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Abstract

How can we model global phenomenon based on local interactions? Agent-Based (AB)
models are local rule-based discrete method that can be used to simulate complex interac-
tions of many agents. Unfortunately, the relative ease of implementing the computational
model is often counter-balanced by the difficulty of performing rigorous analysis to de-
termine emergent behaviors. Calculating existence of fixed points and their stability is
not tractable from an analytical perspective and can become computationally expensive,
involving potentially millions of simulations. To construct meaningful analysis, we need
to create a framework to approximate the emergent, global behavior.

Our research has been devoted to developing a framework for approximating AB mod-
els that move via random walks and undergo state transitions. First, we developed a
general method to estimate the density of agents in each state for AB models whose
state transitions are caused by neighborhood interactions between agents. Second, we
extended previous random walk models of instantaneous state changes by adding a cumu-
lative memory effect. In this way, our research seeks to answer how memory properties
can also be incorporated into continuum models, especially when the memory properties
effect state changes on the agents. The state transitions in this type of AB model is pri-
marily from the agents’ interaction with their environment. These modeling frameworks
will be generally applicable to many areas and can be easily extended.
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Chapter 1

Introduction

How can we understand a complex system of interacting and decision-making entities?
Mathematical modeling translates real-world physical dynamics into abstract mathemat-
ical language. Once encoded, analysis allows the structure of the specific modeling lan-
guage to expose information not readily apparent. However, a mathematical model can-
not include everything from the physical world, so the translation from the real-world to
mathematics requires making assumptions or simplifications. Knowing when and how to
impose those decisions, balancing model fidelity with analytical tractability, transforms
mathematical modeling into an art form.

There are several different modeling frameworks from which to choose, but each struc-
ture decides the ease (or even tractability) of answering specific types of questions about
the model. Often, if the focus is on understanding and capturing each of the interactions
and movement, an individual-based approach such as an Agent-Based (AB) model is used
[59, 60, 72, 100]. When we are interested in global dynamics, or we are more interested in
how the field is evolving, density-based approaches are utilized, e.g. difference equations
or systems of differential equations [21, 27, 81]. For each of these frameworks, there are
different pros and cons with respect to the ability to formalize and analyze a model, as well
as the ease with which one can simulate the dynamics [93]. There are many challenges,
which can arise due to noise, nonlinearities, and other spatial or temporal variations in
the system [111].

In AB models, the agents are each individually assessing their surrounding environ-
ment, potentially moving or changing state at each time increment based on a given set of
rules [17]. The state-dependent rules could be deterministic or stochastic, and are quite
often nonlinear functions based on information (e.g. other agents, states, or environmen-
tal factors) in a locally defined interaction neighborhood [34]. The movement can be
on-lattice, where the spatial domain is a graph, or off-lattice, where the spatial domain is
a continuum, as depicted in Fig. 1.1a and Fig. 1.1b, respectively. In on-lattice movement,
an agent occupies a discretely defined node, from which it can move to occupy other
nodes only by traveling along graph edges. For example, if a lattice is a regular, two-
dimensional grid, the on-lattice movement of a given agent could be either horizontal or
vertical movement to an adjacent lattice node at each time increment [52, 119]. Conversely,
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in off-lattice movement, an agent is located in a continuous space and new locations can
be determined via specified rules or determined by solving systems of differential equa-
tions [55]. Often, questions of interest concern the emergent behavior of a large number
of interacting agents, which can be hard to capture at the continuous scale [60]. We note
that since this modeling framework is quite general, the agent could represent any feature
of interest in a given system [106], which is why these types of models are frequently used
for social, biological, financial, and military applications [4, 17, 24, 31, 35, 52, 62, 99, 119].
In terms of biological applications at the cellular level, AB models have been used to in-
vestigate tumor growth where the agents are the individual cells that make up the tumor
[62], sperm cell motility where the sperm are the individual agents [19, 20], and signaling
pathways within and on the membrane of cells where agents are molecules and receptors
[17].

(a) On-Lattice Movement (b) Off-Lattice Movement

Figure 1.1: Diagram depicting types of movement. Agents are denoted as colored disks,
with the shading denoting agent location before (lighter) or after (darker) movement.
The arrows denote movement direction. (a) On-lattice movement, where agents move to
established nodes along graph edges. (b) Off-lattice movement, where agents can move
on a continuum in the domain.

Each agent in an AB model is initialized with its own set of static or variable features,
which may consist of goals, data, properties (including a behavioral state), or memory.
The flowchart in Fig. 1.2 loosely demonstrates how the agent and environmental influ-
ences, which are local to a particular agent, determine the agent’s action in a generic
AB model. As the simulation progresses, the agent’s location or goals may update these
features. This update may be deterministic, such as how social-force AB models solve
a differential equation [5, 57, 84] or probabilistic, such as a random walk (RW) model
[29, 98]. If an agent interacts and undergoes property changes due to some connection
with other agents, then it does so through an interaction neighborhood, which is a phys-
ical space surrounding an agent where another agent’s features can exercise an influence.
Additionally, environmental factors, such as resources or topographical considerations,
may also update an agent’s properties or memory. An agent may only perceive and in-
teract with local environmental information, in which case the agent’s features would be
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updated according to the data within the agent-environment neighborhood.

Figure 1.2: Flowchart for depicting various aspects of a generic AB model

The agent’s updated features determine the agent’s action, such as updating an agent’s
velocity or determining how an agent alters the environment, through some specified
algorithm. Some AB models can be more complex by adding agents during simulation
run time from birth or some estimated domain boundary flux, whereas other AB models
may not exhibit all these elements. However, Fig. 1.2 illustrates the basic structure we
investigate and exploit in this dissertation.

AB models allow the modeler the ability to readily define and control local interac-
tions regardless of the amount of heterogeneity. However, we can see from the flowchart
of a single time-step for one agent in Fig. 1.2 that as the number of agents in a system
increases, the computational cost increases. In fact, investigating long-term dynamics
solely from simulations may become intractable due to the computational cost involved
with the increased amount of interactions with other agents and the environment as well
as any additional feature updates [60]. With current computer architectures, simulat-
ing many agents is feasible but is offset by the computational time required to compute
a sufficient number of simulations for analysis [2, 32, 110, 132]. Even with advanced
computer architectures such as graphical processing units (GPUs) and parallel process-
ing, the computational time could become prohibitive as the number of agents increases
[104]. Additionally, there is generally a desire to understand how model outcomes change
with respect to varying parameter values [25], which again would necessitate many sim-
ulations. Since continuum models generally model global dynamics, they have difficulty
incorporating local interaction rules without making homogeneous assumptions. As such,
continuum models can easily model dense populations, but have difficulty modeling dy-
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namics when populations are sparse or the interacting heterogeneous populations have
densities of different orders of magnitude.

The computational time or tractability of using realistic, complex domain geome-
tries also exhibits the differences between AB models and continuum models. Since AB
models track agents individually, this framework can adapt to boundaries that are time
dependent, non-convex, or contain cusps relatively easily. However, due to their global
framework, continuum Partial Differential Equation (PDE) models may not be well-posed
under certain boundary conditions, such as when singularities exist at cusps [115]. More-
over, although domain discretization and numerical methods exist for intricate domains,
the computational cost may be prohibitive even if the PDE is proved to be well-posed
[26]. Further comparison between AB models and continuum PDE models can be found in
Table 1.1. With this comparison in mind, it is important for a modeler to be able to have

Agent-Based Model Continuum Model
Pros Cons Pros Cons

Local Solution

Must run
sufficiently
many times or
with sufficiently
many agents

Many established
solution methods

Analytic
solution difficult
(or impossible)
with complex
boundaries

Easy to code
(even with
complex
geometries)

Expensive to
find global
solution

Closed form
solution may
exist with
simple geometries

May be difficult
to couple with
other equations

Relatively easy
to couple with
other equations

Difficult to
analyze param-
eter effects

Can calculate
parameter
sensitivity, stabil-
ity, . . .

Numerical
schemes for full
solution can be
computationally
expensive

Table 1.1: Comparison between using AB models and using continuum models.

a bridge to connect AB models with continuum models, and be able to construct statis-
tically similar models using either framework. Further development will enable modelers
to use the best tools available in order to answer their questions of interest.

It is worth noting that much work has been done analyzing the data generated by
AB models. For example, using the field of topological data analysis with AB data new
tools have been developed such as the “Contour Realization Of Computed k-dimensional
hole Evolution in the Rips complex” (CROCKER) plot to analyze pattern persistance in
time [15, 126]. Moreover, many hybrid models exist, using PDE models within an AB
model framework to increase fidelity and decrease computational cost. An example of
such a model is fluid flow animation, where the flow particles are treated as agents and
the pressure equation is solved as a PDE [107]. These methods and models are interesting
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and certainly expand the usefulness of AB models as legitimate tools for the scientific and
mathematical community. However, in this dissertation, we are solely interested in how
to derive global approximations of AB models and examining the additional analytic tools
such approximations make possible.

Part I of this dissertation deals with developing background material on AB models as
well as deriving and providing an example of a new general method for estimating state
densities. We want to use the explicit local interaction rules of AB models to develop
methods that generate equations to approximate the AB model’s global dynamics.

Random walk models, a simple case of AB models, consist of sequential random steps
of movement; they have been widely used to investigate cellular motility, often in a spa-
tially homogeneous environment [12, 29, 87, 135, 136]. Assuming the moving agent or
cell is memoryless, an equation governing the spatiotemporal evolution of the density
of cells can be determined. It corresponds to a standard diffusion equation if there is
no bias in the motion or an advection-diffusion equation if there is bias in the motion
[12, 29, 87, 136]. The derivation of this is detailed in Chapter 2. The advection-diffusion
equation can capture different taxis, biasing the probability of movement based on chem-
ical profiles (chemotaxis), temperature gradients (thermotaxis), fluid flow (rheotaxis), or
environmental mechanical stiffness (durotaxis) [3, 21, 96, 98, 99]. The continuum limit of
the stochastic process is often formulated in the case of cell motility since it is tractable
from an analytical perspective and we have existing computational methods to easily solve
these governing equations. The continuum derivation and applications (e.g. first passage
time density and splitting probability) are introduced in this chapter and are necessary
for the derivation and analysis of the absorption model in Part II.

Of special interest is how local state change dynamics can be captured in a global
model. Chapter 3 explains this in further detail as well as providing elucidating exam-
ples. In the existing random walk framework, accounting for different cell states would
correspond to a system of coupled PDEs where local sinks or sources would describe leav-
ing one cell state and entering another cell state. The two main methods with which AB
models can precipitate state changes are agent-agent neighborhood interaction or agent-
environment interaction. Here, we also codify the AB notation used in the remainder of
the dissertation. This notation can also be found in the List of Symbols section preceding
this chapter. Currently, our research has developed two different global approximation
methods, which are detailed in Chapter 4 and Part II.

Through developing a precise definition of an off-lattice AB model with a specified
interaction neighborhood, in Chapter 4, we develop a general method to determine a
Global Recurrence Rule (GRR). This allows estimates of the state densities in time, which
can be easily calculated for a range of parameters in the model. The utility of this frame-
work is tested on an Epidemiological Agent-Based (E-AB) model where agents correspond
to people that are in the susceptible, infected, or recovered states. The interaction neigh-
borhoods of agents are determined in a mathematical formulation that allows the GRR
to accurately predict the long term behavior and steady states. The GRR calculates the
density of cells in particular states, but does not provide additional spatial information.
In order to have our global approximation predict densities at spatial locations, we need
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a method to derive a PDE from the AB model framework.
Part II develops a framework to describe and simulate stochastic cellular processes

that are coupled to the environment and use this history to determine state changes. The
classical PDE approximation of random walk models cannot account for cells changing
states due to a cumulative environmental coupling, so we propose an extension to this
methodology. Specifically, through upscaling, in Chapter 5 we derive a novel continuum
governing PDE equation from an AB model that considers the cell density as a function of
time, space, and a cumulative variable that is coupled to the environmental conditions. By
using the AB model to guide the continuum model, the model parameters have explicit
and quantifiable physical meanings. For this new governing equation, we consider the
stability through an energy analysis, as well as proving well-posedness. To solve the
governing equations in free-space, we propose an operator-splitting numerical method
that uses fundamental solutions after discretizing the space using uniform volumes. As
an application, we study a cell moving in an infinite domain that contains a spatially
heterogeneous toxic chemical, where a cumulative exposure above a critical value results
in cell death. We illustrate the validity of this new modeling framework and associated
numerical methods by comparing the spatiotemporal density of live cells to results from
the corresponding AB model.

Chapters 6 and 7 expand on this basic free-space cumulative absorption model. First,
we examine the absorption model in a bounded spatial region. Then we incorporate
a fluid flow into the model, biasing and advecting the agent. Diffusion and the fluid
velocity profile also creates a dynamic chemical density. Solving these more complex
models requires further adaptations to the operator-splitting numerical method. Since
the cumulative absorption model is the focus of the entirety of Part II, Chapter 8 only
focuses on the conclusions and future work of that research. There is a discussion section
at the end of Chapter 4 that focuses on implications and future work for the GRR.

Finally, Part III includes additional derivations, proofs, plots, and discussions related
to various sections in Parts I and II. These sections are appropriately referenced within
the main body of the dissertation. However, including these sections within the main
body would interrupt the flow for the reader and are better served within a standalone
appendix.
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Part I

Background Material and Global
Recurrence Rule
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Chapter 2

Random Walks

Although random walk (RW) models are a relatively simple type of agent-based model,
the modeling framework is used extensively when modeling population dynamics [27],
movement ecology [109, 28], and stock share prices [42]. RWs are also used to depict
small particle motion, such as Brownian motion [65], and can be applied to add random
noise to algorithms, such as evolutionary algorithms [56, 38] and ensemble Kalman filters
[6], to avoid convergence to non-global extrema.

An agent is initialized in a spatial domain. At a time increment 4t an agent moves to
a location drawn from a movement probability distribution. In this dissertation, the RWs
move at a constant spatial step, 4x, so the movement probability distribution determines
the direction an agent moves. This constant spatial step essentially makes the RW occur
on a fixed lattice. Denoting RWs as unbiased or biased relate to the type of movement
probability distribution. Unbiased random walks (URWs) follow a symmetrical movement
distribution, where each movement direction occurs with equal probability (1/number of
directions). Contrarily, biased random walks (BRWs) usually follow an asymmetrical dis-
tribution. The movement probability distribution may account for the fact that an agent
may remain in the same location, rather than move. We denote the waiting probability
as the probability an agent remains in the same location. Generally, URWs have zero
waiting probability.

The RWs used in this dissertation are mainly URWs and BRWs, as can be seen in
Figs. 2.1 and 2.2. However, we briefly discuss correlated RWs in Section 2.3 since one
could apply Chapters 5-7 to those. There are other types of RWs, such as Lévy walks,
where the step-size is drawn from a probability distribution and can be approximated by
fractional PDEs [85, 140], but these fall outside the purview of this dissertation since we
are mainly interested in RWs with constant spatial step-size 4x.

A RW simulation iterates the above process until a terminating condition is encoun-
tered. RW processes are Markovian, in that agents only require information from the
current time-step (e.g. location and orientation) to determine their next iteration [23].
Additionally, the Markov property and the simplicity of the model behavior allows us
the ability to more easily approximate global RW behavior and predict useful statistical
measures about RWs from the initial condition, movement probability, and step sizes.
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(a) Unbiased Random Walk (b) Biased Random Walk
(` = 0.25, r = 0.65)

Figure 2.1: Examples of RWs in one spatial dimension (1-d). Each graph shows 10 different
RWs initialized at x = 0 with spatial step-size 4x = 0.01 and time step-size 4t = 4x2.
The variables ` and r denote the probabilities of moving left and right, respectively.
The horizontal axis is the spatial dimension, whereas the vertical axis denotes the time
dimension.

(a) Unbiased Random Walk (b) Biased Random Walk
(` = 0.22, r = 0.25, u = 0.25, d = 0.28)

Figure 2.2: Example of RWs in two spatial dimensions (2-d) for 104 iterations with spatial
step size 4x = 0.01, 4t = 4x2 and initialized at the point (0, 0). Each graph shows one
agent performing a RW. The variables `, r, u, and d denote the probabilities of moving left,
right, up, and down, respectively. The color of the line denotes the time since initialization
(as shown in the colorbar).

9



There are two perspectives from which one may view RW movement, illustrated in
Fig. 2.3, which are appropriated from the field of fluid mechanics: Lagrangian and Eule-
rian. We can frame the RW with a Lagrangian description, according to Fig. 2.3a, where
we define and track individual agents and compute their next location. In fact, due to
the Markovian (memoryless) nature of a RW, this is a natural framework for simulations,
since we compute the location of each agent independently. We can also frame the RW
with an Eulerian description, according to Fig. 2.3b, where we pick a location in time
and determine all the possible ways an agent can occupy that location at that particular
time. This is a more straightforward framework for deriving the global approximation,
where we solve for the probability or density of agents at a particular location in time. We
can still utilize the Markovian property by tracking only the possible paths originating
from one prior time-step, rather than every possible path from the initial condition. This
distinction becomes more apparent in the derivation of the global approximation within
the following subsection.

2.1 Unbiased Random Walk (URW)
An URW is a subset of RWs, where the agent has an equal chance of moving left or right
with zero waiting probability. So, in terms of Fig. 2.3a, we assign movement probabilities
` = r = 1/2. We also assume that agents performing an URW do not hit or interfere with
the motion of other agents. In fact, the only thing that would affect the unbiased motion
of an agent would be if the spatial domain were bounded (or contained obstructions) and
the simulation enforced reflecting boundary conditions. Examples of simulated runs of
URWs can be seen in one spatial dimension (1-d) in Fig. 2.1a and two spatial dimensions
(2-d) in Fig. 2.2a. In the 1-d case, the horizontal axis denotes the spatial coordinate and
the vertical axis denotes time. We see that the agents move left or right each iteration and
the distribution of agents tends to be symmetrical about the initial location. In the 2-d
case, the axes denote the x and y spatial coordinates, while the color of the line denotes
time. A single agent’s RW is shown in Fig. 2.2a having equal probability of moving up,
down, left, or right at each iteration.

As we demonstrate when developing its global approximation in Section 2.1.1, the
URW is a symmetric, diffusive process. This is useful when adding random motion to
a model or adding random noise to an algorithm, such as a random mutation to an
evolutionary algorithm [112].

2.1.1 Global Approximation
Here, we use the method outlined in [29, 98] to derive the governing partial differential
equation (PDE) that, when solved, produces the global approximation of the probability
density function (pdf) of an agent performing an URW. Suppose an agent moves according
to an URW; that is, at each time-step, of length 4t, the agent moves a distance 4x to
the left or right with equal probability 1/2 (as seen in Fig. 2.3a with ` = r = 1/2). We
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(a) Lagrangian Description of RW

(b) Eulerian Description of RW

Figure 2.3: Two perspectives on how to define RW movement. (a) Simulations track each
agent at time t and use the movement probabilities to determine where the agent can be
located at t +4t. (b) Global approximations track all the possible ways an agent can
arrive at location x at time t+4t.

want to derive a global approximation of the location of an agent in time. To do this, we
must transition from the discrete lattice and discrete time-steps to a continuum approxi-
mation. We denote U(x, t) as the probability an agent is at location x at time t.

To approximate a global solution of a discrete simulation in continuous space, we first
set up a difference equation. We equate the probability an agent is at location x at time
t +4t, U(x, t +4t), with all the different ways the agent can arrive at that point (as
seen in Fig. 2.3b with ` = r = 1/2). The agent could begin at x + 4x at time t and
move left (with probability 1/2), which we denote as 1

2U(x +4x, t). Or the agent can
begin at x − 4x at time t and move right (with probability 1/2), which we denote as
1
2U(x−4x, t). The difference equation modeling an URW is then

U(x, t+4t) = 1
2U(x+4x, t) + 1

2U(x−4x, t). (2.1)

By assuming U ∈ C2 (R, [0,∞)) and 0 < 4x,4t � 1, we can expand these terms in a
Taylor series centered at (x, t) by

U +4t∂U
∂t

+O(4t2) =

1
2

[
U +4x∂U

∂x
+ 4x

2

2
∂2U

∂x2

]
+ 1

2

[
U −4x∂U

∂x
+ 4x

2

2
∂2U

∂x2

]
+O(4x3).

(2.2)
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Simplifying the above equation results in the governing PDE of an URW:
∂U

∂t
= 4x

2

24t
∂2U

∂x2 +O(4t,4x3).

Traditionally [29], we say that the diffusion coefficient1 is D = lim4x,4t→0
4x2

24t , given
that 4t is proportional to 4x2. Then, in the limit, the global continuum approximation
of URW movement is

∂U

∂t
= D

∂2U

∂x2 . (2.3)

However, one can also make the asymptotic argument that as long as the condition 0 <
4x,4t � 1 holds, then Eq. (2.3) with the diffusion coefficient D = 4x2/(24t) is a
global continuum approximation of URW behavior. The distinction here may not seem
necessary, but it is when addressing biased RW behavior in Section 2.2.

We can interpret the solution to Eq. (2.3) in two ways. If the initial condition to
PDE (2.3) is a point source at x0, then the solution U(x, t) is the probability an agent
initialized at x0 is at location x at time t. However, if we have an arbitrary initial spatial
distribution of agents φ(x) ≥ 0, then the solution U(x, t) is the expected density of agents
at location x at time t.

The above 1-d derivation of Eq. (2.3) can easily be extended to higher spatial dimen-
sions. In that case, the governing PDE for an URW in n spatial dimensions is:

∂U

∂t
= 4x2

2n4t∇
2U, (2.4)

where the spatial step in each spatial dimension is the constant 4x. If the spatial step is
non-constant, then the governing PDE is:

∂U

∂t
=

n∑
k=1

4x2
k

2n4t
∂2U

∂x2
k

,

where the agent moves a step size 4xk in the kth coordinate.
As we move to spatial dimensions higher than 1-d, we have more options for defining

fixed spatial-step RW movement [58, 29]. Suppose in a 2-d domain we define the RW
by choosing an angle along a continuum, rather than simply moving along a rectangular
lattice as seen in Fig. 1.1a. That is, at each time-step the agent chooses an angle θ ∈ [0, 2π)
and moves a distance4r in that direction. Since the RW is unbiased, the angle is a random
variable drawn from p(θ) = 1/2π, the pdf for a continuous uniform distribution on [0, 2π].
Because the angle is on a continuous (as opposed to discrete) distribution, we need to use
an integral in the difference equation. Therefore, our difference equation becomes

U(x, y, t+4t) =
∫ 2π

0

1
2πU(x+4r cos(θ), y +4r sin(θ), t) dθ.

1 It is interesting to note that the diffusion coefficient is reminiscent of the CFL condition for solving
the diffusion equation by forward Euler finite-difference methods, namely 4t

ϕ4x2 < 1 for some constant ϕ
[75, Ch.9]. This similarity is due to the fact that the formulation of the forward Euler method essentially
reverses the above derivation by using Taylor expansions to discretize the PDE.
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Expanding with a Taylor series and simplifying terms results in the governing PDE

∂U

∂t
= 4x

2

44t∇
2U +O(4x3,4t).

Note that this is the same result as if we performed the URW on a 2-d lattice, as seen in
Eq. (2.4).

Comparison with Normal Distribution

If we want to model the pdf of a RW of a single agent starting at location x0, we need to
solve the following PDE: 

∂U
∂t

= D ∂2U
∂x2 , x ∈ R, t > 0,

U = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U = 0, x ∈ R, t > 0,

(2.5)

where the diffusion constant is D = 4x2/(24t) and the initial condition δ(x − x0) is
the Dirac delta distribution centered at x0. By using Fourier transformations detailed in
Appendix A.1.2, we derive the analytical solution to Eq. (2.5),

U(x, t) = 1√
4πDt

exp
{
−(x− x0)2

4Dt

}
. (2.6)

We know that the pdf of a normal distribution with mean µ and variance σ2 is

f(x|µ, σ2) = 1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
. (2.7)

Relating Eq. (2.6) and (2.7), we see that the pdf of an agent’s RW that begins at x0
is a normal distribution with mean µPDE = x0 and time-dependent variance σ2

PDE(t) =
2Dt = 4x2t/4t.

This should not be surprising, since the probability a given lattice point of an URW is
occupied at a particular time step essentially follows a binomial distribution. According
to the central limit theorem, as the lattice step size decreases, the binomial distribution
approaches a normal distribution. In fact, it has been shown in [29] that one can obtain
(2.6) through this process. Thus, we can apply theory about normal distributions to RWs.

Comparing URW and PDE Approximation

We need to compare the analytic solution (2.6) with RW simulations. As an example, we
initialize 105 agents at x0 = 0 and perform independent RWs with step sizes 4x = 0.01
and 4t = 4x2 for 100 iterations. After normalization (by dividing each bin by the
total number of agents), this data generates a histogram of the proportion of agents at
particular locations. To compare the PDE solution to this histogram data, we observe
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that the RW simulation occurs on a lattice with a constant bin width of4x. We calculate
the PDE solution over each histogram bin by integrating (2.6) over each bin. Here, uk(t)
denotes the integrated solution over the kth bin. Thus, the exact PDE solution over each
bin is

uk(t) =
∫ xk+4x/2

xk−4x/2
U(x, t) dx

=
∫ xk+4x/2

xk−4x/2

1√
4πDt

exp
{
− x2

4Dt

}
dx

= 1
2

{
erf

(
xk +4x/2√

4Dt

)
− erf

(
xk −4x/2√

4Dt

)}
,

where xk is the center of the kth histogram bar and erf (x) = (2/
√
π)
∫ x
0 e
−t2 dt is the error

function. This data is depicted in Fig. 2.4(a)-(d) for 4 distinct times.
We see a difference in the relative magnitude between the simulation and PDE ap-

proximation at each spatial location in Fig. 2.4(a)-(d) due to the fact that the URW does
not have a waiting probability and the PDE smooths the RW dynamics2. The difference
in magnitude is not due to the spatial step-size being too large. We could try decreasing
the spatial step-size, since the diffusion coefficient is same when the spatial and temporal
step-sizes, 4x and 4t, scale according to D = 4x2

24t . That is, the PDE models the same
dynamics as a RW with step sizes 4̂x = a4x and 4̂t = a24t for any a > 0. However,
our PDE values are calculated on intervals (x−4x/2, x+4x/2) and would still calculate
positive values where we know the simulation histograms have values of 0, since the RW
does not have a waiting probability (as seen in Fig. 2.4(e)-(h), where 4x = 0.005).

If the relative magnitude at each spatial location is important, we have a few different
options to smooth the URW data. We could fit the non-zero simulation data with a spline,
enforcing 0 at the endpoints, and then normalize the results so that the approximation
integrates to 1. Another option to smooth the RW histogram is to average neighboring
bins, but we would have to alternate the bin groupings each iteration since the empty
lattice points alternate between each time-step. Alternatively, a better option that would
result in smooth RW graphs is to change the RW initial condition from a point source to a
random location chosen from a normal distribution with mean x0 and standard deviation
4x (that is, the agent is initialized with a value drawn from N(x0,4x)). The magnitudes
at specific time-points can be seen in Fig. 2.4(i)-(l). At early times, the PDE, with point
source initial condition, overestimates the magnitude of the URW; however, it quickly
recovers a similar magnitude.

Depicting the exact initial location may be a necessary requirement of the model.
Another way to smooth the graphs is to take the notion of a BRW from Section 2.2
and insert a waiting probability. This is seen in Fig. 2.5(e)-(h) where the movement
probabilities of the RW simulations and PDE approximations are unbiased with a 10%

2Because of the inherent discontinuities in the URW behavior, choosing to truncate the Taylor series at
later terms does not sufficiently correct the magnitude difference to make the URW directly comparable
with the PDE solution.
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(a) t = 0.0005 (b) t = 0.0025 (c) t = 0.0050 (d) t = 0.0100

(e) t = 0.0005 (f) t = 0.0025 (g) t = 0.0050 (h) t = 0.0100

(i) t = 0.0005 (j) t = 0.0025 (k) t = 0.0050 (l) t = 0.0100

Figure 2.4: Comparison of URW and PDE approximation. RW density is the average of
105 simulations and denoted as a histogram with bin size4x. (a)-(d) step size4x = 0.01,
4t = 4x2, with URW initialized at x0 = 0. (e)-(h) step size 4x = 0.005, 4t = 4x2,
with URW initialized at x0 = 0. (i)-(l) step size 4x = 0.01, 4t = 4x2, with URW
initialized at x0 ∼ N(0,4x).

waiting probability. The derivation of this PDE is in Section 2.2.1. Note that, unlike the
URW with normal initial condition, this PDE underestimates the RW magnitude at early
time-steps. The RW with waiting time requires some time to elapse before smoothing
the simulation histogram. The amount of time is dependent on the value of the waiting
probability.

However, we are not solely interested in comparing the magnitude of the URW and
PDE solution graphs. Of arguably greater importance are the statistical measures of
mean, µ, and standard deviation, σ. We know the analytic solutions of these statistical
measures from comparing the PDE solution with the normal distribution. From Figs. 2.6a,
2.6b we see that the shape of the solution surface plots, showing the probability distribu-
tion of location of agents in time and space, appear similar. We see in Fig. 2.6c that the
mean values between the two graphs are minimally different (a small percentage of the
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(a) t = 0.0005 (b) t = 0.0025 (c) t = 0.0050 (d) t = 0.0100

(e) t = 0.0005 (f) t = 0.0025 (g) t = 0.0050 (h) t = 0.0100

Figure 2.5: Comparison of BRW and PDE approximation. BRW initialized at x0 = 0
with step sizes 4x = 0.01 and 4t = 4x2. RW density is the average of 105 simulations
and denoted as a histogram with bin size 4x. (a)-(d) probabilities of moving left ` = 0.4
and moving right r = 0.55. (e)-(h) probabilities of moving left ` = 0.45 and moving right
r = 0.45.

width of a step size) due to some stochastic variation. Adding more agents to the sim-
ulation decreases this noise. Further, the standard deviation graphs in Fig. 2.6d appear
very similar. Now that we are confident the PDE (2.3) approximates URW densities, we
can use (2.3) to further explore URW behavior.

The PDE derivation assumes averaging over an infinite number of agents, that is,
N → ∞. Each URW simulation example above is the average of 105 agents. If we only
used 10 agents, we would expect the error between the simulation mean and PDE mean
to be much larger due to its small sample size. So, we may be interested in the relation
between the number of random walk agents and the error in our statistical metrics. To
get a sense of the trends, we find the total mean error for a simulation with N agents,

Eµ(N) =
∑
ti

|µURW (ti)− µPDE(ti)| ,

as the summation over each iteration of the absolute difference between the URW simu-
lation mean and the PDE mean in the time interval ti ∈ [0, 0.01]. We know analytically
that µPDE = x0, where x0 is the initial location of agents. Similarly, we find the total
standard deviation error as

Eσ(N) =
∑
ti

|σURW (ti)− σPDE(ti)| ,
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(a) RW Density (b) PDE Density

(c) Mean Location (d) Location Standard Deviation

Figure 2.6: Comparison of URW and PDE approximation initialized at x0 = 0 with step
sizes 4x = 0.01, 4t = 4x2. RW density is average of 105 simulations. (a)-(b) Contour
lines denote the same surface height for each graph. (c) The URW mean location is close
to the PDE mean, µ = 0. The spatial axis for the mean values is the narrow interval
[x0 −4x/2, x0 +4x/2]. (d) URW and PDE location standard deviation graphs.

where the PDE standard deviation is σPDE(ti) =
√

2Dti. These functions are graphed in
Fig. 2.7, where both the number of agents and error axes are stretched using log scale.
Clearly, the relation between the number of agents and the mean error graph is log-linear.
That is, log(Eµ) = a log(N)+b for some a, b ∈ R, where N is the number of agents. Using
least-squares approximation with the data as derived in Appendix B, we find Eµ(N) ≈
e1.6231N−0.5135. So the convergence rate for the mean location error is approximately
1/
√
N . This experimental convergence rate is unsurprising, since this is the order of

convergence for the central limit theorem by the Berry-Esseen theorem [44]. Moreover, it

17



is interesting that the slope relating the number of agents and error in Figs. 2.7a and 2.7b
is similar. In fact, the least-squares approximation is Eσ(N) ≈ e1.1474N−0.4932, where the
order of convergence is approximately 1/

√
N . The experimental order of convergence is

also found to be 1/
√
N for subsets of the time domain [0, 0.01].

(a) Mean Location Error (b) Standard Deviation Error

Figure 2.7: Total error between URW simulation and PDE approximation depending on
the number of URW agents. (a) Total mean location error Eµ = ∑

ti |µURW (ti) − µPDE|
(b) Total standard deviation error Eσ = ∑

ti |σURW (ti)− σPDE(ti)|.

2.1.2 First Passage Time Density (FPTD)
One particular measure of interest is the time it takes an agent to enter (or exit) a
particular region, also known as the first passage time (FPT) or first hitting time. Suppose
an agent is initialized at x0 and we want to know the probability distribution for the time
that agent first passes the location x∗. That is, we want to find the first passage time
density (FPTD) function f(t). Let us assume that x0 < x∗. As demonstrated in [14, 79],
we begin by setting up a PDE with the same governing equation and initial condition as
(2.5), but with an absorbing boundary condition at x∗:limx→−∞ U(x, t) = 0, t > 0,

U(x∗, t) = 0, t > 0.

We use (2.6) in conjunction with the method of images (as further detailed in Section
6.1.1) to obtain an exact solution with an absorbing wall at x∗:

U(x, t) = 1√
4πDt

[
exp

(
−(x− x0)2

4Dt

)
− exp

(
−(x+ x0 − 2x∗))2

4Dt

)]
. (2.8)
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The probability that the agent is still in the region (−∞, x∗) at time t is

S(t) =
∫ x∗

−∞
U(x, t) dx.

We call S(t) the survival probability. Then the probability that an agent passes x∗ between
time t and t + τ , for any time τ > 0 is f(t)τ = S(t) − S(t + τ). We can rewrite this as
f(t) = −S(t+τ)−S(t)

τ
. If we take the limit as τ → 0, then by the definition of a derivative

we obtain the relation between the FPTD and survival probability, f(t) = −dS
dt

. Using
the definition of S(t), we know f(t) = − d

dt

∫ x∗
−∞ U(x, t) dx. Inserting Eq. (2.8) into f(t)

gives us

f(t) = |x
∗ − x0|√
4πDt3

exp
(
−(x∗ − x0)2

4Dt

)
, (2.9)

the FPTD function that an agent travels across point x∗.
We can also try to solve for the mean first passage time (MFPT), the average time

for the agent to travel across x∗ by solving for the first moment of f(t). That is,

M =
∫ ∞

0
tf(t) dt = −

∫ ∞
0

t
dS

dt
dt.

Using integration by parts, M = −tS
∣∣∣∞
t=0

+
∫∞

0 S dt. If the survival probability approaches
0 for large times (i.e. S(t)→ 0 as t→∞), then the MFPT exists and we can calculate it
by M =

∫∞
0 S dt. It is shown in [39, 53] that S(t) 9 0 as t→∞ for bounded domains in

3-d. Hence, the MFPT is guaranteed to exist in 1-d or 2-d, but not necessarily in higher
dimensions. This property is a direct consequence of the form of the fundamental solution
of the diffusion equation in n-d (2.6) and that there is a non-zero survival probability as
t→∞ for n > 2.

2.1.3 Splitting Probability
Suppose our agent is initialized in a bounded domain, Ω. If there are finitely many regions
in which the agent can escape along the boundary of the domain, ∂Ω, we may be interested
in the probability that the agent exits the domain from a particular region. This is known
as the splitting probability. Such information is useful in applications such as chemical
sensing [37] and escape dynamics [92]. There are multiple methods to solve the splitting
probability such as Kramers method, the absorbing boundary method, and the normal
mode method [50, 130]. Here, we demonstrate the absorbing boundary method since
we adapt this method in Section 6.2. Moreover, it further elucidates the effectiveness of
obtaining the global approximation Eq. (2.3).

Suppose our 1-d domain is a bounded interval Ω = [x1, x2] and we want to know the
probability that an agent exits Ω through x1 instead of x2. We begin by deriving the
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FPTD for the following PDE:
∂U
∂t

= D ∂2U
∂x2 , x ∈ (x1, x2), t > 0

U = δ(x− x0), x ∈ [x1, x2], t = 0,
U = 0, x ∈ {x1, x2}, t > 0,

where x0 ∈ (x1, x2). Since the agent can exit out of x1 and x2, the PDE has absorbing
boundary conditions at both endpoints. By our previous derivations, we know that the
survival probability at time t is S(t) =

∫ x2
x1
U(x, t) dx and the FPTD is f(t) = − d

dt
S(t). It

follows that

f(t) = − d

dt

∫ x2

x1
U(x, t) dx

= −
∫ x2

x1

∂U

∂t
dx

= −
∫ x2

x1
D
∂2U

∂x2 dx

= D
∂U

∂x

∣∣∣∣
x=x1

−D∂U
∂x

∣∣∣∣
x=x2

.

Let us define J1(t) = D ∂U
∂x

∣∣∣∣
x=x1

and J2(t) = −D ∂U
∂x

∣∣∣∣
x=x2

. Then the expected density to
exit [x1, x2] is f(t) = J1(t) +J2(t). Thus, J1 and J2 at time t compute the expected fluxes
out of the endpoints x1 and x2, respectively. The signs of J1 and J2 are opposite since
the agents move across the endpoints in opposite directions.

By our derivation, we know that the total flux out of x1 is
∫∞

0 J1(t) dt. Similarly,∫∞
0 J2(t) dt is the total flux out of x2. Since the initial condition is a point source and

integrates to 1, and since we know that limt→∞ S(t) = 0, it follows that
∫∞

0 f(t) dt = 1.
Therefore, the probability that an agent initialized at x0 escapes out of x1 is

∫∞
0 J1(t) dt.

This absorbing boundary method can be extended to higher dimensions. The bound-
ary conditions are changed to absorbing where an agent can exit the simulation, and
reflecting otherwise. Further work has been done developing methods to solve for moving
escape regions [128] and asymptotically small escape regions [70].

2.2 Biased Random Walk (BRW)
For more realistic models, the RW movement may depend on internal or external influ-
ences, such as bound cellular receptors [127], established goal locations [11], fluid flow
forces [58], or attracting chemical profile gradients [3]. These influences may cause an
agent to prefer moving in one direction rather than another. This movement biasing may
depend on an agent’s internal state or an agent’s location. In this subsection, we extend
the derivation of Section 2.1.1 to approximate a RW where the agent’s location biases
its movement by using the method illustrated in [29]. In Section 3.3.3, we briefly discuss
approximating RWs where an agent’s internal state biases its movement.
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2.2.1 Global Approximation
For spatially-dependent biasing probabilities, it is important to be clear as to the meaning
of the spatial dependence. The term `(x) could refer to the probability of an agent, who
currently occupies location x, to move left. However, it could also refer to the probability
of an agent, who currently occupies a location to the right of x, to move left to occupy
location x at the next time-step. This section investigates both interpretations. In either
case, 1 − `(x) − r(x) is the waiting probability, the probability an agent remains in the
same location.

Suppose `(x) and r(x) are the probabilities an agent, currently occupying location x,
moves left or right, respectively. As in Section 2.1.1 we set up a difference equation:

U(x, t+4t) = `(x+4x)U(x+4x, t) + r(x−4x)U(x−4x, t) + [1− `(x)− r(x)]U(x, t).

Unlike the URW, there may be a non-zero probability that the agent remains in its
current location (i.e. 0 < `(x) + r(x) < 1). The expression 1 − `(x) − r(x) in the
last term denotes the waiting probability at location x. The expected waiting time is
4x/(1 − `(x) − r(x)), which is the expected time an agent stays in the same location.
We assume U ∈ C2 (R, [0,∞)), ` ∈ C2(R), and r ∈ C2(R). As in Section 2.1.1, we expand
each term in a Taylor series, which simplifies to:

∂U

∂t
= 4x
4t

∂(`(x)− r(x))U
∂x

+ 4x
2

24t
∂2(`(x) + r(x))U

∂x2 +O(4t,4x3). (2.10)

Note that the coefficient before the first spatial derivative is 4x4t , the speed of the agent.
If we make the same limiting argument as Section 2.1.1 for our parameters, then

a = lim
4x,4t→0

4x
4t

, D = lim
4x,4t→0

4x2

24t ,

with 4x2 ∝ 4t. However, unless we add a caveat that 0 < r(x)− `(x)� 1 for all x, then
we cannot reasonably assert that the limit for a exists. If we suppose that 4x ∝ 4t, then
we can argue that, in the limit, D = 0. So our PDE simplifies to a transport equation
with velocity a. But that simplification results in a model that does not explain any of the
diffusive spread. To overcome this oversimplification, we make an asymptotic argument
by assuming that our RW step sizes obey 0 < 4x,4t � 1. Then we propose that we
define the variables

a = 4x
4t

, D = 4x
2

24t
as the parameters for our BRW approximation. The general equation for a BRW becomes

∂U

∂t
= a

∂(`(x)− r(x))U
∂x

+D
∂2(`(x) + r(x))U

∂x2 . (2.11)

If we do notice that either 0 < `(x) − r(x) � 1 or |`(x) − r(x)| ≈ 1, then we can solve
Eq. (2.11) using regular perturbation methods, where the leading order solution is in
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the diffusive or advective regime, respectively. Note that Eq. (2.11) is the Fokker-Planck
equation [50].

However, we can also consider `(x), r(x) the probabilities of moving left or right,
respectively, to location x from some location other than x. This is subtly different than
the previous derivation, where `(x), r(x) were the probabilities of moving left or right
when the agent is at location x. We then obtain the difference equation

U(x, t+4t) = `(x)U(x+4x, t) + r(x)U(x−4x, t) + [1− `(x)− r(x)]U(x, t).

Expanding in a Taylor series and simplifying results in the following equation:
∂U

∂t
+ (r(x)− `(x))4x

4t
∂U

∂x
= (`(x) + r(x))4x

2

24t
∂2U

∂x2 +O(4t,4x3).

As we did when deriving (2.11), we can make an asymptotic argument for defining the
parameters3

a(x) = (r(x)− `(x))4x
4t

, D(x) = (`(x) + r(x))4x
2

24t .

In this case, the general equation approximating a BRW is
∂U

∂t
+ a(x)∂U

∂x
= D(x)∂

2U

∂x2 . (2.12)

With the movement probabilities defined this way, Eq. (2.12) is the advection-diffusion
equation.

The choice of (2.11) or (2.12) depends on which more easily fits the RW modeling
framework. We can change (2.11) to (2.12) by changing the expressions for ` and r. We
also note that if ` and r are constant, then (2.11) and (2.12) are equivalent. If necessary,
we can have ` and r depend on time, t as well. The resulting governing equations for
time-dependent parameters would be similar to (2.11) or (2.12).

Comparison with Normal Distribution

Suppose an agent is initialized at x0 and performs a BRW with constant movement biases
` = `(x) and r = r(x). The global approximation of the probability the agent is at
location x at time t is 

∂U
∂t

= a∂U
∂x

+D ∂2U
∂x2 , x ∈ R, t > 0,

U = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U = 0, x ∈ R, t > 0,

(2.13)

3 Note that if we were given the advection coefficient, a(x), and the diffusion coefficient, D(x), and were
interested in knowing the probabilities of moving left and right, then we solve the following equations:

`(x) = 4t
4x

[
D

4x
− a

2

]
, r(x) = 4t

4x

[
D

4x
+ a

2

]
.
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where a = (`−r)4x4t and D = (`+r)4x2

24t . Utilizing the Fourier transformation, as detailed
in Appendix A.1.3, we can calculate the analytical solution to Eq. (2.13) as

U(x, t) = 1√
4πDt

exp
{
−(x+ at− x0)2

4Dt

}
. (2.14)

Comparing the solution (2.14) with the normal distribution pdf (2.7) shows us that the
pdf of the location of the BRW agent follows a normal distribution with a time-dependent
mean µ(t) = x0 − at = x0 − (`− r)4xt/4t and variance σ2(t) = 2Dt = (`+ r)4x2t/4t.
Note that the variance depends on the waiting probability. If the agent does not have a
waiting probability (`+ r = 1), then the variance of (2.14) is the same as the variance of
(2.6).

Comparing BRW and PDE Approximation

We compare the simulation and PDE approximations of the BRW in the same way as
the URW. Initialize 105 agents at x0 = 0 with step sizes 4x = 0.01, 4t = 4x2, and
movement probabilities ` = 0.4, r = 0.55. Note that the magnitude of the histograms
and PDE solutions in Fig. 2.5(a)-(d) match better than the URW in Fig. 2.4(a)-(d). In
this case, there is a 5% waiting probability, which smooths the RW histogram. This
waiting time smoothing is also the reason that the early-time approximation does not
match the magnitude as well as the later-time approximations, a result that is also shown
in Fig. 2.5(e)-(h) where ` = r = 0.45. Similar to the URW, the mean and standard
deviation graphs demonstrate similarity, as shown in Figs. 2.8c and 2.8d, respectively.

For larger biasing, such as that shown in Fig. 2.9 with ` = 0.6 and r = 0.3, the
standard deviation does not match as well as smaller biasing. The standard deviation
error accumulates in time due to the asymptotic parameter approximations. We can see
the error is greater when |`− r| = 0.3 than in Fig. 2.8d when |`− r| = 0.15.

We can calculate the total mean error, Eµ(N), and total standard deviation error,
Eσ(N) in a similar way as Section 2.1.1 to determine if the BRW distribution converges
to the PDE solution. Here, since the movement probabilities are constant, the PDE mean
is µPDE(ti) = (`− r)ti/4t and the PDE standard deviation is σPDE(ti) =

√
2Dti. These

functions are graphed in Fig. 2.10, where both the number of agents and error axes use
log-scales. Clearly, the relation between the number of agents and the mean error graph is
log-linear. Using least-squares approximation with the data as derived in Appendix B, we
find Eµ(N) ≈ e1.5994N−0.5138. So, just like the URW, the experimental convergence rate
for the mean is approximately 1/

√
N . In contrast, the standard deviation approaches a

horizontal asymptote around Eσ(N) = 0.078 for N ≥ 105. This is due to the parameter
assumptions mentioned above. However, the variance in the data of the error plot in
Fig. 2.10b informs us that one should perform simulations with N ≥ 105 to obtain reliable
results.
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(a) RW Density (b) PDE Density

(c) Mean (d) Standard Deviation

Figure 2.8: Comparison of BRW and PDE approximation initialized at x0 = 0 with
probability moving left ` = 0.4 and probability moving right r = 0.55. Simulation step
sizes are4x = 0.01 and4t = 4x2. RW density is the average of 105 simulations. (a)-(b)
Contour lines denote the same surface height for each graph. (c) The mean location of
the simulation and PDE. (d) The standard deviation graphs.

2.2.2 Further Analysis
One can calculate the FPD and MFPT in a manner similar to the unbiased RW. It is
important to note that even in 1-d the MFPT may not exist for a BRW (consider the
case where ` = 1, r = 0 and the initial location, x0, of the agent is to the left of the target
location, x∗) [29].

Now we have an understanding of how to relate BRW and Fokker-Planck (or advection-
diffusion equations), as well as an understanding of how the errors originate. With this
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(a) RW Density (b) PDE Density

(c) Mean Location (d) Location Standard Deviation

Figure 2.9: Comparison of RW and PDE approximation initialized at x0 = 0 with prob-
ability moving left ` = 0.6 and probability moving right r = 0.3. Simulation step sizes
are 4x = 0.01 and 4t = 4x2. RW density is the average of 105 simulations. (a)-(b)
Contour lines denote the same surface height for each graph. (c) The mean location of
the simulation and PDE. (d) The standard deviation graphs.

knowledge, we can solve a reverse problem. Suppose we have an advection-diffusion
equation that needs to be solved inside a complex geometry. We can approximate the
PDE solution by running RW simulations. In Part II, we adapt the continuum derivation
as well as the various applications (e.g. FPTD and splitting probability) of URWs and
BRWs for the cumulative absorption model.
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(a) Mean Location Error (b) Standard Deviation Error

Figure 2.10: Total error between BRW simulation and PDE approximation depending on
the number of BRW agents. (a) Total mean location error Eµ = ∑

ti |µBRW (ti)−µPDE(ti)|
(b) Total standard deviation error Eσ = ∑

ti |σBRW (ti)− σPDE(ti)|.

2.3 Correlated Random Walk (CRW)
The URWs and BRWs are purely Markovian, in that the probability of moving in a
particular direction does not require any information outside of an agent’s current state.
However, realistic portrayal of certain phenomena may also require knowledge of an agent’s
current heading. For example, Eschericia coli (E. coli) have flagella that can turn the
bacterium clockwise or counter-clockwise. When the flagella turns clockwise, then the
E. coli swims foreward. However, when the flagella turns counter-clockwise, then the
E. coli tumbles, reorienting itself [63]. Even a BRW cannot naturally account for the
turning rate. However, there is a type of RW, called a correlated random walk (CRW)
or persistent RW, where an agent continues to move forward until a stochastic switch
causes the agent to turn. Although CRWs are not featured in subsequent chapters of this
dissertation, we mention them here for completeness.

2.3.1 Analytical Approximation
We develop a global approximation of the pdf of a CRW according to the method used
in [29]. Suppose we have a 1-d CRW. Denote U+(x, t) and U−(x, t) the probability an
agent is moving right or left, respectively, and is at location x at time t. Then U(x, t) =
U+(x, t) + U−(x, t) is the probability an agent is at location x at time t, regardless of
movement heading. Further, we assume that the turning rates are Poisson processes, and
are denoted as λ+ and λ− when initially moving right or left, respectively.

We first define the difference equation for right moving agents. The density of agents
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that change direction from left to right during the time interval [t, t + 4t) is λ−4t.
Moreover, the proportion of agents that continue moving right during that same time
interval is 1− λ+4t. Thus, the difference equation for right moving agents is:

U+(x, t+4t) = (1− λ+4t)U+(x−4x, t) + λ−4tU−(x−4x, t).

Assuming U+ ∈ C2 (R, [0,∞)), expanding in a Taylor series and simplifying gives us the
PDE

∂U+

∂t
+ 4x
4t

∂U+

∂x
= λ−U− − λ+U+ +O(4t,4x2).

Next, we can follow the same logic to derive the difference equation for left moving
agents:

U−(x, t+4t) = (1− λ−4t)U−(x+4x, t) + λ+4tU+(x+4x, t).

By expanding in a Taylor series, we have the continuum PDE,

∂U−

∂t
− 4x
4t

∂U−

∂x
= λ+U+ − λ−U− +O(4t,4x2),

describing the movement of left-moving agents. Using the same asymptotic argument as
in Section 2.1.1 that 0 < 4x,4t� 1, we obtain the following hyperbolic PDE system to
describe the 1-d CRW: 

∂U+

∂t
+ v ∂U

+

∂x
= λ−U− − λ+U+,

∂U−

∂t
− v ∂U−

∂x
= λ+U+ − λ−U−,

(2.15)

where v = 4x
4t , the agent’s speed.

2.3.2 Similarity to Previous Derivations
For the 1-d case where λ+ = λ−, we can perform simplifying arithmetic on the system of
equations in (2.15) to solve for U(x, t) = U+(x, t) + U−(x, t) as:

∂2U

∂t2
+ 2λ∂U

∂t
= v2∂

2U

∂x2 , (2.16)

a type of Telegrapher’s equation. In general, for more heterogeneous turning rates or in
higher dimensions, finding a single PDE to define the CRW is intractable. In those cases,
we would have to solve a system of high-order hyperbolic PDEs.

In this case, the turning rate is equal in each direction. So this model is similar
to an URW. However, it appears that Eq. (2.16) is wholly different than (2.3), especially
considering the former is a hyperbolic equation, whereas the latter is a parabolic equation.
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We can expand the left-hand side of the difference equation (2.2) to include the second-
order time derivative,

U +4t∂U
∂t

+ 4t
2

2
∂2U

∂t2
=

1
2

[
U +4x∂U

∂x
+ 4x

2

2
∂2U

∂x2

]
+ 1

2

[
U −4x∂U

∂x
+ 4x

2

2
∂2U

∂x2

]
+O(4x3,4t3).

(2.17)

Rearranging the terms of (2.17) and dividing by 4t2/2 yields the PDE

∂2U

∂t2
+ 2
4t

∂U

∂t
= 4x

2

4t2
∂2U

∂x2 +O(4x3,4t). (2.18)

We see that Eq. 2.18 is the same as Eq. 2.16 with turning rate 1/4t and velocity 4x/4t.
We can also see that rearranging terms of (2.17) and dividing by 4t yields

4t
2
∂2U

∂t2
+ ∂U

∂t
= 4x

2

24t
∂2U

∂x2 . (2.19)

The particular RW regular asymptotic solution depends on the order of the coefficient
4x/4t. If 4x/4t = O(4t), then

U(x, t) ≈ G(x− x0, t)− ε
∫ t

0

∫
R
G(x− y, t− s)∂

2G

∂t2
(y − x0, s) dy ds

is the asymptotic solution, where it solves the diffusion equation at leading order with
a 2nd order time derivative correction term. The function G(x, t) is the fundamental
solution to the diffusion equation as derived in Appendix A.1.2. However, if 4x/4t =
O(1), then the asymptotic solution is

U(x, t) ≈ δ(x− x0) + εv2∂
2δ(x− x0)
∂x2 t.

Since the solution does not represent the model behavior for ε� 1, it demonstrates that
considering the parameter regime is important for developing a reasonable model. These
solutions are derived in Appendix A.3.

Hyperbolic PDEs have finite wave-speed, which matches the physical limitations of
early-time RW dynamics. However, some parabolic PDEs (such as the advection-diffusion
equation), which are often easier to solve, have infinite wave speeds that can approximate
later-time RW dynamics after sufficient spread has occurred. Work has been done to
determine how and when one can approximate systems of hyperbolic PDE models of
CRWs as a single parabolic advection-diffusion equation [54, 123]. Now that we have an
understanding about RWs and their PDE approximations, the next section contains an
overview of AB model state changes.
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Chapter 3

State Changes

We denote the amalgam of specific properties and behaviors belonging to an agent as a
particular state. To model realistic dynamics, it is not sufficient to simply initialize an
agent in a particular state; there must be possible mechanisms during the simulation for an
agent to change state. Undergoing such a process can change the mobility and interactions
of an agent. It can also change an agent’s internal processes, such as the rate of resource
consumption [60, 99]. State transitions can be a consequence of: random mutation,
interactions between an agent and the environment (agent-environment), interactions
between agents (agent-agent), or an agent’s internal machinations. State changes can
be deterministic, such as waiting for a specific length of time, or they can be stochastic,
such as a probabilistic contact tolerance. Section 3.3 provides an example of the latter.

From a certain perspective, the correlated random walk (CRW) model analyzed in
Section 2.3 could be perceived as a two-state system, where the state is the direction of
movement. There, the state change is due to a probabilistic turning parameter. Other
examples of models that simulate state changes are: epidemiological models [121, 138],
cell taxis (based on the number of available receptor binding sites) [92], animal movement
[64], and cellular chemical absorption [139]. The latter example is the focus of Chapters
5-7.

States are often described as being a discrete set of possible agent properties or behav-
iors, but they can also be defined on a continuum scale. Discrete states are useful when a
model compartmentalizes behavior, such as an epidemic model, where the infected agents
may act completely different than susceptible agents. The well-mixed epidemic ordinary
differential equation model is well-known [80]. However, adapting such a model to an
agent-based (AB) model, it is natural to define an agent as having one of three states:
susceptible (S), infected (I), or recovered (R) [61, 108, 133]. Continuum states are use-
ful when a state refers to internal dynamics, where those properties influence an agent’s
behavior on a continuum [54].

The random walk (RW) models of Chapter 2 only consisted of an agent and fixed
rules for motion. Now we are discussing more intricate AB models, where the agent’s
properties or behavior can change in time due to encoded transition rules. As these AB
models increase in complexity, we require precise notation to detail an agent’s actions and
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responses in an exacting manner.

3.1 State Change Notation
We first need to create a precise definition of the properties of the agents and their
interactions in order to determine the correct governing equations and hence be able to
mathematically analyze the model. We define a bounded region of interest Ω in which we
track the agents. We suppose that we have a finite collection, X , of N agents indexed by
1, 2, . . . , N . At every time t ≥ 0 in the simulation, each agent k is assigned to a particular
location xkt and discrete state skt . We denote states as Ui and define the set containing all
possible discrete agent states as the state space Σ = {U1,U2, ...}, which may have infinite
or finite cardinality. That is, for each agent k and time t, we necessitate that skt = Ui
for exactly one state Ui ∈ Σ. In this dissertation, discrete agent states are denoted with
calligraphic font (e.g. U , S, etc.) and continuous agent states are denoted by ξ.

The domain, Ω, may be either a graph or network consisting of a discrete set of nodes
connected by edges or it may be a continuous, bounded subset of Rd for some spatial
dimension d ∈ N (as seen in Fig. 1.1). If Ω is discrete, we say these agents exist on-lattice,
where they occur on nodes and travel along the graph edges. Otherwise, if Ω is continuous,
we say these agents exist off-lattice. In either case, the agents can either be stationary or
move. The model keeps track of individual agents performing a deterministic movement
or a RW, governed by a model specific probability distribution over a bounded domain
[24, 33, 99]. It is important to note that the scalings and distributions may be spatially,
temporally, or state dependent.

An individual-based model is defined by a set of state change rules and a set of
interaction neighborhoods, denoted as the pair A = (f,N ). The local transition rule,
f , defines how agents transition to other states. The interaction neighborhoods are the
areas in which an agent can interact with the environment or other agents. We denote
the collection of neighborhoods for each agent as N =

{
N 1,N 2, ...,NN

}
, where N k is

the neighborhood of agent k [34]. One can visualize the agents and neighborhoods in
Fig. 3.1, which are further detailed later in this section. If the model specifies that each
neighborhood is temporally or state dependent, we defineN k

t as the neighborhood of agent
k in state skt at iteration t. Since we assume the agents move in time, these neighborhoods
are time dependent.

3.1.1 Agent-Environment State Change
Agent-environment state changes require agents to interact with the environment through
an interaction region surrounding each agent. The location of an agent xkt is an infinitesi-
mally small point, which is a useful way to track an agent’s location but does not represent
the physical nature of the agent as it interacts with the environment. To this end, we
endow each agent with a neighborhood, N k

t , that has non-zero area, the geometry of
which is model-dependent. If the agent represents a cell, the perimeter of the neighbor-
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(a) Agent-Environment Transition Region (b) Agent-Agent Transition Region

Figure 3.1: We illustrate examples of a BU ,Vt transition region as the shaded yellow
region. The solid red circle represents an agent in state V and the solid black circles
represent agents in state U . The only agents in state U that have a non-zero probability
of transitioning to state V are located inside the shaded region. Agents outside this yellow
region are not in the BU ,Vt transition region and, therefore, cannot transition to state V .
(a) Example of an agent-environment transition region, where the BU ,Vt depends on the
spatial location only and not the agents’ locations. The neighborhoods surrounding each
agent are gray disks. (b) Example of an agent-agent transition region, where the BU ,Vt
is the shaded yellow disk centered at the red agent.

hood could correspond the cell membrane or wall [101]. Whereas, if the agent represents
a soldier, the neighborhood could be the agent’s field of regard [118]. In some models,
the neighborhood shape may be dependent on other factors such as time or an agent’s
internal state dynamics. In Fig. 3.1a the neighborhoods, N k

t , are depicted as gray circles.
The local transition rule is a function f : X → Σ, assigning each agent a particular

state. Since each agent belongs to one and only one state, the local transition rule f is
well-defined. The function assignment skt+1 = f(skt ) depends conditionally on the regions
in which the neighborhood N k

t is contained. Define BU ,Vt as the U → V agent-environment
transition region at time t. That is, BU ,Vt is the region such that if, at time t, there is
some agent k such that skt = U and N k

t ∩ B
U ,V
t 6= ∅, then agent k can transition to state

V at time t+ 1. In Fig. 3.1a the agent-environment transition region, BU ,Vt , is depicted as
the yellow region. We formally define the agent-environment transition region as follows:

Definition. The U → V agent-environment transition region at time t is

BU ,Vt =
{
x ∈ Ω| ∀k such that 1 ≤ k ≤ N, skt = U , and x ∈ N k

t , then P
(
f(skt ) = V

)
> 0

}
.
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3.1.2 Agent-Agent State Change
In some models, agents change states through agent-agent interactions rather than their
interaction with the environment. These interactions also occur through neighborhoods,
but with subtly different dynamics. Traditional Cellular Automaton (CA) agent-agent
state change model definitions define the neighborhood N k

t as the region in which other
agents exert state changes to agent k. Density analysis has been previously studied using
this neighborhood definition [34]. However, since we want to focus on locations of moving
individuals that can influence state changes to others in a region, we assert the opposite—
N j
t is the region in which agent j can exert state changes to other agents (including agent

k). Shifting our interpretation of neighborhoods in this way allows us greater freedom
to model more realistic state and property-dependent neighborhoods. Define BU ,Vt as the
U → V agent-agent transition region at time t. That is, BU ,Vt is the region such that if, at
time t, there is some agent k such that skt = U and xkt ∈ B

U ,V
t , then agent k can transition

to state V at time t+1. We can formally define the agent-agent transition region in terms
of our neighborhoods of influence as follows:

Definition. The U → V agent-agent transition region at time t is

BU ,Vt =
⋃
j∈A
N j
t ,

with indexing set

A =
{
j | ∃k such that 1 ≤ k ≤ N, skt = U , and xkt ∈ N

j
t , then P

(
f(skt ) = V

)
> 0

}
.

We define the agent-agent transition region in this way, since, in general, agents in
states other than V can cause agents to transition to state V . Leveraging our new neigh-
borhood perspective in the agent-agent transition region, we require agent k to be located
in the neighborhood N j

t (for some agent j) in order to change states. Our explicit defini-
tion of the transition region BU ,Vt for each U ,V ∈ Σ allows us to clearly define f(skt ). A
visual example of an agent-agent transition region can be found in Fig. 3.1b. We are inter-
ested in calculating the expected density of agents in a state at each iteration throughout
Ω. We denote Wt(V → U) to be the transition probability that an agent in state V at
iteration t transitions to state U at time t + 1. If the transition probability is fixed in
time, then we can ignore the t subscript. We summarize our AB notation in the List of
Symbols.

3.2 Correlated Random Walk as State Change
We can restate the description of the CRW, introduced in Section 2.3.1, as an AB model
with probabilistic state changes. Let U+ denote the state of an agent moving right and
U− the state of an agent moving left. Agents in state U+ move at a constant speed
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v+ = 4x/4t to the right, and agents in state U− move at a constant speed v− = 4x/4t
to the left. The probabilities of an agent changing state are denoted as W (U+ → U−) =
4tλ+ and W (U− → U+) = 4tλ−, where λ+ (λ−) is the turning rate of an agent initially
traveling to the right (left). Here, W does not have a t subscript since the transition
probability is fixed in time. We can then state an equivalent, but notationally different,
system of difference equations

U+(x, t+4t) = [1−W (U+ → U−)]U+(x− v+4t, t)
+W (U− → U+)U−(x− v−4t, t),

U−(x, t+4t) = W (U+ → U−)U+(x+ v+4t, t)
+ [1−W (U− → U+)]U−(x+ v−4t, t).

Using this notation, it is easier to see how we could add more complicated dynamics to a
CRW model.

3.3 Probabilistic RW State Changes

3.3.1 Spatial Region for Change
Here, we produce a simple elucidating example of probabilistic state change from an
agent-environment interaction, and a global approximation of an agent’s pdf in space and
time. This model has a live state, U , and a dead state, V . Suppose a single agent in live
state U is performing an URW in a bounded 1-d domain Ω = [0, 1] with spatial step size
4x and time step size 4t. We implement reflective boundary conditions such that

xt ←

−xt : if xt < 0,
1− (xt − 1) : if xt > 1.

Moreover, if the agent is located at x at time t, the agent’s neighborhood is the interval
centered at x with width 4x/2. That is, we define Nt = (x − 4x/2, x +4x/2). Since
this model has only one agent1, we do not need to use superscript to denote the index
of the particular agent. If the agent’s neighborhood intersects with the transition region
BU ,V = [α, β] ⊂ Ω at time t, then the agent has a probability κ of transitioning to the
dead state V during the interval [t, t + 4t). That is, the time-independent transition
probability is W (U → V) = κ ∈ [0, 1]. For this example, we are not interested in agents
in state V , so we can assume that agents in state V exit the simulation.

Although this model includes more complex dynamics than an URW, it is clear that
this AB model is still Markovian. As such, we can use a process similar to that detailed in
Section 2.1.1 to find a global approximation of this model. Denote U(x, t) the probability
the agent is alive and centered at location x at time t. To develop a continuum equation,

1 The model itself depicts only one agent. However, statistical measures are acquired when the AB
model is run over multiple realizations.
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we construct a difference equation similar to that in Eq. (2.1), but with the addition of a
sink term denoting agent death. If the agent dies, it must be in the subregion BU ,V ⊂ Ω
and the simulation must draw a random variable X ∼ Uniform (0, 1) such that X < κ.
We represent this dynamic with the expression 1BU,V (x)κU(x, t), where

1BU,V (x) =

1 : if x ∈ BU ,V

0 : otherwise

denotes the indicator function. We can make the simplifying assumption that the indicator
function only depends on x (and not the neighborhood interval) since the neighborhood
interval width is half the spatial step-size. Thus, the difference equation is:

U(x, t+4t) = 1
2U(x−4x, t) + 1

2U(x+4x, t)− 1BU,V (x)κU(x, t). (3.1)

Expanding in a Taylor series and simplifying gives us

∂U

∂t
= 4x

2

24t
∂2U

∂x2 − 1BU,V (x) κ
4t

U(x, t) +O(4x3,4t). (3.2)

Using the asymptotic argument that 0 < 4x,4t� 1, we define the diffusion parameter
D = 4x2

24t and state change proportion parameter q(x) = 1BU,V (x) κ
4t to obtain the pdf

that the agent is alive and at location x at time t:

∂U

∂t
= D

∂2U

∂x2 − q(x)U. (3.3)

Note that Eq. (3.3) is a reaction-diffusion PDE.
Assuming the agent is initialized at location x0, the PDE system that we solve is:

∂U
∂t

= D ∂2U
∂x2 − q(x)U, x ∈ (0, 1), t > 0,

U = δ(x− x0), x ∈ [0, 1], t = 0,
∂U
∂x

= 0, x ∈ {0, 1}, t > 0.
(3.4)

We can also solve for the probability an agent is in the live state at time t by p(t) =∫
Ω U(x, t) dx.

We compare example simulations of the AB model and PDE approximation in Figs. 3.2(a)-
(b) and 3.2(c)-(d) for initial location, x0 = 0.40 and x0 = 0.65, and transition probabilities,
κ = 0.25 and κ = 0.2, respectively. In both cases we perform 105 realizations of the single
agent AB model. Agents are initialized at location x0 and perform an URW with step size
4x = 0.01, 4t = 4x2. The transition region is the interval BU ,V = [0.4, 0.6]. In either
case the behavior is similar, even though differences in the magnitudes may be off due
to the lack of waiting time. Note that agents outside of BU ,V diffuse like an URW, but
agents in BU ,V tend to change state after sufficiently many iterations. In fact, given the
relative size of the spatial step to the transition region width, 4x/0.2 = 0.05 and transi-
tion probability κ = 0.25, no agent survives diffusion to the other edge of the transition
region BU ,V .

34



(a) AB Model Density
(x0 = 0.40, κ = 0.25)

(b) PDE Density
(x0 = 0.40, κ = 0.25)

(c) AB Model Density
(x0 = 0.65, κ = 0.20)

(d) PDE Density
(x0 = 0.65, κ = 0.20)

Figure 3.2: Comparison of AB model histogram and PDE solution of state U in space and
time. AB model is average of 105 realizations. Agents are initialized in state U at x0 and
move according to an URW with step size 4x = 0.01, 4t = 4x2 and free-space boundary
conditions. The agent-environment interaction region is the interval BU ,V = [0.4, 0.6] and
its boundaries are depicted in the graphs as blue lines. Agents in BU ,V change state with
probability κ. Contour lines denote the same surface height for AB model (left) and PDE
(right) graphs.

3.3.2 Moving Region for Change
We can develop the pdf for the above model in the case that the state-transition region
BU ,V changes in time. Thus, rather than have BU ,V be a fixed interval, we denote the
state-transition region as the time-dependent function BU ,Vt . Our PDE system is generally
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(a) AB Model Density
(x0 = 3π/2)

(b) PDE Density
(x0 = 3π/2)

(c) AB Model Density
(x0 ∼ N(3π/2,4x))

(d) PDE Density
(x0 ∼ N(3π/2,4x))

(e) AB Model Density
(x0 = 3π/2, ` = r = 0.45)

(f) PDE Density
(x0 = 3π/2, ` = r = 0.45)

Figure 3.3: Comparing AB model density with PDE approximation with a moving tran-
sition region, BU ,Vt (denoted by blue lines). AB model is an average of 105 realiza-
tions. Agents initialize at x0 and move according to an URW with step size 4x = 0.05,
4t = 4x2 and periodic boundary conditions. Agents in BU ,Vt transition with probability
κ.
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of the form: 
∂U
∂t

= D ∂2U
∂x2 − q(x, t)U, x ∈ (0, 2π), t > 0,

U = δ(x− x0), x ∈ [0, 2π], t = 0,
(3.5)

where q(x, t) = 1BU,Vt (x) κ
4t and boundary conditions are model-dependent.

For an example, suppose that the agent-environment transition region is a time-
dependent interval of length 0.4 centered at π(sin(t) + 1). That is, BU ,Vt = [π(sin(t) +
1)− 0.2, π(sin(t) + 1) + 0.2]. The agent then has a probability κ of transitioning to state
V during the interval [t, t+4t). Just like Section 3.3.1, an agent in BU ,Vt has probability
κ of transitioning to state V during the interval [t, t +4t]. We add periodic boundary
conditions, so agents exiting one end of the simulation enter the other

U(0, t) = U(2π, t), t > 0.

In Fig. 3.3(a)-(b), the URW simulation’s lack of smoothness affects the shape of the
solution more than previously. This is especially due to the jump discontinuity between
being in and out of the transition region. Note that the boundary of BU ,Vt is denoted
by blue lines in the figures. For comparison, in Fig. 3.3(c)-(d) we initialize the agents
with locations drawn from a normal distribution with mean 3π/2 and standard deviation
4x. We see a smoother RW solution surface, with behavior (solution surface shape)
that appears similar to the PDE model. We further compared the RW model and PDE
approximation in Fig. 3.3(e)-(f), where the movement probability of RW agents are ` =
0.45 and r = 0.45. The agents have equal probability of moving left or right, but now
there is a probability of 0.1 that an agent remains in the same location. This waiting time
smooths the RW histogram sufficiently for a clear comparison with the PDE solution in
terms of both solution surface shape and magnitude.

3.3.3 Internal State Changes Biasing Movement
We characterize internal state changes differently than the previously detailed state changes,
since they are usually on a continuum scale and may affect agent behavior along a con-
tinuum. Internal state changes can affect movement. For example, the turning parameter
of CRW approximations can depend on the agent’s internal state. Some examples of this
behavior in E. coli and foraging models can be found in [102, 54, 43]. Additionally, inter-
nal state changes can directly cause external discrete state transitions. A cell immersed
in a chemical bath may die if the cell absorbs chemical above a specific tolerance [88]. In
this case, the internal state change is the cumulative absorption amount and the external
states are live or dead. We examine this model in further detail in Chapter 5. Chapters
2 and 3 provide the relevant theoretical background and notation for us to further con-
tribute to this mathematical field of developing global approximations of AB models in
subsequent chapters.
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Chapter 4

Global Recurrence Rule

The focus of this Chapter is providing an introduction of a new1 theoretical formalism and
subsequent analysis of an off-lattice AB model where agents exhibit stochastic behavior
when moving and changing states through agent-agent neighborhood interactions. The
analysis of the off-lattice AB model relies heavily on a precise definition of the interaction
neighborhoods between agents. In contrast to other, more traditional approaches [34],
we view the interaction neighborhood as a region where an agent potentially exerts state
changes to other agents. Specifically, the necessary notation for the AB model is outlined
in Section 3.1, which is similar to previous work on Cellular Automaton2 (CA) models
[34, 59]. In Section 4.1, we detail how to derive a Global Recurrence Rule (GRR) to
determine the expected value for the number of agents in each state when assuming
that an agent’s state and movement are solely determined by the agent’s current status.
To show the applicability of this formalism, in Section 4.2, we illustrate how a GRR
can be derived for an Epidemiological-AB (E-AB) model that captures the spread of an
infection such as influenza or COVID-19 (Novel Coronavirus). In addition, we illustrate
with the E-AB how to use additional information about the dynamics to develop a more
refined local approximation of the neighborhoods, with reduced error. In Section 4.2.5,
we compare the different models and emphasize which assumptions need to be satisfied
in order for the GRR to be a valid approximation for the E-AB model.

4.1 Global Recurrence Rule Defined
With the notation developed in Chapter 3 and some basic probability theory, we have
the necessary background material to derive the expected density of agents in a state at
any given time. The state of an agent k at time t+ 1 only depends on its state (skt ) and
location (xkt ) at time t, making this a Markovian process [23]. Recall that the probability
an agent transitions from state V to state U at time t is denoted as Wt(V → U). Hence,

1 We recently published portions of this work in [138].
2 CA models are a sub-category of AB models, where the agents are generally fixed in a discrete space

and the state changes of an agent are generally determined based on the states of the neighboring agents.
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the probability that agent k is in state U at time t + 1 given that the agent was in state
V at time t reduces to

P
(
skt+1 = U

∣∣∣∣skt = V
)

= P
(
xkt ∈ B

V,U
t

)
Wt(V → U), (4.1)

the product of the probability that agent k is located in a V → U transition region with
the probability that agent k transitions from state V to state U . The equality in 4.1 is
what allows our GRR derivation to link global densities with local rules.

The discrete random variable denoting the number of agents in state U at time t is Ut.
We can then find E(Ut+1), the expected number of agents in state U at iteration t+ 1, by

E(Ut+1) = E
(∣∣∣{k : skt+1 = U}

∣∣∣) (4.2)

=
N∑
k=1

P
(
skt+1 = U

)
(4.3)

The first equality is by definition of Ut+1, and the second equality is by definition of
expected value. Note that we can partition the collection of agents X by the distinct states
in Σ. That is, we can change the summation over all the agents into a double summation
over all the states and every agent in each state. In order for the double summation to
make sense, we use the Bayesian property to rewrite the summed probability in terms of
a prior state V :

N∑
k=1

P
(
skt+1 = U

)
=
∑
V∈Σ

∑
{k:skt=V}

P
(
skt+1 = U

∣∣∣∣skt = V
)

(4.4)

=
∑
V∈Σ

∑
{k:skt=V}

P
(
xkt ∈ B

V,U
t

)
Wt(V → U). (4.5)

Finally, from Eq. (4.1), we replace the conditional probability that an agent is in state U
given that the agent was in state V at the prior time-step, P

(
skt+1 = U

∣∣∣∣skt = V
)

, with the
local mechanism for the state change to occur. We can see in the derivation a transition
from the global model view of (4.2) to the local model view of (4.5). In the global view
we treat Ut+1 as a random variable from an unknown underlying probability distribution,
on which we perform a mean approximation over all the finitely many agents. However,
in the local view we acknowledge the states and properties of individual agents as well as
the local dynamics which allow state changes. This leads us to the definition of the GRR.

Definition. Let U ,V ∈ Σ, Ut = |{k : skt = U}|, and BV,Ut be the V → U transition region
at time t. We define the Global Recurrence Rule (GRR) as

E(Ut+1) =
∑
V∈Σ

∑
{k:skt=V}

P
(
xkt ∈ B

V,U
t

)
Wt(V → U).
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Thus, to find expected values of the number of agents in each state analytically, one
just needs a framework to calculate both the probability of being in a transition region,
BV,Ut , as well as the probability that an agent in the transition neighborhood can transition
to a particular state, Wt(V → U). These probabilities are model-dependent, since they
provide the GRR with the specific model dynamics. In the following section, we use this
framework with an epidemiological agent-based (E-AB) model to elucidate its usefulness
as well as certain challenges that may arise when deriving a GRR.

4.2 Application to Disease Dynamics
Disease dynamics provides an interesting application to determine the validity of the
GRR. Assume there are infected individuals in a population. For simplicity, we can di-
vide the remaining population into two classes, those who are susceptible to infection and
those who were infected but cannot currently infect other individuals. We denote these
classes “susceptible” and “recovered,” respectively. Further, suppose that after a finite
time the recovered can become susceptible to infection again. That is, an individual in
the recovered state is temporarily conferred immunity before returning to the susceptible
state. This is often referred to as a Susceptible-Infected-Recovered (SIR) Epidemiolog-
ical model, where simulations and analysis have been an active research area for many
years [61, 108, 133], especially with respect to endemic equilibrium sizes [81, 86, 134] and
infectivity wave speed [49, 83].

In terms of the AB framework presented in Section 3.1, it is relatively straightforward
to implement an E-AB model. There are only three states: S (susceptible), I (infected),
and R (recovered). In addition, the only agent-agent state change is when susceptible
agents are near infected agents. Thus, the only neighborhoods of interest are those belong-
ing to the infected agents since only infected agents, within a fixed distance, can influence
the state change of susceptible agents. All other state changes are either probabilistic or
time-dependent.

4.2.1 Epidemiological Agent-Based (E-AB) Model
To simplify, we let the continuous domain, Ω, of the E-AB be the unit square. The agents
remain in the infected and recovered states for Ti and TR iterations, respectively. Thus,
our state space for the E-AB is Σ = {S, I1, I2, ..., ITI ,R1,R2, ...,RTR}. This dynamic is
also referred to as an SITIRTR model [81].

We initialize N agents in Ω such that N − 1 agents are in state S (S0 = N − 1) and
one agent is in state I1 (I0 = 1), where St = |{k : skt = S}| and It = ∪TIj=1|{k : skt = Ij}|
for each time t. We index the initially infected agent as k = 1 and initialize its location
in the center of the region Ω. The susceptible agents are randomly initialized following a
uniform random distribution (i.e. xk0 ∼ Uniform (Ω) for k = 2, 3, . . . , N).

Each agent3 moves by an unbiased random walk (URW) inside Ω. If xkt = (x, y), then
3 For simplicity, every agent in this model moves according to the same rules. However, one could
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xkt+1 = (x+4r cos θ, y+4r sin θ), where θ ∼ Uniform [0, 2π) and 4r � 1 is the constant
radial spatial step. A simple reflective boundary condition is enforced along ∂Ω. If an
agent hits the boundary (or is about to move outside of Ω), it is shifted a distance4r into
Ω along the direction normal to the boundary. That is, xkt =

(
x̂+4r cos θ̂, ŷ +4r sin θ̂

)
,

where (x̂, ŷ) is the point the agent would have crossed along the boundary and θ̂ is the
direction normal to the boundary at that point.

For our E-AB, we assume that the infectivity neighborhood of any infected agent
k is radially symmetric with radius ρ0. That is, N k

t =
{
y ∈ Ω : ||y− xkt ||2 ≤ ρ0

}
, the

collection of all points of a distance less than ρ0 away from agent k, is the area in which
susceptible agents can become infected by agent k.

Now consider any agent k such that skt = S. In order for agent k to become infected,
we require xkt to be in an infected neighborhood, regardless of the iteration of infectivity
(i.e. I1, I2, . . . , ITI ). We define the S → I1 transition region as BS,I1

t = ⋃
{k:skt=Ij ,∃j}N

k
t .

Recall that the S to I1 transition region is the region in which an agent in state S
can transition to state I1. The susceptible agent has the potential to become infected
when in at least one neighborhood of an infected agent at any state of the infection (for
j = 1, . . . , TI). In this simple E-AB model, the number of infectivity neighborhoods in
which agent k is located does not affect the probability of agent k being infected. The
susceptible agents located inside BS,I1

t become infected with probability 1 − κ, where
κ ∈ [0, 1] is the contact tolerance. For simplification, we assume that ρ0 and κ are scalar
constants4 and the transition rules between states are given below.

Definition. The local transition rule f : X → Σ, such that skt+1 = f(skt ) is given as fol-
lows:

If skt = S : f(skt ) =
{
I1 : if xkt ∈ B

S,I1
t and κ > X, where X ∼ Uniform [0, 1],

S : otherwise,
(4.6)

If skt = Ij , for some j = 1, 2, ..., TI : f(skt ) =
{
Ij+1 : if 1 ≤ j < TI ,

R1 : if j = TI ,
(4.7)

If skt = Rm, for some m = 1, 2, ..., TR : f(skt ) =
{
Rm+1 : if 1 ≤ m < TR,

S : if m = TR.
. (4.8)

Recall from Section 3.1 that X is the collection of agents and Σ is the collection of states.
Thus, the local transition rule, f , assigns each agent to a particular state at each iteration.

Figure 4.1 illustrates the off-lattice E-AB simulation as outlined above using N = 104

agents, where the susceptible, infected, and recovered agents are colored as black, red,
and blue, respectively. We implemented each iteration by first determining the region

produce a model where each state moves differently. For example, the infected agents could move at a
larger or smaller spatial step than the susceptible or recovered agents due to the disease’s effect on the
territoriality or the physicality of the infected agent [45, 51].

4 Our E-AB is a toy example to demonstrate the efficacy of the GRR. For simplification, ρ0 and κ are
constants. In practice, ρ0 and κ should be random variables drawn from specific probability distributions,
such as the models found in [80].
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(a) t = 10 (b) t = 20

(c) t = 30 (d) t = 40

Figure 4.1: Simulation of 104 agents at various time steps with a single agent infected
initially, which is located at (0.5,0.5). The states are denoted as � Susceptible, � Infected,
� Recovered. The simulation parameters are defined as: contact tolerance = κ = 0.95,
infectivity radius = ρ0 = 0.04, infection time = TI = 30, recovered time = TR = 30, and
spatial step = 4r = 0.001. As time increases, the epidemic spreads as a wave throughout
the domain.

of infectivity from a constant infectivity radius of ρ0 = 0.04. We then updated the
agent states according to the above transition rules (4.6)–(4.8) with contact tolerance
κ = 0.95. This “high” contact tolerance relates to a “low” probability of a susceptible
agent becoming infected. Moreover, the time spent in the infective state and the time
spent in the recovered state are TI = TR = 30. Finally, the agent’s location is updated
by performing an URW with spatial step-size 4r = 0.001.

4.2.2 Globally Homogeneous GRR
To reduce the number of equations, we can assume a Markovian (time-independent) pro-
cess. We further simplify the number of states in our analysis by defining I = ⋃TI

i=1 Ii
as the infected state, which is independent of the amount of time spent in the infected
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state. Similarly, we define R = ⋃TR
i=1Ri, the total number of recovered agents, regardless

of the amount of time spent in the recovered state. We reduce the number of states in
this way when calculating the GRR because we are primarily interested in calculating the
expected total number of infected and recovered agents at each particular iteration t, not
the particular stage of the infection or recovery.

Adapting equation (4.5) to our E-AB model, we have the system

St+1 =
∑

{k:skt=S}
W (S → S) +

∑
{k:skt=R}

W (R → S), (4.9)

It+1 =
∑

{k:skt=S}
P
(
xkt ∈ B

S,I
t

)
W (S → I) +

∑
{k:skt=I}

W (I → I), (4.10)

Rt+1 =
∑

{k:skt=I}
W (I → R) +

∑
{k:skt=R}

W (R → R). (4.11)

Recall from Section 3.1 that Wt(V → U) denotes the probability an agent in state V
transitions to state U at time t. However, since the transition probabilities do not vary
in time, we do not need the subscript t. The total number of agents is constant, so
St = N − (It +Rt). This allows the reduction of the above system to just two equations,
namely, (4.10) and (4.11). Now that we have the GRR framework for this model, we can
determine the expressions for the probabilities.

We further simplify the derivation by ignoring the effect of the boundary on the in-
fectivity neighborhood, which allows the assumption that the area of the region N j

t is
independent of j and t. Let µ(N ) denote the area of any neighborhood N j

t . Since our sim-
ulation is two-dimensional, we then make the approximation5 that µ(N ) := µ(N j

t ) = πρ2
0

for all j and t. It follows that the probability that the kth agent is located in the neigh-
borhood of the jth agent is

P(xkt ∈ N
j
t ) = µ(N )

µ(Ω) , ∀j, (4.12)

the ratio of the area of the infectivity neighborhood and the area of the region.
For any susceptible agent k to transition to state I, it is sufficient that xkt ∈ B

S,I
t . If

we assume that the transition probability W (S → I) does not depend on the number of
infectivity neighborhoods, then it follows that W (S → I) = 1− κ, where κ ∈ [0, 1] is the
contact rate. Moreover, if we assume that the infectivity neighborhoods are uniformly
distributed within Ω, then by the multiplication rule of independent events,

P(xkt /∈ B
S,I
t ) =

(
1− µ(N )

µ(Ω)

)It
. (4.13)

5 Any agent neighborhood sufficiently close to the boundary has smaller area, since, by definition, the
neighborhood is contained in Ω. However, since we assume that the initially infected agent is located in
the center of the region as well as the fact that the spatial step size and ρ0 are much smaller than the
size of Ω, there are sufficiently many infected agents away from the boundary to make this simplification
reasonable.
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It follows that the probability of xkt being located in an S → I transition neighborhood
is then

P(xkt ∈ B
S,I
t ) = 1−

(
1− µ(N )

µ(Ω)

)It
. (4.14)

Then, for any k such that skt = S, by inserting (4.14) into (4.10) we have:

P(skt+1 = I) = P(xkt ∈ B
S,I
t )W (S → I)

=

1−
(

1− µ(N )
µ(Ω)

)It︸ ︷︷ ︸
probability in at least
one infectivity region

(1− κ)︸ ︷︷ ︸
probability
becoming
infected

. (4.15)

Moreover, by assuming the cumulative time spent in infected states is uniformly dis-
tributed, we have for any agent k such that skt = I,

W (I → R) = 1/TI , (4.16)
W (I → I) = 1− 1/TI , (4.17)

where TI is the time spent in the infective state. This assumption is valid for a large
number of agents and for a sufficiently large number of iterations. Inserting equations
(4.15), (4.16), and (4.17) into (4.10), we have

It+1︸︷︷︸
total

infected
agents

at time t+1

= (N − It −Rt)︸ ︷︷ ︸
total

susceptible
agents

at time t

{
1−

(
1− µ(N )

µ(Ω)

)It}
︸ ︷︷ ︸

probability in at least
one infectivity region

(1− κ)︸ ︷︷ ︸
probability
becoming
infected

+
{

1− 1
TI

}
︸ ︷︷ ︸

probability remain
in infected state

It︸︷︷︸
total

infected
agents

at time t

. (4.18)

That is, the expected number of infected agents at t+1 is the sum of two terms. The first
term is the product of the expected number of susceptible agents at time t multiplied by
the probability a susceptible agent transitions to state I. The second term is the expected
number of infected agents at t times the probability that an infected agent remains in
state I. Similarly, by assuming the time in recovered states is uniformly distributed, we
have for any agent k such that skt = R, the probability of staying in state R is

W (R → R) = 1− 1/TR. (4.19)

Then, inserting (4.16) and (4.19) into (4.11) we have

Rt+1 = 1
TI
It +

(
1− 1

TR

)
Rt, (4.20)

and the expected number of recovered agents at iteration t + 1 is the sum of two terms.
The first term is the expected number of infected agents at time t times the probability
an infected agent transitions to state R. The second term is the expected number of
recovered agents at t times the probability a recovered agent remains in state R.
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Since TI and TR are scalar values, we can easily find a q ∈ R such that TR = qTI . We
then have the following E-AB GRR:

It+1 = (N − It −Rt)

1−
(

1− µ(N )
µ(Ω)

)It (1− κ) +
(

1− 1
TI

)
It := H(It, Rt), (4.21)

Rt+1 = 1
TI
It +

(
1− 1

qTI

)
Rt := G(It, Rt). (4.22)

Since St = N − (It +Rt), we have recurrence formulas for the expected agent densities in
each state at each iteration. With our GRR, we now have a general framework to further
analyze the behavior of the system. Note that we identify (4.21)-(4.22) as globally homo-
geneous since we have assumed the infectivity neighborhoods are uniformly distributed
in the domain with the same constant area.

4.2.3 Fixed Point Analysis for Globally Homogeneous GRR
We can now calculate the stability of the fixed points of the globally homogeneous GRR by
finding all solutions to the system that simultaneously solve It+1−It = 0 andRt+1−Rt = 0.
That is, we need to find all solutions to the system[

(N − It −Rt)
{

1− (1− µ(N ))It
}

(1− κ)− 1
TI
It

1
TI
It − 1

qTI
Rt

]
=
[
0
0

]
. (4.23)

We have two fixed points. One is the trivial fixed point, (I, R) = (0, 0). The other is the
point along the line R = qI that solves the fixed point problem

(N − (1 + q)I)
{

1− (1− µ(N ))I
}

(1− κ)− 1
TI
I = I. (4.24)

This second fixed point has to be computed numerically.
We analyze the fixed point (0, 0) using two-dimensional perturbation theory, where

details can be found in Appendix C. The Jacobian matrix of the E-AB GRR is

J =
[
−(1− κ)

{
(N − I −R)K ln(1− µ(N )) + (1−K)

}
− 1

TI
−(1− κ)(1−K)

1
TI

1− 1
qTI

]
,

where we define K = (1− µ(N ))I for ease of reading. Evaluating at (0, 0) gives us

J

∣∣∣∣
(I,R)=(0,0)

=
[
−N(1− κ) ln (1− µ(N ))− 1

TI
0

1
TI

1− 1
qTI

]
. (4.25)

The eigenvalues are λ1 = 1 − 1
qTI

and λ2 = −N(1 − κ) ln(1 − µ(N )) − 1
TI

. Clearly,
since qTI = TR > 0 we know |λ1| < 1. Now, suppose λ2 < 1. It follows that α >

1 − exp
(

1+1/TI
N(1−κ)

)
. That is, µ(N )

µ(Ω) > 1 − exp
(

1+1/TI
N(1−κ)

)
. We know µ(N ) � µ(Ω) and it is
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reasonable to assume that N is sufficiently large such that N(1−κ) > 2. This contradicts
the inequality. It must follow that λ2 > 1. Thus, we have that (0, 0) is a saddle point
that is only stable along the nullcline I = 0.

Since we do not have an explicit solution of the second fixed point, we cannot perform
the same computation as we did for (0, 0). However, we know that the following are
bounded: H and all derivatives of H, the expected number of infected agents at the next
time step from equation (4.21), and the domain. Additionally, since I is repelled by (0, 0),
we can infer that the second fixed point is stable. Thus, we can prove that this E-AB has
a stable endemic equilibrium (I > 0) as t→∞, which we can see in Fig. 4.4.

Similar to a differential equation SIR model, we are able to obtain fixed points. How-
ever, the fixed points are different and there are not direct comparisons since we assume
a moving population with dynamic contacts that allow for infection whereas a differential
equation assumes a well-mixed population.

4.2.4 Locally Homogeneous GRR
When deriving the globally homogeneous E-AB GRR, (4.21) and (4.22), we assume that
the infectivity neighborhoods are uniformly distributed throughout Ω. For this test case,
we initialize one infected agent, s1

0 = I, such that it is initially located in the center of the
region x1

0 = (0.5, 0.5). However, from observation of simulations, such as in Figure 4.1,
we know there is a wave of infectivity propagating from this initial infected agent. The
susceptible agents that agent 1 infects must be located in its neighborhood N 1. Some
future infected agents may be located in those neighborhoods of the newly infected agents.
As time progresses, newly infected agents can be located farther from the initially infected
agent until the domain boundary is reached. Thus, the edge of the region containing
infected agents propagates outward at finite speed, a feature also seen in spatial SIR PDE
models [90]. So rather than generalize a uniform distribution of infected agents, we should
modify the GRR to account for the infection wave front.

We then need to create a sequence of regions
{
B̃S,I0 , B̃S,I1 , ...

}
, where B̃S,I0 = N 1 and

B̃S,It is the smallest connected region containing the infection front at time t. We know
such a region exists since the model initially has one infected agent and the neighborhoods
of infected agents have finite radii. For notation, we use tildes above variables to denote
variables and functions specifically defined for the locally homogeneous case.

Definition. B̃S,It = inf
A

{
A ⊂ Ω : A is connected and ∪{k:sjt=I}

N j
t ⊂ A

}
.

Suppose agent k is such that skt = S at iteration t. We have the following conditional
probability that an agent is located in the S → I transition neighborhood, BS,It , given
that the agent is within the infection front, B̃S,It :

P
(
xkt ∈ B

S,I
t

∣∣∣∣xkt ∈ B̃S,It )
= 1−

1− µ(N )
µ
(
B̃S,It

)
It . (4.26)
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In general, for regions N and B̃S,It , the probability is given as P
(
xkt ∈ B̃

S,I
t

)
= µ(B̃S,It )

µ(Ω) .

Using Bayes’ theorem [124], we have that the locally homogeneous probability of an
agent being in the S → I transition neighborhood is

P
(
xkt ∈ B

S,I
t

)
= P

(
xkt ∈ B

S,I
t

∣∣∣∣xkt ∈ B̃S,It )
P
(
xkt ∈ B̃

S,I
t

)
,

=

1−
1− µ(N )

µ
(
B̃S,It

)
It


µ
(
B̃S,It

)
µ(Ω) .

(4.27)

Inserting (4.27) into (4.15), our locally homogeneous E-AB GRR is

Ĩt+1 =
(
N − Ĩt − R̃t

)1−
1− µ(N )

µ
(
B̃S,It

)
It


µ
(
B̃S,It

)
µ(Ω) (1− κ)

+
(

1− 1
TI

)
Ĩt =: H̃(Ĩt, R̃t),

R̃t+1 = 1
TI
Ĩt +

(
1− 1

qTI

)
R̃t =: G̃(Ĩt, R̃t).

(4.28)

Recall that the tilde denotes values associated with the locally homogeneous GRR.
We derived this GRR by focusing on early dynamics. But how does the non-uniform

assumption of the infection front affect the stability using the locally homogeneous GRR
compared with the globally homogeneous GRR?

Theorem 1. If B̃S,It → Ω as t→ +∞ and α is a fixed point of H, then α is a fixed point
of H̃. Moreover, α has the same stability conditions for H and H̃.

Proof. Suppose that limt→+∞ It = α and suppose that limt→+∞ Ĩt exists. Then, since

µ
(
B̃S,It

)
→ µ(Ω) as t→ +∞, we have that limt→+∞

(
1− µ(N )

µ(B̃S,It )

)Ĩt
= limt→+∞

(
1− µ(N )

µ(Ω)

)Ĩt .
Plugging into (4.21) and taking the limit,

lim
t→+∞

H̃(Ĩt) = lim
t→+∞

(N − Ĩt)
(

1− µ(N )
µ(Ω)

)Ĩt
(1− κ) +

(
1− 1

qTI

)
Ĩt


= lim

t→+∞
H(Ĩt) = α.

Moreover, µ(B̃t
S,I) → µ(Ω) for fixed α and it is clear that ∂H̃

∂Ĩ

∣∣∣∣
α
→ ∂H

∂I

∣∣∣∣
α
, ∂H̃

∂R̃

∣∣∣∣
α
→

∂H
∂R

∣∣∣∣
α
, ∂G̃

∂Ĩ

∣∣∣∣
α
→ ∂G

∂I

∣∣∣∣
α
, and ∂G̃

∂R̃

∣∣∣∣
α
→ ∂G

∂R

∣∣∣∣
α
. Since the stability condition depends on the

Jacobian, and the Jacobian of the locally homogeneous region approaches the Jacobian
of the globally homogeneous region as t → +∞, the long term stability conditions must
be the same.

47



From Theorem 1 we know that (H̃, G̃) has the same fixed points as found in Section
4.2.3 with the same stability conditions. We thus reduced the problem to capturing
an explicit formula for µ

(
B̃S,It

)
. Before, we made the simplifying assumption that the

infected agents were distributed uniformly throughout the region, so we did not need
to incorporate any spatial characteristics into the globally homogeneous GRR. Now, we
need to capture the infection front dynamics in order to explicitly calculate the area of
the infectivity region, µ

(
B̃S,It

)
, in the locally homogeneous case.

Figure 4.2: Diagram demonstrating how the locally homogeneous B̃S,It+1 region depends on
B̃S,It and B̃S,It−1 regions. The initially infected agent at t = 0 is located in the center of the
B̃S,It regions, which expand outward with radii ζt. We make the simplifying assumption
that newly infected agents lie on the radial center of mass of the region B̃S,It \ B̃S,It−1,
denoted with the dashed line, which is a distance r from the initially infected agent.

To construct our formula, we make the simplifying assumption that newly infected
agents are expected to be in the region B̃S,It \ B̃S,It−1 and are moving a fixed distance 4r.
Further, we assume the expected location of the newly infected agents lie on the circle
that is the radial center of mass of B̃S,It \ B̃S,It−1, a distance r from the initially infected
agent location as shown in Figure 4.2. The radius of the infectivity front region B̃S,It at
time t is denoted as ζt. We then have the following expected radius of B̃S,It+1:

ζt+1 = ρ0 +
√

(ζt + δout(4r))2 + (ζt−1 − δin(4r))2

2 , (4.29)

where δin and δout are functions of the expected distance an infected agent travels towards
the center of B̃S,It and out of the region B̃S,It , respectively. For our simulations and
derivation, we assume δout = 4r and δin = 4r. Even though the simulation is a Markov
process, our analytical solution, which calculates the area µ

(
B̃S,It+1

)
using ζt+1, is not, since

it relies on information at iterations t and t − 1. Clearly, the simulation is a Markovian
process but the GRR does not have to be for this analysis. In fact, it can belong to a
larger class of processes than the underlying AB model.

By the following theorem, we know that equation (4.29) satisfies the premise of The-
orem 1.
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Figure 4.3: Infectivity neighborhood depends on the number n of newly infected agents.
The radial center of mass of the region B̃S,It \ B̃S,It−1 (dashed line) is a distance r from the
initially infected agent. Newly infected agents are distributed uniformly along the radial
center of mass and the new infection front radius ζt+1 depends on the total area of the
infectivity neighborhoods outside B̃S,It .

Theorem 2. If ρ0 > 0 and for all iterations tm such that µ
(
B̃S,Itm

)
6= µ(Ω) there exists

an agent k with sktm = S such that xktm /∈ B̃S,Itm , then ∃t̂ ∈ N such that µ
(
B̃S,It

)
= µ(Ω)

for all t > t̂ with radius ζt as defined in (4.29).

The above theorem essentially states that if the infection does not “die out,” then
the S → I transition neighborhood, B̃S,Itm , eventually covers the entire region of interest
Ω. The proof is clear, since Ω is bounded. As we see in Section 4.2.5, we are able to
approximate early behavior more accurately with the locally homogeneous GRR, while
still being able to evaluate and determine the stability of fixed points with the simpler
equations of the globally homogeneous GRR.

Extensions to More Complex Neighborhoods

As long as the infection front in the E-AB approaches ∂Ω and B̃S,It → ∂Ω, Theorem 1
holds. One could derive a formula for B̃S,It that more closely approximates the initial
phases of the infection spread. Rather than assume that the new infection front extends
approximately 4r from the mean center of mass as in Figure 4.2, we can assume that the
infectivity radius expansion depends on the number of newly infected agents in B̃S,It \B̃S,It−1,
as shown in Figure 4.3.

Further details regarding the calculation and derivation for this case of B̃S,It can be
found in Appendix D. In this example, we illustrate that, by relaxing assumptions, one
can derive other expressions calculating the area of the infectivity front radius ζt that
may decrease the error of the locally homogeneous GRR during the early stages of the
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epidemic. Moreover, we know that as long as the new formulation of ζt maintains the
suppositions of Theorem 1, the long term dynamics are captured.

4.2.5 Numerical Results
Results for the E-AB model with N = 104 initialized agents are shown in Figure 4.4. Note
that each simulation curve on the plot is the average of 103 E-AB realizations, whereas
the curves based on the globally and locally homogeneous GRRs are from solving (4.22)
and (4.28), respectively. The realizations were run in parallel on a computing cluster
using eight cores, requiring approximately 30 minutes of run time for each parameter
regime. For comparison, the GRR calculations for each parameter regime required less
than a second of run time. Thus, along with rigorous analysis, the GRR is much less
computationally expensive. In the figure, we observe agreement of long term behavior of
the simulations with both the globally and locally homogeneous GRRs. For example, in
Figure 4.4, the left hand column of each row corresponds to the case where ρ0 = 0.02. In
the left column of (c), the average of the E-AB simulations for the fixed points or long
term behavior is 3877.1 infected agents and 5790.9 recovered agents. Upon calculation,
the relative error between the simulated fixed points and the GRR fixed points is O (10−4).
Further, the early time dynamics of the infected and recovered populations with the GRR
estimates have behavior similar to that of the E-AB simulations.

However, the early infection dynamics of the GRRs do not exactly match the simu-
lations for all cases. In Figure 4.4(a)-(b), for a contact tolerance κ = 0.6 and κ = 0.8
(characterizing how easily an agent becomes infected), we observe that as the infectivity
radius increases, the GRRs are able to more accurately capture the early time dynamics
of the E-AB simulations. For an infectivity neighborhood of radius ρ0 = 0.02, it is likely
that there is not a sufficient number of agents in the region to accurately capture the
early time dynamics of infectivity. We do observe that the locally homogeneous GRR
provides a better approximation to the E-AB simulations in comparison to the globally
homogeneous GRR. Similar trends are observed in Figure 4.4(c), where the recovery time
TR is increased.

To explicitly define how much “better” the locally homogeneous GRR is relative to the
globally homogeneous GRR at capturing the E-AB dynamics for a particular parameter
set, we need to develop a metric. We have a sequence of points, (1, U1), (2, U2), ..., (M,UM),
from the simulation, where Ut, as previously defined, is the number of agents in state U
at iteration t for t = 1, . . . ,M . By linear spline interpolation of these points, we construct
a function g(t) = Um+1−Um

tm+1−tm (t− tm) + Um, for tm ≤ t ≤ tm+1. We also have a sequence of
points, (1, Û1), (2, Û2), . . . , (M, ÛM), from the GRR. Given the fact that some of the error
is due to translation and that the number of agents is much larger than the number of
iterations, we need to normalize the data. We scale the t-values so that tm ← tm/M and
t̂m ← t̂m/M , for m = 1, 2, . . . ,M . Additionally, we let γ = max{U1, U2, ..., UM} and scale
the U -values so that Ui ← Ui/γ and Ûi ← Ûi/γ. Our error metric is a normalized least
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(a) N = 104, κ = 0.6, TI = TR = 30

(b) N = 104, κ = 0.8, TI = TR = 30

(c) N = 104, κ = 0.8, TI = 30, TR = 45

Figure 4.4: Comparing the average value of 103 E-AB realizations with results from the
globally and locally homogeneous GRRs calculated from (4.22) and (4.28), respectively.
The time to remain infected is set to TI = 30, while the recovery time is TR = 30 in (a)-
(b) and TR = 45 in (c). Each plot corresponds to a different infectivity radii parameter
ρ0 with contact tolerance κ = 0.6 in (a) and κ = 0.8 in (b)-(c). Note that for the globally
homogeneous case (labeled as GH GRR), the infectivity neighborhood has fixed radius of
ρ0, whereas the locally homogeneous case (labeled as LH GRR) has a variable radii ζt at
each iteration t as given in (4.29), which is a function of ρ0.
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square,

ν = 1
M

M∑
m=1

inf
t

√
(t̂m − t)2 + (Ûm − g(t))2, (4.30)

evaluating the average distance of each scaled GRR estimation to the scaled E-AB simu-
lated curve. This metric is further detailed in Appendix E

N = 104 TI = TR = 30 TI = 30, TR = 45
κ = 0.6 κ = 0.8 κ = 0.6 κ = 0.8

Global Local Global Local Global Local Global Local
ρ0 = 0.02 0.036606 0.009573 0.052660 0.020494 0.035438 0.010552 0.059061 0.021560
ρ0 = 0.04 0.008092 0.001398 0.007514 0.001237 0.008595 0.001687 0.008653 0.001444
ρ0 = 0.08 0.004019 0.000652 0.003252 0.000360 0.004686 0.000692 0.003657 0.000391
ρ0 = 0.16 0.002030 0.000798 0.001589 0.000545 0.002352 0.000859 0.001827 0.000608

(a) Error for number of infected agents.

N = 104 TI = TR = 30 TI = 30, TR = 45
κ = 0.6 κ = 0.8 κ = 0.6 κ = 0.8

Global Local Global Local Global Local Global Local
ρ0 = 0.02 0.022055 0.009537 0.027853 0.015889 0.028273 0.012485 0.036781 0.021142
ρ0 = 0.04 0.008436 0.000831 0.008046 0.000817 0.010412 0.000895 0.010120 0.000937
ρ0 = 0.08 0.003581 0.000126 0.003084 0.000104 0.004247 0.000138 0.003694 0.000103
ρ0 = 0.16 0.001247 0.000176 0.001117 0.000154 0.001350 0.000189 0.001260 0.000184

(b) Error for number of recovered agents.

Table 4.1: Error between GRR and 103 E-AB simulations using metric ν from Equation
(4.30) for infectivity radii ρ0, contact tolerances κ, time in infected state TI , and time in
recovered state TR.

We see from Figure 4.4, as well as Table 4.2a and Table 4.2b, that the locally homo-
geneous GRR approaches the E-AB with less error than the Global GRR. Despite the
scaling and translation differences, the general behavioral trends of the Global GRR and
locally homogeneous GRR emulate the E-AB agent state densities.

The surface plot in Figure 4.5 shows the mean error between the locally homogeneous
GRR and the E-AB simulations with respect to the number of infected individuals. The
horizontal axis represents the expected number of susceptible agents in the initial infected
agents neighborhood and the vertical axis represents the contact tolerance κ for the mean
error calculated from (4.30) using 150 iterations of data. We fixed the number of agents,
N , and varied the infectivity radius, ρ0, to generate the error surface plot in Figure 4.5;
however, one can generate similar error surface plots by fixing N and varying ρ0.
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Figure 4.5: The surface plot in the center displays the error between the locally homoge-
neous GRR and the E-AB simulations with respect to the number of infected agents as a
function of the contact tolerance and the expected number of susceptible agents located
in the initial infected agent’s neighborhood at t = 0. The 6 outside plots show the locally
homogeneous GRR infected population solution (blue) and the simulated solution (black)
with a bound of ± one standard deviation (yellow).

4.3 Discussion
We identified two classes of E-AB GRR: a globally homogeneous GRR, which assumes
that the infected agents are uniformly distributed throughout the domain, and a locally
homogeneous GRR, which assumes that there is an infectivity front expanding outward
from the initially infected agent. With relaxed assumptions, the locally homogeneous
GRR performs better than the globally homogeneous GRR with respect to early epidemic
prediction. However, we demonstrated and proved that the much simplified globally
homogeneous GRR can predict long-term behavior just as well as the locally homogeneous
GRR.

Further, we demonstrated that the GRR is a generalized model, but is not unique in
its application — certain choices must be made. The generalized GRR definition lends
itself to be used as a framework when adapting similar models. For example, if the E-AB
were three-dimensional or if the neighborhoods were a different geometry, then we could
use our previously derived GRR equations 4.21, 4.22, and 4.28 while only simply having to
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derive new expressions for µ(N ) and ζt. Further, we assumed a constant number of cells,
N , but we could derive a GRR to calculate St, It, and Rt that incorporates a dynamically
varying number of agents in much the same way as we did in Section 4.2. The analysis
would be similar, only in three-dimensional phase space instead of two-dimensional.

Previous analytical techniques, such as mean-field game theory, assumed the density
of agents approaches infinity in order to calculate end behavior [22, 71]. Other approaches
take continuum limits to approximate the dynamics of AB state distributions as a system
of PDEs [24, 35, 99], which often corresponds to reducing the scales to infinitesimal
time or spatial steps. In contrast, the GRR analysis allows for and takes into account a
finite number of agents in a discrete spatial and temporal domain, which in some cases
might more closely reflect the outcome of interest for a particular application. Moreover,
the GRR incorporates the notion that the state changes are incurred through spatially
defined neighborhoods. Traditional differential equation formulations of SIR models do
not incorporate this feature since there is an assumption of a well-mixed population, but
Fig. 4.5 demonstrated that these neighborhoods affect our steady state solutions. Since
our GRR analysis incorporates movements of individuals, this causes the contacts between
individuals to be dynamic. We note that it is not feasible to do a direct comparison with
a differential equation SIR model but that previous AB models with individuals at fixed
locations and fixed neighborhoods have done some comparisons for specific cases [49].

Our explicit GRR formulation for the E-AB model ultimately fails when the density
of the infected population is zero. In general, the expansion of the wave of infectivity
is caused by the infection spread, rather than the cell movement. However, when cell
density is low, the early infectivity front growth relies on cell movement. For the infection
to not “die out” in these cases, we require an increase in the ratio of the movement size
to the neighborhood area to increase the probability that a susceptible cell encounters
the infectivity region. In the future, we could develop continuum approximations of state
changes in order to determine the probability that an infection eventually “dies out.”
We can use such probabilities to establish density and parameter bounds for when the
E-AB GRR formulation is reliable. Early predictions of disease dynamics are necessary
[103, 111], and the proposed framework can be extended to determine accuracy of these
estimates for given parameter regimes.

Although the E-AB model used in this chapter is reasonable for use as a proof of
concept for the GRR, it is not sophisticated enough to accurately model burgeoning
epidemics to affect real world policy decisions. More accurate AB models using networks
have already been developed [113, 114, 134]. It would be of interest to apply these realistic
models to the GRR and compare the long term behaviors.
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Part II

Cumulative Absorption Model
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Chapter 5

Free-Space Cumulative Absorption
Model

In this Chapter, we focus on our research to capture the continuum density of cells or
agents in space, while accounting for the cumulative exposure to the environment as a
continuous variable1. As a motivating example, consider a cell moving and absorbing
chemicals from the domain; an agent-environment state change occurs when the cell has
absorbed a critical (toxic) threshold of chemicals. We treat this state change as cell
death. In Section 5.1, we show how the new governing equation is able to capture these
dynamics. An analysis of this equation is detailed in Section 5.2 and the numerical
method is outlined in Section 5.3. Representative numerical results are given in Section
5.4, comparing computation of our new governing equations with the corresponding agent-
based (AB) model for the case of cells that randomly move and absorb chemical from the
surrounding environment. We also consider two inverse problems using the numerical
PDE solution. Additional commentary is given for several limiting cases in Section 5.5.

Suppose a spatial domain contains a spatially-varying (or time-varying) chemical con-
centration. For simplicity, we assume the chemical concentration is a positive, spatially-
dependent distribution, C(x), which is independent of time. We then insert a cell in this
domain at an initial location x0. To avoid confusion and to divest the abstract dynamics
from any particular example while developing our theory, we refer to this cell as an agent.
A schematic of this setup is shown in Fig. 5.1. This agent has a given movement proba-
bility at each time point. In the 2-d setup, the agent may remain stationary or move left,
right, up, or down as shown with the dotted arrows in Fig. 5.1. After moving, the agent
absorbs a certain amount of chemical according to a function β̂(x), which depends on the
local chemical concentration. To keep the model general, we are not fixing a specific form
of the function β̂(x) for our analysis. However, we assert that this function preserves
the property that if C(x) > 0, then β̂(x) > 0. When the cumulative absorption within
the agent reaches a critical threshold, the agent changes state (e.g. the agent dies). The
flowchart of this model can be seen in Fig. 5.2.

1 Portions of this chapter are published in [139].
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Figure 5.1: Schematic of an agent (the cell) in a 2-d domain that has a spatially dependent
chemical profile. At each time step, the agent moves and then absorbs chemical from the
local, surrounding absorption region.

Figure 5.2: Flowchart of the AB absorption model. The algorithm demonstrating the
logic for a single agent is in the dashed-line box.

At first glance, we may consider the agent in our absorption model as having only
two states: live and dead. However, it is subtly more complicated since the cumulative
absorption amount is a continuous internal state. Considering that the chemical con-
centration could be spatially and/or time-dependent, the particular path along which an
agent travels may affect the amount of chemical the agent absorbs. For example, suppose
there is no chemical concentration to the left of x0, but there is chemical to the right of
x0. Further, consider two distinct paths the agent may travel: in one path, the agent is
contained within the left side of the domain and terminates at x0 at time t, whereas in
another path, the agent is contained within the right side of the domain and terminates
at x0 at t. The agent traveling along the first path does not absorb any chemical by time
t, but the agent traveling along the second path does absorb some chemical particles.

Since the model appears path dependent, the initial model formulation exploited this
feature, which is derived and examined in Appendix F. However well it may model the
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problem, the computational solution cost, the numerical errors, and the difficulties in
extending the model induce us to find a different approach. This approach requires us to
account for varying amounts of chemical concentration by treating the amount absorbed
as distinct states.

As opposed to a compartmental model, we treat the chemical concentration as a con-
tinuous variable. In order to account for this, we need to consider cumulative absorption as
a dimension orthogonal to both the temporal and spatial dimensions as seen in Fig. 5.3.
That is, the agent is at a location x, having a cumulative chemical absorption ξ, at a
particular time t.

(a) Motivation for Coordinate
System

(b) Absorption Model Coordinate System

Figure 5.3: (a) Motivation for absorption coordinate system by stacking discrete num-
ber of spatiotemporal coordinate systems, labeled by cumulative absorption amount. (b)
Continuum absorption coordinate system, with cumulative absorption amount a contin-
uous variable.

The cumulative amount absorbed is path dependent. However, we cannot say that ξ
is dependent on space or time, just as we cannot say that x is dependent on time. All
three variables are linked by our model, but should be considered independent.

5.1 The Continuum Model
Through upscaling, we derive the continuum absorption model. Using the same approach
used for random walk (RW) models in Chapter 2, we develop a discrete difference equation
from the AB model, and then take the continuum limit. At each iteration, our AB model
agent moves in the domain with spatial-step 4x and time-step 4t. Then, the agent
absorbs chemical particles at its new location x based on a spatially-dependent function
β̂(x) that depends on the distribution of chemical particles, C(x). We interpret β̂(x) as
the amount the cell absorbs during the time step of length 4t. This function may be a
proportion of C(x) or it may be the solution of realistic PDE dynamics [101].
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5.1.1 Derivation of Single-State Absorption Model
Assume the AB model agent is initialized in the 1-D spatial domain R. We define the
variable U(x, t, ξ) to denote the density of an agent centered at location x at time t,
having absorbed ξ total particles. Suppose the agent moves a distance 4x to the right to
be at x at the next time increment, t +4t. We then have that the agent absorbs β̂(x)
chemical particles at x, yielding a cumulative absorption amount of ξ + β̂(x) particles at
time t+4t. Similarly, if the agent moves a distance 4x to the left to be at x at the next
time increment, then the agent cumulatively absorbs ξ + β̂(x) particles. Letting `(x) and
r(x) be the probabilities of moving left or right at location x, respectively, we can assert
a difference equation modeling this behavior:

U(x, t+4t, ξ + β̂(x)) = `(x+4x)U(x+4x, t, ξ)
+ r(x−4x)U(x−4x, t, ξ) + [1− r(x)− `(x)]U(x, t, ξ),

(5.1)

where `(x) + r(x) ≤ 1 for all x ∈ R. The U(x, t + 4t, ξ + β̂(x)) term expresses the
fact that the agent absorbs an additional β̂(x) chemical particles at location x and time
t+4t. The right-hand side of (5.1) accounts for all the different possible ways (along with
their respective probabilities) that agent u, having absorbed ξ total number of chemical
particles at time t can be at location x at time t+4t.

Assuming U ∈ C2(R, [0,∞), [0,∞)) and q(x) ∈ C2([0, 1]) for q(x) representing either
`(x) or r(x), we can perform a Taylor expansion on U and the moving probability q(x) in
(5.1) and get

U(x, t+4t, ξ + β̂(x)) = U(x, t, ξ) +4t ∂
∂t
U(x, t, ξ) + β̂(x) ∂

∂ξ
U(x, t, ξ)

+O(4t2, β̂(x)2),

U(x±4x, t, ξ) = U(x, t, ξ)±4x ∂
∂x
U(x, t, ξ) + 4x

2

2
∂2

∂x2U(x, t, ξ)

+O(4x3),

q(x±4x) = q(x)±4x ∂
∂x
q(x) + 4x

2

2
∂2

∂x2 q(x) +O(4x3).

Inserting these expansions into (5.1) results in

U +4t∂U
∂t

+ β̂(x)∂U
∂ξ

+O
(
4t2, β̂(x)2

)
= [`U ] +4x∂(`U)

∂x
+ 4x

2

2
∂2(`U)
∂x2

+ [rU ]−4x∂(rU)
∂x

+ 4x
2

2
∂2(rU)
∂x2

+ [1− `− r]U +O
(
4x3

)
.
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Rearranging terms and simplifying gives us

4t∂U
∂t

+ β̂(x)∂U
∂ξ

= 4x∂(`− r)U
∂x

+ 4x
2

2
∂2(`+ r)U

∂x2 +O
(
4x3,4t2, β̂(x)2

)
.

If we define β(x) = β̂(x)/4t and rearrange terms, we have

∂U

∂t
+ β(x)∂U

∂ξ
= 4x
4t

∂(`− r)U
∂x

+ 4x
2

24t
∂2(`+ r)U

∂x2 +O
(
4x3,4t, β̂(x)2

)
. (5.2)

For simplification, we assume an unbiased random walk (URW). So we define `(x) =
r(x) = 1/2 for all x ∈ R. Our equation then reduces to:

∂U

∂t
+ β(x)∂U

∂ξ
= 4x

2

24t
∂2U

∂x2 +O
(
4x3,4t, β̂(x)2

)
. (5.3)

We assume that 4t ∼ 4x2 and β̂(x) = O(4t). Taking the limit as 4t,4x → 0 results
in the following governing continuum equation:

∂U

∂t
+ β(x)∂U

∂ξ
= D

∂2U

∂x2 , (5.4)

where D = lim4t,4x→04x2/(24t). For this paper, we assume free-space boundary con-
ditions and the initial condition depends on x and ξ.

Hence, our partial differential equation (PDE) for 1-d chemical absorption is as follows:
∂U
∂t

+ β(x)∂U
∂ξ

= D ∂2U
∂x2 , x ∈ R, ξ ∈ [0,∞), t > 0,

U = φ(x, ξ), x ∈ R, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ R, ξ ∈ [0,∞), t > 0.

(5.5)

In a similar way, assuming that the spatial step 4x is the same in every direction, we can
derive a continuum PDE in n spatial dimensions. The resulting PDE is as follows:

∂U
∂t

+ β(x)∂U
∂ξ

= Dn∇2U, x ∈ Rn, ξ ∈ [0,∞), t > 0,
U = φ(x, ξ), x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0,

(5.6)

where Dn = lim4x,4t→04x2/(2n4t). Here we should note that the above equations
(5.5) and (5.6) only model cumulative absorption, without taking into account any state
transitions due to this cumulative absorption. We address two possible methods to account
for absorption-based state changes in Section 5.1.2.
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Units

Depending on the initial condition, we treat U slightly differently. If the initial condition
for U is a point source, then U(x, t, ξ) represents the probability an agent is at location
x at time t having absorbed ξ chemical. It would then follow that U is in units of
density. However, if U is something other than a point source, then U(x, t, ξ) represents
the number of agents at location x at time t having absorbed ξ chemical. In this case
it would follow that U is in units of population. By construction, we know ξ is in units
of chemical particles, and the function C(x) is in units of chemical particles per lengthn,
where n is the spatial dimension of x. From equation (5.6) we see that the absorption
rate β(x) is in units of chemical particles per time. Consequently, β̂(x) is also in units of
chemical particles.

Classification

The PDE (5.5) may look like the advection-diffusion equation if we rewrite it in the form
∂U
∂t

+ a∇U = ∇ ·D∇U , where ∇ =
(
∂
∂x
, ∂
∂ξ

)T
, a =

[
0

β(x)

]
, and D =

[
4x2/(24t) 0

0 0

]
.

The advection vector, a, and the diffusion matrix, D, each have different rows containing
zeros. Work has been done on the advection-diffusion equation where a contains empty
rows, but in those cases D does not contain any empty rows. The cumulative absorption
PDE (5.5) is subtly different. Since the transport is only in the ξ-coordinate and diffusion
is only in the spatial coordinates, we classify Eq. (5.5) as a mixed hyperbolic-parabolic
PDE.

5.1.2 Absorption Threshold
Now that we have a governing equation for tracking the cumulative absorption property
of an agent, we can address possible absorption-dependent state-changes. Suppose the
agent changes state if the cumulative chemical absorption is greater than some absorption
capacitance, ξc. That is, a cell is initially in the live state if ξ < ξc and switches to a
different state, possibly dying, if ξ ≥ ξc. We denote the spatially-varying, total density of
agents in the live state as p(x, t). This value may be found through lab experimentation
or through a toxicology database, such as PubChem [46].

We have two possible methods2 for calculating the density of cells in a live state:
by modifying our PDE model or by solving the PDE model and integrating ξ over the
absorption domain of interest, [0, ξc]. First, we examine a modification of our PDE model
and, in this case, we use the variable V (x, t, ξ) to denote the density of agents in the live
state (rather than the variable U to avoid confusion in later sections). Our difference

2We consider methods that keep β from being dependent on the cumulative absorption amount, ξ.
One could derive a formula where β depends on both the chemical concentration, C(x), and ξ to ensure
that cells do not absorb chemical beyond the threshold. However, the derivation and resulting Taylor
series would produce additional terms that could make the analysis and numerical solutions more difficult.
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equation includes a Heaviside function centered at ξc in the sink term, since the agent
switches state if ξ ≥ ξc,

V (x, t+4t, ξ + β̂(x)) = `(x+4x)V (x+4x, t, ξ)
+ r(x−4x)V (x−4x, t, ξ) + [1− r(x)− `(x)]V (x, t, ξ)
−H(ξ − ξc)V (x, t, ξ),

(5.7)

where H(ξ − ξc) =

1 : if ξ ≥ ξc

0 : otherwise
denotes the Heaviside function centered at ξc. With

the same assumptions as in the previous section and expanding in a Taylor series, we
obtain the following PDE modeling live agents following an URW:

∂V
∂t

+ β(x)∂V
∂ξ

= D ∂2V
∂x2 − H̃(ξ − ξc)V, x ∈ R, ξ ∈ [0,∞), t > 0,

V = φ(x, ξ), x ∈ R, ξ ∈ [0,∞), t = 0,
lim|x|→∞ V = 0, x ∈ R, ξ ∈ [0,∞), t > 0,

(5.8)

where H̃(ξ − ξc) = lim4t→0
1
4tH(ξ − ξc) =

+∞ : if ξ ≥ ξc

0 : otherwise
is the result of taking the

continuum limit. We can then calculate the spatially-variable, total density of cells in the
live state as

p(x, t) =
∫ ∞

0
V (x, t, ξ) dξ. (5.9)

This method offers us the ability to develop more complex models, such as when β can
be negative, when the transition is stochastic (in which case we would substitute the
Heaviside function with a probability distribution), or when we are interested in mod-
eling agents in the secondary state. In this case, we can more easily separate different
populations and capture additional state change driven dynamics (e.g. where movement
rules could depend on the given state).

The alternate approach, which, other than a few comments, is the one used in the
remainder of this dissertation. This is because it is simpler to analyze and it is suitable in
the case where we are only interested in the live agents when there is a single deterministic
state transition (when ξ > ξc) and positive chemical, β > 0 a.e.. In this case, it is possible
to calculate the spatially-variable, total density, p, directly from the absorption model, U
as

p(x, t) =
∫ ξc

0
U(x, t, ξ) dξ. (5.10)

If we initialize
∫
Rn
∫∞

0 U(x, 0, ξ) dξ dx = 1, then we can consider p(x, t) the probability
that an agent is at location x at time t and in the initial live state3.

3If we want to find the probability an agent is at a particular location at a given time, given that the
agent is in the initial live state, we can calculate:

P(x, t) =
∫ ξc

0 U(x, t, ξ) dξ∫∞
0 U(x, t, ξ) dξ

= p(x, t)∫∞
0 U(x, t, ξ) dξ

.
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We can rewrite (5.6) as a PDE of p. Let us integrate the terms from 0 to ξc with
respect to ξ. This gives us∫ ξc

0
Ut dξ +

∫ ξc

0
β(x)Uξ dξ =

∫ ξc

0
Dn∇2U dξ.

Since for any t ≥ 0, U ∈ L1(Rn × [0,∞)), we can switch derivatives and integrals using
Fubini’s theorem. The above system reduces to a non-homogeneous diffusion equation

∂p
∂t
−Dn∇2p = f(x, t), x ∈ Rn, t > 0

p = g(x), x ∈ Rn, t = 0
lim|x|→∞ p = 0, x ∈ Rn, t > 0,

(5.11)

where f(x, t) = −β(x)U
∣∣∣∣
ξ=ξc

and g(x) =
∫ ξc

0 φ(x, ξ). If we know the value of f , then

we have an explicit solution for p using the method of Green’s functions (fundamental
solutions). In most cases we do not have the explicit value of f(x, t), in which case we
must first solve for U(x, t, ξ) before integrating to compute p(x, t).

We can use the value of p to calculate cellular properties of interest, such as flux out
of the initial live state or the average time in the initial live state.

5.2 Well-Posedness
Through the derivation of this continuous approximation, higher order terms in the Taylor
series expansions were neglected. We must still ensure that we are maintaining the proper
physics with this new equation. For example, we wish that energy in the system is not
increasing and that the total quantity of agents or cells is conserved. In addition, since
the governing equation (5.6) is classified as a mixed Parabolic-Hyperbolic PDE, there is
no generalized theorem we can apply to show it is well-posed. To this end, Theorems 5–7
in this section prove existence, uniqueness, and continuous dependence on initial data,
respectively.

There are a few ways analysts prove the existence of a PDE, such as: by projection
methods [41, Ch.7], using energy estimates [41, Ch.7], [125, Ch.6], and by discretization
[7, 16]. Projection methods, like Galerkin approximation, project the PDE onto a finite
n-dimensional subspace to convert the problem into a system of ODEs. If the limit of the
solution as n→∞ exists, then the existence of the PDE is proven. Energy estimates, like
viscosity techniques, are used for hyperbolic problems to reframe the PDE as solving for
minimum energy, where the energy is a functional with specific assumptions. This method
seeks to show that the limiting solution converges to and satisfies the original PDE by
using regularization estimates of the minimization problem. Discretization methods, like
the method of lines or Rothe method, discretizes one of the coordinates and rewrites the
PDE as a system of difference quotients. If the limiting solution exists and solves the
PDE, then existence is proven.
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There are other methods for solving existence of PDEs, such as the Cauchy-Kowalevski
theorem [41, Ch.4]. However, the three summarized methods all share the fact that rather
than proving the existence of the PDE directly, the PDE is rewritten as a sequence of
easier, solvable problems from which the limit proves existence. We use this framework
to prove the existence of the cumulative absorption PDE (5.6).

5.2.1 Energy & Conservation
In order to prove uniqueness and the continuous dependence of the PDE solution on
initial data, we show that there is some time-dependent functional E(t), such that our
solution U of (5.6) satisfies 0 ≤ E(t) ≤ E(0) for all t > 0. We refer to this functional as
the energy of the solution at time t. This is a classical method used to prove uniqueness
and stability in linear PDEs [41, Ch.2][125, Ch.2][73]. To match the physics of the AB
model simulation, the energy of our PDE should be non-increasing, but we need to prove
that our PDE does not lose this feature during the process of deriving the continuum
approximation.

Theorem 3. Suppose β(x) > 0 for all x ∈ Rn. The PDE (5.6) with the energy functional
4 E(t) = 1

2 ||U ||2 satisfies the inequality 0 ≤ E(t) ≤ E(0).

Proof. Via a calculation,
dE

dt
=
∫
Rn

∫ ∞
0

U
∂U

∂t
dξ dV =

∫
Rn

∫ ∞
0

U [−β(x)∂U
∂ξ

+Dn∇2U ] dξ dV

= −
∫
Rn

∫ ∞
0

β(x)U ∂U
∂ξ

dξ dV +Dn

∫
Rn

∫ ∞
0

U∇2U dξ dV.

First, integration by parts in the variable ξ gives∫
Rn

∫ ∞
0

β(x)U ∂U
∂ξ

dξ dV =
∫
Rn

[
β(x)U2

∣∣∣∣∞
ξ=0

]
dV −

∫
Rn

∫ ∞
0

β(x)U ∂U
∂ξ

dξ dV.

We assume that for any finite t > 0 that U = 0 as ξ →∞. Given β(x) > 0, then U = 0
at ξ = 0 for any t > 0. Thus,

∫
Rn
∫∞
0 β(x)U ∂U

∂ξ
dξ dV = 0. Second, by the Divergence

product rule, ∫
Rn
|∇U |2 dV =

∫
∂Rn

U∇U · η̂ dS −
∫
Rn
U∇2U dV,

where η̂ is the unit outward normal vector. Considering lim|x|→∞ U = 0, we have that∫
Rn

∫ ∞
0

U∇2U dξ dV = −
∫
Rn

∫ ∞
0
|∇U |2 dξ dV.

Therefore, we have that for every t > 0,
dE

dt
= −Dn

∫
Rn

∫ ∞
0
|∇U |2 dξ dV ≤ 0.

4The energy functional is not meant to be interpreted as physical energy (i.e. it is not kinetic or
potential energy), it is a naming convention that is consistent with classical PDE theory [41].
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Seeing that dE
dt
≤ 0, we have 0 ≤ E(t) ≤ E(0).

Note that the energy functional EV (t) = 1
2 ||V ||2 also satisfies the inequality 0 ≤

EV (t) ≤ EV (0) since for every t > 0,
∫
Rn
∫∞
0 H̃(ξ − ξc)U2 dξ dx ≥ 0.

In the AB model simulation, no agent is removed from the system. Again, we want
the PDE solution to match the important physics of the AB model simulation. We do
so by proving that the solution U is conserved at each time t over the entire domain
Rn × [0,∞).

Theorem 4. (Conservation) Suppose for any fixed t > 0, U ∈ L1(Rn × [0,∞)) solves
(5.6). And suppose β(x) > 0 for all x ∈ Rn. Then

∫
Rn
∫∞

0 U dξ dx =
∫
Rn
∫∞

0 φ(x, ξ) dξ dV
for any t > 0.

Proof. By means of a calculation,

∂

∂t

∫
Rn

∫ ∞
0

U dξ dV =
∫
Rn

∫ ∞
0

∂U

∂t
dξ dV

=
∫
Rn

∫ ∞
0

{
Dn∇2U − β(x)∂U

∂ξ

}
dξ dV

=
∫
Rn

∫ ∞
0

Dn∇2U dξ dV −
∫
Rn

∫ ∞
0

β(x)∂U
∂ξ

dξ dV

= Dn

∫
∂Rn

∫ ∞
0
∇U · η̂ dξ dS −

∫
Rn
β(x)

[
U
∣∣∣∣∞
ξ=0

]
dV.

Since lim|x|→∞ U = 0 we have that the first term is 0. Also, given β(x) > 0 for all x ∈ Rn,
then for t > 0 we have U(x, t, ξ = 0) = 0, and the second term is also 0. It follows that
∂
∂t

∫
Rn
∫∞
0 U dξ dV = 0. Therefore, U is conserved.

5.2.2 Operator-Splitting Semi-Discrete Solution
Using operator-split, semi-discrete solutions is a useful way to prove the existence of so-
lutions and provide additional insight into the PDE solution. In fact, the method of
lines is used to prove existence by reformulating a problem by discretizing in spatial di-
mensions, while keeping the time dimension continuous [89]. Appendix A.2 demonstrates
how operator-split, discrete in time formulations of the diffusion and advection-diffusion
equations arrive at the fundamental solutions in the limit as the time-step approaches 0.

We approximate a solution to the PDE in (5.6) by splitting the linear operator and
then solving the resulting system iteratively. This gives us a solution that is discrete in
time and continuous in spatial and absorption dimensions, similar to the Rothe method
[8]. We first derive this semi-discrete solution and then show that it is well-posed.

Let U = Û(x, t|ξ)U(ξ, t|x), where Û leaves ξ fixed and U leaves x fixed. We can
see that U ∂Û

∂t
+ Û ∂U

∂t
+ β(x)Û ∂U

∂ξ
= DnU∇2Û and it follows that U

(
∂Û
∂t
−Dn∇2Û

)
+
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Û
(
∂U
∂t

+ β(x)∂U
∂ξ

)
= 0. Assuming that U and Û are not identically 0, we can then solve

the following PDEs 
∂Û
∂t
−Dn∇2Û = 0, x ∈ Rn, t > 0,

Û = φ̂(x|ξ), x ∈ Rn, t = 0,
lim|x|→∞ Û = 0, x ∈ Rn, t > 0,

(5.12)


∂U
∂t
− β(x)∂U

∂ξ
= 0, ξ ∈ [0,∞), t > 0

U = φ(ξ|x), ξ ∈ [0,∞), t = 0.
(5.13)

Since the PDE (5.6) is classified as having mixed-type, it seems natural to split the
operator into a parabolic and a hyperbolic problem.

We solve the system in (5.12) using the method of Green’s functions and convoluting5

with the initial condition:

Û = G(x, t) ∗ φ̂(x|ξ), ∀ξ ≥ 0, t > 0, (5.14)

where
G(x, t) = 1

(4πDnt)n/2
exp

{
− |x|

2

4Dnt

}
, t > 0, (5.15)

is the fundamental solution of the diffusion equation in Rn (as derived in Appendix A.1.2).
We solve (5.13) using the method of characteristics:

U = φ(ξ − β(x)t|x), ∀x ∈ Rn, t > 0. (5.16)

Our solution of (5.6) alternates between (5.14) and (5.16) as the solution marches
forward in time. As we are not solving the system simultaneously, we choose a length of
time, 0 < τ � 1, in which each solution is valid. We denote the solution at time t = mτ
as Um(x, ξ). The following iterative algorithm solves the semi-discrete, operator splitting
system:
• Initialize U0(x, ξ) = φ(x, ξ)

• For m = 1, 2, . . .:

♦ U
m−1(x|ξ) = Um−1(x, ξ)

♦ Ûm(ξ|x) = U
m−1(x|ξ − β(x)τ)

♦ Um(x, ξ) = G(x, τ) ∗ Ûm(ξ|x)

Combining these solutions gives us the recurrence relation for the semi-discrete solution
with time step τ :

Um+1(x, ξ) = G(x, τ) ∗ Um(x, ξ − β(x)τ). (5.17)
Additionally, we can use our recurrence relation to rewrite the solution at t = mτ in terms
of the initial condition φ(x, ξ), given as

Um(x, ξ) = G(x, τ) ∗m φ(x, ξ − β(x)mτ), ∀(x, t) ∈ Rn × [0,∞). (5.18)
5We define the convolution of two functions f, g ∈ L1(Rn) as the integral f ∗ g =

∫
Rn f(y)g(x− y) dy
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5.2.3 Existence
Our semi-discrete solution for Um(x, ξ), given in (5.18), depends on the recurrence time
step τ and the number of iterations m. So, we define

zm,τ (x, ξ) ≡ G(x, τ) ∗m φ(x, ξ − β(x)mτ) (5.19)

as the approximation6 of U(x,mτ, ξ), accounting for the choices of both τ and m (the
same notation as used in [16]). We want to show that the L1(Rn× [0,∞)) limit, U(x, t, ξ),
of the sequence

{
zm,t/m

}
m∈N

exists. That is, the limit of the recurrence relation for a time
t exists when the recurrence time step, τ = t/m, approaches 0. If this limit exists, it
proves the existence of a solution, U(x, t, ξ), to the governing PDE, given in (5.6).

For the L1 limit to make sense, we first need to show that zm,τ ∈ L1(Rn × [0,∞)).

Lemma 1. Suppose φ ∈ L1(Rn × [0,∞)) and zm,τ (x, ξ) = G(x, τ) ∗m φ(x, ξ − β(x)mτ)
for all m ∈ N, τ > 0. Then zm,τ (x, ξ) ∈ L1(Rn × [0,∞)), for all x ∈ Rn, ξ ≥ 0.

Proof. We know that G(x, τ) ∈ L1(Rn× [0,∞)). By reason that L1(Rn× [0,∞)) is closed
under convolution, we have that G(x, τ) ∗m φ(x, ξ − β(x)mτ) ∈ L1(Rn × [0,∞)).

Lemma 2. For any t > 0, G(x, t/m) ∗m δ(ξ)→ δ(x, ξ) as m→∞ in L1(Rn × [0,∞)).

Proof. We know that limm→∞
∫
Rn |G(x, t/m)− δ(x)| dx = 0, so it follows that limm→∞ ||G(x, t/m)∗

δ(ξ) − δ(x, ξ)||1 = 0. First, we show, via induction, that limm→∞ ||G(x, t/m) ∗h δ(ξ) −
δ(x, ξ)||1 = 0 for any h ∈ N.

As a base case, we show that limm→∞ ||(G ∗G)(x, t/m) ∗ δ(ξ)− δ(x, ξ)||1 = 0. By the
Dominated Convergence theorem, we can see that

lim
m→∞

G ∗G(x, t/m) =
∫
Rn

(
lim
m→∞

G(x− y, t/m)
)(

lim
m→∞

G(y, t/m)
)
dy

=
∫
Rn
δ(x− y)δ(x) dy = δ(x).

By calculation,

lim
m→∞

||(G ∗G)(x, t/m) ∗ δ(ξ)− δ(x, ξ)||1 = || lim
m→∞

(G ∗G)(x, t/m) ∗ δ(ξ)− δ(x, ξ)||1

= ||δ(x, ξ)− δ(x, ξ)||1 = 0.

6 We could also make a similar proof for approximating V with zm,τ (x, ξ) ≡ G(x, τ) ∗m[
φ(x, ξ − β(x)mτ)1[0,ξc)(ξ − β(x)mτ − ξc)

]
. The indicator function is a result of solving the same oper-

ator splitting system as U with the additional equation{
Ṽt = −H̃(ξ − ξc)Ṽ , x ∈ Rn, ξ ∈ [0,∞), t > 0
Ṽ = V̄ , x ∈ Rn, ξ ∈ [0,∞), t = 0.
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Now, we can assume that limm→∞ ||G(x, t/m) ∗h δ(ξ) − δ(x, ξ)||1 = 0 for some h ∈ N.
We can calculate that

lim
m→∞

||G ∗ [G ∗h (x, t/m)δ(ξ)]− δ(x, ξ)||1 = || lim
m→∞

G ∗ [G(x, t/m) ∗h δ(ξ)]− δ(x, ξ)||1

= ||δ(x, ξ)− δ(x, ξ)||1 = 0

by the inductive assumption. It follows that
lim
m→∞

||G(x, t/m) ∗h+1 δ(ξ)− δ(x, ξ)||1 = lim
m→∞

||G ∗ [G(x, t/m) ∗h δ(ξ)]− δ(x, ξ)||1

= || lim
m→∞

G ∗ [G(x, t/m) ∗h δ(ξ)]− δ(x, ξ)||1

= ||δ(x, ξ)− δ(x, ξ)||1 = 0

for all h ∈ N.
If we define h = m for m ∈ N, then limm→∞ ||G(x, t/m) ∗m δ(ξ)− δ(x, ξ)||1 = 0.

Lemma 3. Suppose φ ∈ L1(Rn× [0,∞)) and zm,t/m(x, ξ) = G(x, t/m) ∗m φ(x, ξ− β(x)t)
for any m ∈ N, t > 0, as defined in (5.19). Then

{
zm,t/m

}
m∈N

is a Cauchy sequence in
L1(Rn × [0,∞)).

Proof. We want to show

lim
p,q→∞

||zp,t/p(x, ξ)− zq,t/q(x, ξ)||1 = 0.

From Lemma 2 we know that, for any m ∈ N, limm→∞ ||G(x, t/m)∗m δ(ξ)−δ(x, ξ)||1 = 0.
Then

lim
m→∞

||zm,t/m(x, ξ)− φ(x, ξ − β(x)t)||1 =

= lim
m→∞

||G(x, t/m) ∗m φ(x, ξ − β(x)t)− δ(x, ξ) ∗ φ(x, ξ − β(x)t)||1

≤ lim
m→∞

||G(x, t/m) ∗m δ(ξ)− δ(x, ξ)||1||φ(x, ξ − β(x)t)||1 = 0.

It follows that
lim

p,q→∞
||zp,t/p(x, ξ)− zq,t/q(x, ξ)||1 =

= lim
p,q→∞

||zp,t/p(x, ξ)− φ(x, ξ − β(x)t) + φ(x, ξ − β(x)t)− zq,t/q(x, ξ)||1

≤ lim
p→∞

||zp,t/p(x, ξ)− φ(x, ξ − β(x)t)||1 + lim
q→∞

||zq,t/q(x, ξ)− φ(x, ξ − β(x)t)||1.

Therefore, limp,q→∞ ||zp,t/p(x, ξ)− zq,t/q(x, ξ)||1 = 0.

Theorem 5. (Existence) Suppose φ ∈ L1(Rn× [0,∞)). There exists a solution, U , to the
governing PDE: 

∂U
∂t

+ β(x)∂U
∂ξ

= Dn∇2U, x ∈ Rn, ξ ∈ [0,∞), t > 0,
U = φ(x, ξ), x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0,

(5.20)

such that, for any t ≥ 0, U ∈ L1(Rn × [0,∞)).
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Proof. Choose any x ∈ Rn, ξ ∈ [0,∞), and any t > 0. Suppose φ ∈ L1(Rn × [0,∞)) and
define zm,τ (x, ξ) = G(x, τ) ∗m φ(x, ξ − β(x)mτ) for any m ∈ N, τ > 0. By Lemma 1 and
Lemma 3 we know that zm,t/m ∈ L1(Rn × [0,∞)) is a Cauchy sequence. On account of
L1 being complete, there exists a U ∈ L1(Rn × [0,∞)) such that limm→∞ ||zm,t/m(x, ξ)−
U(x, t, ξ)||1 = 0. Since zm,t/m(x, ξ) satisfies the operator-split PDE for all m ∈ N, we
know that U(x, t, ξ) satisfies the operator-split PDE. Therefore U(x, t, ξ) satisfies the
time-continuous PDE.

5.2.4 Uniqueness & Continuous Dependence on Initial Data
Theorem 6. (Uniqueness) The solution to PDE (5.6) is unique.

Proof. Suppose we have two solutions, U1, U2 ∈ L1(Rn × [0,∞)) to the PDE (5.6). We
define W = U2 − U1. Given (5.6) is linear, we know W (x, t, ξ) solves the PDE:

∂W
∂t

+ β(x)∂W
∂ξ

= Dn∇2W, x ∈ Rn, ξ ∈ [0,∞), t > 0,
W = 0, x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞W = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0.

(5.21)

From the energy argument in Theorem 3, we know that

0 ≤ Ew(t) ≤ Ew(0).

Since Ew(0) = 1
2
∫
Rn
∫∞

0 W (x, 0, ξ)2 dξ dx = 0, we know that Ew(t) = 0 for all t. By
definition of Ew(t), we demonstrated that

0 ≤
∫
Rn

∫ ∞
0

(U1(x, t, ξ)− U2(x, t, ξ))2 dξ dx = Ew(t) = 0.

Therefore, U1(x, t, ξ) = U2(x, t, ξ) almost everywhere.

Theorem 7. (Continuous Dependence on Initial Data) Consider any ε > 0. Suppose U1
satisfies the PDE

∂U
∂t

+ β(x)∂U
∂ξ

= Dn∇2U, x ∈ Rn, ξ ∈ [0,∞), t > 0,
U = φ1(x, ξ), x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0, ,

(5.22)

and U2 satisfies the PDE
∂U
∂t

+ β(x)∂U
∂ξ

= Dn∇2U, x ∈ Rn, ξ ∈ [0,∞), t > 0,
U = φ2(x, ξ), x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0,

(5.23)

where ||φ1(x, ξ)− φ2(x, ξ)||2 < ε. Then ||U1 − U2||2 < ε.
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Proof. We define W = U1 − U2. As (5.22) and (5.23) are both linear, W solves the PDE
∂W
∂t

+ β(x)∂W
∂ξ

= Dn∇2W, x ∈ Rn, ξ ∈ [0,∞), t > 0,
W = φ1(x, ξ)− φ2(x, ξ), x ∈ Rn, ξ ∈ [0,∞), t = 0,
lim|x|→∞W = 0, x ∈ Rn, ξ ∈ [0,∞), t > 0.

(5.24)

Let us define the energy of (5.24) as

Ew(t) = 1
2

∫
Rn

∫ ∞
0

W 2 dξ dx = 1
2 ||W (t)||2.

By the same argument in the proof of Theorem 3, we have that 0 ≤ ||W (x, t, ξ)||2 ≤
||W (x, 0, ξ)||2. Since ||W (x, 0, ξ)||2 = ||φ1(x, ξ) − φ2(x, ξ)||2 < ε and ||W (x, t, ξ)||2 =
||U1(x, , t, ξ)− U2(x, t, ξ)||2, we have that

0 ≤ ||U1(x, t, ξ)− U2(x, t, ξ)||2 ≤ ||φ1(x, ξ)− φ2(x, ξ)||2 < ε.

From the energy argument in Theorem 3, we know that the PDE for V also satisfies
the properties of uniqueness and continuous dependence on initial data. Thus, the model
for V is also well-posed.

5.2.5 Explicit Solution for Constant Absorption Case
Suppose that the absorption term, β > 0, for the free-space 1-d cumulative absorption
equation 5.5 is constant. We can find an explicit solution to the equation.
Theorem 8. Let β ≥ 0 be constant and let φ ∈ L1(R) for any ξ > 0. Then U(x, t, ξ) =
G(x, 2t) ∗ φ(x, ξ − 2βt) solves (5.5) exactly, where G(x, t) is the fundamental solution to
the diffusion equation in R,

G(x, t) = 1√
4πDnt

exp
{
− x2

4Dt

}
, t > 0.

Proof. By definition, G ∈ L1(R) for any t ≥ 0. We can then compute the following:
∂U

∂t
= ∂

∂t
[G(x, 2t) ∗ φ(x, ξ − 2βt)] = 1

2

[
2∂G(x, 2t)

∂t

]
∗ φ(x, ξ − 2βt) + 1

2G(x, 2t) ∗
[
−2β ∂φ(x, ξ − 2βt)

∂t

]
∂U

∂ξ
= ∂

∂ξ
[G(x, 2t) ∗ φ(x, ξ − 2βt)] = G(x, 2t) ∗ ∂φ(x, ξ − 2βt)

∂ξ

∂U

∂t
= ∂

∂t
[G(x, 2t) ∗ φ(x, ξ − 2βt)] = ∂2G(x, 2t)

∂x2 ∗ φ(x, ξ − 2βt)

Inserting the above expressions into (5.5) gives us{
∂G(x, 2t)

∂t
∗ φ(x, ξ − 2βt) +G(x, 2t) ∗

[
−β∂φ(x, ξ − 2βt)

∂t

]}

+ β

{
G(x, 2t) ∗ ∂φ(x, ξ − 2βt)

∂ξ

}
= D

{
∂2G(x, 2t)

∂x2 ∗ φ(x, ξ − 2βt)
}
.
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After rearranging and grouping terms, we have{
∂G(x, 2t)

∂t
∗ φ(x, ξ − 2βt)−D

[
∂2G(x, 2t)

∂x2 ∗ φ(x, ξ − 2βt)
]}

+
{
G(x, 2t) ∗

[
−β∂φ(x, ξ − 2βt)

∂t

]
+ β

[
G(x, 2t) ∗ ∂φ(x, ξ − 2βt)

∂ξ

]}
= 0.

Since D, β are constants, we can insert them into the convolutions. Using the linearity of
integration helps us recover:

φ(x, ξ−2βt)∗
{
∂G(x, 2t)

∂t
−D∂

2G(x, 2t)
∂x2

}
+G(x, 2t)∗

{
−β∂φ(x, ξ − 2βt)

∂t
+ β

∂φ(x, ξ − 2βt)
∂t

}
.

Since G is the fundamental solution of the diffusion equation, the first term is 0. Therefore,
U(x, t, ξ) = G(x, 2t) ∗ φ(x, ξ − 2βt) solves (5.5) exactly.

Note that the constant absorption coefficient, β, acts like a delay term in the ξ variable.

5.3 Numerical Approximation

5.3.1 Fully Discrete Derivation
We are primarily interested in calculating the spatially-variable, total density of agents
in the live state, p. While demonstrating that the PDE models for U and V are both
well-posed, we explain how the only difference in approximate solutions was multiplying
by an indicator function 1[0,ξc)(ξ). This leads to the fact that the value of p(x, t) using
either method is identical. So for our numerical computation, we compute the spatially-
variable, total density of agents in the initial live state with p(x, t) =

∫ ξc
0 U(x, t, ξ) dξ. We

derive this numerical approximation within the spatial domain in 1-d, but the method
can easily extend to higher dimensions. Considering that we first solve (5.6) for U and
then integrate to solve for p, we discretize the region R × [0,∞) using cell volumes (as
opposed to discrete nodes). This spatial discretization ensures that we can compute an
exact integral for p. We divide the spatial component into M bins7 of width δx and the
absorption component into K bins of width δξ; the cell volumes have area δxδξ. We
denote the numerical time-step as δt.

These cell volumes are defined as ωi,k = B(xi, δx/2)× [ξk, ξk+1), where δx is the spatial
discretization step-size and B(xi, δx/2) = {y ∈ R : |xi − y| < δx/2}. For the following
derivations, the spatial location is indexed by i and the cumulative absorption amount is
indexed by k. We then define umi,k ≈ Um(xi, ξk) as

umi,k = 1
δx δξ

∫
ωi,k

Um(y, z) dy dz, (5.25)

7 The analytic solution requires the spatial domain to be R. However, numerically, we need to choose
a finite domain. We choose M such that G(M δx/2, δt) is bounded close to 0. Similarly, the absorption
domain is [0,∞). Our solution of interest is within the domain [0, ξc) and hence, we choose K such that
Kδξ is larger than ξc.
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the average value of Um in the cell volume ωi,k as used in finite volume methods [76].
Note that the continuous and semi-discrete solution is capitalized, U(x, t, ξ) or Um(x, ξ),
whereas the fully discrete solution is in lower-case, umi,k.

We know the semi-discrete recurrence relation Um+1(x, ξ) = G(x, τ)∗Um(x, ξ−β(x)τ)
from equation (5.17). This solution is fully discretized by integrating over the cell volume
ωi,k and assigning δt as the numerical time-step. By recalling that umi,k is piece-wise
continuous over ωi,k, we can solve the convolution exactly with the approximated solution:

∫
ωi,k

G(x, δt) ∗ Um(x, ξ − β(x)δt) dξ dx =
∫
ωi,k

∫
R
G(y, δt)Um(x− y, ξ − β(x)δt) dy dξ dx

=
∑
j∈Z

∫
B(xj ,δx/2)

∫
B(xi,δx/2)

∫ ξk+1

ξk

G(y, δt)Um(x− y, ξ − β(x)δt) dξ dx dy

=
∑
j∈Z

∫
B(xj ,δx/2)

[
G(y, δt)

∫
B(xi,δx/2)

∫ ξk+1

ξk

Um(x− y, ξ − β(x)δt) dξ dx
]
dy

=
∑
j∈Z

δx δξ umi−j,k

∫
B(xj ,δx/2)

G(y, δt) dy.

Since um+1
i,k = 1

δx δξ

∫
ωi,k

Um(y, z) dy dz, we have

um+1
i,di

=
∑
j∈Z

umi−j,k

∫
B(xj ,δx/2)

G(y, δt) dy,

where di = bk + β(xi)δtc, the new absorption index. By calculation8, we find that

Gj =
∫
B(xj ,δx/2)

G(y, δt) dy = 1
2

{
erf

(
xj + δx/2√

4Dδt

)
− erf

(
xj − δx/2√

4Dδt

)}
. (5.26)

Our numerical method is then

um+1
i,di

= 1
2
∑
j∈Z

umi−j,k

{
erf

(
xj + δx/2√

4Dδt

)
− erf

(
xj − δx/2√

4Dδt

)}
. (5.27)

We discretize the density p(x, t) as

pmi = 1
δx δξ

∫ ξc
0
∫
B(xi,δx/2) U

m(y, z) dy dz ≈ 1
δx δξ

∑
k∈A

∫
ωi,k

Um(y, z) dy dz, (5.28)

where A = {k : kδξ < ξc}. Therefore, we can represent p numerically as pmi = ∑
k∈A u

m
i,k,

the exact integral using our piece-wise constant approximate solutions.
8 In 2-d, we calculate

Gj,k =
∫
B(xj,k,δx/2)

G(y, δt) dy =
1
4

{
erf

(
xj + δx/2
√

4Dδt

)
− erf

(
xj − δx/2√

4Dδt

)}{
erf

(
yk + δx/2
√

4Dδt

)
− erf

(
yk − δx/2√

4Dδt

)}
.
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5.3.2 Stability
To prove numerical stability, we use discrete energy methods [77]. We can break down
the numerical method into two steps: a diffusive step where we perform the convolution,

vm+1
i,k = 1

2
∑
j∈Z

umi−j,k

{
erf

(
xj + δx/2√

4Dδt

)
− erf

(
xj − δx/2√

4Dδt

)}

and an absorption step um+1
i,di

= vm+1
i,k where we change the indexing. Further, we define

the discrete energy functional as

Em =
K∑
k=0

M−1∑
i=0

(
umi,k

)2
.

To prove stability, we want to show Em+1 − Em ≤ 0. Note that due to the indexing
change, for any i, ∑K

k=0

(
um+1
i,k

)2
≤ ∑K

k=0

(
vm+1
i,k

)2
.

We can rewrite our numerical scheme as a matrix-vector product, vm+1
k = umk ∗ G =

Aumk , where our discrete convolution matrix A and vector indexing of umk are the following

A =



G0 GM−1 . . . G2 G1
G1 G0 GM−1 . . . G2
... G1 G0

. . . ...
GM−2

. . . . . . GM−1
GM−1 GM−2 . . . G1 G0

 umk =


um0,k
um1,k

...
umM−1,k

 , (5.29)

given our definition of Gj, as defined in (5.26).
The difference between the energy functional at subsequent times, having absorbed

ξ ∈ [kδξ, (k + 1)δξ] particles, is:

em+1
k − emk =

M−1∑
i=0

(
um+1
i,k

)2
−

M−1∑
i=0

(
umi,k

)2

≤
M−1∑
i=0

(
vm+1
i,k

)2
−

M−1∑
i=0

(
umi,k

)2

= (Aumk )2 − (umk )T umk
= (umk )T

(
ATA− I

)
umk ,

where emk ≡
∑M−1
i=0

(
umi,k

)2
.

Theorem 9. The spectrum of ATA − I is s
(
ATA− I

)
≤ 0, with the matrix A defined

in (5.29) and the scalars Gj defined in (5.26).
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Proof. The discrete convolution matrix A is a circulant matrix, so it has eigenvalues

λj = G0 +GM−1γj +GM−2γ
2
j + . . .+G1γ

M−1
j =

M−1∑
`=0

G`γ
M−`
j ,

for j = 0, 1, . . . ,M1, where γj = exp
{

2πj
M

√
−1
}

(the M -th root of unity). It follows that
the amplitude of the j-th eigenvalue is

|λj| =
∣∣∣∣∣
M−1∑
`=0

G`γ
M−`
j

∣∣∣∣∣ ≤
M−1∑
`=0
|G`|

∣∣∣γM−`j

∣∣∣ =
M−1∑
`=0
|G`| . (5.30)

Given G` ≥ 0 for all `, we have that |λj| ≤
∑M−1
`=0 G` for all j. Since

G` = 1
2

{
erf

(
x` + δx/2√

4Dδt

)
− erf

(
x` − δx/2√

4Dδt

)}

= 1
2

{
erf

(
x` + δx/2√

4Dδt

)
− erf

(
x`−1 + δx/2√

4Dδt

)}
,

we have that

|λj| ≤
1
2

{
erf

(
xM−1 + δx/2√

4Dδt

)
− erf

(
x0 − δx/2√

4Dδt

)}
< 1. (5.31)

The strict inequality is due to −1 ≤ erf(x) ≤ 1 for all x and M being finite. It follows
that the eigenvalues of ATA are |λj|2 < 1. Therefore, the spectrum of ATA − I is
s(ATA− I) < 0.

Therefore, em+1
k − emk ≤ 0. Consequently,

Em+1 − Em =
K∑
k=0

{
em+1
k − emk

}
≤ 0,

which proves that the numerical method is stable.

5.4 Numerical Results

5.4.1 The 1-d Model
For our 1-dimensional simulations, we perform 105 realizations of the AB model with the
agent initialized at x0 = 0.5. The agent moves with spatial step size of 4x = 0.01 and
time step 4t = 4x2/2, so the PDE diffusivity constant is D = 4x2/(24t) = 1. For the
corresponding PDE model, we use the stable numerical algorithm detailed in Section 5.3
with a point source at x0 = 0.5. We choose M so that G0, GM−1 < εmach and we assign
the numerical step sizes as δx = 4x, δt = 4t, and δξ = ξc/2000. In both the AB and
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PDE models, we define the agent absorption function as β(x) = α
∫
B(x,4x/2)C(x) dx. The

α parameter defines the absorption rate of the agent’s membrane and, since C has units
of chemical particles per length, we see from the definition of β(x) that α has units of
time−1. For the following examples, we let α = 0.1. In each example, we see the solution
initially undergoing pure diffusion, until some critical time where agents begin exiting
their current state. This critical time can also be seen as the location of a cusp or turning
point in the measure of spread graphs.

Example 1: Max Concentration at Starting Location For this example, the chem-
ical concentration C(x) = 1

1+10(x−0.5)2 is symmetric and concave down around x = 0.5. A
comparison of the AB model and our continuum PDE model is shown in Fig. 5.4, for a
critical or tolerance threshold of ξc = 104x4t. The distribution of cells or agents in the
initial live state are shown in color with time on the vertical axis and spatial location on
the horizontal axis. The values on Fig. 5.4b at location (xi, tm) are the numerical solutions
pmi from (5.28), which are interpreted as the probability a cell is alive and located within
region B(xi,4x/2) at time t. Since the agents are all initialized at xo = 0.5, we observe
a high density of cells close to this point for small time intervals. We note that Fig. 5.4b
is smoother than 5.4a since it is a continuous approximation whereas the AB model has
agents moving discretely either to the left or right at each time step.

(a) AB Model Simulation (b) PDE Approximation

Figure 5.4: Comparison of the probability distribution of live agents (shown in color) at
locations x ∈ [0, 1] and at time points t ∈ [0, 0.008]. The AB model results are the mean
over 105 simulations. For both, the chemical concentration is C(x) = 1/(1+10(x−0.5)2).

Additionally, since C(x) has a max at x = 0.5, this causes the probability distribution
p(x, t) to become bimodal at approximately t = 0.0055. Those cells that have remained
close to the initial starting location have absorbed more particles than those that have
moved left or right. Hence, cells close to x = 0.5 are moving out of the initial live cell
state when they reach their absorption capacitance ξc.
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(a) Survival Probability (b) Mean Location (c) Standard Deviation

Figure 5.5: Comparison of the survival probability, as well as mean and standard deviation
of the live agent locations, for the AB model (black ∗) and the numerical PDE solution
(blue line) at each time-step for C(x) = 1/(1 + 10(x− 0.5)2).

The probability an agent is alive at a given time t is the survival probability P (t),
calculated as

P (t) =
∫
R
p(x, t) dx. (5.32)

In Fig. 5.5a, we observe that P (t) for the AB model simulation and PDE approximations
match; there is a sharp decrease in survival probability after t = 0.005 and the majority
of the cells have died at t = 0.007.

The mean location of the live agents is calculated as µ(t) =
∫
R xp̂(x, t) dx, where

p̂(x, t) = p(x, t)/P (t) is the normalized value of p(x, t) at each time t. The numerical
PDE solution solves for the average value in the interval centered at xi with radius 4x/2,
B(xi,4x/2). This allows the calculation of µPDE(t), the mean at time t = mδt, as

µPDE(t) =
∫
R
xp̂(x, t) dx = 1

P (t)

M−1∑
i=1

pmi

∫
B(xi,4x/2)

x dx, (5.33)

the exact integral of the approximate piece-wise constant solution. Just as we did when
calculating the convolution, we can take pmi out of the integral since it is piece-wise
constant. In a similar way, we can calculate σ2

PDE(t), the variance at time t = mδt, as

σ2
PDE(t) =

∫
R(x− µPDE(t))2p̂(x, t) dx =

{
1

P (t)
∑M−1
i=1 pmi

∫
B(xi,4x/2) x

2 dx
}
− µPDE(t)2. (5.34)

The mean location of the AB model simulation and PDE approximation is shown in
Fig. 5.5b. The chemical concentration C(x) is symmetric around x = 0.5, the location
where the agents are initialized, and there is no bias in movement (`(x) = r(x) = 0.5).
Hence, we would expect the mean location of agents in the initial state to be centered
at x = 0.5. We see that until approximately t = 0.006, the PDE mean and the AB
model mean are close to x = 0.5. For times t > 0.006, the number of agents in the
AB model simulation is relatively small, as shown in Fig. 5.5a. This accounts for the
increasing stochastic noise in the mean, as well as the standard deviation, which is shown
in Fig. 5.5c.
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At each iteration of the AB model simulation, the agent can move either left or right.
We see that the agents that remain in the initial state are those that are furthest from
x = 0.5, where C(x) is smaller than at x = 0.5. As a result, the standard deviation is
a monotonically increasing function, as seen in Fig. 5.5c. At approximately t = 0.005,
many cells towards the center of the simulation change state, which causes the “corner”
in the standard deviation graph.

Just like URW in Section 2.1.1, we may be interested in how the AB model simula-
tion converges to the cumulative absorption PDE solution as the number of agents, N ,
increases. To get a sense of the trends, we find the total mean error for a simulation with
N agents,

Eµ(N) =
∑
ti

|µABM(ti)− µPDE(ti)| ,

as the summation over each iteration of the absolute difference between the AB model
simulation mean and the PDE mean in the time interval ti ∈ [0, 0.008]. Similarly, we find
the total standard deviation error and total survival probability errors as

Eσ(N) =
∑
ti

|σABM(ti)− σPDE(ti)| and

EP (N) =
∑
ti

|PABM(ti)− PPDE(ti)| .

Similar to the URW, we see in Fig. 5.6 that the mean location data exhibits a log-linear
trend. Performing a least-squares approximation on this data as derived in Appendix B,
we find that Eµ(N) ≈ e5.3902N−0.5042. So the AB model mean converges to the PDE mean
at a rate approximately 1/

√
N . However, we see that EP (N) and Eσ(N) do not have

log-linear convergence. In fact, both error metrics seem to converge to fixed values for
N > 105. This motivates the use of 105 agents in the examples.

(a) Survival Probability Error (b) Mean Location Error (c) Standard Deviation Error

Figure 5.6: Total error between URW simulation and PDE approximation depending on
the number of URW agents. (a) Total mean location error EP = ∑

ti |PABM(ti)−PPDE(ti)|
(b) Total mean location error Eµ = ∑

ti |µABM(ti)−µPDE(ti)| (c) Total standard deviation
error Eσ = ∑

ti |σURW (ti)− σPDE(ti)|.
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Example 2: Decreasing Concentration The chemical concentration is C(x) =
exp (−x2), which is monotonically decreasing in the interval [0, 1] and all agents or cells
are initialized at xo = 0.5. We expect that the agents which tend to move to the right
within this interval have a higher probability of remaining in the initial state. As shown
in Fig. 5.7, the cells that remain in the initial state tend to be further to the right and
again, we have excellent qualitative agreement between the AB model and the new PDE
continuum model. In Fig. 5.7a we observe a striped pattern, which is a result of the AB
model agents moving only left or right at any given iteration. At a critical threshold of
ξc = 104x4t, cells are able to achieve a cumulative chemical absorption ξ > ξc, causing
the cell to transition states or die. The survival probability shows this trend in Fig. 5.8a,
where there is a sharp decrease in survival probability at t = 0.055.

(a) AB Model Simulation (b) PDE Approximation

Figure 5.7: Comparison of the probability distribution of live agents (shown in color) at
locations x ∈ [0, 1] and at time points t ∈ [0, 0.1]. The AB model results are a mean of
105 simulations. For both, the chemical concentration is C(x) = exp(−x2).

To further characterize the agreement between the AB model simulation and our PDE
approximation, we again look at the mean and standard deviation of the location of live
cells (with cumulative absorption ξ < ξc). In Fig. 5.8b, we observe that the mean location
(calculated using (5.33)) does move to the right of the initial location xo = 0.5 due to the
decreased concentration C(x) to the right of x = 0.5 (allowing cells to live in this region
for a longer period of time). Again, we see that there is noise in the AB model mean for
times t > 0.008, when there are relatively few agents in the initial state.

As shown in Fig. 5.8c, the standard deviation of the agents locations is increasing for
0 ≤ t ≤ 0.005, which corresponds to the time interval where most cells are alive (see
survival probability in Fig. 5.8a). At t = 0.005, agents with a cumulative absorption
reaching ξc begin to change state. Cells to the right of xo = 0.5 tend to remain in the
initialized state, which moves the mean to the right and reduces the variance. A majority
of the cells have changed state by t = 0.008, where the cells that remain are those
that continued to move right. Thus, the standard deviation approaches zero. Similar to
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(a) Survival Probability (b) Mean Location (c) Standard Deviation

Figure 5.8: Comparison of the survival probability, as well as mean and standard deviation
of the live agent locations, for the AB model (black ∗) and the numerical PDE solution
(blue line) at each time-step for C(x) = exp(−x2).

Example 1, we see that as the number of agents in the AB model simulation approaches
zero, the stochastic noise influences the variance (Fig. 5.8c).

Example 3: Biased Random Walk Suppose the RW has a constant bias, where `
and r denote the probabilities of moving left or right, respectively. Our absorption model
is the following PDE

∂U
∂t

+ β(x)∂U
∂ξ

= a∂U
∂x

+D ∂2U
∂x2 , x ∈ R, ξ ∈ [0,∞), t > 0,

U = φ(x, ξ), x ∈ R, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ R, ξ ∈ [0,∞), t > 0,

(5.35)

where a = 4x(`− r)/4t and D = 4x2(`+ r)/(24t). Note that the existence proof also
holds if the agent moves with a constant bias. After splitting the linear operator, the
only difference between Eq. (5.35) and our initial cumulative absorption model equation
in Eq. (5.5) is the form of the Green’s function

G(x, t) = 1
4πDt exp

{
−(x− at)2

4Dt

}
, a = 4x(`− r)

4t
,

as derived in Appendix A.1.3. Replacing the diffusion Green’s function with this advection-
diffusion Green’s function does not affect the existence proof in Section 5.2.3. Further,
by integration by parts and using our free-space boundary condition, we can show that∫
R
∫∞
0 aUUx dξ dx = 0. Therefore, the biased model (5.35) satisfies Theorem 1, so we can

prove that the PDE (5.35) is well-posed.
We set the chemical concentration as C(x) = 1/(1 + 10(x− 0.5)2) and the absorption

capacitance as ξc = 104x4t, the same as in Example 1. However, in contrast to Example
1, we set the probability an agent moves left as ` = 0.4 and the probability an agent moves
right as r = 0.6. We note that a larger density of agents tend to move to the right. In fact,
the graph in Fig. 5.10b initially moves to the right in a straight line at a rate of 0.24x.
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This is due to the fact that only the biased movement determines the agent locations.
The graph of the mean location makes a sudden change around t = 0.005, which is when
some agents absorb above the threshold ξc and begin leaving the live state. At that time,
the chemical profile begins to influence the mean location of agents, which also explains
the shapes of the distributions in Fig. 5.9.

(a) AB Model Simulation (b) PDE Approximation

Figure 5.9: Comparison of the probability distribution of live agents (shown in color) at
locations x ∈ [0, 1] and at time points t ∈ [0, 0.1]. The AB model results are a mean of
105 simulations. For both, the chemical concentration is C(x) = 1/(1 + 10(x− 0.5)2) and
movement is biased to the right.

(a) Survival Probability (b) Mean Location (c) Standard Deviation

Figure 5.10: Comparison of the survival probability, as well as mean and standard de-
viation of the live agent locations, for the AB model (black ∗) and the numerical PDE
solution (blue line) at each time-step for biased motion and C(x) = 1/(1 + 10(x− 0.5)2).

The survival probability for the AB model and continuum PDE model is shown in
Fig. 5.10a, and again there is good agreement between the AB model and PDE solution. In
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comparison to the unbiased movement case in Fig. 5.5a, Fig. 5.10a with biased movement
begins decreasing at an earlier time, but then decreases at a slower rate.

5.4.2 The 2-d Model
We can readily extend the analysis and numerical methods in Sections 5.2-5.3 to the
2-dimensional case. To account for the increased stochasticity of adding an additional
dimension, we initialize 10 million agents. In this example, the agents in the AB model
move with spatial step size of 4x = 4y = 0.01 and time step 4t = 4x2/2. Similarly,
the PDE model utilizes a spatial step size of δx = δy = 4x, a time step of δt = 4t,
and a cumulative absorption step of δξ = ξc/1000. For both the AB model and PDE
model, we set β(x) = α

∫
B(x,4x/2)C(x) dx where the chemical concentration is C(x, y) =

0.5(sin(4πx) sin(4πy) + 1) and the chemical absorption threshold is ξc = 24x4y4t.
The surface plot of the concentration local to the initialized agents in [0, 1]× [0, 1] is

shown in the dashed line contour plots in Fig. 5.11 and Fig. 5.12, where lighter colored
lines denote a value closer to 0 and darker colored lines denote a value closer to 1. The
concentration is symmetric along the lines y = x and y = 1−x. Near the initial location at
(0.5, 0.5), there are local concentration minimums along the line y = −x. Thus, it makes
sense that the probabilities for agents in the initial live state tend to be higher close
to these chemical sinks, as shown in Figs. 5.11 and 5.12. In fact, Figs. 5.11(b)-(c) and
5.12(b)-(c) show the probability density function mode bifurcation. That is, the chemical
distribution causes pmi to evolve into a bi-modal distribution, with each peak located on
the line y = 1− x and equidistant to the line y = x. Again, when comparing the survival
probability as a function of time, we observe excellent agreement between the AB model
and continuum PDE (Fig. 5.13a).

(a) t = 0.0002 (b) t = 0.0017 (c) t = 0.0024 (d) t = 0.0050

Figure 5.11: Probability distribution of live agents for the AB model (shown in color) in
the region [0, 1] × [0, 1] at 4 different time points with α = 0.10. The AB model results
are a mean of 10 million agents. The dashed-line contour plot indicates the chemical
concentration, C(x, y).

For multi-dimensional models, we use the statistical measurement of mean squared
deviation (MSD) rather than standard deviation. The MSD measures how much the
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(a) t = 0.0002 (b) t = 0.0017 (c) t = 0.0024 (d) t = 0.0050

Figure 5.12: Probability distribution of live agents for the numerical PDE solution (shown
in color) in the region [0, 1]×[0, 1] at 4 different time points with α = 0.10. The dashed-line
contour plot indicates the chemical concentration, C(x, y).

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 5.13: Comparison of the survival probability, mean, and standard deviation of the
AB model and the semi-discrete numerical PDE solution at each time-step. The color of
the AB model mean in (b) corresponds to the time-step. Because the mean location of
the numerical PDE approximation is located at (0.5,0.5) for every time-step, we label it
using a black • to make a visual comparison with the AB model mean easier.

distribution spreads from the mean, µ̄(t):

MSD(t) =
(∫

Rd
(x− µ̄(t))2 p̂(x, t) dx

)1/2
.

Unlike the 2-D standard deviation, the MSD does not compute the spread along a given
axis.

Fig. 5.13b demonstrates that the mean location of the PDE approximation remains
constant at (0.5, 0.5). The AB model mean is not constant. However, since the AB
model mean is contained within the region B((0.5, 0.5),4x/2), and travels away from the
PDE mean for times t > 0.003, we can assume that this is due to the greater influence
of stochastic noise as the number of agents in the initial state becomes relatively small.
Since there are sufficiently many agents towards the end of the simulation and the mean
during this simulation is within the control region B((0.5, 0.5),4x/2), we see in Fig. 5.13c

82



the MSD of the AB model data is not unduly influenced by the stochastic noise. Hence,
the AB model and PDE standard deviation curves match reasonably well throughout the
simulations.

We can see the difference in how the model develops if we decrease the absorption
proportion parameter to α = 0.01 in Fig. 5.14 and Fig. 5.15. The agents diffuse for a longer
time period before absorbing sufficient chemical to split. With α = 0.01, the distribution
forms two peaks around t = 0.02 (as shown in Fig. 5.14(d), 5.15(c)), whereas with α =
0.10, the distribution forms two peaks around t = 0.0024 (as shown in Fig. 5.11(c),
5.12(c)). The pattern is different from α = 0.10 as t increases further. Since pmi initially
diffuses farther before changing states, the distribution eventually settles along additional
chemical sinks (as shown in Fig. 5.14(d), 5.15(d)).

(a) t = 0.0002 (b) t = 0.0100 (c) t = 0.0200 (d) t = 0.0375

Figure 5.14: Probability distribution of live agents for the AB model (shown in color) in
the region [0, 1] × [0, 1] at 4 different time points with α = 0.01. The AB model results
are a mean of 10 million agents. The dashed-line contour plot indicates the chemical
concentration, C(x, y).

(a) t = 0.0002 (b) t = 0.0100 (c) t = 0.0200 (d) t = 0.0375

Figure 5.15: Probability distribution of live agents for the numerical PDE solution (shown
in color) in the region [0, 1]×[0, 1] at 4 different time points with α = 0.01. The dashed-line
contour plot indicates the chemical concentration, C(x, y).

If we instead choose an α � 1, the diffusion time of the agents is much faster than
the time for the agents to absorb chemical to capacitance. In that case, we can simplify
and re-frame the model as a diffusion-dominant absorption model. The derivation and
examples of such a model are further developed in Section 5.5.
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5.4.3 Mean Occupancy Time
Derivation

We may be interested in the mean time an agent is in the initial live state, which is
denoted as the mean occupancy time (MOT). In a manner similar to deriving the mean
first passage time in Section 2.1.2, this is the first moment of the total flux out of a
particular state.

The total flux out of the initial state can be computed as

F (x, t) = − ∂

∂t

∫
Rn
p(x, t) dx.

The negative sign is due to the fact that we are tracking the density exiting the initial
state. It follows that the MOT is

M =
∫ ∞

0
tF (x, t) dt. (5.36)

Since p ∈ L1(Rn) and for any finite location x ∈ Rn, limt→∞ p(x, t) = 0, we can use
integration by parts to derive the MOT,

M =
∫ ∞

0

∫
Rn
p(x, t) dx dt. (5.37)

Inverse Problem: Approximating α

We may not be able to explicitly measure the absorption rate α, which may be a useful
parameter for other experiments or applications [46]. However, using our cumulative
absorption model, we develop an indirect method of measuring an agent’s absorption
rate. We define the forward problem as y = G(x), where we denote G as the cumulative
absorption model, y as the distribution of live agents (data), and x as the parameters
(input). The inverse problem solves for an unknown input x, given the data y. Suppose
we have experimental data, y, of the spatial distribution of live agents in time and we
want to solve for the unknown parameter x = α. To accomplish this, we approach
this parameter approximation in an indirect manner by using the MOT. This offers two
advantages: the MOT is relatively easy to calculate from distributional time-series data
and our inverse problem does not require any manipulation with the spatial variable.

We can use Eq. (5.37) to compare the MOT for various values of permeability, α, and
initial point source, x0. In Fig. 5.16a, we illustrate the MOT for various permeability
parameters, α, and initial locations x0. The data points were collected by numerically
solving for p (as in Section 5.4.1) and then summing over the spatial and time dimensions.
As one would predict, the MOT is shorter as α approaches 1. The concavity of the graph
depends on the initial location of the agent, since the simulation has a spatially-variable
chemical concentration. We also see that for each initial location, the numerical MOT
data, M(α|x0), follows a power law, Aα−k which is common for biological applications
[137]. Using the least squares formulation9 in Appendix B, we can approximate values
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(a) The mean occupancy time (MOT) in the live
state, M(α|x0), for various starting locations x0
plotted as a function of absorption permeability,
α. The approximations are determined by fitting
data to a power law, Aα−k.

(b) We have solved for A(x0) and k(x0) for dif-
ferent MOT curves, where we assume a power
law, A(x0)α−k(x0), for a known MOT profile.

Figure 5.16: Mean occupancy time (MOT) data in the live state, M(α|x0), corresponding
to a chemical concentration C(x) = 1 − sin(πx), spatial-step size 4x = 0.01, time-step
size 4t = 4x2, and absorption capacitance ξc = 104x4t.

for A and k. We see that the parameters A and k depend on x0. That is, A ≡ A(x0),
k ≡ k(x0), and we can approximate the α-dependent MOT curves, assuming the form of
the MOT is:

M(α|x0) = A(x0)α−k(x0). (5.38)
The curves in Figure 5.16b are a result of approximating A(x0) and k(x0) from MOT
approximations for various x0 on the interval [0.1, 0.9]. If one knows the relationship
between α and the magnitude of the chemical concentration, C(x), then it is possible to
obtain the MOT curves similar to Fig. 5.16a. However, we do not need to know the exact
values of α to make the power law approximations if we know the absorption relationship
between α and C(x). For our example, we know that β(x) =

∫
B(x,4x/2)C(x) dx. Thus,

changing the value of α by a proportion while keeping C(x) fixed yields the same results
as changing the value of C(x) by the same proportion while keeping α fixed. In this way,
the experimentalist can obtain the power law parameters A and k without previously
knowing the absorption rate.

So, for a known chemical concentration, C, and cell speed, we can create a graph like
Fig. 5.16b. If we are given an initial location x0, then we can approximate the parameters
k and A. Knowing these parameters and MOT is sufficient to back out the corresponding
absorption permeability parameter, α ≈

(
M
A

)−1/k
.

9There are other, more accurate non-linear least squares methods, such as the Gauss-Newton method
[120, Ch.4]. However, using a logarithmic transformation was sufficient in this case for a proof of concept.
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5.4.4 Measure of Chemical Effectiveness
Another question of interest may be, given the density of live agents in space and time,
what is the underlying chemical concentration or chemical threshold. We demonstrated a
way to measure the absorption rate, α, given an agent’s initial location and the chemical
profile. Now, we want to find a way to approximate the chemical profile, given an agent’s
initial distribution and a known chemical absorption rate. From the absorption model,
we have that the probability an agent is alive and at location x at time t by the integral
p(x, t) =

∫ ξc
0 U(x, t, ξ) dξ. To solve this inverse problem, we first need to measure how

effective the chemical is at transitioning agents from live to dead state.

Derivation of Effectiveness Measure

We know that without the chemical concentration, the agent would ceaselessly perform
an URW. So, the role of the absorption term in the PDE is to essentially partition the
URW solution into live agents and dead agents according to the dynamics imposed by
the chemical concentration density, C(x), absorption tolerance, ξc, and absorption rate,
α. Let W (x, t) denote the probability that an agent undergoing an n-dimensional URW
after being initialized at x0 is at location x at time t. That is, with the same free-
space boundary conditions as the absorption model, the URW solution is W (x, t) =

1
(4πDt)n/2 exp

{
− |x−x0|2

4Dt

}
. Note that we can also solve for W by calculating the integral

W (x, t) =
∫∞

0 U(x, t, ξ) dξ.
The effectiveness of the chemical to perform state transitions can be defined as the

conditional probability that an agent is not in the live state, U , at location x at time t
given that the agent is at location x at time t. That is, we define the chemical effectiveness
measure, ε(x, t), for t > 0 as

ε(x, t) := P(sti 6= U|xti = x) =
∫∞
ξc
U(x, t, ξ) dξ∫∞

0 U(x, t, ξ) dξ = 1− p(x, t)
W (x, t) (5.39)

If ε(x, t) = 0, then p(x, t) = W (x, t) and the chemical concentration has no effect on the
model at (x, t). However, if ε(x, t) = 1, then p(x, t) = 0 and the chemical concentration
has changed the states of all the agents near x by time t. We examine two 1-d chemical
effectiveness plots in Fig. 5.17. For both plots, we assign parameters δx = 4x = 0.01,
δt = 4t = 4x2/2, ξc = 104x4t, and δξ = ξc/2000. In Fig. 5.17a, we assign the
chemical concentration density as C(x) = 1

1+10(x−0.5)2 . So p(x, t) is the same as Example
1 in Section 5.4.1. The plot is of magnitude 1 until approximately t = 0.0055, when the
agents close to the maximum of C(x) at x = 0.5 begin to change state. We can see the
same symmetry as Fig. 5.4. In Fig. 5.17b, we assign the chemical concentration density
as C(x) = exp {−x2}. So p(x, t) is the same as Example 2 in Section 5.4.1. In fact, we see
the same trend as Fig. 5.7. Finally, in Fig. 5.17c, we assign the chemical concentration
density as C(x) = 0.5 (sin(4πx) + 1). Although the concentration density is periodic, the
initial condition skews the graph surface.
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(a) C(x) = 1
1+10(x−0.5)2 (b) C(x) = exp

{
−x2} (c) C(x) = 1

2 (sin(4πx) + 1)

Figure 5.17: Conditional probability ε(x, t) = P(sti 6= U|xti = x) surface plots for various
chemical concentrations, C(x) derived from the numerical PDE solution with U(x, t =
0, ξ) = δ(x − 0.5, ξ). If ε(x, t) = 0 then the PDE absorption solution matches the URW
solution.

Inverse Problem: Approximating C(x)

The above examples compute the chemical effectiveness for initial condition U(x, t =
0, ξ) = δ(x− 0.5, ξ) as a point source. We acknowledge that the only difference between
p(x, t) and W (x, t) is the state change due to the absorption of the chemical concen-
tration. A natural question is whether there is a way to approximate the shape of the
chemical concentration from the chemical effectiveness plots. As opposed to the previous
example, the unknowns here are the spatially-dependent chemical concentration values,
C(x) (rather than α). The output is still the spatial time-series distribution of live agents,
which can be used to obtain the chemical efficacy plots (and resulting separation curve).

To attempt this inverse problem, we first compute the chemical effectiveness for the
absorption model with an initial uniform spatial distribution of agents at ξ = 0. That is,
we solve the free-space absorption PDE10 with initial condition U(x, t = 0, ξ) = δ(ξ). This
initial condition allows the separation curve (which separates ε(x, t) = 0 from ε(x, t) = 1)
in the plots of Fig. 5.18 to essentially recover the shape of the chemical concentrations
(up to translation, reflection, and stretching). This shape distortion is related to the rate
of absorption, α, and value of the absorption capacitance, ξc. If the agent remains in the
same location, then the graphs would only have values of 0 or 1. Thus, the steepness of
the boundary between 0 and 1 explains how much the agents move to regions of differing
chemical concentration before changing state.

By the characteristic solution to the absorption operator, we know that if an agent at
location x does not move in the spatial domain, then t = ξc/β(x) is the time for the agent
to change state. So, in the above simulations of Fig. 5.18, if we assume that the agents do
not move, then we can find the time t∗ in the plots that an agent initialized at location

10We run the PDE to generate data, which requires a known chemical concentration, C(x). In practice,
if we need to solve for C(x), then we cannot explicitly know C(x). However, we can gather the spatial
distribution data from experimental results.
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(a) C(x) = 1
1+10(x−0.5)2 (b) C(x) = exp

{
−x2} (c) C(x) = 1

2 (sin(4πx) + 1)

Figure 5.18: Conditional probability ε(x, t) = P(sti 6= U|xti = x) surface plots for various
chemical concentrations, C(x) derived from the numerical PDE solution with U(x, t =
0, ξ) = δ(ξ).

(a) C(x) = 1
1+10(x−0.5)2 (b) C(x) = exp

{
−x2} (c) C(x) = 1

2 (sin(4πx) + 1)

Figure 5.19: Comparison between the exact chemical concentration, C(x), (black line)
and the approximate chemical concentration, Capprox(x), (red asterisk) derived from
ε(x, t) for various absorption model PDE numerical solutions.

x∗ changes state. Since we approximate β(x) ≈ α4xC(x) by central finite differences, we
can approximate the chemical concentration by solving

Capprox(x∗) = ξc
α4xt∗

.

Of course, the agent does move, so we expect error to occur in our calculation of Capprox(x∗).
We compare the exact chemical concentration, C(x), with the approximate chemical con-
centration, Capprox(x), in Fig. 5.19. Since the agent moves, we find t∗ by finding the time
at which ε(x∗) = 0.5 from the plots in Fig. 5.18. The approximation error in Fig. 5.19c
is much larger than the other approximation because the conditional probability tran-
sition from 0 to 1 in Fig. 5.18c is more gradual. This implies that the agents in the
C(x) = 1

2(sin(4πx) + 1) model moves along steeper chemical gradients than the other
models. Thus, if the noise in the measurement of the chemical efficacy yields a non-

88



smooth separation curve, then this method for approximating C(x) is not effective.

Inverse Problem: Approximating ξc

Experimentalists may be interested in calculating the chemical threshold. Using a similar
approach as approximating C(x), we can also approximate the chemical threshold, ξc.
The unknown value here is ξc and the output is the spatial time-series distribution of
live agents. Using the point source initial condition, U(x, t = 0, ξ) = δ(x − x0, ξ), we
develop the chemical efficacy surface plots like those shown in Fig. 5.17. We can then
approximate the time t∗ for the agent to change state by finding the time on the separation
curve corresponding with x = x0. We can approximate the chemical threshold by solving

ξc,approx ≈ C(x0)α4xt∗.

Since the value of ξc,approx is explicitly dependent on the value t∗, large measurement errors
in the chemical effectiveness separation curve at x0 cause large approximation errors.

In Table 5.1 we compare the approximated chemical threshold values for the three
chemical effectiveness plots in Fig. 5.17. The relative error is calculated by

Relative Error = |ξc,exact − ξc,approx|
ξc,exact

.

We see that despite the skewness of Fig. 5.17c, the relative error is approximately the
same order as the other figures.

C(x) ξc,exact ξc,approx Relative Error
1

1+10(x−0.5)2 5× 10−6 5.0250× 10−6 5.00× 10−3

exp {−x2} 5× 10−6 5.0038× 10−6 7.59× 10−4

1
2 (sin(4πx) + 1) 5× 10−6 4.9875× 10−6 2.50× 10−3

Table 5.1: Comparison between exact chemical threshold, ξc,exact, and the approximate
chemical threshold, ξc,approx.

5.5 Relative Scaling Approximations
The above examples assumed a particular scaling of the absorption and movement pa-
rameters in (5.5) and (5.6). However, other scaling relations may be possible and we can
further simplify the equations or analysis. First, let us non-dimensionalize the absorption
variable, ξ, by using the scaling factor ξc to obtain ξ̄ = ξ/ξc. We can rewrite (5.5) as

∂U
∂t

+ β(x)
ξc

∂U
∂ξ̄

= D ∂2U
∂x2 , x ∈ R, ξ ∈ [0,∞), t > 0,

U = φ(x, ξ̄), x ∈ R, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ R, ξ ∈ [0,∞), t > 0,

(5.40)
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with the agent changing state when ξ ≥ 1. There are three different regimes based on the
term β(x)/(Dξc).

First, we investigate when β(x)/(Dξc) � 1. This occurs when the agent absorbs
chemical above its capacitance before diffusion moves the agent, as can be observed in
Fig 5.20(a). Assuming β(x) > 0 is continuous, we can asymptotically simplify (5.40) to

∂U
∂t

+ β(x)
ξc

∂U
∂ξ̄

= 0, x ∈ R, ξ̄ ∈ [0,∞), t > 0,
U = φ(x, ξ̄), x ∈ R, ξ̄ ∈ [0,∞), t > 0,

(5.41)

with a solution U(x, t, ξ̄) = φ(x, ξ̄ − β(x)t/ξc) for all x ∈ R. An example solution of the
total density in the live state in an absorption-dominant parameter regime is shown in
Fig 5.20(b). Note that as 〈β(x)〉/(Dξc) approaches ∞, the AB model and PDE densities
converge.

(a) AB model simulation surface plot. (b) Comparison between AB model and
PDE density in live state with respect to
time.

Figure 5.20: Absorption-dominant parameter regime comparison between AB model and
PDE density in live state with respect to time. Here 4x = 4t = 10−4, β(x) = 4x 1

20(1 +
sin πx), ξc = 10−6. Agents are initialized at x0 = 0.5, so β(x0)/(Dξc) = 2× 105.

Second, we investigate when β(x)/(Dξc) � 1. This occurs when the agent diffuses
much faster than the agent absorbs chemical, as is shown in Fig 5.21(a). We cannot
make an asymptotic argument, ignoring the absorption term, since that is our primary
interest in this model. Thus, we make the assumption that the density of the agents in the
live state quickly becomes uniform over the spatial coordinate. This assumption allows
us to collapse the spatial coordinate and have a solution solely in absorption and time
dimensions. We can define the PDE initial condition as φ̄(ξ̄) :=

∫
R φ(x, ξ̄) dx and we can

redefine the PDE absorption term as the average value of β in the spatial domain, 〈β(x)〉,
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(a) AB model simulation surface plot. (b) Comparison between AB model and
PDE density in live state with respect to
time.

Figure 5.21: Diffusion-dominant parameter regime comparison between AB model and
PDE density in live state with respect to time. Here 4x = 0.1, 4t = 0.01, β(x) =
4x 1

20(1 + sin πx), ξc = 1. Agents are initialized at x0 = 0.5, so 〈β(x)〉/(Dξc) = 10−3.

to obtain the following PDE,
∂U
∂t

+ 〈β(x)〉
ξc

∂U
∂ξ̄

= 0, ξ̄ ∈ [0,∞), t > 0
U = φ̄(ξ̄), ξ̄ ∈ [0,∞), t = 0.

(5.42)

The solution is U(ξ̄, t) = φ̄
(
ξ̄ − 〈β(x)〉t/ξc

)
. An example solution of the total density

in the live state in a diffusion-dominant parameter regime is shown in Fig 5.21(b). Note
that as 〈β(x)〉/(Dξc) approaches 0, the AB model and PDE densities converge.
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Chapter 6

Absorption Model in Bounded
Domain

The free space boundaries have illuminated interesting phenomenon with the absorption
model. However, applying the cumulative absorption model to real world applications
requires being able to solve the model in various bounded domains. It is important to
understand how dynamics are affected by a boundary, so we need to investigate half-plane
domains. Moreover, we know absorption occurs in blood vessels, so it would be useful to
solve the model in an infinite strip. We may be interested in modeling cells in a petri dish
or a microfluidic device, in which case solving in a bounded, convex shape is necessary.
Finally, by adding a boundary, we may be interested in deriving the probability an agent
escapes an absorption region before it absorbs a threshold level. In order to do this,
we need to reexamine our free-space numerical scheme and adapt it to handle boundary
conditions.

6.1 Numerical Green’s Function in Bounded Regions
We use the method of images to use our stable numerical method in bounded domains.
For this dissertation, we show examples of half-plane, infinite strip, and square domains.
However, we can apply this numerical method to any domain that handles the method of
images, such as triangular, circular, and annular domains. We formulate the numerical
algorithms for the half-plane and infinite strip for the 1-d diffusion equation, with the
understanding that they can extend to domains of higher dimensions.

Using Fourier transformations in Appendix A.1.2, we already know the exact solution
to the free-space diffusion equation

∂U
∂t

= D ∂2U
∂x2 , x ∈ R, t > 0,

U = φ(x), x ∈ R, t = 0,
lim|x|→+∞ U = 0, x ∈ R, t > 0

is the convolution U(x, t) = G ∗ φ(x), where G(x, t) = 1√
4πDt exp

{
−x2

4Dt

}
is the 1-d fun-
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damental solution to the diffusion equation. Further, in Section 5.3 we established a
numerical method to solve this free space convolution solution numerically using cell vol-
umes. We use the idea of the method of images in conjunction with our numerical Green’s
method solver to solve for other bounded domains.

6.1.1 Infinite Half-Line
We begin examining a bounded region with the infinite half-line. To derive the numerical
method of images, we can consider the diffusion equation on the infinite half-line spatial
domain Ω = [0,+∞): 

∂U
∂t

= D ∂2U
∂x2 , x ∈ Ω, t > 0,

U = φ(x), x ∈ Ω, t = 0,
limx→+∞ U = 0, x ∈ Ω, t > 0,

with either absorbing (U(0, t) = 0) or no-flux (∂U
∂x

∣∣∣
x=0

= 0) boundary conditions at the
boundary x = 0.

We know from Appendix A.1.2 that G(x, t|x0) = 1√
4πDt exp

{
− (x−x0)2

4Dt

}
is the solution

to the 1-d diffusion equation with an initial point source at x = x0 and free-space boundary
equations. We use the vertical bar to explicitly denote the location of the initial point
source. A common way to solve the diffusion equation in the domain of interest Ω =
[0,+∞) is by extending this domain to an image domain (−∞, 0) [41, Ch.2][125, Ch.3].
If we have no-flux boundary conditions at x = 0, then we reflect our Green’s function
solution across the boundary. Thus, the solution with an initial condition U(x, t = 0) =
δ(x−x0) is U(x, t|x0) = G(x, t|x0)+G(x, t|−x0). The point −x0 is called the image point
of x0. However, if we have absorbing boundary condition at x = 0, then our solution is
U(x, t|x0) = G(x, t|x0) − G(x, t| − x0). Since G is symmetric, it is clear that U = 0 at
x = 0.

Numerical Method of Images for Half-Line: Suppose after discretizing the spatial
domain, that the boundary is located at x0, a cell center. Then, as seen in Fig. 6.1, our
domain of interest contains half of the cell volume centered at x0 as well as the cell
volumes centered at x1, x2, . . . , xM . By the method of images, we want to reflect the data
in the domain of interest over the boundary and into the image domain. We denote the
cell centers of the image domain as the set {x−1, x−2, . . . , x−M}. With this notation, it
is clear that information from the cell volume centered at xi reflects to its image cell
volume, which is centered at x−i. In Fig. 6.1 the blue cell in the domain of interest is
reflected to the orange image cell. For each time-step iteration of the numerical scheme,
we reflect the current solution from the domain of interest over the boundary cell and
into the image domain. The sign of the image solution depends on the type of boundary
condition. That is, for absorbing boundary condition at x0 we assign um−i = −umi or for
no-flux boundary condition at x0 we assign um−i = umi . Once the image domain values are
assigned, we compute the numerical Green’s function convolution.
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Figure 6.1: Numerical method of images method for half-line in 1-d. The numerical
domain {x0, x1, . . . , xM} is extended to the left of the border cell x0 (depicted in gray),
producing a mirror image of values in the extension {x−1, x−2, . . . , x−M}.

The half-line algorithm can be stated as:

• Initialize u0
i = φi for i > 0 and u0

0 =

0 : if absorbing boundary condition at x0

0.5φ0 : if no-flux boundary condition at x0

• For m = 0, 1, . . . :

� ũm0 =

0 : if absorbing boundary condition at x0

2um0 : if no-flux boundary condition at x0

� ũm−i =

−umi : if absorbing boundary condition at x0

umi : if no-flux boundary condition at x0
,

(for i = 1, 2, . . . ,M)
� umi = λi

∑M
j=−M ũmi−jGj, (for i = 0, 1, 2, . . . ,M),

where Gj is defined in Section 5.3 as the fundamental solution integrated over the cell
volume centered at xj. After performing the discrete convolution, the parameter λi es-
sentially deletes the image domain from the numerical solution at the boundary volume
centered at x0. To do this, we define λi as

λi =

0.5 : if i = 0
1 : if i = 1, 2, . . . ,M.

Since only half the area of the border cell x0 is in the domain of interest, we set λ0 = 1/2.

6.1.2 Finite Line Segment
We may be interested in modeling cases in tubular regions, such as blood vessels or pipes.
Using symmetry, we can reduce these models to infinite strips. To develop a reasonable
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algorithm in this case, we can first consider the 1-d diffusion equation on a line segment
Ω = [0, 1] ⊂ R: 

∂U
∂t

= D ∂2U
∂x2 , x ∈ Ω, t > 0,

U = φ(x), x ∈ Ω, t = 0,

with either absorbing or no-flux boundary conditions at the boundaries x = 0 and x = 1.
Like the half-line, a common way to solve the diffusion equation in the line segment

Ω = [0, 1] is by using method of images [41, Ch.2][125, Ch.3]. With the half-line we only
had one image point, but for the line segment we need countably infinite image points.
For example, if we take the point x0 ∈ (0, 1) and initially reflect it across x = 1 we
have the image point 2 − x0. But then we need to reflect 2 − x0 across the boundary
x = 0, which yields the image point −2 + x0. However, we need to reflect this new image
point across x = 1, which yields 4− x0. This pattern continues countably infinite times.
Thus, the solution with no-flux boundary conditions is U(x, t|x0) = ∑

k∈Z[G(x, t|2k +
x0) + G(x, t|2k − x0)]. For absorbing boundary conditions, the solution is U(x, t|x0) =∑
k∈Z[G(x, t|2k+ x0)−G(x, t|2k− x0)]. We could also solve the diffusion equation in this

domain using eigenvalue expansions with the method of separation of variables [41, Ch.4],
but we want a method that can easily adapt the numerical method we used in Chapter 5.

Numerical Method of Images for Line Segment Domain: For notational sim-
plicity, suppose the boundaries are located at b1 = x−M and b2 = xM , where x−M and xM
are numerical cell centers. Then our domain of interest contains half of each boundary cell
as well as the cell volumes centered at x−M+1, x−M+2, . . . , xM−1. Similar to the half-line
algorithm, we want to reflect the data in the domain of interest over each boundary and
into the image domains. We denote the cell centers in the region reflected across x−M as
the image domain {x−M−1, x−M−2, . . . , x−3M+1} and the cell centers in the region reflected
across xM as the image domain {xM+1, xM+2, . . . , x3M−1}. With this notation, the data
from the cell volume centered at xi reflects across x−M to the cell volume x−(i+2M) and
reflects across xM to the cell volume x2M−i. In Fig. 6.2 the blue cell in the domain of
interest reflects to both orange image cells.

Other than reflecting across a second boundary, the numerical scheme is similar to the
half-line algorithms:

• Initialize u0
i = φi

• For m = 0, 1, . . . :

� ũm−M =

0 : if absorbing boundary condition at x0

2um−M : if no-flux boundary condition at x0

� ũmM =

0 : if absorbing boundary condition at x0

2umM : if no-flux boundary condition at x0
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Figure 6.2: Numerical method of images method for line segment in 1-d. The numerical
domain {x−M , x−M+1, . . . , xM} is extended to the left of the border cell x−M and to the
right of border cell xM (both depicted in gray), producing a mirror image of values in
the extensions {x−M+1, x−M+2, . . . , x−3M} and {xM+1, xM+2, . . . , x3M}. Because of the
symmetry, it is notationally simpler to index the border cells as x−M and xM , rather than
x0 and xM .

� ũm−(i+2M) =

−umi : if absorbing boundary condition at x−M
umi : if no-flux boundary condition at x−M

,

(for i = −M + 1,−M + 2, . . . ,M − 1)

� ũm2M−i =

−umi : if absorbing boundary condition at xM
umi : if no-flux boundary condition at xM

,

(for i = −M + 1,−M + 2, . . . ,M − 1)
� umi = λi

∑3M−1
j=−3M+1 ũ

m
i−jGj, (for i = −M,−M + 1, . . . ,M),

Just as it does with the half-line algorithm, the parameter λi deletes the image domain
from the numerical solution. We define λi as

λi =



0 : if i = −3M + 1,−3M + 2, . . . ,−M − 1
0.5 : if i = −M
1 : if i = −M + 1,−M + 2, . . . ,M − 1.
0.5 : if i = M

0 : if i = M + 1,M + 2, . . . , 3M − 1.

The analytical method of images on a line segment requires infinite reflections, as the
image points alternate reflecting across each boundary. We could extend the domain
further to allow for more image domains. However, if xM −x−M is large enough, then the
Green’s function is bounded close to zero outside the domain of interest. In that case,
additional reflections would not decrease the error substantially.
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6.1.3 Extension to Higher Dimensions
Half-Plane Domain: To extend the half-line to a half-plane, we simply add another
spatial coordinate to the computational domain. Because free-space boundary conditions
would be performed in the y-coordinate, we would not impose any image domains in the
additional coordinate as seen in Fig. 6.3. The half-plane algorithm can be stated as:

Figure 6.3: Numerical method of images method for half-plane in 2-d. The numerical
domain x-coordinates, {x0, x1, . . . , xM}, are extended to the left of the border cells cen-
tered at x = x0 (depicted in gray), producing a mirror image of values in the extension
{x−1, x−2, . . . , x−M}.

• Initialize u0
i,j = φi,j

• For m = 0, 1, . . . :

� ũm0,j =

0 : if absorbing boundary condition at x0

2um0,j : if no-flux boundary condition at x0
, (for all j)

� ũm−i,j =

−umi,j : if absorbing boundary condition at x0

umi,j : if no-flux boundary condition at x0
,

(for i = 1, 2, . . . ,M and all j)
� umi,j = λi

∑M
k=−M

∑M
`=−M ũmi−k,j−`Gk,`, (for i = 0, 1, 2, . . . ,M and all j),

where Gk,` is defined in Section 5.3 as the 2-d fundamental solution integrated over the
cell centered at (xk, y`). Further, since the image cells only depend on the x-coordinate,
we define λi as the same as the half-line algorithm.

λi =


0 : if i = −M,−M + 1, . . . ,−1
0.5 : if i = 0
1 : if i = 1, 2, . . . ,M.

Here, the y-dimension is partitioned into the same number of cells as the x-dimension.
This is not a requirement for the above method.
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Absorption Example R× [0,∞): We simulate an example of the absorption model
in the upper half-plane, Ω = R × [0,∞), with step-sizes 4x = 0.02 and 4t = 4x2/2
along with reflecting boundary conditions at y = 0. The chemical density profile is
C(x, y) = 0.5(cos(2πx) sin(3πy) + 1) with absorption rate α = 0.1. We initialize 5 × 105

agents in the live state at x0 = (0.5, 0.5), and an agent changes state when it absorbs
above the chemical threshold ξc = 84t4x4y. Histogram results for four time points of
the AB model are shown in Fig. 6.4a.

We solve the following PDE numerically on the domain [−2, 2] × [−2, 2] using the
method of images at y = 0

∂U
∂t

+ β(x)∂U
∂ξ

= D ∂2U
∂x2 , x ∈ Ω, ξ ∈ [0,∞), t > 0,

U = δ(x− (0.5, 0.5), ξ), x ∈ Ω, ξ ∈ [0,∞), t = 0,
limy→∞ U = 0, x ∈ Ω, ξ ∈ [0,∞), t > 0,
lim|x|→∞ U = 0, x ∈ Ω, ξ ∈ [0,∞), t > 0,
∂U
∂y

= 0, x ∈ R× {0}, ξ ∈ [0,∞), t > 0,

(6.1)

where D = 4x2/44t. The numerical scheme uses the same step-sizes as the AB model
(δx = 4x and δt = 4t) and absorption step-size δξ = ξc/300. Numerical solution results
for four time points of the PDE solution are shown in Fig. 6.4b.

Comparing the results of Fig. 6.4, we can easily see qualitative similarities. The initial
point source is a local maximum of the chemical concentration, so as time progresses
the agents near the initial source change state, and the agents which survive tend to
be closer to the local minimums. For statistical comparison between the AB model and
PDE solutions, we observe the quantitative agreement in Fig. 6.5. From the survival
probability graph, agents in the AB model simulations and PDE solutions begin to change
state around t = 0.015. The mean location is close to the initial point source until
around 0.025. However, just like in Chapter 5, as the number of agents approaches 0 the
simulation stochasticity exerts greater influence on the mean location. Additionally, we
see agreement in the shape of the mean squared deviation (MSD), with a cusp appearing
near t = 0.017, when agents begin changing state.

Infinite Strip Domain: To extend the line segment to an infinite strip, we essentially
perform the same addendum as we did when extending the half-line to a half-plane as seen
in Fig. 6.6. That is, we add a j index to the cell volumes and perform a 2-d convolution
with Gk,`.

Absorption Example R× [−1, 1]: We simulate the absorption model in the infinite
strip, Ω = R× [−1, 1], with step-sizes 4x = 0.02 and 4t = 4x2/2 along with reflecting
boundary conditions at y = −1 and y = 1. The chemical density profile is C(x, y) =
0.5(cos(πx) sin(1.5πy) + 1) with absorption rate α = 0.1. We initialize 5 × 105 agents in
the live state at x0 = (0, 0.64), and an agent changes state when it absorbs above the
chemical threshold ξc = 84t4x4y. Histogram results for four time points of the AB
model are shown in Fig. 6.7a.
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t = 0.001 t = 0.008 t = 0.024 t = 0.040

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 6.4: Probability distribution of agents (shown in color) in the upper half-plane
region [−2, 2]× [0, 2] at four different time points. Agents are initialized at (0.5, 0.5). The
blue contour plot denotes the chemical concentration C(x) = 1

2 (cos(2πx) cos(3πy) + 1)
and the green line denotes the reflective boundary at y = 0. The absorption capacitance is
ξc = 84t4x4y. (a) AB model simulation 2-d histogram is average of 5×105 realizations
with step sizes 4x = 0.02 and 4t = 4x2/2. Histogram bin size is 24x× 24x. (b) PDE
numerical solution is computed in the region [−2, 2] × [−2, 2] with numerical step sizes
δx = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 6.5: Various statistical measures comparing the AB model and PDE (a) Survival
probability, (b) Mean location, and (c) MSD.

We solve the following PDE numerically on the domain [−3, 3] × [−3, 3] using the
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Figure 6.6: Numerical method of images method for an infinite strip in 2-d. The numer-
ical domain x-coordinates, {x−M , x−M+1, . . . , xM}, are extended to the left of the border
cells at x = x−M and to the right of border cells at x = xM (both depicted in gray),
producing a mirror image of values in the extensions {x−M+1, x−M+2, . . . , x−3M+1} and
{xM+1, xM+2, . . . , x3M−1}.

method of images at y = −1 and y = 1

∂U
∂t

+ β(x)∂U
∂ξ

= D ∂2U
∂x2 , x ∈ Ω, ξ ∈ [0,∞), t > 0,

U = δ(x− (0, 0.64), ξ), x ∈ Ω, ξ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ Ω, ξ ∈ [0,∞), t > 0,
∂U
∂y

= 0, x ∈ R× {−1, 1}, ξ ∈ [0,∞), t > 0,

(6.2)

where D = 4x2/44t. The numerical scheme uses the same step-sizes as the AB model
(δx = 4x and δt = 4t) and absorption step-size δξ = ξc/300. Numerical results for the
same four time points of the PDE solution are shown in Fig. 6.7b.

Comparing the results of Fig. 6.7, we can easily see qualitative similarities. The initial
point source is vertically halfway between a local maximum and a local minimum of the
chemical concentration. In fact, the closest local chemical minimum is at the boundary
y = 1. So as time progresses the agents which survive tend to be close to the boundary.
For statistical comparison between the AB model and PDE solutions, we observe the
quantitative agreement in Fig. 6.8. From the survival probability graph, agents in the AB
model simulations and PDE solutions begin to change state around t = 0.01. The mean
location tends to move vertically. The AB model mean location is much less than a
single spatial step 4x = 0.02 distance from the PDE mean location. As time approaches
t = 0.06, we see that the AB model mean location varies wildly during each iteration due
to the small number of agents in the live state. Finally, although the MSD graphs do not
show exact agreement in magnitude, we can observe a qualitative agreement with their
shapes. Each has a cusp appearing near t = 0.013, which is approximately when some
agents begin changing state. The MSD graph magnitudes approach move closer after that
time, since both the AB model simulation and PDE solution tend to be concentrated near
a single local chemical minimum.
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t = 0.001 t = 0.012 t = 0.036 t = 0.060

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 6.7: Probability distribution of agents (shown in color) in the infinite strip region
[−2, 2]× [−1, 1] at four different time points. Agents are initialized at (0, 0.64). The blue
contour plot denotes the chemical concentration C(x) = 1

2

(
cos(πx) sin

(
3
2πy

)
+ 1

)
and

the green line denotes the reflective boundary at y = −1 and y = 1. The absorption
capacitance is ξc = 84t4x4y. (a) AB model simulation 2-d histogram is average of
5 × 105 realizations with step sizes 4x = 0.02 and 4t = 4x2/2. Histogram bin size is
24x× 24x. (b) PDE numerical solution is computed in the region [−3, 3]× [−3, 3] with
numerical step sizes δx = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 6.8: Various statistical measures comparing the AB model and PDE (a) Survival
probability, (b) Mean location, and (c) MSD.

Square Domain: To extend the infinite strip to a rectangular domain, we need to
add another image step by imposing the numerical method of images to both the x-
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and y-coordinates. Since adjacent boundaries in a rectangular domain are orthogonal,
we can decompose the image domains as being a reflection of only one coordinate. So
we essentially iterate the infinite strip method in each dimension. However, as we see in
Fig. 6.9, we also need to account for the corner image domains, which are additional image
extentions reflected from the image domains. Due to the added complexity, we state the

Figure 6.9: Numerical domain for a square domain of interest in 2-d. The nu-
merical domain x-coordinates, {x−M , x−M+1, . . . , xM}, are extended to the left of
the border cells at x = x−M and to the right of border cells at x = xM
(both depicted in gray), producing a mirror image of values in the extensions
{x−M+1, x−M+2, . . . , x−3M+1} and {xM+1, xM+2, . . . , x3M−1}. Similarly, the numerical do-
main y-coordinates, {y−M , y−M+1, . . . , yM}, are extended to the left of the border cells
at y = y−M and to the right of border cells at y = yM (both depicted in gray),
producing a mirror image of values in the extensions {y−M+1, y−M+2, . . . , y−3M+1} and
{yM+1, yM+2, . . . , y3M−1}.

numerical algorithm for a square domain. However, to conserve space, we assume that the
model has no-flux boundary conditions at each wall. By now, it is clear that absorbing
boundary conditions require a sign change for each reflection.

• Initialize u0
i,j = φi,j

• For m = 0, 1, . . . :

� ũm−M,j = 2um−M,j, (for all j)
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� ũmi,−M = 2umi,−M , (for all i)
� ũmM,j = 2umM,j, (for all j)
� ũmi,M = 2umi,M , (for all i)
� ũm−(i+2M),j = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũmi,−(j+2M) = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũm2M−i,j = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũmi,2M−j = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũm−(i+2M),−(j+2M) = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũm−(i+2M),2M−j = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũm2M−i,−(j+2M) = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� ũm2M−i,2M−j = umi,j (for i, j = −M + 1,−M + 2, . . . ,M − 1)
� umi,j = λi,j

∑3M−1
k=−3M+1

∑3M−1
`=−3M+1 ũ

m
i−k,j−`Gk,`, (for i, j = −M,−M + 1, . . . ,M).

For the square domain, we define the domain of interest proportion parameter, λi,j, as

λi,j =



0.5 : if i = −M and j = −M + 1,−M + 2, . . . ,M − 1
0.5 : if i = −M + 1,−M + 2, . . . ,M − 1 and j = −M
0.25 : if i = M,−M and j = −M
1 : if i, j = −M + 1,−M + 2, . . . ,M − 1
0.5 : if i = M and j = −M + 1,−M + 2, . . . ,M − 1
0.5 : if i = −M + 1,−M + 2, . . . ,M − 1 and j = M

0.25 : if i = M,−M and j = M

0 : otherwise.

Note that λi,j = 0.25 at the corners of the domain of interest, since that is the proportion
of each corner cell volume within the domain of interest.

Absorption Example [−1, 1] × [−1, 1]: We simulate the absorption model in the
square, Ω = [−1, 1] × [−1, 1], with step-sizes 4x = 0.02 and 4t = 4x2/2 along with
reflecting boundary conditions at the boundary of the region [−1, 1]×[−1, 1]. The chemical
density profile is C(x, y) = 0.5(cos(4πx) cos(3πy) + 1) with absorption rate α = 0.1. We
initialize 106 agents in the live state near the corner at x0 = (0.76, 0.68), and an agent
changes state when it absorbs above the chemical threshold ξc = 24t4x4y. Histogram
results for four time points of the AB model are shown in Fig. 6.10a.

We solve the following PDE numerically on the extended numerical domain [−3, 3]×
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[−3, 3] using the method of images at the square boundary

∂U
∂t

+ β(x)∂U
∂ξ

= D ∂2U
∂x2 , x ∈ Ω, ξ ∈ [0,∞), t > 0,

U = δ(x− (0.76, 0.68), ξ), x ∈ Ω, ξ ∈ [0,∞), t = 0,
∂U
∂y

= 0, x ∈ [−1, 1]× {−1, 1}, ξ ∈ [0,∞), t > 0,
∂U
∂x

= 0, x ∈ {−1, 1} × [−1, 1], ξ ∈ [0,∞), t > 0,

(6.3)

where D = 4x2/44t. The numerical scheme uses the same step-sizes as the AB model
(δx = 4x and δt = 4t) and absorption step-size δξ = ξc/300. Numerical results for four
time points of the PDE solution are shown in Fig. 6.10b.

Comparing the results of Fig. 6.10, we can easily see qualitative similarities. The
initial point source is near a local chemical minimum. So the agents initially diffuse
in the region, but as agents begin to change state the AB model and PDE histograms
demonstrate that the the agents remain concentrated near that local chemical minimum.
For statistical comparison between the AB model and PDE solutions, we observe the
quantitative agreement in Fig. 6.11. From the survival probability graph, agents in the AB
model simulations and PDE solutions begin to change state around t = 0.008. The mean
location tends to move from the initial point source (0.76, 0.68) to the point (0.75, 0.667),
the closest local chemical minimum. The AB model mean location is much less than
the length of a single spatial step (4x = 0.02) from the PDE mean location. As time
approaches t = 0.03, we see that the AB model mean location varies wildly during each
iteration due to the small number of agents in the live state. Finally, although the MSD
graphs do not show exact agreement in magnitude, we can observe a qualitative agreement
with their shapes. Each has a turning point near t = 0.008, when agents begin changing
state. The MSD graph magnitudes approach move closer after that time, since both
the AB model simulation and PDE solution tend to be concentrated near a single local
chemical minimum. Moreover, we can see the stochasticity affecting the AB model MSD
graph after t = 0.03.

6.2 Survival Probability
So far, in our model, the agent moves around the bounded spatial region (e.g. Ω = [0,∞))
via a random walk (RW), while absorbing chemical from the domain. Suppose that if the
agent moves across x = 0, then the agent leaves the simulation alive. However, if the
agent absorbs chemical above a threshold level, ξc, while still in the spatial region, then
the agent dies. The domain of interest for this modeling problem is shown in Fig. 6.12.
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t = 0.001 t = 0.008 t = 0.024 t = 0.040

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 6.10: Probability distribution of agents (shown in color) in the square region
[−1, 1] × [−1, 1] at four different time points. Agents are initialized at (0.76, 0.68). The
blue contour plot denotes the chemical concentration C(x) = 1

2 (cos(4πx) cos(3πy) + 1)
and the green line denotes the reflective boundary at the square border. The absorption
capacitance is ξc = 24t4x4y. (a) AB model simulation 2-d histogram is average of 106

realizations with step sizes4x = 0.02 and4t = 4x2/2. Histogram bin size is 24x×24x.
(b) PDE numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical
step sizes δx = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 6.11: Various statistical measures comparing the AB model and PDE (a) Survival
probability, (b) Mean location, and (c) MSD.
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Figure 6.12: Domain of interest with the 1-d spatial domain in the horizontal axis and
the absorption domain in the vertical direction. Agents moving across x = 0 are said to
escape, whereas agents absorbing more than ξ = ξc are said to die.

We know that the PDE system with these boundary conditions is:

∂U
∂t

+ β(x)∂U
∂ξ

= D ∂2U
∂x2 , x ∈ Ω, ξ ∈ [0,∞), t > 0,

U = φ(x, ξ), x ∈ Ω, ξ ∈ [0,∞), t = 0,
U = 0, x = 0, ξ ∈ [0,∞), t > 0,
lim|x|→∞ U(x, t, ξ) = 0, x ∈ Ω, ξ ∈ [0,∞), t > 0,

(6.4)

and, just like Section 5.1.2, we define

p(x, t) =
∫ ξc

0
U(x, t, ξ) dξ (6.5)

as the density of live agent at location x at time t. Recall that if
∫

Ω
∫ ξc

0 φ(x, ξ) dx dξ = 1
(such as is the case when the initial condition is a point source), then we can treat p(x, t)
as the probability an agent is in the domain at location x at time t and alive. A logical
question to answer is: given an initial location and chemical profile, what is the probability
an agent eventually escapes the simulation (rather than dies)?

6.2.1 Escape Probability

We can calculate the flux of live agents out of the domain at time t as f(t) = ∂p
∂x

∣∣∣∣
x=0

.
This concept is drawn from the calculation of splitting probabilities as derived in Section
2.1.3. Usually, splitting probabilities are calculated solely within the spatial dimensions,
not between a spatial dimension and another (absorption) dimension.

Then, the total density of live agents that escape the domain after being initialized as
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a point source at x0 is

T (x0) =
∫ ∞

0
f(t) dt

=
∫ ∞

0

∂p

∂x

∣∣∣∣
x=0

dt

=
∫ ∞

0

∂

∂x

[∫ ξc

0
U(x, t, ξ) dξ

]
x=0

dt

=
∫ ∞

0

∫ ξc

0

∂U

∂x

∣∣∣∣
x=0

dξ dt

Since
∫∞

0
∫ ξc

0 U(x, t, ξ) dξ dx = 1 we can consider U a probability distribution. So T (x0)
is the probability an agent escapes the domain at x0. However, if the initial condition∫∞

0
∫ ξc

0 φ(x, ξ) dξ dx 6= 1, then we can still calculate the escape probability by normalizing
T :

T (x0) =
∫∞

0
∫ ξc

0
∂U
∂x

∣∣∣
x=0

dξ dt∫∞
0
∫ ξc
0 φ(x, ξ) dx dξ

.

Since all agents in this model either die or escape, the probability that the agent dies is
1 − T (x0). By treating the escape probability as a function T : [0,∞) → [0, 1] we can
analyze what happens as we change the value of x0.

6.2.2 Numerical Simulation
We simulate the absorption AB model with absorption rate α = 0.1, absorption tolerance
ξc = 10−5, and step sizes 4x = 0.01, 4t = 4x2/2. We initialize the agents at x0 and run
the simulation until 0.9999 of the agents either escape or transition. Fig. 6.13(a) compares
the proportion of agents which are alive, dead, or escaped from the AB model simulation
and PDE solutions with chemical density C(x) = x. Whereas, Fig. 6.13(b) compares
those with chemical density C(x) = 1

2(sin(x) + 1). Part of the discrepancy between the
AB model and PDE escape probabilities we see in Table 6.1 is due to the numerical scheme
setting dirichlet-zero boundary condition on the entire volume at [0,4x/2). The other is
that there is zero waiting probability, as detailed in Section 2.1.1.
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x0 = 1.00 x0 = 0.50 x0 = 0.25

(a) C(x) = x

(b) C(x) = 0.5 (sin(πx) + 1)

Figure 6.13: We initialize 105 agents at three different point sources at x0 with chemical
profile C(x) and boundary at x = 0. The lines and stars denote AB model and PDE
solutions, respectively, with colors denoting Live, Dead, and Escaped agents.

C(x) = x
Died Escaped

x0 ABM PDE ABM PDE
1.00 0.9999 0.9999 0 0
0.50 0.9440 0.9313 0.0559 0.0634
0.25 0.5984 0.5776 0.4015 0.3898

C(x) = 0.5(sin(πx) + 1)
Died Escaped

x0 ABM PDE ABM PDE
1.00 0.9999 0.9999 0 0
0.50 0.9987 0.9981 0.0012 0.0017
0.25 0.8695 0.8527 0.1304 0.1357

Table 6.1: Tables of survival probabilities corresponding to end behavior of Fig. 6.13.
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Chapter 7

Absorption Model in Fluid Flow

Along with fixed boundaries, agent-based (AB) models can be influenced by dynamic
environments. A natural environment for biological organisms to absorb chemical is in a
fluid flow. We may be interested in modeling species survival in regions where radioactive
particles are spread by atmospheric processes [97], organisms in streamwater currents
[40], or chemicals and platelets in blood flow [74]. Recent engineering apparatuses, such
as microfluidic devices, allow for experimentation of small scale organisms in controlled
fluid profiles [129, 68]. In this chapter, we further adapt the random walk (RW) and
cumulative absorption models by immersing the agents in a fluid with a steady (time-
independent) profile.

7.1 RW Biased By Fluid
Up to this chapter, we assume that the environment had no explicit effect on the motility
of the agents or the chemical concentration, other than the effect that the state changes
or boundaries have on the mean location. This is a valid assumption when the agent and
chemical are immersed in a static fluid or when the mass of the agent is large enough
that the fluid does not exert sufficient force to influence the agent movement. However,
in this chapter we examine the cumulative absorption model in cases where the agent and
chemical are immersed in a moving fluid, which affects agent and chemical motility. We
assume the fluid is steady. That is, the fluid velocity profile, v(x), is not time dependent,
as seen in the examples from Fig. 7.1. But, the RW and cumulative absorption models in
this chapter can easily be extended to account for time-dependent fluid velocity profiles.
Moreover, the fluid velocity examples in this chapter are incompressible, ∇ · v = 0 [1,
Ch.1].
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(a) v(x) =
(
−y
x

)
(b) v(x) = (3− ||x||2)

(
−y
x

)
(c) v(x) = 1

4

(
1− y2

0

)
Figure 7.1: Fluid velocity fields used in RW and absorption model examples.

7.1.1 Derivation
Assume that an agent’s movement is affected by a fluid velocity1 v(x) = (v1(x), v2(x))T in
some 2-d spatial domain Ω ⊂ R2. We acknowledge that this influence can occur directly,
by the fluid forces physically transporting the agent, or indirectly, by biasing the agent’s
movement. Semantically, we demarcate the terms transport and movement. Transport
implies the agent changes location through some external force and independent of an
agent’s actions, whereas movement refers to change in location due to an agent’s self-
agency, even though the movement may be biased by the same forces that transport the
agent.

Direct Fluid Influence: Transport Due to Fluid Forces

The agent may be transported by the fluid, the influence of which may be dampened by
friction or drag forces [58]. During a given time-step interval [t, t+4t), the fluid transports
an agent the distance

∫ t+4t
t av(x) dt = av(x)4t, where the parameter a ∈ [0, 1] is the

influence (or force) of the steady fluid flow to move the agent. If a = 0 then the agent
does not move due to the fluid, but only from its self-agency. If a = 1, then the agent
moves with the fluid, so the reference frame of the agent is the same as a fluid particle
in the flow. This parameter correlates to the mechanical notion of drag or friction forces
impeding an agent’s movement. For example, a sphere moving through a viscous fluid
has a drag force Fd = 6πµrv, where µ is the viscosity, r is the sphere radius, and v is
the fluid velocity relative to the sphere [1, Ch.7]. The drag force is directly proportional
to the sphere radius. So, in a random walk model, the fluid transport influence, a, would
decrease as the agent’s radius, r, increases.

1For this particular section, the variables v(x) = (v1(x), v2(x))T are used to denote fluid velocities.
Velocities v1(x) and v2(x) denote the fluid velocity in the x and y coordinates, respectively. As in previous
chapters, U denotes the density of live cells.
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Indirect Fluid Influence: Movement Biased by Fluid

The fluid flow may affect the agent’s decision to move, which reveals itself in our model
by changing the RW movement probabilities. This is similar to modeling chemotaxis
by a biased random walk [3]. However, in this case the movement probabilities are not
manipulated by chemical gradients, but rather by the fluid velocities. We define the
normalized velocities as

v̂1(x) = v1(x)
supΩ̂ |v1(x)| , v̂2(x) = v2(x)

supΩ̂ |v2(x)| ,

where Ω̂ ⊂ Ω is the numerical or simulation boundary. In an unbounded case we may
find that supΩ |vk(x)| = +∞. So, we need to restrict the domain Ω to a region, Ω̂, local
to the agent’s initial location and such that the agent cannot exit during the simulation
run-time. This provides a normalized bound 0 ≤ |v̂1(x)|, |v̂2(x)| ≤ 1 for all x ∈ Ω̂.

Suppose the agent can move in one of four directions n, s, e, w. We assign biasing
in each direction as probabilistic functions n(x,v), s(x,v), e(x,v), and w(x,v) such that
0 ≤ n(x,v), s(x,v), e(x,v), w(x,v) and 0 ≤ (n(x,v) + s(x,v) + e(x,v) + w(x,v)) ≤ 1.
Given these contraints, the choice of biasing functions is not unique. In this chapter, we
define the biasing probability functions as

• e(x) = 1
4 {1 + bv̂1(x)} , w(x) = 1

4 {1− bv̂1(x)} ,

• n(x) = 1
4 {1 + bv̂2(x)} , s(x) = 1

4 {1− bv̂2(x)} .

The parameter b ∈ [−1, 1] is the influence of the fluid to bias the agent’s movement. If
b = 0, the agent moves itself according to an unbiased RW. As |b| → 1, the fluid exerts
greater influence on an agent’s decision. The sign of b determines whether the agent
desires to travel with or against the fluid flow.

For example, sperm cells and several species of nematodes tend to swim against the
flow direction (positive rheotaxis), so we would use b < 0 [9, 66]. In contrast, young
salmon tend to swim with the flow direction (negative rheotaxis), so we would use b > 0
[40]. Although the sign of the biasing parameter b may be known from observation, the
exact value is experiment-dependent and may require an inverse problem methodology
to tune properly. It is worth noting that some animals, such as Planaria alpina choose
positive or negative rheotaxis based on the temperature and alkalinity of the fluid [10].
To model this, one can make b a function dependent on the local chemical concentration,
however in this chapter we only focus on the constant case.
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Derivation of Biased Movement PDE

As in Chapter 2, let U(x, y, t) be the probability an agent is at location (x, y) at time t.
We begin with a difference equation, which defines the agent’s movement

U(x,y, t+4t)
= e(x− a4tv1 −4x, y − a4tv2)U(x− a4tv1 −4x, y − a4tv2, t)
+ w(x− a4tv1 +4x, y − a4tv2)U(x− a4tv1 +4x, y − a4tv2, t)
+ n(x− a4tv1, y − a4tv2 −4x)U(x− a4tv1, y − a4tv2 −4x, t)
+ s(x− a4tv1, y − a4tv2 +4x)U(x− a4tv1, y − a4tv2 +4x, t).

(7.1)

The right side of Eq. (7.1) accounts for both transport and biasing. We assume the flow
velocity profile is such that these are the only four locations at time t that can move to
location (x, y) at time t+4t. As we did in previous chapters, we can expand in a Taylor
series and simplify to obtain the movement PDE

∂U

∂t
+ av · ∇U + bc∇ · (v̂U) = D∇2U, (7.2)

where v̂ = (v̂1, v̂2)T , c = 4x
24t , and D = 4x2

44t . Suppose the fluid is incompressible, which
means ∇ · v = 0. Then, by vector Calculus identities, ∇ · (v̂U) can be rewritten as

∇ · (v̂U) = U(∇ · v̂) + v̂ · (∇U) = v̂ · (∇U).

It follows that (7.2) simplifies to ∂U
∂t

+(av+bcv̂) ·∇U = D∇2U . For notational simplicity,
we can define the variable

w = av + bcv̂ =
[
av1 + bcv1/ supΩ̂ |v1|
av2 + bcv2/ supΩ̂ |v2|

]
, with c = 4x24t .

Note that the fluid biasing proportion, b, and the fluid transport proportion, a, appear in
the advection parameter w. Then we just need to solve the following advection-diffusion
equation

∂U

∂t
+ w · ∇U = D∇2U (7.3)

to know the density of agents at (x, t). It may seem obvious that movement advected
by fluid is in the form (7.3), but, in general, the form of w is not necessarily known.
By deriving (7.3) from the RW model, we know the form of w in terms of how the fluid
influences movement bias, b, and the influence of fluid force on the agent’s transport, a.

7.1.2 Numerical Method
The PDE (7.3) may not have an explicit analytic solution for general fluid flow v, initial,
and boundary conditions. We solve the linear PDE with an operator-split numerical
method, similar to that which we introduced in Section 5.2.2. We derive the operator-
split system of PDEs in the following subsection. Due to the fluid flow advection term,
this system has an additional transport equation, which we need to solve numerically.

112



Operator-Splitting Algorithm

Suppose our RW has initial condition U(x, 0) = φ(x) and free-space boundary condition,
lim|x|→∞ U(x, t) = 0. We do not know a closed form solution to this for general fluid
velocities v(x). To solve the PDE approximation, we follow the same method as Chapter
5, where we restate the problem by splitting the operator at discrete time-steps of length
τ and then solve each step over discrete control volumes. The algorithm for solving the
operator-split PDE problem is adapted from Section 5.2.2 to include the transport term
in (7.4), and is defined as:

• U0(x) = φ(x)

• For m = 1, 2, . . .

� Ūm−1(x) = Um−1(x)
� Ûm−1/2(x) = G(x, τ) ∗ Ūm−1(x)
� Um(x) = Ûm−1/2(x− (bv1 + acv̂1)τ, y − (bv2 + acv̂2)τ).

Note that the last equation is the same as Um(x) = Ûm−1/2(x −wτ). For the numerical
solution of the diffusion equation, we use the same Green’s function convolution as Section
5.2.2. Due to variations in the magnitude of the advection function throughout the
domain, we derive an advection numerical method from a Lagrangian perspective to
ensure the accuracy of the advection operator.

Lagrangian Advection Numerical Method

Assume we know the average fluid velocity in each numerical volume B(xi, δx/2) ×
B(yj, δy/2). That is, we can compute vi,j = 1

δx δy

∫
B(xi,δx/2)

∫
B(yj ,δy/2) v(x) dy dx. We want

to numerically solve the 2-d advection equation

∂U

∂t
+ (bv1i,j + acv̂1i,j)

∂U

∂x
+ (bv2i,j + acv̂2i,j)

∂U

∂y
= 0, (7.4)

whose solution in our operator-split PDE problem is found as Um(x) = Ûm−1/2(x−(bv1i,j+
acv̂1i,j)τ, y − (bv2i,j + acv̂2i,j)τ).

The advection operator numerical solution method should be robust, so that the sta-
bility does not depend on the ratio between the numerical spatial step, δx, and numerical
time step, δt. This stability ratio may be spatially-dependent, since the ratio of the advec-
tion and diffusion parameters, w/D may be of different orders throughout the computa-
tional domain. Thus, we might need a different method in advective regimes, |w|/D � 1,
than the method in diffusive regimes, 0 < |w|/D � 1. We resolve this issue by tracking
where the information in each control volume travels.

Generally, finite difference methods choose a particular node and calculate the pro-
portion of information that each neighboring node transfers to that node [75, Ch.1]. In
contrast, finite volume methods choose a particular control volume and calculate the fluxes
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from surrounding control volumes. The Gudonov method refines this by using character-
istics to calculate the proportion of information that enters and exits the cell volumes [76,
Ch.4]. However, if the fluid is very fast we would require very small time steps to ensure
we do not lose information (i.e. information would travel further than a control volume
width during a time increment of length δt). So, we adapt the idea behind the Gudonov
method and solve the advection operator from a Lagrangian perspective.

We can think of the advection operator as a means of transporting information across
the domain at prescribed directions and speeds. A certain proportion of the information
that originated in the control volume centered at xi,j at time tn is then propagated to the
control volumes near xi,j −wi,jδt at time tn+1. Although we eventually need a method to
advect in 2-d, we can initially derive this numerical method in 1-d and then implement it
by iterating the method in both the x and y coordinates.

(a) Advected to Left of Cell Center (b) Advected to Right of Cell Center

Figure 7.2: How information propagates from the control volume at xj (shown as a blue
rectangle). The advected xj is at xj + w(xj)δt (shown as a red circle) and the closest
cell volume to the advected xj is centered at xi (shown as a yellow rectangle). Unless
that is the cell center, a proportion of unj is propagated to the cell on either the left or
the right of xj.

Suppose we wanted to solve the 1-d transport PDE:
∂U

∂t
+ w(x)∂U

∂x
= 0.

In 1-d, we know the characteristics of the transport equation at xj move a distance
w(xj)δt during the time interval [t, t+ δt) for every t. So the new location after time-step
δt becomes x̂j = xj+w(xj)δt. But, we cannot guarantee that this new location is centered
at a cell grid for every cell center xj and numerical time step δt. To account for this error,
we calculate the proportion of information from the cell centered at xj that advects to
the cell centered at xi by looking at the characteristics. We encode this information into
the characteristic proportion factor γij for every xj, xi in our numerical domain. Denote
idx(x̂j) the index of the closest cell center to x̂j. From Fig. 7.2 we see that we define the
characteristic proportion factor as

γij =


1− ε/δx : if i = idx(x̂j)
ε/δx : if i = idx(x̂j) + sgn[x̂j − idx(x̂j)]
0 : otherwise,
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where the sign function, sgn(x), returns 1 if x ≥ 0 or returns −1 if x < 0. Our proposed
1-d Lagrangian numerical scheme, with umk = 1

δx

∫
B(xi,δx/2) U(x,mδt) dx, is

um+1
i =

∑
j

γiju
m
j .

This Lagrangian method can easily extend to higher dimensions, by solving for the
proportion iteratively in each dimension. Note that if the flow is steady (w does not
depend on time), the characteristic proportion factors, γij, can be precomputed in a sparse
matrix to save computational time.

7.1.3 Examples
Before adding a chemical concentration and absorption dynamics into the model, we want
to examine how well the RW simulation agrees with the PDE approximation. Our insights
here help us better understand any error that we may incur by adding absorption based
state changes to the model. We examine the RW in different domains, both free-space
and bounded, with prescribed steady fluid velocity fields.

Free-Space Domain

We begin examining the RW in the free-space domain with the biasing parameter, b = 1,
held constant for three different fluid advection parameter, a, regimes. For these free-space
examples, the fluid velocity profile is defined as

v(x, y) = 50
(

3−
√
x2 + y2

)(−y
x

)

as shown in Fig. 7.1b. It is easy to calculate that ∇ · v = 0, so we know that the
fluid flow is incompressible. We initialize 106 agents at x0 = (0, 0.4), advect the agent
a distance proportional to a and then move the agent with spatial step-size 4x = 0.01
with biasing parameter b. Each time-step is defined as 4t = 4x2/2. For the numerical
PDE approximation, we define step-sizes δx = 4x and δt = 4t and solve the PDE in the
numerical domain [−4, 4]× [−4, 4]. The three regimes are a = 0 (biasing only), a = 1/50
(maximum fluid transport distance is roughly the same order as the estimated URW
mean squared deviation for one time-step), and a = 1 (maximum fluid transport distance
is much larger than the the estimated URW mean squared deviation for one time-step).

No fluid transport (a = 0): Here we experiment with just a passive fluid influence
by assigning a = 0. That is, we model a RW biased by fluid flow, but the fluid does not
actively move each agent, such as what occurs when the agent has large mass. We see in
Fig. 7.3a and 7.3b that the pdf spreads almost symmetrically from a center point. But, in
contrast to the graphs from Chapter 2, the distribution translates due to the fluid biasing.
We can see this translation in the mean location graph of Fig. 7.4. The mean
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.3: Probability distribution of agents (shown in color) in the region [−1, 1]×[−1, 1]
at four different time points. Agents are initialized at (0, 0.4) and move with parameters
b = 1, a = 0. The fluid velocity field is denoted in cyan. (a) AB model probability
distribution is average of 106 realizations with step sizes 4x = 0.01 and 4t = 4x2/2 and
is depicted as a 2-d histogram with bin size 24x × 24x. (b) PDE numerical solution
is computed in the region [−4, 4] × [−4, 4] with numerical step sizes δx = δy = 4x and
δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.4: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.5: Probability distribution of agents (shown in color) in the region [−1, 1]×[−1, 1]
at four different time points. Agents are initialized at (0, 0.4) and move with parameters
b = 1, a = 1/50. The fluid velocity field is denoted in cyan. (a) AB model probability
distribution is average of 106 realizations with step sizes 4x = 0.01 and 4t = 4x2/2
and is depicted at each time as a 2-d histogram with bin size 24x × 24x. (b) PDE
numerical solution is computed in the region [−4, 4] × [−4, 4] with numerical step sizes
δx = δy = 4x and δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.6: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.7: Probability distribution of agents (shown in color) in the region [−1, 1]×[−1, 1]
at four different time points. Agents are initialized at (0, 0.4) and move with parameters
b = 1, a = 1. The fluid velocity field is denoted in cyan. (a) AB model probability
distribution is average of 106 realizations with step sizes 4x = 0.01 and 4t = 4x2/2
and is depicted at each time as a 2-d histogram with bin size 24x × 24x. (b) PDE
numerical solution is computed in the region [−4, 4] × [−4, 4] with numerical step sizes
δx = δy = 4x and δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.8: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.
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location starts at (0, 0.4), the initial point source, and terminates around (−0.14, 0.374)
at t = 0.015 due to the fluid biased movement.

In contrast with the URW graphs, there is less agreement with the mean squared
deviation (MSD). Note that the RW, as defined in Section 7.1.1, has zero waiting prob-
ability. So, the movement is not as smooth as the PDE approximation. The advection
is spatially dependent, causing these smoothing approximation errors to accumulate as
time increases.

Large Friction or Drag Forces (a = 1/50): In this case, we add active fluid transport
by increasing the fluid transport parameter to a = 1/50. So we may interpret the mass
of the agent in this example as being less than the previous example. We maintain the
biasing parameter as b = 1 so we can more easily compare both examples. We see in
Fig. 7.6 that the agents advect faster than the previous case. The curved trend from
(0, 0.4) at t = 0 to (−0.155, 0.369) at t = 0.015 is due to the fluid biased movement
and slight fluid transport. The AB model and PDE MSDs have similar trends, but the
difference is due to the spatially dependent fluid velocity.

No Friction or Drag Forces (a = 1): In this case, we add active fluid transport by
increasing the fluid transport parameter to a = 1. That is, the model agents move with
the fluid without friction or drag forces, which occurs for infinitesimally small particles
(such as pollen grains). We keep the biasing parameter b = 1 so we can compare with the
previous free-space examples. It is clear in Fig. 7.7a and 7.7b that the increase in fluid
force skews the resulting distributions. We see in Fig. 7.8 that the agents advect much
faster than the previous case. The curved trend from (0, 0.4) at t = 0 to (−0.3,−0.28)
at t = 0.015 is due to the fluid biased movement and large fluid transport. Moreover,
because of the increase in advection speed, the difference in MSD increases. But, we can
see that the general shape is the same. Despite this difference in spread, the mean for the
AB model and PDE solutions agree fairly well.

Bounded Domains

We provide examples of RW movement biased and advected by fluid velocity profiles in
the half-plane, infinite strip, and square bounded regions. We interpret this model as
similar to a filter where the filter wall is permeable to the fluid, but obstructs passage
of solid particles. The fluid profiles, initial point-source location, and domains may be
different in each case, but each bounded simulation initializes 5 × 105 agents at a point
source and moves the agents with spatial step 4x = 0.02 and time-step 4t = 4x2/2.

Infinite Half-Plane Domain: First, we examine the infinite half-plane domain Ω =
R × [0,∞), enforcing no-flux boundary conditions for the agents at y = 0. Agents are
initialized at location (0.5, 0.5). The fluid velocity profile is the same as the free-space
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case,

v(x, y) = 50(3−
√
x2 + y2)

(
−y
x

)
,

with simulation biasing parameter b = 1/5 and transport parameter a = 1/50. To solve
this numerically in the bounded domain Ω, we need to use the numerical method of images
introduced in Section 6.1.3. However, to ensure that the data is advecting correctly in
the image domain, we need to make the transformation for x ∈ R and y < 0:

v1(x, y) = v1(x,−y)
v2(x, y) = −v2(x,−y).

It is important to note that this image transformation is done to compute the numerical
solution, the fluid velocity profile in the model does not reflect across the y-axis. The
PDE is then solved in the extended domain [−2, 2]× [−2, 2]. Note that the fluid velocity
v2(x, 0) is non-zero when x 6= 0, but the agents reflect off the wall at y = 0. Recall that
the wall is permeable to the fluid, but not the solid particles.

In Fig. 7.9a and 7.9b that the shape of the distribution is similar. Further, we see in
Fig. 7.10 that the mean location agrees up to some small stochastic perturbations. The
mean location begins at (0.5, 0.5) and terminates around (0.2, 0.68) at t = 0.04 due to the
fluid biased movement and slight fluid transport. The AB model and PDE MSDs have
similar trends, but the difference is due to the spatially dependent fluid velocity.

Infinite Strip Domain: Suppose there are two infinite planes at y = −1 and y = 1
bounding the spatial domain. The agents are initialized at (−1, 0). In this infinite strip,
we assume the incompressible flow is pressure driven with a constant pressure gradient
∇P = −1 and viscosity µ = 1. The fluid velocity profile is that for a Poiseuille flow [1,
Ch.2]:

v(x, y) =
(−∇P

4µ (1− y2)
0

)
,

as shown in Fig. 7.1c. Agents are biased with parameter b = 1/5 and advected with a
moderate friction parameter a = 1/5.

The PDE is solved numerically using the numerical method of images, which is intro-
duced in Section 6.1.3. Just as we do for the half-plane case, we need to ensure that the
fluid flow in the image domains is flowing correctly. Since v2(x, y) = 0 we do not have
to manipulate the vertical velocity in the image domain. The fluid velocity used in the
image domain becomes

v1(x, y) = v1(x,−2− y), if x ∈ R, y ∈ (−1,−3)
v1(x, y) = v1(x, 2− y), if x ∈ R, y ∈ (1, 3).

Just as in the half-plane, this reflection is solely done to compute a numerical solution
and the reflected fluid flow in the image domains does not represent the actual fluid flow
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t = 0.001 t = 0.008 t = 0.024 t = 0.040

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.9: Probability distribution of agents (shown in color) in the upper half-plane
region [−2, 2]× [0, 2] at four different time points. Agents initialize at (0.5, 0.5) and move
with parameters b = 1/5, a = 1/50. The fluid velocity field is denoted in cyan and the
boundary is denoted as blue lines. (a) AB model probability distribution is average of
106 realizations with step sizes 4x = 0.02 and 4t = 4x2/2 and is depicted at each time
as a 2-d histogram with bin size 24x × 24x. (b) PDE numerical solution is computed
in the region [−2, 2]× [−2, 2] with numerical step sizes δx = δy = 4x and δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.10: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.
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t = 0.001 t = 0.012 t = 0.036 t = 0.060

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.11: Probability distribution of agents (shown in color) in the infinite strip region
[−3, 3]× [−1, 1] at four different time points. Agents are initialized at (−1, 0) and move
with parameters b = 1/5, a = 1/5. The fluid velocity field is denoted in cyan and the
boundary is denoted as blue lines. (a) AB model probability distribution is average of
106 realizations with step sizes 4x = 0.02 and 4t = 4x2/2 and is depicted at each time
as a 2-d histogram with bin size 24x × 24x. (b) PDE numerical solution is computed
in the region [−3, 3]× [−3, 3] with numerical step sizes δx = δy = 4x and δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.12: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.

122



of the model in the extended domain. We solve the PDE in the extended numerical
domain, which is [−3, 3]× [−3, 3].

It is clear from Fig. 7.11a and 7.11b that the solution shape appears similar in both
cases. The flow has a periodic profile tangential to the x-axis, which accounts for the
distribution shape evolution as t = 0.06. We see that the solution front has an almost
parabolic shape due to the biasing and advection. The mean location, as seen in Fig. 7.12
remains close to y = 0. The linear trend for the PDE mean location from (−1, 0) at
t = 0 to (−0.4, 0) at t = 0.06 is due to the fluid biased movement and slight fluid
transport. The AB model mean location is noisier due to the RW stochasticity. However,
this experimental noise is bounded within a hundredth of the step-size 4x = 0.02. The
AB model and PDE MSDs have similar trends, but the difference is due to the spatially
dependent fluid velocity and RW stochasticity.

Square Domain: Finally, we examine the RW in a square domain. We initialize the
agents at x0 = (0.2, 0.2). We use the same fluid profile as well as the same fluid bias and
transport parameters as the infinite half-plane example. Additionally, we also assume
that the fluid can pass the boundary without obstruction but the agents reflect off the
boundary walls. The simulation domain is [−1, 1]×[−1, 1]. However, due to the numerical
method of images as derived in Section 6.1.3, the extended numerical domain becomes
[−3, 3] × [−3, 3]. To compute the numerical solution, we reflect the fluid velocity profile
across the boundaries in a similar way as the infinite half-plane and the infinite strip.

In Fig. 7.13a and 7.13b we see that even when the solution reaches the boundary at
t = 0.04, the solution shape is relatively symmetrical. We expect this after modeling the
free-space solution with large friction forces. The mean and MSD match fairly well in
Fig. 7.14. The curved trend from (0.2, 0.2) at t = 0 to (0.04, 0.28) at t = 0.04 is due to the
fluid biased movement and slight fluid transport. The AB model and PDE MSDs have
similar trends, but the difference is due to the spatially dependent fluid velocity.

Now that we examined the RW in fluid, we want to add a chemical concentration and
absorption-based state change to the model. We first derive the PDE model. Then, we
compare the AB model and PDE models in free-space and bounded domains.
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t = 0.001 t = 0.008 t = 0.024 t = 0.040

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.13: Probability distribution of agents (shown in color) in the square region
[−1, 1]× [−1, 1] at four different time points. Agents are initialized at (0.2, 0.2) and move
with parameters b = 1/5, a = 1/50. The fluid velocity field is denoted in cyan and the
boundary is denoted as blue lines. (a) AB model probability distribution is average of
106 realizations with step sizes 4x = 0.02 and 4t = 4x2/2 and is depicted at each time
as a 2-d histogram with bin size 24x × 24x. (b) PDE numerical solution is computed
in the region [−3, 3]× [−3, 3] with numerical step sizes δx = δy = 4x and δt = 4t.

(a) Mean Location (b) Mean Squared Deviation

Figure 7.14: Plots of various statistical measures comparing the AB model and PDE (a)
Mean location (time shown in colorbar) and (b) MSD.
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7.2 Absorption Model in Fluid
We developed methods for modeling cumulative advection as well as a method for mod-
eling RW in a fluid flow. In this section, we combine both models to develop a framework
to model cumulative chemical absorption state changes in cases where the fluid affects
motility. The flowchart in Fig. 7.15 depicts the logic of the AB model. Not only are the
agents moving, but the chemical profile can also change in time due to the fluid flow.

Figure 7.15: Flowchart depicting agent and chemical moving in fluid. The agent absorbs
chemical and dies, if cumulative absorption is above tolerance ξc.

7.2.1 Derivation
Let Ω ⊂ R2. Suppose we have an incompressible steady fluid profile v(x) = (v1(x), v2(x))T .
Just as in Chapter 5, we derive our governing PDE equation by first formulating a differ-
ence equation. From Sections 5.1.1 and 7.1.1, we know the difference equation is of the
form

U(x,y, t+4t, ξ + β̂(x, t))
= e(x− a4tv1 −4x, y − a4tv2)U(x− a4tv1 −4x, y − a4tv2, t, ξ)
+ w(x− a4tv1,+4x, y − a4tv2)U(x− a4tv1 +4x, y − a4tv2, t, ξ)
+ n(x− a4tv1, y − a4tv2 −4x)U(x− a4tv1, y − a4tv2 −4x, t, ξ)
+ s(x− a4tv1, y − a4tv2 +4x)U(x− a4tv1, y − a4tv2 +4x, t, ξ),

(7.5)

where e, w, n, and s are defined in the the same way as in Section 7.1.1. In fact, other than
the inclusion of the absorption variable, ξ, the right hand side of the difference equation
is the same as (7.1). We can also see that the left hand side of the difference equation is
similar to our simple absorption model in Section 5.1.1, except here the chemical concen-
tration is also transported by the fluid. So β̂ depends on time in addition to space. That
is, β̂(x, t) = α4t

∫
B(x,4x/2)C(x, t) dx, where α is the absorption porosity. Expanding this
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difference equation in a Taylor series and simplifying results in the following governing
PDE:

∂U

∂t
+ w · ∇U +

[
β(x, t) +4t∂β(x, t)

∂t

]
∂U

∂ξ
= Du∇2U, (7.6)

where Du = 4x2/(44t) and w = av+ bcv̂. In order to solve this PDE, we have to couple
it with the equation for chemical concentration.

In a manner similar to Section 7.1.1, we can find the governing PDE of the chemical
concentration as:

∂C

∂t
+ acv · ∇C = Dc∇2C, (7.7)

where Dc is the diffusion coefficient. This is the same PDE form as (7.4) with fluid trans-
port parameter a = ac and fluid biasing parameter b = 0, since we assume the chemical
has no self-agency. So, we can use the method detailed in Section 7.1 to numerically solve
this PDE. Depending on the properties of the chemical, there may be a resistance force
causing a < 1.

Numerically, we solve the concentration as the average concentration over each spatial
control volume

cmi,j = 1
δx δy

∫
B(xi,j ,δx/2)

Cm(x) dx,

where Cm(x) = C(x,mδt). It follows that for numerical time step δt � 1, we can
approximate the time derivative as

∂

∂t

∫
B(xi,j ,δx/2)

Cm(x) dx ≈ δx δy
cmi,j − cm−1

i,j

δt
.

As in Section 5.2.2, we solve the PDE (7.6) using an operator-splitting method. The
following iterative algorithm solves the semi-discrete, operator-splitting system:

• U0(x, ξ) = φ(x, ξ)

• For m = 1, 2, . . .

� Ūm−1(x) = Um−1(x)
� Ûm(x, ξ) = Ūm−1(x, ξ − β(x,mτ)τ)
� Ũm(x, ξ) = G(x, τ) ∗ Ûm(x, ξ)
� Um(x, ξ) = Ũm−1/3(x− (bv1 + acv̂1)τ, y − (bv2 + acv̂2, ξ)τ),

where β(x,mτ) = α
[∫
B(x,4x/2)C

m(x) dx +4t ∂
∂t

∫
B(x,4x/2)C

m(x) dx
]
.
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7.2.2 Examples
Free-Space Absorption Fluid Examples

Just as we did in Section 7.1, we first examine the fluid advected absorption model
in R2. For each free-space example we initialize 106 agents at x0 = (0, 0.2). Agents
move with step-size 4x = 0.01 and 4t = 4x2/2. The fluid biases movement with
parameter b = 1/5 and transports the agents with parameter a = 1/25. The chemical
concentration is initialized as the function C(x, 0), diffuses at the rate Dc = 0.2, and is
transported by the fluid with chemical transport parameter ac = 1. Each iteration, the
agents absorb chemical with rate α = 0.1 until the agent absorbs its chemical capacitance
ξc = 104t4x4y. The model is solved numerically with numerical steps δx = δy = 4x,
δt = 4t, and δξ = ξc/300. The numerical domain in which the solution is solved is
[−3, 3]× [−3, 3].

Free-Space Example 1: In the first free-space example, we define the fluid ve-
locity field as v(x) = 25(−y, x)T and initialize the chemical concentration as C(x, 0) =
0.5 (sin(4πx) sin(4πy)). Fig. 7.16a and 7.16b show AB model simulation and the PDE
solution, respectively, for four time-points. We see the chemical concentration, denoted
by blue contour lines, diffusing and rotating. At t = 0.015, the solution surface shows
that the agents which are still in the live state exist at locations of low concentration.

Similar to the other absorption model examples, Fig. 7.17 shows the survival proba-
bility, mean location, and standard deviation. We can see that the survival probability
curve is not as steep as our previous models. This may be due to the diffusion of the
chemical concentration. The mean location, in contrast to the free-space advection RW
model in the previous section, does not simply follow the fluid streamlines. In fact, we can
partition the behavior into an initial fluid advected phase and a later state-change phase.
The curved trend from (0, 0.2) at t = 0 to (−0.17, 0.04) at t = 0.015 is initially only due
to the fluid biased movement, but after t = 0.006 the mean location is also influenced by
state changes around regions of higher chemical density. The noise in the AB model mean
location is much smaller than a spatial-step4x = 0.01. Agents begin to exit the live state
around t = 0.006, which is the location of the cusp in the mean location graph (around
(−0.01, 0.2)). This cusp marks the moment in the model where agent state change begins
to influence the mean location.

Similar to the standard deviation graphs of the free-space fluid RW models, the MSD
initially accumulates error. The AB model and PDE mean squared deviations have a
similar trend, but the difference is due to the spatially dependent fluid velocity. The RW
has zero waiting probability, and the lack of smoothness coupled with the fluid profile
account for the error of this dispersion metric. We can see that as the proportion of cells
in the live state changes concavity near t = 0.01, and the concentration of cells become
localized to one local minimum in the chemical surface, that the difference between the
AB model and PDE MSD graphs begin to decrease.
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.16: Probability distribution of agents (shown in color) in the free-space region
[−1, 1] × [−1, 1] at four different time points. Agents are initialized at (0, 0.2) and move
with parameters b = 1/5, a = 1/25. The blue contour plot denotes the chemical concen-
tration C(x, t). The absorption parameters are α = 0.1 and ξc = 104t4x4y. (a) AB
model probability distribution is average of 106 realizations with step sizes4x = 0.01 and
4t = 4x2/2 and is depicted at each time as a 2-d histogram with bin size 24x × 24x.
(b) PDE numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical
step sizes δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 7.17: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.

Free-Space Example 2: Here, we change the flow field from the previous example
to v(x) = 25(3 −

√
x2 + y2)(−y, x)T , but keep the same initial chemical profile. The
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dynamics appear similar to the previous example, with the main concentration of live
cells at t = 0.015 concentrating near a local minimum of the chemical concentration
plot. The curved trend in the mean location graphs of Fig. 7.19 from (0, 0.2) at t = 0
to (−0.14, 0.105) at t = 0.015 is initially due to the fluid biased movement but after
t = 0.007 it is also due to state changes around regions of higher chemical density. The
error between the AB model and PDE mean locations is much smaller than a spatial-step
4x = 0.01. The AB model and PDE mean squared deviations have a similar trend, but
the difference is due to the spatially dependent fluid velocity. The survival probability
plots begin to decrease around t = 0.007, which is the same time that a cusp forms
in the mean location graph (around point (−0.035, 0.2)). This fluid moves faster than
the previous example, which is why the cusp appears further from x0. The AB model
simulation and PDE approximations appear to match well in the survival probability
and mean location graphs. Again, the mean squared deviation accumulates errors until
around t = 0.012, which is where the survival probability changes concavity and the live
cell surface plot contracts around a single chemical concentration local minimum.

Free-Space Example 3: Here, we keep the same fluid velocity as the previous
example, but we change the initial chemical profile to C(x, 0) = 0.5 (sin(2πx) cos(3πy)).
In contrast to the previous two examples, we see in Fig. 7.20a and 7.20b that the chemical
concentration causes the agent density to have two separate peaks at t = 0.015. These
peak centers correspond to local chemical concentration minimums at that time. The
curved trend in the mean location in Fig. 7.21 from (0, 0.2) at t = 0 to (−0.085, 0.37) at
t = 0.015 is initially due to the fluid biased movement but after t = 0.008 it is also due
to state changes around regions of higher chemical density. The error between the AB
model and PDE mean locations is much smaller than a spatial-step 4x = 0.01. The AB
model and PDE mean squared deviations have a similar trend, but the difference is due to
the spatially dependent fluid velocity. Because the surface plot has two local maximums,
the mean squared deviation curves do not begin to converge. Also, the change in the
initial chemical profile, C(x, t), causes the survival probability graphs to begin decreasing
at t = 0.008. This corresponds to the sharp curve in the mean location graphs around
point (−0.06,−0.2). It took longer for the agents to start to accumulate ξc chemical, so
the fluid was the only influence on the mean location for a longer interval of time.
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.18: Probability distribution of agents (shown in color) in the free-space region
[−1, 1] × [−1, 1] at four different time points. Agents are initialized at (0, 0.2) and move
with parameters b = 1/5, a = 1/25. The blue contour plot denotes the chemical concen-
tration C(x, t). The absorption parameters are α = 0.1 and ξc = 104t4x4y. (a) AB
model probability distribution is average of 106 realizations with step sizes4x = 0.01 and
4t = 4x2/2 and is depicted at each time as a 2-d histogram with bin size 24x × 24x.
(b) PDE numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical
step sizes δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Standard Deviation

Figure 7.19: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.
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t = 0.0002 t = 0.0029 t = 0.0089 t = 0.0150

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.20: Probability distribution of agents (shown in color) in the free-space region
[−1, 1] × [−1, 1] at four different time points. Agents are initialized at (0, 0.2) and move
with parameters b = 1/5, a = 1/25. The blue contour plot denotes the chemical concen-
tration C(x, t). The absorption parameters are α = 0.1 and ξc = 104t4x4y. (a) AB
model probability distribution is average of 106 realizations with step sizes4x = 0.01 and
4t = 4x2/2 and is depicted at each time as a 2-d histogram with bin size 24x × 24x.
(b) PDE numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical
step sizes δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 7.21: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.
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Bounded Absorption Fluid Examples

If we want to apply the absorption model to specific real-world situations, we need to
verify it in bounded regions. We examine the same three bounded regions as Section
7.1.3: an infinite half-plane, an infinite strip, and a square. In each case we initialize 106

agents at a point x0. The agents move with spatial step-size 4x = 0.02 and temporal
step size 4x2/2. The chemical concentration is initialized with an initial chemical profile,
C(x, 0), which is transported by the fluid with transport parameter ac = 1 and diffusivity
parameter Dc = 0.2. Numerically, we solve the PDE with step-sizes δx = δy = 4x,
δt = 4t, and δξ = ξc/300.

Infinite Half-Plane Domain: First, we examine the half-plane region Ω = {(x, y) ⊂
R2 : y > 0} with fluid velocity profile

v(x) = 2
(

3−
√
x2 + y2

)(−y
x

)

and initial chemical profile C(x, 0) = 0.5 (sin(2πx) cos(2πy) + 1). The agents and chemi-
cal have no-flux boundary conditions at y = 0, but we assume that the fluid passes through
the boundary without obstruction. We initialize the agents at x0 = (0.24, 0.5), which are
transported by the fluid with transport parameter b = 1/5 and biased by the fluid with
biasing parameter a = 1/2. The agent’s chemical capacitance is ξc = 54t4x4y with an
absorption rate of α = 0.1. We solve the PDE in the numerical domain [−3, 3] × [−3, 3]
using the numerical method of images for an infinite half-plane.

There is agreement between the plots in Fig. 7.22a and 7.22b. The agents diffuse from
x0 and we can observe from the density plots that the agents reflect off the wall at y = 0.
Eventually, the agents which are still in the live state at t = 0.045 are centered around a
single local chemical minimum.

We see general agreement in Fig. 7.23 with the survival probability. The curved trend
from (0.24, 0.2) at t = 0 to (0.13, 0.545) at t = 0.04 is initially due to the fluid biased
movement, but after t = 0.02 the curve is also influenced by state changes around regions
of higher chemical density. The noise in the AB model mean location is smaller than a
spatial-step 4x = 0.02. The AB model and PDE mean squared deviations have a similar
trend, but the difference is due to the spatially dependent fluid velocity. Agents begin
exiting the live state around t = 0.02 at an almost linear rate, which corresponds to the
point (0.19, 0.52) in the mean location graphs. The PDE mean location shows a change
of concavity at that point, demonstrating the influence of cells leaving the live state on
the mean location. Although there is more noise in the AB model mean location graph,
it is much smaller than the spatial step size, 4x. We further see that even though the
error between the AB model and PDE mean squared deviations initially increases, until
around t = 0.025 when the error begins to contract. This corresponds to the moment in
the model where agents in locations of high chemical densities leave the state faster than
the agents near local chemical minimums.
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t = 0.001 t = 0.009 t = 0.027 t = 0.045

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.22: Probability distribution of agents (shown in color) in the half-plane region
[−2, 2] × [0, 2] at four different time points. Agents are initialized at (0.24, 0.5) and
move with parameters b = 1/5, a = 1/2. The blue contour plot denotes the chemical
concentration C(x, t) and the green line denotes the reflective boundary at y = 0. The
absorption parameters are α = 0.1 and ξc = 54t4x4y. (a) AB model probability
distribution is average of 106 realizations with step sizes 4x = 0.02 and 4t = 4x2/2
and is depicted at each time as a 2-d histogram with bin size 24x × 24x. (b) PDE
numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical step sizes
δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 7.23: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.
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Infinite Strip Domain: Now we consider the case of the infinite strip region Ω =
{(x, y) ⊂ R2 : −1 ≤ y ≤ 1} with fluid velocity profile

v(x) = 5
4

(
1− y2

0

)

and initial chemical profile C(x, 0) = 0.5 (sin(1.5πx) cos(πy) + 1). The agents and chem-
ical have no-flux boundary conditions at y = −1 and y = 1. The Poiseuille flow (with
viscosity µ = 1 and constant pressure gradient ∇P = −5) has zero velocity on the walls
and corresponds to the type of fluid profile seen in tubes where the cross-section is much
shorter than the length. We initialize the agents at x0 = (−1, 0), which are transported
by the fluid with transport parameter b = 1/5 and biased by the fluid with biasing param-
eter a = 1/25. The agent’s chemical capacitance is ξc = 104t4x4t with an absorption
rate of α = 0.1. We solve the PDE in the numerical domain [−3, 3] × [−3, 3] using the
numerical method of images for an infinite strip.

The plots in Fig. 7.24a and 7.24b are phenomenologically similar. The agent is ini-
tialized at x0 and is biased and transported by the right-moving fluid flow. Eventually,
agents absorb above their capacitance and begin leaving the live state. We see a brief
bimodality in the PDE surface plot at t = 0.03, where the cells towards the left are still in
the live state because they are located near a region of low chemical density. However, the
flow biases those agents towards the higher chemical concentration to their right, which
quickly causes those cells to absorb above their capacitance. We see a few AB model
agents in that region, but we would need to initialize many more agents to see a similar
density as the PDE numerical solution. The cells which survive to t = 0.06 appear to be
centered at a local chemical minimum around (−0.2, 0).

Given the vertical scale in the mean location graph is much less than 4x, we see
general agreement in the survival probability and mean location graphs in Fig. 7.25. The
linear trend from (−1, 0) at t = 0 to (−0.15, 0) at t = 0.06 is initially due to the fluid
biased movement but after t = 0.02 state changes begin to influence the mean location.
The noise in the AB model mean location is much smaller than a spatial step 4x = 0.02.
The AB model and PDE MSDs have a similar trend, but the difference is due to the
spatially dependent fluid velocity. Agents begin exiting the live state around t = 0.02,
which is the maximum of the mean squared deviation. After that time, the agents which
survive tend to be located around a single local minimum, which is why the difference
between the AB model and PDE MSD graphs decreases. Unlike the previous examples
in this Section, we do not see a cusp in the mean location graph suggesting a time when
state change begins to influence the mean location. This is due to the symmetry in the
numerical domain at y = 0 and the fact that the vertical fluid velocity, v2(x), is constantly
zero everywhere in Ω.
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t = 0.001 t = 0.012 t = 0.030 t = 0.060

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.24: Probability distribution of agents (shown in color) in the infinite strip region
[−2, 2]× [−1, 1] at four different time points. Agents are initialized at (−1, 0) and move
with parameters b = 1/5, a = 1/25. The blue contour plot denotes the chemical concen-
tration C(x, t) and the green line denotes the reflective boundary at y = −1 and y = 1.
The absorption parameters are α = 0.1 and ξc = 104t4x4y. (a) AB model probability
distribution is average of 106 realizations with step sizes 4x = 0.02 and 4t = 4x2/2
and is depicted at each time as a 2-d histogram with bin size 24x × 24x. (b) PDE
numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical step sizes
δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 7.25: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.
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Square Domain: Finally, we consider the case of the square region Ω = {(x, y) ⊂
R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} with fluid velocity profile

v(x) = 25(3−
√
x2 + y2)

(
−y
x

)

and initial chemical profile C(x, 0) = 0.5 (sin(2πx) cos(2πy) + 1). This spatial domain
can be seen in microfluidic devices for biofilm experimentation [129, 68]. The agents and
chemical have no-flux boundary conditions at the edge of the square, and in this example
the fluid can move through the boundary without any obstruction. We initialize the
agents at x0 = (−0.24, 0), which are transported by the fluid with transport parameter
b = 1/5 and biased by the fluid with biasing parameter a = 1/25. The agent’s chemical
capacitance is ξc = 54t4x4t with an absorption rate of α = 0.1. We solve the PDE in
the numerical domain [−3, 3]× [−3, 3] using the numerical method of images for a square.

We can see from Fig. 7.26 that the AB model simulations and the PDE numerical
solutions agree qualitatively. The agents initialize at x0, diffuse outward and are biased
as well as translated by the fluid. Eventually, agents begin switching states, which causes
the avocado-looking shape at t = 0.024, before contracting to a region of low chemical
concentration. Moreover, it is clear that in this example the chemical concentration is
transported by the fluid and a much faster rate than the agents.

The survival probability and mean location graphs in Fig. 7.27 show good agreement.
The curved trend from (−0.24, 0) at t = 0 to (0.14,−0.18) at t = 0.04 is initially due to
the fluid biased movement, but after t = 0.02 state changes exert influence on the mean
location. The AB model and PDE mean squared deviations have a similar trend, but
the difference is due to the spatially dependent fluid velocity. At around t = 0.02, agents
begin changing state. This time corresponds to the cusp around (−0.23,−0.075) in the
mean location graph, which again demonstrates when state change begins influencing the
mean location. The mean squared deviation reaches a maximum around t = 0.025, when
the survival probability changes concavity. This shows the contraction of the density
surface plots to a single local chemical minimum region. Just like the infinite half-plane
example, the difference between the AB model and PDE MSD curves begins to decrease
at this point.
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t = 0.001 t = 0.008 t = 0.024 t = 0.040

(a) AB Model Simulation

(b) PDE Numerical Solution

Figure 7.26: Probability distribution of agents (shown in color) in the square region
[−1, 1] × [−1, 1] at four different time points. Agents are initialized at (−0.24, 0) and
move with parameters b = 1/5, a = 1/25. The blue contour plot denotes the chemical
concentration C(x, t) and the green line denotes the reflective boundary at the square
border. The absorption parameters are α = 0.1 and ξc = 54t4x4y. (a) AB model
probability distribution is average of 106 realizations with step sizes 4x = 0.02 and
4t = 4x2/2 and is depicted at each time as a 2-d histogram with bin size 24x × 24x.
(b) PDE numerical solution is computed in the region [−3, 3] × [−3, 3] with numerical
step sizes δx = δy = 4x, δt = 4t, and δξ = ξc/300.

(a) Survival Probability (b) Mean Location (c) Mean Squared Deviation

Figure 7.27: Plots of various statistical measures comparing the AB model and PDE (a)
Survival probability, (b) Mean location (time shown in colorbar), and (c) MSD.
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Chapter 8

Conclusion

8.1 Discussion
In this dissertation, we develop a continuum PDE approximation to a stochastic agent-
based (AB) model that has a cumulative coupling to the environment. Through simula-
tions, we see that the AB model agrees qualitatively with the governing PDE. We analyze
the newly developed PDE, showing that the equation is stable and well-posed. In our
examples, we use point sources as initial conditions to validate the model. However, by
superposition, we know that we can extend this to account for any initial condition in
L2(Ω× [0,∞)), where Ω denotes the spatial domain. Further, we see agreement when we
add reflecting boundary conditions and bias the agents’ movement with a fluid velocity
profile.

Having a PDE approximation of the cumulative absorption AB model gives us the
ability to adapt previously developed PDE theory and applications. Experimentalists
may not know the absorption rate, α, and the chemical threshold, ξc. In Section 5.4.3,
we used the PDE formulation to derive a method for calculating α using mean occupancy
times (MOTs) for various proportions of C(x). Once α is known, we can use the chemical
effectiveness measure, introduced in Section 5.4.4, to approximate ξc. This approach may
not have been as clear without first obtaining a PDE.

Although we use cell biology as a motivating example, in an abstract way the cumu-
lative absorption model demonstrates how to add memory-dependent dynamics to any
PDE by use of the ξ-coordinate. We merely assume that an agent moves by an unbiased
(or a biased) random walk (RW) and that cumulative accumulation of some particles in
the environment leads to a state change. Simply by changing the parameters and initial
conditions, this model can be adapted to specify many different physical situations, such
as: chemical uptake, chemical filtering, and engineered material lifespan (where the stress
on the material is what is “absorbed”).

The modeling framework developed assumes that the cells have cumulative exposure,
but the chemical or substance is not being removed from the environment. This setup can
be used to model morphogens (signaling molecules) that often act directly on a cell by
binding to a receptor. It is well established that exposure to high levels of transforming
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growth factor (TGF)-β leads to cell death [47]. In this scenario, morphogens bind and
initiate a secondary process in the cell that accumulates and leads to cell death. After
a small period of time (smaller than the scale of movement or time to cell death), the
morphogen is released from the receptor and thus the relative morphogen concentration
can be assumed constant in time.

We assumed that there is sufficient chemical such that the density does not change
from agents’ absorption. We may want to adapt the model to account for situations
where the amount of chemical absorbed is of a similar order as the chemical density in
the absorption region. To update the continuum chemical density, we would need to
evaluate an “ensemble” average over all possible realizations by leveraging the agent’s
spatially-dependent density solution. With such a model, we can attempt to solve for the
parameter space where there is a non-trivial steady state.

8.2 Future Work
A limitation of the current cumulative absorption model is an inability to directly com-
pare the AB model probability distribution with the PDE solution. Instead, we relied
on comparing statistical measures, such as the survival probability, mean location, and
location spread. The movement part of the PDE is parabolic and has an infinite wave
speed. It would be interesting to adapt the movement to the correlated RW, as detailed
in Section 2.3. We saw that the biased RW parameter assumptions imposed error in
the standard deviation graphs. It would be of interest to investigate how (or whether) a
hyperbolic model could mollify such errors. Doing so would require a different proof of
well-posedness as well as a different numerical scheme.

Along with adapting the movement, the absorption model can be further modified to
model probabilistic state change dynamics. In our current cumulative absorption model,
we assumed that there is a deterministic state change when an agent has absorbed ξc
chemical. However, to approximate more realistic dynamics, a model may want to express
this change as probabilistic with the expected cumulative chemical absorption to induce
a state transition to be ξc. The absorption tolerance, ξc, may be known in terms of
statistical ranges through experimentation rather than a single fixed number [95], so our
model should be capable of handling this data. Additionally, we see complex state changes
when studying drug-induced resistance [122]. Cells undergo behavioral changes at discrete
exposure lengths, that can be modeled as different states, which can be reversed upon
drug release.

In Section 5.1.2, we derived a PDE for absorption using a Heaviside function at ξc.
However, we could replace the Heaviside function with any function q(ξ|ξc), which repre-
sents the probability of switching states having absorbed ξ chemical given that the mean
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threshold is ξc:
∂V
∂t

+ β(x)∂V
∂ξ

= D ∂2V
∂x2 − q(ξ|ξc)V, x ∈ R, ξ ∈ [0,∞), t > 0,

V = φ(x, ξ), x ∈ R, ξ ∈ [0,∞), t = 0,
lim|x|→∞ V = 0, x ∈ R, ξ ∈ [0,∞), t > 0.

A preliminary comparison of this model is shown in Fig. 8.1 with the same chemical
concentration, C(x) = exp(−x2) and parameters as Example 2 in Section 5.4.1. This ex-
ample uses the probability function q(ξ) = exp[(10/ξc)(ξ−ξc)]

1+exp[(10/ξc)(ξ−ξc)] . We can see that the survival
probability curve is smoother than that of Fig. 5.8a, which uses the same simulation and
numerical parameters. More work needs to be employed as to what restrictions need to
be placed on q in this framework as well as how the shape of q effects the comparison
errors.

AB Model Simulation PDE Approximation
(a) Solution Comparison

Survival Probability Mean Location Standard Deviation
(b) Statistical Measures

Figure 8.1: Comparison between AB model (N = 105 agents) and PDE solution with
probabilistic cumulative absorption state change. This uses the same simulation and
numerical parameters as Example 2 in Section 5.4.1.
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Our initial framework modeled one cell and one chemical concentration. One natural
extension would be to examine the dynamics of multiple competing chemical concentra-
tions, where each chemical can cause the agent to transition to a distinct state. It would
increase the value of this modeling framework to further modify the model to account for
a transition to multiple states due to different chemical concentrations. In fact, extending
the model in this way can be used to help model combination therapy, a pharmacological
treatment of HIV, lupus, and certain aggressive forms of multiple sclerosis [48, 82], and
further investigate drug interactions. Thus, we could model the competition or coopera-
tion of different memory-dependent dynamics.

We performed a preliminary derivation of these dynamics using two chemical concen-
trations, C1 and C2. If an agent in state U absorbs a cumulative amount of the chemical
C1 above ξc, then the agent transitions to state V . However, if an agent in state U absorbs
a cumulative amount of the chemical C2 above γc, then the agent transitions to state W .
The PDE system for this two-concentration model is the following:

∂U
∂t

+ β1(x)∂U
∂ξ

+ β2(x)∂U
∂γ

= 4x2

4t
∂2U
∂x2 − H(ξ−ξc)+H(γ−γc)

4t U, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,
∂V
∂t

= 1
4t
∫∞

0 H(ξ − ξc)U(x, t, ξ, γ) dξ, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,
∂W
∂t

= 1
4t
∫∞

0 H(γ − γc)U(x, t, ξ, γ) dγ, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,
U = δ(x− x0), x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t = 0,
V = 0, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t = 0,
W = 0, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t = 0,
lim|x|→∞ U = 0, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,
lim|x|→∞ V = 0, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,
lim|x|→∞W = 0, x ∈ R, ξ ∈ [0,∞), γ ∈ [0,∞), t > 0,

where H denotes the Heaviside function. We examined this system in Fig. 8.2 using the
same chemical concentrations, C1(x) = 1

1+10(x−0.5)2 and C2(x) = exp(−x2), as well as the
same parameters as the first two examples in Section 5.4.1.

Another extension, for practical considerations, would be to add finitely many inter-
acting agents or obstructions. Having agents reflect off each other adds complexity to the
movement and an added layer of difficulty in deriving the PDE. First, we derive a PDE
for RW movement through a porous medium, and then we adapt that model by replacing
the porous medium with another agent. Let f(x) be the probability an agent encounters
an obstruction at location x. We know that if the agent is at location x at time t and
there is an obstruction at x ±4x, then the agent returns to location x at time t +4t.
Assuming the probability of moving left or right is ` = r = 1/2, the difference equation
for this porous medium RW is:

U(x, t+4t) = 1
2 (1− f(x))U(x−4x, t) + 1

2 (1− f(x))U(x+4x, t)

+ 1
2 (f(x−4x) + f(x+4x))U(x, t).
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State U State V State W State U State V State W

AB Model Simulation PDE Approximation
(a) Solution Comparison

Survival Probability Mean Location Standard Deviation
(b) Statistical Measures For State U

Figure 8.2: Comparison between AB model (N = 105 agents) and PDE solution with
probabilistic cumulative absorption state change. This uses the same simulation and
numerical parameters as Example 2 in Section 5.4.1.

If we assume U ∈ C2 (R, [0,∞)) and f ∈ C2(R), then, by using a Taylor series, the PDE
for the porous medium RW becomes

∂U

∂t
= D

∂2f

∂x2U +D(1− f)∂
2U

∂x2 , x ∈ Ω, t > 0,

where D = 4x2/(24t).
For two interacting agents, the PDE becomes the system:

∂U
∂t

= D ∂2f
∂x2U +D(1− f)∂2U

∂x2 , x ∈ Ω, t > 0,
∂V
∂t

= D ∂2g
∂x2V +D(1− g)∂2V

∂x2 , x ∈ Ω, t > 0,

for f, g : Ω × [0,∞) → [0, 1]. If U and V are initialized as point sources, then we can
treat U(x, t) and V (x, t) as probability density functions for any fixed t ≥ 0. Since we
are interested in agent interaction, we need to define f as the probability agent U is
obstructed by V given that there is an obstruction at x. Assuming agents centered at x
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take up finite length B(x, ε), we can define:

f(x, t) = η

∫
B(x,ε) V (y, t) dy∫

B(x,ε)[U(y, t) + V (y, t)] dy, g(x, t) = η

∫
B(x,ε) U(y, t) dy∫

B(x,ε)[U(y, t) + V (y, t)] dy ,

where η ∈ [0, 1] is some permitivity constant. In Fig. 8.3, we compare the AB model with
the PDE approximation in Ω = [0, 1], with dx = 4x = 0.01, dt = 4t = 4x2, ε = 4x/2,
η = 1/2, and no-flux boundary conditions.

t = 0.001 t = 0.005 t = 0.01 t = 0.025

Figure 8.3: Comparison between 105 AB model realizations of two interacting agents
(agents reflect off each other) and its PDE approximation. Agents perform RW with
step-sizes dx = 4x = 0.01, dt = 4t = 4x2. Agent width is ε = 4x/2 and PDE
permitivity constant is η = 1/2

Mean Location Standard Deviation

Figure 8.4: Comparing URW PDE initialized at x0 = 0.45 with two-agent PDE statistical
measures for agent represented by U .

Although the example in Fig. 8.3 is simply a proof of concept, it shows that this
model is subtly different than an URW model with no-flux conditions. At time t = 0.025
in Fig. 8.3, U appears as if it has a dirichlet boundary condition at x = 1, but this is
a result of the reaction term (since that agent cannot move to the right of the agent
represented by V ). Statistical comparison between an URW initialized at x0 = 0.45 and
the two agent PDE variable U is shown in Fig. 8.4. Since U is initialized to the right of
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V , it is not surprising that the interacting agent PDE drifts to the left and has a smaller
standard deviation than the URW.

In the future, we need to examine the derivation of η in more depth, examine the origin
of the experimental error, and prove the well-posedness conditions of the PDE. When that
is accomplished, we can insert this PDE system into the cumulative absorption model
framework. The three modifications to the cumulative absorption model briefly explored
above can expand the model’s utility for solving real world problems.
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Part III

Appendix
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Appendix A

PDE Solution Methods

A.1 PDE Fundamental Solution
We present a method for determining the fundamental solution to linear PDE problems
using Fourier transformations [105, Ch.5][41, Ch.4][125, Ch.3]. Fourier transformation
is a way to decompose a function into orthogonal trigonometric base frequencies. As
such, it is widely used in signal theory and quantum mechanics due to its capability of
separating frequencies with their corresponding amplitudes [69]. Fourier transforms are
used in engineering applications, such as understanding beam vibrations [36] and refining
infrared spectroscopy to determine chemical compositions [94]. Moreover, the transform
has nice properties with Gaussian functions and convolutions [18, 67], which is why we
use it to solve the diffusion equation.

A.1.1 Fourier Transform
We first must define the Fourier transform.

Definition. For any function U ∈ L1(R) ∪ L2(R), the Fourier transform of U is defined
as

F(U) := Û(ξ, t) =
∫
R

exp(−2πiξx)U(x, t) dx. (A.1)

The inverse Fourier transform is similarly defined as

F−1(U) := Ǔ(x, t) =
∫
R

exp(2πiξx)U(ξ, t) dξ. (A.2)

The ξ variable denotes the Fourier mode of U . For any integrable function, U , the Fourier
transform is uniquely defined. That is,

F
(
F−1(U)

)
= F

(
F−1(U)

)
= U. (A.3)

Now suppose we have a linear PDE, LU = f , where L denotes any linear PDE
operator. The general steps to solve the PDE using Fourier transformations are:
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1. Take Fourier transformation of each side of the PDE (L̂U = f̂) and initial condi-
tion(s).

2. Solve the resulting time ODE for Û(ξ, t)

3. Solve for U(x, t) by performing the inverse Fourier transform.
Here we solve the 1-D cases of the diffusion equation and the constant advection-diffusion
equation. The method can be extended to higher dimensions. In our applications, we use
two Fourier transform theorems: the convolution theorem and the derivative identity.

Convolution Theorem: A useful property of Fourier transforms is the ability to
convert convolution into multiplication. We define and prove the convolution theorem
[67], as stated below.
Theorem 10. If U, V ∈ L1(R), then F(U ∗ V ) = F(U)F(V ).
Proof. We first need to show that exp(−2πiξx)(U ∗ V )(x) ∈ L1(R). By a calculation∫

R
|exp(−2πiξx)(U ∗ V )(x)| dx =

∫
R
|exp(−2πiξx)| |(U ∗ V )(x)| dx

=
∫
R
|U ∗ V (x)| dx

≤
∫
R

∫
R
|U(y)||V (x− y)| dy dx

=
∫
R

{
|U(y)|

∫
R
|V (x− y)| dx

}
dy

=
∫
R
{|U(y)|||V ||1} dy

= ||U ||1||V ||1.

Since U, V ∈ L1(R), we showed that exp(−2πiξx)(U ∗ V )(x) ∈ L1(R).
Now, by definition of the Fourier transform (A.1) and convolution,

F(U ∗ V ) =
∫
R

{
exp(−2πiξx)

∫
R
U(y)V (x− y) dy

}
dx.

Since exp(−2πiξx)(U ∗ V )(x) ∈ L1(R), we can use Fubini’s theorem to rearrange the
integrand as

F(U ∗ V ) =
∫
R

{
U(y)

∫
R

exp(−2πiξx)V (x− y) dx
}
dy.

We can change the variables by assigning z = x− y. By computation, we have

F(U ∗ V ) =
∫
R

{
U(y)

∫
R

exp(−2πiξ(z + y))V (z) dz
}
dy

=
∫
R

exp(−2πiξy)U(y) dy
∫
R

exp(−2πiξz)U(z) dz

= F(U)F(V ).

Therefore, we showed that F(U ∗ V ) = F(U)F(V ).
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For deriving exact solutions to the PDEs in the following subsections, we need to use a
variation of the convolution theorem proved above. We first state this theorem and then
prove it.

Theorem 11. If U, V ∈ L1(R), then F−1(UV ) = F−1(U) ∗ F−1(V ).

Proof. We want to show that

F−1(U) ∗ F−1(V ) = F−1(UV ).

By Theorem 10 and the invertibility of the Fourier transform (A.3), we know that

F
(
F−1(U) ∗ F−1(V )

)
= F

(
F−1(U)

)
F
(
F−1(V )

)
= UV

= F
(
F−1(UV )

)
Since F is uniquely defined, the above equality shows that F−1(U)∗F−1(V ) = F−1(UV ).

Derivative Identity: Another useful property for our application is the derivative
identity, which allows us to reduce PDEs into ODEs.

Theorem 12. If U, ∂U
∂x
∈ L1(R) and lim|x|→∞ U = 0, then F

(
∂U
∂x

)
= (2πξi)F(U).

Proof. By definition (A.1), we know that

F
(
∂U

∂x

)
=
∫
R

exp(−2πiξx)∂U
∂x

dx.

By our theorem assumptions, we can perform integration by parts on the right side of the
equation. This yields∫

R
exp(−2πiξx)∂U

∂x
dx = exp(−2πiξx)U

∣∣∣∣∞
−∞

+
∫
R

2πiξ exp(−2πiξx)U dx.

Finally, since lim|x| U = 0 and by the definition of Fourier transform, we have

F
(
∂U

∂x

)
= exp(−2πiξx)U

∣∣∣∣∞
−∞

+
∫
R

2πiξ exp(−2πiξx)U dx

= 2πiξ
∫
R

exp(−2πiξx)U dx

= (2πiξ)F(U).

Therefore, we showed that F
(
∂U
∂x

)
= (2πiξ)F(U).

We now have the requisite background to solve the diffusion and the advection-diffusion
equations with constant coefficients.
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A.1.2 Diffusion Equation
Suppose G ∈ L1(R) ∪ L2(R) and satisfies the diffusion PDE

∂G
∂t

= D ∂2G
∂x2 , x ∈ R, t > 0,

G = δ(x), x ∈ R, t = 0,
lim|x|→+∞G = 0, x ∈ R, t > 0,

(A.4)

where δ(x) denotes the Dirac delta distribution and x0 ∈ R. The notation G(x, t) denotes
that this is the fundamental solution, which we use to solve general free-space diffusion
PDEs. By using definition (A.1) and Theorem 12, we calculate that the Fourier transform
of both sides of the general equation are

∫
R

exp(−2πiξx) ∂
∂t
G dx = ∂Ĝ

∂t∫
R
D exp(−2πiξx)∂

2G

∂x2 dx = −D(2πξ)2Ĝ.

The second equation is an explicit application of the Fourier derivative identity. Also, by
definition of the Dirac delta distribution, the Fourier transform of the initial condition is

Ĝ(ξ, 0) = 1.

This results in the following ODE for Ĝ(ξ, t):
∂Ĝ
∂t

= −D(2πξ)2Ĝ, t > 0
Ĝ = 1, t = 0.

(A.5)

Note that we used the free-space boundary conditions to justify being able to compute
the Fourier transforms. It is clear that the solution to the ODE system (A.5) is

Ĝ(ξ, t) = exp(−D(2πξ)2t) (A.6)

Now, we use the inverse Fourier transform (A.2) to obtain an expression for G(x, t)
by calculating

G(x, t) =
∫
R

exp(2πiξx) exp(−Dt(2πξ)2) dξ

=
∫
R

exp
{

2πiξx−Dt(2πξ)2
}
dξ.

We can perform algebraic manipulations to obtain an exact solution to the above expres-
sion. By completing the square we know that

−(Dt(2πξ)2 − 2πξi(x− x0)) = −(ξ − ixπ
√
Dt)2

2(1/8π2Dt) − (x− x0)2

4Dt .
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It follows that

G(x, t) =
∫
R

exp
{
−(ξ − ixπ

√
Dt)2

2(1/8π2Dt)

}
exp

{
− x2

4Dt

}
dξ

= exp
{
− x2

4Dt

}∫
R

exp
{
−(ξ − ixπ

√
Dt)2

2(1/8π2Dt)

}
dξ.

We know the identity
∫
R exp (−ξ2) dξ =

√
π. Therefore, by substitution, we can calculate∫

R
exp

{
−(ξ − µ)2

2σ2

}
dξ =

√
2πσ2. (A.7)

In our integral expression for G(x, t), the parameters are assigned as µ = ixπ
√
Dt and

σ2 = 1/4π2Dt. Thus,∫
R

exp
{
−(ξ − ixπ

√
Dt)2

2(1/8π2Dt)

}
dξ =

√
2π

8π2Dt
= 1√

4πDt
.

Therefore, the solution to the PDE (A.5) is

G(x, t) = 1√
4πDt

exp
{
− x2

4Dt

}
. (A.8)

General Initial Condition Now, suppose the initial condition to the free-space diffu-
sion PDE is φ(x) ∈ L1(R) ∪ L2(R). That is, we want to solve:

∂U
∂t

= D ∂2U
∂x2 , x ∈ R, t > 0,

U = φ(x), x ∈ R, t = 0,
lim|x|→+∞ U = 0, x ∈ R, t > 0.

(A.9)

By following the same reasoning as above, we solve the ODE
∂Û
∂t

= −D(2φξ)2Û , t > 0
Û = φ̂(ξ), t = 0.

The solution to the above ODE is

Û(ξ, t) = φ̂(ξ) exp(−D(2πξ)2t).

By convolution property of Fourier transforms [105, Ch.5],

F−1
(
φ̂(ξ) exp(−D(2πξ)2t)

)
= F−1

(
exp(−D(2πξ)2t)

)
∗ F−1

(
φ̂(ξ)

)
.

The first inverse Fourier transform was calculated above as the fundamental solution of
the diffusion PDE G(x, t), and the second inverse Fourier transform is φ(x). Therefore,
the solution to the PDE (A.9) is

U(x, t) = G(x, t) ∗ φ(x). (A.10)
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For example, if the initial condition is a point source centered at x0, φ(x) = δ(x − x0),
then

U(x, t) = G(x, t) ∗ δ(x− x0) = 1√
4πDt

exp
{
−(x− x0)2

4Dt

}
.

A.1.3 Advection-Diffusion Equation (with constant advection
term)

Now suppose G ∈ L1(R) ∪ L2(R) satisfies the following 1-d advection-diffusion equation:
∂G
∂t

= c∂G
∂x

+D ∂2G
∂x2 , x ∈ R, t > 0,

G(x, 0) = δ(x), x ∈ R, t = 0,
lim|x|→+∞G(x, t) = 0, x ∈ R, t > 0.

(A.11)

We perform similar steps as when solving the diffusion equation in Eq. (A.4). First, we
use the Fourier transform (A.1) to each side of the PDE (A.11) to obtain

∫
R

exp(−2πiξx) ∂
∂t
G dx = ∂Ĝ

∂t∫
R

exp(−2πiξx)
[
c
∂G

∂x
+D

∂2G

∂x2

]
dx =

(
2πicξ −D(2πξ)2

)
Ĝ.

Just as in the diffusion equation, the Fourier transform of the initial condition is Ĝ(ξ, 0) =
1. This results in the following ODE for Ĝ(ξ, t):

∂Ĝ
∂t

= (2πicξ −D(2πξ)2) Ĝ, t > 0,
Ĝ = 1, t = 0.

(A.12)

The free-space boundary conditions justify being able to compute the Fourier transforms.
It is clear that the solution to the ODE system in (A.12) is

Ĝ(ξ, t) = exp
{[

2πicξ −D(2πξ)2
]
t
}
. (A.13)

Now, we use the inverse Fourier transform (A.2) to obtain an expression for G(x, t)
by calculating

G(x, t) =
∫
R

exp(2πiξx) exp
{[

2πicξ −D(2πξ)2
]
t
}
dξ

=
∫
R

exp
{

2πiξ(x+ ct)−Dt(2πξ)2
}
dξ.

We can perform algebraic manipulations to obtain an exact solution to the above expres-
sion. By completing the square we know that

−(Dt(2πξ)2 − 2πξi(x+ ct)) = −(ξ − i(x+ ct)π
√
Dt)2

2(1/8π2Dt) − (x+ ct)2

4Dt .
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It follows that

G(x, t) =
∫
R
exp

{
−(ξ − i(x+ ct)π

√
Dt)2

2(1/8π2Dt)

}
exp

{
−(x+ ct)2

4Dt

}
dξ

= exp
{
−(x+ ct)2

4Dt

}∫
R

exp
{
−(ξ − i(x+ ct)π

√
Dt)2

2(1/8π2Dt)

}
dξ.

In our integral expression for G(x, t), the parameters for identity (A.7) are assigned
as µ = i(x+ ct)π

√
Dt and σ2 = 1/8π2Dt. Thus,

∫
R

exp
{
−(ξ − i(x+ ct)π

√
Dt)2

2(1/8π2Dt)

}
dξ =

√
2π

8π2Dt
= 1√

4πDt
.

Therefore, the fundamental solution to the PDE (A.11) is

G(x, t) = 1√
4πDt

exp
{
−(x+ ct)2

4Dt

}
. (A.14)

General Initial Condition: Now, suppose the initial condition to the free-space
constant advection-diffusion PDE is φ(x) ∈ L1(R)∪L2(R). That is, we want to solve the
PDE 

∂U
∂t

= c∂U
∂x

+D ∂2U
∂x2 , x ∈ R, t > 0,

U = φ(x), x ∈ R, t = 0,
lim|x|→+∞ U = 0, x ∈ R, t > 0.

(A.15)

We can apply the same convolution property of Fourier transforms to obtain the PDE
solution

U(x, t) = G(x, t) ∗ φ(x), (A.16)

where G(x, t) is the fundamental solution of the constant advection-diffusion PDE.

A.2 Operator-Split, Semi-Discrete Formulation
The absorption PDE (5.5) is subtly difficult to solve due to the β(x) term in front of the ξ
partial derivative. To effectively deal with this problem, we chose to split the operator as
detailed in Section 5.2.2. Operator-splitting techniques are used to solve difficult PDEs,
such as fluid problems [13], advection-diffusion-reaction equations [117], and coupled PDE
systems [116]. Moreover, similar to the Rothe methodology, we discretize in time [8].
However, since we know the exact solutions of the split operator we did not continue the
Rothe method by directly discretizing in space. The following examples influenced my
use of an operator-split, semi-discrete formulation.
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A.2.1 Free-Space Diffusion Example
Suppose we want to solve the free-space diffusion equation with initial condition U(x, t) =
φ(x) ∈ L1(R) as shown in Eq. (A.9) by operator-splitting. This is a trivial example, since
we know the exact solution is (A.10), however it provides insight into the process.

We begin by discretizing U(x, t) in time as Un(x) := U(x, nτ) for some time-step
τ > 0. Our algorithm for solving uses the Green’s function solution:

• U0(x) = φ(x)

• For m = 1, 2, . . .:

♦ Um(x) = G(x, τ) ∗ Um−1(x)

Since we solved the equation exactly at each time step, we are interested in how close
this algorithm is to the exact solution. Note that we have the following solutions at each
time-step:

U0(x) = φ(x)
U1(x) = G(x, τ) ∗ U0(x) = G(x, τ) ∗ φ(x),
U2(x) = G(x, τ) ∗ U1(x) = G(x, τ) ∗G(x, τ) ∗ φ(x),

...
Um(x) = G(x, τ) ∗ Um−1(x) = G(x, τ) ∗m φ(x).

Theorem 13. The operator-split solution G(x, τ)∗m φ(x) = U(x,mτ) = G(x,mτ)∗φ(x),
the exact solution to the free-space diffusion equation.

Proof. To prove this we need Lemma 4 to show that G(x, τ) ∗ G(x, τ) = G(x, 2τ). By
induction, we know that G(x, τ) ∗m δ(x) = G(x,mτ). Therefore, G(x, τ) ∗m φ(x) =
G(x,mτ) ∗ φ(x).

Now we need to prove the following lemma:

Lemma 4. Let G(x, t) = 1√
4πDt exp

{
− x2

4Dt

}
. Then for any a, b ∈ R and any t1, t2 ∈ R+,

then G(x− a, t1) ∗G(x− b, t2) = G(x− a− b, t1 + t2) (with convolution on the x variable
only).
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Proof. The lemma can be proven by computation.

G(x− a,t1) ∗G(x− b, t2) =
∫
R
G(x− y − a, t1)G(y − b, t2) dy

=
1

√
4πDt1

√
4πDt2

∫
R

exp
{
−

(x− y − a)2

4Dt1

}
exp
{
−

(y − b)2

4Dt2

}
dy

=
1

4πD
√
t1t2

∫
R

exp
{
−
y2 − 2(x− a)y + (x− a)2

4Dt1
−
y2 − 2by + b2

4Dt2

}
dy

=
1

4πD
√
t1t2

exp
{
−

(x− a)2

4Dt1
−

b2

4Dt2

}∫
R

exp
{
−

1
4Dt1t2

(t2y2 − 2t2(x− a)y + t1y
2 − 2t1by)

}
dy

=
1

4πD
√
t1t2

exp
{
−

(x− a)2

4Dt1
−

b2

4Dt2

}∫
R

exp
{
−

(t1 + t2)y2 − 2(t2(x− a) + t1b)y
4Dt1t2

}
dy

=
1

4πD
√
t1t2

exp
{
−
t2(x− a)2 + t1b2

4Dt1t2

}
exp
{

(t2(x− a) + t1)2

4Dt1t2(t1 + t2)

}∫
R

exp
{
−

(y − [(t2(x− a) + t1b)/(t1 + t2)])2

4Dt1t2/(t1 + t2)

}
dy

=
√
π4Dt1t2

4πD
√
t1t2(t1 + t2)

exp
{
−
t2x2 − 2t2ax+ t2a2 + t1b2

4Dt1t2
+
t22x

2 − 2t22ax+ a2t22 + t1t2x− t1t2a+ t21b
2

4Dt1t2(t1 + t2)

}
=

1
4πD(t1 + t2)

exp
{
−t1t2x2 + 2t1t2ax− t1t2a2 − t1t2b2 + 2t1t2bx− t1t2ab

4Dt1t2(t1 + t2)

}
=

1
4πD(t1 + t2)

exp
{
−
x2 − 2ax− 2bx+ a2 + b2 + ab

4D(t1 + t2)

}
Therefore, we showed that

G(x− a, t1) ∗G(x− b, t2) = 1
4πD(t1 + t2) exp

{
−(x− a− b)2

4D(t1 + t2)

}
= G(x− a− b, t1 + t2).

By Theorem 13 and Lemma 4, we showed that, for any τ > 0, the solution to the
operator-split, semi-discrete diffusion equation at any time-step is equal to the analytic
solution.

A.2.2 Free-Space Advection-Diffusion Example
Suppose we want to solve the free-space advection-diffusion equation with initial condition
U(x, t) = φ(x) ∈ L1(R) as shown in Eq. (A.15) by operator-splitting. With constant
coefficients, this PDE is slightly more complicated than the diffusion equation, but we
still know the exact solution (A.16). This is an example where the operator-splitting
semi-discrete method does not converge to the exact solution. However, it is important
to see how this fails.

We begin by split the advection-diffusion operator of (A.15) into two problems, a
diffusion problem and an advection problem. First, we examine the diffusion problem:

Û = D ∂2Û
∂x2 , x ∈ R, t > 0,

Û = φ̂(x), x ∈ R, t = 0,
lim|x|→∞ U = 0, x ∈ R, t > 0.

(A.17)
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By the Fourier transform method, we know that the solution is Û(x, t) = Gd(x, t) ∗ φ̂(x),
where Gd(x, t) is the fundamental solution of the diffusion equation (A.8). Next, we
examine the advection problem:

∂Ũ
∂t

+ a∂Ũ
∂x

= 0, x ∈ R, t > 0,
Ũ = φ̃(x), x ∈ R, t = 0.

(A.18)

By the method of characteristics, we know that the solution is Ũ(x, t) = φ̃(x− at).
We now discretize in time by denoting Un(x) := U(x, nτ) for some time-step τ > 0.

Our algorithm for solving uses the Green’s function solution:

• U0(x) = φ(x)

• For m = 1, 2, . . .:

♦ Ũ(x) = Um−1(x− aτ)
♦ Û(x) = G(x, τ) ∗ Um−1(x)
♦ Um(x) = Û(x)

Since we solved the equation exactly at each time step, we are interested in how close
this algorithm is to the exact solution. Note that we have the following solutions at each
time-step:

U0(x) = φ(x)
U1(x) = G(x, τ) ∗ U0(x− aτ) = G(x, τ) ∗ φ(x− aτ),
U2(x) = G(x, τ) ∗ U1(x− aτ) = G(x, τ) ∗G(x− aτ, τ) ∗ φ(x− a2τ),

...
Um(x) = G(x, τ) ∗ Um−1(x− aτ) = G(x, τ) ∗G(x− aτ, τ) ∗ · · · ∗G(x− a(m− 1)τ)φ(x− amτ).

Theorem 14. The operator-split solution G(x, τ) ∗ G(x − aτ, τ) ∗ · · · ∗ G(x − a(m −
1)τ)φ(x−amτ) 6= U(x,mτ) = G(x,mτ)∗φ(x−amτ), the exact solution to the free-space
advection-diffusion equation, as τ → 0.

Proof. Fix a time t > 0 and x ∈ R. By Lemma 4 we know that G(x−a, t1)∗G(x−b, t2) =
G(x− a− b, t1 + t2). Therefore, by induction and since ∑m−1

k=0 k = m(m−1)
2 we have

G(x, τ) ∗G(x− aτ, τ) ∗ · · · ∗G(x− a(m− 1)τ) = G

(
x− am(m− 1)

2 τ,mτ

)

for any m ∈ N. It is clear that G
(
x− am(m−1)

2 τ,mτ
)
6= G(x,mτ) for τ > 0.

Let us define zm,τ (x) = G
(
x− am(m−1)

2 τ,mτ
)
. Now we want to take the limit as

τ → 0, but still evaluate the limit at the same time point, t. So, we let τ = t/m and take
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the limit as m→∞. We then have

lim
m→∞

zm,t/m(x) = lim
m→∞

G

(
x− am(m− 1)

2
t

m
,m

t

m

)

= lim
m→∞

G

(
x− a(m− 1)t

2 , t

)
.

Since lim|x|→∞G(x, t) = 0, we know that limm→∞ zm,t/m(x) = 0 for all x. Thus, G(x, τ) ∗
G(x− aτ, τ) ∗ · · · ∗G(x− a(m− 1)τ, τ)φ(x− amτ) 6= U(x,mτ) = G(x,mτ) ∗ φ(x− amτ)
for all t > 0, x ∈ R.

The operator-split, semi-discrete method does not resolve the exact solution, even
when τ → 0. We split the operator twice in the same coordinate system, which is why
we saw error accumulation (as opposed to the absorption equation, where we split along
the space-time and absorption-time coordinates). Note that we would achieve the same
result if we reversed the order of the solution by solving for Û before Ũ .

A.2.3 Constant Absorption Example
In this example, we demonstrate how the cumulative absorption model is different from
the advection-diffusion model with respect to the operator-splitting, semi-discrete method.
We know the exact solution to the cumulative absorption model (5.5) in the case where
the absorption coefficient, β, is constant. The solution, as proved in Section 5.2.5 is
U(x, t, ξ) = G(x, 2t) ∗ φ(x, ξ − 2βt).

In Section 5.2.2, we derived the operator-split, semi-discrete algorithm as

• Initialize U0(x, ξ) = φ(x, ξ)

• For m = 1, 2, . . .:

♦ U
m−1(x|ξ) = Um−1(x, ξ)

♦ Ûm(ξ|x) = U
m−1(x|ξ − βτ)

♦ Um(x, ξ) = G(x, τ) ∗ Ûm(ξ|x).

Combining these solutions gives us the following solutions at each time-step:

U0(x, ξ) = φ(x, ξ)
U1(x, ξ) = G(x, τ) ∗ U0(x, ξ − βτ) = G(x, τ) ∗ φ(x, ξ)
U2(x, ξ) = G(x, τ) ∗ U1(x, ξ − β2τ) = G(x, τ) ∗G(x, τ) ∗ φ(x, ξ)

...
Um(x, ξ) = G(x, τ) ∗ Um−1(x, ξ − βmτ) = G(x, τ) ∗m φ(x, ξ − βmτ).

Theorem 15. The operator-split solution Um(x, ξ) = G(x, τ)∗mφ(x, ξ−βmτ) is the same
as U(x,mτ, ξ) = G(x,mτ)∗φ(x, ξ−βmτ), the exact solution of the free-space cumulative
absorption equation.
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Proof. Let τ > 0, x ∈ R, and ξ ∈ [0,∞) be given. By Lemma 4 and induction, we know
that G(x, τ) ∗m δ(x) = G(x,mτ) for any m. It follows that, G(x, τ) ∗m φ(x, ξ − βmτ) =
G(x,mτ) ∗ φ(x, ξ − βmτ) for any x, ξ,m.

Since the operator is split in the (x, t) and (ξ, t) coordinates, we are able to recover the
exact solution to the free-space cumulative absorption equation with constant absorption.

A.3 Regular Asymptotic Solution
In this section, we examine two regime choices for the PDE from Section 2.3.2:

4t
2
∂2U
∂t2

+ ∂U
∂t

= 4x2

24t
∂2U
∂x2 , x ∈ R, t > 0,

U = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U = 0, x ∈ R, t > 0,

(A.19)

where 0 < 4t,4x� 1. We show that the above PDE exhibits different behaviors when
4t ∝ 4x2 or when 4t ∝ 4x. In either case, the 4t/2 coefficient in the governing PDE
(A.19) is a very small value, so we can set a parameter ε = 4t/2. Since ε � 1, we can
use regular asymptotic methods [91] to find a solution. We first examine the case where
4t ∝ 4x2.

A.3.1 4t ∝ 4x2

If we assume that 4t ∝ 4x2, then the diffusion parameter D = 4x2

24t = O(1). Therefore,
we can rewrite (A.19) as: 

ε∂
2U
∂t2

+ ∂U
∂t

= D ∂2U
∂x2 , x ∈ R, t > 0,

U = δ(x− x0), x ∈ R, t = 0
lim|x|→∞ U = 0, x ∈ R, t > 0.

(A.20)

To solve (A.20), we use the regular asymptotic expansion method.
First, we set

U(x, t) = U (0)(x, t) + εU (1)(x, t) + ε2U (2)(x, t) + · · · . (A.21)

Next, we insert the expansion (A.21) into (A.20) to obtain
ε
[
∂2U(0)

∂t2
+ ε∂

2U(1)

∂t2

]
+
[
∂U(0)

∂t
+ ε∂U

(1)

∂t
+
]
≈ D

[
∂2U(0)

∂x2 + ε∂
2U(1)

∂x2

]
U (0)(x, t = 0) + εU (1)(x, t = 0) ≈ δ(x− x0)
lim|x|→∞

[
U (0)(x, t) + εU (1)(x, t)

]
≈ 0.

(A.22)

We then solve (A.22) for each order.
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O(1) : We only keep the expansion terms from (A.22) that are of O(1). This yields the
following PDE: 

∂U(0)

∂t
= D ∂2U(0)

∂x2 , x ∈ R, t > 0,
U (0) = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U (0) = 0, x ∈ R, t > 0.

(A.23)

We know from Section A.1.2 that the solution to (A.23) is

U (0)(x, t) = G(x− x0, t), (A.24)

where G(x, t) is the fundamental solution of the diffusion equation (A.8).

O(ε) : Now, we only keep the expansion terms from (A.22) that are of O(ε). This
yields the following PDE:

∂2U(0)

∂t2
+ ∂U(1)

∂t
= D ∂2U(1)

∂x2 , x ∈ R, t > 0,
U (1) = 0, x ∈ R, t = 0,
lim|x|→∞ U (1) = 0, x ∈ R, t > 0.

(A.25)

If we rearrange the governing equation to

∂U (1)

∂t
−D∂

2U (1)

∂x2 = −∂
2U (0)

∂t2

and recall that we know the form of U (0)(x, t), then this is just a diffusion equation with
a sink term. From [41, Ch.2], we know that the solution is

U (1)(x, t) = −
∫ t

0

∫
R
G(x− y, t− s)∂

2U (0)

∂t2
(y, s) dy ds, (A.26)

where G(x, t) is the fundamental solution of the diffusion equation (A.8).
Now, inserting (A.24) and (A.26) into (A.21), we have that the solution to (A.20) is

U(x, t) ≈ G(x− x0, t)− ε
∫ t

0

∫
R
G(x− y, t− s)∂

2G

∂t2
(y − x0, s) dy ds. (A.27)

We see U has the diffusion solution with a correction term of order O(ε).

A.3.2 4t ∝ 4x
Now, if we assume that 4t ∝ 4x, then v = 4x/4t = O(1). So we can rewrite (A.19)
as: 

ε∂
2U
∂t2

+ ∂U
∂t

= εv2 ∂2U
∂x2 , x ∈ R, t > 0,

U = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U = 0, x ∈ R, t > 0.

(A.28)
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Using the regular asymptotic expansion (A.21), and inserting it into (A.28) yields the
following PDE:

ε
[
∂2U(0)

∂t2
+ ε∂

2U(1)

∂t2

]
+
[
∂U(0)

∂t
+ ε∂U

(1)

∂t
+
]
≈ εv2

[
∂2U(0)

∂x2 + ε∂
2U(1)

∂x2

]
U (0)(x, t = 0) + εU (1)(x, t = 0) ≈ δ(x− x0)
lim|x|→∞

[
U (0)(x, t) + εU (1)(x, t)

]
≈ 0.

(A.29)

O(1) : Arranging the terms in (A.29) of O(1) is the PDE
∂U(0)

∂t
= 0, x ∈ R, t > 0,

U (0) = δ(x− x0), x ∈ R, t = 0,
lim|x|→∞ U (0) = 0, x ∈ R, t > 0.

(A.30)

The solution to the general equation is

U (0)(x, t) = δ(x− x0). (A.31)

O(ε) : Arranging the terms in (A.29) of O(ε) is the PDE
∂2U(0)

∂t2
+ ∂U(1)

∂t
= v2 ∂2U(0)

∂x2 , x ∈ R, t > 0,
U (1) = 0, x ∈ R, t = 0,
lim|x|→∞ U (1) = 0, x ∈ R, t > 0.

(A.32)

Rearranging the general equation yields ∂U(1)

∂t
= v2 ∂2U(0)

∂x2 . This general solution is U (1)(x, t) =
C(x) + v2 ∂2U(0)

∂x2 t. The initial condition implies that C(x) = 0. Then the boundary condi-
tion is satisfied since lim|x|→∞ ∂2U(0)

∂x2 = 0. Thus,

U (1)(x, t) = v2∂
2U (0)

∂x2 t. (A.33)

Now, inserting (A.31) and (A.33) into (A.21), the solution to (A.28) is approximately

U(x, t) ≈ δ(x− x0) + εv2∂
2δ(x− x0)
∂x2 t. (A.34)

For ε � 1, this solution does not represent the actual model behavior. Thus, it is
important to keep track of the parameter regime when developing the PDE model.
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Appendix B

Least-Squares Approximations

Suppose we have a data set {(x1, y1), (x2, y2), . . . (xm, ym)} and want to find the function
f(x) that “best fits” the data. That is, we want to find the parameter set p of f that
minimizes the squared residual error

E(p) =
m∑
k=1

(yk − f(xk))2 . (B.1)

We want to derive the log-linear, log(y) = a log(x) + b, and exponential, y = bxa least-
squares used in the dissertation. However, we begin by deriving the solution to the basic
linear least-squares, y = ax+ b, since both cases can transform to this basic case.

B.1 Linear Least-Squares: y = ax + b

Since f(x) = ax+ b, we want to find parameters a, b ∈ R that minimize

E(a, b) =
m∑
k=1

(yk − (axk + b))2 . (B.2)

To find the minimum, we need to set the partial derivatives with respect to the parameters
equal to 0 and solve the resulting system of equations. We have

∂E

∂a
= −2

m∑
k=1

xk [yk − (axk + b)] = 0,

∂E

∂b
= −2

m∑
k=1

[yk − (axk + b)] = 0.

Rearranging terms gives us the system of equations

a
m∑
k=1

x2
k + b

m∑
k=1

xk =
m∑
k=1

xkyk,

a
m∑
k=1

xk + b
m∑
k=1

1 =
m∑
k=1

yk.
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We can rewrite the above as a matrix equation[∑m
k=1 x

2
k

∑m
k=1 xk∑m

k=1 xk
∑m
k=1 1

](
a
b

)
=
(∑m

k=1 xkyk∑m
k=1 yk

)
. (B.3)

Solving (B.3) for a and b gives the line of “best fit” through the data. There is another
way to solve for (B.3), by using the normal equations. If we want to find the line that
“best fits” the data, we need to solve the system of equations:

y1 = ax1 + b,

y2 = ax2 + b,

...
ym = axm + b.

We can rewrite this as a matrix equation Ax = y, where

A =


x1 1
x2 1
... ...
xm 1

 , x =
(
a
b

)
, and y =


y1
y2
...
ym

 .

This system would only have an exact solution if the data rested on the same line. How-
ever, as seen in the error plots of Sections 2.1.1, 2.2.1, and 5.4.1, this may not be the case.
However, if we multiply both sides of the matrix equation by AT , the transpose of the
matrix, then we can solve the system. That is, we then solve ATAx = ATy. It is worth
noting that we can easily compute

ATA =
[∑m

k=1 x
2
k

∑m
k=1 xk∑m

k=1 xk
∑m
k=1 1

]
, and ATy =

(∑m
k=1 xkyk∑m
k=1 yk

)
.

So the (B.3) and normal equation formulations are equivalent. Now we have the necessary
tools to solve the least-squares cases encountered in the dissertation.

B.2 Log-Linear Least-Squares: log(y) = a log(x) + b

In Figs. 2.7, 2.10, and 5.6 the data appears to follow a linear trend. However, the axes are
spaced with log scaling. Thus, the data actually follows the equation log(y) = a log(x) +
b. This looks non-linear, but we can transform the variables so that we can solve a
linear least squares. Let x̂k = xk and ŷk = log(yk) for all k = 1, 2, . . . ,m. We then
can solve the linear least squares solution (B.3) of the line ŷ = ax̂ + b for the points
{(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂m, ŷm)}. Then the least-squares line is y = ebxa.
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B.3 Exponential Least-Squares: y = bxa

In Fig. 5.16a, the data appears to follow an exponential trend. We can perform a log
transformation on the data, log(y) = log(bxa). By using logarithmic identities, we can
rewrite this as ŷ = ax̂ + b̂, where ŷ = log(y), x̂ = log(x), and b̂ = log(b). We then
can solve the linear least squares solution (B.3) of the line ŷ = ax̂ + b̂ for the points
{(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂m, ŷm)}. Then the least-squares line is y = eb̂xa.
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Appendix C

2-d Perturbation Theorem

Here, we detail 2-d perturbation theorem as found in [34, 78]. Let H(x(k)) = x(k+1) be a
recursive rule. Suppose there exists a fixed point, x̂, to this recursive rule. That is, there
exists an x̂ such that x̂ = H(x̂). Now define δk such that δ(k) = x(k) − x̂. We then have
that xk = x̂ + δk. Moreover,

δ(k+1) = x(k+1) − x̂
= H(x(k))− x̂
= H(x̂ + δ(k))−H(x̂)

Suppose that we choose a k such that ||δk|| � 1. By definition of the Jacobian, we have
that

J(x̂)δ(k) ≈ δ(k+1). (C.1)

Suppose J(x̂) is diagonalizable with eigenpairs {(λi, ξi)}. That is, J(x̂) = M∆M−1,
where ∆ = diag(λ1, λ2, ..., λN) and M = [ξ1|ξ2| · |ξN ]. Rewriting Eq. (C.1) in this form
gives us

M∆M−1δ(k) ≈ δ(k+1).

We then have that M−1δ(k+1) = ∆M−1δk. By induction, we find that

Mδ(k) = ∆kMδ0

Thus, if the eigenvalue |λj| < 1, the fixed point x̂ is stable along the nullcline defined by
its eigenvector ξj.
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Appendix D

Sparse µ
B̃S,It

 Formula For GRR

Let us assume, as we did when deriving the locally homogeneous region, that the infected
agents are on the radial center of mass of the region B̃S,It \ B̃S,It−1, as shown in Figure 4.2.
We assume that there are n newly infected agents that are uniformly distributed on the
radial center of mass, a distance of r from the initially infected agent.

D.1 Deriving ζk+1

We want to find the total area µ (⋃ni=1Ai), where n is the expected number of infected
agents in the region B̃S,It \ B̃S,It−1 and Ai is the region, illustrated in Figure 4.3, of the ith
infected agent. For our expository purposes, we assume that the newly infected agents
only exist in the edge of the expanding wave of infected agents, leading to the simplified
derivation, n = It − It−1.

By the inclusion-exclusion principle [131] we find that

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai)−
n∑
i=1

µ (Ai ∩ Ai+1) ,

where An+1 = A1. Note that µ(Ai) = µ(Aj) and that µ(Ai ∩Ai+1) = µ(Aj ∩Aj+1) for all
i, j = 1, 2, ..., n. We then have that

µ

(
n⋃
i=1

Ai

)
= n

(
µ(A)− µ(A1 ∩ A2)

)
. (D.1)

First we find µ(A), the region shown in Figure D.1a.
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(a) (b)

Figure D.1: Newly infected agents (black circles) lie on the radial center of mass of the
region B̃S,It \ B̃S,It−1, a distance r from the initially infected agent. (a) Solving for µ(A) as
part of calculating how large the infection front becomes. The infectivity radius of the
agent intersects the edge of region B̃S,It at two points, creating an angle θ from the center
of the region and an angle Φ from the agent. (b) Solving for µ(A1)∩µ(A2). The infected
agents are a distance β apart and form an angle θ from the center of the region B̃S,It .

We already know r and ζt. By our assumption, θ = 2π/n, we can find y by calculating
the intersection of C1 and C2, defined by

C1 : x2 + (y − r)2 = ρ2
0,

C2 : x2 + y2 = ζ2
t .

It follows that y = ζ2
t−ρ2

0+r2

2r . We can then find α =
√
ζ2
t − y2 and Φ = 2 arcsin

(
α
ρ0

)
.

From Figure D.2 we know that µ(A) = µ(R2) − µ(R4). It is clear that µ(R2) =
µ(R1 ∪R2)− µ(R1) = Φ

2 ρ
2
0 − α

√
ρ2

0 − α2 and µ(R4) = µ(R3 ∪R4)− µ(R3) = θ
2ζ

2
t − αy.

Figure D.2: We solve for region A by subtracting µ(R4) from µ(R2). We decompose
solving for µ(A) in Figure D.1a by solving for the outer sector (left) and the inner sector
(right).

We then have that

µ(A) = 1
2
(
Φρ2

0 − θζ2
t

)
− α

(√
ρ2

0 − α2 − y
)
. (D.2)
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Now we can find µ(A1)∩ µ(A2). From Figure D.1b we know θ, r, and ζt. We want to
find the x-coordinate of the intersection of C1 and C2 defined as

C1 : (x+ h)2 + (y − k)2 = ρ2
0,

C2 : x2 + y2 = ζ2
t

with h = β/2 and k =
√
r2 − (β/2)2. The intersection is the larger solution x̂ of the

quadratic 4 (h2 + k2) x̂2 + 4h (2k2 + η) x̂+
(
η2− 4k2 (ρ2

0 − h2)
)

= 0, where η = h2− k2 +
ζ2
k − ρ2

0.
We then have that µ(A1 ∩ A2) = 2

∫ x̂
0

(
k +

√
ρ2

0 − (x+ h)2 −
√
ζ2
t − x2

)
dx if x̂ > 0.

After integrating, if x̂ > 0 we have

µ(A1 ∩A2) = (h+ x̂)
√
ρ2

0 − (h+ x̂)2 + ρ2
0 arctan

(
h+ x̂√

ρ2
0 − (h+ x̂)2

)
− ζ2

t arctan
(

x̂√
ζ2
t − x̂2

)

− x̂
√
ζ2
t − x̂2 + 2kx̂−

[
h
√
ρ2

0 − h2 + ρ0 arctan
(

h√
ρ2

0 − h2

)]
.

(D.3)

After inserting equations (D.2) and (D.3) into equation (D.1), we have a computable
formula for µ(∪nk=1Ak). Our new wavefront radius is

ζt+1 =
√
πζ2

t + µ(∪ni=1Ai)
π

. (D.4)

The above formulation works well for low density E-AB simulations, where agents in
state R do not return to state S (TR is longer than the time of the simulation). However,
if recovered agents can become susceptible, then we must reformulate our calculation of
the expected value of n.
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Appendix E

Derivation of GRR Error Metric

Suppose we have a data set (t1, S1), (t2, S2), ..., (tN , SN) and want to compute the error
with another sequence of points (t̂1, Ŝ1), (t̂2, Ŝ2), ..., (t̂M , ŜM). We assume that t1 < t2 <
· · · < tN and that t̂1 < t̂2 < · · · < t̂M . We create a linear spline interpolant f(t) from
the first data set [120, Ch.2] by f(t) = Sk+1−Sk

tk+1−tk
(t − tk) + Sk, for tk ≤ t ≤ tk+1. Our error

metric is a normalized least-square, where we find the minimum distance from each point
in the second data set to the spline approximation of the first data set.

ν = 1
M

M∑
k=1

inf
t

√
(t̂k − t)2 + (Ŝk − f(t))2, (E.1)

Consider a point x̂ = (t̂, Ŝ). We need to derive an algorithm to calculate the following
minimization:

d(x̂, f) = inf
t

√
(t̂− t)2 + (Ŝ − f(t))2.

The line that intersects points (tk, Sk) and (tk+1, Sk+1) is given by

`k(t) = Sk+1 − Sk
tk+1 − tk

(t− tk) + Sk. (E.2)

To find the value tmin such that d(x̂, `k) is minimized, we must first find the line ˆ̀ that
intersects x̂ and `k. This line is given by

ˆ̀(t) = − tk+1 − tk
Sk+1 − Sk

(t− t̂) + Ŝ. (E.3)

Setting (E.2) and (E.3) equal and solving for t, we find that

tmin = (tk+1 − tk)(Sk+1 − Sk)
(tk+1 − tk)2 + (Sk+1 − Sk)2

(
tk+1 − tk
Sk+1 − Sk

t̂+ Sk+1 − Sk
tk+1 − tk

tk + Ŝ − Sk
)
. (E.4)
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It follows that the location on the line `k that minimizes the distance to x̂ is Smin,k =
`k(tmin). We then calculate

dk =


√

(t̂− tk)2 + (Ŝ − Sk)2 : if tmin < tk,√
(t̂− tk+1)2 + (Ŝ − Sk+1)2 : if tk+1 < tmin,√
(t̂− tmin)2 + (Ŝ − Smin,k)2 : otherwise.

(E.5)

Since d(x̂, f) = inft
√

(t̂− t)2 + (Ŝ − f(t))2 = min{d1, d2, ..., dN−1}, the minimum of
the distance from x̂ to each of the line segments in f , we calculate the error by ν =
1
M

∑M
k=1 d (x̂k, f).
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Appendix F

Path Dependent Absorption
Formulation

The chemical absorption model developed in Chapter 5 is shown to be effective. Moreover,
we see in Chapters 6 and 7 that the model is capable of being extended to incorporate
more complex phenomena. However, for completeness I discuss my initial formulation
of the model in this section. This was developed prior to realizing that the cumulative
absorption variable, ξ, could be used a coordinate. This alternative way to model chemical
absorption is accomplished by following the paths of the agents.

F.1 Path Model Development and Derivation
An agent is initialized in the domain Ω and travels within Ω, absorbing chemical. If the
chemical concentration, C(x), is heterogeneous, then the amount of chemical absorbed
may change depending on the agent’s path.

In Fig. F.1, we initialize four agents at x0 = 0.5 and run the simulation with C(x) =
exp {−x2}. The colored circles at each iteration denotes the particular agent (black, blue,
red, or green) and the color of the path line denotes the cumulative amount of chemical the
particular agent has absorbed at their respective times. The large colored circles denote
the location and time in which each agent changes state. Since C(x) is larger to the left,
we see that the agents absorb chemical faster the farther left they move. In fact, at around
t = 0.005 each agent’s path line is a slightly different color. The black agent at the far left
has a violet path line, whereas the green agent at the far right has a turquoise path line.
This is because, except for a small amount of time at the beginning of the simulation,
the green agent has moved randomly in a region of lower chemical concentration than the
black agent.

From these AB Model observations, we propose approximating a path-dependent
model for chemical absorption. Since the agent performs an unbiased random walk
(URW), we can leverage the state-change modeling framework initially examined in Sec-
tion 3.3. Define the function f(x, t, C(x)) as the proportion of all connected paths from
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Figure F.1: Paths for four agents, each initialized at x0 = 0.5 and distinguished by black,
blue, red, and green circles at each iteration, where the horizontal axis represents location
and the vertical axis represents time. The line colors denote the amount of chemical each
agent absorbed, and the large circles denote where and when each agent changes state.

x0 to x in time t from which the agent traveling along the path absorbs less than the
absorption threshold, ξc. The difference equation for this model is:

U(x, t+4t) = 1
2U(x−4x, t) + 1

2U(x+4x, t)− U(x, t) [1− f(x, t, C(x))] .

Expanding the above difference equation in a Taylor series and simplifying gives us

∂U

∂t
= 4x

2

24t
∂2U

∂x2 −
1
4t

U(x, t) [1− f(x, t, C(x))] +O(4x3,4t). (F.1)

Using the asymptotic argument that 0 < 4x,4t� 1, we define the diffusion parameter
D = 4x2

24t and state change proportion parameter q(x, t) = 1
4t [1− f(x, t, C(x))] to obtain

the pdf that the agent is alive and at location x at time t:

∂U

∂t
= D

∂2U

∂x2 − q(x, t)U. (F.2)

We now need a mathematical formulation of f(x, t, C(x)) in order to compute q(x, t).
Let ϕ(t) be any connected path such that ϕ(0) = x0 and ϕ(t) = x. Then the set of all such
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connected paths is A(x, t) = {ϕ ⊂ Ω : ϕ(0) = x0, ϕ(t) = x}. The amount absorbed along
each path can be found by an integral parameterized by time,

∫ t
0 C(φ(τ)) dτ . Therefore,

we can calculate f(x, t, C(x)) by

f(x, t, C(x)) =
∫
ϕ∈A(x,t) χ(ϕ, t)Dϕ∫

ϕ∈A(x,t) 1Dϕ , (F.3)

where χ(ϕ, t) =

1 : if
∫ t
0 C(φ(τ)) dτ < ξc

0 : otherwise
and Dϕ denotes the integrating measure

over all connected paths in A(x, t). The term
∫
ϕ∈A(x,t) 1Dϕ in the denominator is a

normalization constant computing the measure of A(x, t). This notation is drawn from

path integrals in Quantum Mechanics [30]. Therefore, q(x, t) = 1
4t

[
1−

∫
ϕ∈A(x,t) χ(ϕ,t)Dϕ∫
ϕ∈A(x,t) 1Dϕ

]
.

Now we need a way of calculating (F.2).

F.2 Path Model Numerical Solution
In order to obtain our path absorption model’s approximate solution, we need to solve
the PDE 

∂U
∂t

= D ∂2U
∂x2 − q(x, t)U, x ∈ Ω, t > 0

U = δ(x− x0), x ∈ Ω̄, t = 0
∂U
∂x

= 0, x ∈ ∂Ω, t > 0.

If we know q, then we can easily solve the above PDE using a finite difference method.
So, it remains for us to solve (F.3).

The function f(x, t, C(x)) is a continuum integral over all possible paths. However,
we know that the domain of an URW initialized at a point source with fixed step-size
4x is essentially a discrete, finite lattice. In this absorption model, the lattice edges are
weighted by the chemical concentration absorbed. Therefore, if t = m4t, then we can
approximate

∫
ϕ∈A(x,t) χ(ϕ, t)Dϕ by setting up a graph adjacency matrix to calculate the

amount absorbed in each distinct m-step path from node x0 to node x, if it exists.
We computed examples with different chemical profiles in Figs. F.2, F.3. The numer-

ical calculation of q(x, t) was inefficient, since the computational time required to solve
over the space of all possible paths grows exponentially. This is why the domain Ω = [0, 1]
is only divided into 21 nodes, and this inefficiency is also why the simulations only ran
for 21 iterations. Even though the solutions look somewhat reasonable given the large
step-sizes, the computational cost of solving q(x, t) was motivation for finding a different
way to model chemical absorption, which eventually became the model in Chapter 5.
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(a) AB Model Simulation (b) Numerical Solution

Figure F.2: Comparison between AB Model simulation and numerical approximation
with chemical concentration C(x) = 1[0.425,0.575](x) and threshold value ξc = 3. Agents
initialized at x0 = 0.5 in the region Ω = [0, 1] with no-flux boundary conditions. The
agents move with spatial-step 4x = 0.05 and time-step 4t = 4x2/2.

(a) AB Model Simulation (b) Numerical Solution

Figure F.3: Comparison between AB Model simulation and numerical approximation
with chemical concentration C(x) = x2 and threshold value ξc = 3. Agents initialized at
x0 = 0.5 in the region Ω = [0, 1] with no-flux boundary conditions. The agents move with
spatial-step 4x = 0.05 and time-step 4t = 4x2/2.
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Appendix G

Numerical Method of Images Error

We are interested in how error is indroduced to the numerical method of images for the
diffusion equation, as defined in Section 6.1.2. We examine no-flux and dirichlet boundary
conditions for a known, explicit solution in the domain Ω = [−1, 1] with various spatial
step-sizes. We also experimentally demonstrate that the no-flux method is conservative
up to round-off errors.

G.1 No-Flux Boundary Condition Error
We solve the diffusion equation in the region Ω = [−1, 1] ⊂ R with no-flux boundary
conditions 

∂U
∂t

= ∂2U
∂x2 , x ∈ (−1, 1), t > 0,

U = sin
(
π
2x
)
, x ∈ [−1, 1], t = 0,

∂U
∂x

= 0, x ∈ {−1, 1}, t > 0.
(G.1)

The exact solution to the PDE (G.1) is

U(x, t) = exp
{
−π

2t

4

}
sin

(
π

2x
)
. (G.2)

This is clear, since the initial condition is an eigenfunction of the diffusion equation
[105, Ch.2]. To compare the numerical solution with the exact solution, we integrate the
solution (G.2) over each cell volume. That is, for spatial step-size δx, the exact solution
integrated over the cell volume centered at xi is

Ui(t) =
∫
B(xi,δx/2)

U(x, t) dx

= − 2
π

exp
{
−π

2t

4

}[
cos

(
π

2 (xi + δx/2)
)
− cos

(
π

2 (xi − δx/2)
)]

We compute two types of error for various spatial step sizes, δx: absolute error and
relative absolute error. The absolute error is computed as E = ∑N

i=0 |umi − Ui(mδt)|,
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and the relative absolute error is computed as Er = ∑N
i=0

∣∣∣umi −Ui(mδt)
Ui(mδt)

∣∣∣. In each case, we
compute the numerical method of images on the extended domain [−3, 3] with time-step
δt = 5× 10−5.

t = 0.00025 t = 0.0025 t = 0.005 t = 0.01

(a) Absolute Error

(b) Relative Absolute Error

Figure G.1: Absolute Error and Relative Absolute Error plots for method of images in a
line segment with no-flux boundary conditions with various spatial step-sizes, δx.

We see in Fig. G.1 that even though the numerical method of images only performs
one image reflection across each boundary, the boundary does not add additional error to
the system. In fact, the numerical Green’s function, Gi (as computed in Section 5.3), at
the boundary is essentially 0. We can further observe that the numerical method appears
to be second-order accurate in space, O(δx2), and first-order accurate in time, O(δt).

Since the PDE (G.1) has no-flux boundary conditions at the endpoints, it is essential
that the numerical method enforces this conservation. We calculate the average difference
by Ec = 1

N

∑N
i=0

∣∣∣umi −∑N
k=0 u

0
k

∣∣∣. Although Fig. G.2 appears very noisy, the important
thing to observe
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Figure G.2: Conservation error in time for method of images in a line segment with no-flux
boundary conditions with various spatial step-sizes, δx.

is that the error for each δx is close to machine epsilon, εmach = 10−16. Thus, the numerical
method of images for no-flux boundary conditions enforces conservation up to rounding
errors.

G.2 Absorbing Boundary Condition Error
We also want to examine the error when the numerical method of images uses absorbing
boundary conditions. We solve the diffusion equation in the region Ω = [−1, 1] ⊂ R with
perfectly absorbing boundary conditions

∂U
∂t

= ∂2U
∂x2 , x ∈ (−1, 1), t > 0,

U = cos
(
π
2x
)
, x ∈ [−1, 1], t = 0,

U(x, t) = 0, x ∈ {−1, 1}, t > 0.
(G.3)

The exact solution to the PDE (G.3) is

U(x, t) = exp
{
−π

2t

4

}
cos

(
π

2x
)
. (G.4)

To compare the numerical solution with the exact solution, we integrate (G.4) over each
cell volume. That is, for spatial step-size δx, the exact solution integrated over the cell
volume centered at xi is

Ui(t) =
∫
B(xi,δx/2)

U(x, t) dx

= 2
π

exp
{
−π

2t

4

}[
sin

(
π

2 (xi + δx/2)
)
− sin

(
π

2 (xi − δx/2)
)]
.
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t = 0.00025 t = 0.0025 t = 0.005 t = 0.01

(a) Absolute Error

(b) Relative Absolute Error

Figure G.3: Absolute Error and Relative Absolute Error plots for method of images in a
line segment with perfectly absorbing boundary conditions with various spatial step-sizes,
δx.

We compute the absolute error, E, and the relative absolute error Er between the
exact solution and the numerical solution using the numerical method of images. Just as
we see in the No-Flux example, Fig. G.3a demonstrates that the boundary does not affect
the error. Again, we see that the numerical method appears to be second-order accurate
in space, O(δx2), and first-order accurate in time, O(δt).
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[54] D. Grünbaum. Advection-diffusion equations for internal state-mediated random
walks. SIAM J. Appl. Math., 61(1):43–73, 2000.

180

https://pubchem.ncbi.nlm.nih.gov/


[55] Y. Han and H. Liu. Modified social force model based on information transmission
toward crowd evacuation simulation. Physica A, 469:499–509, 2017.

[56] P. He, L. Lu, X. Xu, K. Li, H. Qian, and W. Zhang. Confidence-based ant random
walks. In 2014 IEEE Congress on Evolutionary Computation (CEC), pages 1721–
1728. IEEE, 2014.

[57] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Phys. Rev.
E, 51(5):42–82, 1995.

[58] N.A. Hill and D.P. Hader. A biased random walk model for the trajectories of
swimming micro-organisms. J. Theor. Biol., 186:503–526, 1997.

[59] F. Hinkelmann, D. Murrugarra, A.S. Jarrah, and R. Laubenbacher. A mathematical
framework for agent based models of complex biological networks. Bull. Math. Biol.,
73(7):1583–1602, 2011.

[60] M. Holcombe, S. Adra, M. Bicak, S. Chin, S. Coakley, A.I. Graham, J. Green,
C. Greenough, D. Jackson, M. Kiran, S. MacNeil, A. Maleki-Dizaji, P. McMinn,
M. Pogson, R. Poole, E. Qwarnstrom, F. Ratnieks, M. D. Rolfe, R. Smallwood,
T. Sun, and D. Worth. Modelling complex biological systems using an agent-based
approach. Integr. Biol., 4:53–64, 2012.

[61] A. Holko, M. Medrek, Z. Pastuszak, and K. Phusavat. Epidemiological modeling
with a population density map-based cellular automata simulation system. Expert
Sys. Apps., 48:1–8, 2016.

[62] R. Interian, R. Rodriguez-Ramos, F. Valdeis-Ravelo, A. Ramirez-Torres, C.C.
Ribeiro, and A. Conci. Tumor growth modelling by cellular automata. Math. Mech.
Complex Syst., 5(3-4):239–259, 2017.

[63] A. Ishihara, J.E. Segall, S.M. Block, and H.C. Berg. Coordination of flagella on
filamentous cells of escherichia coli. J. Bacteriol., 155(1):228–237, 1983.

[64] I. Jonsen, R. Myers, and J. Flemming. Meta-analysis of animal movement using
state-space models. Ecology, 84(11):3055–3063, 2003.

[65] M. Kac. Random walk and the theory of brownian motion. Amer. Math. Monthly,
54(7):369–391, 1947.

[66] V. Kantsler, J. Dunkel, M. Blayney, and R.E. Goldstein. Rheotaxis facilitates
upstream navigation of mammalian sperm cells. eLife, 3:e02403, 2014.

[67] Y. Katznelson. An Introduction to Harmonic Analysis, chapter 6, pages 132–200.
Cambridge University Press, New York, NY, 3rd edition, 2002.

[68] J. Kim, H. Park, and S. Chung. Microfluidic approaches to bacterial biofilm forma-
tion. Molecules, 17(8):9818–9834, 2012.

181



[69] C.V. Kumar, H. Vardhan, C.S.N. Murthy, and N.C. Karmakar. Estimating rock
properties using sound signal dominant frequencies during diamond core drilling
operations. J. Rock Mech. Geotech. Eng., 11(4):850–859, 2019-08.

[70] V. Kurella, J.C. Tzou, and D. Coombs. Asymptotic analysis of first passage time
problems inspired by ecology. Bull. Math. Biol., 77:83–125, 2015.

[71] J. Lasry and P. Lions. Mean field games. Jap. J. Math., 2(1):229–260, 2007.

[72] R. Laubenbacher, A.S. Jarrah, H.S. Mortveit, and S.S. Ravi. Mathematical formal-
ism for agent based modeling. In R.A. Meyers, editor, Computational Complexity:
Theory, Techniques, and Applications, pages 88–104. Springer New York, New York,
NY, 2012.

[73] L. Lehner, D. Neilsen, O. Reula, and M. Tiglio. The discrete energy method in nu-
merical relativity: towards long-term stability. Classical Quant. Grav., 21(24):5819–
5848, 2004.

[74] K. Leiderman and A.L. Fogelson. Grow with the flow: a spatial–temporal model of
platelet deposition and blood coagulation under flow. Math. Med. Biol., 28(1):47–84,
2011.

[75] R.J. LeVeque. Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems. Siam, 1st edition, 2007.

[76] R.J. LeVeque et al. Finite volume methods for hyperbolic problems. Cambridge
university press, 1st edition, 2002.

[77] D. Levy and E. Tadmor. From semidiscrete to fully discrete: Stability of runge–
kutta schemes by the energy method. SIAM Rev., 40(1):40–73, 1998.

[78] C.C. Lin and L. A. Segel. Mathematics Applied to Deterministic Problems in the
Natural Sciences, chapter 11, pages 321–345. Society for Industrial and Applied
Mathematics, Philadelphia, 1 edition, 1988.

[79] A. Lindsay, A.J. Bernoff, and M.J. Ward. First passage statistics for the capture
of a brownian particle by a structured spherical target with multiple surface traps.
Multiscale Model Sim., 15(1):74–109, 2017.

[80] A.L. Lloyd. Realistic distributions of infectious periods in epidemic models: Chang-
ing patterns of persistence and dynamics. Theor. Popul. Biol., 60(1):59–71, 2001.

[81] J. Ma and D.J.D. Earn. Generality of the final size formula for an epidemic of a
newly invading infectious disease. Bull. Math. Biol., 68(3):679–702, 2006.

[82] V. Martinelli. Combination therapy. J. Neurol. Sci., 27(5):s350–s354, 2006.

182



[83] V. Marziano, A. Pugliese, S. Merler, and M. Ajelli. Detecting a surprisingly low
transmission distance in the early phase of the 2009 influenza pandemic. Sci. Rep.,
7(1), 2016.

[84] R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using
social force model. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 935–942. IEEE, 2009.

[85] R. Metzler, E. Barkai, and J. Klafter. Deriving fractional fokker-planck equations
from a generalised master equation. Europhys. Lett., 46(4):431–436, 1999.

[86] J.C. Miller. A note on the derivation of epidemic final sizes. Bull. Math. Biol.,
74(9):2125–2141, 2012.

[87] E.W. Montroll and M.F. Shlesinger. On the wonderful world of random walks.
In J.L. Lebowitz and E.W. Montreal, editors, Nonequilibrium phenomena II: from
stochastics to hydrodynamics, pages 1–121, Amsterdam, The Netherlands, 1984.
North-Holland.

[88] J.R. Moraes and P. Stastny. A new antigen system expressed in human endothelial
cells. J. Clin. Invest., 60(2):449–454, 1977.

[89] M.M. Mousa. Efficient numerical scheme based on the method of lines for the
shallow water equations. J. Ocean. Eng. Sci., 3(4):303–309, 2018.

[90] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications,
chapter 13, pages 661–721. Springer, 3rd edition, 2003.

[91] J.D. Murray. Asymptotic analysis, chapter 6, pages 99–137. Springer Science &
Business Media, 1st edition, 2012.

[92] J. Newby and J. Allard. First-passage time to clear the way for receptor-ligand
binding in a crowded environment. Phys. Rev. Let., 116:128101, 2016.

[93] M.J. North. A theoretical formalism for analyzing agent-based models. Complex
Adapt. Syst. Model., 2(1):3, 2014.
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