
Worcester Polytechnic Institute
Major Qualifying Project Report

Performance Evaluation of Round 2 Submissions for the

NIST Post-Quantum Cryptography Project

Kevin Baptista

May 2020

Project Advisor: Professor Berk Sunar

A Major Qualifying Project Report submitted to

the faculty of Worcester Polytechnic Institute

in partial fulfillment of the requirements for

the Degree of Bachelor of Science

MQP BS2 1904

Contents

1 Introduction 5

1.1 Motivation . 5

2 Background 6

2.1 Code-based submissions . 6

2.2 Lattice based submissions . 7

2.3 Multivariate based submissions . 7

2.4 Elliptic Curve based submissions . 7

2.5 Encryption Schemes . 7

2.5.1 BIKE . 8

2.5.2 Classic McEliece . 8

2.5.3 HQC . 8

2.5.4 NTS-KEM . 9

2.5.5 ROLLO . 9

2.5.6 RQC . 9

2.5.7 CRYSTALS-Kyber . 10

2.5.8 FrodoKEM . 10

2.5.9 LAC . 10

2.5.10 NewHope . 11

2.5.11 NTRU . 11

2

2.5.12 NTRU-Prime . 11

2.5.13 Round5 . 12

2.5.14 ThreeBears . 12

2.5.15 SIKE . 12

2.6 Signature schemes . 13

2.6.1 Crystals-Dilithium . 13

2.6.2 FALCON . 13

2.6.3 qTesla . 13

2.6.4 GeMSS . 14

2.6.5 MQDSS . 14

2.6.6 Rainbow . 14

2.6.7 LUOV . 14

2.6.8 Picnic . 15

2.6.9 SPHINCS+ . 15

3 Performance Analysis of Submissions 16

3.1 Methodology . 16

3.2 Measurements . 17

3.3 Encryption schemes . 18

3.3.1 BIKE . 19

3.3.2 HQC . 19

3.3.3 NTS-KEM . 20

3.3.4 ROLLO . 20

3.3.5 RQC . 21

3.3.6 Classic McEliece . 21

3.3.7 Crystals-Kyber . 21

3.3.8 FrodoKEM . 22

3.3.9 LAC . 22

3

3.3.10 New Hope . 22

3.3.11 NTRU . 23

3.3.12 NTRU Prime . 23

3.3.13 Round5 . 23

3.3.14 Three Bears . 24

3.3.15 SIKE . 24

3.4 Signature Schemes . 24

3.4.1 CRYSTALS-Dilithium . 25

3.4.2 FALCON . 26

3.4.3 qTesla . 26

3.4.4 GeMSS . 26

3.4.5 MQDSS . 26

3.4.6 Rainbow . 26

3.4.7 LUOV . 27

3.4.8 Picnic . 27

3.4.9 SPHINCS+ . 27

4 Conclusion 28

4

Chapter 1

Introduction

This paper looks at the submissions for round 2 of a competition held by National Institute

of Standards and Technology (NIST) to find an encryption standard resistant to attacks by

post-quantum computers. NIST announced its call for submissions in February 2016 with a

deadline of November 2017 and announced the 69 algorithms that made the cut for round

1. In January 2019 the candidates for round 2 were announced with round 3 projected for

2020/2021.

1.1 Motivation

As quantum computers become more common the need for a new encryption standard be-

comes more prominent since they can potentially provide the power to brute force current

encryption standards in a relatively short amount of time. Because of this NIST has begun

looking for a new encryption standard that is secure against quantum computers.

In addition to security, the performance is an important factor when considering a new

encryption standard. This study looks at all the round 2 submissions and compares the

category 1 implementations (equivalent to AES-128) in terms of encryption/decryption time

and its memory footprint.

5

Chapter 2

Background

This section gives a brief description of each submission along with the data collected from

benchmarking. Each submission falls into one of three catagories: code-based, lattice-based

or elliptic curve-based. Each of these have their respective trade-offs which will be discussed

before getting into the submissions themselves.

2.1 Code-based submissions

Code-based cryptography refers to encryption schemes that use error correcting code. The

advantage of code based schemes is that they are generally faster with the tradeoff of larger

key sizes. A well known example of this is Classic McEliece which has been around for about

thirty years and still does not have any known attacks even with a quantum computer. In the

case of Classic McEliece, it uses a random code as the private key and a randomly permuted

version of that code as the public key while the ciphertext is a codeword with errors that

only the private key can decipher [1].

6

2.2 Lattice based submissions

Lattice based cryptography relies on the difficulty of problems related to lattices, namely

finding the shortest non-zero vector in an arbitrary basis that represents a lattice. The most

common variation of these schemes are Learning With Errors (LWE) and Ring Learning

With Errors (RLWE). While this is a more recent method, it is thought to be secure against

quantum computers [2].

2.3 Multivariate based submissions

Mutivariate cryptography schemes have their security based on the multivariate quadratic

polynomial problem. This problem has been proven to be non-deterministic polynomial

time over any field and believed to be hard on both classical and quantum computers [3].

Multivariate encryption is a popular choice amongst the signature schemes and its main

advantages include its speed, modest computational requirements, and short signatures while

its main drawback is its large public key sizes.

2.4 Elliptic Curve based submissions

Elliptic curve cryptography (ECC) is already widely used and well studied. While traditional

ECC is more easily broken by quantum computers using Shor’s algorithm isogeny based

schemes are conjectured to be secure against quantum attacks [4].

2.5 Encryption Schemes

The following submissions are key encapsulation methods, an encryption scheme that uses

a public key to create a ciphertext containing a symmetric key and in order to decrypt one

must have the correct private key. This is primarily used for transmitting data that needs

7

to be secured over an insecure network.

2.5.1 BIKE

Bit Flipping Key Encapsulation (BIKE) is a code based submission which uses Quasi-Cyclic

Moderate Density Parity-Check (QC-MDPC) code using bit-flipping coding techniques [5].

All variations of BIKE make use of ephemeral keys to protect against the GJS Reaction

attack. BIKE has three variations of the scheme, each one with their optimizations focused

on different areas; the exact differences and advantages/disadvantages each one has over the

other can be found in the specification document.

2.5.2 Classic McEliece

While most code-based submissions are based off of the cryptosystem developed by McEliece

in 1978 they all make their own adjustments whereas Classic McElice, as the name would im-

ply, uses the original design which still doesn’t have any known effective attacks [6]. Classic

McEliece uses a random Goppa code and adds random errors in order to encrypt the mes-

sage. This is extremely secure however as the documentation states, it comes at the cost of

efficiency, with very large key sizes and key generation times. The documentation also claims

that the hardware implementation is noticeably faster than the software implementation.

2.5.3 HQC

Hamming Quasi-Cyclic (HQC) is a code based encryption scheme proved IND-CPA assum-

ing the hardness of the Syndrome Decoding on structured code [7]. Some of the other

features it chooses to highlight are that the assumption that the family of codes being used

is indistinguishable among random codes is not required and that it features a decryption

failure probability analysis. HQC claims to be immune against attacks aiming at recovering

the hidden structure of the code being used. A limitation of HQC is the low encryption rate;

8

increasing this rate requires increasing its other parameters.

2.5.4 NTS-KEM

NTS-KEM can be seen as variant of the McEliece and Niederreiter public key encryption

schemes, however it is not concerned with the secure communication of an encrypted message

but rather the secure communication of a random key [8]. NTS-KEM claims to have strong

security guarantees and demonstrates a tight relationship between the IND-CCA security

of NTS-KEM and the problem of inverting the McEliece PKE scheme. It also claims to be

very flexible allowing for more fine-tuning of trade-offs. One of the notable disadvantages of

NTS-KEM as noted by the documentation is the large key size.

2.5.5 ROLLO

ROLLO is a compilation of three other code based encryption schemes; namely LAKE,

LOCKER, and Rank-Ouroboros. All three are based on rank metric codes and share the

same decryption algorithm for Low Rank Parity Check (LRPC) codes [9]. ROLLO is designed

to be efficient with its key size and computational complexity while also having a constant

time decoding algorithm and a well studied failure probability. A limitation noted in the

documentation is the fact that the harness of the problem ROLLO uses is relatively recent

and is still being studied but considered hard by the community.

2.5.6 RQC

Rank Quasi-Cyclic is very similar to HQC and has the same advantages with the addition of

the decryption algorithm being deterministic, thus having a decryption failure rate of zero,

and having more attractive parameters than most Hamming based proposals [10]. It also

shares the same limitations as HQC, namely that the hardness needs to be better studied

and is difficult to improve on complexity.

9

2.5.7 CRYSTALS-Kyber

The Cryptographic Suite for Algebraic Lattices (CRYSTALs) key encapsulation method

named Kyber has its security based on the hardness of the LWE in module lattices prob-

lem [11]. The construction of Kyber has a two-stage approach: the IND-CPA-secure public-

key encryption scheme is introduced and encrypts messages of a fixed length of 32 bytes.

Then a slightly tweaked Fujisaki–Okamoto (FO) transform is used to construct the IND-

CCA2-secure KEM. Some of the notable advantages of Kyber according to the documen-

tation include its ease of implementation and scalability. Its limitations come compared to

other lattice-based schemes where various implementations have different trade-offs on se-

curity or efficiency. Ring Learning-with-errors for example requires many more outputs in

order to extract a matrix from a seed.

2.5.8 FrodoKEM

FrodoKEM is a lattice based encryption scheme designed to be conservative yet practical and

derives its security from from cautious parameterizations of the well-studied LWE problem,

which in turn has close connections to conjectured-hard problems on generic, “algebraically

unstructured” lattices [12]. Some of the advantages FrodoKEM’s documentation claims to

have include its ease of implementation, compatibility with current schemes, potential for an

efficient hardware implementation, and resistance to side-channel attacks. The disadvantage

of this scheme is its large key size.

2.5.9 LAC

Lattice-based Cryptosystems (LAC) is a cryptographic suite that derives its strength from

the RWLE problem. LAC achieves the required security but its focus is on size [13]. Some

of the advantages as specified in the documentation include its consideration for multiple

implementations such as the parallel design making it a very sutible design for multi-core

10

processors. Other advantages include the simplicity and flexibility of the design. Some of

the limitations include an inability to be sped up on processors that do not support vector

instructions and a sacrifice of efficiency to protect against timing attacks.

2.5.10 NewHope

New Hope is a lattice based encryption scheme described as a variant of the encryption

scheme by Lyubashevsky, Peikert and Regev which uses RWLE while also applying size

reduction techniques [14]. The main advantages according to the documentation include its

performance, ease of implementation, and conservative design. Some of its limitations are its

small noise distribution, limited parameterization, and restrictions due to usage of Number

Theory Transform.

2.5.11 NTRU

The lattice based scheme this implementation is based of off, NTRU, was first described

by Hoffstein, Pipher, and Silverman with some changes by Hülsing, Rijnveld, Schanck, and

Schwabe [15]. This scheme has a tight proof of IND-CCA2 security in the random oracle

model assuming the DPKE is OW-CPA secure while also being secure in the quantum

random oracle model. Some of the advantages include the fact that it is well studied, its

flexibility, speed, and lack of a patent while some of its limitations include its size and lack

of understanding when it comes to optimal parameters.

2.5.12 NTRU-Prime

NTRU-Prime is described as prime-degree large-Galois-group inert-modulus ideal-lattice-

based cryptography which takes away various mathematical tools from an attacker [16].

Some of the advantages of NTRU-Prime include it being resistant to side-channel analysis

and its efficiency. Some of the disadvantages mentioned in the paper include the security

11

levels being widely separated.

2.5.13 Round5

Round5 is a lattice based merger of 2 submissions: Round2 and HILA5 deriving its security

from the General Learning With Rounding problem. It uses an error-correcting code to

decrease decryption failure probability granting smaller key sizes and better performance [17].

Some of Round5’s advantages include its flexibility, small public-key and ciphertext, and

efficiency while no major limitations are specified in the documentation.

2.5.14 ThreeBears

ThreeBears is based on the lattice based Lyubashevsky-Peikert-Regev and Ding RWLE cryp-

tosystems while also deriving from NewHope and Kyber. The main difference with Three-

Bears is that it derives its security from the integers modulo a generalized Mersenne number,

thereby making it integer module learning with errors, similar to Gu’s work [18]. Some of the

advantages of ThreeBears include its simplicity, size, and speed while its disadvantages in-

clude the fact that the problem it derives its security from is still fairly novel and potentially

being more complex to protect from side channel or hybrid attacks.

2.5.15 SIKE

Supersingular Isogeny Key Encapsulation (SIKE) is an elliptic curve based submission which

uses the Diffie-Hellman key exchange enhanced with supersingular isogeny in order to protect

from quantum attacks [19]. The main advantages of SIKE are its small key sizes and how

widely used and well studied ECC has been. The large amount of studies surrounding

ECC allows most of the knowledge, such as implementations that avoid side-channel attacks,

surrounding it to be transferred to SIKE. The main disadvantage of SIKE is its performance,

taking orders of magnitude longer than the lattice or code based submissions.

12

2.6 Signature schemes

The following submissions are digital signature algorithms which also make use of asymetric

cryptography but have the objective of ensuring that the data received is truly from who it

is claimed to be from.

2.6.1 Crystals-Dilithium

Dilithium is based on the ”Fiat-Shamir with Aborts” approach; this technique uses rejection

sampling for compactness and security [20]. To be more efficient Dilithium uses a uniform

distribution instead of the traditional Gaussian distribution. It shares most of the advantages

and disadvantages that Kyber has such as its ease of implementation and small key size.

2.6.2 FALCON

Fast-Fourier Lattice-based Compact Signatures over NTRU (FALCON) has its security based

on NTRU lattices and uses fast Fourier sampling as a trapdoor sampler [21]. FALCON was

designed to be compact and thus this is its main advantage. Some of its other advantages

include fast signature generation and verification, a modular design, and a message recov-

ery mode. Some of the disadvantages documented in the specification include its delicate

implementation, floating point arithmetic, and a lack of information on side-channel attacks.

2.6.3 qTesla

qTesla has its security based on the hardness of RLWE and is claimed to be an efficient vari-

ant of the Bai-Galbraith signature scheme which is based on the Fiat-Shamir with Aborts

framework. It is designed to be simple, practical, and portable [22]. Some of the advantages

according to the documentation of qTesla include its tight security foundation and ease of im-

plementation and integration with other libraries. Although no disadvantages are explicitly

stated, it likely suffers the same disadvantages most lattice-based submissions suffer.

13

2.6.4 GeMSS

A Great Multivariate Short Signature (GeMSS) is a multivariate signature scheme based off

the QUARTZ and Gui signature schemes [23]. GeMSS is claimed to be a faster variant of

QUARTZ, which currently has no practical attack reported against it. The main advantage

GeMSS is centered around is its efficiency while its main drawback is the public key size

being rather large.

2.6.5 MQDSS

MQDSS has its security based on the multivariate quadratic problem and follows the Fiat-

Shamir paradigm of transforming identification schemes to signatures using the 5-Pass SSH

scheme [24]. Some of the advantages MQDSS is designed to have are its small key sizes,

security of the multivariate quadratic problem, simplicity, and ability to be parallelized.

Some of the disadvantages described in the documentation include its large signature size

and the problems associated with rewinding of the adversary and adaptively programming

the random oracle.

2.6.6 Rainbow

Rainbow is a multivariate signature scheme originally proposed in 2005 and adapted for a

post quantum application. It is described as a multi-layer Oil-Vinegar system [25]. Some

of the advantages documented in the specification include its effiency, short signatures, and

simplicity while the disadvantage is its large public and private key size.

2.6.7 LUOV

Lifted Unbalanced Oil and Vinegar has its security based on multivariate cryptography

while attempting to reduce the size of public keys generally associated with oil and vinegar

systems. [26] Some of the advantages the documentation makes note of include its small

14

signature and secret key, wide security margin, and flexibility. While the public key size is

much smaller than that of other multivariate schemes, it’s still quite large and considered

one of LUOV’s limitations although this is a trade-off for the small signature size and can

be modified depending on the application.

2.6.8 Picnic

Picnic is unique in the sense that it does not rely on the harness of any mathematical

problem, relying instead on zero-knowledge proof (i.e. one party can prove to the other that

it knows a secret without disclosing the secret). Picnic has two variations, one that uses the

Fiat-Shamir transform which is secure in the random oracle model (but also has no known

quantum attacks) and the Unruh transform, secure in the quantum ransom oracle model but

crates a larger signature [27].

2.6.9 SPHINCS+

SPHINCS+ is a stateless hash-based signature scheme, it authenticates a large number of

few-time signature key pairs using hyper trees [28]. Some of the advantages the documen-

tation claims SPHINCS+ to have are its small key sizes and that it is probably the most

conservative design of a post-quantum signature scheme thanks to its minimal security as-

sumptions. Its drawback is the signature size being quite large and its speed.

15

Chapter 3

Performance Analysis of Submissions

This chapter will go over how the methodology used to collect data on the performance of

each scheme. Specifically, the time each program took to encrypt and decrypt was measured

along with its memory footprint. The findings of the experiment and some comments on

each scheme are also found in this chapter.

3.1 Methodology

All timing measurements were made using the standard time.h package which allows for

nanosecond precision. The following code was used to measure encryption/decryption time.

It ran encryption and decryption 1000 times and took the average times for each.

The program included with each submission for testing was also paused and the pmap

function was used to record memory usage. This information can be useful for evaluating the

viability of devices with limited memory such as embedded systems. While there may minor

variations with how each submission implemented their program the memory usage recorded

from this should still be a good approximation. Another important factor to consider is the

key size as each encryption scheme has its own tradeoff of key size vs. speed in addition to

the consideration for security.

16

1 crypto_kem_keypair(pk, sk);

2 for(int i = 0; i < TESTCOUNT; i++){

3 clock_gettime(CLOCK_MONOTONIC, &start);

4 crypto_kem_enc(c,k1,pk);

5 clock_gettime(CLOCK_MONOTONIC, &end);

6 encTime += BILLION * (end.tv_sec - start.tv_sec)

7 + end.tv_nsec - start.tv_nsec;

8 clock_gettime(CLOCK_MONOTONIC, &start);

9 crypto_kem_dec(k2,c,sk);

10 clock_gettime(CLOCK_MONOTONIC, &end);

11 decTime += BILLION * (end.tv_sec - start.tv_sec)

12 + end.tv_nsec - start.tv_nsec;

13 }

14

15 encTime = encTime/TESTCOUNT;

16 decTime = decTime/TESTCOUNT;

17

18 printf("Encrypt time: %lu \n",encTime);

19 printf("Decrypt time: %lu \n",decTime);

Listing 1: Code used for measuring time to encrypt/decrypt

This was done on a computer with an Intel i7-3520M @2.90 GHz (Ivy Bridge) running

Xubuntu (a variant of Ubuntu 18.10 using the Xfce desktop environment).

3.2 Measurements

All timing measurements were made using the standard time.h library, specifically it used

the monotonic clock. The monotonic clock allows elapsed time to be measured from an

arbitrary point in time as opposed to a real time clock which would measure the difference

between the system’s best guess of the time at the beginning and end. Unless otherwise

noted, all implementations were run as is with the default compiler options in the makefile.

Table 3.3 shows the average time elapsed from immediately before and after the encap-

sulation and decapsulation functions using the NIST Known Answer Tests (KATs). Table

3.4 shows the memory footprint, the ‘Memory’ refers to how much memory is allocated

17

to the process while the Resident Set Size (RSS) shows how much of that is actually lo-

cated in RAM. The ‘Unique’ columns refer to the memory allocated excluding any libraries

which may already be loaded on the device running the encryption scheme, this also excludes

anonymous memory and the stack as these may also be attributed in part to shared libraries.

3.3 Encryption schemes

This section details the measurements obtained for the encryption schemes using the methods

above. It will describe how each scheme compares to the others and issues or modifications

if any were necessary.

Scheme Encrypt (ms) Decrypt (ms) Public Key (bits) Private Key (bits)

BIKE 0.167 1.963 1988 3090
HQC 1.068 1.597 2500 320

NTSKEM 0.034 0.234 319488 9248
ROLLO 0.179 0.596 3720 320

RQC 0.635 3.221 6824 320
Classic McEliece 0.091 22.856 2088960 51616

CRYSTALS-Kyber 0.211 0.263 13056 6400
FrodoKEM 0.718 0.694 159104 76928

LAC 0.064 0.091 4352 4096
NewHope 0.297 0.338 7424 15104

NTRU 1.361 3.927 5592 7480
NTRU Prime 8.598 19.995 7952 12144

Round5 0.067 0.024 5408 5664
ThreeBears 0.036 0.057 320 6432

SIKE 35.048 37.435 2992 2768

Table 3.1: Key sizes (in bits) and timings of encryption and decryption of schemes

18

Scheme Memory (kB) RSS (kB) Unique Memory (kB) Unique RSS (kB)

BIKE 18872 6544 56 56
HQC 17788 5496 64 64

NTSKEM 6936 4364 116 116
ROLLO 17784 5508 52 52

RQC 17784 5628 60 60
Classic McEliece 2564 1680 132 132

CRYSTALS-Kyber 5496 3084 40 40
FrodoKEM 7116 3248 60 60

LAC 5544 3140 88 88
NewHope 5492 2744 36 36

NTRU 5500 2908 44 44
NTRU Prime 2564 1544 132 128

Round5 5608 3140 152 152
ThreeBears 5560 2960 104 104

SIKE 2564 1680 132 132

Table 3.2: Memory footprint of encryption schemes

3.3.1 BIKE

BIKE is fairly quick when encrypting, however it is slightly slower than most other schemes

when it comes to decrypting. It also has one of the larger key sizes, although this is expected

for code-based algorithms. BIKE had very similar performance between its reference imple-

mentation and optimized implementation, however in the reference implementation BIKE-1

was the default whereas in the optimized implementation BIKE-2 was chosen and this had

better performance. As for the memory profile, while it has the most memory allocated

when accounting for the libraries, the memory of the encrypt/decrypt program itself is on

the smaller end. The values shown in tables 3.3 and 3.4 refer to BIKE-2 targeting category

1 IND-CCA security.

3.3.2 HQC

The optimized implementation of HQC appears to be incompatible with the timing method

used for the other encryption schemes. Using the same code that was used to time other

19

schemes causes it to fail to compile and changing some compiler options in the makefile

allow it to compile but cause an illegal instruction when attempting to run it. Thus the

information in the table refers to the reference implementation of HQC-128-1 which may

have worse performance than the optimized implementation. With this in mind, it is also

worth noting that the key sizes are very small. HQC has one of the larger memory footprints

with libraries accounted for but still fairly small when looking at the memory the program

itself uses.

3.3.3 NTS-KEM

NTS-KEM is one of the faster schemes in both encryption and decryption but this comes at

the cost of the second largest public key size and a fairly large private key. NTS-KEM had

a significant improvement when going from the reference implementation to the optimized

implementation, it was about 10 times faster than the reference implementation. The mem-

ory footprint is not particularly large or small when considering the use of libraries but the

encrypt/decrypt is among the schemes that use a larger amount of memory. The values in

the tables refer to the optimized implementation of NTS-KEM(12,64) which targets category

1 IND-CCA security.

3.3.4 ROLLO

ROLLO is fairly fast and has the smallest key sizes among the code-based submissions and is

still one of the smaller options overall in terms of key size. The optimized version of ROLLO

was about 1.4 times faster when compared to the reference implementation. ROLLO has

a large memory footprint with all its libraries accounted for but has one of the smallest

footprints on its own. The values in the tables refer to the optimized implementation of

ROLLO-I-128, targeting category 1 IND-CCA security.

20

3.3.5 RQC

RQC is one of the slower encryption schemes but it has fairly small key sizes; it is tied with

ROLLO for the smallest private key. The optimized implementation of RQC was marginally

faster than the reference implementation. RQC, like most of the code based encryption

schemes has a fairly large memory footprint when accounting for all the libraries but uses

comparatively little memory on its own. The values in the tables refer to the optimized

implementation of RQC128, targeting category 1 IND-CCA security.

3.3.6 Classic McEliece

Classic McEliece has one of the fastest encryption times, however it has the second slowest

decryption time and some of the largest key sizes; its public key is the largest overall.

It is extremely secure so it may be useful is specific scenarios where data is encrypted

often but decrypted infrequently. The optimized implementation is a copy of the reference

implementation. The values in the tables refer to McEliece348864, which targets category

1 IND-CCA security. Classic McEliece has one of the smallest memory footprints when

accounting for the libraries but it’s among the schemes that require the most amount of

memory on its own, likely due to the large key sizes. The version used for this experiment

was downloaded from the submitter website rather than the NIST submission page as there

were issues compiling the the version on the NIST website while the one on the submitter

website used OpenSSL.

3.3.7 Crystals-Kyber

Crystal-Kyber is not particularly fast or slow, its public key is larger than most but far from

the largest while its private key is about in the middle. The optimized and reference imple-

mentations had very little difference in performance. The memory footprint in comparison to

other schemes is fairly small both when considering the libraries and the memory allocated

21

for the program itself. The values in the tables refer to the optimized implementation of

Kyber512, targeting category 1 IND-CCA security.

3.3.8 FrodoKEM

FrodoKEM is one of the slower implementations and has very large keys; it has the largest

private key overall. The optimized implementation is about 4 times faster than the reference

implementation. FrodoKEM does not have a particularly large or small memory footprint

with libraries included but the memory allocated specifically for it is fairly small. The

values in the table refer to the optimized version of FrodoKEM-640, which targets category

1 IND-CCA security.

3.3.9 LAC

LAC is one of the fastest schemes for both encryption and decryption and both the private

and public key are among the smallest of all submissions. The optimized implementation of

LAC is about 3 times faster than the reference implementation. When considering the mem-

ory footprint in comparison to other schemes, the memory allocated including the libraries

is fairly small while the memory allocated specifically for it is not particularly large or small.

The values in the tables refer to the speed test of LAC128, targeting category 1 IND-CCA

security.

3.3.10 New Hope

New Hope is not especially fast nor slow and it has a larger key size than most, however these

key sizes are far from the largest. There is almost no difference in performance between the

reference and optimized implementation. New Hope has a small memory footprint with the

libraries included and the smallest amount of memory allocated specifically for it among the

compared schemes. The values in the table refer to NewHope512CCA which targets category

22

1 IND-CCA security.

3.3.11 NTRU

NTRU is one of the slower schemes but its key sizes are relatively small. There is little

difference in performance between the optimized and reference implementation. NTRU has

a fairly small footprint both when considering the memory allocated both with and without

including libraries. The values in the tables refer to NTRU-HRSS701, targeting category 1

IND-CCA security.

3.3.12 NTRU Prime

NTRU Prime is one of the slowest schemes overall, it also has fairly large key sizes. The

optimized implementation is a copy of the reference implementation so there is no difference

in performance. NTRU Prime has the smallest memory footprint of all compared schemes

when considering the memory allocated for libraries but one of the largest when considering

memory allocated specifically for it. The values in the tables refer to SNTRUP653 which

targets category 1 IND-CCA security.

3.3.13 Round5

Round5 is very fast and has some of the smallest key sizes. The optimized implementation

has significantly better performance than the reference implementation, nearly 100 times

faster. Round5 has a small memory footprint when including the libraries’ memory usage

but has the largest amount of memory allocated specifically for it in comparison to other

schemes. The values in the tables refer to R5ND-1KEM-0D, targeting category 1 IND-CCA

security.

23

3.3.14 Three Bears

Three bears is very fast and has small keys, including the smallest public key. The optimized

implementation is over 20 times faster than the reference implementation. The values in the

tables refer to BabyBear which targets category 1 IND-CCA security. The memory footprint

when considering libraries is fairly small while the footprint specific to the encrypt/decrypt

program is not particularly large or small relative to other schemes. In order for the code

responsible for timing to work the compiler flag -std=c11 needed to be removed, this may

cause minor changes to performance.

3.3.15 SIKE

SIKE has the longest encryption and decryption times, however it also has some of the

smallest keys. The optimized implementation is over 10 times faster than the reference

implementation. The values in the tables refer to SIKEp434, targeting category 1 IND-CCA

security. This is the uncompressed implementation, with compression the key size can be

even smaller at the sacrifice of speed. The memory footprint is one of the smallest when

considering libraries while the amount of memory allocated for it specifically is among the

largest.

3.4 Signature Schemes

Signature schemes were measured the same way as the encryption schemes, using the same

library and code to measure signing and verifying time. Unlike the encryption schemes,

however, many of the signature schemes did not have a version optimized for the test plat-

form. In order to have all platforms be on equal ground the data collected and shown in

the tables come from the reference implementation. For the signature schemes that did have

an optimized version compatible with the test platform, the performance difference will be

noted when going into more detail for each scheme.

24

Scheme Sign (ms) Verify (ms) Public Key (bits) Signature (bits)

Dilithium 0.840 0.101 9472 16352
LUOV 14.165 9.911 99496 256

FALCON 0.078 0.016 7176 6472
GeMSS 18.099 13.344 384000 282
MQDSS 45.327 32.153 128 166832
Picnic 45.525 29.817 32 34032
qTesla 0.187 0.03 119040 20736

Rainbow 0.173 0.138 152576 512
SPHINCS+ 50.62 2.083 64640 256

Table 3.3: Key sizes (in bits) and timings of signature schemes

Scheme Memory (kB) RSS (kB) Unique Memory (kB) Unique RSS (kB)

Dilithium 5524 3048 68 68
LUOV 5964 3096 508 220

FALCON 4300 2708 256 256
GeMSS 19476 8388 160 160
MQDSS 5556 3180 40 40
Picnic 3752 2044 1052 232
qTesla 5532 3016 76 76

Rainbow 6952 5348 76 76
SPHINCS+ 5508 3156 52 52

Table 3.4: Memory footprint of signature schemes

3.4.1 CRYSTALS-Dilithium

Dilithium when compared to all other signature schemes is among the faster option with a

fairly small public key and signature size. Comparing Dilithium to the other lattice based

entries makes it the slowest but also the smallest in terms of its key and signature size.

The performance in the tables refers to Dilithium2 as it is equivalent to NIST security

level 1. Interestingly, one can get better performance by using Dilithium1, however this has

a security level below that of NIST’s lowest level. Dilithium does not have an optimized

version with its submission.

25

3.4.2 FALCON

FALCON is the fastest of all schemes and has a fairly small public key and signature.

FALCON512 was used to obtain the values in the tables. Using the optimized version would

cause signatures to fail for an unknown reason, this may be due to something being incom-

patible with the test platform.

3.4.3 qTesla

qTesla is one of the fastest signature schemes but also has the third largest public key and

signature. qTesla I was used to obtain the values in the tables, it targets NIST security

level I and does not have an optimized version.

3.4.4 GeMSS

GeMSS is not particularly fast nor slow in comparison to other schemes and although it has

the largest public key, it has one of the smallest signatures. RedGemss128 was used as it

had the best performance while the other variations traded off performance for additional

security. In the optimized version, the sign time was about 10 times faster and the verification

time 100 times faster.

3.4.5 MQDSS

MQDSS was one of the slowest signature schemes and has a fairly large signature, however

it has one of the smallest public keys. mqdss-48 was used to obtain the values shown in the

tables, the optimized version appears to be incompatible with the test platform.

3.4.6 Rainbow

Rainbow is one of the fastest signature schemes and has one of the smallest signatures but

has the second largest public key. Rainbow Ia classic was used to obtain the values in the

26

tables and the optimized version has a slightly faster signing time and is about twice as fast

to verify. The flag -std=c11 needed to be removed from the makefile in order for the library

used for timing to be compatible.

3.4.7 LUOV

LUOV is fairly fast and is tied for the smallest signature while its public key is not particularly

large or small. luov-8-58-237-keccak was used to obtain the values in the tables. The

optimized version has a signature time about 7 times faster and verification time about 10

times faster.

3.4.8 Picnic

Picnic is among the slower signature schemes and has the largest signature, however it has

the smallest public key by far. Picnicl1fs was used to obtain the values in the tables. The

optimized version tells a very different story and puts Picnic as the fastest in terms of sign

time with an average sign time of 0.007 ms and a verify time of 3.068 ms.

3.4.9 SPHINCS+

SPHINCS+ is tied for the smallest signature, its public key is not particularly large or small

compared to other signature schemes, and it’s not particularly fast or slow when it comes

to verifying, however it has the slowest sign time. sphincs-sha256-128f-simple was used

to obtain the values in the table and the optimized version had very similar performance

compared to the reference version. The flag -std=c99 needed to be removed in the makefile

in order for the code responsible for timing to be compatible.

27

Chapter 4

Conclusion

For both encryption and signature, each scheme makes it own performance trade-off to ei-

ther minimize key size or maximize speed. Another important factor in evaluating signature

schemes is the signature size, as reducing the key size usually required increasing signature

size and vice versa. The NIST page for post-quantum encryption states that multiple sub-

missions may be selected. Different scenarios may have different priorities when it comes to

performance so having more than one standard would allow each user to use what is best

suited for each application. This study considered the security of each scheme equal and

compared them purely on performance; with this in mind some notable encryption schemes

include ThreeBears, LAC, and Round5 as these were among the fastest while maintaining

fairly small keys, albeit not the smallest. FALCON and CRYSTALS-Dilithium both have

the public key and signature amongst the smallest while remaining fairly fast. While these

schemes are balanced, the schemes with the smallest public key or signature is still multiple

orders of magnitude smaller so depending on the application one may prefer another scheme.

Future work that could use information from this study would include taking into account

the security when comparing the trade-offs one makes with each scheme. While all schemes

were tested with the version that corresponds to NIST level 1 security, some implementations

may be more secure than others and this was not really considered in this study.

28

Bibliography

[1] Jintai Ding and Bo-Yin Yang. Code-based cryptography. In Post-quantum cryptography,

pages 93–145. Springer, 2009.

[2] Jintai Ding and Bo-Yin Yang. Lattice-based cryptography. In Post-quantum cryptogra-

phy, pages 147–191. Springer, 2009.

[3] Jintai Ding and Albrecht Petzoldt. Current state of multivariate cryptography. IEEE

Security & Privacy, 15(4):28–36, 2017.

[4] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems

from supersingular elliptic curve isogenies. Cryptology ePrint Archive, Report 2011/506,

2011.

[5] Nicolás Aragón, Paulo S. L. M. Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jean-

Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Carlos Aguilar

Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich,

and Gilles Zémor. BIKE: Bit Flipping Key Encapsulation. 2017.

[6] Daniel J Bernstein, Tung Chou, Tanja Lange, Rafael Misoczki, Ruben Niederhagen,

Edoardo Persichetti, Peter Schwabe, Jakub Szefer, and Wen Wang. Classic McEliece:

conservative code-based cryptography 30 March 2019. 2019.

29

[7] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor.

Hamming Quasi-Cyclic (HQC). 2017.

[8] Martin Albrecht, Carlos Cid, Kenneth G Paterson, Jung Tjhai Cen, and Martin Tom-

linson. NTS-KEM. 2019.

[9] rollo-rank-ouroboros, lake & locker.

[10] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Rank Quasi-Cyclic

(RQC), 2017.

[11] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation. 2019.

[12] Erdem Alkim, Joppe W Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael

Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, Douglas Stebila,

et al. FrodoKEM learning with errors key encapsulation, 2019.

[13] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang, Zhe

Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC: Lattice-based Cryptosystems (2019).

URL: https://csrc. nist. gov/projects/post-quantum-cryptography/round-2-submissions.

Citations in this document, 1(8.3).

[14] Thomas Pöppelmann, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,

Peter Schwabe, Douglas Stebila, Martin R Albrecht, Emmanuela Orsini, Valery Osheter,

et al. NewHope. 2019.

[15] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld,

John M Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU: algo-

30

rithm specifications and supporting documentation (2019). URL: https://csrc. nist.

gov/projects/post-quantum-cryptography/round-2-submissions. Citations in this docu-

ment, 1, 2019.

[16] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vre-

dendaal. NTRU Prime: reducing attack surface at low cost. In International Conference

on Selected Areas in Cryptography, pages 235–260. Springer, 2017.

[17] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs

Laarhoven, Rachel Player, Ronald Rietman, Markku-Juhani O Saarinen, Ludo Tol-

huizen, Jose-Luis Torre-Arce, et al. Round5: KEM and PKE based on (Ring)

Learning With Rounding (2019). URL: https://csrc. nist. gov/projects/post-quantum-

cryptography/round-2-submissions. Citations in this document, 1.

[18] Mike Hamburg. Post-quantum cryptography proposal: ThreeBears. NIST Post-

Quantum Cryptography Standardization, 2019.

[19] Matthew Campagna, Craig Costello, Basil Hess, Amir Jalali, Brian Koziel, Brian

LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, David Urbanik, et al. Super-

singular Isogeny Key Encapsulation. 2019.

[20] Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-

gor Seiler, and Damien Stehlé. CRYSTALS–Dilithium: Algorithm Specification and

Supporting Documentation. Round-2 submission to the NIST PQC project, 2019.

[21] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas

Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei

Zhang. Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submission

to the NIST’s post-quantum cryptography standardization process, 2018.

[22] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo SLM Barreto, Johannes Buchmann,

Juliane Krämer, Patrick Longa, Harun Polat, Jefferson E Ricardini, and Gustavo Zanon.

31

Submission to NIST’s post-quantum project (2nd round): lattice-based digital signature

scheme qTESLA. 2019.

[23] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic

Perret, and Jocelyn Ryckeghem. Gemss: A great multivariate short signature. Submis-

sion to NIST, 2017.

[24] Ming-Shing Chen, Andres Hülsing, Joost Rijneveld, and Peter Samardjiska, Simona

nad Schwabe. QDSS Specifications. Submission to NIST, 2019.

[25] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang.

Rainbow. Submission to NIST, 2019.

[26] W Beullens, B Preneel, A Szepieniec, and F Vercauteren. LUOV signature scheme

proposal for NIST PQC project (Round 2 version), 2018.

[27] Z Greg et al. The Picnic Signature Algorithm Specification, 2019.

[28] JP Aumasson, DJ Bernstein, C Dobraunig, M Eichlseder, S Fluhrer, SL Gazdag,

A Hülsing, P Kampanakis, S Kölbl, T Lange, et al. SPHINCS+–Submission to the

NIST post-quantum project. Submission to NIST, 2019.

32

	Introduction
	Motivation

	Background
	Code-based submissions
	Lattice based submissions
	Multivariate based submissions
	Elliptic Curve based submissions
	Encryption Schemes
	BIKE
	Classic McEliece
	HQC
	NTS-KEM
	ROLLO
	RQC
	CRYSTALS-Kyber
	FrodoKEM
	LAC
	NewHope
	NTRU
	NTRU-Prime
	Round5
	ThreeBears
	SIKE

	Signature schemes
	Crystals-Dilithium
	FALCON
	qTesla
	GeMSS
	MQDSS
	Rainbow
	LUOV
	Picnic
	SPHINCS+

	Performance Analysis of Submissions
	Methodology
	Measurements
	Encryption schemes
	BIKE
	HQC
	NTS-KEM
	ROLLO
	RQC
	Classic McEliece
	Crystals-Kyber
	FrodoKEM
	LAC
	New Hope
	NTRU
	NTRU Prime
	Round5
	Three Bears
	SIKE

	Signature Schemes
	CRYSTALS-Dilithium
	FALCON
	qTesla
	GeMSS
	MQDSS
	Rainbow
	LUOV
	Picnic
	SPHINCS+

	Conclusion

