an example, if the graph is on the segment of x∗1

∂x∗1
∂z

=
(1− λi)ζi(x∗1)−2

γiλiAi(x∗1)−γi−1 + 2(1− λi)ζiz(x∗1)−3
=

(1− λi)ζi
γiλiAi(x∗1)1−γi + 2(1− λi)ζi zx∗1

≥ 0. (3.4.10)

Hence, it is a non-decreasing function of z on each segment. Meanwhile, if z increases, the
region for x̂i1 = x∗1 becomes smaller, making the function value larger for those points which
switch region for bigger z. Hence, in general, x̂i1 is a non-decreasing function of z. Similar
results can be found for x̂i2 and x̂i3. Combining these three functions, we can conclude that
x̂i is also a non-decreasing function of z.
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(iii) Note that for fixed x ∈ U1δ ∪ U2δ, if (y, z) is on the same segment of the graph, for example,
on the graph of x∗1: (3.2.8), the partial derivative is shown in (3.4.10). Since both x∗1 and z
are in [ε, ε−1] (otherwise, x̂i cannot be x∗1), since γi > 1,

(1− λi)ζi
γiλiAiε1−γi + 2(1− λi)ζiε−2

≤ ∂x∗1
∂z
≤ (1− λi)ζi
γiλiAiεγi−1 + 2(1− λi)ζiε2

.

Similar results can be found for x∗2 and x∗3. If (x, y) is around a discontinuous point and in
U1δ, the maximal slope of the tangent line is the (finite) jump size over 2δ. Similarly, if (x, y)
are close to the boundary of U2δ, the minimal slope of the tangent line is 2δ over the Lebesgue
measure of the flat area. Therefore, we can always find F1(ε, δ) and F2(ε, δ) such that the
inequalities hold.

Before the proof of the existence of the solution to (3.4.6), we need the following theorem.

Lemma 24. (Kolmogorov-Riesz Theorem, Theorem 5 in Hanche-Olsen and Holden (2010)) Let
1 ≤ p <∞. A subset of G of Lp (Rn) is totally bounded if and only if

(i) G is bounded,

(ii) for every ε > 0, there is some R so that, for every g ∈ G,

∫
|x|>R

|g(x)|pdx < ε.

(iii) for every ε > 0, there is some ρ > 0 so that, for every g ∈ G and y ∈ Rn with |y| < ρ,∫
Rn
|g(x+ y)− g(x)|pdx < ε.

Lemma 25. For any function f ∈ Uε defined in (3.4.7), denote µ(x) as the cumulative distribution
function of φ(x), and then,

lim
y→0

∫
R
‖f(x+ y)− f(x)‖22dµ(x) = 0.

Proof. By Lusin’s Theorem, for arbitrary ρ > 0, there exists some subset E such that µ(E) < ρ
and f is continuous on Ec. Since f(x) is bounded,

lim
y→0

∫
R
‖f(x+ y)− f(x)‖22dµ(x)

= lim
y→0

∫
Ec
‖f(x+ y)− f(x)‖22dµ(x) +

∫
E
‖f(x+ y)− f(x)‖dµ(x)

≤
∫
Ec

lim
y→0
‖f(x+ y)− f(x)‖22dµ(x) + lim

y→0
2Nε−1µ(E) = 2Nε−1ρ.

By the arbitrariness of ρ, limy→0

∫
RN ‖f(x+ y)− f(x)‖22dµ(x) = 0.

Lemma 26. Given mini γi > 1, for fixed η, there exists a solution to (3.4.6) in L2,φ,+.

Proof. First, let us show that Pε is a compact operator from Uε to Uε.
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(i) Totally Boundedness: First, {Pεl : l ∈ L2,φ,+} is bounded since for any n ∈ N,

‖Pεl‖φ,2 ≤ ε−1.

Meanwhile, for any l in L2,φ,+,

∫
|x|>R

‖Pεl‖22 · φ(x)dx ≤ ε−2

∫
|x|>R

φ(x)dx ≤ ε−2

√
2

π

1

R
e−R

2/2.

Therefore, for any h > 0 there exists some R such that
∫
|x|>R ‖Pεl‖

2
2 ·φ(x)dx ≤ h. By Lemma

25,

lim
y→0

∫
R
‖Pεl(x+ y)− Pεl(x)‖22 φ(x)dx = 0.

Thus, it is natural to conclude that for any h > 0, there exist some ρ > 0 such that for any
|y| < ρ and

∫
R ‖Pεl(x+ y)− Pεl(x)‖22 φ(x)dx < h. Combining the above three calculations

with Lemma 24, we show that {Pεl : l ∈ L2,φ,+} is totally bounded.

(ii) Completeness: Consider a Cauchy sequence {(Pεln)}n∈N and the corresponding ln consisting
of lin as each element. Since L2,φ,+ is complete, the sequence has a limit, denoted as v. There
also exists a subsequence Pεlnq converge pointwise to v. We want to show that there exists
some l in Uε such that Pεl = v. The proof is split into two steps. Denote

U δm,n,i =

{
x ∈ R : (Pεlm)i(x) = (Pεln)i(x) ∈ O(1, δ) ∪O

(
Di

Ai
, δ

)
∪O (ε, δ) ∪O

(
ε−1, δ

)}
,

U δm,n =
N⋂
i=1

Um,n,i , U δ =
∞⋃
p=1

⋂
m,n≥p

Um,n , U = lim
δ→0

U δ.

The first step is to construct l on R/U based on the completeness of L2,φ,+ for lm. The second
step is to construct l on U given that Pεlm = Pεln for m,n > p for some p > 0.

For the first step, note that for any m,n ∈ N and ith component, (Pεlm)i 6= (Pεln)i, and
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(3.4.9) on R/U δm,n,i. Therefore,

h ≥
∫
R
|(Pεln)i − (Pεlm)i|2 φ(x)dx ≥

∫
R/Uδm,n,i

F 2
2 (ε, δ)

∣∣∣∣∣∣
N∑
k 6=i

lkm (x)−
N∑
k 6=i

lkn (x)

∣∣∣∣∣∣
2

φ(x)dx

≥F 2
2 (ε, δ)

∫
R/Uδm,n,i

∣∣∣∣∣∣
N∑
k 6=i

lkm (x)−
N∑
k 6=i

lkn (x)

∣∣∣∣∣∣φ(x)dx

2

(3.4.11)

≥F 2
2 (ε, δ)

(∫
R
φ(x)dx

)−1

∫
R/Uδm,n,i

 N∑
k 6=i

(lkn − lkm) (x)

 2
3

φ(x)dx


3

(3.4.12)

≥F 2
2 (ε, δ)


∫
R/Uδm,n,i

 N∑
k 6=i

lkm(·)6=lkn(·)

(lkn − lkm)3(lkn − lkm)−2


2
3

φ(x)dx


3

≥F 2
2 (ε, δ)


∫
R/Uδm,n,i

N∑
k 6=i

lkm(·)6=lkn(·)

(lkn − lkm)2

 N∑
k 6=i

lkm(·)6=lkn(·)

(lkn − lkm)4


− 1

3

φ(x)dx


3

(3.4.13)

≥F 2
2 (ε, δ) ·

(
N(ε−1 − ε)4

)− 1
3

 N∑
k 6=i

∫
R/Uδm,n,i

(lkn − lkm)2 (x)φ(x)dx

3

.

(3.4.11) is due to Jensen’s inequality and (3.4.12) and (3.4.13) are due to the reversed Hölder
inequality. Based on the calculations, lmj − lnj (j 6= i) is of the order h1/3 in L2,φ,+ on
R/U δm,n,i. Hence, combining all the components, we can conclude that lm − ln is of of the

order h1/3 on R/U δm,n. Meanwhile, since for any points in R/U δ, there are at most finite
many combinations of m and n such that (Pεlm)i = (Pεln)i which are around the flat part
of the graph, for any i ∈ {1, · · · , N}, we can safely say that ln forms a Cauchy sequence on
R/U δ, which has a limit l on R/U δ. Meanwhile, by the arbitrariness of δ, we can conclude
that the limit exists on R/U . Note that U is the space where there exists some p > 0 such
that (Pεlm)i = (Pεln)i = 1, DiAi , ε, ε

−1 for all m,n ≥ p.

For the second step, consider the construction of l on U . For any point x0 in U , there exists
some p > 0 such that x0 ∈

⋂
m,n≥p Um,n. Define l(x0) = lp(x0), and Pεl = Pεlm for any
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m ≥ p. Combining two steps, we can conclude that l ∈ Uε, and∫
R
|vi − (Pεl)i|2φ(x)dx = lim

q→∞

∫
R

∣∣(Pεlnq)i − (Pεl)i
∣∣2 φ(x)dx

≤ lim
q→∞

F 2
1 (ε, δ)

∫
U1δ

∣∣∣∣∣∣
N∑
k 6=i

lknq (x)−
N∑
k 6=i

lk (x)

∣∣∣∣∣∣
2

φ(x)dx+

∫
R/U1δ

∣∣(Pεlnq)i − (Pεl)i
∣∣2 φ(x)dx

≤ lim
q→∞

F 2
1 (ε, δ)

N∑
k 6=i

∫
R

(
lknq (x)− lk (x)

)2
φ(x)dx+ 4ε−2µ(R/U1δ) ≤ K1δ,

where U1δ is defined in Lemma 22. By the arbitrariness of δ,
∫
R|vi − (Pεl)i|2φ(x)dx = 0, and

thus, v = Pεl, which gives the completeness of the space.

We conclude that Pε is a compact operator, and by Schauder fixed point theorem, there exists
at least one solution to (3.4.6) in L2,φ,+.

Now we need to construct a solution to (3.2.12), and prove that l ∈ L2,φ,+.

Lemma 27. Given mini γi > 1, for fixed η, there exists a solution l to (3.2.12) and l ∈ L2,φ,+.

Proof. Denote ln as the solution to ln = Pεn ln with εn
n→∞−−−→ 0, and

l = lim inf
n→∞

ln.

Note that since x̂i’s are non-decreasing function of the second variable,

li = lim inf
n→∞

x̂i

ηieψiT e−(r+ 1
2
θ2)T e−θx,

1

N − 1

N∑
j 6=i

ljn(η, x)(x)

 ∨ 1

N − 1
εn ∧

1

N − 1
ε−1
n

=x̂i

ηieψiT e−(r+ 1
2
θ2)T e−θx,

1

N − 1

N∑
j 6=i

lj(η, x)

 . (3.4.14)

Hence, l is the required solution to (3.2.12).

The next step is to prove l ∈ L2,φ,+. It is easy to see l ≥ 0, and therefore, the goal is to prove
that

∫
R ‖l‖

2
2(x)φ(x)dx has an upper bound. For M large enough, consider the set

Ui =
{
x : lρ(j)(x) ≥M , for j ≤ i, lρ(k)(x) < M , for k > i, ρ(·) is a permutation of 1, · · · , N.

}
.

Without loss of generality, suppose that the first i components of l(x) are no less than M . We
only need to consider x∗3 since this is the only possibility that x̂i achieves numbers greater than M .

From (3.2.10), for lj (j ≤ i), denote Gj = ηie
ψiT e−(r+ 1

2
θ2)T , and

Gje
−θx =(1− τc)(Aj +Bj)λj ((1− τc)(Aj +Bj)lj(x) + τcDj − (1− τc)Bj)−γj + (1− λj)ζjZ−jl−2

j (x)

≤KjM
−γj + (1− λj)ζj

1

N − 1

∑
k 6=j

lk(x)l−2
j (x),
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where Kj are some constant. Note that if Z−j = 1
N−1

∑
k 6=j lk(x) ≤ Kjl

2−h
j (x) for some small

h > 0,

Gje
−θx ≤ K̃j min{M−γj ,M−h}, (3.4.15)

where K̃j and Kj are some constant less than M if M is large enough. Meanwhile, as long as one
of lj ( j = 1, · · · , i) has the property described above, Ui ⊂ {Gje−θx ≤ K̃j min{M−γj ,M−h}}.

Next, we show that there exists some large M0 such that for any M > M0 at least one of lj
satisfies (3.4.15). Suppose not, and for all M > 0,

1

N − 1

∑
k 6=j

lk(x) ≥ Kjl
2
j (x) , for j = 1, · · · , i.

Hence, summing both sides from 1 to i, since

1

N − 1

i∑
j=1

N∑
k 6=j

lk(x) =
i− 1

N − 1

i∑
j=1

lj(x) +
i

N − 1

N∑
m=i+1

lm(x) ≤ i− 1

N − 1

i∑
j=1

lj(x) +
i(N − i)
N − 1

M,

we can get

i− 1

N − 1

i∑
j=1

lj(x) +
i(N − i)
N − 1

M ≥
i∑

j=1

Kjl
2
j (x) ≥ min

j
Kj ·

i∑
j=1

l2j (x).

Note that lj(x)’s are greater than M , and minjKj should not grow at the same speed as M .
Therefore,

inf
lj(x)≥M

 i− 1

N − 1

i∑
j=1

lj(x) +
i(N − i)
N − 1

M −min
j
Kj ·

i∑
j=1

l2j (x)

 ≥ 0,

or equivalently,

i(i− 1)

N − 1
M +

i(N − i)
N − 1

M −min
j
Kj · iM2 ≥ 0.

However, the above inequality cannot hold for all M > 0. Contradiction, and M0 exists.

With the M0 shown above, we have∫
R
‖l(x)‖22φ(x)dx =

∫
l(x)≤M0

‖l(x)‖22φ(x)dx+

∫
l(x)>M0

‖l(x)‖22φ(x)dx

≤M0 +

∫ ∞
M0

Kµ(‖l‖2 > K)dK

≤M0 +

∫
R+

∫ ∞
M0

Kµ
(
Gje

−θx ≤ K̃j min{K−γj ,M−h}
)
dK <∞.

The last line is due to the upper bound for the tail of normal distribution.
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Proof of Lemma 19: Existence is proved through Lemma 27. Consider (3.2.12) at arbitrary point
x ∈ R, and it becomes a non-linear system on RN . Denote li(z) = li(x, z) ∈ R, and note that for
any fixed point, li’s satisfy the reaction function, or in other words,

ûi(y, z) = ui(li(z), z)− li(z)y.

Take li(z) = x∗1(z) as example,

∂ (ûi(y, z) + li(z)y)

∂z
= y

∂x∗1
∂z
− (1− λi)ζi

1

x∗1

=
(1− λi)ζi(x∗1)−1y

γiλiAi(x∗1)−γi + 2(1− λi)ζiz(x∗1)−2
− (1− λi)ζi

1

x∗1

=
(1− λi)ζi

(
y − γiλiAi(x∗1)−γi − 2(1− λi)ζiz(x∗1)−2

)
x∗1 (γiλiAi(x∗1)−γi + 2(1− λi)ζiz(x∗1)−2)

=
(1− λi)ζi

(
(1− γi)λiAi(x∗1)−γi − (1− λi)ζiz(x∗1)−2

)
x∗1 (γiλiAi(x∗1)−γi + 2(1− λi)ζiz(x∗1)−2)

≤ 0,

where the first and last line are due to (3.2.8) and γi > 1. Similar result can be found for x∗2 and
x∗3. Hence, ui(li(z), z) is a non-increasing function of z. Meanwhile, due to the positive relationship

between Zi and Z−i from (3.4.10), it is impossible that l
(1)
i > l

(2)
i while l

(1)
j < l

(2)
j for some j 6= i.

Since otherwise, from player i, 1
N−1

∑
k 6=i l

(1)
k > 1

N−1

∑
k 6=i l

(2)
k and 1

N

∑N
k=1 l

(1)
k > 1

N

∑N
k=1 l

(2)
k .

However, similarly, from player j, 1
N

∑N
k=1 l

(1)
k < 1

N

∑N
k=1 l

(2)
k , which contradicts the result from

player i. Hence, if there exist two different fixed points l(1) and l(2), l(1) − l(2) has the same sign
for each entry. Now we can conclude that (element-wise) lowest l has the largest value for utility
function for all player. Consider ln are sequence of the fixed point, and l∗(η, x) = lim infn→∞ ln(η, x)
is also a fixed point due to (3.4.14) in the proof of Lemma 27. Since x is chosen arbitrarily, we can
construct l∗ pointwisely by choosing the lowest fixed point for each point in R.

Before the proof of Lemma 20, we should first find the partial derivative of li with respect to
ηk for i, k = 1, · · · , N . Note that x̂i has only finite many jump points. Hence, except those points,
the derivatives are valid for (3.2.12):



∂l1
∂ηk
∂l2
∂ηk
...
∂l2
∂ηk
...

∂lN
∂ηk


=

1

N − 1



0 a1 · · · a1 · · · a1

a2 0 · · · a2 · · · a2
...

...
. . .

...
. . .

...
ak ak · · · 0 · · · ak
...

...
. . .

...
. . .

...
aN aN · · · aN · · · 0





∂l1
∂ηk
∂l2
∂ηk
...
∂l2
∂ηk
...

∂lN
∂ηk


+



0
0
...
bk
...
0


, (3.4.16)
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where ai can be one of the following values: 0 or

∂x∗i1
∂z

=
(1− λi)ζi

γiλi(Aix∗i1)1−γi + 2(1− λi)ζi zx∗i1
,

∂x∗i2
∂z

=
(1− λi)ζi

γiλi((1− τc)Ai)2((1− τc)Aix∗i2 + τcDi)−γi−1(x∗i2)2 + 2(1− λi)ζi zx∗i2
,

∂x∗i3
∂z

=
(1− λi)ζi

γiλi((1− τc)(Ai +Bi))2((1− τc)(Ai +Bi)x∗i3 + τcDi − (1− τc)Bi)−γi−1(x∗i3)2 + 2(1− λi)ζi zx∗i3
.

Note that ai ∈
(

0, li2z

)
. bi can be 0 or the product of eψiT e−θx and

∂x∗ik
∂y < 0 (k = 1, 2, 3) and

bi
ai

= − l2i
(1−λi)ζi e

ψiT e−θx. bi = 0 if and only if ai = 0, and bi =
∂x∗ik
∂γi

if and only if ai =
∂x∗ik
∂z . Without

loss of generality, suppose that all ai are not 0, since otherwise, ∂li
∂γk

= 0 for i 6= k, or all partial
derivatives are 0 for i = k, and we can delete those rows. Note that (3.4.16) can be rewritten as
Ulηk = −vk, where U is an N×N all one matrix except that the diagonal is the vector consisting of
−N−1

ai
as ith entry, lηk is an N -dimensional vector with ith entry as ∂li

∂ηk
, and vk is an N -dimensional

all zero vector except kth element as (N−1)bk
ak

.

Lemma 28. U is almost surely invertible, and

(
U−1

)
ij

=


−
(

1 + N−1
ai

)−1

1 +

(
1+N−1

ai

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1

 , if i = j,

−

(
1+N−1

ai

)−1
(

1+N−1
aj

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1 , if i 6= j.

Proof. Note that U can be decomposed as Ũ + 1 · 1T , where 1 is an N -dimensional all one vector,

and Ũ is an N × N diagonal matrix with Ũii = −
(

1 + N−1
ai

)
≤ −1. Hence, Ũ is invertible.

Meanwhile,

1 + 1T Ũ−11 =1−
N∑
i=1

(
1 +

N − 1

ai

)−1

≥ 1−
N∑
i=1

(
1 +

2(N − 1)Z−i
Zi

)−1

=1−
N∑
i=1

Zi∑N
j=1 Zj +

∑N
j 6=i Zj

≥ 1−
N∑
i=1

Zi∑N
j=1 Zj

= 0,

where Zi = li, z = Z−i. Note that the equality holds only when one of Zi = ∞, which has
probability 0. Therefore, by Sherman-Morrison formula, U is almost surely invertible and

U−1 = Ũ−1 − Ũ−111T Ũ−1

1−
∑N

i=1

(
1 + N−1

ai

)−1 .
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Note that for any small ε ≤ 1
8(N−1) ,

ε ≥1−
N∑
j=1

(
1 +

N − 1

aj

)−1

≥ 1−
N∑
j=1

(
1 +

2(N − 1)Z−j
Zj

)−1

= 1−
N∑
j=1

Zj∑N
i=1 Zi +

∑
i 6=j Zi

=

N∑
j=1

Zj

∑
i 6=j Zi∑N

i=1 Zi

(∑N
i=1 Zi +

∑
i 6=j Zi

) ≥ N∑
j=1

Zj

∑
i 6=j Zi

2
(∑N

i=1 Zi

)2 =
1

2

∑
i 6=j

Zi∑N
i=1 Zi

Zj∑N
j=1 Zj

≥1

2
max
i 6=j

Zi∑N
i=1 Zi

Zj∑N
j=1 Zj

≥ 1

2(N − 1)

(
1− Zj∑N

j=1 Zj

)
Zj∑N
j=1 Zj

,

where j = arg maxk Zk and
Zj∑N
j=1 Zj

≥ 1
N . Hence,

Zj∑N
j=1 Zj

≥ 1+
√

1−8(N−1)ε

2 ≥ 1−Kε for small ε and

constant K > 2(N − 1). Equivalently, Zj ≥ 1−Kε
Kε (N − 1)Z−j . When Z−j > ε1/2, Zj ≥ 1−Kε

K ε−1/2.
In this case, from (3.2.10),

Gje
−θx =(1− τc)(Aj +Bj)λj ((1− τc)(Aj +Bj)lj(x) + τcDj − (1− τc)Bj)−γj + (1− λj)ζjZ−jl−2

j (x)

≤Kjε
γj/2 + (1− λj)ζj

Z−j
lj

l−1
j ≤ Kjε

γj/2 + (1− λj)ζj(N − 1)
Kε

1−Kε
K

1−Kε
ε1/2 ≤ Kjε

max{3,γj}/2,

where Kj are constant varying lines to lines. Meanwhile, if Z−j ≤ ε1/2, there exist some i 6= j such
that ε1/2 ≥ Zi. Considering (3.2.8), we have

Gie
−θx = λiA

1−γi
i l−γii (x) + (1− λi)ζiZ−il−2

i (x) ≥ λiA1−γi
i ε−1/2.

Therefore,ε ≥ 1−
N∑
j=1

(
1 +

N − 1

aj

)−1
 ⊂ {Gje−θx ≤ Kjε

max{3,γj}/2
}⋃{

Gie
−θx ≥ λiA1−γi

i ε−1/2
}
,

for j = arg maxk Zk and some i 6= j.

Lemma 29.

∫
R

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx <∞ for all i, k = 1, · · · , N .

Proof. By Lemma 28,

∂li
∂ηk

=



(N−1)bk
ak+(N−1)

1 +

(
1+N−1

ak

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1

 , if i = k,

(N−1)bk
ak+(N−1)

(
1+N−1

ai

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1 , if i 6= k.

Consider arbitrary ∆ > 0 and ε ∈ (0, 1/2). Note that bi
ai

= − l2i
(1−λi)ζi e

ψT e−θx.
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(i) On U1 ≡
{

∆ε ≤ 1−
∑N

j=1

(
1 + N−1

aj

)−1
}
∩ {li(x) ≤ ∆−ε},

∫
U1

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx ≤
∫
R

2(N − 1)2

(
bi
ai

)2

1 +

(
1 + N−1

ai

)−2

(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2

φ(x)dx

≤
∫
R
K1∆−2ε

(
1 + ∆−2ε

)
e−2θxφ(x)dx ≤ K1∆−4ε,

where K1 is a constant which may vary from lines to lines.

(ii) On U2 ≡
{

∆ε ≥ 1−
∑N

j=1

(
1 + N−1

aj

)−1
}
∩{li(x) ≥ ∆−ε}, note that for j = arg maxk lk(η, x),

U2 ⊂
{
Gje

−θx ≤ Kj∆
max{3,γj}ε/2

}⋃{
Gie

−θx ≥ λiA1−γi
i ∆−ε/2

}⋂{
Gie

−θx ≤ Ki∆
min{γi,h}ε

}
⊂
{
Gje

−θx ≤ Kj∆
max{3,γj}ε/2

}
≡ Ũ2.

Hence, denoting u2 = −1
θ ln

(
Kj
Gj

∆max{3,γj}ε/2
)

, we get

∫
U2

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx =

∫
Ũ2

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx ≤ 2

∫ ∞
u2

zΦ

{∣∣∣∣ ∂li∂ηk

∣∣∣∣ > z

}
dz

≤2

∫ ∞
u2

zΦ

{ (N − 1)bi
ai + (N − 1)

≥
√
z

}⋃
(

1 + N−1
ai

)−1

1−
∑N

j=1

(
1 + N−1

aj

)−1 ≥
√
z


 dz

≤2

∫ ∞
u2

z

Φ

{
bi
ai
≥
√
z

N − 1

}
+ Φ

1−
N∑
j=1

(
1 +

N − 1

aj

)−1

≤ z−1/2


 dz

≤2

∫ ∞
u2

z

(
Φ

(
Gie

−θx ≤ Kiz
−min(γi,h)

2(3−γi)

)
+ Φ

(
Gje

−θx ≤ Kjz
−max{3,γj}/4

)
+

Φ1

(
Gie

−θx ≥ λiA1−γi
i z1/4

))
dz

≤2

∫ ∞
u2

z (Φ (x ≥ Ki1 ln z) + Φ(x ≥ Kj ln z) + Φ(x ≥ Ki2 ln z)) dz

≤6

∫ ∞
u2

zΦ(x ≥ K ln z)dz ≤ K2

∫ ∞
u2

z
e−K3 ln2(z)

ln(z)
dz

=K2

∫ ∞
lnu2

e2u e
−K3u2

u
du ≤ K2

∫ ∞
lnu2− 1

K3

1

v
e−K3v2

dv (3.4.17)

≤K2
1

(1
2 lnu2)2

exp

(
−K3

4
ln2 u2

)
≤ K2 exp (−K3 ln(u2)) = K2u

−K3
2 (3.4.18)

≤K2(ln(∆−1))−K3 ≤ K2|ln ∆|−K3 ,
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where Φ(x) =
∫ x
−∞ φ(z)dz, K = min {Ki1,Ki2,Kj} and Ki,Kj ,Ki1,Ki2,K2,K3 are some

constant, and may vary from lines to lines. (3.4.17) is due to change of variable: u = ln z and
v = u − 1

K3
. (3.4.18) is because of the upper bound for the tail of normal distribution and

the fact that ∆ can be chosen small enough such that ln(u2)− 1
K3
≥ 1

2 ln(u2) > 1.

(iii) On U3 ≡
{

∆ε ≤ 1−
∑N

j=1

(
1 + N−1

aj

)−1
}
∩ {li(x) ≥ ∆−ε} ⊂

{
Gie

−θx ≤ Ki∆
min{γi,h}ε

}
≡

Ũ3, denote u3 = −1
θ ln

(
Ki
Gi

∆min{γi,g}ε
)

.

∫
U3

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx ≤
∫
Ũ3

2(N − 1)2

(
bi
ai

)2

1 +

(
1 + N−1

ai

)−2

(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2

φ(x)dx

≤K4

(
1 + ∆−2ε

) ∫
Ũ3

(
bi
ai

)2

φ(x)dx ≤ K4∆−2ε

∫ ∞
u3

zΦ

(
bi
ai
≥ z
)
dz

≤K4∆−2ε

∫ ∞
u3

zΦ (x ≥ K ln z) dz ≤ K4∆−2ε|ln ∆|−K3 ,

where K4 is the constant which may vary from lines to lines, and K3 is the same as in case
(ii).

(iv) On

U4 ≡

∆ε ≥ 1−
N∑
j=1

(
1 +

N − 1

aj

)−1
 ∩ {li(x) ≤ ∆−ε

}
⊂
{
Gje

−θx ≤ Kj∆
max{3,γj}ε/2

}⋃{
Gie

−θx ≥ λiA1−γi
i ∆−ε/2

}
⊂

{
x ≥ −1

θ
max

{
ln

(
Kj

Gj
∆max{3,γj}ε/2

)
, ln

(
Gi

λiA
1−γi
i

∆ε/2

)}}
≡ Ũ4,

denote u4 = −1
θ max

{
ln
(
Kj
Gj

∆max{3,γj}ε/2
)
, ln

(
Gi

λiA
1−γi
i

∆ε/2

)}
. Note that the last line is

due to the symmetry of the centered normal distribution.

∫
U4

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx ≤
∫
Ũ4

2(N − 1)2

(
bi
ai

)2

1 +

(
1 + N−1

ai

)−2

(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2

φ1(x)dx

≤K5∆−2ε

∫
Ũ4

1(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2φ1(x)dx

≤K5∆−2ε

∫ ∞
u4

zΦ1

1−
N∑
j=1

(
1 +

N − 1

aj

)−1

≤ z−1/2


 dz ≤ K5∆−2ε|ln ∆|−K3 ,
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where K5 is the constant which may vary from lines to lines, and K3 is the same as in case
(ii).

In conclusion,

∫
R

∣∣∣∣ ∂li∂ηk

∣∣∣∣2 (x)φ(x)dx <∞.

Proof of Lemma 20: Define a new measure P̃ such that dP̃
dP = exp

(
aWt − 1

2a
2T
)
, where a will

be determined later. Denote the Brownian motion and the expectation under P̃ as W̃t and Ẽ[·]
respectively. Hence the budget constraints for manager i becomes

e−( 1
2
a2+θa)T Ẽ

[
eψiT e−(r+ 1

2
θ2)T e−(θ+a)W̃T li

(
η, W̃T + aT

)]
= 1.

Define

Pim(η) = e−( 1
2
a2+θa)T ηiẼ

[
eψiT e−(r+ 1

2
θ2)T e−(θ+a)W̃T li

(
η, W̃T + aT

)]
∧m ∨ 1

m
.

The proof is split into two parts: the first part is to prove the existence and uniqueness of the
solution to

η = Pmη, (3.4.19)

where Pm maps RN to RN and its ith entry is Pim. The second step is to show that there exists
an m0 such that for any m ≥ m0, the solution η ∈ [1/m0,m0]. Note that (3.4.19) is equivalent to
the budget constraints for manager i.

(i) Define the space Qm =
{
η ∈ RN , ηi ∈ [1/m,m]

}
. Then Pm is an operator mapping from Qm

to Qm. Consider a sequence of η(n) and Pmη
(n). Since for each i = 1, · · · , N , except some

negligible set,∣∣∣∣∣∂Pimη(n)

∂η
(n)
k

∣∣∣∣∣ ≤e−( 1
2
a2+θa)T

(
Ẽ
[
eψiT e−(r+ 1

2
θ2)T e−(θ+a)W̃T li

(
η(n), W̃T + aT

)]
δik+

η
(n)
i Ẽ

[
eψiT e−(r+ 1

2
θ2)T e−(θ+a)W̃T

∣∣∣∣∣ ∂li∂η
(n)
k

∣∣∣∣∣
])

,

where δik =

{
1 , i = k

0 , otherwise
. Note that since ηi’s are bounded and li ∈ L2,φ,+, the first term

in the above inequality is bounded. Meanwhile, by Cauchy Schwarz inequality and Lemma 29,
the second term in the inequality is also bounded. Therefore, Pm(η) is a Lipschitz continuous
function with Lipschitz constant independent of n. By choosing large enough a such that
the Lipschitz constant less than 1, we get a contraction mapping from Qm to Qm, and hence
there exists a unique fixed point η to (3.4.19).

(ii) We will show by contradiction. Suppose not, and then for any m > 0, ηiE
[
eψiT ξT li(η,WT )

]
>

m or ηiE
[
eψiT ξT li(η,WT )

]
< 1

m . Note that in these cases, ηi = m or 1
m .

If ηiE
[
eψiT ξT li(η,WT )

]
> m, E

[
eψiT ξT li(η,WT )

]
> 1. However, when ηi = ∞, according

to (3.2.8), the optimal ZiT = 0, which gives E
[
eψiT ξT li[η](WT )

]
= 0 < 1. By the continu-

ity of the function, when ηi is small, the expression should be close to 0, and less than 1.
Contradiction.

59



If ηiE
[
eψiT ξT li(η,WT )

]
< 1

m , E
[
eψiT ξT li(η,WT )

]
< 1. However, when η = 0, according to

(3.2.10), the optimal ZiT =∞, which gives E
[
eψiT ξT li[η](WT )

]
=∞ > 1. By the continuity

of the function, when ηi is large, the expression should be larger than 1. Contradiction.

Combining the two arguments, we can conclude that there exists an η such that for all i =
1, · · · , N , E

[
eψiT ξT li(η,WT )

]
= 1, which satisfies the budget constraint.

3.4.3 Proof of Theorem 17

First, note that the partial derivative of li with respect to γk, ζk and λk has the same expression
as (3.4.16), except that the partial derivatives and bi are changed accordingly. Based on Lemma
28, for γ,

∂li
∂γk

=



(N−1)bk
ak+(N−1)

1 +

(
1+N−1

ak

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1

 , if i = k,

(N−1)bk
ak+(N−1)

(
1+N−1

ai

)−1

1−
∑N
j=1

(
1+N−1

aj

)−1 , if i 6= k.

Lemma 30. For mini γi > 1, denote the perturbation in γ as ∆γ, and the according Pareto optimal
Nash equilibrium as l∆γ. Let ∆ = ‖∆γ‖2. Then, there exists some function K1 depending on γ
such that

‖l − l∆γ‖2,φ ≤ K1(γ)∆|ln ∆|.

Proof. The proof is similar to the proof of Lemma 29. We will split it four cases. The difference is
at bi/ai and we will approximate the difference between l and l∆γ of manager i in L2,φ,+ by∫

R

∣∣∣∣ ∂li∂γk

∣∣∣∣2 (x)φ1(x)dx.

If γi < 2,

bi
ai + (N − 1)

≤ bi
ai
≤ λi(1− τc)(Ai +Bi) ln ((1− τc)(Ai +Bi)x

∗
i3 + τcDi − (1− τc)Bi)

(1− λi)ζi(x∗i3)−2((1− τc)(Ai +Bi)x∗i3 + τcDi − (1− τc)Bi)γi
≤ Ki1(x∗i3)2−γi ln(x∗i3),

for some constant Ki1 and large x∗i3. If li(x) = x∗i3 is very large, the upper bound for bi
ai

will explode.
If γi ≥ 2, ∣∣∣∣ bi

ai + (N − 1)

∣∣∣∣ ≤ ∣∣∣∣ biai
∣∣∣∣ ≤ − λiA

1−γi
i ln(Aix

∗
i1)

(1− λi)ζi(x∗i1)γi−2
≤ Ki2(x∗i1)2−γi |ln(x∗i1)|.

for some constant Ki2 and small x∗i1. If li(x) = x∗i1 is close to 0, the upper bound for bi
ai

will explode

as well. Hence, we want to show that the probability of the large
∣∣∣ biai ∣∣∣ is small. For γi < 2, following

the proof in Lemma 27, and if li(x) ≥ ε−1 for small enough ε, we have

Gie
−θx ≤ Ki min

{
εγi , εh

}
,
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where Ki is some constant and h > 0 is some small number.

For γi < 2 and ε ∈ (0, 1/2), on (i) U1 =

{
∆ε ≤ 1−

∑N
j=1

(
1 + N−1

aj

)−1
}
∩ {li(x) ≤ ∆−ε},

∫
U1

∣∣∣∣ ∂li∂γk

∣∣∣∣2 (x)φ(x)dx ≤
∫
R

2(N − 1)2

(
bi
ai

)2

1 +

(
1 + N−1

ai

)−2

(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2

φ(x)dx

≤
∫
R
K1ε

2 ln2(∆)∆(2−γi)ε
(
1 + ∆−2ε

)
φ(x)dx ≤ K1 ln2(∆)∆−γiε,

where K1 is constant which may vary from lines to lines. Case (ii) - (iii) are the same as in the
proof of Lemma 27. On (iv) U4, the difference is that

∫
U4

∣∣∣∣ ∂li∂γk

∣∣∣∣2 (x)φ1(x)dx ≤
∫
Ũ4

2(N − 1)2

(
bi
ai

)2

1 +

(
1 + N−1

ai

)−2

(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2

φ1(x)dx

≤K5 ln2(∆)

∫
Ũ4

1(
1−

∑N
j=1

(
1 + N−1

aj

)−1
)2φ1(x)dx

≤K5 ln2(∆)

∫ ∞
u4

zΦ1

1−
N∑
j=1

(
1 +

N − 1

aj

)−1

≤ z−1/2


 dz ≤ K5 ln2(∆)|ln ∆|−K3 ,

where K5 is some constant which may vary from lines to lines and Ũ4 and u4 are defined in case
(iv) of the proof of Lemma 27.

Combining the above four cases, we can have∫
R

∣∣∣∣ ∂li∂γk

∣∣∣∣2 (x)φ1(x)dx ≤ K1(γ)∆−2ε ln2 ∆,

where K is some constant depending on γ.
For γ ≥ 2, similar results can be found by replacing the term {li(x) ≥ ∆−ε} to {li(x) ≤ ∆ε}

in case (i), and accordingly for the other cases. Since both terms turn out to have the form of
{x ≥ −K ln ∆} since li(x) < ε is equivalent to

Gie
−θx ≥ λiA1−γi

i ε−γi + (1− λi)ζiZ−iε−2 ≥ λiA1−γi
i ε−γi .

Hence, the results are the same. Therefore,

‖l − l∆γ‖2,φ ≤ K1(γ)∆1−ε ln ∆,

for any ε ∈ (0, 1/2). Letting ε go to 0, we have

‖l − l∆γ‖2,φ ≤ K1(γ)∆|ln ∆|,
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Lemma 31. For mini γi > 1, denote the perturbation in ζ as ∆ζ, and the according Pareto optimal
Nash equilibrium as l∆ζ . Let ∆ = ‖∆ζ‖2. Then, there exists some function K2 depending on ζ
such that

‖l − l∆ζ‖2,φ ≤ K2(ζ)∆|ln ∆|.

Proof. The proof is similar to the proof of Lemma 30. The difference is that
∣∣∣ biai ∣∣∣ ≤ Z−i

ζi
. Note that{

bi
ai
≥ ε−1

}
⊂
{
Z−i ≥ ζiε−1

}
⊂
{
lj(x) ≥ ζiε−1

}
,

for some j 6= i since if Z−i ≥ ζiε−1, at least one of the lj(x) ≥ ζiε−1 due to the fact that Z−i is the
average of lj for j 6= i. Therefore, following the same proof in Lemma 30,

‖l − l∆ζ‖2,φ ≤ K2(ζ)∆|ln ∆|,

Lemma 32. For mini γi > 1, denote the perturbation in λ as ∆λ, and the according Pareto optimal
Nash equilibrium as l∆λ. Let ∆ = ‖∆λ‖2. Then, there exists some function K3 depending on λ
such that

‖l − l∆λ‖2,φ ≤ K2(λ)∆|ln ∆|.

Proof. The proof is similar to the proof of Lemma 30. If γi < 2,∣∣∣∣ biai
∣∣∣∣ ≤ Z−i

1− λi
+

(1− τc)(Ai +Bi)

(1− λi)ζi
(x∗i3)2 ((1− τc)(Ai +Bi)x

∗
i3 + τcDi − (1− τc)Bi)−γi .

Otherwise, ∣∣∣∣ biai
∣∣∣∣ ≤ Z−i

1− λi
+

(1− τc)(Ai +Bi)

(1− λi)ζi
(x∗i1)2−γi ,

for some constant Ki. For γi < 2,
{
bi
ai
≥ ε−1

}
is a subset of{

Z−i
1− λi

+Ki(x
∗
i3)2−γi ≥ ε−1

}
⊂
{

Z−i
1− λi

≥ ε−1

2

}⋃{
Kil

2−γi
i (x) ≥ ε−1

2

}
⊂
{
lj(x) ≥ 1− λi

2
ε−1

}⋃{
li(x) ≥

(
1

2Ki

) 1
2−γi

ε
− 1

2−γi

}
,

for some j 6= i. Similarly, for γi ≥ 2,
{∣∣∣ biai ∣∣∣ ≥ ε−1

}
is a subset of{

lj(x) ≥ 1− λi
2

ε−1

}⋃{
li(x) ≤ (2Ki)

1
γi−2 ε

1
γi−2

}
⊂
{
lj(x) ≥ 1− λi

2
ε−1

}⋃{
Gie

−θx ≥ λiA1−γi
i ε

− γi
γi−2

}
,

where the last one has the same reason in the proof of Lemma 30. Hence, the same result can be
achieve through the process in the the proof of Lemma 30,

‖l − l∆λ‖2,φ ≤ K3(λ)∆|ln ∆|.
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Proof of Theorem 17: Based on Lemma 30, 31 and 32, there exist a function K4 depending on γ,
ζ and λ such that

‖l − l∆‖2,φ ≤ K4(γ, ζ, λ)∆|ln ∆|,

where l∆ is the Pareto optimal solution to l∆ = Pl∆ with (γ + ∆γ, ζ + ∆ζ, λ+ ∆λ). Hence,∣∣∣l̂i(t, x)− l̂i∆(t, x)
∣∣∣ ≤ K5(t, γ, ζ, λ)

∫
R
e
− (y−x)2

2(T−t) |li(y − θT )− li∆(y − θT )| dy

=K5(t, γ, ζ, λ)

∫
R
e
− (y−x)2

2(T−t) e
(y−θT )2

4T e−
(y−θT )2

4T |li(y − θT )− li∆(y − θT )| dy

≤K5(t, γ, ζ, λ)

(∫
R

exp

(
−y

2 − 2(2x− θT )y + x2

4(T − t)

)
dy

)
‖l − l∆‖2,φ

≤K5(t, γ, ζ, λ)e
3(x+ 2

3 θT)
2

4(T−t) ∆|ln ∆|,

where K5 is a function of t, γ, ζ, λ, and may vary from line to line. Denote the coefficient in the
last line above as K̃1(t, x, γ, ζ, λ). Similarly,∣∣∣(l̂i)x(t, x)− (l̂i∆)x(t, x)

∣∣∣ ≤ K6(t, γ, ζ, λ)

∫
R

y − x
T − t

e
− (y−x)2

2(T−t) |li(y − θT )− li∆(y − θT )| dy

≤K6(t, γ, ζ, λ)

(∫
R

(
y − x
T − t

)2

exp

(
−y

2 − 2(2x− θT )y + x2

4(T − t)

)
dy

)
‖l − l∆‖2,φ

≤K6(t, γ, ζ, λ)
(

(x+ θT )2 +
√

2(T − t)
)
e

3(x+ 2
3 θT)

2

4(T−t) ‖l − l∆‖2,φ ,

where K6 is a function of t, γ, ζ, λ, and may vary from line to line. Denote the coefficient above as
K̃2(t, x, γ, ζ, λ). Therefore,

|πit − πi∆t| ≤

∣∣∣∣∣∣ (l̂i)x(t,Wt + θt) +K2(t,Wt + θt, γ, ζ, λ)∆|ln ∆|

σ
(
l̂i(t,Wt + θt)−K1(t,Wt + θt, γ, ζ, λ)∆|ln ∆|

) − (l̂i)x(t,Wt + θt)

σl̂i(t,Wt + θt)

∣∣∣∣∣∣ ≤ K(t,Wt, γ, ζ, λ)∆|ln ∆|.

Combining all players’ optimal strategies, we get the required result.

63



64



Chapter 4

Model III: LQG Mean Field Games
with Common Noise

4.1 Markov Chain as Common Noise

4.1.1 Model

Let T > 0 be a fixed terminal time and (Ω,FT ,F = {Ft : 0 ≤ t ≤ T},P) be a completed filtered
probability space satisfying the usual conditions, on which W and B are two independent standard
Brownian motions, and Y is a continuous time Markov chain (CTMC) independent of (W,B) taking
values in {0, 1} with a generator

Q =

[
−γ0 γ0

γ1 −γ1

]
, (4.1.1)

for some γ0 ≥ 0, γ1 ≥ 0. The Brownian motion B does not play any role in MFG problem
formulation until the convergence proof of the N -player game to MFGs.

In this paper, we formulate the N -player game in the completed filtered probability space

(Ω(N),F (N)
T ,F(N) ..= {F (N)

t : 0 ≤ t ≤ T},P(N)), (4.1.2)

and Y (N) is the continuous time Markov chain in Ω(N) with the same generator given by (4.1.1)

and W (N) = (W
(N)
i : i = 1, . . . , N) is a N -dimensional standard Brownian motion. We assume

Y (N) and W (N) are independent of each other.
For better clarity, we use the superscript (N) for a random variable to emphasize the probability

space Ω(N) it belongs to. For example, Proposition 6 denotes a random variable in Ω(N) by X(N) ,
while its distribution copy in Ω by ZN , but not by Z(N).

Given a random measure flow m : (0, T ]× Ω 7→ P2(R), consider a generic player who wants to
minimize the expected accumulated cost on [0, T ]:

J(y, x, α) = E
[∫ T

0

1

2
α2
s + F (Ys, Xs,ms)ds+G(YT , XT ,mT )

∣∣∣Y0 = y,X0 = x

]
(4.1.3)

with some given cost functions F,G : {0, 1} × R × P2(R) 7→ R and underlying random processes
(Y,X) : [0, T ] × Ω 7→ {0, 1} × R. Among three processes (Y,X,m), the generic player can control
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the process X via α in the form of

Xt = X0 +

∫ t

0
αsds+Wt, (4.1.4)

for all t ∈ [0, T ]. We assume that the initial state X0 is independent of Y . The process Y of (4.1.1)
represents the common noise and m = (mt)0≤t≤T is a given random density flow normalized up to
total mass one.

The objective of the control problem for the generic player is to find its optimal control α̂ ∈
A := L4

F to minimize the total cost, i.e.

V (y, x) = J(y, x, α̂) ≤ J(y, x, α), (4.1.5)

for all α ∈ A. Associated to the optimal control α̂, we denote the optimal path by X̂ = (X̂t)0≤t≤T .
The Nash equilibrium is defined in Definition 5. Denote the value function of the control problem
associated to the equilibrium measure m̂ as MFG value function by

U(m0, y, x) = V [m̂](y, x). (4.1.6)

Figure 4.1: MFGs diagram.

The flowchart of MFGs diagram is given in Figure 4.1. It is noted from the optimality condition
(4.1.5) and the fixed point condition (1.2.1) that

J [m̂](y, x, α̂) ≤ J [m̂](y, x, α),

holds for any α for the equilibrium measure m̂ and its associated equilibrium control α̂, while it is
not

J [m̂](y, x, α̂) ≤ J [m](y, x, α),

for any α,m. Otherwise this problem turns into a McKean-Vlasov control problem discussed in
Nguyen et al. (2020).
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The discrete counterpart of MFGs is N -player game, which is formulated below in the proba-

bility space Ω(N). Recall that, W
(N)
it and W

(N)
jt are independent Brownian motions for j 6= i and

the common noise Y (N) is the continuous time Markov chain in Ω(N) with the generator given by
(4.1.1). Let the player i follow the dynamic, for i = 1, 2, . . . , N ,

dX
(N)
it = α

(N)
it dt+ dW

(N)
it , X

(N)
i0 = xNi . (4.1.7)

In the above, the initial state is denoted by xNi instead of x
(N)
i , since xNi is independent of the

choice of the sample ω(N) ∈ Ω(N) as a constant.

The cost function for player i associated to the control α(N) = (α
(N)
i : i = 1, . . . , N) ∈ AN is

JNi (y, xN , α(N)) = E
[∫ T

0

(
1

2
|α(N)
it |

2 + F (Y
(N)
t , X

(N)
it , ρ(X

(N)
t ))

)
dt+

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T ))

∣∣∣X(N)
0 = xN , Y

(N)
0 = y

]
,

(4.1.8)

where xN = (xN1 , x
N
2 , . . . , x

N
N ) ∈ RN is the initial state for N players and

ρ(xN ) =
1

N

N∑
i=1

δxNi
(4.1.9)

is the empirical measure of a vector xN with Dirac measure δ.

4.1.2 Main Result with Quadratic Cost Structures

We consider the following two functions F,G : {0, 1}×R×P2(R) 7→ R in the cost functional (4.1.3):

F (y, x,m) = h(y)

∫
R

(x− z)2m(dz), (4.1.10)

and

G(y, x,m) = g(y)

∫
R

(x− z)2m(dz), (4.1.11)

for some h, g : {0, 1} 7→ R+. In this case, the F and G terms in (4.1.8) of the N -player game can
be written by

F (Y
(N)
t , X

(N)
it , ρ(X

(N)
t )) =

h(Y
(N)
t )

N

N∑
j=1

(X
(N)
it −X(N)

jt )2,

and

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T )) =

g(Y
(N)
T )

N

N∑
j=1

(X
(N)
iT −X(N)

jT )2,

respectively.
First, we note that F and G possess the quadratic structures in x. Secondly, the coefficients

h(y) and g(y) provide the sensitivity to the mean field effects, which depend on the current CTMC
state. For another remark, let us consider the scenario where sensitivities are invariant, say

h(0) = h(1) = h, g(0) = g(1) = 0.
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Then the cost function and hence the entire problem is free from the common noise. Interestingly,
as shown in the Appendix 4.3.1, there is no global solution for MFGs when h < 0, while there is
global solution when h > 0. Therefore, we require positive values for all sensitivities for simplicity.
It is of course an interesting problem to investigate the explosion when some sensitivities take
negative.

Wrapping up the above discussions, we impose the following assumptions:

(A1) The cost functions are given by (4.1.10)-(4.1.11) with h, g > 0; The initial X0 of MFGs
satisfies E[X2

0 ] <∞.

(A2) In addition to (A1), as N →∞, the initial ρ(xN ) of the N -player game is weakly convergent
to the initial L(X0) of MFGs.

Our objective of this paper is to understand the Nash equilibrium of MFGs and its connection to
the N -player game equilibrium:

(P1) With Assumption (A1), characterize the MFG equilibrium path X̂ and the value function U ,
as well as associated equilibrium measure m̂ along the Definition 5;

(P2) With Assumption (A2), prove the convergence of X̂
(N)
ut from the N -player game in Definition

7 to X̂t from MFGs in Definition 5.

For our first main result, we present the Riccati system for (ay, by, cy, ky : y = 0, 1):

a′y − 2a2
y − γyay + γya1−y + hy = 0,

b′y − 4ayby − γyby + γyb1−y + hy = 0,

c′y + ay + by − γycy + γyc1−y = 0,

k′y − 2a2
y + 4ayby − γyky + γyk1−y = 0,

ay(T ) = by(T ) = gy , cy(T ) = ky(T ) = 0,

(4.1.12)

where hy = h(y), gy = g(y) for y = 0, 1.

Theorem 33 (MFG). Under (A1), there exists a unique solution (ay, by, cy, ky : y = 0, 1) for the
Riccati system (4.1.12). With these solutions, the MFG equilibrium path X̂ = X̂[m̂] is given by

dX̂t = 2aYt(t)(E[X0]− X̂t)dt+ dWt, X̂0 = X0, (4.1.13)

with equilibrium control

α̂t = 2aYt(t)(E[X0]− X̂t). (4.1.14)

Moreover, the value function U is

U(m0, y, x) = ay(0)x2−2ay(0)x[m0]1 + ky(0)[m0]21 + by(0)[m0]2 + cy(0), y = 0, 1.

Theorem 34 (Convergence). Under Assumption (A2), (X̂
(N)
ut , Y

(N)
t ) of the N -player game con-

verges in distribution to the MFG equilibrium (X̂t, Yt) for any t ∈ (0, T ].
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4.1.2.1 Remarks on the main results

The Nash equilibrium of the N -player game can be considered as N -coupled stochastic control
problem. With the presence of the quadratic cost, the problem can be solved in the framework
of LQG via Riccati system (4.1.27) in the subsequent part. However, the number of unknowns in
this Riccati system is in the order of O(N3), which means the complexity of the solution has a
polynomial growth in the number of players N .

To reduce the complexity, one can solve MFGs instead of solving the huge Riccati system. In
our case, the MFG equilibrium control (4.2.14) of Theorem 33 suggests that a player in the N -player
game shall steer towards the population center

x̄N =
1

N

N∑
i=1

xNi ≈ E[X0]

at a velocity proportional to her distance to the center x̄N −X(N)
it with the proportionality 2aYt(t)

simply determined from an ODE system of two equations:

a′y − 2a2
y − γyay + γya1−y + hy = 0, ay(T ) = gy, y = 0, 1.

The above fact is exactly the essence of the MFG as its presence as the asymptotic version of
N -player game and it can be demonstrated by numerical computations, see Section 4.1.5. Theorem

34 provides the theoretical justification for this phenomenon: the generic player X̂
(N)
ut from the

N -player game behaves similarly to the generic player X̂t from MFGs, which confirms why one
can use MFG strategy in the N -player game for its approximation. To prove the convergence in

distribution, we construct ZNt in Ω such that L(ZNt , Y ) = L(X̂
(N)
ut , Y (N)) and then prove the almost

sure convergence ZNt → X̂t. This procedure is called embedding and it is not a trivial matter. To
see this, since Ω(N) accommodating N -dimensional Brownian motion W (N) is much richer than
Ω having only 2-dimensional Brownian motion (W,B), it is in general impossible to replicate the
distribution of any random variable from Ω(N) to Ω. The reason having such embedding is exactly
due to the dimension-invariant feature of the mean field terms at equilibrium, see more details in
the proof of Lemma 41. The crucial observation towards this decomposition is the pattern of N×N
matrix Aiy described in Table 4.1 and equation (4.1.29).

4.1.3 Riccati system for MFGs

This section is devoted to the proof of the first main result Theorem 33 on the MFG solution.
First, we outline the scheme based on the Markovian structure of the equilibrium by reformulating
the MFG problem. Next, we solve the underlying control problem and provide the corresponding
Riccati system. Finally, Theorem 33 is proven by checking the fixed point condition of MFG
problem.

By Definition 7, to solve for the equilibrium measure, one shall search the infinite dimensional
space of the random measure flows m : (0, T ]×Ω 7→ P2(R), until a measure flow satisfies the fixed
point condition mt = L(X̂t|Y ) for any t ∈ (0, T ], see Figure 4.1, which is equivalent to check the
following infinitely many conditions: for any k ∈ N+, if they exist,

[mt]k = E
[
X̂k
t

∣∣∣Y ] .
69



The first observation is that the cost functions F and G in (4.1.10)-(4.1.11) are dependent on
the measure m only via the first two moments:

F (y, x,m) = h(y)(x2 − 2x[m]1 + [m]2),

G(y, x,m) = g(y)(x2 − 2x[m]1 + [m]2).

Therefore, the underlying stochastic control problem for MFGs can be entirely determined by the
input given by R2 valued random process µt = [mt]1 and νt = [mt]2, which implies that the fixed
point condition can be effectively reduced to check two conditions only:

µt = E
[
X̂t

∣∣∣Y ] , νt = E
[
X̂2
t

∣∣∣Y ] .
This observation effectively reduces our search from the space of random measure-valued processes
m : (0, T ]× Ω 7→ P2(R) to the space of R2-valued random processes (µ, ν) : (0, T ]× Ω 7→ R2.

Note that, if underlying MFGs have no common noise Y , then (µ, ν) is a deterministic mapping
[0, T ] 7→ R2 and the above observation is enough to reduce the original infinite dimensional MFGs
into a finite dimensional system. However, the following example shows that this is not the case for
MFGs with a common noise and it becomes the main drawback to characterize MFGs via a finite
dimensional system.

To illustrate, we consider the following uncontrolled mean field dynamics: Let the mean field

term µt ..= E
[
X̂t

∣∣∣Y ], where the underlying dynamic is given by

dX̂t = −µtYtdt+ dWt.

• µt is path dependent on Y , i.e.

µt = µ0 exp
{
−
∫ t

0
Ysds

}
.

This implies that no finite dimensional system is possible to characterize the process µt, since
the (t, Y ) 7→ µt is a function on an infinite dimensional domain.

• µt is Markovian, i.e.
dµt = −Ytµtdt.

It might be possible to characterize µt via a function (t, Yt, µt) 7→ dµt
dt on a finite dimensional

domain.

To solidify the above idea, we need to postulate the Markovian structure for the first and second
moment of the MFG equilibrium. More precisely, our search for the equilibrium will be confined
to the space M of measure flows whose first and second moment exhibits Markovian structure.

Definition 35. The space M is the collection of all FYt -adapted measure flows m : [0, T ] × Ω 7→
P2(R), whose first moment [mt]1 ..= µt and second moment [mt]2 ..= νt satisfy

µt = µ0 +

∫ t

0
(w0(Ys, s)µs + w1(Ys, s)) ds,

νt = ν0 +

∫ t

0

(
w2(Ys, s)µs + w3(Ys, s)νs + w4(Ys, s)µ

2
s + w5(Ys, s)

)
ds,

(4.1.15)

for all t ∈ [0, T ] and some smooth deterministic functions (wi : i = 0, 1, . . . , 5).
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Figure 4.2: Equivalent MFGs diagram with µ0 = [m0]1 and ν0 = [m0]2.

The flowchart for our equilibrium is depicted in Figure 4.2.

Next, we give the derivation of the Riccati system for generic player’s LQG problem with a
given measure flow m ∈ M. The advantage of the generic player’s control problem is that its
optimal path can be characterized via the following classical stochastic control problem:

• (P3) Given smooth functions w = (wi : i = 0, 1, . . . , 5), find the optimal value V̄ = V̄ [w]

V̄ (y, x, t, µ̄, v̄) = inf
α∈A

E
[∫ T

t

(
1

2
α2
s + F̄ (Ys, Xs, µs, νs)

)
ds

+Ḡ(YT , XT , µT , νT )
∣∣Yt = y,Xt = x, µt = µ̄, νt = ν̄

]
underlying R4-valued processes (Y,X, µ, ν) defined through (4.1.1)-(4.1.4)-(4.1.15) with the
finite dimensional cost functions: F̄ , Ḡ : R4 7→ R given by

F̄ (y, x, µ̄, ν̄) = h(y)(x2 − 2xµ̄+ ν̄),

Ḡ(y, x, µ̄, ν̄) = g(y)(x2 − 2xµ̄+ ν̄),

where µ̄, ν̄ are scalars, while µ, ν are used as processes.

Lemma 36. Given m ∈M associated with w = (wi : i = 0, . . . , 5), the player’s value (4.1.5) under
assumption (A1) is

U [m0](y, x) = V̄ (y, x, 0, [m0]1, [m0]2),

and the optimal control has a feedback form

α̂t = ᾱ(Yt, Xt, t, µt, νt)

underlying the processes (Y,X, µ, ν) defined through (4.1.1)-(4.1.4)-(4.1.15), whenever there exists
a feedback optimal control ᾱ for the problem (P3).

Proof. This is due to the quadratic cost structure in (4.1.10)-(4.1.11)

For the simplicity of notations, for each i ∈ {0, 1, 2, 3, 4, 5} and y ∈ {0, 1}, denote function
v(y, x, t, µ̄, ν̄) as vy, and denote wi(y, t) as wiy. We apply similar notations for other functions
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whenever they have a variable y ∈ {0, 1}. Formally, under enough regularity conditions, the value
function V̄ defined in (P3) is the solution v of the following coupled HJBs

∂tv0 + 1
2∂xxv0 − 1

2(∂xv0)2 + ∂µv0 (w00µ̄+ w10) + ∂νv0 (w20µ̄+ w30ν̄

+w40µ̄
2 + w50

)
− γ0v0 + γ0v1 + F̄0 = 0,

∂tv1 + 1
2∂xxv1 − 1

2(∂xv1)2 + ∂µv1 (w01µ̄+ w11) + ∂νv1 (w21µ̄+ w31ν̄

+w41µ̄
2 + w51

)
− γ1v1 + γ1v0 + F̄1 = 0,

vy(x, T, µT , νT ) = Ḡy(x, µT , νT ), y = 0, 1.

(4.1.16)

Furthermore, the optimal control has to admit the feedback form of

α̂(t) = −∂xv(Yt, X̂t, t, µt, νt). (4.1.17)

Denote
S = {v ∈ L∞ : ‖∂xxv‖∞ + ‖∂tv‖∞ <∞, ‖∂µv‖∞ <∞, ‖∂νv‖∞ <∞} .

Lemma 37. Consider the control problem (P3) with some given smooth w.

1. (Verification theorem) Suppose there exists a solution v ∈ S of (4.1.16). Then, vy(x, t, µ̄, ν̄) =
V̄ (y, x, t, µ̄, ν̄) holds, and an optimal control is provided by (4.1.17).

2. Suppose that the value function V̄ belongs to S, and then V̄y(x, t, µ̄, ν̄) := V̄ (y, x, t, µ̄, ν̄) solves
HJB equation (4.1.16). Moreover, α̂ of (4.1.17) is an optimal control.

The costs F̄ and Ḡ of (P3) are quadratic functions in (x, µ̄, ν̄), while the drift function of the
process ν of (4.1.15) is not linear in (x, µ̄, ν̄). Therefore, the control problem (P3) does not fall
into the standard LQG control framework. Nevertheless, similar to the LQG solution, we guess the
value function as a quadratic function in the form of

vy(x, t, µ̄, ν̄) =ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t), y = 0, 1. (4.1.18)

With the above setup, for t ∈ [0, T ], the optimal control is

α̂t = −∂xv(Yt, X̂t, t, µt, νt) = −2aYt(t)X̂t − dYt(t)− fYt(t)µt, (4.1.19)

and the optimal path X̂ is

dX̂t =
(
−2aYt(t)X̂t − dYt(t)− fYt(t)µt

)
dt+ dWt. (4.1.20)

Denote the following ODE systems for y, z = 0, 1 and y 6= z,

a′y − 2a2
y − γyay + γyaz + hy = 0,

d′y − 2aydy + fyw1y − γydy + γydz = 0,

e′y − dyfy + 2kyw1y + eyw0y + byw2y − γyey + γyez = 0,

f ′y − 2ayfy + fyw0y − γyfy + γyfz − 2hy = 0,

k′y − 1
2f

2
y + 2kyw0y + byw4y − γyky + γykz = 0,

b′y + byw3y − γyby + γybz + hy = 0,

c′y + ay − 1
2d

2
y + eyw1y + byw5y − γycy + γycz = 0,

(4.1.21)

with terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0, ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0. (4.1.22)
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Lemma 38. Suppose there exists a unique solution (ay, by, cy, dy, ey, fy, ky : y = 0, 1) to the ODE
system (4.1.21)-(4.2.10) on [0, T ]. Then the value function of (P3) is

V̄ (y, x, t, µ̄, ν̄) = vy(x, t, µ̄, ν̄)

=ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t)
(4.1.23)

for y = 0, 1 and the optimal control and optimal path are given by (4.1.19) and (4.1.20), respectively.

Going back to the ODE system (4.1.21), there are 14 (7 pairs) equations, while we have total
26 deterministic functions of [0, T ]× R to be determined to characterize MFGs. Those are

(ay, by, cy, dy, ey, fy, ky : y = 0, 1) and (wiy : i = 0, . . . 5, y = 0, 1).

In this below, we identify the missing 12 equations by checking the fixed point condition:

µs = E
[
X̂s

∣∣∣Y ] , νs = E
[
X̂2
s

∣∣∣Y ] , ∀s ∈ [0, T ], (4.1.24)

where µ and ν are two auxiliary processes (µ, ν)[w] defined in (4.1.15), see Figure 4.2. This leads
to a complete characterization of the equilibrium for MFGs (P1).

Note that based on the dynamic of the optimal X̂ defined in (4.1.20), the fixed point condition

(4.1.24) implies that the first moment µ̂s := E
[
X̂s

∣∣∣Y ] and the second moment ν̂s := E
[
X̂2
s

∣∣∣Y ] of

the optimal path conditioned on Y satisfy
µ̂s = µ̄+

∫ s

t
(− (2aYr(r) + fYr(r)) µ̂r − dYr(r)) dr,

ν̂s = ν̄ +

∫ s

t

(
1− 4aYr(r)ν̂r − 2dYr(r)µ̂r − 2fYr(r)µ̂

2
r

)
dr,

(4.1.25)

for s ≥ t. Note that under the optimal control in (4.1.19), comparing the terms in (4.1.15) and
(4.1.25), we obtain another 12 equations:

w0y = −2ay − fy, w1y = −dy, w2y = −2dy, w3y = −4ay, w4y = −2fy, w5y = 1. (4.1.26)

Using further algebraic structures, one can reduce the ODE system of 26 equations composed by
(4.1.21) and (4.1.26) into a system of 8 equations of the form (4.1.12) for the MFG characterization
in Theorem 33.

Proof of Theorem 33. Since ay (y = 0, 1) has the same expressions as (4.1.12), its existence,
uniqueness and boundedness are shown in Lemma 53. Given ay (y = 0, 1) and smooth bounded w’s,
(by, dy, ey, fy : y = 0, 1) is a coupled linear system, and their existence, uniqueness and boundedness
is shown by Theorem 12.1 in Antsaklis and Michel (2006). Similarly, given (by, dy, fy : y = 0, 1),
(ky, cy : y = 0, 1) is a linear system, and their existence and uniqueness is also guaranteed by
Theorem 12.1 in Antsaklis and Michel (2006).

The ODE system (4.1.21) can be rewritten by

a′y − 2a2
y − γyay + γyaz + hy = 0,

d′y − 2aydy − fydy − γydy + γydz = 0,

e′y − dyfy − 2kydy − ey(2ay + fy)− 2bydy − γyey + γyez = 0,

f ′y − 2ayfy − fy(2ay + fy)− γyfy + γyfz − 2hy = 0,

k′y − 1
2f

2
y − 2ky(2ay + fy)− 2byfy − γyky + γykz = 0,

b′y − 4ayby − γyby + γybz + hy = 0,

c′y + ay − 1
2d

2
y − eydy + by − γycy + γycz = 0,
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with the terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0, ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0.

Since by (y = 0, 1) has the same expressions as (4.1.12), its existence, uniqueness and bounded-
ness are shown in Lemma 53. Meanwhile, with the given (ay, by : y = 0, 1), we denote ly = 2ay+fy,
and then

l′y − l2y − γyly + γylz = 0 , ly(T ) = 0.

By Lemma 51 and Lemma 52 in Appendix, there exists a unique solution for ly (y = 0, 1), which
is ly = 0, y = 0, 1. This gives fy = −2ay and d′y − γydy + γydz = 0, which implies dy = 0, y = 0, 1.
Then, the equation for ey can be simplified as e′y−γyey+γyez = 0, which indicates that ey = 0, y =
0, 1. For ky, cy, with the given of (ay, by, fy : y = 0, 1), we have

k′y − γyky + γykz − 2a2
y + 4ayby = 0 , ky(T ) = 0,

c′y + ay −
1

2
d2
y − eydy + by − γycy + γycz = 0.

The existence and uniqueness of the solution for ky, cy (y = 0, 1) are yielded by Theorem 12.1 in
Antsaklis and Michel (2006).

Note that in this case, since 2ay + fy = 0 and dy = 0 for y = 0, 1, from (4.1.25) we have µ̂s = µ̄
for all s ∈ [t, T ]. Then

ν̂s = ν̄ +

∫ s

t

(
1 + 4aYr(r)µ̄

2 − 4aYr(r)ν̂r
)
dr.

Plugging dy = 0 for y = 0, 1 and µ̂s = µ̄ back to (4.1.19), we obtain the optimal control by

α̂s = 2aYs(s)(µ̄− X̂s).

Since we have dy = 0 for y = 0, 1 and µs = µ̄ for s ∈ [t, T ], the value function can be simplified
from (4.1.18) to

vy(x, t, µ̄, ν̄) = ay(t)x
2−2ay(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t).

By the equivalence Lemma 36, it yields the value function U of Theorem 33 . Moreover, since
fy = −2ay and ky 6= 0, the ODE system (4.1.21) together with (4.1.26) can be reduced into
(4.1.12). From the Lemma 53, the existence and uniqueness of (ay, by, cy, ky : y = 0, 1) in (4.1.12)
is guaranteed.

4.1.4 The N-player Game and its Convergence to MFGs

In this section, we show the convergence of the N -player game to MFGs. To simplify the pre-
sentation, we omit the superscript (N) for the processes in the probability space Ω(N), whenever
there is no confusion. First, we solve the N -player game, which provides a Riccati system consist-
ing of O(N3) equations. Then the corresponding Riccati system is reduced into an ODE system
whose dimension is independent to N . This becomes the key building block for the proof of the
convergence.

The N -player game is indeed an N -coupled stochastic LQG problem by its very own definition.
Therefore, the solution can be derived via Riccati system given below: For i = 1, 2, . . . , N , y = 0, 1,
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

A′iy − 2A>iyeie
>
i Aiy − 4

∑
j 6=i

A>jyeje
>
j Aiy − γyAiy + γyAi(1−y)

+
hy
N

∑
j 6=i

(ei − ej) (ei − ej)> = 0,

B′iy − 2A>iyeie
>
i Biy − 2

∑
j 6=i

(
A>iyeje

>
j Bjy +A>jyeje

>
j Biy

)
− γyBiy + γyBi(1−y) = 0,

C ′iy −
1

2
B>iyeie

>
i Biy −

∑
j 6=i

B>jyeje
>
j Biy + tr(Aiy)− γyCiy + γyCi(1−y) = 0,

Aiy(T ) =
gy
N

Λi , Biy(T ) = Ciy(T ) = 0,

(4.1.27)

where the solutions consist of N × N symmetric matrices Aiy’s, N -dimensional vectors Biy’s,
and Ciy ∈ R. In the above, Λi’s are N × N matrices with diagonal 1 except (Λi)ii = N − 1,
(Λi)ij = (Λi)ji = −1 for any j 6= i and the rest entries as 0, and ei’s are the N -dimensional natural
basis.

Lemma 39. Suppose (Aiy, Biy, Ciy : i = 1, 2, . . . , N, y = 0, 1) is the solution of (4.1.27). Then,
the value functions of N -player game defined by (1.2.2) is

Vi(y, x
N ) = (xN )>Aiy(0)xN + (xN )>Biy(0) + Ciy(0), i = 1, . . . , N.

Moreover, the path and the control under the equilibrium are

dX̂it =
(
−2(AiYt)

>
i X̂t − (BiYt)i

)
dt+ dWit, i = 1, . . . , N, (4.1.28)

and
α̂it = −2(AiYt)

>
i X̂t − (BiYt)i,

where (A)i denotes the i-th column of matrix A, (B)i denotes the i-th entry of vector B and

X̂t =
[
X̂1t X̂2t · · · X̂Nt

]>
.

Our objective is the convergence of (X̂
(N)
ut , Y

(N)
t ) generated by (4.1.28) relying on the solution

of Riccati system (4.1.27) to the (X̂t, Yt) of (4.2.13). Note that X̂t relies only on two functions

(ay : y = 0, 1) while ρ(X̂
(N)
t ) depends on O(N3) functions from (Aiy : i = 1, 2, . . . , N, y = 0, 1),

which can be solved from a huge Riccati system. Therefore, it is almost a hopeless task to see the
connection between these two processes without gaining further insight on the structure of Riccati
system (4.1.27).

To proceed, let us first observe some hidden patterns from a numerical result for the solution
of Riccati (4.1.27). Table 4.1 shows the A20 at t = 1 for N = 5 with same parameters as in figure
4.3 and figure 4.4 in Section 4.1.5. Inspired by the numerical example of Aiy in Table 4.1, we may
want to believe a pattern

(Aiy)pq =


a1y(t), if p = q = i,

a2y(t), if p = q 6= i,

a3y(t), if p 6= q, p = i or q = i,

a4y(t), otherwise.

(4.1.29)
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0.1319 -0.1924 0.0202 0.0202 0.0202

-0.1924 0.7696 -0.1924 -0.1924 -0.1924

0.0202 -0.1924 0.1319 0.0202 0.0202

0.0202 -0.1924 0.0202 0.1319 0.0202

0.0202 -0.1924 0.0202 0.0202 0.1319

Table 4.1: A20(1) for N = 5

The next result justifies the above pattern: the N2 entries of the matrix Aiy can be embedded to
a 4-dimensional vector space no matter how big N is.

Lemma 40. There exists a unique solution (aN1y, a
N
2y) from the ODE system(4.1.30).

a′1y −
2(N+1)
N−1 a2

1y − γya1y + γya1(1−y) + N−1
N hy = 0,

a′2y + 2
(N−1)2a

2
1y − 4N

N−1a1ya2y − γya2y + γya2(1−y) +
hy
N = 0,

a1y(T ) = N−1
N gy , a2y(T ) =

gy
N

(4.1.30)

for y = 0, 1. Moreover,

(Aiy)pq =


a1y(t), if p = q = i,

a2y(t), if p = q 6= i,

− 1
N−1a1y(t), if p 6= q, p = i or q = i,

1
(N−1)(N−2)a1y(t)− 1

N−2a2y(t), otherwise.

(4.1.31)

The path and the control of player i under the equilibrium are

dX̂
(N)
it = −2aN

1Y
(N)
t

(t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 dt+ dW
(N)
it , i = 1, . . . , N, (4.1.32)

and

α̂
(N)
it = −2aN

1Y
(N)
t

(t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 .

The key is to provide an explicit embedding of (X̂
(N)
ut , Y

(N)
t ) to the same probability space

(Ω,FT ,P) when we prove the convergence in distribution of (X̂
(N)
ut , Y

(N)
t ) generated by (4.1.32) in

the sample space Ω(N) towards the (X̂t, Yt) of (4.2.13) in Ω . Note that, no matter how large N

is, our objective is to copy the distribution of X̂
(N)
t from Ω(N) having N -dimensional Brownian

motion W (N) to a smaller space Ω having only two Brownian motions W and B. In general, the
space of random processes generated by N -dimensional Brownian motion is much richer than the
one generated by 2-dimensional Brownian motion whenever N > 2. However, it is possible for

our case to copy the distribution (X̂
(N)
ut , Y

(N)
t ) due to the nature of the mean field effect. Next we

present the coupling result.
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Lemma 41. Let ZN be the solution of

ZNt = xNu −
∫ t

0
2âN1Ys(s)

(
ZNs − (x̄N +

√
N − 1

N
Bs +

1

N
Ws)

)
ds+Wt, (4.1.33)

where u is the random variable uniformly distributed on set {1, 2, . . . , N}, W and B are Brownian
motions on the (Ω,FT ,P) defined in Section 4.1.1, and

âN1y =
N

N − 1
aN1y,

where aN1y is from the ODE system(4.1.30). Then, (ZNt , Yt) in (Ω,FT ,P) has the same distribution

as (X̂
(N)
ut , Y

(N)
t ) in (Ω(N),F (N)

T ,P(N)).

Now we turn to the proof of the convergence.

Proof of Theorem 34. We define

Et(b) = exp

{∫ t

0
bsds

}
.

and

Gt(x, b,W ) = Et(−b)x+ Et(−b)
∫ t

0
Es(b)dWs.

Then, we can rewrite the process ZN of (4.1.33) by

ZNt = Gt(x
N
u , 2â

N
1 (Y., ·),W )

and write X̂ by
X̂t = Gt(X0, 2a(Y., ·),W )

1. We recall that the term x̄N = 1
N

∑N
i=1 x

N
i is a deterministic real number. Since ρ(xN ) is

weakly convergent to the law of X0 by (A2), one can have

〈φ, ρ(xN )〉 → E[φ(X0)],

for all test functions φ. If we use φ(x) = x, then it yields x̄N → E[X0]. Hence, we have

x̄N +

√
N − 1

N
Bt +

1

N
Wt → E[X0] almost surely.

2. Note that from (4.1.30), the convergence aN1y → ay holds in L∞[0, T ], where ay is the solution
from (4.1.12). Therefore, we have the almost sure convergence

lim
N→∞

‖âN1 (Y., ·)− a(Y., ·)‖∞ = 0, almost surely .

By (A2), xNu converges to X0 in distribution. By Skorohod representation theorem, we can
have a replication x̄Nu and X̄0 in the same probability space with almost sure convergence.
For the simplicity of notation, we assume that

xNu → X0 almost surely .

Finally, since Gt is continuous on R× L∞ × L∞, we have

Gt(x
N
u , 2â

N
1 (Y., ·),W )→ Gt(X0, 2a(Y., ·),W ), almost surely .

Therefore, we conclude that ZNt → X̂t almost surely. Combine with Lemma 41 and Proposition 6,
we conclude the desired weak convergence.
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4.1.5 Numerical Examples

For MFGs, we have derived a 8 dimensional Riccati ODE system (4.1.12) to determine the param-
eter functions

(ay, by, cy, ky : y = 0, 1)

needed for the characterization of the equilibrium and the value function. Meanwhile, we also show
the solvability of the Riccati ODE system in Section 4.1.3.

As mentioned earlier, different from the MFG characterization with the common noise, the
derived Riccati system is essentially finite dimensional. In this subsection, we present an numer-
ical experiment and show some numerical results for solving Riccati system to demonstrate its
computational advantages.

For the illustration purpose, assume the finite time horizon is given with T = 5 and that the
coefficients of the dynamic equation are listed below

γ0 = 0.5, γ1 = 0.6, h0 = 2, h1 = 5, g0 = 3, g1 = 1, µ0 = 0, ν0 = 2.

Firstly, using Euler’s forward difference method with the step size δ = 10−2, we can obtain tra-
jectories of (ay, by, cy : y = 0, 1), which is the solution of ODE system (4.1.12). Next, using the
trajectories of the parameter functions and Markov chain Yt, we can achieve the simulations for α̂t
and X̂t.
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Figure 4.3: Simulations for ay, V, α and ν.

As shown in figure 4.3, people tend to centralize since the conditional second moment of the
population density νt is always decreasing.

In section 4.1.4, we showed that the generic player’s path for N -player game is convergent to
the generic player’s path for MFGs. In this subsection, we demonstrate the convergence of the
conditional first moment, conditional second moment and the value functions of the N -player game
to the corresponding terms of the generic player in Mean Field Game setup by using some numerical
examples.

The following figures show the value functions, µ(N) and ν(N) under N ∈ {10, 20, 50, 100} with
the same parameters’ settings as in figure 4.3 and figure 4.4. We can clearly see the convergence
to the solution of the generic player.
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Figure 4.4: Simulations for by and cy.
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Figure 4.5: Simulations for µt and νt.

4.2 Brownian Motion as Common Noise

4.2.1 Model

The settings are similar to those in Section 4.1.1 except that the common noise is an independent
Brownian motion instead of the continuous time Markov Chain. Let T > 0 be a fixed terminal time
and (Ω,FT ,F = {Ft : 0 ≤ t ≤ T},P) be a completed filtered probability space satisfying the usual
conditions, on which W , W̃ and B are three independent standard Brownian motions. (Wt)0≤t≤T
is called individual or idiosyncratic noise and (W̃t)0≤t≤T is called common noise. Denote F̃st as the
filtration generated by (W̃r − W̃s : s ≤ r ≤ t) and F̃t ..= F̃0

t .

The N -player game is in the same complete filtered space defined in (4.1.2) generated by W (N) =

(W
(N)
i : i = 1, · · · , N) and W̃ . All Brownian motions are independent. The accumulated cost
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Figure 4.6: Simulation of player 1’s optimal value function V .

function is the same as (4.1.3) with players control the process X via α following

Xt = ξ +

∫ t

0
αsds+Wt + W̃t, (4.2.1)

for all t ∈ [0, T ] and E
[
ξ2
]
< ∞. Given a random measure flow m : (0, T ] → P2(R), the generic

player wants to minimize the expected accumulated cost on [0, T ]:

J(x, α) = E
[∫ T

0

1

2
α2
s + F (Xs,ms) ds+G(XT ,mT )

∣∣∣∣X0 = x

]
, (4.2.2)

with

F (x,m) = kf

∫
R

(x− z)2m(dz) , G(x,m) = kg

∫
R

(x− z)2m(dz),

for some kf , kh > 0. Similarly, for the according N -player game, player i follows

dX
(N)
it = α

(N)
it dt+ dWt + dW̃t, (4.2.3)

and the cost function is

J(x, α) = E
[∫ T

0

1

2
α2
s + F (Xs, ρ(X

(N)
t )) ds+G(XT , ρ(X

(N)
T )

∣∣∣∣X(N)
0 = xN

]
, (4.2.4)

where ρ(xN ) is defined in (4.1.9).

4.2.2 Main Results for MFGs

Similar to the analysis in Section 4.1, instead of directly working on the infinite dimensional problem
defined in (4.2.2), we base our calculations on its alternative version with F and G are represented
as function of the first and second moment of the measure m, denoted as µ̄ and ν̄:

F̄ (x, µ̄, ν̄) = kf (x2 − 2xµ̄+ ν̄) , Ḡ(x, µ̄, ν̄) = kg(x
2 − 2xµ̄+ ν̄).
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The control problem becomes similar to (P3) defined in Section 4.1 except that

V̄ (x, t, µ̄, ν̄) = inf
α∈A

E
[∫ T

t

1

2
α2
sds+ F̄ (Xs, µs, νs)ds+ Ḡ(XT , µT , νT )

∣∣∣∣Xt = x, µt = µ̄, νt = ν̄

]
.

Thanks to the Markovian structure of V̄ , we can assume the value function based on the LQG
nature of the problem as

V̄ (x, t, µ̄, ν̄) = a(t)x2 + e(t)x+ b(t)µ̄2 + f(t)µ̄+ g(t)xµ̄+ c(t)ν̄ + d(t). (4.2.5)

Definition 42. The space M is the collection of all F̃t-adapted measure flows m : [0, T ] × Ω 7→
P2(R), whose first moment [mt]1 := µt and second moment [mt]2 := νt satisfy

µt = µ0 +

∫ t

0
(w1(s)µs + w2(s)) ds+ W̃t,

νt = ν0 +

∫ t

0

(
w3(s)µs + w4(s)νs + w5(s)µ2

s + w6(s)
)
ds+ 2

∫ t

0
µs dW̃s,

(4.2.6)

for all t ∈ [0, T ] and some smooth deterministic functions (wi : i = 1, 2, . . . , 6).

Under enough regularity conditions, the value function V̄ defined in (4.2.5) is the solution v of
the following coupled HJBs

∂tv − 1
2(∂xv)2 + (w1µ̄+ w2) ∂µ̄v +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄v + ∂xxv + 1

2∂µ̄µ̄v

+∂xµ̄v + 2µ̄2∂ν̄ν̄v + 2µ̄∂µ̄ν̄v + 2µ̄∂xν̄v + k(x2 − 2µ̄x+ ν̄) = 0,

v(T, x, µT , νT ) = kg(x
2 − 2xµT + νT ).

(4.2.7)

Furthermore, the optimal control has to admit the feedback form of

α̂(t) = −∂xv
(
t, X̂t, µt, νt

)
. (4.2.8)

The proof of the verification theorem is similar to that of Lemma 37, which is omitted here. After
plugging in the expression of (4.2.5) into the HJB equation, we have

a′ − 2a2 + kf = 0,

e′ − 2ae+ w2g = 0,

f ′ − eg + w1f + 2bw2 + cw3 = 0,

g′ − 2ag + w1g − 2kf = 0,

b′ − 1
2g

2 + 2bw1 + cw5 = 0,

c′ + cw4 + kf = 0,

d′ + 2a+ g + b− 1
2e

2 + fw2 + cw6 = 0,

(4.2.9)

with terminal conditions

a(T ) = c(T ) = kg , g(T ) = −2kg , b(T ) = d(T ) = e(T ) = f(T ) = 0. (4.2.10)
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Meanwhile, based on the fixed point condition illustrated in figure 4.2, the first moment µ̂s ..=

E
[
X̂s

∣∣∣ F̃t] and the second moment ν̂s ..= E
[
X̂2
s

∣∣∣ F̃t] of the optimal path conditioned on F̃t satisfy
µ̂s = µ̄+

∫ s

t
((−2a(r)− g(r)) µ̂r − e(r)) dr + W̃s,

ν̂s = ν̄ +

∫ s

t

(
2− 4a(r)ν̂r − 2e(r)µ̂r − 2g(r)µ̂2

r

)
dr +

∫ s

t
2µ̂r dW̃r,

(4.2.11)

for s ≥ t. Hence, we obtain another 6 equations for any t ∈ [0, T ],

w1 = −2a− g, w2 = −e, w3 = −2e, w4 = −4a, w5 = −2g, w6 = 2. (4.2.12)

Theorem 43 (MFG). The MFG equilibrium path X̂ = X̂[m̂] is given by

dX̂t = 2a(t)
(
E[ξ] + W̃t − X̂t

)
dt+ dWt + dW̃t, X̂0 = ξ, (4.2.13)

with equilibrium control

α̂t = 2a(t)
(
E[ξ] + W̃t − X̂t

)
. (4.2.14)

Moreover, the value function U is

U(m0, x) = a(0)x2 − 2a(0)[m0]1x+ b(0)[m0]21 + c(0)[m0]2 + d(0),

where A =

√
kf
2
−kg√

kf
2

+kg

and 
a(t) =

√
kf
2

1−Ae
−2
√

2kf (T−t)

1+Ae
−2
√

2kf (T−t)
,

b(t) =
∫ T
t

(
4a(s)c(s)− 2a2(s)

)
ds,

c(t) = kg + kf
∫ T
t e

∫ s
t −4a(r)drds,

d(t) =
∫ T
t (b(s) + 2c(s)) ds.

(4.2.15)

4.2.3 The N-player Game and its Convergence to MFGs

Our first result is similar to Theorem 34 except slight difference in the expressions of aN1 and aN2
due to the lack of different statuses.

(aN1 )′ − 2(N+1)
N−1 (aN1 )2 + N−1

N kf = 0,

(aN2 )′ + 2
(N−1)2 (aN1 )2 − 4N

N−1a
N
1 a

N
2 +

kf
N = 0,

aN1 (T ) = N−1
N kg , aN2 (T ) =

kg
N .

(4.2.16)

Meanwhile, the path and the control of player i under the equilibrium are

dX̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 dt+ dW
(N)
it + dW̃t, (4.2.17)

for i = 1, · · · , N , and

α̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 .

Hence, without the detailed proof, we present the following theorem of the convergence.
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Theorem 44 (Convergence of the processes). Under Assumption (A2) defined in Section 4.1, X̂
(N)
ut

of the N -player game converges in distribution to the MFG equilibrium X̂t for any t ∈ (0, T ].

Meanwhile, the critical part of the convergence is that the empirical distribution of the N -player
game converges to the equilibrium measure of MFGs. This gives the last building brick to show
that the MFGs are a good approximation of the complicated N -player game. However, it is hard
to directly work on the convergence. Instead, we show that the p-th moments of the distribution
converges.

Denote X̄
(N)
pt = 1

N

∑N
i=1

(
X̂

(N)
it

)p
and âN1 = N

N−1a
N
1 . By Itô’s formula, the dynamic of X̄

(N)
pt

follows

X̄
(N)
pt =

1

N

N∑
i=1

(
xNi
)p − ∫ t

0
2âN1 (s)pX̄(N)

ps ds+

∫ t

0
2âN1 (s)p

(
x̄N +

1√
N
Bs + W̃s

)
X̄

(N)
(p−1)sds

+

∫ t

0

p

N

N∑
i=1

(
X̂

(N)
is

)p−1
dW

(N)
is +

∫ t

0
pX̄

(N)
(p−1)sdW̃s +

∫ t

0
p(p− 1)X̄

(N)
(p−2)sds,

or equivalently,

X̄
(N)
pt =Et

(
−2pâN1

)( 1

N

N∑
i=1

(
xNi
)p

+

∫ t

0
2pâN1 (s)Es

(
2pâN1

)(
x̄N +

1√
N
Bs + W̃s

)
X̄

(N)
(p−1)sds

+

∫ t

0
pEs

(
2pâN1

) 1

N

N∑
i=1

(
X̂

(N)
is

)p−1
dW

(N)
is +

∫ t

0
pEs

(
2pâN1

)
X̄

(N)
(p−1)sdW̃s

+

∫ t

0
p(p− 1)Es

(
2pâN1

)
X̄

(N)
(p−2)sds

)
, (4.2.18)

where Et(a) = exp
(∫ t

0 a(s)ds
)

.

Theorem 45 (Convergence of the empirical measure). Under Assumption (A2) defined in Section
4.1, the random empirical measure

ρ
(
X̂

(N)
t

)
=

1

N

N∑
i=1

δ
X̂

(N)
it

from the N -player game converges almost surely to the MFG equilibrium measure m̂t = L
(
X̂t|F̃t

)
for any t ∈ (0, T ].

Before the proof of Theorem 45, let us first look at one numerical example of the simulated
density of MFGs and N -player game. The parameters that we use are listed in the following:

T = 5 , kf = 2 , kg = 3 , µ0 = 0 , ν0 = 1.

It is easy to see in figure 4.7 that the distribution of N -player game converges to that of MFGs.
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Figure 4.7: Simulation of Player 1’s optimal path for MFGs and N -player game with N =
3, 5, 10, 20.

The proof of Theorem 45: Note that

E
[
X̂p
t

∣∣∣ F̃t] =E [xp0]−
∫ t

0
2pa(s)

(
E
[(
X̂s

)p∣∣∣ F̃s]− (µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s]) ds+∫ t

0
pE
[(
X̂s

)p−1
∣∣∣∣ F̃s] dW̃s +

∫ t

0
p(p− 1)E

[(
X̂s

)p−2
∣∣∣∣ F̃s] ds.

or equivalently,

E
[
X̂p
t

∣∣∣ F̃t] =Et(−2pa)

(
E [xp0] +

∫ t

0
2pa(s)Es(2pa)

(
µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s] ds+∫ t

0
pEs(2pa)E

[(
X̂s

)p−1
∣∣∣∣ F̃s] dW̃s +

∫ t

0
p(p− 1)Es(2pa)E

[(
X̂s

)p−2
∣∣∣∣ F̃s] ds) .

(4.2.19)

We want to prove by induction that the dynamic (4.2.18) of X̄N
pt converges to (4.2.19) of E

[(
X̂t

)p∣∣∣ F̃t].
First, when p = 0, X̄

(N)
pt = 1 = E

[(
X̂t

)0
∣∣∣∣ F̃t]. For p = 1,

X̄
(N)
pt = X̄

(N)
t = x̄N +

1√
N
Bt + W̃t → µ0 + W̃t = E

[
X̂t

∣∣∣ F̃t] a.s.,
by the Law of large number. Now assume that the statement is true for any p′ ≤ p− 1, and for the
p-th moment, we have

1. âN1 → a uniformly.

2. 1
N

∑N
i=1

(
xNi
)p → E [(ξ)p] for p ≥ 1 by Assumption (A2).

3. lim
N→∞

∫ t

0
pEs

(
2pâN1

) 1

N

N∑
i=1

(
X̂

(N)
is

)p−1
dW

(N)
is = 0.

84



Denote Yit =

∫ t

0
pEs(2pâN1 )

(
X̂

(N)
is

)p−1
dW

(N)
is . Due to the L1-boundedness of

(
X̂

(N)
it

)2p−2

shown in Lemma 55, Yit’s are martingale. Meanwhile, by the independence of Wit’s,

E [YitYjtYmtYnt] =


E
[
(Yit)

4
]
, i = j = m = n,

E
[
(Yit)

2 (Ymt)
2
]
, i = j 6= m = n,

0, otherwise.

Meanwhile, from the Itô’s formula and Hölder’s inequality, we have

E
[
(Yit)

4
]

=E

[∫ t

0
6 (Yis)

2

(
pEs(2pâN1 )

(
X̂

(N)
is

)p−1
)2

ds

]

≤
∫ t

0
6E
[
(Yis)

4
] 1

2 E

[(
pEs(2pâN1 )

(
X̂

(N)
is

)p−1
)4
] 1

2

ds

≤
∫ t

0
3
(

1 + E
[
(Yis)

4
])
p2E2

s (2pâN1 )
√
C(T, 4p− 4)ds,

where C is function defined in Lemma 55. By Grönwall’s equality, E
[
(Yit)

4
]

is bounded.

Denote that E
[
(Yit)

4
]
≤ C3(T, p). Then

E

( N∑
i=1

Yit

)4
 =

N∑
i,j=1

E
[
(Yit)

2 (Yjt)
2
]
≤

N∑
i,j

E
[
(Yit)

4
] 1

2 E
[
(Yjt)

4
] 1

2 ≤ N2C3(T, p).

Therefore, by Chebyshev’s inequality, for any ε > 0,

∞∑
N=1

P

[
1

N

N∑
i=1

Yit > ε

]
≤
∞∑
N=1

1

N4ε4
E

( N∑
i=1

Yit

)4
 ≤ ∞∑

N=1

1

N2ε4
C3(T, p) <∞.

Applying the Borel-Cantelli Lemma, we obtain that P
[

1
N

∑N
i=1 Yit > ε i.o.

]
= 0, which gives

the result.

4. From the dominant convergent theorem,

lim
N→∞

∣∣∣∣∫ t

0
âN1 (s)Es

(
2pâN1

)(
x̄N +

1√
N
Bs + W̃s

)
X̄

(N)
(p−1)s

−a(s)Es (2pa)
(
µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s] ds∣∣∣∣ = 0.

This is from the facts that âN1 → a, x̄N → µ0, X̄
(N)
(p−1)t → E

[(
X̂t

)p−1
∣∣∣∣ F̃s], and for a fixed ε,

there exists a N0 such that for all N > N0,∣∣âN1 (s)Es
(
2pâN1

)
− a(s)Es (2pa)

∣∣ < ε ,
∣∣x̄N − µ0

∣∣ ≤ ε ,

∣∣∣∣X̄(N)
(p−1)t − E

[(
X̂t

)p−1
∣∣∣∣ F̃t]∣∣∣∣ ≤ ε.
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Then,∣∣∣∣âN1 (s)Es
(
2pâN1

)(
x̄N +

1√
N
Bs + W̃s

)
X̄

(N)
(p−1)s − a(s)Es (2pa)

(
µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣

≤âN1 (s)Es
(
2pâN1

) ∣∣∣∣(x̄N +
1√
N
Bs + W̃s

)
X̄

(N)
(p−1)s −

(
µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣+∣∣âN1 (s)Es

(
2pâN1

)
− a(s)Es (2pa)

∣∣ ∣∣∣∣(µ0 + W̃s

)
E
[(
X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣

≤âN1 (s)Es
(
2pâN1

)(
(µ0 + ε)ε+ ε

∣∣∣∣E [(X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣+

∣∣∣∣ 1√
N
Bs

∣∣∣∣ (∣∣∣∣E [(X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣+ ε

)
+ ε
∣∣∣W̃s

∣∣∣)
+ ε

∣∣∣∣(µ0 +
∣∣∣W̃s

∣∣∣)E [(X̂s

)p−1
∣∣∣∣ F̃s]∣∣∣∣ ,

which is L1-bounded.

5. With similar argument as in 4, we have

lim
N→∞

∣∣∣∣∫ t

0
Es
(
2pâN1

)
X̄

(N)
(p−1)t − Es (2pa)E

[(
X̂s

)p−1
∣∣∣∣ F̃s] dW̃s

∣∣∣∣ = 0,

lim
N→∞

∣∣∣∣∫ t

0
Es
(
2pâN1

)
X̄

(N)
(p−2)t − Es (2pa)E

[(
X̂s

)p−2
∣∣∣∣ F̃s] ds∣∣∣∣ = 0.

With above arguments, if we take the limit of right hand side of (4.2.18), and it converges almost
surely to (4.2.19). Therefore, by induction, we conclude the required result.

4.3 Appendix

4.3.1 Some explicit solutions on LQG-MFGs

In this part, we only provide explicit solutions to some LQG-MFGs without the common noise. The
methodology could be the utilization of the standard Stochastic Maximum Principle or Dynamic
Programming approach, and all proofs will be omitted.

Suppose the position of a generic player Xt follows

dXt = αtdt+ σdWt, X0 ∼ N (0, 1).

The goal of the generic player is to minimize the running cost

inf
α∈A

E
[∫ T

0

(
1

2
α2
t + h

∫
R

(Xt − y)2m(t, dy)

)
dt

]
,

subject to
mt = Law(Xt), ∀t ∈ [0, T ],

where h ∈ R is a constant.
Denote

V (x, t) = inf
α

E
[∫ T

t

(
1

2
α2
s + h

∫
R

(Xs − y)2m(s, dy)

)
ds

∣∣∣∣Xt = x

]
.

86



Note that the model can be characterized by Hamilton-Jacobian-Bellman equation coupled by
Fokker-Planck-Kolmogorov equation:

∂tV + 1
2σ

2∂xxV − 1
2(∂xV )2 + F (x,m) = 0, (t, x) ∈ [0, T ]× R,

∂tm− 1
2σ

2∂xxm− ∂x(m∂xV ) = 0, (t, x) ∈ [0, T ]× R,
m0 ∼ N (0, 1), V (x, T ) = 0, x ∈ R,

where F (x,m) = h
∫
R(x− y)2m(t, dy).

The monotonicity condition on the source term F in the variable m plays crucial role for the
uniqueness of the MFG system. A monotone function f : R 7→ R is said to be increasing if it
satisfies (f(x1) − f(x2))(x1 − x2) ≥ 0 , and decreasing if −f is increasing. This definition can be
generalized to an infinite dimensional function F (x,m).

Definition 46. The real function F on R × P2(R) is said to be monotone, if, for all m ∈ P2(R),
the mapping R 3 x 7→ F (x,m) is at most of quadratic growth, and for all m1, m2 it satisfies∫

R
(F (x,m1)− F (x,m2)) d(m1 −m2)(x) ≥ 0.

F is said to be anti-monotone, if (−F ) is monotone.

According to Cardaliaguet (2010), if F is monotone, then MFGs have at most one solution.
Interestingly, the monotonicity of F is dependent on the sign of h.

Lemma 47. F (x,m) = h
∫
R(x− y)2m(t, dy) is monotone if h < 0, and anti-monotone if h > 0.

A natural question is that, how the MFG system behaves differently to the monotonicity of F?

4.3.1.1 Case I: h > 0

Lemma 48. For h > 0, there exists a solution (may not be unique) to the MFG system in the form
of V (x, t) = f1(t)x2 + f3(t) and m(t) ∼ N (0, γ(t)), where

f1(t) =

√
h

2

1− e−2
√

2h(T−t)

1 + e−2
√

2h(T−t)
, γ(t) = e−

∫ t
0 4f1(s)ds

(
1 +

∫ t

0
σ2e

∫ s
0 4f1(u)duds

)
,

f3(t) =

∫ T

t
(σ2f1(s) + hγ(s))ds.

4.3.1.2 Case II: h < 0

Lemma 49. For h < 0, there exists a unique solution in [t0, T ] to the MFG system in the form of
V (x, t) = g1(t)x2 + g3(t) and m(t) ∼ N (0, λ(t)), where

g1(t) = −
√
−h

2
tan

(√
−2h(T − t)

)
, λ(t) = e−

∫ t
0 4g1(s)ds

(
1 +

∫ t

0
σ2e

∫ s
0 4g1(u)duds

)
,

g3(t) =

∫ T

t
(σ2g1(s) + hλ(s))ds , t0 = max

(
0, T − 1√

−2h

π

2

)
.
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4.3.1.3 Remark

When h > 0, the cost is anti-monotone, and there exists at least one global solution. When h < 0,
the cost is monotone, and there exists at most one solution. Unfortunately, this solution lives in a
short period of time. Lemma 49 coincides with the notes in Section 3.8 of Carmona et al. (2018)
saying that due to the opposite time evolution of the system of HJB-FPK, the existence of the
solution may exist for only a short period of time.

4.3.2 Dynkin’s formula for a regime-switching diffusion with a quadratic func-
tion

Since the running cost (4.1.10) has a quadratic growth in the state variable, the value function
V [m̂](y, x, t) is expected to possess similar growth. Next, we present a version of Dynkin’s formula
for the functions of quadratic growth, which is sufficient for our purpose. Throughout this sub-
section, we will use K in various places as a generic constant which varies from line to line. The
notions of this subsection is independent to other parts of the paper.

Lemma 50. Let X be the solution of

dXt = αtdt+ σtdWt,

where X, α and σ are bounded and take value in R3. Y is CTMC with a generator

Y ∼ Q = (qij)i,j=1,2,...,n.

If X0 ∈ L4, α ∈ L4
F and f : R3 7→ R satisfies ‖∆f‖∞ + ‖∂tf‖∞ < ∞, then the following identity

holds for all t ∈ [0, T ]:

E [f(Yt, Xt, t)] = E [f(Y0, X0, 0)] + E
[∫ t

0
(∂t + L+Q)f(Ys, Xs, s)ds

]
,

where

Lf(y, x, s) =

(
1

2
Tr(σsσ

>
s ∆) + αs · ∇x

)
f(y, x, s)

and

Qf(y, x, s) =
n∑
i=1

qy,if(i, x, s).

Proof. It’s enough to show that the local martingale defined by Itô’s formula

Mf
t = f(Yt, Xt, t)− f(Y0, X0, 0)−

∫ t

0
(∂t + L+Q)f(Ys, Xs, s)ds (4.3.1)

is uniformly integrable, hence is a true martingale.
First, Xt is L4 bounded uniformly in t from the following inequality due to our assumptions on

X0 and α:

sup
t∈[0,T ]

E
[
‖Xt‖4

]
≤ KE

[
‖X0‖4 +

∫ T

0
‖αs‖4ds+

∫ T

0
‖σsWs‖4ds

]
≤ K,
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where K is a generic constant which varies from line to line.
On the other hand, since ∆f is uniformly bounded, f is at most quadratic growth, i.e.

|f(x)| ≤ K(x2 + 1), ∀x for some large K.

Hence, we conclude that f(Yt, Xt, t) is uniformly bounded in L2 in t from the fact

sup
t∈[0,T ]

E
[
f2(Yt, Xt, t)

]
≤ K sup

t∈[0,T ]
E
[
‖Xt‖4

]
+K ≤ K.

The uniform L2-boundedness of
∫ t

0 ∂tf(Ys, Xs, s)ds follows from our assumption on ∂tf . Similarly,
since Qf has a quadratic growth uniformly in y and t,{∫ t

0
Qf(Ys, Xs, s)ds : 0 ≤ t ≤ T

}
is L2 bounded. At last, we have

E

[(∫ t

0
Lf(Ys, Xs, s)ds

)2
]

≤ KE
[∫ t

0
(αs · ∇f +

1

2
Tr(σsσ

>
s ∆f))2(Ys, Xs, s)ds

]
≤ KE

[∫ t

0
‖αs‖2‖∇f‖2(Ys, Xs, s)ds

]
+KE

[∫ t

0

1

4
‖Tr(σsσ

>
s ∆f)‖2(Ys, Xs, s)ds

]
≤ KE

[∫ t

0
‖αs‖4ds

]
+KE

[∫ t

0
|∇f |4(Ys, Xs, s)ds

]
+KE

[∫ t

0

1

4
‖Tr∆f‖2(Ys, Xs, s)ds

]
.

Since ∇f is linear growth in x, the second term supt∈[0,T ] E
[∫ t

0 ‖∇f‖
4(Ys, Xs, s)ds

]
is finite. To-

gether with assumptions on ∆f and α, we have uniform L2-boundedness of
∫ t

0 Lf(Ys, Xs, s)ds.
As a result, each term of the right hand side of (4.3.1) is uniformly L2-bounded in t, and thus

Mf
t belongs to L2

F and this implies the uniformly integrability.

4.3.3 Proof of the existence and uniqueness of the ODE system

Consider the following ODE system
a′0 − Ca2

0 − γ0(a0 − a1) + h0 = 0,

a′1 − Ca2
1 + γ1(a0 − a1) + h1 = 0,

a0(T ) = g0 , a1(T ) = g1,

(4.3.2)

where C, hi, gi, γi (i = 0, 1) are in R+. We need to show the existence and uniqueness of the solution

to (4.3.2). Define T
(N)
0 and T

(N)
1 as

T
(N)
0 [a](t) =

[(
g0 +

∫ T

t

(
h0 − Ca2

0(s)− γ0(a0(s)− a1(s))
)
ds

)
∧N

]
∨ 0,

T
(N)
1 [a](t) =

[(
g1 +

∫ T

t

(
h1 − Ca2

1(s)− γ1(a1(s)− a0(s))
)
ds

)
∧N

]
∨ 0,

where a =
[
a0 a1

]>
. Let D = {f ∈ C([0, T ]) : 0 ≤ supt∈[0,T ] f(t) ≤ N}. Note that T

(N)
y (y =

0, 1) maps D2 to D2.
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Lemma 51. For fixed N , there exists a unique solution in C([0, T ]) to

a =

[
T

(N)
0 [a]

T
(N)
1 [a]

]
. (4.3.3)

Proof. Denote the norm ‖f‖k =
∥∥ekt maxy|fy|

∥∥
∞, where k needs to be determined later and f is a

two dimensional vector with entry of fy, y = 0, 1, which is equivalent to the infinite norm. Define

the iteration rule a
(n+1)
y = T

(N)
y

[
a

(n)
0 , a

(n)
1

]
for y = 0, 1. Note that∥∥∥ekt (a(n+1)

0 (t)− a(n)
0 (t)

)∥∥∥
∞

≤ sup
t∈[0,T ]

ekt
∫ T

t
C

∣∣∣∣(a(n)
0 (s)

)2
−
(
a

(n−1)
0 (s)

)2
∣∣∣∣+

γ0

(∣∣∣a(n)
0 (s)− a(n−1)

0 (s)
∣∣∣+
∣∣∣a(n)

1 (s)− a(n−1)
1 (s)

∣∣∣) ds
≤ sup
t∈[0,T ]

ekt
∫ T

t
e−ks (2CN + 2γ0)

∥∥∥a(n) − a(n−1)
∥∥∥
k
ds

≤2CN + 2γ0

k

∥∥∥a(n) − a(n−1)
∥∥∥
k
.

Similarly, we have∥∥∥ekt (a(n+1)
1 (t)− a(n)

1 (t)
)∥∥∥
∞
≤ 2CN + 2γ1

k

∥∥∥a(n) − a(n−1)
∥∥∥
k
.

Choose k > 2CN + 2 max{γ0, γ1}, then∥∥∥a(n+1) − a(n)
∥∥∥
k
≤ 2CN + 2 max{γ0, γ1}

k

∥∥∥a(n) − a(n−1)
∥∥∥
k
,

which gives us a contraction mapping from D2 to D2. Hence, by the Banach fixed point theorem,
there exists a unique solution to (4.3.3).

Next, we want to show that for large enough N , the solution to (4.3.3) is also the solution to
(4.3.2).

Lemma 52. For N ≥ e(γ0+γ1)T ((h0 + h1)T + (g0 + g1)), the solution a(N) to (4.3.3) satisfies the
inequalities

0 ≤ gi +

∫ T

t

(
hi − 2

(
a

(N)
i (s)

)2
− γi

(
a

(N)
i (s)− a(N)

j (s)
))

ds ≤ N (4.3.4)

for all t ∈ [0, T ], where i, j ∈ {0, 1} and i 6= j.

Proof. For simplicity of notations, ai is used instead of a
(N)
i for i = 0, 1 if there is no confusion.

First, for i = 0, 1, we prove the positiveness of ai by contradiction. Suppose ai (i = 0, 1) are
not positive functions on [0, T ]. Since a0 is continuous and a0(T ) = g0 > 0, there exists some
τ ∈ [0, T ] as the closest time to T such that a0(τ) = 0. Note that finding such a τ is possible.
Let tn ∈ [0, T ] be a non-decreasing sequence such that a0(tn) = 0, there exists some τ such that
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tn → τ < T as n → ∞ since a0 is continuous and a0(T ) = g0 > 0. By the continuity of a0, we
have a0(τ) = 0, which gives the desirable point τ . Then for all t ∈ (τ, T ], a0(t) > 0 and it implies
that a′0(τ) > 0. In this case, plugging t = τ to (4.3.2), we have a′0(τ) = −h0 − γ0a1(τ) > 0, which
yields a1(τ) < 0. Since a1 is continuous on [0, T ] and a1(T ) = g1 > 0, from the intermediate value
theorem, there exists some τ̂ ∈ (τ, T ) such that a1(τ̂) = 0 and a′1(τ̂) > 0. However, this indicates
that a′1(τ̂) = −h1 − γ1a0(τ̂) > 0 by plugging t = τ̂ back to (4.3.2), and it implies a0(τ̂) < 0, which
contradicts with the fact that a0(t) > 0 for all t ∈ (τ, T ]. Thus the positiveness of a0 and a1 on
[0, T ] is obtained.

Next, we prove the upper bound for the integral in (4.3.4). Note that for all t ∈ [0, T ],

(a0 + a1)′(T − t)
=(h0 + h1)− C(a2

0 + a2
1)(T − t)− (γ0 − γ1)a0(T − t) + (γ0 − γ1)a1(T − t)

≤(h0 + h1) + (γ0 + γ1)(a0 + a1)(T − t),

with (a0 + a1)(T ) = g0 + g1. By Grönwall’s inequality,

(a0 + a1)(T − t) ≤ e(γ0+γ1)T ((g0 + g1) + (h0 + h1)T ), ∀t ∈ [0, T ].

Hence ai(t) ≤ e(γ0+γ1)T ((g0 + g1) + (h0 + h1)T ) for all t ∈ [0, T ], i = 0, 1. Hence, when N ≥
e(γ0+γ1)T ((g0 + g1) + (h0 + h1)T ), (4.3.4) holds.

Lemma 53. With the given of hy, gy ∈ R+, y = 0, 1, there exists a unique solution to the Riccati
system (4.1.12).

Proof. The existence, uniqueness and boundedness of the solution to ay (y = 0, 1) are shown in
Lemma 51 and Lemma 52. Given (ay : y = 0, 1), the coefficient functions by (y = 0, 1) form a linear
ordinary differential equation system. Their existence and uniqueness are guaranteed by Theorem
12.1 in Antsaklis and Michel (2006). Similarly, with the given of (ay, by : y = 0, 1), the coefficient
functions cy, ky (y = 0, 1) also form a linear ordinary differential equation system. Applying the
Theorem 12.1 in Antsaklis and Michel (2006), we can obtain the existence and uniqueness of cy, ky
(y = 0, 1).

4.3.4 Multidimensional Problem

In this subsection we consider the multidimensional problem, which is a straightforward extension of
the previous one-dimensional setup. The same type of Ricatti system to characterize the equilibrium
and the value function is obtained, and we have a similar result as the Theorem 33.

Suppose that Xt, Wt and αt take values in Rd, and all components of Wt are independent.
Suppose that the dynamic of the generic player is given by

dXt = αtdt+ dWt.
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Consider the cost function

J [m](y, x, t, µ̄, ν̄)

=E
[∫ T

t

(
1

2
‖αs‖22 + h(Ys)

∫
Rd
‖Xs − z‖22m(dz)

)
ds+

g(YT )

∫
Rd
‖XT − z‖22m(dz)

∣∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄

]
=E

[∫ T

t

(
1

2
α>s αs + h(Ys)

(
X>s Xs − 2µ>s Xs + νs · 1

))
ds+

g(YT )
(
X>T XT − 2µ>TXT + νT · 1

)∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄
]
,

where m is the joint density function in Rd, and µ, ν take value in Rd. For y = 0, 1, define

a′y − 2a2
y − γyay + γya1−y + hy = 0,

b′y − 4ayb1−y − γyby + γybz + hy = 0,

c′y + day + dby − γycy + γyc1−y = 0,

k′y − 2a2
y + 4ayby − γyky + γyk1−y = 0,

ay(T ) = gy , by(T ) = gy , cy(T ) = 0.

(4.3.5)

Theorem 54 (Verification theorem for MFGs). There exists a unique solution (ay, by, cy, ky : y =
0, 1) for the Riccati system (4.3.5). With these solutions, for t ∈ [0, T ], the MFG equilibrium path
follows X̂ = X̂[m̂] is given by

dX̂t = 2aYt(t)(E[X0]− X̂t)dt+ dWt, X̂0 = X0,

with equilibrium control α̂t = 2aYt(t)(E[X0]− X̂t). Moreover, the value function U is

U(m0, y, x) = ay(0)x>x− 2ay(0)x>[m0]1 + ky(0)[m0]>1 [m0]1 + by(0)[m0]>2 1 + cy(0)

for y = 0, 1.

The proof is similar to the one-dimensional problem, and we don’t show the details here.

4.3.5 Proofs of Lemmas and Theorems

The proof of Lemma 37: 1. We first prove the verification theorem. Since v ∈ S, for any ad-
missible α ∈ L4

F, the process Xα is well defined and one can use Dynkin’s formula given by
Lemma 50 to write

E [v(YT , XT , T, µT , νT )] = v(y, x, t, µ̄, ν̄) + E
[∫ T

t
Gα(s)v(Ys, Xs, s, µs, νs)ds

]
,

where

Gaf(y, x, s, µ̄, ν̄) =

(
∂t + a∂x +

1

2
∂xx +Q+ (w0yµ̄+ w1y) ∂µ̄+(

w2yµ̄+ w3yν̄ + w4yµ̄
2 + w5y

)
∂ν̄
)
f(y, x, s, µ̄, ν̄).
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Note that HJB actually implies that

inf
a

{
Gav +

1

2
a2

}
= −F̄ ,

which again implies

−Gav ≤ 1

2
a2 + F̄ .

Hence, we obtain that for all α ∈ L4
F,

v(y, x, t, µ̄, ν̄)

= E
[∫ T

t
−Gα(s)v(Ys, Xs, s, µs, νs)ds

]
+ E [v(YT , XT , T, µT , νT )]

≤ E
[∫ T

t

(
1

2
α2(s) + F̄ (Ys, Xs, µs, νs)

)
ds

]
+ E

[
Ḡ(YT , XT , µT , νT )

]
= J(y, x, t, α, µ̄, ν̄).

In the above, if α is replaced by α̂ given by the feedback form (4.1.17), then since ∂xv is
Lipschitz continuous in x, there exists corresponding optimal path X̂ ∈ L4

F. Thus, α̂ is also

in L4
F. One can repeat all above steps by replacing X and α by X̂ and α̂, and ≤ sign by =

sign to conclude that v is indeed the optimal value.

2. The opposite direction of the verification theorem follows by taking θ → t for the dynamic
programing principle, for all stopping time θ ∈ [t, T ],

V̄ (y, x, t, µ̄, ν̄)

=E
[∫ θ

t

1

2
α2
s + F̄ (Ys, Xs, µs, νs)ds+ V̄ (Yθ, Xθ, θ, µθ, νθ)

∣∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄

]
,

which is valid under our regularity assumptions on all the partial derivatives.

The proof of Lemma 38. With the form of value function vy given in (4.1.18) and the first and
second moment of the conditional population density given in (4.1.15), we have

∂tvy = a′y(t)x
2 + d′y(t)x+ e′y(t)µ̄+ f ′y(t)xµ̄+ k′y(t)µ̄

2 + b′y(t)ν̄ + c′y(t),

∂xvy = 2xay(t) + dy(t) + fy(t)µ̄,

∂xxvy = 2ay(t),

∂µ̄vy = ey(t) + fy(t)x+ 2ky(t)µ̄,

∂ν̄vy = by(t),

for y = 0, 1. Plugging them back to the coupled HJBs in (4.1.16), we get a system of ODEs in
(4.1.21) by equating x, µ̄, ν̄-like terms in each equation.

Therefore, any solution (ay, by, cy, dy, ey, fy, ky : y = 0, 1) of ODE system (4.1.21) leads to
the solution of HJB (4.1.16) in the form of the quadratic function given by (4.1.23). Since the
(ay, by, cy, dy, ey, fy, ky : y = 0, 1) are differentiable functions on the closed set [0, T ], they are also
bounded, and the regularity condition ‖∂xxv‖∞+‖∂tv‖∞+‖∂µv‖∞+‖∂νv‖∞ <∞ is valid. Finally,
we invoke the verification theorem given by Lemma 37 to conclude the desired result.
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The proof of Lemma 39: It is standard that, under the enough regularities, the players’ value func-
tion V (y, xN ) = (V1, . . . , VN )(y, xN ) can be lifted to the solution viy(x

N , t) of the following system
of HJB equation, for i = 1, . . . , N ,

∂tvi0 −
1

2
(∂ivi0)2 −

∑
j 6=i

∂jvj0∂jvi0 +
1

2
∆vi0 − γ0vi0 + γ0vi1 +

h0

N

∑
j 6=i

(
(ei − ej)> xN

)2
= 0,

∂tvi1 −
1

2
(∂ivi1)2 −

∑
j 6=i

∂jvj1∂jvi1 +
1

2
∆vi1 − γ1vi1 + γ1vi0 +

h1

N

∑
j 6=i

(
(ei − ej)> xN

)2
= 0,

viy(x
N , T ) =

gy
N

∑
j 6=i

(
(ei − ej)>xN

)2
.

(4.3.6)

Then, the value functions V of N -player game defined by (1.2.2) is Vi(y, x
N ) = viy(x

N , 0) for all
i = 1, . . . , N . Moreover, the path and the control under the equilibrium are

dX̂it = −∂iviYt(X̂t, t)dt+ dWit, i = 1, . . . , N,

and

α̂it = −∂iviYt(X̂t, t).

The proof is the application of Dynkin’s formula and the details are omitted here. Due to its LQG
structure, the value function leads to a quadratic function of the form

viy(x
N , t) = (xN )>Aiy(t)x

N + (xN )>Biy(t) + Ciy(t).

For each i = 1, 2, . . . , N , after plugging Viy into (4.3.6), and matching the coefficient of variables,
we get the desired results.

The proof of Lemma 40. It is obvious to see that Biy = 0 for all time t ∈ [0, T ]. Note that in this
case, for i = 1, 2, . . . , N , the optimal control is given by

α̂i = −2
N∑
j=1

(A
iY

(N)
t

)ijX̂
(N)
jt = −2

(
A
iY

(N)
t

)>
i
X̂

(N)
t .

Plugging the pattern (4.1.29) into the differential equation of Aiy, we have

a′1y − 2a2
1y − 4(N − 1)a2

3y − γya1y + γya1(1−y) +
N − 1

N
hy = 0,

a′2y − 2a2
3y − 4a1ya2y − 4(N − 2)a3ya4y − γya2y + γya2(1−y) +

hy
N

= 0,

a′3y − 2a1ya3y − 4a1ya3y − 4(N − 2)a2
3y − γya3y + γya3(1−y) −

hy
N

= 0,

a′3y − 2a1ya3y − 4a2ya3y − 4(N − 2)a3ya4y − γya3y + γya3(1−y) −
hy
N

= 0,

a′4y − 2a2
3y − 4a2ya3y − 4a1ya4y − 4(N − 3)a3ya4y − γya4y + γya4(1−y) = 0,
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which gives a1y +(N −2)a3y = a2y +(N −2)a4y since two expressions for a3y should be equal. This
implies that (a1y + (N − 2)a3y)

′ = (a2y + (N − 2)a4y)
′ or

2a2
1y + 2(N − 2)a1ya3y + 4(N − 1)a2

3y + 4(N − 2)a2ya3y + 4(N − 2)2a3ya4y

+ γy (a1y + (N − 2)a3y)− γy
(
a1(1−y) + (N − 2)a3(1−y)

)
− hy
N

=2(N − 1)a2
3y + 4a1ya2y + 4(N − 2)a2ya3y + 4(N − 2)a3ya4y + 4(N − 2)a1ya4y

+ 4(N − 2)(N − 3)a3ya4y + γy (a2y + (N − 2)a4y)− γy
(
a2(1−y) + (N − 2)a4(1−y)

)
− hy
N
.

After combining terms and substituting a2y + (N − 2)a4y with a1y + (N − 2)a3y, we get a2
1y + (N −

2)a1ya3y − (N − 1)a2
3y = 0, which yields a3y = a1y or a3y = − 1

N−1a1y. Note that a3y 6= a1y due to

their different differential equations. Hence, we can conclude that a3y = − 1
N−1a1y. In conclusion,

for i = 1, 2, . . . , N , Aiy (y = 0, 1) has the expression of (4.1.31).
The existence and uniqueness of (4.1.27) is equivalent to the existence and uniqueness of

(4.1.30). For a1y, the existence and uniqueness can be deduced from Lemma 51 and 52. Given a1y’s,
a2y’s are linear equations, thus their existence and uniqueness are guaranteed by Theorem 12.1 in
Antsaklis and Michel (2006). Together with previous discussions, we conclude the results.

The proof of Lemma 41: Continued from the Lemma 40, player i’s path in the N -player game
follows

X̂
(N)
it = xNi −

∫ t

0
2aN

1Y
(N)
s

X̂(N)
is − 1

N − 1

N∑
j 6=i

X̂
(N)
js

 ds+W
(N)
it .

With the notation

X̄(N)
s =

1

N

N∑
i=1

X̂
(N)
is ,

one can rewrite the path by

X̂
(N)
it = xNi −

∫ t

0
2âN

1Y
(N)
s

(
X̂

(N)
is − X̄(N)

s

)
ds+W

(N)
it . (4.3.7)

By adding up the above equations (4.3.7) indexed by i = 1 to N , one can have

X̄
(N)
t = x̄N +

1

N

N∑
i=1

W
(N)
it = x̄N +

√
N − 1

N

(√
N − 1W̄

(N)
−it

)
+

1

N
W

(N)
it , (4.3.8)

where W̄
(N)
−it := 1

N−1

∑
j 6=iW

(N)
jt .

Finally, to see the distribution of ZNt in the space Ω identical distribution to X̂
(N)
ut in Ω(N), we

follow the following steps:

• Embed Y (N) from Ω(N) to Y from Ω;

• Replace the index i of (4.3.7) by uniform random variable u;

• Since
√
N − 1W̄

(N)
−ut is a Borwnian motion independent of the term W (N) and Y (N), we replace

√
N − 1W̄

(N)
−ut and W

(N)
ut of (4.3.8) by B and W , respectively;
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• Substitute X̄(N) of (4.3.7) by (4.3.8).

The proof of Theorem 43. Given the smooth and bounded function {wi : i = 1, 2, . . . , 6}, the func-
tions (a, b, c, d, e, f, g) in (4.2.9) is a coupled linear system, and their existence, uniqueness and
boundedness is shown by Theorem 12.1 in Antsaklis and Michel (2006).

Plugging the 6 equations in (4.2.12) to the ODE system (4.2.9), which can be rewritten by

a′ − 2a2 + k = 0,

e′ − 2ae− eg = 0,

f ′ − eg − 2af − gf − 2be− 2ce = 0,

g′ − 4ag − g2 − 2k = 0,

b′ − 1
2g

2 − 4ab− 2bg − 2cg = 0,

c′ − 4ac+ k = 0,

d′ + 2a+ g + b− 1
2e

2 − ef + 2c = 0,

with the terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = g(T ) = 0.

Let l = 2a+ g, and then
l′(t)− l2(t) = 0, l(T ) = 0,

which implies that l(t) = 2a(t) + g(t) = 0 for all t ∈ [0, T ]. This gives g = −2a and e′ = 0. Thus
e(t) = 0 for all t ∈ [0, T ] and then one can obtain f ′ = 0, which indicates that f(t) = 0 for all
t ∈ [0, T ]. Therefore the ODE system (4.2.9) can be simplified to

a′(t)− 2a2(t) + k = 0,

b′(t)− 2a2(t) + 4a(t)c(t) = 0,

c′(t)− 4a(t)c(t) + k = 0,

d′(t) + b(t) + 2c(t) = 0,

which gives the expression of (a, b, c, d) as shown in (4.2.15).
Note that in this case, since 2a + g = 0 and e = 0 for all t ∈ [0, T ], from (4.2.11) we have

µ̂s = µ̄+ W̃s for all s ∈ [t, T ]. Then

ν̂s = ν̄ +

∫ s

t

(
2 + 4a(r)µ̂2

r − 4a(r)ν̂r
)
dr +

∫ s

t
2µ̂r dW̃r.

Plugging e = 0 and µ̂s = µ̄+ W̃r back to (4.2.8), we obtain the optimal control as

α̂s = 2a(s)(µ̄+ W̃s − X̂s).

Since e = f = 0 and g = −2a for s ∈ [t, T ], the value function can be simplified to

v(t, x, µ̄, ν̄) = a(t)x2 − 2a(t)xµ̄+ b(t)µ̄2 + c(t)ν̄ + d(t).

Meanwhile, similar to the equivalence Lemma 36, we have

U(m0, x) = v(0, x, [m0]1, [m0]2),

and it yields the value function U of Theorem 43.
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Lemma 55. For arbitrary non-negative p ∈ N, i ∈ {1, 2, . . . , N}, and t ∈ [0, T ],

E
[∣∣∣X̂(N)

it

∣∣∣p] ≤ C(T, p) <∞,

where C(T, p) is a bounded function of terminal time T and p.

Proof. Note that for p ≥ 1, from the Hölder’s inequality,

E
[∣∣∣X̂(N)

it

∣∣∣p] =E
[∣∣∣∣xNi − ∫ t

0
2âN1 (s)X̂

(N)
is ds+

∫ t

0
2âN1 (s)

(
x̄N +

1√
N
Bs + W̃s

)
ds+W

(N)
it + W̃t

∣∣∣∣p]
≤6p−1

{∣∣∣∣xNi + x̄N
∫ T

0
2âN1 (s)ds

∣∣∣∣p + T p−1

∫ t

0
2p
(
âN1 (s)

)p E [∣∣∣X̂(N)
is

∣∣∣p] ds+
T p−1

∫ T

0
2p
(
âN1 (s)

)p(E [∣∣∣∣ 1√
N
Bs

∣∣∣∣p]+ E
[∣∣∣W̃s

∣∣∣p]) ds+ sup
t∈[0,T ]

(
E
[∣∣∣W (N)

it

∣∣∣p]+ E
[∣∣∣W̃t

∣∣∣p])}

=C1(p, T ) +

∫ t

0
C2(p, T )E

[∣∣∣X̂(N)
is

∣∣∣p] ds,
where C1, C2 are bounded functions of p and T . By Grönwall’s inequality,

E
[∣∣∣X̂(N)

it

∣∣∣p] ≤ C1(p, T )eC2(p,T )T := C(p, T ),

which gives the desired result.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We study three stochastic control problems among N players and under the mean-field settings.
The main objective is to discover how players behave under interactions with the population and
how interplay distorts their optimal controls. To achieve that, certain types of the Nash equilibrium
are established for each model, and the optimal controls are compared with the standard model
without interactions.

Chapter 2 establishes a constant Nash equilibrium among N mutual funds competing for in-
vestment flows based on relative performance. We compare the after-fee Sharpe ratio and Beta
coefficients with and without competition, namely Merton’s model, and verify the existence of herd
effect – funds may converge in optimal controls to avoid the possible loss caused by competition – in
most cases, which hurts the performance of funds. However, if funds are extremely disadvantaged
in the risk-aversion adjusted Sharpe ratios, they tend to be more aggressive and gamble their way
up to get a decent chance of winning the game. This pushes them away from the market average
and boosts their after-fee performance. The model is different from what is in Basak and Makarov
(2015), Lacker and Zariphopoulou (2019) since its merges the competition into the dynamic of
processes instead of at the terminal time.

Chapter 3 builds a principal-agent model where a representative policy maker is the principal
who decides the optimal capital gain tax, while one or N funds serve as agents who choose the
optimal portfolios based on the tax rate given. From the funds’ side, a (Pareto optimal) Nash
equilibrium is deduced for both one and N funds. The competition among funds cause less aggres-
sive optimal portfolios in case there are potential losses brought by the game. Meanwhile, whether
optimal portfolios become more aggressive or not due to different tax rates is inconclusive due to
the influence of both income and substitution effects. Managers may tend to gamble more when it
is closer to the terminal time due to their eagerness to make up for the loss caused by the high tax
rate. Accordingly, policy makers with higher risk aversion incline to lower their optimal tax rate
to mainly decrease the volatility of the market.

Chapter 4 solves LQG mean field games with two types of common noises: continuous time
Markov chain and Brownian motion. We manage to transform this infinite dimensional problem
caused by the path dependence feature into a finite dimension Riccati system. (Semi-)closed so-
lutions are deduced for both cases. At the same time, we reduce the O(N3) dimension of the
counterpart N -player game to a Riccati system independent of N and embed it into one specific
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probability space. The convergences of the dynamic process and its empirical measure are proved
based on the simplification of the Riccati system of N -player game.

5.2 Future Work

In the model of Chapter 2, the influence of the relative performance to the fund’s flow is symmetric.
However, model like Basak and Makarov (2014) gives a discrete-time asymmetric influence of rel-
ative performance. It is hard for us to combine the asymmetry into continuous competition based
on the fund flows, but it is worth further studies to see whether there is any distortion caused by
the asymmetry.

Model in Chapter 3 shows a decreasing trend in optimal tax rate with respect to higher policy
makers’ risk aversions. Nevertheless, this may slightly differ from intuitions. Part of the reasons
may be the policy makers’ value function since they may have other concerns like employment
rate when choosing the optimal tax rate. Meanwhile, the capital gain tax rate is relatively stable
compared to the optimal portfolio from the funds’ side, so there could be a time mismatch problem
in the setting as well.

As mentioned in Section 4.3.1, the coefficient before the mean field term in the cumulative cost
function must be positive to make sure the global existence of the Riccati equations. Despite that,
the coefficient can be influenced by the relative variance of the population and be set to negative
in certain situation. In detail, for some positive ν̄,

kf =

{
k1 < 0 , if ν < ν̄,

k2 > 0 , if ν ≥ ν̄,

where ν is the variance of the population. In theory, it could relieve the exploding problem when the
coefficient is negative since before exploding, the coefficient has already been switched to positive.
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