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Abstract

Open-ended questions in mathematics are commonly used by teachers to monitor and

assess students’ deeper conceptual understanding of content. Student answers to these

types of questions often exhibit a combination of language, drawn diagrams and tables,

and mathematical formulas and expressions that supply teachers with insight into the pro-

cesses and strategies adopted by students in formulating their responses. While these

student responses help to inform teachers about their students’ progress and understand-

ing, the amount of variation in these responses can make it difficult and time-consuming

for teachers to manually read, assess, and provide feedback on student work. For this

reason, there has been a growing body of research in developing AI-powered tools to

support teachers in this task. This work seeks to build upon the prior work that presents

a model designed to help automate the assessment of student responses to open-ended

questions in mathematics through sentence-level semantic representations. We conduct

an error analysis of this model, to examine characteristics of student responses that may

be considered to further improve the method. We find that this model performs poorly

in presence of mathematical terms and images in student responses. We then introduce

a model as a step toward the improvement of this method in presence of mathematical

terms and we find that this new model outperforms the previously published benchmarks

across three different metrics.
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Chapter 1

Introduction

In the past decade, development in artificial intelligence and machine learning methods

have led to advancements in online learning platforms, transforming learning experiences

and teaching practices. From personalized learning to augmenting teaching processes

through automated assessment methods [4], [8], [12], [13], [27], [33], the benefits of

these platforms have been significant. With this, several prior works have leveraged ma-

chine learning methods and natural language processing-based techniques to automate

the assessment of students’ work, both in mathematical [20], [30] and non-mathematical

domains [23], [24]. With these methods and models of student learning becoming deeply

integrated into normal instructional and educational practices, it is important to under-

stand the strengths and weaknesses in their application. Within this, it is important to

not only identify areas where existing methods under-perform, but it is also important to

develop methods to improve such models to alleviate risks to fairness.

In many K-12 mathematics classrooms, teachers have come to rely on the use of open-

ended questions to assess their students’ knowledge and understanding of assigned con-

tent. These questions are designed such that teachers can learn about their students under-

standings and misunderstandings. Unlike close-ended problems, where there is a single
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or finite-number of accepted answers (e.g. a multiple-choice question), open-ended ques-

tions allow students to justify and express their thinking processes through language; it is

common that students may combine language, images, drawn diagrams, tables, or other

mathematical expressions, equations, and terminologies to illustrate their knowledge and

understanding of the material.

The use of open-ended questions is not found only in mathematical contexts, but the

aspects of this domain make it particularly difficult to develop teacher supports for these

types of question. Within computer-based learning platforms, research across fields of

study have led to the development of a multitude of teacher-augmentation tools [29] and

methodologies that leverage machine learning techniques. Among these supports, auto-

mated methods have been developed and deployed to help teachers assess student essays

and short answers in several domains [6], [14], [17], [24]. As was highlighted in [30], the

arduous task of manually assessing and providing feedback to student open-ended work

may explain the decline of open-ended questions assigned over the course of a school year

(e.g. Figure 1.1 which shows the number of open response questions assigned within the

ASSISTments learning platform, aggregated over the last 10 years). In addition to this

decline, as was also reported in [30], very few student responses to open-ended questions

are ever scored by the teacher, with even fewer ever receiving feedback. Figure 1.2 illus-

trates this, as well as the subsequent plot of these values from February through October

of 2020, during COVID-19 induced remote learning.

There are several notable challenges in developing automated supports to help teach-

ers assess student open-ended work. In the case of close-ended problems, where there

is a finite number of accepted correct answers, auto-scoring methods can apply simple

matching techniques to compare the student answer with the list of correct answers and

consistently achieve near-perfect accuracy. In regard to open-ended problems, however,

the correctness of student responses is more subjective, where teachers commonly assess
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students based on an explicit or implicit rubric that identifies key points that must be in-

cluded in a student response to sufficiently demonstrate comprehension. It is also the

case that student responses to open-ended questions differ in the context of mathematical

and non-mathematical domains. One such difference, for example, is that many non-

mathematical domains such as history or language arts, student “open-ended” essays and

short answers are often comprised of multiple sentences and paragraphs [9], [15], [23],

[24], whereas in mathematics, responses are generally shorter (maybe one or two, of-

ten incomplete sentences) [20], [30] that combine language with mathematical symbols,

expressions, or other visuals. Aside from these response-level characteristics, however,

several other student-, problem-, and even teacher-level factors can make the development

of these automated supports more challenging; consider, for example, the variation in how

teachers approach the assessment of student answers, using different inherent rubrics and

pedagogical philosophies [3], [6], [7], [10].

While the examination of student answers to open-ended poses challenges in devel-

oping automated assessment supports for teachers, prior work has shown promise in this

context [30]. In that work, the authors explore several machine-learning and natural lan-

guage processing (NLP) methods to predict teacher-provided scores to open-ended prob-

lems, offering an evaluation method and benchmark of comparison for similar methods.

In this research 1, we build upon prior research presented in [30] to develop and eval-

uate an automated assessment model of student open-responses in mathematics. We ob-

serve a model to automatically score student open-responses in mathematics that is based

on sentence-level semantic representation of the student responses (Sentence BERT or

SBERT;[28]), which we call ”SBERT-Canberra” method. We evaluate this method based

on the dataset and evaluation methods presented in [30], and find that this data method

1It is important to acknowledge that this work was published at the International Educational Data Min-
ing Society(EDM) 2021[31] and the International Conference on Artificial Intelligence in Education(AIED)
2022[32]
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Figure 1.1: The number of open response problems assigned over the course of a school
year with the ASSISTments learning platform, aggregated from 2010-2020.

outperforms the prior works on automated scoring from Erickson et al. [30]. Further, with

the goal of exploring the limitations and further improving the SBERT-Canberra method

for assessment, we perform an exploratory error analysis to identify the areas of improve-

ment that may be addressed by future iterations of these methods. We identify that the

existence of non-linguistic terms is positively correlated with model prediction error. Fol-

lowing these findings, we then propose a simple targeted method to resolve this problem,

and demonstrate how this method can be combined with the SBERT-Canberra model to

improve the performance. Towards this, we specifically seek to address the following

research questions:

1. How does a model utilizing Sentence-BERT compare to previously developed ap-

proaches in predicting teacher given assessment scores for student response to

open-ended problems?

2. What are the characteristics of student answers that correlate with errors observed
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Figure 1.2: The percent of student open-response answers that were scored and given
written feedback by a teacher before and during remote learning in response to COVID-
19.

in our Sentence-BERT model?

3. Which of student-, problem-, or teacher-level characteristics most explain the vari-

ance of error observed when the model is applied in real learning environments?

4. How does accounting for non-linguistic terms in the prior Sentence-BERT based

method through the proposed model affect the performance of the auto-assessment

methods on existing benchmarks?
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Chapter 2

Background

2.1 Related Works

There have been several works related to the automated scoring of open-ended responses

in the past. Most of such works utilize a combination of Natural language Processing

(NLP) and machine learning techniques of ranging complexity to process open-ended

responses. Much of the existing work in this area has been applied in the context of non-

mathematical content. Developments such as C-rater[6] is a well-cited approach that uses

such methodologies to estimate the assessed correctness of answers to short answer ques-

tions. This method uses grading rubrics and breaks down scores into multiple knowledge

components to evaluate each student response. Other works [14], [17] have implemented

clustering techniques to grade short textual answers to questions. More recently, studies

have based their approach around deep learning methods, which have led to promising

improvements over previous benchmarked results [23], [24]. While most of these works

have been on non-mathematical domains, studies like [20] explore mathematical language

processing using clustering techniques and the bag-of-words approaches for automated

assessment of open-ended response in mathematics. However, this study only considers
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the mathematical content, discarding the non mathematical texts.

Many of these more-recent studies have utilized publicly-released embedding meth-

ods trained on large corpuses of data, including those of Word2Vec [16] and GloVe [21],

to model the semantic meaning of words. However, word embeddings capture limited

information about the semantics of a sentence, where the sequence of words may have

large impacts on interpreted meaning. To capture the contextual information within sen-

tences and further increase the generalization capabilities of NLP embedding methods,

techniques such as Universal Sentence Encoders [25] and Sentence-BERT [28] gener-

ate a single embedding that is designed to be representative of the entire sentence while

preserving the semantic and contextual information of the words within such sentences.

One of the most commonly-used NLP embedding methods in recent years has been

that of Bidirectional Encoder Representations from Transformers (BERT, [26]). Building

upon and distinguishing itself from other methods such as GloVe, the BERT method is

designed to incorporate contextual information into generated embeddings to distinguish

words that may have the same spelling but different meanings depending on usage (e.g.

the word “bank” referring either a financial institution or perhaps a slope of land near

a river); BERT has been shown to outperform many other approaches in a number of

NLP tasks including, as is important for this work, semantic textual similarity (STS) [26].

Sentence-BERT, or SBERT [28], modifies the pre-trained BERT network to reduce the

computational overhead of BERT in order to also generate a sentence-level embedding of

a given series of words.

2.2 A Benchmark Comparison

In this work, we are exploring the use of this SBERT method to build upon the prior

benchmark set in Erickson et al., 2020 ([30]) in assessing student answers to open-ended
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Figure 2.1: Example of an open ended question taken from openupresources.org

problems in mathematics. In that work, the authors discuss the challenges in develop-

ing models to predict teacher assigned grades for student open responses in mathematics,

using a dataset of authentic student responses within the ASSISTments [18] learning plat-

form. Erickson et al. compares 6 models utilizing machine learning (e.g. random forest

and XGBoost [22]) and more complex deep learning (e.g. LSTMs [2]) techniques, com-

bined with natural language processing algorithms to assess responses that are combina-

tions of mathematical expressions and non-mathematical text. For the feature extraction

process from the open response data, the study uses the Stanford Tokenizer [19] combined

with Global Vectors for Word Representation (GloVe) [21].
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Table 2.1: Sample student responses (selected from across multiple problems for illus-
trative purposes) and the teacher provided scores on a scale of 0 to 4 to the open ended
questions in mathematics.

Sample Responses Score
y=4x-2 4

I counted 4
I multiply -3 and 2x 2
diagram is on paper 3

Yes Because Y=mx+b 0
I got 2/9 by dividing by 4 3

I was not in class for this so I don’t know. 1
I went multiplication first then division then multiplication 3

I got this by doing 45/75. I knew that
75 + 75 = 150 and 150 goes into 450 3 times

and 3 x 2 = 6. So the answer is 6.
4

You would need an example and then you
would need to draw a line and find out far away your shape is
from the line and mark it and then do that on the rest of your

lines on the shape

4

The distributive property means that a number outside
a set of parentheses can be multiplied by each of the numbers within
the parentheses and the answer will be the same. It works because it

would be the same as multiplying each number by the number outside
the parentheses and then adding them together.

1
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Chapter 3

Methodology

In this study, we build upon the work of [30] and present an automated scoring method

based on the SBERT methodology; as will be detailed further, we refer to this model

as the SBERT-Canberra model throughout the remainder of this work. We evaluate this

method and compare it to the prior methods in automated scoring from [30]. Then, in a

secondary analysis, we utilize real data collected from a pilot study of our model running

within a computer-based tool that provides teachers with suggested scores to explore the

limitations of our approach through an exploratory error analysis. Finally based on the

findings from the analysis of the SBERT-Canberra model, this work attempts to improve

the method by developing a simple, targeted method, drawing inspiration from closed-

ended assessment methods. We call this proposed method the “Math Term Frequency”

(MTF) model and demonstrate how it can be combined with the SBERT-Canberra model

to improve its performance. Our data and approach to these analyses are described in this

section.
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3.1 Dataset

In this work, we utilize two datasets of student answers to open-ended questions, paired

with teacher-provided assessment scores. An example of one of these open-ended math-

ematics questions is shown in Figure 2.1. In this example, students are not asked to find

the area of the triangles, but rather explain in their own words what one of the figures is

illustrating an approach to solving the problem.

For the development of our SBERT-Canberra model, we use the dataset (and eval-

uation code) from the Erickson et al. study [30]. This dataset is comprised of student

answers to open response questions within the ASSISTments[18] online learning plat-

form; the dataset consists of 150,477 total student responses from 27,199 unique students

to 2,076 unique problems graded by 970 unique teachers. As was performed in [30],

we omit any case where a student response contained no characters (e.g. an empty re-

sponse or one containing only whitespace characters), or contained nothing but an image

(cases where there was an image accompanied by other text or non-whitespace characters

is not omitted). The removal of such empty responses resulted in the dataset dropping

to 141,612 graded student responses, 25,069 unique students, 2,042 unique problems,

and 891 unique teachers. Within this data, each response is accompanied by a teacher-

provided assessment score that follows an integer ordinal 5-point scale from 0-4; a “4”

here is synonymous with a student receiving a 100% for the response.

Table 2.1 lists several student answers contained within the dataset, chosen from

across multiple problems for illustrative purposes. As was noted in the introduction, these

responses highlight some of the challenges of this modeling task. First, the length of re-

sponses varies greatly between students as well as across problems. In addition to this,

the interleaving of mathematics and linguistic text likely makes it difficult for pre-trained

embedding models to interpret. Similarly, the variation in mathematical representation
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(i.e. the use of the term “dividing” rather than the “/” operator), may lead to confu-

sion in a machine learning model trained over such data. As the mathematical variables

are also represented by recognized english characters (e.g. “y”), it may be difficult to

derive semantic meaning for such tokens. It is for this reason that we hypothesize that a

contextual-based embedding approach, such as BERT and SBERT, may be superior to tra-

ditional embedding methods that do not account for context within the sentence. Finally,

the noise in ground truth labels become evident from the table. The student who answered

“I counted” but still received full credit, for example, exemplifies that some teachers may

score students based on completion or other factors unrelated to their demonstration of

understanding or mastery. This is not to say that any one scoring method is more correct

or valid than another, but rather that there is likely large variation in these labels, making

it difficult for machine learning models to effectively learn associations between student

answers and these scores in some cases.

The second dataset used in this work is comprised of student responses collected dur-

ing the pilot testing of a teacher-augmentation tool designed to aid in the assessment

of student open response answers within ASSISTments [18]. This tool, called QUICK-

Comments, used our developed model to predict the scores of student answers to open

response questions in mathematics. Models were trained over the same open educational

resource (OER) curricula from which the problems used in the first dataset were collected

and produce estimates using the same grading scale as the first study. During the pilot

study, 12 middle school mathematics teachers were given access to the tool and compen-

sated for their time to assign, assess, and provide feedback to student open ended work

during the Spring and Fall of 2020. This dataset consists of 30,371 graded student open

responses to 915 unique open response problems solved by 1,628 unique students.
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Table 3.1: Features for the Linear Model of Error analysis of SBERT-Canberra model

Title Description Mean
Answer Length Length of the answer 10.39

Average character per word the average number of characters per words 3.54
Numbers count total number of digits 3.54
Operators count total mathematical symbols in the response 1.47
Equation percent percentage of mathematical equations in answer 0.27

Presence of Images Indicator of presence of images in the answer 0.15

3.2 SBERT-Canberra Model

The model developed for this work follows a 2-stage process to generate estimates of

teacher-assigned scores for a set of given student answers. In approaching this model, we

propose a reframing of the initial problem. In [30], the problem was posed as a traditional

supervised learning problem; in other words, given a set of student answers A, train a

model f (.) such that Y = f (A). Instead, we propose a more unsupervised approach as

depicted in Figure 3.1. If we have a set of historic answers A0...n−1, and want to predict

the score of a new answer An, a logical choice of score may be that corresponding with

the historic answer that is most similar to the new answer An. In this way, the problem is

posed as a similarity ranking problem rather than a supervised learning problem.

There are several potential advantages to this approach. First, when utilizing a pre-

trained model of SBERT, described in Section 2, no actual model training is necessary

(so long as a reasonable distance metric is identified). Second, as SBERT is optimized for

contextual similarity tasks, the problem is better suited to utilize the embedding method’s

strengths. Finally, in a practical sense, as no model training is necessary (beyond uti-

lizing the pre-trained embedding model), such a model can be more easily applied at

scale, requiring just a pool of historic answers to compare against. We hypothesize that

this method may also require fewer example answers than traditional machine learning

methods as well, but this claim is not deeply explored in this current work.
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In applying this method, the set of historic answers A0...n−1 are fed through the pre-

trained SBERT model to produce a 768-valued feature vector for each answer; these vec-

tors are then stored for later access.. Given a new answer, An, a feature vector is similarly

produced. In stage two of our method, all pairwise comparisons are then made between

An and A0...n−1, calculating Canberra distance [11] for each pair. Canberra distance, as

opposed to other common distance metrics such as Euclidean or Cosine similarity, is a

distance metric calculated over ranked lists. With this metric calculated for all pairs, the

A0...n−1 historic answers are then min-sorted to identify the most similar historic answer,

As, to our new answer An. The score associated with As is then used as the prediction for

the given answer An. The design to this approach is outlined in Figure 3.1.

As an additional component of this model, a “fallback” condition is implemented to

be able to produce scoring estimates for problems where there are no historic answers on

which to compare. In this case, we train a single multinomial regression model over all

known answers, utilizing 1) the number of words in the answer and 2) the average length

of each word in the answer; this model produces a probability distribution over 5 cate-

gorical labels (observing the 0-4 grading scale as a multinomial regression formulation).

This one model is trained over all known answers and used then only in the case that no

historic answers are available for the SBERT-Canberra model. This component is viewed

as being part of our SBERT-Canberra approach.

3.3 Evaluation of SBERT

To evaluate our SBERT-Canberra scoring method, we utilize the same data and code pre-

sented in [30]. In that paper, the authors present the usage of a 2-parameter rasch model

[1] (equivalent to a traditional item response theory, or IRT, model). The purpose of this

model is to learn a separate parameter for each student and problem presented, represent-

14



Figure 3.1: The design of the SBERT-Canberra method, that suggests scores based on
similarity between the answers.

ing student ability and problem difficulty, respectively. The intuition behind the use of

this model is to evaluate an NLP automated scoring model based solely on its ability to

interpret the words in each student answer. As the score of each answer is likely corre-

lated with student ability (or knowledge) and problem difficulty (e.g. easy problems are

likely to exhibit higher scores), such a model provides a reasonable minimum baseline of

comparison. By adding a model’s scoring estimates as covariates to the rasch model and

then comparing the performance of such a model to the rasch model without covariates,

we are able to observe the true value-added performance of the NLP scoring model.

Following the same procedure as conducted in [30], we are able to directly compare
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Table 3.2: Rasch Model Performance compared to the models developed in Erickson et
al.[30]

Model AUC RMSE Kappa
Current Work

Rasch* + SBERT-Canberra 0.856 0.577 0.476
Erickson et al. 2020

Baseline Rasch 0.827 0.709 0.370
Rasch + Number of Words 0.829 0.696 0.382
Rasch* + Random Forest 0.850 0.615 0.430
Rasch* + XGBoost 0.832 0.679 0.390
Rasch* + LSTM 0.841 0.637 0.415

*These rasch models also included the number of words.

our Sentence-BERT method to those presented in that prior work. The models are trained

and evaluated using a 10-fold student-level cross validation, and model performance is

compared based on 3 performance metrics. First, treating the label as multinomial, rather

than ordinal, AUC is caluclated using the method described in [5]. Second, the root

mean squared error (RMSE), is calucalted over the ordinal prediction and label. Finally,

a multi-class kappa is calculated, again using the multinomial label representation. The

multinomial representations were argued to be appropriate due to the likely non-linear

distribution of scores, while then RMSE provides insight into a more linear assumption

of the data. Arguably an additional rank-based metric such as Spearman’s Rho would

also be a suitable metric of comparison, but is not included for more direct comparisons

to the previous work.
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3.4 Approach to Error Analysis of the SBERT-Canberra

Method

In evaluating the SBERT-Canberra method, it is important to explore limitations of the

approach in order to identify where the model does well and where it may yet improve

through future iteration. As such, we also conduct an exploratory error analysis of the

method using the data collected from the QUICK-Comments pilot study. Toward this, we

observe two regression models that observe absolute model error as a dependent variable.

By exploring characteristics of student answers in the context of this modeling error, we

can observe which aspects correlate most with higher prediction error. Similarly, we

apply then a multi-level model to observe which of student-, problem-, and teacher-level

identifiers most explains any observed modeling error.

3.4.1 Uni-level Linear Model

The uni-level linear model is based on student answer level characteristics. The student

answer level characteristics are comprised of a set of six answer-level features extracted

from the student open response data. These features are listed in Table 3.1. In calculating

these features, the answer is first tokenized using the Stanford NLP tokenizer[19], divid-

ing each textual answer into smaller tokens. For example, if the response to a particular

problem is “I got 2/9 by dividing by 4”, a simple tokenizer splits this response text by

spaces which would give the list of tokens as: (“I”, “got”, “2/9”, “by”, “dividing”, “by”,

“4”). Then from the tokenized data, we separate the tokens consisting of either digits

or mathematical symbols. The number of such tokens is divided by the total number of

tokens to calculate the equation percentage1. The average equation percentage calculated

1We acknowledge that this feature is a misnomer as it includes numeric terms, operators, and expressions
as well as equations, but chose this feature name for sake of brevity.
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by the procedure mentioned above is 27% across the entire dataset. For calculating the

length of the answer text, we count the total words in the text simply by splitting them by

space. The average length of answers across the dataset is 10.39. Similarly, within each

response, the number of numeric digits (i.e. Numbers count) and number of operator

characters (i.e. Operators count) are counted independent of the tokens.

ASSISTments[18] allows students to upload images as part of the response to open-

ended questions; this is most commonly a picture taken of work done on paper. The

response text in such cases includes the URL of the uploaded image to the system. About

15% of the total responses in the dataset contains images. Some of such responses are

entirely images, whereas in others, some text is provided as context. Since these scoring

models are not yet designed to support images, we hypothesize that the images’ presence

contributes significantly to the modeling error.

A simple linear regression model is fit to the pilot study student answers, observing

absolute model error as the dependent variable. This value is calculated by simply sub-

tracting the predicted score from the teacher-provided label (as a linear label), and taking

the absolute value. In this case, a value of 0 would indicate a correct estimate, while

higher values (up to 4) represent greater prediction error; we do not differentiate between

under- and over-predicting in this analysis.

3.4.2 Multi-level Linear Model

The uni-level linear model observes features that describe characteristics of the student

responses, but as described in Section 3.1, modeling error may not be confined to just

characteristics of the responses themselves. It is very likely that modeling error can be

attributable to other external factors at the student-, problem-, and teacher-levels.

To explore this possibility, we apply a multi-level linear model observing the student

answer characteristics as fixed effects, and student, problem, and teacher identifiers as
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three separate level-2 random effect variables. As it is the case that the same student

may write multiple answers within our data, this structure is similar to that of a repeated-

measure analysis.

abs(model error) =Answer Covariates+(1|student identifier)

+(1|problem identifier)

+(1|teacher identifier)

(3.1)

Again observing absolute prediction error as the dependent variable, this analysis will

be able to answer 1) whether the majority of explainable variance exists at the student-

answer level or at a higher level, and 2) which of student-, problem-, and teacher-level

identifiers most explains variance in our modeling error (e.g. which of these identifiers

is most correlated with the error). The equation, expressed as its R code formulation, is

reported as Equation 3.1.
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Chapter 4

Results

4.1 SBERT Model

The results of the SBERT model is compared directly to the results from Erickson et

al.[30] as shown in Table 3.2. As can be seen in that table, the SBERT-Canberra method

outperformed the baseline as well as all previous models across all three metrics. While

the difference in AUC values between our method and the previous best approach is no-

tably small, the difference in both RMSE and Kappa appears to be comparatively larger.

To interpret these two metrics, these results suggest that we should expect teachers to

agree with our method’s estimates 47% of the time accounting for random chance, and

is likely to be wrong by just over half a grade-point on average. This also does suggest,

however, that there is still plenty of room for improvement of these models.

What is also worth noting from the results of Erickson et al. [30], is the high perfor-

mance of the baseline rasch model. This emphasizes the difficulty of this NLP modeling

task in that the baseline model is using nothing other than the student and problem identi-

fiers; it is able to seemingly predict teacher-provided scores with an AUC above 0.8 with-

out using any part of the student response; there is only a 0.03 AUC difference between
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that baseline model and our current proposed method. This suggests that these external

factors may be explaining a large portion of the student scores, and may subsequently

explain a large portion of our prediction error.

4.2 Error Analysis of SBERT

In exploring this further, the results of the error analysis of the SBERT-Canberra method

are presented in Table 4.1. It is found that the uni-level linear model explains 38.6% of

the variance of the outcome as given by r-squared. Out of the six student answer-level

features, nearly all were found to be statistically reliable predictors of model error; in ver-

ifying these results, it was found that all included covariates exhibited inter-correlations

less than 0.3 (suggesting a moderately low impact of multicollinearity potentially skew-

ing the interpretation of these results). In close examination of the coefficients of these

features, however, despite being statistically reliable, many are found to be close to 0,

suggesting a very little meaningful correlation with the modeling error. This is not the

case, however, for two of these variables, Equation Percent and Presence of Images, we

see a more meaningful coefficient. This suggests, due to the direction of this value, that

the presence of mathematical elements as well as the presence of images (unsurprisingly)

both correlate with higher prediction error. It further follows, then, that further improve-

ments to the SBERT-Canberra method should explore methods of better representing and

accounting for these mathematical terms in student responses; similarly, though likely

much more difficult, incorporating an aspect of image recognition could be another area

worth exploring.

In regard to the multi-level linear model, accounting for student, problem, and teacher

identifiers each as random effects, we see that the inclusion of these level-2 factors ex-

plains some of the impact of the fixed effects (also in Table 4.1). Here it is found that
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Table 4.1: The resulting model coefficients for the uni-level linear regression model and
random and fixed effects of the multi-level linear model of absolute error.

Uni-level Linear Multi-level Linear
Variance Std. Dev. Variance Std. Dev.

Random Effects
Student — — 0.034 0.185

Problem — — 0.313 0.559
Teacher — — 0.048 0.851

B Std. Error B Std. Error
Fixed Effects

Intercept 0.581*** 0.017 0.772*** 0.070
Answer Length -0.008*** 0.001 -0.009*** 0.001

Avg. Word Length -0.014*** 0.003 -0.013** 0.003
Numbers Count <0.001 <0.001 <0.001 <0.001

Operators Count -0.006*** 0.001 0.002 0.001
Equation Percent 0.443*** 0.018 0.080*** 0.022

Presence of Images 2.248*** 0.021 1.858*** 0.028
*p <0.05 **p<0.01 ***p<0.001

all but two of the fixed effects are statistically reliable. It is also found that the magni-

tude of the coefficients for the Equation Percent and Presence of Images is also reduced.

This suggests that, perhaps, the student and/or problem identifiers partially explain these

correlations (some problems may be more likely to have responses with images or math-

ematical terms in them, or some students may be more inclined to use images or such

terms more than others). What is worth noting, however, is that it was found that the

level-2 variables account for 55.5% of the variance of the outcome. This suggests that a

majority of the modeling error can be explained by these factors that are external to the

student answers.

Looking at the variance of the random effects, it can be seen that the problem level

identifiers contribute most in terms of explaining the variance of the outcome. It is cer-

tainly the case that the SBERT-Canberra method is accounting for each individual prob-
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lem in producing its estimates (e.g. it only observes historic answers within each unique

problem), but it would seem that there are other problem-level factors that are not being

accounted for within this approach.
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Chapter 5

SBERT-MTF Model

The methods presented in this work target the specific problem of non-linguistic terms

contributing to prediction error. The previously-developed SBERT-Canberra model out-

performed previous decision-tree- and deep-learning-based approaches [30] by leverag-

ing pre-trained Sentence-BERT embeddings. The use of pre-trained embeddings provides

several advantages in that they are commonly built using very large corpuses of data; by

training such embedding methods on such sources as Wikipedia or online news sources,

the models can learn the semantic meaning of words and sentences based on their proxim-

ity to other words and sentences within observed documents. In short, pre-trained models

can learn language representation from large datasets that can then be used to increase

the predictive power in smaller datasets. The challenge, however, is that only a finite

number of words (and sentences, by extension) can be recognized by these methods; tra-

ditionally, unrecognized words and phrases may be given a default embedding. When

observing non-linguistic terms such as numbers and expressions, many such terms may

not be represented within the embeddings (e.g. representing “the answer is 4.3333” with

the same embedding as, for example, “the answer is 2.987” if neither of the numbers

are recognized). Particularly in mathematics contexts, such non-numeric terms are likely
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Figure 5.1: The design of the ensembled SBERT-MTF method, that suggests scores for
student open responses.

to greatly inform the correctness of the student response. As such, one possible solu-

tion is to expand the embedding space to include such terms; while plausible, this would

likely require large datasets of mathematics responses, but even then would not be able

to represent every possible number or expression (given that these are infinite). Instead,

we propose the “Math Term Frequency” (MTF) method which takes a much simpler ap-

proach, drawing inspiration from assessment methods applied for close-ended problems.

The goal of the MTF method is to supplement the previously-developed SBERT-Canberra

model through ensembling, resulting in what we are calling the “SBERT-MTF” model, as

illustrated in Figure 5.1.

25



5.1 Model Design

The MTF method works by first parsing student answers to identify non-linguistic terms.

The function works through a sequence of steps, which includes splitting a student answer

by spaces, removing alphabet-only terms (accounting for commas, uncommon punctua-

tion, and contractions), combining equations separated by spaces, removing extraneous

parentheses, and rounding off decimals, among other optimizations. Much of this pruning

is done with regular expressions. Once the non-linguistic terms have been identified, the

MTF method involves identifying the most frequently-occurring terms for each possible

integer score as a means of learning a kind of rubric. It is hypothesized that the correct

student answers are likely to exhibit a smaller number of certain terms, with lower scores

exhibiting a larger variety of terms. There will likely be some terms that are common

throughout all scored answers (e.g. if the students reference a number from the problem

text), but there are likely to be some terms that demonstrate high comprehension; simi-

larly, students exhibiting common misconceptions may arrive at a similar set of incorrect

answers. With this in mind, we select the five most-frequent terms, a1,a2,a3,a4,a5, from

the list of parsed non-linguistic terms. For each student response s in the training data

for problem p, let S denote the set of mathematical terms in s. The input associated with

s is the 5-vector ⟨1S(a1),1S(a2),1S(a3),1S(a4),1S(a5)⟩, where 1S denotes the indicator

function for a term in s. In other words, features used in this method indicate whether

a newly-observed student response contains any of the most frequent terms most com-

monly associated with each given score. These features are used in a multinomial logistic

regression (treating each score as an independent category, following previous works) that

is trained separately for each problem.

The score predictions from the MTF model are then ensembled with the SBERT-

Canberra predictions using another logistic regression model, referred to as the SBERT-
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Table 5.1: Rasch Model Performance comparing the performance of the proposed
SBERT-MTF model with the observed SBERT-Canberra model

Model AUC RMSE Kappa
Rasch* + SBERT-MTF 0.871 0.524 0.508
Rasch* + SBERT-Canberra 0.856 0.577 0.476

MTF model; to clarify, this ensemble regression model observes ten features correspond-

ing to the probability estimates produced for each of the five possible scores for each of

the two observed models. The goal of this is to combine the semantic representation cap-

tured by the SBERT method, while taking advantage of the non-linguistic term matching

from the MTF method.

5.2 Model Performance

As to directly compare this new method to the SBERT-Canberra model, we use simi-

lar evaluation method and dataset used in the previous section 3.3 for the evaluation of

SBERT-Canberra model utilizing a 2-parameter Rasch model, and three evaluation met-

rices. The Rasch model performance of the Math terms frequency model as compared

to the performance of the prior models for scoring open-ended responses is presented in

Table 5.1. The results suggests that the proposed SBERT-MTF model outperforms the

previous highest-performing SBERT-Canberra model across all three evaluation metrics.
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Chapter 6

Limitations and Future Works

In regard to our approach as well as in light of our findings, there are several limitations

and opportunities for future directions. While the SBERT-Canberra approach, utilizing

sentence-level embeddings, outperforms the previously-developed models in predicting

scores for open responses, the difference in AUC is rather small; the fact that the method

produces a classification (as opposed to a probability as is often the case with such mod-

els) likely impacts its AUC performance. The manner in which the method makes its

prediction can be considered a greedy approach in that only the closest historic answer

is used to predict the score. Instead, a weighted vote approach using all historic scores

(or a subset of similar scores above an identified threshold) may improve the model by

allowing for some degree of uncertainty. Similarly, the use of the word count model as

a fallback may further be improved; while it was the case that there were very few in-

stances of problems not having enough data within the cross validation, improving this

fallback method may help to improve the model when applied in practical settings where

the “cold start” problem is more prevalent; as the method currently relies heavily on hav-

ing a sufficiently-sized pool of human-scored historic answers, future research can focus

on utilizing unlabeled student answers or exploring other unsupervised methods that may
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additionally support these methods in cases where labeled data is scarce.

While the SBERT-Canberra model performed arguably well, the error analysis re-

vealed several areas where this approach, as well as others, may focus in future works. A

limitation of this, however, is that both models left variance unexplained in the outcome.

We chose to look at these factors based on hypotheses and anecdotal observations, but

there may be other large factors that can explain more of the error that we are seeing.

Subsequent works could conduct more thorough surveys of both answer-level and higher-

level factors. Future works can also explore additional model structures and language

features that may lead to improvements to performance. The analyses presented in this

work, however, can act as a baseline to further evaluate if future iterations of our approach

truly improve upon these identified areas.

The MTF method represents an intentionally-simple approach to address a targeted

weakness in the presence of non-linguistic terms in the SBERT based method and seem-

ingly led to positive impacts on the performance. With that, there are still several areas

in which these models could be improved, in addition to improving the accuracy of the

parsing function. While this proposed solution is an initial step towards addressing non-

linguistic terms in these NLP based methods, more advanced methods based on Math-

ematical language processing, MathBERT could be explored for the better performance

of these models. While the current works are based on textual open-ended responses,

there are other forms of open-ended responses in mathematics including drawn diagrams

and graphs, hand written formulas and expression uploaded as images, and other forms

of audio and video responses. This work could be further expanded to the other forms

of student open-ended responses (images, diagrams, etc.) through advanced methods of

image processing.

It is also the case that this work focuses only on models that predict numeric assess-

ment scores, while we strongly believe that it will be equally, if not more important to
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additionally develop methods to suggest or generate directed feedback for for these stu-

dent answers; teachers use textual feedback messages to offer constructive guidance to

students, but it is often a very time-consuming task to write these messages for each stu-

dents’ answer. We believe that the SBERT-Canberra approach can be extended to support

this task as well, where such a model may be able to recommend feedback to new student

answers that has been previously given to an identified similar historic answer. Future

work is intended to explore these methods further for such feedback-suggestion tasks.
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Chapter 7

Conclusion

In this thesis, we have presented an approach in addressing and formulation of the prob-

lem of automating the assessment of student open-ended work. We have illustrated that

our SBERT-Canberra method outperformed a previously-established benchmark, but still

exhibits areas where it may be able to improve. Through the conducted error analysis,

we have identified areas where more advanced methods of image processing and natural

language processing (or math language processing), may lead to further improvements.

With all of this, however, it was also identified that problem-level features appear to be

most impactful in explaining the variance of modeling error; this is particularly surprising

as variations in teacher grading were previously hypothesized to be a larger factor in this

context.

With the findings from the study, we then propose a method to address the limita-

tion of the SBERT-Canberra method, specifically in presence of non-linguistic terms. We

demonstrate that this new method, based on the occurrence of frequent math terminolo-

gies in student responses in predicting scores, when combined with the SBERT-Canberra

model improves the model performance across all the observed metrics. This approach is

intentionally a simple. It is the goal of this work to act as a step toward building better
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teacher supports for these types of open-ended problems, as well as provide others with

guidance toward the same or similar goals.
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