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Summary 

 

Computational Fluid Dynamics (CFD) is one of the fields that has strongly developed 

since the recent development of faster computers and numerical modeling. CFD is also 

finding its way into chemical engineering on several levels. We have used CFD for 

detailed modeling of heat and mass transfer in a packed bed. One of the major questions 

in CFD modeling is whether the computer model describes reality well enough to 

consider it a reasonable alternative to data collection. 

For this assumption a validation of CFD data against experimental data is desired. We 

have developed a low tube to particle, structured model for this purpose. Data was 

gathered both with an experimental setup and with an identical CFD model. These data 

sets were then compared to validate the CFD results. 

Several aspects in creating the model and acquiring the data were emphasized. The 

final result in the simulation is dependent on mesh density (model detail) and iteration 

parameters. The iteration parameters were kept constant so they would not influence the 

method of solution. The model detail was investigated and optimized, too much detail 

delays the simulation unnecessarily and too little detail will distort the solution. 

The amount of data produced by the CFD simulations is enormous and needs to be 

reduced for interpretation. The method of data reduction was largely influenced by the 

experimental method. Data from the CFD simulations was compared to experimental data 

through radial temperature profiles in the gas phase collected directly above the packed 

bed. 

It was found that the CFD data and the experimental data show quantitatively as well 

as qualitatively comparable temperature profiles, with the used model detail. With 

several systematic variances explained CFD has shown to be an ample modeling tool for 

heat and mass transfer in low tube to particle (N) packed beds. 
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1. Introduction 

 

A good qualitative understanding and an accurate quantitative description of fluid 

flow and heat transfer in fixed beds are necessary for the modeling of these devices. 

Accurate modeling of these fixed beds is complicated, especially in low tube to particle 

diameter ratios (N), in the range of 3-8, due to the presence of wall effects across the 

entire radius of the bed. With new methods such as computational fluid dynamics (CFD) 

it is possible to get a detailed view of the flow behavior in these beds. 

 

1.1 Fixed Beds 

Fixed or packed beds are widely used in the chemical industry. They facilitate a large 

variety of processes, ranging from ammonia synthesis to oxidation reactions. This large 

variety of processes results in a large variety of different types of fixed bed reactors. The 

main characteristics of these reactors are the height to diameter scale and the tube to 

particle diameter ratio (N). 

In large fixed bed reactors with high tube to particle diameter ratios (50-500) the wall 

effects can usually be neglected, since the flow and heat effects of the wall will influence 

a relatively small part of the reactor. Reactions taking place in these types of reactors can 

almost be considered to be adiabatic. Often when heat transfer is of importance, the bed 

will be divided in several ‘pancakes’ in between which heat is added to or taken from the 

system. Most established models predict behavior in these beds accurately enough. 

Fast heat transfer rates may be desired for reactions with extreme thermodynamics. A 

dysfunctional heat transfer method may result in undesired processes, deactivation of the 

packing or thermal runaway.  

In fixed bed reactors facilitating faster heat transfer in these extremely exo- or 

endothermic processes is usually achieved by designing the reactor as a tube and shell 

reactor with narrow tubes. The internals of the narrow tubes have a very low N, in the 
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range 3-8. The low N causes wall effects to be present across the entire bed. These type 

of reactors are used for, e.g. partial oxidation reactions, ammoxidation reactions or Lurgi 

syntheses. 

The small tube to particle ratio beds require a more accurate description of flow 

behavior and heat transfer for modeling. The constant velocity (plug flow) profile, or 

single axial velocity component with radial variation across the tube diameter, that are 

usually used in fixed bed reactor design are oversimplified. To be able to model small N 

beds more accurately, a better insight into the flow behavior is desired. 

Current heat transfer models for fixed bed heat transfer lump several heat transfer 

mechanisms into each effective parameter, causing models to be not descriptive enough. 

In the literature no consensus concerning heat transfer behavior in fixed beds can be 

reached (Li and Finlayson, 1977; Tsotsas and Schlünder, 1990; Vortmeyer and 

Haidegger, 1991; Freiwald and Patterson, 1992). 

 

1.2 Modeling of Fixed Beds 

1.2.1 Earlier Problems in Modeling of Fixed Beds 

As was mentioned before a large deficiency in the modeling of packed beds in 

industry is the assumption of plug flow. It is already generally accepted that the void 

fraction in unstructured beds is large near the wall and fluid flow is channeled in these 

areas causing radial inhomogenities in the overall flow profiles (Kalthoff and Vortmeyer, 

1980; Haidegger et al., 1989; Lerou and Froment, 1977; Froment and Bischoff, 1979; 

Papageorgiou and Froment, 1995). These radial distributions of the axial flow have been 

measured by different groups outside the bed (Morales et al., 1951; Price, 1968; Schuster 

and Vortmeyer, 1981; Ziolkowska and Ziolkowski, 1993; Daszkowski, 1991). Direct 

measurements of gas flow inside the bed have not been possible yet. 

Other groups measured radial profiles below the packing, averaging to get a general 

velocity profile by repacking a 3 < N < 11 column several times. The measured results 
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were extrapolated using an extended Brinkman equation to get radial flow profiles in the 

bed (Bey and Eigenberger, 1997). 

McGreavy et al. (1984) used Laser Doppler Velocimetry (LDV) in low N (6.5) packed 

beds. To be able to access the internals of the packed bed several optical access 

arrangements were made, these arrangements disturbed the continuity of the packing. 

They showed (McGreavy et al., 1986) that flow profiles in the bed were different from 

profiles above the bed; they found a region in the beginning of the bed where flow 

development took place and a region near the bed exit where flow degradation took 

place. This indicates that measurement of flow profiles outside (above or below) the bed 

is inadequate. 

Recently the group of Vortmeyer reported velocity measurements taken inside a 

packed bed using LDV (Giese et al., 1998). Their setup consisted of all glass particles in 

a glass tube with a tube to particle ratio of approximately 9 using an organic mixture with 

a refraction index similar to the glass as a fluid. In these measurements the focus was on 

low Reynolds numbers, <100, and velocities were averaged to get superficial velocities. 

The main focus of these groups has been the behavior of the superficial velocity and 

the porosity of the bed. Most groups use a number of different packing materials to find 

the effects of the packing on radial distributions of superficial velocities. 

Thompson and Fogler (1997) used a network-model to model flow in a packed bed. 

The smallest element in a network model was created in a Delauney tessellation using 

basically one element per void in the packing. The different beds were established using 

a computer simulation method for creating a random bed. Computer simulation and 

experimental data were compared using a N = 12 bed of approximately 7500 particles. 

The computer simulation treated the bed as a porous medium, neglecting specifics in the 

flow profile. It was, however, not a homogeneous porous bed, the porosity was 

established using the computer generated random packed bed. 
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1.2.2 Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) is a method that is becoming more and more 

popular in the modeling of flow systems in many fields, including reaction engineering 

(Harris et al., 1996; Ranade, 1995). CFD makes it possible to numerically solve flow and 

energy balances in complicated geometries. The results show specific flow and heat 

transfer patterns that are hard to obtain with conventional modeling methods. 

The CFD approach uses Navier Stokes equations and energy balances over control 

volumes, small volumes within the geometry at a defined location representing the 

reactor internals. The size and number of control volumes (mesh density) is user 

determined and will influence the accuracy of the solutions to a degree. After boundary 

conditions have been introduced in the system the flow and energy balances are solved 

numerically. An iteration process decreases the error in the solution until a satisfactory 

result has been reached. 

By using CFD in the simulation of fixed bed reactors a detailed description of the flow 

behavior within the bed can be established, which can then be used in more accurate 

modeling. The simulation requires that a model of the desired geometry be made. 

CFD studies towards heat transfer and flow behavior in fixed bed reactors have been 

performed previously. The earliest CFD fixed bed simulations used two-dimensional 

models. Dalman et al. (1986) investigated in an axisymmetric radial plane, this limited 

the packing possibilities severely but gave a first insight in flow patterns in fixed beds. 

This study showed that eddies formed in between the spheres which led to a region of 

poor heat transfer. The effect of Re and Pr numbers on this process were also 

investigated, and showed an increasing problem with heat transfer as the Reynolds 

number increased. Lloyd and Boehm (1994) did a very similar two-dimensional study; 

they used a commercial FE package FIDAP and 8 instead of 2 spheres in line. In this 

study the influence of the sphere spacing on the drag coefficients was investigated. It was 

also found that heat transfer from the spheres decreased with decreased sphere spacing. 
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Three-dimensional models have also been researched earlier; a 3-sphere model (Derkx 

and Dixon, 1996) was one of the first models in this area. This study focused on 

obtaining Nuw numbers. An 8 sphere model followed (Logtenberg and Dixon, 1998a; 

1998b) the packing was modeled as two layers of four spheres. Effective heat transfer 

parameters estimated from these CFD results matched theoretical model predictions 

reasonably well (Dixon and Creswell, 1979). This study was limited by the absence of 

contact points between the spheres and the wall and amongst the spheres themselves. 

Another point for improvement in this model was the small number of spheres, which 

resulted in less than realistic flow patterns. 

Most recently, a 10-sphere model incorporating contact points between the particles 

and between the particles and the wall (Logtenberg et al., 1999) was developed. The 10-

sphere model showed flow behavior and heat transfer behavior that could not be 

described using conventional fixed bed models. By using three-dimensional models for 

these simulations the packing need not be symmetrical, this way the true effects of the 

presence of the wall are shown, as they would be in a low N tube. 

 

1.2.3 Other Modeling Techniques 

Another method that has been used to describe flow patterns in fixed beds is Magnetic 

Resonance Imaging (MRI). This method shows flow patterns in complicated geometries 

similar to CFD modeling. The advantage of MRI over CFD is that the measurements are 

experimental measurements whereas the CFD data is generated through modeling. 

Therefore MRI need not be validated against experimental results. The disadvantage of 

the MRI compared to CFD is that it requires experimental setup and does not give any 

information on heat transfer; also it can only be done with fluids that are susceptible for 

the method. 

The method has been reported in literature on many occasions and can be used as an 

experimental comparison against CFD results. Several groups have done MRI research in 

packed beds, (Kutsovsky et al. 1996; Sederman et al., 1997; Park and Gibbs, 1999). 
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Results of these studies are contained in velocity distribution plots that are easily 

comparable with CFD data. Generally the packed beds used for MRI have a considerably 

higher tube to particle ratio, which will result in less pronounced wall effects. Also in 

general the MRI experiments are conducted at low Reynolds numbers, most are 

Re < 100. 

Qualitatively the MRI results show generally accepted flow concepts such as flow 

increase in bed voids, as well as not homogeneous velocity distribution in different pores 

(Sederman et al., 1997). The larger tube to particle ratio also allows for a statistical view 

of the velocity distribution over the column cross section. When averaged over a long 

evolution time the data approached Gaussian behavior (Park and Gibbs, 1999). With a 

tube to particle ratio of 6.7 and Reynolds numbers ranging from 14.9 to 44.8 the velocity 

profile is roughly parabolic with the maximum being near the center of the tube. Also 

negative velocities or reversed flow within the bed are shown (Kutsovsky et al., 1996). 

 

1.3 Validation of Computational Fluid Dynamics Results 

When CFD data is to be used, as data for modeling, it is imperative it is checked to be 

viable and reliable data. All the data that is produced by the CFD simulations are 

numerically determined and are dependent on system defined boundary conditions and 

user defined solution parameters. It is assumed that the theoretical model that is the 

background for CFD is viable for what it is describing and that this could be scaled up to 

macroscopic models. 

In this thesis a direct comparison between CFD-generated data and experimental data 

will be made. Heat transfer experiments have been conducted in a heated wall tube with a 

well defined packing of spheres. An identical geometric model of this experimental setup 

has been created for CFD simulations. A series of experiments has been performed with 

identical boundary conditions both in the experimental setup and as a CFD simulation. 

Data gathered in the experimental setup consisted of radial temperature profiles at 

several bed heights. The CFD data was reduced to give a similar temperature profile at 



Introduction 

 7

the same bed heights. The data was directly compared in a temperature versus radial 

coordinate plot. 
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2. Computational Fluid Dynamics 

 

The application field for CFD as a modeling tool is constantly expanding. 

Improvements in computer hardware, computational speed and memory size, as well as 

improvements in software capabilities make CFD a feasible and accessible tool in a large 

range of applications. 

 

2.1 History of Computational Fluid Dynamics 

The relatively young field of CFD is fast growing due to increasing computer 

capabilities and a growing field of applications. It is an established research tool in 

mechanical and civil engineering where it is used for stress calculations in solid 

structures. It has also been used in for example the automobile and airplane industry to 

replace expensive wind tunnel testing of new designs. Recently CFD has been introduced 

in the field of chemical engineering with the introduction of specific fluid mixing 

programs and the option to solve for chemical reactions (Bode, 1994; Harris et al., 1996; 

Ranade, 1995). 

Commercially available CFD codes use one of three basic spatial discretization 

methods, finite difference (FD), finite volume (FV) or finite element (FE). The first CFD 

codes written used FD or FV methods and have been used over a variety of flow 

problems. The major disadvantage of the FD method is that it is limited to structured 

grids, which are hard to apply to complex geometries. A structured grid is defined by the 

way nodes are placed in the grid. In a structured grid every node is an intersection of 

three lines with specific x, y and z coordinate, this limits the adaptability of the grid and 

all cells in these grids are rectangular. The elements in a structured grid are based on 

cubes that can undergo limited deformation to fit the geometry. 

The FV and FE methods support both structured and unstructured grids and therefore 

can be applied to a more complex geometry. An unstructured grid is a three dimensional 
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structure of tetrahedral cells which is interpolated from a triangular surface mesh. The 

mesh creation of an unstructured mesh is less directly influenced by the user but adapts 

more easily to a complex geometry. 

 

2.2 Theory 

Solutions in CFD are obtained by numerically solving a number of balances over a 

large number of control volumes or elements. The numerical solution is obtained by 

supplying boundary conditions to the model boundaries and iteration of an initially 

guessed solution. 

The balances, dealing with fluid flow, are based on the Navier Stokes equations for 

conservation of mass (continuity) and momentum. These equations are modified per case 

to solve a specific problem. 

The control volumes or elements, the mesh, are designed to fill a large-scale geometry, 

described in a CAD file. The density of these elements in the overall geometry is 

determined by the user and affects the final solution. Too coarse a mesh will result in an 

oversimplified flow profile, possibly obscuring essential flow characteristics. Too fine a 

mesh will unnecessarily increase iteration time. 

After boundary conditions are set on the large-scale geometry the CFD code will 

iterate the entire mesh using the balances and the boundary conditions to find a 

converging numerical solution for the specific case. 

 

2.2.1 Mesh Topology 

One of the most important parts of CFD modeling is the construction of the mesh 

topology. The mesh establishes the accuracy of the simulation. It has to be chosen with 

enough detail to describe the processes accurately and with a degree of coarseness that 

enables solution within an acceptable amount of time. When an optimal density has been 

found, refining this will increase the model size without displaying more flow detail. 
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When it is coarsened the mesh will obscure, possibly essential, parts of the flow detail. 

The mesh determines a large part of creating an acceptable simulation. 

 

2.2.1.1 Mesh density 

Previously to this validation study a number of preliminary studies towards CFD 

simulations of packed beds have been done (Derkx and Dixon, 1996; Logtenberg and 

Dixon, 1998a; 1998b; Logtenberg et al., 1999). In the earlier studies the mesh density 

was investigated extensively. From experience from these previous studies an optimal 

mesh density was chosen. For the present work a short study was done to find the optimal 

node density, for the type of geometry used here, in a limited size model. This study 

focused mainly on maintaining a 3D topology that described the physical model 

accurately and was able to handle the flow specifics of the packed bed geometry. Also, 

mesh densities were varied to establish the optimal mesh density, describing the flow 

characteristics and limiting the calculation times. 

 

2.2.1.2 Mesh variations 

Most meshes created besides the ones needed to do the CFD validation were focused 

on one aspect of the mesh geometry. Initially meshes were made similar to a 10-sphere 

geometry as was created for a previous study with the commercial CFD package ANSYS 

(Logtenberg et al., 1999). These were created to focus on sphere-sphere contact points 

and sphere-wall contact points. The study of the 10-sphere geometry in Fluent was also 

made to compare the results from the different commercial codes. 

When actual contact points are created, both surfaces that are contacting have one 

common node. In surface mesh creation this can be defined and does not pose any 

problems. The 3D mesh can be created relatively easily by merging a number of nodes on 

the contacting surfaces. When, however, a solution is iterated convergence problems 

occur with the fluid elements around the contact point. In a laminar case the solution 
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parameters can be adjusted to get a converging solution, in a turbulent case this becomes 

impossible. 

After it was found that, with actual contact points as they were designed with the 10-

sphere geometry, a turbulent solution of the model used for the CFD validation could not 

be established, a number of models were created to make a comparison between several 

sizes of gaps between the spheres in the packing. Eventually, the appropriate gaps, 

facilitating both a turbulent flow solution as well as sufficient stagnant fluid film around 

the contact point for heat transfer, were implemented. 

 

2.2.2 Fluid Flow Fundamentals 

For iteration CFD solvers use generalized fluid flow and energy balances based on the 

Navier Stokes equations. The balances are generalized so the user can influence which 

elements are added in the balance and which are not. The number of balances to be 

solved is also user defined; it can be advantageous to not solve all balances initially. 

The generalized balances that are used by the Fluent commercial CFD package are the 

Navier Stokes equations for conservation of mass and momentum, when it is set to 

calculate laminar flow without heat transfer. Additional equations are solved for heat 

transfer, species mixing or reaction or κ and ε for turbulent cases. The basic equations 

and background of these balances are stated in the Fluent UNS User’s Guide. 

 

2.2.2.1 Navier Stokes Equations 

The general equation for conservation of mass, or the continuity equation, is defined 

as follows: 

 ( )
m
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u

t
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∂
ρ∂

+
∂
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 ( 1 ) 

The source term Sm contains the mass added through phase changes or user defined 

sources. In general, and in the performed simulations, the source term was equal to zero. 
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The equation for conservation of momentum in direction i and in a non-accelerating 

reference frame is given by: 
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In this balance p is the static pressure, τij is the stress tensor, ρgi is the gravitational 

body force. Fi is an external body forces component; it can include forces from 

interaction between phases, centrifugal forces, Coriolis forces and user-defined sources. 

For the performed simulation it was zero. 

The stress tensor τij for a Newtonian fluid is defined by: 
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( 3 ) 

Here µ is the molecular viscosity; the second term on the right hand side of the 

equation is the effect of volume dilation. 

 

2.2.2.2 Turbulence Models 

For turbulent cases the standard κ-ε model was used for the CFD simulation. The κ-ε 

model is a semi-empirical model; its equations are derived from the Reynolds-Averaged 

Navier-Stokes equations. The major assumptions in this model are that the flow is fully 

turbulent and the effects of molecular viscosity are negligible, therefore it can only be 

used for fully turbulent flows.  

Several other turbulent models were available, a Renormalization Group (RNG) κ-ε 

model and a Reynolds Stress Model, results for these different models were compared 

and it was shown there were no significant differences in the results. 

With Reynolds averaging the solution variables in the Navier Stokes equations are 

decomposed into the mean, iu , and fluctuating, ’
iu , components. When this is applied to 

the standard Navier Stokes equation ( 2 ), the result is: 
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( 4 ) 

The velocities and other solution variables are now represented with time-averaged 

values, the effects of turbulence are represented by the ‘Reynolds stresses’, ( )’
j

’
iuuρ− , 

which are modeled by the Boussinesq hypothesis: 
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The turbulent viscosity, µt, is defined with κ, the turbulent kinetic energy and ε, its 

rate of dissipation. The κ-ε turbulent model was developed and described by Launder and 

Spalding (1972). 
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The turbulent kinetic energy and its dissipation rate are taken from the adapted 

transport equations: 
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and 

 ( ) ( ) ( ){ }
κ
ερ−−+

κ
ε+












∂
∂ε







σ
µ

+µ
∂
∂=

∂
ερ∂

+
∂
ρε∂

εεκε
ε

2

2b31
i

t

ii

i CGC1GC
xxx

u

t
 ( 8 ) 

In these equations, Gκ is the generation of turbulent kinetic energy, κ, due to turbulent 

stress, and is defined by 
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Gb is the generation of turbulent kinetic energy, κ, due to buoyancy, 
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Here, Prt is the turbulent Prandtl number for temperature or enthalpy, β is the thermal 

expansion coefficient, 
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The model constants, C1ε, C2ε, Cµ, σκ and σε were used with the default settings, these 

are, 

C1ε=1.44, C2ε=1.92, Cµ=0.09, σκ=1.0, σε=1.3 and Prt=0.85. 

The default values have been established from experimental work with air and water 

and were found to work well for a wide range of wall bounded and free shear flows 

(Launder and Spalding, 1972). The simulation results for turbulent cases, discussed for 

this project, have been determined using these default values. 

In a system with both heat and mass transfer an extra turbulent factor, kt, is included, 

see equation ( 11 ), it is derived from an adapted energy equation, as were ε and κ. The 

turbulent heat transfer is dictated by turbulent viscosity, µt, and the turbulent Prandtl 

number, Prt. 

Other effects that can be included in the turbulent model are buoyancy and 

compressibility effects. 

 

2.2.2.3 Energy Equations 

The energy equation in Fluent UNS is solved in the form of a transport equation for 

static temperature. The temperature equation is obtained from the enthalpy equation, 

which is only solved in special cases, by taking the temperature as a dependent variable. 

The enthalpy equation is defined as, 

 
( ) ( ) ( ) ( ) h

k

i
effik

i

j
jj

i
t

ii

i S
x

u

Dt

Dp

x

Jh

x

T
kk

xx

hu

t

h +
∂
∂

τ++
∂

∂
−

∂
∂+

∂
∂=

∂
ρ∂

+
∂
ρ∂ ∑

 
( 12 ) 



Computational Fluid Dynamics 

 15

In this equation Sh includes heat of chemical reaction, any inter-phase exchange of 

heat, and any other user defined volumetric heat sources. kt is defined as the conductivity 

due to turbulent transport, 
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and the enthalpy h is defined as, 

 ∑=
j

jjhmh  ( 14 ) 

where mj is the mass of species j and, 
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Another part of the heat transfer equations is the heat transfer through solid particles 

within the mesh. In our study, the packed bed, this is of course an important factor. The 

balances for solid elements need not use flow parts, and are defined by, 
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The last term q is the volumetric heat source, h, the sensible enthalpy is defined as, 
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which is consistent with equation ( 14 ) since ∑=
j

j,pjp cmc . 

 

2.2.3 Numerical Solutions 

The governing partial differential equations for the conservation of momentum and 

scalars such as mass, energy and turbulence are solved in the integral form. Fluent UNS 

uses a control-volume based technique, which consists of three basic steps. 

• Division of the domain into discrete control volumes using the computational grid. 
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• Integration of the governing equations on the control volumes to create an algebraic 

equation for unknowns such as pressure, velocity and scalars. 

• Solution of the discretized equations. 

The governing equations are solved sequentially. The fact that these equations are 

coupled makes it necessary to perform several iterations of the solution loop before 

convergence can be reached. The solution loop consists of 7 steps that are performed in 

order. 

• The momentum equations for all directions are each solved using the current 

pressure values (initially the boundary condition is used), in order to update the 

velocity field. 

• The obtained velocities may not satisfy the continuity equation locally. Using the 

continuity equation and the linearized momentum equation a ‘Poisson-type’ 

equation for pressure correction is derived. Using this pressure correction the 

pressure and velocities are corrected to achieve continuity. 

• κ and ε equations are solved with corrected velocity field. 

• All other equations (e.g. energy, species conservation etc.) are solved using the 

corrected values of the variables. 

• Fluid properties are updated 

• Any additional inter-phase source terms are updated. 

• A check for convergence is performed. 

These seven steps are continued until in the last step the convergence criteria are met. 

 

2.3 CFD Solver and Additional Programs 

To be able to conduct our CFD simulations we used a commercially available code, 

Fluent UNS. This code is written by Fluent Inc. and uses unstructured meshes. The CFD 

package consists of a number of different modules in which different parts of the process 

take place. 
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The first step, mesh creation, is done with GeoMesh, a meshing program designed and 

supplied by ICEM Technologies. GeoMesh creates a triangular surface mesh (see Figure 

1a), which is interpolated to a tetrahedral 3D mesh by T-Grid, Fluent’s 3D meshing 

program. These 3D meshes (see Figure 1b) are imported in Fluent UNS to impose 

boundary conditions, iterate and post-process the data. 

 

a b 

Figure 1. Typical examples of a) the surface mesh on a number of spheres and a 

section of the cylinder and b) a section of the 3D interior mesh. 

 

2.3.1 Surface mesh creation with GeoMesh 

As was stated before, the creation of the mesh is the most important step in performing 

CFD, it determines the accuracy of the simulation. The GeoMesh program is the first step 

in mesh creation, it creates the surface mesh. The node distribution on the surface 

determines the eventual mesh density, and therefore is of vital importance to the 

simulation accuracy. 

The surface mesh creation in GeoMesh consists of two major steps. In the first step 

the geometry of the model is established, a CAD program is used to determine 

dimensions. The second step is the creation of the surface mesh using the CAD geometry 

to place the surface mesh on. 
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The surface mesh consists of three major building blocks, nodes, edges and surfaces. 

These are hierarchical, a surface is made up of edges and an edge is made up of nodes. 

Several surfaces are stuck together to form the entire surface mesh. 

 

2.3.1.1 CAD geometry design 

In this phase of the model design the major topological entities are defined. The outer 

wall to the model is established as well as the internal structure, solid particles and fluid 

regions. Several entities, such as cylinders or spheres, are ready made parts that can be 

added to the geometry. 

Before exporting the fundamental geometry it is important all curves are defined as 

so-called B-Spline curves, these are mathematical descriptions of the specific curves. 

This conversion is necessary to be able to have the surface mesh form to the exact 

contours of the created geometry. 

 

2.3.1.2 Surface mesh creation 

To be able to create the surface mesh the CAD geometry is imported in a separate 

program, P-Cube. At this time the type of mesh is determined, 2D (when a 2D mesh is 

created the surface mesh is also the final mesh) or 3D, and structured or unstructured. 

The surface mesh of a structured 3D mesh is a square mesh whereas the surface mesh of 

an unstructured mesh is a triangular mesh. The cubic volume mesh in the structured case 

causes a very ordered 3D node distribution whereas in the unstructured case the node 

distribution is more chaotic due to the tetrahedral mesh structure. 

Another important decision that needs to be made is in what way the mesh needs to be 

built; there are two major methods. The first method is the top down method where 

surface sections are defined first and the details are added successively, edges and 

number of nodes per edge. The bottom up method begins with the definition of nodes. 
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When the mesh has areas that need to be very precisely determined the bottom up 

method is preferable. In this method nodes can be placed at the designated points. From 

these precisely placed nodes edges can be created and the edges can be combined to form 

surfaces. The top down method is usually preferable in simple geometries and structured 

meshes. 

After incorporating all the essential geometric features the edges are ‘rubber-banded’ 

where necessary. The process of rubber-banding stretches edges to fit to the local 

geometric features. The next step is associating the mesh surfaces with the geometric 

surface, with this process not just the edge but the whole surface is fit to the local 

geometric features. For these two processes it is essential that the CAD surfaces are 

defined as B-Spline surfaces, see section 2.3.1.1. 

Now before the mesh is created one more important aspect has to be determined, the 

mesh density. The surface mesh density is determined by the node distribution on the 

edges. The user defines the number of nodes on each edge in the geometry, these 

distributions are fully user defined. Node distribution can be dense in one part of an edge 

and coarse in another part. In the case of a structured mesh node distributions are only 

defined on master edges, usually two edges per surface; the opposite ‘slave’ edges will 

have the same distribution as the master edge. 

With a node distribution determined on all the edges P-Cube can interpolate the 

surface mesh. For structured meshes interpolation is fairly easy, when the node 

distribution is determined the surface mesh is already determined. In an unstructured 

mesh the node distribution on the edges is used to create a triangular mesh with as 

gradual as possible a gradient of surface element size. 

Before the surface mesh is finished one more step needs to be taken. All the surfaces 

that were created and meshed need to be labeled. In this step the walls can be numbered 

and therewith differentiated in later steps, fluid inlets and exits are defined. Also 

continuous boundaries can be defined when the geometry created is only part of a total 

geometry. 
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2.3.2 Mesh creation with T-Grid 

The T-Grid program uses the surface mesh to interpolate the three dimensional mesh. 

This process consists of two basic steps, the initialization and the refinement. 

In the initialization step surface nodes are connected through the model internals, a 3D 

mesh is created that is fine in constrained spaces but very coarse in large open spaces. 

The initial mesh can then be refined to user specifications. Usually a number of 

refinement processes are used to create an optimal mesh. Part of the refinement operation 

is a check for mesh consistency. Not only are more elements created also the 

interconnections between elements are updated. The consistency check makes sure all 

elements are connected to their neighboring elements in the desired order. 

The refinement is the final part of mesh creation. It is also the last step in which mesh 

density can be influenced. The influence on the mesh density is constrained however by 

the surface mesh density, this part of the mesh can only be altered in the surface meshing 

program. 

 

2.3.3 Solving the CFD problem with Fluent UNS 

When a mesh is completed with its density and all other complications resolved, the 

actual computational part of CFD can be started. At this point the completed geometry 

can be imported in the solver and the CFD simulation is started. 

Again a series of steps are to be performed; first, the boundary conditions on the 

system need to be set, next the process’ iteration parameters need to be set. With the 

boundary conditions defined the simulation is performed. The final step in obtaining the 

desired data is the post-processing of the data in which the desired data sets are taken 

from the simulation data 
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2.3.3.1 Imposing boundary conditions 

The boundary conditions determine the flow and thermal variables on the boundaries 

of the physical model. There are a number of classifications of boundary conditions: 

• Flow inlet and exit boundaries: pressure inlet, velocity inlet, inlet vent, intake fan, 

pressure outlet, outflow, outlet fan, exhaust fan. 

• Wall, repeating, and pole boundaries: wall, symmetry, periodic, axis 

• Internal cell zones: fluid, solid 

• Internal face boundaries: fan, radiator, porous jump, wall, interior 

In our model we use a velocity inlet at the flow inlet of the column, this boundary 

condition defines a flow velocity at the inlet of the column. The flow exit boundary is 

defined as a pressure outlet; the outlet pressure is defined as atmospheric pressure. The 

column and packing exterior are defined as wall boundaries. The wall boundaries 

separate the fluid zone, air, in between the particles from the solid zones, nylon 66, inside 

the particles; they also constrain the fluid zone to within the column. Internal face 

boundaries are not used in our model. 

With the determination of the boundary conditions the physical model has been 

defined and a numerical solution can be provided. It is now necessary to determine how 

the solution will be established. This can be done by setting the iteration parameters. 

 

2.3.3.2 Setting iteration parameters 

There are two main iteration parameters to be set before commencing with the 

simulation. The underrelaxation factor determines the solution adjustment for each 

iteration; the residual cut off value determines when the iteration process can be 

terminated. 

The underrelaxation factor is an arbitrary number that determines the solution 

adjustment between two iterations; a high factor will result in a large adjustment and will 

result in a fast convergence, if the system is stable. In a less stable or particularly 

nonlinear system, for example in some turbulent flow or high-Rayleigh-number natural-
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convection cases, a high underrelaxation may lead to divergence, an increase in error. It 

is therefore necessary to adjust the underrelaxation factor specifically to the system for 

which a solution is to be found. Lowering the underrelaxation factor in these unstable 

systems will lead to a smaller step change between the iterations, leading to less 

adjustment in each step. This slows down the iterations process but decreases the chance 

for divergence of the residual values. 

The second parameter, the residual value, determines when a solution is converged. 

The residual value (a difference between the current and the former solution value) is 

taken as a measure for convergence. In an infinite precision process the residuals will go 

to zero as the process converges. On actual computers the residuals decay to a certain 

small value (‘round-off’) and then stop changing. This decay may be up to six orders of 

magnitude for single precision computations. By setting the upper limit of the residual 

values the ‘cut-off’ value for convergence is set. When the set value is reached the 

process is considered to have reached its ‘round-off’ value and the iteration process is 

stopped. 

Besides adjusting these two major parameters there are other tricks to have a 

simulation converge. When convergence of, for example, turbulence elements in the flow 

balances or energy balances is problematic, using the flow solution as an initial guess can 

be helpful. To do this first only the velocity elements in the balances are iterated, the 

result of this initial run is then used as a starting point for the iteration of the complete 

balances. In this way the initial guess for the final solution is better and will help in 

getting a simulation to converge. 

 

2.3.3.3 Post-processing the simulation data 

When the simulation has converged the last data set is stored as a final solution. This 

data set has a record of the status of all elements in the model, temperature, densities, 

pressures, flow aspects etc. To be able to interpret the data it needs to be ordered and 

reduced to comprehensible sizes. This displaying of the data is called post-processing and 
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makes it possible to compare the different simulations with each other and with external 

data. 

There are as many ways of displaying the data as there are data points so it is 

important to select the data representation that is required for the desired data 

comparison. Some of the standard options available are contour plots and velocity vector 

plots. 

Contour plots will give a plot in the defined data point collection, this can be a plane 

or a volume, of contours of another variable. For example a plane can be defined as a 

constant x coordinate plane (y-z plane), we can then make a contour plot showing 

temperature contours in this plane. In the same plane a velocity contour plot can be made 

showing absolute velocities of the fluid in the defined plane. Other variables that can be 

used for contour plots are, magnitude of velocity components, turbulence components, 

pressure etc. 

Velocity vector plots can be made to get an insight into the flow patterns in the overall 

geometry or detailed at specific locations. The density and magnification of the velocity 

vectors in the specified field can be manually changed to get a most optimal picture. The 

field density has a maximum limitation, the amount of elements in the model. In Figure 2 

a small section of the grid is shown, Figure 3 shows the velocity vector plot that 

corresponds with this piece of the mesh. 

Besides these qualitative data export methods it is also possible to export the 

numerical data in many different forms. Direct export of selected data sets is facilitated 

for a number of external applications; also it is possible to export data in ASCII format 

for further calculation. 

Another method for exporting the numerical data is the two-dimensional plot function 

in which two data sets can be plotted against each other. This function is useful when for 

example radial velocity or temperature profiles need to be compared. From different 

simulations identical plots can be created and a direct comparison of the numerical data is 

possible. 
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Figure 2. A section of 3D grid as it is obtained from P-Cube. 

 

 

Figure 3. Velocity vector plot as obtained from Fluent UNS. 
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3. CFD in Fixed Bed Reactors 

 

3.1 Introduction 

Modeling of fixed bed reactors is traditionally done using pilot plant setups to 

determine case-specific parameters for designing and up-scaling. A major disadvantage 

for this type of approach is that for each design new experiments have to be done. 

Many models have been developed trying to describe fixed bed reactors. All these 

models use a large amount of averaging to be able to describe the entire fixed bed 

reactor. In averaging over the entire bed many processes are lumped into a small number 

of parameters, which therewith lose all physical meaning. Usually for large N (tube to 

particle ratio) beds this averaging is an accurate enough way of modeling. For low N 

beds however this averaging in modeling is unacceptable. 

By using CFD to thoroughly describe the flow and heat transfer processes in a fixed 

bed reactor we intend to create fixed bed models using physical processes such as radial 

and axial flow. This approach will lead to a model that is based on physical concepts that 

are represented by parameters. By using the detailed flow description CFD provides, it 

can be determined which flow aspects can be neglected and which should be adopted in a 

better descriptive model. 

To be able to realize this model it is necessary to verify CFD results for low N beds 

for accuracy before using these results in modeling. For verification a low N 

experimental setup in which simple heat transfer is measured is used. These experimental 

results are then compared with CFD results from an identical geometry to show that the 

results produced by CFD are accurate. A direct qualitative and quantitative comparison 

between radial temperature profiles of both experiments and CFD simulations is made to 

show that the results obtained from both these measurement techniques are identical. 
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3.2 Computational Fluid Dynamics Models 

A number of different models were used to optimize the CFD model for the 

verification calculations. The main model that was used was a detailed CAD copy of the 

experimental setup. Other models that were used in optimizing the simulations were a 

one-sphere model in which the fundamentals of heat transfer were compared with the 

CFD simulations and a detail of the experimental setup to optimize parts of the mesh. 

As was discussed in Chapter 2 the creation of the mesh is very important. A 

substantial amount of research was conducted to find out which modeling approach 

would give the best simulation of the experiments and still be numerically solvable. 

 

3.2.1 Validation against Theoretical Models 

As a first introduction to Fluent a simple model was created. The model represented 

one sphere in a box as shown in Figure 4. The front of the box is the flow inlet; the red 

plane in the rear is the flow exit. 

 

Figure 4. One sphere in a box geometry used for validation of CFD against theoretical 

models. 
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The sphere in the box was designed with the same dimensions as the spheres used in 

the validation model. With this model it was tried to fit CFD data to generally accepted 

theoretical models. The theoretical model assumes one sphere in an infinite fluid. In the 

CFD model the infinite fluid was limited in a box with a square flow inlet plane of 7 

sphere diameters; the length of the box was 16 sphere diameters. This limitation was 

necessary to keep the model reasonable in size with a mesh density comparable to the 

validation model. 

A series of runs was conducted at a number of flow velocities. In all these runs the 

centrally located sphere had a defined temperature of 400 K. The box wall temperature 

was set at 300 K to create a 100 K temperature difference between the sphere and the 

fluid at infinite distance. The air that flowed through the box was defined at 300 K at the 

entrance. The heat flux through the sphere wall was recorded after the simulation had 

converged. 

With this data the heat transfer coefficient, h, could be determined. 

 ( )ambientsphere TThq −⋅=  ( 18 ) 

When the heat transfer coefficient, h, has been determined it can be used to find the 

Nusselt number for the particle, which is defined as: 

 

air

p
p k

dh
Nu

⋅
=  ( 19 ) 

In this kair is the conductivity of the fluid, 0.0242 W/m⋅K in our case, this is the 

conductivity of air at standard conditions and dp is the particle diameter, two inches or 

50.8 mm in our case. 

The Nusselt number is empirically correlated as: 

 ba
p PrRe6.02Nu ⋅⋅+=  ( 20 ) 

where a and b are case specific powers, in our case a =  ½ and b = 1/3 (Ranz and 

Marshall, 1952). 

The Nusselt number will, when there are no-flow conditions, end up to be 2, because 

the Reynolds number defined as µρvd  will reduce to 0. 
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Figure 5. Nusselt number versus Reynolds number for the 48,467-element mesh. 

 

Instead of doing one simulation at zero flow conditions a series of simulations was 

done at reducing flow rates to see if the value that is established at zero flow and the 

value it approaches at low flow conditions are similar. It was found that as the flow and 

the Reynolds number approached 0 the Nup value approached 2.29. Figure 5 shows the 

behavior of the empirical relation and the CFD simulations over a large range of 

Reynolds numbers. Figure 6 shows a closer look at the behavior at lower Reynolds 

numbers. The fact that the sphere is located in a box instead of in an infinite fluid may 

explain the deviation at a Reynolds number of 0. In this no-flow case the box in which 

the sphere is located might be a constraining factor on the heat transfer where this is not 

the case when fluid flow is present. When the Nusselt number is calculated for a particle 

in a spherical box according to the math by Carslaw and Jaeger (1959), it can be 

expressed as 
boxRR1

2
Nu

−
=  at Re = 0. In our model the wall is located at 7 sphere 

radii, Rbox = 7 R, resulting in a Nusselt number of 2.33 instead of 2 at a Reynolds number 
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of 0, which is in good agreement with the found Nusselt number of 2.29. Substantial 

deviation between CFD simulation and theory occurs over a range of higher Reynolds 

numbers, 100 < Re < 1500, which was covered experimentally. 
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Figure 6. Close up of the low Reynolds number region of Nusselt number versus 

Reynolds number for the 48,467-element mesh. 

 

Also some experiments were conducted with adapted mesh grids to determine the 

influence of mesh density on the outcome of the simulation. Two other meshes were 

created. The original mesh had a total number of cells of 48,467; a coarser mesh was 

made with only 7,216 cells and a finer mesh with a total of 232,593 cells. The results for 

these additional meshes are shown in Figure 7, all these simulations show a good 

agreement to the empirical relation at low Reynolds numbers with deviations at a 

Reynolds number of 0 and at higher Reynolds numbers. A complete overview of all 

simulations with these specific meshes can be found in Table 7 in appendix 1. 
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Figure 7. Nusselt number versus Reynolds number for the 232,593 and 7,216 element 

meshes. 

 

3.2.2 Validation against ANSYS CFD code 

To check the validity of the Fluent UNS simulation results against another commercial 

CFD code, as well as to get acquainted with CFD modeling in general the first 

complicated model was an identical copy of the model used in earlier research by 

Logtenberg, as was reported in Logtenberg et al. (1999). 

The used model consists of 10 touching spheres in a tube in a 1, 4, 4, 1 axial setup 

with a resulting N of 2.43. Channeling through this geometry, which is common in tube 

to particle ratios between 2 and 3, was eliminated by the specific 1, 4, 4, 1 setup in which 

the top and bottom layer of one single sphere block the central opening in the layer of 4 

spheres, therewith prohibiting the fluid to bypass the packing. The model topology is 

shown in Figure 8, the gray areas in this figure depict the location of the flow inlet at the 

bottom and the column exit at the top. 



CFD in Fixed Bed Reactors  

 31

 

Figure 8. Topology of the 10-sphere mesh as created for the Fluent UNS simulations. 
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A number of different mesh adaptations were used for modeling with this geometry. 

The initial mesh, used for the laminar simulations, was used for qualitative comparison 

with the ANSYS results. The adaptations were created with differing node distributions 

in an attempt to be able to solve a turbulent problem. 

Results from both models were similar yet not identical. The most important 

difference between the two models was the fact that the ANSYS model simulated contact 

points with small no-flow zones. At the point where a sphere would touch the wall or 

another sphere, a small spherical volume was defined with the physical properties of the 

fluid in which there was no flow. This eliminated convergence problems in fluid cells 

with very high skewness. In the Fluent UNS model actual contact points were modeled. 

Another reason for slightly differing results may be found in the mesh building 

process, the programs use different processes to create 3D meshes and use an automated 

mesh generator for the larger part of the process. Since the 3D meshes are different the 

resulting plots will not be identical. When however the mesh density is large enough the 

exact distribution of elements should not influence the general final outcome. 

The resemblance between the two different simulations was enough to assume a 

satisfactory comparison and to conclude that both CFD codes will generate the same 

solution when confronted with the same problem. A velocity vector plot from the Fluent 

UNS simulation is shown in Figure 9. The flow characteristics near the wall are shown in 

Figure 9a where the column wall is on the right hand side of the picture. The flow near 

the center of the bed is shown in Figure 9b. Similar pictures for the ANSYS calculations 

can be found in Logtenberg et al. (1999) and Logtenberg (1997). 
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a 

b 

Figure 9. Velocity vector plots for the 10-sphere geometry at Re = 338. The velocity 

vectors are colored by velocity magnitude (m/s). 
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3.3 The 44-sphere model 

To validate the CFD simulation data for use in more general terms we also wanted to 

test the results against experimental measurements. For this specific purpose a 44-sphere 

model with a tube to particle ratio of exactly 2 was designed. This specific model was 

chosen for a number of reasons. 

First the CAD model had to be made identical to an experimental setup so direct 

comparison of data sets could be made. Therefore the packing of the spheres in the tube 

had to be predictable. The tube to particle ratio of 2 has a very predictable and repeatable 

structure and was ideal for our purpose. 

An added bonus of this specific geometry lies in the fact that its radial heat transfer 

Péclet number, Per, has similar values to these of systems with higher tube to particle 

ratios, N > 6. Low N systems usually have a relatively large Péclet number. As the Péclet 

number is the ratio of (RePr) to kr/kf, a high Péclet number is a sign of fluid bypassing, 

resulting in lower kr/kf. Low-N systems tend to form regular packing arrangements 

allowing for large gaps in the packing to appear. The specific N = 2 system also has a 

regular packing structure but the bypassing area is reduced to a minimum, also the layers 

of spheres are separated enough for the flow to get incorporated in the packing. Behavior 

of the sphere packing in low-N sphere packed beds is regular; in the specific cases of 

N = 2 and N = 3 the packing is arranged in such a way that most ‘holes’ in the packing 

are blocked resulting in relatively low Per (Dixon, 1997). 

So the twofold advantage, highly structured geometry and heat transfer properties of 

industrially realistic systems, make this system the ideal choice. 

 

3.3.1 Model Development 

The creation of this model has undergone a number of stages. All of the stages of this 

model were based upon the physical measurements of the original model, which was an 

identical copy of the experimental setup used in the experimental portion of this project. 

 



CFD in Fixed Bed Reactors  

 35

3.3.1.1 Original Model 

The CAD design of the original 44-sphere model was done in inches to facilitate 

direct usage of the physical parameters. The tube length was slightly larger at the bottom 

of the column to mimic a distributor effect. A distributor is present in the experimental 

setup, in the CFD model a flat inlet velocity profile was defined at the column entrance. 

The sphere locations were mathematically determined using simple geometric relations. 

The surface mesh was created using a bottom up technique where first critical nodes 

were established from which all edges and faces were created. Critical nodes in this 

model are the contact points between spheres and the contact points between the spheres 

and the wall. All the wall-sphere contact points were defined; sphere-sphere contact 

points were only defined within one layer of two spheres at a common axial coordinate. 

The surfaces of the spheres were defined using four faces sharing common nodes in the 

contact points and common edges along the circumference and equator of the sphere. The 

sphere-wall-contact-point nodes were also shared by the faces that made up the wall 

structure. 

The tube wall was also created with the bottom up technique using the defined sphere-

wall-contact-point nodes. The wall was built up from wall pieces stretched between these 

nodes. 

Initially the surface mesh density was defined with a uniform node distribution over 

all edges. This resulted in problems with 3D mesh creation as well as irresolvable 

problems with convergence in the simulations. These problems were resolved by refining 

the surface mesh around the contact points. 

The important aspects of this original model are the division of the tube-wall in two 

sections, a calming section that is not heated and a heating section that is heated, and the 

incorporation of common nodes between touching wall segments. 
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3.3.1.2 Calming Section Heating Modeling 

When the calming section is modeled with the mathematical accuracy of a CFD 

simulation it can be perfectly insulated from the attached heated wall section. In the 

experimental setup this insulation is not perfect and the wall in the calming section is 

slightly heated through conduction. To be able to make a direct comparison between 

physical experiments and CFD simulations this conduction had to be modeled. 

Initially it was tried to program a User Defined Function using the ambient 

temperature of the entering fluid and the maximum temperature of the heated wall to 

describe an axial temperature profile along the calming section wall. This profile would 

be modeled after a mathematical fit to experimental data to describe the temperature 

profile from the experimental section exactly. 

The User Defined Function option in the specific version of Fluent UNS used for this 

project, 4.2.8, turned out to be flawed and could not be used. To be able to model the 

conduction into the calming section another solution had to be created. Since the tube-

wall in the model was already built up from small wall pieces, these pieces were 

individualized in the surface-meshing program. This process allowed different boundary 

conditions to be set for each wall segment. With the calming section wall now divided in 

5 axial sections a rough model for wall conduction could be constructed which improved 

the accuracy of the simulation results dramatically. 
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Figure 10. Measured temperature profiles on the calming section wall at several 

Reynolds numbers and the step function imposed on the 9 calming section wall segments. 

 

In the final model where the contact points were modeled differently the calming 

section had to be remodeled as well. Since it was still not possible to use the User 

Defined Function the calming section was divided in axial sections. In this model there 

were 9 sections to facilitate a more accurate modeling of the temperature profile, see 

Figure 10. 

 

3.3.1.3 Redesigned contact points 

Besides the temperature profile in the calming section there was another problem with 

the original model. As the contact points between touching objects were modeled with 

common nodes on walls of different entities, the fluid elements around these contact 

points were using two nodes on either wall to define their volume. When these fluid 

elements were created they turned out very skewed, meaning that some of their surfaces 

were much larger than others within the one tetrahedron. 
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This skewed mesh around the contact points did not seem to create any problems in 

creating laminar solutions, but when a turbulent model was used to simulate the specific 

case convergence was unachievable. It turned out that the flow velocities especially in the 

fluid elements around the contact points were increasing dramatically, a very typical 

result for cells that are too skewed. In CFD it is generally accepted that turbulent models 

are less stable due to the introduction of additional aspects as Reynolds stresses. 

To be able to do CFD simulations at higher Reynolds numbers, which would require 

using a turbulent model, the model had to be fundamentally changed. The fluid elements 

around the contact points needed to be less skewed, which can only be accomplished by 

creating a gap between the different entities in the geometry. This gap had to be designed 

carefully. Too small a gap would not solve the original problem. Too large a gap would 

drastically influence the flow patterns in the system and therewith the heat transfer 

mechanism. A considerable part of the heat transfer into the bed is facilitated by a low 

velocity (stagnant fluid) area around the contact points. This area allows the bed internals 

to warm up which in turn provide additional heating of the fluid. 
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Figure 11. Selected elem
ents around the sphere contact points for m

esh com
parison. 
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To design the optimal gap size a number of different models were created with a 

limited number, and differing sizes of spheres allowing for different gap sizes. The 

maximal sphere size that would allow for a turbulent model to be solved turned out to be 

99.5% of the original sphere size. Other models were created with sphere sizes of 99%, 

97% and 95%. These models were compared using velocity distribution histograms of 

fluid elements near the contact points. The fluid elements for comparison were selected 

by limiting the fluid zone to an area 0.5 cm in z and y direction from the contact point 

along the entire x-axis of the column (Figure 11). In the 5 different geometries air was 

flowed through the bed at a Reynolds number of about 20. Velocity magnitude data was 

taken from the different geometries and compared. This comparison allowed us to relate 

the fluid flow composition in the contact point area of the different geometries. 
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Figure 12. Velocity histograms for comparison of the different gap sizes, 

vin = 0.01 m/s. 
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It was shown that when the gaps were larger (the 95% and 97% sphere sizes) the 

velocity distribution tended to move to higher velocities. Both the 99.5% and 99% sphere 

size models showed negligible difference from the touching model’s velocity distribution 

(see Figure 12). For further study it was decided to create a full size model with 99% 

spheres. This was chosen because this model allowed for easier construction and faster 

convergence than the 99.5% spheres model. 

 

3.3.2 Definitive Model 

Eventually all model adaptations were integrated in the final model. In this model the 

heated calming section was divided in 9 segments on which the temperature distribution 

was determined empirically. Also it was redesigned to incorporate the small gaps 

between the spheres to allow for turbulent solution. 

The model is shown in Figure 13. In this figure the three views of the model give a 

better insight into its three dimensional structure. Figure 13a shows a side view along the 

x axis, giving a clear picture of the build up of the packing. This view clearly shows the 

structure of the N = 2 packing. Figure 13b is a top view of the model, emphasizing the 

tube to particle ratio of 2 as well as the structure of this specific packing. Since the 

structure of the packing is so well defined only two layers of spheres can be identified, 

the top view also shows how each layer of spheres blocks the bypass created by the 

previous layer of spheres. Figure 13c is a detail of the 3D mesh showing the detail of the 

elements in the fluid phase. This figure is similar to the interior mesh shown in Figure 1b. 

It is different from Figure 2 in that it only shows the 3D mesh in the fluid region. Figure 

2 shows a cut along the same plane though the interior mesh of both the fluid region and 

the spheres, Figure 13 as well as Figure 1b do not show the 3D mesh inside the solid 

particles. 
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Figure 13. CFD 44-sphere model used for validation purposes. 
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3.3.3 Simulations 

For the simulations with the 44-sphere model the boundary conditions were set equal 

to the boundary conditions for the physical experiments. The inlet velocity of the column 

was determined through the Reynolds numbers calculated for the measurements. The 

outlet pressure of the CFD model was set to atmospheric pressure, as is the case in the 

experimental setup, which has an open-end tube. The wall temperature was set to 383 K, 

the inlet temperature of the air was set to 298 K, which were approximations of the 

average temperatures in the experimental setup. 

A new material had to be defined for the Nylon spheres. Several specifications for the 

specific material were found in different sources (Mark, 1978, Kirk & Othmer 

Encyclopedia of Chemical Technology; Mark 1985, Encyclopedia of Polymer Science 

and Engineering). Eventually values were taken from work done earlier with these 

specific materials. A polymer was created with a density of 1300 kg/m3, a heat capacity 

of 1000 J/kg·K and a heat transfer coefficient of 0.242 W/m·K (Melanson, 1985). 

 

3.3.3.1 Solution model settings 

A number of these solution model settings are very logical, such as the use of a three-

dimensional model and inclusion of heat transfer. But all these are options that can be 

either turned off or on depending on the simulation detail desired. Sometimes it is 

desirable to not solve an entire model, for time issues or convergence problems. All our 

runs were performed with three-dimensional models and included heat transfer. 

Other aspects of the model that can be chosen are of large influence on the specific 

balances that are to be solved. The simulation can be either laminar or turbulent, this 

model aspect requires a few more settings to be taken care of, such as turbulent model 

parameters. For the specific turbulent runs a standard κ-ε model was used, as described in 

Chapter 2, with initial guesses of both κ and ε of 1, the default value. 
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Finally the underrelaxation factors and the residual cut-off values are set. 

Underrelaxation factors were set slightly below their default values to ensure stable 

convergence. Residual values were kept at their default values, 1⋅10-6 for the energy 

residual, 1⋅10-3 for all others, continuity, velocities and turbulence factors. The residual 

cut-off value for the energy balance is lower because it tends to be less stable than the 

other balances; the lower residual cut-off ensures that the energy solution has the same 

accuracy as the other values. The velocity inlet values were used as an initial guess for 

the entire fluid. 

 

3.3.3.1.1 Solution accuracy 
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Figure 14. Percentile difference between default solution and round-off solution at 

Re = 1477. 
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When default settings for residual cut-off values are used it is important to verify if 

these settings allow the iteration process to reach an accurate enough answer. As was 

discussed in paragraph 2.3.3.2 the iteration process will, when allowed, continue to 

eventually reach a ‘round-off’ value. When we compare the results from two runs, one 

using default residual cut-off values and one which is allowed to reach the round-off 

value, the maximum difference between the two results is about 0.22% with an average 

difference of approximately 0.05%. In Figure 14 the difference percentage for a number 

of radial temperature profiles is plotted. 

 

3.3.3.2 Boundary conditions 

With all materials and models defined the boundary conditions were set. Only a few 

boundary conditions are required. The inlet velocity needs to be determined as does the 

outlet pressure and the wall temperature. 

The outlet pressure was set at atmospheric pressure. In the experimental setup the air 

outlet of the column is open to the atmosphere. The wall temperature of the heated 

section was set at 383 K, which was the average measured temperature for the tube wall. 

The wall temperature profile on the calming section was determined by averaging 

experimentally acquired temperature data of the calming section wall over the 9 

separately modeled wall sections. The temperature was then implemented as a step 

function on the 9 wall segments, see Figure 10. The air inlet temperature was set at room 

temperature, 298 K. The inlet velocity for each run was determined by the Reynolds 

number of the specific experimental run, through the definition for the Reynolds number. 

The other constants in this calculation were the density of air, 1.225 kg/m3, the viscosity 

of air, 1.7894⋅10-5 kg/ms and the particle diameter, 2.54⋅10-2 m. Density and viscosity of 

air and therewith the Reynolds numbers were evaluated at the inlet conditions, 298 K and 

1 atmosphere. 

The initial state of all fluid elements was set to the conditions at the air inlet. Wall 

temperatures were constant at the mentioned boundary condition values. 
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3.4 Post Processing 

Once a simulation has been satisfactorily completed it is necessary to obtain the 

desired information from the flood of data. The mesh for the final model contains over 

400,000 elements. For all the fluid elements there is a wealth of data available, fluid 

temperature, pressure, density, viscosity, turbulence properties as the turbulent kinetic 

energy, the turbulent kinetic energy rate of dissipation and Reynolds stresses, x, y and z 

components of fluid flow velocity and a number of derived units such as vorticity and 

helicity. For the elements in the solid regions of the model (inside the packing) the 

amount of data is considerably reduced by the fact that there is no flow. 

To be able to do a direct comparison of the CFD results with experimental data the 

data from the simulations needs to be in the same format as the experimental data, radial 

temperature profiles. 

 

3.4.1 Creating data sets 

To be able to export the radial temperature profiles from the CFD simulation, data sets 

had to be created. First an ‘Iso-Surface’ is created, this is a surface defined as a plane 

with one constant aspect, in our case this was a constant axial position. In this surface all 

elements are included that intersect this specific axial position. When the axial planes 

intersect part of the solid bed some elements have to be excluded, since we are only 

interested in the fluid temperatures. 

The Iso-Clip operation is used to exclude the elements that are part of the sphere 

packing. The axial plane is selected and limited to one specific zone index. Zone indexes 

determine the element type, whether it is fluid or packing. 
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3.4.2 Exporting data 

With the Iso-surfaces created we can now reduce the data to one axial plane, as we did 

with the experimental setup, where a radial temperature profile is collected at a specific 

axial position, see Chapter 4. 

The radial profiles are exported as two-dimensional plots of the fluid temperature 

versus the radial position. The X-Y plot option in Fluent allows the user to define 

variables along the x and y axes of a plot as well as the domain from which the data had 

to be taken. By using the Iso-surfaces created earlier as a domain for creating the X-Y 

plot and using the temperature and radial coordinate for the variables the wanted data sets 

are created. 

A number of data sets are plotted, temperature versus radial coordinate and then 

exported as text files. These text files are imported in a spreadsheet program (Excel) 

where they are combined with their respective experimental counterpart. In the 

spreadsheet the different data sets are made dimensionless for easier comparison. The 

graphs created are used in the comparison graphs as presented in Chapter 5. 

Other ways of data export from Fluent include more visually or qualitative views of 

temperature distribution or flow profile. These types of data visualization are mostly used 

for qualitative analysis of heat and mass transfer principles. 

A velocity vector plot is created by reducing the model to a two dimensional plane. 

This limits the data displayed to one plane so the data that needs to be shown is not 

obscured by elements in front of the plane of view. The resulting data set consists of all 

the elements that intersect the defined plane. Velocity vectors are displayed at the center 

of the projection of each element on the defined plane that is included in the data set. The 

vectors that are displayed are also projections of the three dimensional vectors of the 

fluid flow in each element. The three dimensional nature of the vectors can be seen by 

managing the plot in the program, this effect is lost however in the two dimensional 

display of the plot. The most important aspect of the velocity vector plots is that we are 

able to show flow characteristics in the bed, see Figure 15. 
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Figure 15. V
elocity vector plot for a 2 layer section over the entire bed diam

eter in the 

x =
 0 plane at R

e =
 1922, legend show

s velocity in m
/s. 
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When we take a closer look at these velocity vector profiles they will give us specific 

information about flow behavior near the contact points or in between layers of spheres 

in the bed. The contact point between two spheres in one layer of the packing, just below 

the spheres we can see in the top part of the picture, is located near the bottom of the 

picture and can be identified by a small circle in Figure 16. When we look closely at the 

flow profile near a sphere-sphere contact point we can identify two important flow 

aspects. First we see small eddies forming just downstream from the contact point 

(overall flow in these pictures is from the bottom to the top). The eddies are formed in the 

wake of the contact point. This is one of the few areas in the closely packed bed where 

there is enough room for eddies to form. Secondly the flow magnitude in the contact 

point area is very low due to the close proximity to the solid particles; this aspect is what 

facilitates the modeling of heat transfer near the wall-sphere contact points. The flow in 

the small spaces is very slow, almost stagnant; this facilitates conduction from the hot 

wall through the stagnant fluid to the bed. Both these aspects are intuitive but are hard to 

show experimentally. 

When we now look at the same plane but in a bed void instead of close to the packing, 

Figure 17, we can see that there is a considerable amount of radial flow. Figure 17 ranges 

from the center of the column at the left hand side of the picture to the wall at the right 

hand side of the picture. Radial flow causes convective heat transfer within the bed 

increasing the overall heat transfer. The convective heat transfer is accomplished through 

transport of fluid from the center of the bed into an imaginary layer close to the wall, 

where most of the heat transfer takes place due to the strong temperature difference 

between the wall and the fluid, and the transport from this layer to the center of the bed. 

Another aspect shown in Figure 17 is the downward flow along the wall; this back 

mixing also increases the total heat transfer. This last aspect of downward flow along the 

wall has also been shown in studies done with Magnetic Resonance Imaging in packed 

beds (Kutsovsky et al., 1996). 
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Figure 16. V
elocity vector profile at a sphere-sphere contact point, in the x =

 0 plane 

at R
e =

 1922, legend show
s velocity in m

/s. 
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Figure 17. V
elocity vector plot in x =

 0 plane betw
een tw

o sphere layers at R
e =

 1922, 

legend show
s velocity in m

/s. 
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4. Experimental Methods 

 

To be able to use CFD results such as velocity distributions and temperature profiles 

in modeling specific and general fluid flows the CFD results produced need to be 

validated against experimental results. When we show that for a specific type of 

geometry CFD results and experimental results agree we can then use the CFD results as 

data in the general modeling of these geometries. The CFD model that was used was 

based on an experimental setup available in the laboratory. A series of experiments were 

conducted in this setup. The collected data was then compared with the CFD results. 

 

4.1 Experimental Setup 

The experimental setup used is a single tube, heated wall, packed bed setup as is 

shown in Figure 18. The packed bed consisted of 44 nylon-66 spheres with a diameter of 

one inch. The column (single tube) in which they were packed has an inner diameter of 

two inches. The column consists of two main parts. The bottom part is a nylon tube, 6 

inches in length that was not directly heated; this part is referred to as the calming 

section. In the calming section a steady flow profile in the bed was established. The 

second part of the column is directly downstream from the calming section, the heated 

section. The double copper walls in the heated section were heated with steam flowing in 

between the double wall and were maintained at a constant temperature, heating the 

airflow inside the column. The 44-sphere packed bed fills the entire calming section and 

part of the heated section leaving room after the packing for installation of a 

thermocouple cross for measuring gas temperatures above the bed. The wall of the 

column is fitted with a number of thermocouples to verify the constant heated wall 

temperature as well as to establish the axial temperature profile in the calming section. In 

the double wall of the heated section thermocouples were located at axial positions, 76.2, 

228.6 and 381 mm from the calming section heated section interface. In the calming 
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section wall thermocouples were installed in drilled holes at axial positions, -6.35, -15.9, 

-25.4, -76.2 and –127 mm from the section interface. All thermocouples were K type 

thermocouples. 
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Figure 18. The experimental setup used for the collection of temperature profiles. 
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Temperature measurements were taken at a series of particle Reynolds numbers and 

bed lengths. Besides the axial temperature profile of the column the temperature of the air 

is also measured at the column inlet. In the air stream a radial temperature profile is 

measured using a thermocouple-cross, depicted in Figure 19. The thermocouple-cross is 

inserted in the column approximately 5 mm above the top layer of the bed to measure the 

radial temperature profile in the gas flow. 

r = 7.6 mm

r = 14.2 mm
r = 20.4 mm

r = 23.2 mm
r = 17.8 mm
r = 11.6 mm

 

Figure 19. The thermocouple-cross with exact positioning of all 25 thermocouples 

used for establishing radial temperature profiles in the gas flow. 

 

The steam used for heating the wall of the heated section was drawn from an in-house 

system, and its quality and pressure were not constant at all times. Most experiments 

were performed when backpressure of the steam was more than twice the required 

pressure of 5 psi. The pressurized air that flowed through the column was also drawn 

from an in-house system. The humidity of the pressurized air depended on external 

conditions. The humidity of the air influenced the maximum flow velocity since at very 

humid conditions the sudden expansion of the air within the rotameter caused 

condensation. 
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4.2 Experimental Procedure 

The experimental procedure for gathering experimental data has been established 

during previous studies and has also been described in detail (Dixon, 1997). During this 

project the experimental procedure has not been changed significantly. 

A measurement consists of establishing and recording a steady state temperature 

profile for a combination of a specific bed length, Reynolds number and angle of 

thermocouple cross. A total of four thermocouple-cross positions are used for 

measurement. Besides the initial position, measurements are taken at 15, 30 and 45-

degree angles from the initial orientation. By rotating the thermocouple cross a good 

spread of data points covering the entire radial plane is ensured, giving a full picture of 

the angular spread of the radial temperature profile. 

When all four angles have been recorded the Reynolds number is varied by changing 

the flow velocity of the air through the column. A complete series consists of 15 

Reynolds numbers ranging from the lowest possible flow at a particle Reynolds number 

of 373 to the largest possible flow at a particle Reynolds number of 1922. 

Table 1. Overview of all the Reynolds numbers at which experimental measurements 

were taken. 

Reynolds numbers 

373 468 564 664 769 879 986 1097 1221 1346 1477 1624 1724 1833 1922 

 

The upper and lower limits on the Reynolds number range were imposed by the 

experimental setup. The lower limit at a Reynolds number of 373 was the lowest steady 

flow that could be established. The upper limit at a Reynolds number of 1922 was the 

highest flow at which no flooding of the flow controller would occur. The flooding in the 

flow controller is caused by the moisture contained in the airflow that condenses at 

sudden expansion. 

When measurements have been taken at all four angles and at all 15 Reynolds 

numbers the setup is shut down temporarily to cool down and adjust the bed length. The 
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cool down period is required to be able to handle the setup for removal of part of the bed. 

To be able to take measurements at several bed lengths part of the packing needs to be 

removed to be able to lower the thermocouple cross further. At the new bed length the 

entire series of Reynolds numbers with all respective angles are then measured etc. The 

collection of bed lengths is given in Table 2. 

Table 2. Overview of all bed lengths at which experimental measurements were taken. 

Bed lengths [m] 

0.420 0.384 0.348 0.312 0.276 0.240 0.204 0.168 0.132 

 

The bed length was adjusted by removing 2 layers of spheres, 4 spheres in total, at a 

time. The initial bed consisted of 44 spheres resulting in a total bed length of 0.420 m. 

With each bed length adjustment the total bed length reduced, down to 0.132 m at the 

shortest bed with 12 spheres. The shortest bed ends 0.028 m before the heated section 

starts. 

Before measurements can be taken it is important that the setup reaches steady state. 

First the steam supply to the heated wall section is opened and a steady flow of steam is 

supplied at a pressure of approximately 5 psi. Next the airflow is set to the desired 

velocity corresponding with the desired Reynolds number and the system is allowed to 

reach steady state. During this time the temperatures being recorded by the 

thermocouples in the thermocouple cross are plotted against time. The behavior of the 

temperature in time indicates whether steady state has been reached. A measurement was 

taken at steady state, when temperatures did not change for a period of 5 minutes. 

Usually a ten to fifteen minute time period is enough for the system to reach steady state. 

This period is longer, approximately 25 to 30 minutes, at start up when the column has to 

be heated from room temperature. 

 



Experimental Methods  

 57

4.2.1 Data collection 

All thermocouples are connected to a computer system for data collection. The 

thermocouples are connected to two Keithley Mtherm20 thermocouple boards, which 

read the signals from the thermocouples and connect to a Keithley Metrabus MDB64 

interface unit in the computer system where the temperature data is recorded. 

A program written in Turbo Pascal 7.0 has been specifically designed for these 

experiments. The program works specifically with the Keithley Metrabus MDB64 

interface card connected to the Keithley Mtherm20 thermocouple boards. The program 

performs in three separate modes, stabilizing, steady state- and transient measurement. 

The third option of transient measurement was not used in this work. When operating in 

the stabilizing mode three graphs are shown, a radial temperature profile, a wall 

temperature profile and an average radial as well as wall temperature as a function of 

time. This mode of operation is used to determine whether or not the system has reached 

steady state. When the plot of temperatures versus time shows a constant value for 

approximately 5 minutes steady state is reached and a steady state measurement can be 

taken in the steady state measurement mode. In this mode all temperatures measured at 

that time are recorded in a file as well as displayed on the screen in a radial temperature 

profile and a wall temperature profile. 

When a steady state measurement is taken the data is stored in a file named by the 

user. Whenever a new series of measurements is taken a new file can be created by 

simply defining a new filename. Each file that is created starts with a header, which 

contains the positions of the thermocouple in the column and in the thermocouple cross, 

it will also contain specifics of the experiment as defined by the user, the column radius, 

the particle diameter and the bed length. Additionally the temperatures of all the 

thermocouples will be added to the file each time a steady state measurement is 

performed. 

The computer data collection setup as well as the data collection program was created 

by O.R. Derkx and are described in detail in his Thesis (O.R. Derkx, 1995). 
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4.2.2 Data recovery 

When temperature profiles need to be made from the collected data the data files need 

to be imported in a graphing program. Microsoft Excel was used for reorganizing the data 

and plotting the radial temperature profiles. The data files as they were collected from the 

experiments contained 60 separate measurements each containing 34 recorded 

temperatures, 1 at the air inlet measuring the inlet air temperature, 8 along the column 

establishing an axial temperature profile and 25 in the thermocouple cross. The data file 

contained all 4 angular measurements at all 15 Reynolds numbers for a specific bed 

length. Each time the bed length was altered a new data file was created. The data from 

each file was reorganized to form a single graph for each combination of Reynolds 

number and bed length, therewith combining the 4 angular measurements and creating a 

radial profile with 100 data points. 

To be able to compare the experimental data with the CFD data all data was plotted 

using dimensionless positions and temperature. Especially the temperatures needed to be 

made dimensionless since inlet temperatures in the experimental setup were determined 

by external conditions. Wall temperatures also may have fluctuated from experiment to 

experiment depending on the pressure and quality of the steam used. 
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5. Results and Discussion 

 

5.1 Direct Comparison of Results 

For the representation of the data the radial temperature distribution in the tube was 

chosen. This was chosen as a method of comparing the CFD results with the 

experimental data since the radial temperature distribution is of importance to bed 

operation in the chemical industry, it is also dependent on both internal processes that we 

model, heat transfer and flow profile and finally it is relatively easy to measure in the 

experimental setup. 

 

5.1.1 Qualitative Features of CFD Results 

The data produced by a CFD simulation are numerous but the commercial code allows 

the user to qualitatively interpret the results of the simulation fairly easily. When 

quantitative comparison is desired the data need to be exported and reduced. For creation 

of the specific data sets, see paragraph 3.4.1. 

As can be seen in Figure 20 and Figure 21 the amount of data points for a CFD radial 

profile is large, approximately, 950 data points. The overall radial pattern shows a typical 

temperature profile for flow through a packed column, a lower temperature near the 

middle of the column increasing towards the column wall, with a steeper increase 

(temperature jump) near the wall. 

Another aspect of the data is an increasing spread or experimental error towards larger 

radii. This can be explained by the fact that a radial profile collects data with differing 

angular coordinates but the same radial coordinates at one radial position. Since there is 

no angular symmetry data can be collected above a sphere or just above a bed void 

leading to differing temperatures. The increase in spread is due to the larger number of 

elements at larger radii resulting in a larger experimental spread. 
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Figure 20. Temperature profile plot of CFD data at Re = 1724, z = 0.420. 
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Figure 21. Temperature profile plot of CFD data at Re = 564, z = 0.420. 
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5.1.2 Qualitative Features of Experimental Results 
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Figure 22. Experimental data with polynomial fit at Re = 879, z = 0.420. 

 

Figure 22 shows an isolated experimental measurement. In this graph it can be clearly 

seen that experimental data are only collected at a certain number of radial positions, 

those where the thermocouples are located in the thermocouple cross. This results in a 

less detailed radial profile than continuous but still gives a good overview of the actual 

temperature profile. When we plot the CFD data with the experimental data we can see 

that both profiles show a similar increase in angular spread at larger radii, see Figure 23. 

In the upcoming graphs where experimental data and CFD data are compared both 

datasets are plotted in one graph. 
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Figure 23. Comparison of angular data spread in CFD data and experimental data. 

Re = 986, z = 0.420. 

 

5.1.2.1 The effect of overall flow velocity 

To find the effect of the overall flow velocity we look at a number of radial 

temperature profiles from experiments at an axial position of z = 0.240 but at different 

Reynolds numbers. As the superficial gas velocity, and therewith the Reynolds number, 

increases the gas phase temperature decreases. At the lowest Reynolds number of 373, 

the superficial gas velocity or inlet velocity is only 0.216 m/s. At the highest Reynolds 

number of 1922 the superficial gas velocity is 1.116 m/s. 

From Figure 24 we see that when the Reynolds number increases the overall 

temperature profile is lower. This is an expected feature, as the fluid flow velocity is 

increased the residence time is decreased therefore the exposure to the heated wall is 

decreased. With decreased exposure to the hot surface the fluid will have a lower 

resulting temperature. 
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Figure 24. Influence of flow velocity on temperature profile for experimental data at 

z = 0.240 for average values of experimental measurements. 

 

Also as the fluid flow increases the difference in overall temperature between the 

different measurements decreases. As the residence time decreases the difference in 

effective heat transfer will decrease asymptotically, reaching zero at infinite flow 

velocities, resulting in smaller differences in the overall temperature. 

 

5.1.2.2 The effect of axial position 

In Figure 25 the experimental fits for the entire range of bed depths in the heated 

section are plotted. It is obvious that the temperature profile increases as the axial 

coordinate increases. A higher axial coordinate denotes a position further downstream in 

the bed; since the residence time is larger, the overall temperature is higher. 

Another aspect that becomes clearer from looking at temperature profiles at different 

bed depths than it does from a series at different Reynolds numbers is the change in 
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profile shape. As the fluid enters the heated section there is a large difference between the 

temperature at the center of the column, which is at the inlet temperature, and the 

temperature at the wall, which is closer to the wall temperature. As the fluid progresses 

through the column it warms up with the fluid close to the wall getting at the wall 

temperature and the difference between the center region temperature and wall region 

temperature decreasing. So as we get further downstream in the bed the entire profile is 

higher and flatter. 
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Figure 25. Influence of bed depth on temperature profile for experimental data at 

Re = 986. 

 

5.1.3 Comparison of CFD Results to Experimental Data 

When the CFD results and the experimental data for the same conditions are plotted 

dimensionless axes are used. In this way, small temperature differences in inlet 

temperature and wall temperature in the experiments can be compensated for. 
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In this section comparisons are made between radial temperature profiles at several

different Reynolds numbers. Initially, comparisons were made between experimental

radial temperature profiles and CFD radial profiles at different axial positions in the

packed bed. Most of these comparisons had to be eliminated because of fundamental

differences in data acquisition technique between the experimental and CFD cases. To be

able to measure a radial temperature profile in the experimental setup part of the packed

bed had to be removed. In the CFD model only a model with a complete 44-sphere bed

was available. The entire bed was present when a radial profile at a shorter bed length

was collected. In bed positions at lower axial coordinates, for CFD, the temperature

profile was established using the fluid elements at the specified axial position; the effects

of the flow profile around the packing have a considerable influence on the resulting

radial temperature profile. Also in this axial plane not all elements are fluid elements

since the packing is still present limiting the domain of the data collection.
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Figure 25. Plot of dimensionless velocities versus radial coordinate for different axial

positions at Re = 1922, vin= 1.116 m/s.
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The major reason for this difference can be seen in the CFD results. When flow 

profiles over the complete radius at axial positions in the bed and just above the bed are 

compared the flow characteristics are distinctly different (see Figure 26). The packing 

located above the position at which the flow profile is looked at influences the specifics 

of the flow profile. Since in the overall heat transfer in low tube to particle packed beds 

convection plays an important role these differences in flow characteristics cause 

considerable differences in quality of the radial temperature profiles. 

For interpretation of a complete series of bed depths at a Reynolds number of 986 

please refer to appendix 4. In this appendix it can also be seen that all radial temperature 

profiles from CFD at lower bed depths have a characteristically different shape than the 

CFD temperature profile established with data above the packing. In the presented series 

the CFD simulations give a good quantitative indication of the experimental temperature 

profiles and their dependence on axial position, there is however a slight deviation from 

the expected profile shape at smaller radii. This effect becomes more prominent at larger 

bed lengths. These deviations at different bed lengths are caused by the different flow 

profile at lower bed lengths. 

In the direct comparison of the experiments we look for similarity in qualitative 

description of the temperature profile, or the curve shape, as well as a similarity in 

quantitative results, or curve positioning. 

A number of examples have been chosen to cover the Reynolds number range of 373 

to 1922, see Table 1 in section 4.2. Also a comparison is made between using a turbulent 

or laminar model at lower Reynolds numbers. At lower Reynolds numbers a number of 

different simulations are eligible for comparison with experimental data. Simulations 

with the touching spheres geometry could only be conducted with the laminar model, 

turbulent simulations in this geometry did not converge. The laminar model is an 

acceptable condition for the lower Reynolds number cases. Additionally, for these low 

Re cases, simulations in the final geometry (99% spheres) with both laminar and 

turbulent models were used for comparison to find influences of the geometry and the 

flow model used. 
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5.1.3.1 Low Reynolds numbers 

For these low Reynolds number comparisons a Reynolds number of 373, the lowest at 

which any experiments could be conducted, was chosen. In Figure 27 through Figure 29 

the three different cases are given. The experimental fits given in the three different 

graphs are the same curve since only one experiment at these conditions was conducted. 
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Figure 27. Comparison of experimental data and CFD for the model with touching 

spheres, at laminar conditions, Re = 373, z = 0.420. 
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Figure 28. Comparison of experimental data and CFD for the 99% near-miss model, at 

laminar conditions, Re = 373, z = 0.420. 
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Figure 29. Comparison of experimental data and CFD for the 99% near-miss  model, 

at turbulent conditions, Re = 373, z = 0.420. 
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All three graphs (Figure 27 through Figure 29) show a good qualitative similarity 

between the CFD and experimental data. When we compare the three graphs above, the 

CFD results do not change much for each of these simulations. The main difference 

between Figure 27 and the following two is that the CFD data indicates a slightly lower 

average temperature in Figure 27, approximately 1 K. This can be explained by the fact 

that the original geometry did not allow for an axial temperature profile on the calming 

section wall. The simulations in the final geometry did have a heated calming section. 

The temperature profile on the calming section wall will pre-heat the gas flow through 

the bed and cause a slightly higher radial temperature profile. The difference in the 

profiles at lower Reynolds numbers, as shown here, is very small because the low flow 

speed causes the effect of pre-heating to relatively diminish. Another distinct difference 

between the laminar and turbulent graphs is that the laminar cases seem to show more 

spread; this may be due to less mixing in gas phase compared with the turbulent flow. 

In all three cases the overall temperature profile indicated by the CFD simulation is 

slightly lower than for the experimental data. This difference is due to systematic error in 

experimental data collection as well as CFD modeling assumptions that become more 

apparent at higher Reynolds numbers. The difference between laminar and turbulent 

models in the final model is very small, showing that at lower Reynolds numbers both 

models will predict the same heat transfer behavior. 

 

5.1.3.2 High Reynolds numbers 

At higher Reynolds numbers the preferred method of simulation is in the 99% near-

miss geometry with the turbulent model. A laminar simulation in the touching spheres 

geometry was attempted but this did not lead to a converged solution. The touching 

spheres geometry only supports laminar model simulation, which is not appropriate for 

flow at higher Reynolds numbers. 
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Figure 30. Comparison of experimental data and CFD results for the 99% near-miss 

model, at turbulent conditions, Re = 1724, z = 0.420. 
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Figure 31. Comparison of experimental data and CFD results for the 99% near-miss 

model, at turbulent conditions, Re = 1922, z = 0.420. 
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As was shown in the low Reynolds number range and is shown again at higher 

Reynolds numbers in Figure 30 and Figure 31, the qualitative agreement between 

experimental and CFD data is good. Also, it can be seen that the CFD predicts a lower 

overall temperature profile than the experimental data shows. 

An aspect that is very apparent in the CFD simulation data at higher Reynolds 

numbers is the temperature jump near the wall. Since at higher flow velocities there is 

less chance for the energy to penetrate the bed this effect is expected to be larger at 

higher Reynolds numbers. 

When we directly compare the temperature profiles of the Re = 1922 and the 

Re = 1724 run there are no obvious differences. The overall temperature in the Re = 1724 

is slightly higher as at the lower flow velocity there is more opportunity for the fluid to 

be heated by the wall. This effect becomes clearer when we compare several different 

Reynolds numbers 

 

5.1.3.3 The effect of pre-heating in the calming section 

As was mentioned in the paragraphs above, the temperature profiles of the CFD 

simulations and the experimental data seem to have a systematic offset. This difference 

was initially attributed to modeling problems with the axial temperature profile in the 

calming section wall. 

When we look at the radial gas phase temperature profiles measured at z = 0.132, 

approximately 3 centimeters below the start of the heated wall section, we can see how 

the preheated wall section affects the temperature profile in the fluid phase. In Figure 32 

and Figure 33 it is shown that at these low axial positions the CFD simulation already 

predicts a lower overall temperature profile than the experimental values indicate, 

especially at the lower Reynolds number. 
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Figure 32. Comparison of experimental data and CFD results, at Re = 373, z = 0.132. 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
r/R

θ

CFD data

experimental data

polynomial experimental fit

 

Figure 33. Comparison of experimental data and CFD results, at Re = 1922, z = 0.132. 
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From comparing these low axial position profiles it can be concluded that the pre-

heating that should be accomplished in the calming section is not adequately represented 

in the CFD simulation. This will affect the temperature profile development along the 

remainder of the heated section. Aspects such as flow rate and the relative amount of pre-

heating will have different effects on the development of the temperature profile at higher 

axial positions. 

Even though the CFD simulation profile for the run at Re = 1922 seems to be a 

reasonable description of the experimental data, this small difference can be of 

considerable importance because the residence time in the heated section is so much 

smaller than in the Re = 373 run. Also, the large difference in the pre-heating section 

profiles at Re = 373 will be relatively more reduced, since the gas phase at a lower 

temperature in the CFD simulation will experience a larger driving force in the heated 

section and therefore heat up more, and will approach the experimental data more closely 

by the end of the heated section. 

This may be illustrated in previously shown Figure 29 and Figure 31, where the 

temperature profile comparisons were plotted at the highest measured axial position. It 

can be seen that the differences in these profiles are differently distributed than they were 

in the calming section temperature profiles of Figure 32 and Figure 33. In the Re = 1922 

case the short residence time in the heated section has caused the small temperature 

difference present in the calming section to be considerably enlarged at the end of the 

bed. In the Re = 373 case the longer residence time resulted in both profiles being 

relatively high (close to θ = 1). All temperature profiles close to θ = 1 are flat and close 

together. This indicates that even though the experimental result and the CFD prediction 

are close together the fit of the CFD results to the experimental data may be only as good 

as the one at higher Reynolds numbers, shown in Figure 31. 

Another aspect of the pre-heating of the fluid phase in the calming section can be seen 

in the difference between temperature profiles for measurements at different Reynolds 

numbers. 
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Figure 34. Temperature profiles of CFD simulations for three different Reynolds 

numbers at z = 0.132. 
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Figure 35. Temperature profiles of experiments for three different Reynolds numbers 

at z = 0.132. 
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When we compare the temperature profiles in the calming section obtained 

experimentally (Figure 35) with the profiles obtained through CFD simulation (Figure 

34) there is a considerable and obvious difference. 

As the Reynolds number increases the temperature profile tends to flatten. A flatter 

radial temperature profile in the calming section means there is less effective pre-heating 

of the fluid phase. This effect is a lot more prominent in the experimental data than it is in 

the CFD simulations. 

The relatively high temperatures of the Re = 373 temperature profile of the 

experiments indicates that the effect of pre-heating in the calming section is fairly strong. 

The lower temperature profiles of the CFD simulations show that, even though pre-

heating was modeled, the effect is less dramatic. This indicates that the modeling of the 

calming section axial wall profile was not adequate. 

 

5.2 Discussion of systematic errors 

In modeling in CFD a number of assumptions are made that may all introduce a small 

error. Also in experimental measurement, setup specifics can introduce small errors. 

Most of these errors individually are usually ignored in the overall measurements or 

modeling. When CFD results and experimental data are compared, the addition of errors 

will increase the overall error leading to a misleadingly large offset between the 

experimental data and the CFD results. 

In this section several phenomena that introduce an error in either the CFD results or 

the experimental measurements will be identified and discussed. One of these 

phenomena, the correct modeling of the gas phase pre-heating in the calming section, was 

already introduced in section 5.1.3.3. Eventually the added effect of these errors will be 

implemented in the results and the new comparisons. 
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5.2.1 Calming section axial temperature profile 

As was discussed before the incorrect modeling of the pre-heating process may 

explain some of the discrepancy in the CFD predictions. Therefore several measurements 

were taken to get a more accurate axial temperature profile. The main question was 

whether in the original experimental setup the wall temperature profile was truly 

measured or whether the gas phase temperature profile at the wall was measured. 
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Figure 36. Calming section wall with positions of thermocouple access shafts; the left 

hand wall displays the original drilled holes the right hand wall the new, not quite 

penetrating, drilled holes. 

 

The calming section wall axial temperature profile was established using 

thermocouples inserted in 5 holes drilled at different axial positions, as shown in Figure 
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36. The holes were drilled completely through the nylon wall of the calming section into 

the internal column space. The thermocouples in these holes had, over time, retracted into 

the holes. In the position where they were located they measured the air temperature of 

the stagnant air in the holes and not the wall temperature. To correct this the calming 

section was equipped with new-drilled holes for the thermocouples, which not quite 

penetrated the calming section wall. The new accesses allowed the thermocouples to be 

approximately 1 mm behind the inside wall interface. At this position the airflow in the 

column could not penetrate the thermocouple access shafts. The thermocouple tips were 

in contact with the wall close to the inside wall boundary resulting in a better 

measurement of the axial temperature profile. Figure 36 shows the two different sets of 

thermocouple accesses. 

The newly established temperature profile was compared with experimental results 

from measurements done earlier (1992) on the same equipment and the profiles initially 

established. The axial temperature profiles on the calming section wall are presented in 

Table 3, here the 1992 profile refers to the axial profile established with the original 

drilled holes in 1992, the Initial profile was established using the original drilled holes in 

1998 and the New profile was acquired using the newly drilled holes. 

 

Table 3. Overview of the calming section wall axial temperature profiles, segment 9 at 

column inlet, segment 1 at heated section interface. 

 1 2 3 4 5 6 7 8 9 

1992 profiles 351.6 314.6 307.07 303.29 300.27 298.5 298 298 298 

Initial profile 349 311.1 305.4 301.7 299.5 298.5 298 298 298 

New profile 352.5 312.9 306.5 303.1 300 299 299 298 298 

 

The temperature profile that was established in 1992 is fairly close to the profiles 

established with the newly drilled holes. At this point the thermocouples had been 

recently installed in the calming section and their location was fixed using a silicone 

paste. This silicone paste may have acted as a replacement wall in the thermocouple 



Results and Discussion  

 78

holes. When the initial profile was established in 1998 the silicon paste had deteriorated 

causing the thermocouples to have been gradually moved back into the wall as well as 

exposing them to the airflow inside the column. This misplacement of the thermocouples 

and the exposure to the internal airflow resulted in a lower axial temperature profile. 

After comparison the newly established temperature profile was then implemented in 

the CFD model and new simulations were run. 

 

5.2.2 Experimental error due to solid conduction to the Thermocouple cross 

When taking experimental measurements a thermocouple cross is lowered into the 

column and positioned directly above the bed. As the air flows through the bed and heats 

up, the thermocouples measure the gas temperature. However, the thermocouple cross 

itself is in contact with the heated wall and may be subject to heating through solid 

conduction through the nylon structure of the thermocouple cross. 

To establish an estimate of the raised temperature in the thermocouple cross an 

experiment was developed measuring the temperature raise in the thermocouples with 

only conduction through the thermocouple cross. To be able to measure only the heat up 

of the thermocouples through conduction, all heating through the gas phase had to be 

eliminated without disturbing the original conditions too much. When the thermocouple 

cross is installed at the lower part of the heated wall section with the thermocouples just 

in the calming section, conduction through the nylon structure can occur without the 

thermocouple tips being in contact with the heated gas. In this case, however, the calming 

section wall is still pre-heated through contact with the heated wall. To eliminate this pre-

heating of the calming section wall, and therewith the gas flowing through the column, 

the heated wall was placed on four 1.25 inch long aluminum struts, see Figure 37. This 

eliminated the contact area between the heated wall and the calming section wall. It did, 

however, create an open area in the column so that the total gas flow was not forced past 

the thermocouple cross. It was found experimentally that most of the gas flow did still 
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flow past the thermocouple cross through the heated 

column section. This condition ensured similar flow 

conditions at the thermocouple tips. 

Steady state measurements were taken at two 

different Reynolds numbers (879, 1922) with both a 

heated column and a cold column. The difference 

between the cold and heated experiments shows the 

maximum heating through conduction through the 

thermocouple cross. In actual experimental 

conditions the temperature difference between the 

cross and the wall is usually lower, due to the 

heated gas phase, resulting in less driving force and 

less heating through solid conduction. Therefore 

this effect is more prominent at higher Reynolds 

numbers, since in those cases the gas phase 

temperature is lower. 

From Figure 38 we can see that the temperature 

in the thermocouple cross has been raised. The 

dimensionless temperature was established using 

the wall temperature and gas inlet temperature. 

Therefore the θ−coordinate of each curve is directly 

related to the thermocouple cross heat-up through 

conduction. Since the heated wall and inlet 

temperature were approximately 100 and 25 °C 

respectively the 0.1 mark on the y-axis corresponds 

to a 7.5 °C temperature raise in the thermocouple 

cross. 
Figure 37. Experimental setup 

fitted with struts. 
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Figure 38. Experimental data from 2 separate runs at Re = 1922, combined with lines 

to show the average for each run. 
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Figure 39. Experimental data from 2 separate runs at Re = 879, combined with lines to 

show the average for each run. 
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Another aspect of the heat-up through conduction becomes clear when Figure 39 is 

compared with Figure 38. At lower Reynolds numbers the heat-up through conduction 

seems to be slightly higher. As was stated before, the heat-up through conduction for the 

conditions of this experiment will indicate more heat-up because of the cold gas flow 

conditions. This also explains the higher temperatures in Figure 39; under the 

experimental conditions for model comparisons this additional heat-up will be less due to 

higher internal gas temperatures. 

This effect was eventually incorporated through a lowering of the experimental data of 

3 to 4 °C ranging from the center of the column to the wall. It was concluded that the 

already higher temperatures at the wall, under experimental conditions, would not be 

increased a lot more through this conduction, but the center of the column would 

experience the greater effect. 

 

5.2.3 Contribution of radiation effects in experimental setup 

Radiation effects were neglected in the CFD simulations since it is generally accepted 

that radiation effects are not a factor in heat transfer processes with temperatures lower 

than approximately 480 K. In our setup, however, the size of the spheres is relatively 

large which might make radiation a contributor to heat-up. 

A calculation was done to estimate the effect of radiation. This contribution was then 

compared to the energy transport predicted by the CFD to find if the radiation 

contribution was actually negligible. 

Generally radiation heat transfer can be expressed as, 

 

R

TT
k

dt

dT
kq wc

rrr

−
−≈−=  ( 21 ) 

here Tc is the temperature at the center of the column, Tw is the temperature at the wall 

and R is the radius of the column. 
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The specific radiation heat transfer thermal conductivity is defined as, (Damköhler, 

1937) 

 3
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Here e is the emissivity of the nylon, approximately 0.9. The constant cs is derived 

from the Stefan-Boltzman constant and is in this case 5.67. 

The CFD simulation uses only conduction and convection for heat transfer into the 

column. Its heat flux into the column is given as, 
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When we now combine equation ( 21 ) and ( 23 ) we can find the temperature in the 

center of the column if radiation were taken into account in the CFD simulation, *
cT . 
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For this specific calculation a Reynolds number of 1922 was chosen, at lower 

Reynolds numbers, the difference between Tc and Tw values will be less, resulting in less 

radiation contribution. The radiation heat transfer thermal conductivity, kr, is calculated 

using equation ( 22 ), which is then used in equation ( 21 ) to establish the radiation heat 

transfer, qr. In these equations the value of Tc cannot be directly established since it 

changes with the axial position in the bed, therefore an average value of 50.5 °C was 

used. For the CFD simulation Tc was determined similarly at 317 K. Using equation ( 23 

) kCFD was calculated with values for qCFD taken from the simulation. Wall temperatures 

in the CFD simulation were set at 383 K. In the experiment, at a Reynolds number of 

1922, the wall temperature was 104 °C. 

Using these values we find that the temperature in the CFD simulation should be 

approximately 2.5 K higher than was calculated neglecting radiation at a Reynolds 

number of 1922. When we do similar calculations for a Reynolds number of 373 we find 
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that at this low Reynolds number there is negligible additional heat up through radiation. 

The heat up at lower Reynolds numbers is negligible because the radiation effect, which 

is directly related to the temperature difference between the wall and the center of the 

bed, is applied to a smaller energy stream. Even though the temperature of the airflow in 

the column is higher at lower Reynolds numbers the flux is so much lower that the total 

energy flux through the column at a Reynolds number of 373 is only 27.5 % of the 

energy flux at a Reynolds number of 1922. The smaller radiation effect due to the smaller 

driving force at Re = 373 applied to a smaller energy flux results in a negligible 

temperature increase at low Reynolds numbers. 

 

5.2.4 Additional heat transfer through solid-wall contact points 

The experimental setup uses nylon 66 spheres with a one-inch diameter in a copper 

column with a two-inch inner diameter. Long-term use and production imperfections 

make neither of these diameters perfectly one or two inches. A number of measurements 

were taken to get an approximation of the actual diameters. It was established that the 

average diameter of the spheres was slightly larger than one inch and the diameter of the 

heated section of the column was slightly smaller than two inches, which was also 

something that was experienced experimentally when installing the packing. 

The smaller column diameter and the larger sphere diameter resulted in a considerable 

solid-solid contact area between the wall and the spheres resulting in extra heat transfer 

into the bed, that was not incorporated in the CFD model. To correct this, the surface area 

was crudely determined and used in determining the extra heat transfer into the bed. To 

determine the heat transfer into the bed a modified Batchelors equation was used (Cheng 

et al., 1999) 

 ( )
( )

sssw k
1

k
1
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Q

+
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=  ( 25 ) 
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where the subscript s refers to the sphere and w refers to the wall, rws is the radius of 

the contact area between the wall and the sphere, ksw is the solid conductivity of the wall 

and kss is the solid conductivity of the spheres. 

Using the diameter measurements of the spheres and the column we find an average 

contact radius of 1.12 mm for each sphere in the packing, since in the N = 2 packing all 

spheres touch the wall. There are a total of 28 spheres touching the heated wall with an 

average temperature difference between the wall and the sphere of 53 K (for Re = 1922). 

The solid conductivities are respectively ksw = 202.4 W/m⋅K and kss = 0.242 W/m⋅K.  

With the mentioned values for all parts of equation ( 25 ) the additional heat flux into 

the column due to solid-solid contact between the heated wall and the packing is 1.73 W. 

This is about 1.3% of the heat flux into the gas phase in the CFD simulation (136 W). 

To correct for the solid-solid conduction in the CFD result the contact areas between 

wall and packing should be incorporated, but as was discussed in Chapter 2 this increases 

geometrical complexity and would make it very difficult to solve for the flow in the 

simulation. 

To correct for this additional conduction, the CFD temperatures were increased by 

0.7 K, corresponding to the percentage additional heat flux into the column. 

 

5.2.5 Modeled gap between wall and packing 

To be able to solve for turbulent flow in a CFD simulation it was necessary to 

introduce a small gap between the heated wall and the spheres. It was shown from 

comparisons of flow profiles at several gap sizes that the small gaps used in the final 

model did not affect the stagnant flow area around the contact points, see Figure 40. It 

did however make it impossible to model contact areas, as discussed in section 5.2.4. 

Another aspect was an increase in conduction path length through the gas, which was 

expected to be of relatively small influence in our specific case since the packing-fluid 

conductivity ratio was low at approximately 10. 
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 a b 

Figure 40. View of the CFD mesh at a constant axial coordinate showing the 

introduced gap between the sphere and the wall, a, and a close up of the area near the 

sphere-wall contact point, b. 

 

When we compare radial temperature profiles we find a systematically lower 

temperature in the near-miss model, approximately 1.5 K at a Reynolds number of 373. 

Another way to compare the gap influence is directly comparing temperatures in the 

packing in models with different gap sizes. The trend found in this comparison shows 

that at the 99% near-miss model the temperature in the packing is approximately 2 K 

lower at a Reynolds number of 1922. Since the Reynolds number has no influence on the 

heat transfer through the gap, the flow pattern has not been significantly altered; the only 

influence of Reynolds number is the overall temperature difference over the column 

radius, the driving force for the heat transfer. 

The introduction of the gap causes the CFD simulations to predict too low a 

temperature, ranging from 1.5 K at Re = 373 to 2 K at Re = 1922. To correct for this 

offset the CFD radial temperature profiles were increased by 1.5 to 2 K depending on the 

Reynolds number 

5.2.6 Additionally checked aspects 

In addition to the contribution of the effects discussed in sections 5.2.1 through 5.2.5 

other aspects in the model and experimental setup were investigated. The additionally 
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investigated effects discussed in this section turned out to have a negligible effect on the 

final results, they are mentioned here solely for completeness. 

 

5.2.6.1 Flow inlet effects 

It was reasoned that there might be an influence of the inlet effects of the gas flow. In 

the experimental setup a gas is fed through a small diameter inlet to the bottom of the 

calming section, whereas in the CFD simulation a flat velocity profile is defined at the 

inlet at the bottom of the calming section. 

The calming section was specifically designed to negate such effects in the flow, but 

the column used was originally designed for considerably larger tube to particle ratios; 

also the axial temperature profile on the calming section wall effectively shortens the 

calming section. Any jet effect in the experimental setup may cause the development of 

the flow profile to be delayed causing changes in heat transfer processes. 

Experiments were performed with a 1.5-inch layer of 5/16-inch nylon spheres at the 

bottom of the calming section inlet and at a series of Reynolds numbers as shown in 

Table 4. This larger tube to particle ratio section (N = 6.4) disperses the flow before it 

reaches the preheated calming section wall. When experimental results of the two 

different packing methods were compared the difference in radial temperature profiles, 

approximately 0.1 °C, fell within the response variation of both profiles. 

Table 4. Overview of all the Reynolds numbers at which flow inlet experiments were 

conducted. 

Reynolds numbers 

373 564 796 986 1221 1477 1724 1922 

 

From these experiments it is concluded that the flow inlet effects have negligible 

effect on the overall heat transfer process. At Reynolds numbers higher than 1922 there 

may be noticeable effects from a jet effect since development of the steady profile will 

occur later in the bed. 
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5.2.6.2 Calibration of Thermocouples 

Although the thermocouples were calibrated at the time the measuring software was 

implemented, it was deemed necessary to recalibrate the thermocouples as the time since 

the initial calibration may have had an adverse effect on the thermocouples. The calming 

section thermocouples were determined to have an offset up to - 0.5 °C; the 

thermocouples in the thermocouple-cross however were determined to have an offset up 

to - 0.2 °C. These effects counteract each other resulting in a negligible final temperature 

offset. 

The negative offset means the temperature indicated by the thermocouples was 

actually lower than the calibration temperature. The calibration was done over a 

temperature range, 10 to 90 °C. All thermocouples showed a consistent offset at all 

temperatures; the highest deviation from a constant offset was 0.2%. 

 

5.2.6.3 Turbulence models 

When solving the CFD equations a model is implemented for turbulent factors. In the 

Fluent software several turbulence models are available. The turbulent simulations in this 

work were done with the standard κ-ε model. Although unlikely, it was reasoned that 

choice of the turbulent model might influence the flow solution and therewith the overall 

heat transfer processes. 

A number of runs were conducted using different turbulence models at the highest 

modeled Reynolds number, 1922. The available turbulent models in Fluent 4.2.8 were, 

the standard κ-ε model, the renormalized group κ-ε or RNG κ-ε model and the Reynolds 

Stress Model or RSM. 

The RNG κ-ε differs only slightly from the standard κ-ε model in that it uses different 

techniques for determining effective viscosities. The RSM turbulent modeling does not 
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use κ and ε parameters to model the Reynolds stresses; it models all six stresses 

separately. 

The results of the different turbulent models were directly compared, resulting in a 

maximum difference of about 0.2 K for some temperatures. It was concluded that the 

different turbulence models did not show structural difference in the radial temperature 

profiles. The standard κ-ε model was therefore used on all turbulent simulations. 

 

5.3 Corrected comparisons 

When we consider all the elements discussed in section 5.2 we can adjust our original 

plots, as presented in section 5.1, to obtain a corrected comparison. In this section we 

make similar comparisons as was done in section 5.1 and look at some additional aspects 

of the data. 

 

5.3.1 Review of proposed corrections 

In section 5.2 a number of aspects were mentioned resulting in a correction factor for 

either the CFD simulation or the experimental measurements. In Table 5 a summary of 

the correction factors is given for three different particle-Reynolds numbers. The method 

of calculation for the corrections was similar for all Reynolds numbers, the differences 

were caused mainly by difference in temperature difference between the wall and the 

center of the bed and the difference in total energy added to the system as calculated in 

the CFD simulation. 
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Table 5. Overview of the corrections on the CFD and experimental radial temperature 

profiles, all corrections in K. 

Re 373 968 1922 

Effects CFD Exp CFD Exp CFD Exp 

TC cross conduction - -2 - -3 - -4 

Radiation - - +2.1 - +2.5 - 

Solid-solid conduction +1.6 - +0.9 - +0.7 - 

Modeled gap +1.5 - +1.7 - +2 - 

 

5.3.2 Direct comparison of results 

Now that we can implement the corrections quantified in the last section a new 

comparison between CFD simulations and experimental results can be made. 

 

5.3.2.1 Low Reynolds numbers 

In section 5.1.3.1 a comparison was made between CFD results and experimental data. 

It was then shown that a systematic difference between the experimental data and CFD 

simulation was present. The corrected graphs for the same runs as were shown in section 

5.1.3.1 are presented now to give a better representation of the comparison. 

In the corrected graphs the experimental data and the CFD simulation are in better 

agreement than they were before the correction. At the low Reynolds numbers the largest 

discrepancy was found near the center of the column, in Figure 41 and Figure 42 the 

temperatures in the center of the column are in perfect agreement. 
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Figure 41. Comparison of corrected experimental and CFD results, at turbulent 

conditions, Re = 373, z = 0.420. 
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Figure 42. Comparison of corrected experimental and CFD results, at turbulent 

conditions, Re = 468, z = 0.420. 
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5.3.2.2 High Reynolds numbers 

At higher Reynolds numbers the discrepancy between experimental results and CFD 

simulations shown previously was a lot larger. As we found in section 5.2 and is shown 

in Table 5 the correction for higher Reynolds numbers is larger as well. The following 

graphs show the corrected comparisons for the higher Reynolds numbers cases. 

Especially at these higher Reynolds numbers the effects of the corrections can be seen. 

It is clear that when the aspects that were not included in the model are corrected for the 

CFD simulation gives a quantitatively as well as qualitatively good comparison. 
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Figure 43. Comparison of corrected experimental and CFD results, at turbulent 

conditions, Re = 1724, z = 0.420. 
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Figure 44. Comparison of corrected experimental and CFD results, at turbulent 

conditions, Re = 1922, z = 0.420. 
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6. Conclusions 

 

Model and mesh creation in CFD is one of the most important phases of simulating. 

The model and mesh density determine the accuracy and flexibility of the simulations. 

Too dense a mesh will unnecessarily increase the solution time; too coarse a mesh will 

reach a solution quickly but will not show an accurate flow profile. An optimal mesh is 

denser in areas where the flow profile changes quickly and coarser in areas where there 

are no flow profile changes. In the used 44-sphere model with 1 inch diameter spheres a 

node spacing of 0.11 inch near the contact points and 0.26 inch away from the contact 

points was found to be optimal. 

Solving turbulent equations puts extra demands on a CFD model and will require a 

more stable mesh. Skewness, the distortion of the tetrahedral mesh volumes, becomes 

more important and the model needs to have a lower skewness than is allowed for 

laminar solutions. To be able to facilitate turbulent solution of the model actual contact 

points had to be eliminated. Comparing several models with differing gap sizes between 

the spheres and the wall it was found that models with a sphere size of 99% of the 

original touching spheres model facilitated a turbulent solution as well as maintained the 

original velocity distribution around the contact points. 

The CFD simulation results from the 99% near-miss model and experimental data 

show a good qualitative fit. When CFD simulations are corrected for the introduced gap, 

by adding a solid-solid conduction heat transfer contribution as well as adding a radiation 

contribution that was not included in the simulation and experimental results are adjusted 

for bias introduced due to the measurement method there is a good quantitative fit. 

Showing a good quantitative as well as qualitative fit between CFD simulation and 

experimental results it can be concluded that for the case of low N packed beds CFD 

simulations are a useful tool for understanding flow and heat transfer principles as well as 

for modeling these types of geometries. 
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7. Recommendations 

 

An immediate extension of the research presented could be implementing a more 

accurate calming section wall temperature profile. A newer version of Fluent UNS with a 

capable C compiler will be able to be implemented with a User Defined Function, which 

can describe this temperature profile better. Other ways to improve simulation can be 

sought in introducing radiation in the model; this will lead to a more complicated solution 

but will also eliminate the need for temperature profile corrections. 

Since it has been shown that CFD is a useful tool in modeling low N packed beds 

applications for further research may be sought in modeling chemical reactions in a fixed 

bed with the reported optimal mesh density. With this reaction CFD model data can be 

gathered for direct application into a model describing low N packed bed behavior. 

Besides looking at heat transfer results, the flow field also provides a wealth of 

information. The flow field distributions, such as axial or radial flow, may be 

incorporated in packed bed flow models. 

For future studies it will be necessary to create specific new models. With this study 

we hope to have shown that CFD simulations give an accurate description of the heat and 

mass transfer in small tube to particle ratio beds. The newly designed models can be 

founded on mesh design principles stated in this study. Also CFD generated with a well-

designed model gives accurate enough data for further application. 
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Nomenclature 

 

   

cp = fluid heat capacity [J/kgK] 

dt = tube diameter [m] 

dp = particle diameter [m] 

e = emissivity [-] 

G = mass flow rate [kg/m2s] 

h = heat transfer coefficient [W/m2K] 

hw = wall heat transfer coefficient [W/m2K] 

kf = fluid conductivity [W/mK] 

kr = radial conductivity [W/mK] 

kss = solid conductivity of the sphere [W/mK] 

ksw = solid conductivity of the wall [W/mK] 

L = length of the heated bed [m] 

N = tube to particle ratio (dt/dp) [-] 

Nuw = wall heat transfer coefficient [-] 

P, p = static pressure [Pa] 

q = heat flux [W/m2] 

r = radial coordinate [m] 

rws = radius of wall sphere contact area [m] 

R = tube radius [m] 

T = temperature [K] 

u = gas velocity [m/s] 

v = superficial gas velocity [m/s] 

x = coordinate [m] 

z = axial coordinate [m] 
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Greek Symbols 

   

β = thermal expansion coefficient [K-1] 

ε = turbulence dissipation rate [J/s] 

κ = turbulent kinetic energy [J] 

µ = fluid viscosity [Ns/m2] 

θ = dimensionless temperature (T-Tin)/(Twall-Tin) [-] 

ρ = fluid density [kg/m3] 

 

Dimensionless flow numbers 

wall Nusselt number 
f

pw
w k

dh
Nu =  

Péclet number 
r

pp

k

dGc
Pe =  

Prandtl number 
f

p

k

c
Pr

µ
=  

Reynolds number 
µ

ρ
= p

p

vd
Re  

 

Abbreviations 

CAD = Computer Aided Design 

CFD = Computational Fluid Dynamics 

FD = Finite Difference 

FE = Finite Element 

FV = Finite Volume 

UNS = Unstructured 
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 Appendix 1 Overview of CFD simulations 

 

This appendix contains an overview of all the performed CFD simulations. Only a few 

of the CFD simulations are reported on in the thesis, these tables are there to give a 

complete overview of the simulations performed. 

 

Table 6. Overview of the CFD runs of the 10-sphere geometry. 

Mesh Run vinlet [m/s] Reynolds flow regime # its remarks 

10spheres 10spheres 0.01 34 laminar 123 metal spheres 

10spheres2 10spheres2 0.01 34 laminar 123 Al2O3 spheres 

 10sphv=0,01noheat 0.01 34 laminar 120 flow only 

 10sphv=0,01 0.01 34 laminar 131  

 10sphv=0,05nh 0.05 169 laminar 206 flow only 

 10sphv=0,05 0.05 169 laminar 214  

10 spheres2#2 10sph2#2noheat 0.01 34 laminar 120 flow only 

 10sph2#2 0.01 34 laminar 131  

 10sph2#20,01 0.01 34 laminar 196 continuity 1e-4 

 10sph2#20,1 0.1 338 laminar 840  

 10sph2#20,05 0.05 169 laminar 221  

 10sph2cool 0.05 169 laminar 221 cooled wall 

 10sph2hsph 0.05 169 laminar 230 heated spheres 

10sph2loc0,09 10sph2loc0,09flow 0.01 34 laminar 122 flow only 

 10sph2loc0,09 0.01 34 laminar 232  
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Table 7. Overview of the CFD runs of the Nu number checks. 

48,467 element mesh 

Run vinlet [m/s] Reynolds q [W] flow regime # iterations remarks 

nucheck1 0 0 0.88569826 laminar 10  

nuchv=0,1 0.1 348 6.465971 laminar 86  

nuchv=0,01 0.01 35 2.3465981 laminar 96  

nuchv=0,001 0.001 3 1.2056898 laminar 126  

nuchv=0,0001 0.0001 0.3 0.91367453 laminar 146  

nuchv=1 1 3478 9.9585943 laminar 66  

nuchv=10 10 34,777 10.542231 laminar 56  

nuchv=0,2 0.2 696 7.9864407 laminar 81  

nuchv=0,3 0.3 1043 8.7038507 laminar 76  

nuchv=0,4 0.4 1391 9.1141615 laminar 71  

nuchv=0,5 0.5 1739 9.3796244 laminar 71  

nuchv=0,6 0.6 2087 9.5650101 laminar 71  

nuchv=0,7 0.7 2434 9.7020092 laminar 66  

nuchv=0,8 0.8 2782 9.807136 laminar 66  

nuchv=0,9 0.9 3130 9.8909502 laminar 66  

7,216 element mesh 

Run vinlet [m/s] Reynolds q [W] flow regime # iterations remarks 

nuchcv=0 0 0 0.88440394 laminar 100 residual 1e-8 

nuchcv=0,00005 0.00005 0.2 0.90198213 laminar 63  

nuchcv=0,0001 0.0001 0.3 0.91404426 laminar 63  

nuchcv=0,001 0.001 3 1.1976821 laminar 57  

nuchcv=0,01 0.01 35 2.3113546 laminar 50  

nuchcv=0,1 0.1 348 6.4644365 laminar 47  

nuchcv=0,25 0.25 869 8.3975687 laminar 43  

nuchcv=0,5 0.5 1739 9.342061 laminar 41  

nuchcv=0,75 0.75 2608 9.7052526 laminar 39  

nuchcv=1 1.0 3478 9.8969774 laminar 38  
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232,593 element mesh 

Run vinlet [m/s] Reynolds q [W] flow regime # iterations remarks 

nuchfv=0 0 0 0.93173325 laminar 11  

nuchfv=0,0001 0.0001 0.3 0.93757417 laminar 316  

nuchfv=0,001 0.001 3 1.2231172 laminar 272  

nuchfv=0,01 0.01 35 2.3011611 laminar 161  

nuchfv=0,1 0.1 347 6.98336 laminar 129  

nuchfv=0,25 0.25 869 11.806903 laminar 130  

nuchfv=0,5 0.5 1739 15.641298 laminar 123  

nuchfv=0,75 0.75 2608 17.497665 laminar 117  

nuchfv=1 1.0 3478 18.583879 laminar 114  

nuchfv=10 10 34,777 22.099157 laminar 93  

 

Table 8. Overview of the CFD runs of the mesh comparisons. 

Air used as fluid phase 

Mesh Run vinlet [m/s] Reynolds regime # its. remarks 

99% ntlr dtdp2nt99lr17 0.01 17 laminar   

 dtdp2nt99lr96 0.055 95 (96) laminar 105  

 dtdp2nt99lr200 0.115 198 (200) laminar 123 reverse flow 

 dtdp2nt99lr500 0.2875 495 (500) laminar 495 reverse flow 

 dtdp2nt99lr1922 1.105 1903 (1922) laminar  no convergence 

99% ntlr dtdp2nt99lr17turb 0.01 17 turbulent 2184 flow 862 

 dtdp2nt99lr96turb 0.055 95 (96) turbulent  flow 662 

 dtdp2nt99lr200turb 0.115 198 (200) turbulent 1105 flow 566 

 dtdp2nt99lr500turb 0.2875 495 (500) turbulent 973 flow separate 

 dtdp2nt99lr1922turb 1.105 1903 (1922) turbulent   

97% ntlr dtdp2nt97lr17 0.01 16 (17) laminar   

 dtdp2nt97lr96 0.055 93 (96) laminar 97  

 dtdp2nt97lr200 0.115 194 (200) laminar 108 reverse flow 

 dtdp2nt97lr500 0.2875 485 (500) laminar 536 reverse flow 

 dtdp2nt97lr1922 1.105 1864 (1922) laminar 700 no convergence 
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Mesh Run vinlet [m/s] Reynolds regime # its. remarks 

97% ntlr dtdp2nt97lr17turb 0.01 16 (17) turbulent 2447 flow 894 

 dtdp2nt97lr96turb 0.055 93 (96) turbulent 1517 flow 617 

 dtdp2nt97lr200turb 0.115 194 (200) turbulent 1159 flow 561 

 dtdp2nt97lr500turb 0.2875 485 (500) turbulent 806  

 dtdp2nt97lr1922turb 1.105 1864 (1922) turbulent   

99.5% dtdp2nt995lr17 0.01 17 laminar   

 dtdp2nt995lr96 0.055 96 laminar 101  

 dtdp2nt995lr200 0.115 199 (200) laminar 119  

 dtdp2nt995lr500 0.2875 498 (500) laminar 224 reverse flow 

 dtdp2nt995lr1922 1.105 1912 (1922) laminar 500 no convergence 

99.5% dtdp2nt995lr17turb 0.01 17 turbulent   

 dtdp2nt995lr96turb 0.055 96 turbulent 1126 flow 450 

 dtdp2nt995lr200turb 0.115 199 (200) turbulent 876 flow 390 

 dtdp2nt995lr500turb 0.2875 498 (500) turbulent 632 flow 307 

 ~nt995lr1922turb 1.105 1912 (1922) turbulent   

       

Water used as fluid phase, Twall,max = 353 K 

Mesh Run vinlet [m/s] Reynolds regime # its. remarks 

97% ntlr dtdp297turb96wat 0.0038 93 (96) turbulent 1625  

 dtdp297turb500wat 0.01978 485 (500) turbulent 1024  

97% ntlr dtdp297lam96wat 0.0038 93 (96) laminar 194  

 dtdp297lam500wat 0.01978 485 (500) laminar 269  

99% ntlr dtdp299turb96wat 0.0038 95 (96) turbulent 1660  

 dtdp299turb500wat 0.01978 495 (500) turbulent 1050  

99% ntlr dtdp299lam96wat 0.0038 95 (96) laminar 213  

 dtdp299lam500wat 0.01978 495 (500) laminar 320  

99.5% dtdp2995turb96wat 0.0038 96 turbulent 956  

 dtdp2995turb500wat 0.01978 498 (500) turbulent 765  

99.5% dtdp2995lam96wat 0.0038 96 laminar 203  

 dtdp2995lam500wat 0.01978 498 (500) laminar 329  
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Hydrocarbon mixture used as fluid 

Mesh Run vinlet [m/s] Reynolds regime # its. remarks 

97% ntlr dtdp297turb96wat 0.02876 93 (96) turbulent 1259  

 dtdp297turb500wat 0.1498 485 (500) turbulent 857  

97% ntlr dtdp297lam96wat 0.02876 93 (96) laminar 181  

 dtdp297lam500wat 0.1498 485 (500) laminar 400 reverse flow 

99% ntlr dtdp299turb96wat 0.02876 95 (96) turbulent 1260  

 dtdp299turb500wat 0.1498 495 (500) turbulent 860  

99% ntlr dtdp299lam96wat 0.02876 95 (96) laminar 217  

 dtdp299lam500wat 0.1498 495 (500) laminar 483 reverse flow 

99.5% dtdp2995turb96wat 0.02876 96 turbulent 710  

 dtdp2995turb500wat 0.1498 498 (500) turbulent 531  

99.5% dtdp2995lam96wat 0.02876 96 laminar 198  

 dtdp2995lam500wat 0.1498 498 (500) laminar 450 reverse flow 

 

The actual particle Reynolds number is stated for each case in Table 8, using the 

reduced size of the spheres. All Reynolds numbers in parentheses are based on a sphere 

with a one-inch diameter. 
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Table 9. Overview of the CFD runs of the original 44-sphere mesh. 

Run ur. vinlet [m/s] Reynolds flow regime # its. remarks 

44sphRe1922 all -0.2 1.105 1922 laminar  flow 718  RR1 

44sphRe1833 all -0.2 1.054 1833 laminar  flow 718  RR2 

44sphRe1724 all -0.2 0.991 1724 laminar 958 flow 705  RR2 

44sphRe1624 all -0.2 0.934 1624 laminar 994 flow 553 RR2 

44sphRe1477 all -0.2 0.849 1477 laminar 643 flow 353 RR2 

44sphRe1346 all -0.2 0.774 1346 laminar 585 flow 341 RR2 

44sphRe1221 all -0.2 0.702 1221 laminar 570 flow 225 RR2 

44sphRe1097 all -0.2 0.631 1097 laminar 549 flow 309 RR2 

44sphRe986 all -0.2 0.567 986 laminar 876 flow 125  RR3 

44sphRe879 all -0.2 0.506 879 laminar 430 flow 150  RR3 

44sphRe769 default 0.442 769 laminar 323 flow 312 

44sphRe664 default 0.382 664 laminar 213 flow 203 

44sphRe564 default 0.324 564 laminar 194 flow 184 

44sphRe468 default 0.269 468 laminar 176 flow 166 

44sphRe373 default 0.215 373 laminar 145 flow 132 

RR, relaxed residuals: At higher Reynolds numbers in the touching-spheres model the 

residual values had to be relaxed to end the iteration process. The procedure results in a 

solution with a larger error. The higher the Reynolds numbers the more relaxation of the 

residual values was necessary. 

                                                 
1 Residual value of continuity relaxed 50 times from 0.0001 to 0.005. Residual value of energy relaxed 

5 times from 1e-6 to 5e-6. 
2 Residual value of continuity 0.0005. Residual value of energy 5e-6. 
3 Residual value of continuity 0.0003. Residual value of energy 3 e-6. 
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Table 10. Overview of CFD runs of the final 44-sphere mesh. 

Run ur. vinlet [m/s] Reynolds flow regime # its. remarks 

44sphnthcRe1922 all -0.2 1.116 1922 turbulent 595 flow separate 

44sphnthcRe1833 all -0.2 1.065 1833 turbulent 597 flow separate 

44sphnthcRe1724 all -0.2 1.001 1724 turbulent 596 flow separate 

44sphnthcRe1624 all -0.2 0.943 1624 turbulent 470  

44sphnthcRe1477 all -0.2 0.858 1477 turbulent 453  

44sphnthcRe1477 all -0.2 0.858 1477 turbulent 1203 round off 

44sphnthcRe1346 all -0.2 0.782 1346 turbulent 455  

44sphnthcRe1221 all -0.2 0.709 1221 turbulent 457  

44sphnthcRe1097 all -0.2 0.637 1097 turbulent 454  

44sphnthcRe986 all -0.2 0.537 986 turbulent 465  

44sphnthcRe879 all -0.2 0.511 879 turbulent 468  

44sphnthcRe769 all -0.2 0.447 769 turbulent 485  

44sphnthcRe664 all -0.2 0.386 664 turbulent 509  

44sphnthcRe564 all -0.2 0.328 564 turbulent 541  

44sphnthcRe468 all -0.2 0.272 468 turbulent 583  

44sphnthcRe373 all -0.2 0.216 373 turbulent 639  

~nthcRe373lam default 0.216 373 laminar 121  

~nthcRe468lam default 0.272 468 laminar 133  

~nthcRe564lam default 0.328 564 laminar 145  

~nthcRe664lam default 0.386 664 laminar 160  

~nthcRe769lam default 0.447 769 laminar 176  
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 Appendix 2 Overview of the physical experiments 

 

The physical experiments were all very similar. Table 11 shows all bed lengths at 

which measurements were taken. Table 12 gives an overview of all the Reynolds 

numbers for an entire measurement series. At all the bed lengths measurements were 

taken over the entire Reynolds number range. 

 

 

Table 11. Overview of the different physical experimental series. 

total bed length (z) [m] heated bed length (L) [m] number of spheres in bed 

0.420 0.260 44 

0.384 0.224 40 

0.348 0.188 36 

0.312 0.152 32 

0.276 0.116 28 

0.240 0.044 24 

0.204 0.036 20 

0.168 0.008 16 

0.132 -0.028 12 

 

 

One measurement at one Reynolds number and one bed length consists of four 

separate measurements. The thermocouple cross was placed at four different relative 

positions, 0, 15, 30 and 45 degrees all relative to the initial position, this way more data 

was gathered to get a better radial average profile. 
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Table 12. All physical experiments for bed length 0.348 m, Reynolds values identical 

for all other bed lengths. 

rotameter percentage airflow pressure drop [psi] Reynolds 

27 20 0.1 373 

27 25 0.2 468 

27 30 0.3 564 

27 35 0.6 664 

27 40 1.0 769 

27 45 1.5 879 

27 50 1.8 986 

27 55 2.2 1097 

27 60 2.9 1221 

27 65 3.5 1346 

27 70 4.2 1477 

27 75 5.2 1624 

50 26 6.5 1724 

50 27 7.5 1833 

50 28 8 1922 
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 Appendix 3 Structural details of the different CFD models 

 

This appendix contains structural information about the different geometries used. It is 

added so that if necessary the models can be recreated for further research. 

 

 Nusselt check model structural details 

The model created for checking the Nusselt number at no flow conditions consisted of 

one solid sphere in a flowing medium. The fluid was flowed through a duct rather than 

having an infinite flowing medium to be able to create a model with a reasonable size. 

The two-inch (50.8 mm) diameter sphere was created with its center at the Cartesian 

coordinate (0,10,10). The units in creation of this model were inches. The enclosing duct 

entrance plane is at y = 3 with -7 < x < 7 and 3 < z < 17. The exit plane is of the same 

dimensions at y = 35. 

For mesh creation node spacing on all edges needs to be defined. The sphere, 

consisting of four surfaces, resulting in four equal sized edges per circumference has 10 

nodes per edge; this is a node spacing of 0.175 inch. The node spacing on the duct is set 

at 1.00 inch resulting in 15 nodes on all sides on the inlet and exit planes and 33 along the 

walls of the duct. 

For the coarser mesh with 7,216 elements, the node spacing on the sphere edges was 

set to 0.393 inch, 5 nodes per edge. The node spacing on the duct was set to 2 inch 

resulting in 8 nodes on the edges of the inlet and exit planes and 17 nodes along the duct 

wall. For the finer mesh with 323,593 elements the original node spacing was used on the 

sphere, 10 nodes per edge. The node spacing on the duct was reduced to 0.5 inch, 

resulting in 29 nodes on the edges of the inlet and exit plane and 65 nodes along the duct 

wall. 

 



Appendices  

 113

 10-sphere model structural details 

The model consists of a tube with 10 solid spheres located inside the tube. The fluid 

flows through the tube, bottom to top, around the spheres inside. Three slightly differing 

meshes were created for this geometry. All three meshes were based on the same 

topology. 

The base topology was created in millimeters and consists of a tube with an axis 

running from the Cartesian coordinates (0,0,0) to (0,0,250). The radius of the tube was 

59.6311. 

The centers of the spheres in the tube were located at specific Cartesian coordinates as 

they are stated in Table 13. The way the spheres are divided into the several axial layers 

is 1,4,4,1. 

Table 13. Location of the sphere centers in the 10-sphere topology. 

layer x y z 

1 0 0 34.7 

2 24.7 24.7 69.6311 

2 24.7 -24.7 69.6311 

2 -24.7 -24.7 69.6311 

2 -24.7 24.7 69.6311 

3 34.9311 0 111.1714 

3 0 34.9311 111.1714 

3 -34.9311 0 111.1714 

3 0 -34.9311 111.1714 

4 0 0 146.1024 

 

Initially the 10spheres mesh was created with spheres with a radius of 24.7 mm 

therewith creating a model in which all contact points were actually touching. In the 

10spheres mesh all solids were aluminum, the default solid in Fluent UNS. 

The 10spheres2 mesh used the same topology as the 10spheres mesh with 

aluminumoxide spheres, as were used in the ANSYS model. The Al2O3 was defined with 
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a density of 2000 kg/m3, a thermal conductivity of 1.2 W/m·K and a heat capacity of 

800 J/kg·K. 

The 10spheres2#2 mesh uses the exact copy of the ANSYS model, in which the 

spheres have a radius of 24.7 mm and do not quite touch each other nor the walls. This 

model facilitated higher flow velocities and was used for the direct comparison. The 

values given in Table 13 are for the adapted ANSYS model with actual contact points, 

the original model had a cylinder with a radius of 60 mm and spheres located at the 

points given in Table 14. 

Table 14. Location of the sphere centers in the original ANSYS 10-sphere topology. 

layer x y z 

1 0 0 34.7 

2 24.8 24.8 69.5 

2 24.8 -24.8 69.5 

2 -24.8 -24.8 69.5 

2 -24.8 24.8 69.5 

3 35.07 0 110.98 

3 0 35.07 110.98 

3 -35.07 0 110.98 

3 0 -35.07 110.98 

4 0 0 146 

 

The mesh density in all the 10-sphere geometries described above was based on the 

node spacing on the spheres. Again 10 nodes per ¼ circumference were used as a design 

parameter, this resulted in a node spacing of 4.31 mm, and this same node spacing was 

used on the cylinder wall. The total mesh size for the model with touching spheres was 

about 207,100 cells, the exact copy of the ANSYS model had approximately199,600 

cells. 

A third mesh, 10sph2loc0,09, used the original touching spheres and tried to facilitate 

higher flow velocities by refining the mesh locally at the contact points. 
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The mesh density and therefore the node spacing in this locally refined mesh was 

different than in the other 10-sphere models. The edges on the spheres facing other 

spheres were given an increased node density, 10 to 21, resulting in a node spacing of 

1.9 mm. The edges on the cylinder were given a varying distribution, a higher density at 

the contact points with a node spacing of 1.9 mm and a lower density at the other parts 

with a node spacing of approximately 6.7 mm. The total mesh size was about 377,300 

cells. 

 

 44-sphere final model details 

The 44sphere model consists of a long (25 inches) narrow (2 inch diameter) tube filled 

with a 44 sphere fixed bed. This model was also initially created with touching spheres 

and later adapted to have both slightly smaller spheres and a mesh locally refined around 

the near contact points. 

The cylinder is divided into two separate sections, the heated section and the calming 

section. All the wall surfaces in the heated section are merged into one complete surface. 

The wall surfaces in the calming section were sub-divided into several axial sections. 

These axial sections are based on the sphere layers as the wall surfaces run between the 

contact areas of the sphere layers. The calming section ends at layer nine and is sub-

divided in 9 layers. 

Table 15. Axial (z) coordinates of the 22 layers of spheres in the 44-sphere model. 

layer 1 2 3 4 5 6 7 8 9 10 11 

z 1 1.7071 2.4142 3.1213 3.8284 4.5355 5.2426 5.9497 6.6569 7.3640 8.0711 

layer 12 13 14 15 16 17 18 19 20 21 22 

z 8.7782 9.4853 10.1924 10.8995 11.6066 12.3137 13.0208 13.7279 14.4350 15.1421 15.8492 

 

There are 22 layers of 2 spheres which are alternating next to each other in either x or 

y direction at (1,0), (-1,0) or (0,1), (0,-1) at different z coordinates, all units are in inches. 

The topology was built with the first layer of spheres at z = 1 on the x-axis, all other axial 

(z) coordinates are given in Table 15. 
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Sphere diameters were based on the original model, in which they were touching each 

other and the walls and were 1 inch. To facilitate turbulent solutions the sphere diameters 

were reduced to 99% of the original, 0.99 inch. 

Node distribution on the spheres is not uniform, the density increases towards the 

sphere contact points, node spacing near the contact points is 0.06 inch away from the 

contact points it is 0.11 inch. There are 11 nodes on each quarter circumference. Node 

distribution on the cylinder wall in the packed region is similar, 0.06 inch near contact 

points and 0.12 inch away from the contact points. There are 20 nodes on a quarter 

circumference of the cylinder. The node distribution at the flow entrance plane is uniform 

with a node spacing of 0.11 inch; at the outlet the uniform node spacing is 0.26 inch. On 

the cylinder wall from the packed region to the outlet the node distribution gradually 

coarsens, from 0.11 inch near the bed to 0.26 inch near the outlet. The resulting mesh has 

429,100 cells. 

 



Appendices  

 117

 

 Appendix 4 CFD data and experimental fits at Re = 986 

 

As was stated in the text this appendix is a collection of comparisons of CFD results 

with experimental data at a Reynolds number of 986 at the 9 different bed depths at 

which experiments were conducted, as stated in Table 11. Comparisons at lower bed 

depths are not considered valid comparisons due to differences in flow patterns between 

the experiments and the CFD simulations. It can be seen that at bed lengths other than 

z = 0.420 the radial temperature profiles are qualitatively different, especially at longer 

bed length the CFD simulation shows a lower temperature near the center of the bed. 

In Figure 45 and Figure 46 the correction for the experimental result had to be 

adjusted to not indicate temperatures below the inlet temperature, which would be an 

incorrect assumption. 
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Figure 45. Comparison of CFD and experimental results at z = 0.132. 
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Figure 46. Comparison of CFD and experimental results at z = 0.168. 
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Figure 47. Comparison of CFD and experimental results at z = 0.204. 
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Figure 48. Comparison of CFD and experimental results at z = 0.240. 
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Figure 49. Comparison of CFD and experimental results at z = 0.276. 
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Figure 50. Comparison of CFD and experimental results at z = 0.312. 
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Figure 51. Comparison of CFD and experimental results at z = 0.348. 
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Figure 52. Comparison of CFD and experimental results at z = 0.384. 
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Figure 53. Comparison of CFD and experimental results at z = 0.420. 
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