Multicast-Based Interactive-Group
Object-Replication For
Fault Tolerance

by

Pedro Soria-Rodriguez

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Master of Science
in

Electrical and Computer Engineering
by

April 1998

APPROVED:

Professor David Cyganski, Ph.D., Major Advisor

Professor William Michalson, Ph.D.

David Cordella, Clariion

Abstract

Distributed systems are clusters of computers working together on one task. The sharing
of information across different architectures, and the timely and efficient use of the network
resources for communication among computers are some of the problems involved in the
implementation of a distributed system. In the case of a low latency system, the network
utilization and the responsiveness of the communication mechanism are even more critical.

This thesis introduces a new approach for the distribution of messages to computers in
the system, in which, the Common Object Request Broker Architecture (CORBA) is used in
conjunction with IP multicast to implement a fault-tolerant, low latency distributed system.
Fault tolerance is achieved by replication of the current state of the system across several
hosts. An update of the current state is initiated by a client application that contacts one of
the state object replicas. The new information needs to be distributed to all the members
of the distributed system (the object replicas).

This state update is accomplished by using a two-phase commit protocol, which is
implemented using a binary tree structure along with IP multicast to reduce the amount
of network utilization, distribute the computation load associated with state propagation,
and to achieve faster communication among the members of the distributed system. The
use of IP multicast enhances the speed of message distribution, while the two-phase commit
protocol encapsulates IP multicast to produce a reliable multicast service that is suitable
for fault tolerant, distributed low latency applications. The binary tree structure, finally, is

essential for the load sharing of the state commit response collection processing.

i
Acknowledgements

I would like to express my thanks to my advisor Dr. David Cyganski for his guidance
and advice throughout the development of this research. I am also thankful for his patience
with me towards the end of the completion of this thesis. I have gained a lot of knowledge
and experience during my two years in the WPI Machine Vision Laboratory, and I have to
thank my advisor for giving me the chance of working in this research lab.

This thesis represents the culmination of my studies thus far, and I want to express here
my thanks to my parents, Pedro Soria Estevan and Maria Covadonga Rodriguez Lanza, for
their encouragement and support through all my studies, while leaving the final decision to
me in all the choices I had to make along the way.

My thanks also to the committee members, Dr. William Michalson and David Cordella,
for their valuable comments on my thesis. I want to thank the Lockheed Martin Corporation
as well, for their funding this project.

The research assistants at the MVL deserve a mention here as well, for the great work
environment. In particular, this thesis would not have been completed without help from
Michael Roberts. Thank you very much, Mike. Thanks to Brent Modzelewski also for
explaining IGOR to me in preparation for this thesis. I would also like to thank Sashe
Kanapathi. Last but not least, my thanks go also to Hsing-Yi Ko for her help throughout
the development of this thesis.

Pedro Soria-Rodriguez

April 1998

Contents

List of Tables

List of Figures

Terms, Acronyms and Definitions

1 Introduction

3

1.1 Problem Statement L L
1.2 Definition of Fault Tolerance
1.3 Multicast Technologies o .
1.3.1 Multicast Layers Lo
1.3.2 Multicast Internetworking Lo oo,

Reliable Multicast

2.1 Problem Description o
2.2 Retransmission L L
2.3 Multicast Subgroups L
2.4 Keeping track of group membership
2.5 Retransmission Request o oo
2.6 OtherIssues e
2.7 Previous Work on Reliable Multicast
2.8 RMTP: A Reliable Multicast Transport Protocol
2.9 Reliable Multicast Framework 000
2.10 Single Connection Emulation (SCE)
2.11 Reliable Multicast Protocol. (RMP)
2.12 The IP Multicast Initiative
IGOR

3.1 IGOR Implementation
3.2 Two Phase Commit Protocol
3.3 Enhancements to IGOR 0
3.4 Multicast for Fault Tolerance
3.5 MIGOR e

iii

vi

vii

TL W W N = =

0~

10

14
17
17
17
18
19
20
20

4 Multicast IGOR (MIGOR)

4.1
4.2
4.3
4.4
4.5

Choice of ORB
MIGOR Overview
Registration of Replicas
Client contacting server
Server State Update

5 Multicast Network Programming

5.1
5.2
5.3
5.4

Sender Code
Receiver Code

Multicast Encapsulation
Multicast vs. IIOP

6 MIGOR Implementation Description

6.1

6.2

6.3

IGOR Evolution into MIGOR
6.1.1 Data Type Conversion
6.1.2 Client Communication
6.1.3 Object Database
Inheritance in CORBA and C++ . .
6.2.1 TIE Class Approach Example
Implementation Details
6.3.1 McastModule Class.
6.3.2 Multicast Class
6.3.3 Dispatcher Class
6.3.4 MIGOR IDL Interface
6.3.5 MIGOR Class.
6.3.6 Server Application IDL Interface
6.3.7 Server Application Class . . .
6.3.8 Registry IDL Interface
6.3.9 Registry Class
6.3.10 Server Application (Replicas)

7 Performance Analysis and Comparison

7.1

7.2

Analysis Environment
7.1.1 One Replica
7.1.2 Three Replicas
7.1.3 Seven Replicas
Performance Comparison

8 Conclusions

8.1

Future Work

A Machine Vision Laboratory Workstations
A.1 Hardware/Software Environment . .

iv

29
29
30
30
32
34

38
38
39
40
41

42
42
43
44
44
44
47
92
52
53
95
56
56
58
58
99
99
60

61
61
62
62
63
64

67
68

69

Bibliography

70

vi

List of Tables

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Al

Latency Measurements with One MIGOR Server 62
Latency Measurements with Three MIGOR Servers. 62
Latency Measurements with Seven MIGOR Servers on four hosts 64
Latency Measurements with Seven MIGOR Servers on fusion 64
Latency Measurements with Seven MIGOR Servers on visionl 64
Performance comparison for all types of IGOR with 1 replica 65
Performance comparison for all types of IGOR with 3 replicas 65
Performance comparison for all types of IGOR with 7 replicas 65

Machine Vision Laboratory Workstations 69

vii

List of Figures

2.1
2.2
2.3
24

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2

7.1

Neighbors Tables 9
Multicast Subgroups 11
The updating of member tables 13
Computation of Round Trip Times (RTT) 16
IGOR Binary Tree 23
Two Phase Commit Protocol 24
Action of the Naming Service 31
Adding Replicas tothe Tree 33
Client contacting the Server L. 34
Multicast of a message 35
Collection of Responses i 36
IGOR State Machineo 37
Inheritance Problem Illustration 45
Inheritance Tree e 46

Computers Hosting the 7 Replicas 63

viii

Terms, Acronyms and Definitions

Asynchronous message

BOA
CORBA
IDL

IGOR
I1OP
Marshaling

Object Implementation
Oneway

ORB
TCP/IP

Unicast
Broadcast
Multicast
UDP

NIC

MAC
IGMP

Non-blocking CORBA message (oneway CORBA method
invocation)

Basic Object Adapter

Common Object Request Broker Architecture
Interface Definition Language

Interactive-Group Object-Replication

Internet Inter-ORB Protocol (TCP/IP based)
Transparent data conversion between differing
architectures

Server object implementation of a CORBA interface
CORBA non-blocking method invocation, also called
asynchronous

Object Request Broker

Transport Control Protocol layered on the Internet
Protocol

One to One communication

One to All communication

One to Many communication

User Datagram Protocol

Network Interface Card

Medium Access Control

Internet Group Management Protocol

Chapter 1

Introduction

1.1 Problem Statement

A distributed system is a group of computers working together on a specific task. This
computation paradigm presents very interesting benefits over single processor systems. Dis-
tributed computing systems can render highly powerful computing engines by simply in-
terconnecting a set of machines with otherwise very limited computational power. A good
example of this is the Beowulf Project [2], a system that uses inexpensive machines in
parallel to implement a supercomputer. Distributed systems also have application in fault
tolerant systems, by providing redundancy. This is precisely the focus of this research work.

In general, distributed systems have to overcome problems related to the communication
between the components of the system and the differing architectures of which the system
may be comprised. This thesis presents a continuation of the investigation by Modzelewski
[11] into implementing a fault tolerant, low latency system, over heterogeneous computer
platforms.

The fault tolerance is achieved by replicating an object that maintains the state (data)
of the system. A novel message distribution system was introduced in [11] for keeping all
the nodes of the system in synchrony. This thesis investigates the addition of IP multicast
to the system with the intention of enhancing the performance. IP multicast is used to
distribute the new state to all the replicated objects by using a single message, thus reducing
computation load on the part of the sender and reducing propagation delays to all the
replicas. The underlying reliability mechanism is a two phase commit protocol. By using

this protocol, the sender of the new state sends one message with the new state information

to the group of replicas. The second step is to gather responses from all replicas to ensure
the new state has been received. Once this is done, the sender issues a commit message to
the group of replicas to order them to update the old state with the new one. Once again,
the replicas must reply to the sender to complete the protocol. During the operation of this
protocol there are two occasions when a message must be sent to all members of the group.
For this operation, multicast is used, as it achieves prompt delivery of the same information

to a group of machines.

1.2 Definition of Fault Tolerance

The system addressed in this thesis is intended to supply a means for the incorporation
of fault tolerance in a distributed object implementation through server object replication.
The specific kind of fault tolerance which is being addressed is that which is normally
associated with distributed transaction services. As stated by Coulouris, Dollimore and
Kindberg [3, page 472], “A service may be described as fault tolerant if it is designed
to function correctly in the presence of specified faults in the other services on which it
depends. A service may be described as functioning correctly if it exhibits only the faults
described in its failure semantics.”

We also adpot the definition of the Lampson [9] fault model, “In order to make our
assumptions about possible failures more explicit [...] we divide the events which occur in
the model into two categories: desired and undesired; in a fault-free system only desired
events will occur. Undesired events are subdivided into expected ones, called errors, and
unexpected ones, called disasters. Our algorithms are designed to work in the presence of
any number of errors, and no disasters; we make no claims about their behavior if a disaster
occurs.”

In Lampson [9], proof is derived that a system based upon a two phase commit protocol
displays simple crash failure semantics allowing errors (in keeping with the definition above)
in writes to permanent storage, allowing servers to crash (repeated omission failure) and
allowing arbitrary delay of message delivery [3, page 460].

The two phase commitment based protocol and replicated server system developed in [11]
and here, fulfills the requirements of Lampson’s definition of fault tolerance given hardware

failure semantics of the omission type [3, page 462].

1.3 Multicast Technologies

There are three different schemes for distributing information to other hosts on a com-
puter network. The simplest and most straight forward is a unicast, by which the message
originated by one computer is addressed for another, uniquely identified computer. This is a
one-to-one communication. In the case that a message is not addressed to a particular host,
but is simply sent for any host on the network to use, the transmission is called a broadcast,
analogous to the broadcast by a television station. Such transmission is not addressed to
a particular receiver, but rather, continuing with our analogy, any TV set can receive the
signal.

In between these two schemes there is a third one, that doesn’t simply transmit a message
to everybody, but does not target a single host either. Such a scheme is called a multicast.
It can be described as a broadcast addressed to a certain group of hosts. That is, there is
a single message that can be received by more than one host. Another way to achieve the
distribution of one message to many receivers would involve establishing a unicast with each
of the receivers. However, there are important negative impacts in doing so. The main one
is that the solution is not scalable, that is, the addition of more recipients of the message
will increase the demand on resources in the sender. A multicast, on the other hand, uses a
single message that is targeted at a group of receivers and hence incurs no additional costs

on the part of the transmitter as the member of recipients is increased. [5]

1.3.1 Multicast Layers
Hardware

For multicast to be possible, it is necessary that the hardware interface employs a multi-
cast mode of delivery. This is the case, for instance, with Ethernet interfaces. Each Network
Interface Card (NIC) has a unique Media Access Control (MAC) address. This is the ad-
dress used normally at the hardware level to deliver unicast packets. However, a NIC can
also be configured to accept packets addressed to another address, in addition to its own
MAC. Such an address is a multicast address. A NIC can start or stop accepting packets
destined for that address at any time. The terms “joining” and “leaving” a multicast group
are used to refer to the acceptance or not of packets for a specific multicast address. A

“multicast group” refers to a particular multicast address. There can be more than one

multicast session active at any time. Each session uses a different multicast address. If a
host wants to receive two different multicasts, it has to configure its NIC to listen on two
multicast addresses.

All the NICs in the same network need to get configured to listen to the same multicast
address for all of them to receive the same multicast. The Ethernet is a multiple access
medium, and any packet on the wire can be seen by all the machines on the network.
Therefore, if all the hosts interested in a multicast have their NICs configured appropriately,
the same electrical signal that makes up a packet will cause all these NICs to receive the
packet at the same time. The other NICs in the network that are not expecting the multicast
will simply ignore this packet, like they do with all the unicast traffic that is not addressed
to them.

This way all the hosts receive the multicast at the same time and in parallel. Physical
layers other than Ethernet may distribute the multicast traffic in a different fashion. How-
ever, the relevant aspect of multicast is the fact that the originator of the message needs to

send the information only once.

Software

The network layer on the hosts that are to receive a multicast also need to be configured
to accept the multicast traffic. Like in the Ethernet case, the network layer has to accept
packets destined for its own IP, as well as for the multicast IP. Given that any host may
join or leave a multicast group at any time, the multicast IP addresses are not assigned to
a particular host or group of hosts. Instead, an operation on the IP layer socket is used to
specify to which multicast IP to listen. As a matter of fact, in the case of Ethernet, the
multicast address of the network interface is derived from the IP multicast address.

The rest of the discussion will focus on the implementation of multicasting over IP, since
this is the most commonly used network protocol.

Class D addresses are multicast addresses. These correspond to the range of IP addresses
224.0.0.0 to 239.255.255.255 [21]. A group is formed when one of these addresses is used.
There is no central authority to assign addresses to groups, or to manage the membership
in a group. The whole process of creating, joining and leaving groups happens dynamically.

A multicast communication is established using a UDP port at the transport level. That

is, a multicast is a best effort, connection-less communication channel. There is no flow con-

trol information or acknowledgments sent back to the sender if the UDP transport protocol
is used. TCP, on the other hand, provides guaranteed delivery by using an acknowledgment
mechanism.

IP multicast was designed to work with UDP originally because the addition of an
acknowledgment service would imply that the receivers of the multicast have to send ac-
knowledgments back to the sender. Therefore, the sender would have to deal with a large
number of acknowledgments at the same time. This would not be a scalable solution. As a
consequence, rather than implementing a TCP-like multicast transport protocol, a simple
UDP socket is used, along with a special multicast IP address.

An application that is to receive a multicast simply needs to wait for data on the UDP
socket associated with the multicast. According to [5], the kind of applications that would

benefit from multicast are:

e distributed, replicated databases.
e conferencing.

e distributed parallel computation, including distributed gaming.

Nowadays, multimedia has been added to this list. Except for the multimedia and
conferencing applications, the other kinds of application usually require reliable communi-
cation. The lack of such a service has prompted several reliable multicast protocols to be

developed in the last few years. These are discussed in section 2.7.

1.3.2 Multicast Internetworking

When a multicast spans more than one network the multicast traffic needs to be for-
warded by the router or switch onto the next network, since these devices interconnect two
or more different physical layers. The router has to deal with the problem of routing the
multicast traffic only to those networks where there are hosts that are expecting the mul-
ticast. Similarly, it does not need to send the multicast to a network where those packets
are not needed.

The solution is to inform the routers that there are hosts expecting a multicast in the
networks connected to them. The Internet Group Management Protocol (IGMP) is the pro-

tocol used to discover the group membership in a network. The routing of multicast over

the internet can be done with a variety of protocols that can be classified into two main
groups: dense-mode and sparse-mode protocols. The first type of protocols is intended for
large networks that are largely populated with members of a multicast group. These pro-
tocols are Distance Vector Multicast Routing Protocol (DVMRP), Protocol-Independent
Multicast - Dense Mode (PIM-DM), and Multicast Open Shortest Path First (MOSPF).
sparse-mode protocols are used for networks in which not many subnets may contain multi-
cast group members. Some of these protocols are Protocol-Independent Multicast - Sparse
Mode (PIM-SM) and Core Based Trees (CBT). More information about these internet
routing protocols can be found in [15].

An IGMP message is encapsulated in an IP packet, and has a time-to-live (TTL) of
1, to avoid it being forwarded onto the next network [4]. The router sends a query to
address 244.0.0.1, the address of the all-host group. When a host receives the query, it
replies with another IGMP message, addressed to the multicast IP address of the group
whose membership it is reporting. It sends one such message for each multicast group to
which it belongs. A host waits a random amount of time before sending a reply, so as to
avoid an implosion of replies from all the hosts on the network. Should there be more than
one member of one group on the same network, only the first membership report generated
would reach the network, because as soon as one host reports its membership, the other
members of the same group would see that message (being a multicast) and would abort
their respective reports of membership. One message is enough for the router(s) to be aware
that there is at least one host on a particular multicast group. The report messages also
have a TTL equal to 1. Routers post the IGMP queries periodically on their networks. If
after a few consecutive queries there are no responses to the polls, the router assumes that
there are no host group members on that network.

Not all routers are multicast-capable, although a lot of new products implement IGMP.
Vendors explicitly indicate whether their products support IGMP or not. Older routers
that are in place in the internet are less likely to support IGMP.

Chapter 2

Reliable Multicast

In the field of distributed computing there is a need for reliable communication. A
multimedia application can usually tolerate the loss of a certain portion of packets. The
information content in the video or audio stream may not suffer a high degree of quality loss.
On the other hand, a distributed computing application cannot extrapolate the information
of a lost packet from another data packet. It is therefore necessary that the transport layer
provides reliable service.

This chapter presents background information about the problems that a reliable mul-
ticast service needs to address. Along with the problems, potential solutions investigated
throughout this research are presented, as well as a summary of other work developed in

the area of reliable multicast.

2.1 Problem Description

This section presents a discussion of the difficulties that have to be dealt with in an
acknowledgment-based multicast system with retransmissions. In its simplest description,
such a system requires that the receivers of the multicast inform the sender, through an
acknowledgment frame, that the packet has been received. The sender will retransmit a
packet for which an acknowledgment has not been received in a certain period of time. An
acknowledgment is required from all hosts in the membership of the group.

Let us consider a multicast host group whose members are physically located far from
each other and look at the problems that arise from this situation. For instance, if the

farthest member of the group (from the sender’s point of view) has missed a frame and

requests a retransmission, the request would have to travel the longest distance within
the group topology, and the retransmitted frame would have to propagate back down the
same long path. In addition to suffering from large delays in discovering lost frames, this
method puts a big load on the originator of the message, since it must process retransmission
requests from all the members of the group.

One way to reduce the latency and the load on the sender would be by having the group
member that did not receive a certain frame contact another member of the group (a closer
one to it) rather than contacting the original sender.

Another possible scheme for requesting retransmission would be to not send any kind of
acknowledgment back from the clients (or receivers) to the sender. This scheme would be
based on the premise that a good number of frames (more than 50%) do not get corrupted
nor lost. If this was true, a client could detect when it is missing a frame by checking a
sequence number on every frame. This way it would only be needed to generate a “NACK”
message (negative acknowledgment) from the receivers to the sender. This would allow it
to avoid sending an acknowledgment for every frame that has arrived correctly. That is,
only in the event of a lost frame, a NACK is sent.

In either case, if the client that is missing a frame is the one farthest from the sender,
the delay caused to the overall communication would be greater than necessary given more

local stores of information exist.

2.2 Retransmission

Let us now consider the problem of retransmission in more detail. As stated previously,
a good solution would be to request the lost frame from a group member that is closer than
the source of the multicast. Each group member can maintain a table with information
about the other members, that can be updated periodically.

The problem of avoiding a client’s having to contact a distant server to request the
retransmission of a packet can be solved if the client can contact a closer source for the
information it requires. Given that there are, most likely, other members in the same
group, some of these members may be closer (in distance or in round-trip time) than the
original sender. All of these host members are receiving the multicast as well. A mechanism
can be set up to have the clients contact another client to request the missing frame.

This implies that a client needs to know about its own location with respect to its

Neighbor Table . Neighbor Tabld
Al

| A |Tea | <:> Router
uls

B
C
D

L@
A |Tea A | Tpa

B B |Tpg

C C |Tpc

D D|__

Figure 2.1: Neighbors Tables

neighbors (other members of the group) and to the sender. If such information is available
to every client, each client can then contact the closest neighbor to request the missing
information. This method of implementing retransmission requires an efficient scheme to
provide each client with the means to find its place within the group. A simple method to
realize this would involve the measurement of the round-trip time of frames sent to each
other member of the group. This would result in a table that lists the closest neighbor(s) to
each member. The optimum time to generate this look-up table would be at the time when
a client joins the group. Figure 2.1 shows a group of hosts on different networks, connected
through routers. Host “E” is not part of the multicast group. The other four hosts are, and
maintain a table with the round trip time to each other, T'xy.

Now let us suppose that a new group is set up and there is a number of hosts that wish
to join this group. If all hosts start transmitting frames to collect data for the neighbor
tables, a sudden burst of frames will appear on the network, both incoming and outgoing
for each host. This amount of traffic might affect the computation of the neighbor table and
generate erroneous results, which in turn will lead to performance lower than what would
otherwise be possible.

However, if a host that wishes to join a group employs some mechanism for introducing
a small random delay before its transmission, this problem can be lessened. Using a scheme
similar to this, the negative impact on network load imposed by the set-up phase will be

reduced to a minimum. These netghbor tables can have three important uses:

1. Maintain information about the distance (in milliseconds, router hops, etc..) between

10

members in the group.

2. If these tables are updated with certain periodicity, then the messages used to gather
the distance information become also a heartbeat signal to maintain a record of mem-

bership in the group.

3. By requesting that a new host joining the group build its own neighbor table when
it first joins the group, this mechanism is also a way for a new host to advertise its

presence to the group.

2.3 Multicast Subgroups

An alternative to contacting individual clients is to request the retransmission of some
frames from one of several “servers” within the group. These servers would then provide
reliable service to a subgroup of the members of the greater group. The original sender
could contact the servers for each subgroup either using a unicast or a multicast, depending
on the number of subgroups that it would be worth creating. It is implied that the number
and size of these subgroups will vary depending on physical location of the hosts, number
of hosts on one side of a router and so on.

Formation of subgroups within the multicast group involves that all members of the
group must have some way of knowing about their physical location with respect to each
other, as was needed in the previous scheme of each host contacting the closer neighbor.
The algorithm to create the subgroups has to be very flexible to allow, for instance, that
the main sender of a subgroup can leave the multicast group if it so desires.

The path of communication between the servers of the subgroups and the surrounding
clients is shortened with respect to a big multicast group with one central distribution
machine. Given the path is now shorter, the probability of error in a multicast frame can
be lowered, and thus we reduce the number of NACKSs generated as well. The main server
of the group could communicate with each server of the subgroups through TCP to ensure
that this first communication is established without errors. The server in each sub-group

then might use multicast to broadcast the frame to all clients under its umbrella.

11

O Router
D Host

--= Subgroup Communication

----= Communication with Main Server

Figure 2.2: Multicast Subgroups

2.4 Keeping track of group membership

In order to establish a reliability mechanism based on acknowledgment messages, it is
necessary to specify a system to maintain an up to date record of members currently in the
group.

We will explore means to do this by using a data structure that is continuously shared
by all members in the group. This way every member can make their presence clear to the
group. In the same way, the rest of the group can know if a given host is still a member of
the group or not. The main advantage is that this mechanism is practically de-centralized.
There is still a need for a main server of the group, but the group does not depend on it for

operation to a critical extent. This is how it works:

1. There is a table called the “membership table”, which contains a list of all the members
currently in the group. Along with each entry there is a counter for each host, which
contains a time-to-live (TTL) value. This table is generated at the main server. The
server passes it to the next host (member of the group) in the table. This one, in turn
passes it to the next host, and so on. The table eventually reaches the server again,

when it has been passed through each of the members of the group.

When a host receives the table, it decrements the TTL of all the other hosts, and
updates its own TTL to the initial value. Then it passes the table to the next host

12

in the list. A host who’s TTL in the table has reached zero will be dropped (deleted)
from the membership table by the next host that discovers that the TTL value was
zero. A host that is in the group will be continuously updating its TTL value in the
table. This is the proposed mechanism to keep all hosts informed near-simultaneously

about the membership of the group.

The operation of this method is illustrated in figure 2.3. Figure 2.3.1 shows that
host “A” currently has the membership table after the table was initialized with the
default value of 9 for all hosts. Host “A” has decremented the count for all other hosts
and kept its own count at 9. In Figure 2.3.2 the table has been received by member
“B”, who has updated its own count to the default value and it has decremented the
count for the other members. The same process takes place in the next two steps.
In 2.3.5, however, the table has completed a cycle around the group membership and
has returned to host “A”. It can be seen that host “A” has updated its own count

once again, and it has decremented the counts of the other group members.

. When a new host wants to join the group, it sends a message to the main server to
request membership in the group. The server then adds this host to the membership
table, and sends a new table to the next host in the list. When the server receives
the old table again, it will discard it, by looking at a table sequence number that
identifies which table revision is the current one. The server host is the only one that

can destroy a table and create a new one.

. If a host dies, it will be first noticed by the host that precedes it in the membership
table (host A). When attempting to connect to the (dead) host, host A will give up if
the connection attempt results in error. It will then pass the table on to the following
host in the table (the one after the dead host). If the host that was not responding
was in fact down, it will eventually be dropped from membership when its TTL value
reaches zero. If the connection did not take place the first time because of some
transient error, this host will have a chance to increment its TTL again the next time

it receives the membership table.

. In the event that a host wants to leave the group, it simply has to wait until it gets
the membership table. It can then delete itself from the table and pass the table to

the next member.

2
2 &)
e
A| 6
B| 7
4 Dl 9
2 o=
Al 8
B| 9
C| 6
D| 7
o
5

Figure 2.3: The updating of member tables

14

5. As soon as a host receives the membership table, it updates its own table with the
new information, so as to know how many acknowledgments to expect from the other

members when it sends a multicast.

6. The membership table can contain other information about each host. For instance,
a valuable piece of information to know would be who within the group is willing to
become a server for the group, in case the original server dies for some reason. This
could be in the form of a flag next to each entry in the table indicating that a host
is willing to become a server of the group. If the host that is supposed to pass the
membership table back to the original server finds that the server does not respond,
this host will look in the table for a machine that is willing to become a server and

send it to that one.

7. It is the job of the group server to send the membership table around the group peri-
odically. A period of 25 seconds could be appropriate to discover dead hosts in many
DBMS applications. The server generates a new membership table when a new host
joins the group, so there is no delay in communicating the presence of a new member
to the whole group. The periodicity of the transmission of this membership table
makes it a sort of heartbeat signal, similar to that found in other reliable multicast

protocols.

8. The protocol used to pass the table on to the next host could be TCP, since it is a
one-to-one communication. By using TCP we also make sure that the table is being

passed to the next host, and we can detect if the next host is down or not responding.

2.5 Retransmission Request

If the multicast group spans large distances and a delivery error occurs, the host that
needs a retransmission needs to request the retransmission from the sender of the missing
frame. This sender may be relatively far away from the receiving host. The time it would
take to send the request and the new message back and forth over such long distance,
perhaps through many routers, may be too long to be practical for a given application.
Another problem this imposes is that, in the case of a multicast retransmission, the new
transmission would be seen by all members of the group, even though this is not necessary.

In a more efficient design, we will try to avoid these inconveniences.

15

One solution is to request the retransmission from another host, different than the
original sender. Since all members of the group are receiving the same multicast, any of
them has a copy of the message that we are missing. This problem brings the issue of how
to know which hosts are closer to us.

A possible solution to this problem is to maintain a look-up table in each host with the
distance to all other hosts. The distance might be stored in units of time (a round trip time
(RTT) measure) or in router hop counts.

To gather this information, each host needs to send a message to each of the other hosts
in the group. This is a special message that will ask the other host to send another message
back. This way we can compute the round trip time to that host. A table is built with
an entry for each member in the group. This needs to be done only once, at the time
when a host joins the group. When a host joins the group it will send this special message
requesting another message of the same type back. When the other hosts in the group
receive this RT'T-measurement request they know that there is a new host in the group and
they can send the same kind of request to the new host, by piggy-backing it in the reply
they send to the new host. The new host then replies back to all those other hosts. Now
all hosts have a table that lists the distance to each other. This distance table is updated
every time a host receives a copy of the membership table. If a member has dropped from
the group, it can now be erased from the distance table. If for some reason a new host did
not request distance information from us, and we receive the membership table and see a
new host, we can add it to our distance list and request the distance information from it.

Figure 2.4 shows the three steps of this process. In Step 1, hosts “A” and “B” do not
know yet about host “C”. For this reason, their tables do not include “C”. Both “A” and
“B” have previous knowledge about the RTT with respect to each other. In Step 2, hosts
“A” and “B” have sent their responses to the RT'T request by “C”, and therefore “C” can
compute the RTT for the two existing members of the group, and put the values in its table.
After Step 3, both “A” and “B” receive the response to their RTT requests, and complete
their membership tables with the RT'T to host “C”.

This table can then be used to find the host closer to us who is also willing to be a
server. This information was stated in the membership table. When we receive our copy
of this table, we can look for potential servers in the group and copy that information in
our distance table. The distance table could then be reduced in size to accommodate only

entries for hosts that can work as servers of the group.

Step 1.

Step 2:

Step 3.

New Host C

Membership

A ?
B ?
C

Membership

>]l

A RTTca
B RTTCB

RTT Requests (from C)

—>

RTT Responses (A,B) and

RTT Requests (A,B)

TR

RTT Response (C)

—>

A [RTTgpa

C RTTBC

Figure 2.4: Computation of Round Trip Times (RTT)

16

17

If the retransmission request is performed using multicast, we can limit the time to live
(TTL) parameter of the IP frame, so that it does not reach beyond the server with which we
are trying to communicate. For this reason, it would be a good choice to store the distance
information as a hop count rather than a measure in time. The server will then use the
same TTL to multicast the retransmitted frame. This way it will not reach all the hosts in

the group, thus reducing the number of acknowledgments that are generated.

2.6 Other Issues

There are other considerations to take into account when designing a reliable multicast
system. Some of the following features can be found on the transport control protocol

(TCP), and would be necessary to produce an efficient multicast transport protocol.

e How to implement a sliding window algorithm in a multicast environment and how

big it should be.
e Whether or not to implement flow control, and how.

e Investigate potential applications to determine speed requirements.

2.7 Previous Work on Reliable Multicast

While there are some reliable multicast implementations dating back to 1984, there has
been a lot of activity in this field in the past few years. The impressive growth of the internet
and the new intranets have opened the way for applications that can greatly benefit from
multicast.

An overview of some significant works about multicast is presented in this section.

2.8 RMTP: A Reliable Multicast Transport Protocol

RMTP provides sequenced, lossless delivery of bulk data from one sender to many
receivers [10]. The ACK-implosion problem is avoided using a hierarchical structure that
divides the receivers in subgroups. A designated receiver in each group is responsible of
retransmitting lost packets within that subgroup. RMTP builds on top of a best-effort
network layer like IP.

18

Assumptions in RMTP

This protocol focuses on providing reliability, scalability and heterogeneity. What is
meant by reliability is that all receivers receive an exact copy of the file transmitted by
the sender. Reliability is achieved by periodic transmission of status by the receivers, and
selective-repeat retransmission. That is, retransmissions are sent only to those hosts that
missed a certain packet.

In case of network partition, RMTP does not provide reliability, but it notifies the ap-
plication about the fault. A host that leaves the multicast group is not guaranteed reliable
delivery either. It is assumed that there is a Session Manager to handle the group mem-
bership. The responsibility of ensuring lossless data reception is placed on each individual
receiver.

A windowed flow control with congestion avoidance is used to avoid overloading slow
receivers. The data rate is one of the parameters assumed to be controlled by the Session

Manager .

Reliability Mechanism in RMTP

Certain members of the multicast group called ACK Processors (AP) are responsible
for retransmitting lost packets as a multicast or a unicast, depending on the number of
receivers that lost the packet. There are several APs in the group. Each receiver reports
lost packets to its corresponding AP. This way, the multicast group is divided in subgroups
to avoid the ACK implosion problem.

The hosts that act as AP are selected ahead of time, presumably by the Session Manager.
If a host acting as an AP leaves the group or gets disconnected from the group for any reason,
RMTP provides mechanisms for the receivers to contact another AP in order to obtain
their retransmissions. However, APs cannot be chosen dynamically if the membership of
the group changes.

Members can join and leave the group and still receive data reliably.

2.9 Reliable Multicast Framework

This paper describes a protocol called Scalable Reliable Multicast (SRM), a reliable

multicast framework for application framing and light-weight sessions. The authors argue

19

that multicast applications have different requirements in the type of reliability needed,
and for this reason the design of a reliable protocol should not follow the “one-size-fits-all”
paradigm [6].

The reliable protocol described here is tested with a network conferencing tool created by
the authors, called “wb” (whiteboard). It is a shared whiteboard where all the participants
can write and read. This is a many-to-many kind of multicast application.

When new data is generated by the whiteboard, it is multicast to the group. Each
member is individually responsible for detecting errors in the reception, and requesting
retransmission. The detection of losses is done by inspecting the sequence number. However,
the last packet of a transmission may have been lost and the receivers do not know that
they should have received this last packet. For this reason, receivers advertise periodically
the highest sequence number they have received so far from every other member of the
group. These session messages include time-stamps that are used to determine the distance
(in time) from each other member itself.

The distance calculation is used to estimate a random amount of time to wait before a
member sends a request for retransmission. This way, if two receivers missed a packet, but
one of them is closer to the source of the packet, the closer one will request retransmission
before the second one does. Thanks to this mechanism, the two hosts that missed the packet
do not request retransmission. Only one of them does, but since the retransmission is done
as a multicast, every group member benefits from the retransmission. This prevents the
request-implosion problem.

There is no mention of subgroups within the multicast group. In this protocol every
member is a sender, and therefore every member has to ensure reliability from all possible
sources of information. A network partition is not different from a member leaving the
multicast group. There is no need to keep track of the membership of the group since the

reliability is receiver-based rather than sender-based.

2.10 Single Connection Emulation (SCE)

The authors in [20] propose to introduce a new layer in the OSI model, called the SCE
layer. This layer implements a protocol called reliable multicast transport service (RMTS).
This is another one-to-many protocol. One of the assumptions is that there is a single

source and many receivers.

20

Under this protocol it is possible to drop out of a multicast connection, but not join
an existing one. When a host drops from the multicast group it stops sending ACKs back.
After a certain period of time without receiving ACKs, the sender considers this receiver to
be out of the group.

The SCE layer acts between the transport and network layers. Connections made from
the transport layer pass by the SCE layer, which passes the connection request to the
network layer. The network layer uses a multicast protocol (IP Multicast, for instance) to
multicast the data. The SCE then gathers the ACKs received from all the members in the
group. When it has received all the expected ACKs, it send a single ACK to the transport
layer, simulating a point to point connection from the point of view of the transport layer.

Instead of modifying existing protocols, this paper proposes a new layer that fits in with
existing layers, by using the existing interface to the other layers, and adding functionality

in this new layer.

2.11 Reliable Multicast Protocol. (RMP)

This protocol provides many-to-many multicast communication. Different levels of qual-
ity of service can be specified. All members play the same role in the communication. RMP
uses a combination of positive and negative ACKs. In RMP, the group is organized as a
ring. The ACKs are passed as a token between all the members, thus distributing the load
of processing the ACKs.

Each member of the group that is sending information to the rest of the group must
keep a cache of the data in case it needs to be retransmitted. In a reliable communications
protocol a message is said to be stable when the sender of the packet knows that all targeted
destinations have received the packet. A stable packet no longer needs to be held for

retransmission. RMP notifies the senders when their packets have become stable.

2.12 The IP Multicast Initiative

Lastly, it is worth mentioning the IP Multicast Initiative [16], a join effort by a large
group of companies to promote the use and demand for IP multicast. This organization
provides white papers and technical reports about IP multicast through their web site, and

sponsor conferences and events relating to IP multicast. This organization is a proof that

the industry interest in multicast communication is evident.

21

22

Chapter 3

IGOR

The Interactive-Group Object-Replication system [11, 12] is a framework for achieving
fault tolerance in a low latency system by introducing redundancy in the object imple-
mentation that maintains the current state of the system. This mechanism provides fault
tolerance against host crashes or network partitions. In the event that one of the copies
of the database object (also called replicas) crashes or cannot be reached, the rest of the
replicas can still provide the service independently.

A client trying to retrieve or update the state in the database object can do so without
knowing about the replication of the database. It is not necessary for a client application
to contact one specific replica. From the point of view of a client, there is simply an
interface from which to obtain or modify the state of the database object. The replication
mechanism is in charge of ensuring that all the replicas of the object get updated with the
new information when the client modifies the state in one of them.

Another flexibility in the design of IGOR is that the number of replicas can be vari-
able. More can be added to the existing group of objects dynamically, without a need to
reconfigure the system. Upon joining the group, a new replica receives a copy of the current
state and it is then ready to take requests from clients. Similarly, replicas can leave the
group without disruption of service.

In order to add platform independence to the design, IGOR is based on CORBA.
CORBA is a middleware service that allows for the inter-operation of software running
on different operating systems and different hardware platforms. An object running on one
machine can invoke methods in another object that may be running on another machine.

CORBA handles the conversion of data marshaling among differing architectures.

23

3.1 IGOR Implementation

IGOR is intended to be a layer that can be added to an existing application. By simply
running several copies of the application, the fault tolerance is achieved without further
intervention on the part of the administrator of the application.

In the IGOR system there is an additional process, called the registry, that keeps track
of the number of replicas that exist. Another task of the registry is to inform all the replicas
of the new membership of the group when new replicas join, or when a replica has failed.

When a client connects to one of the replicas to change the state, the replica first
propagates the new state, using a two phase commit protocol. Once all the replicas are
synchronized, the one that received the request from the client replies back to this one.
The distribution of the information inside the group has to be done quickly in order to
have a responsive system. At the same time, the solution has to scale well given that an

application may require a large number of replicas.

Figure 3.1: IGOR Binary Tree

For these reasons, it would not be a good solution for the recipient of a client request
to simply contact every replica individually and pass the new information on to them. The
approach taken in IGOR uses a binary tree to structure the replicas in the group. When
a new replica is created and joins the group, it contacts the registry to inform it of its
presence. The registry adds this new replica in a binary tree of replicas, and it tells the
newly added replica of its position within the binary tree. In the binary tree in figure
3.1, a new replica could get added as the left child of replica number 4, for instance. The

reason for the binary tree is that if the message is propagated from the replica at the root

24

of the tree by way of unicast transmissions from each node on the tree to its immediate
descendants, the time required to get the message to all the replicas is much less. Each
replica only needs to propagate the message to its two children, who will in turn propagate
it to their two children, and so on. This implies that the propagation of the message can
be done in parallel from the two children of the root of the tree, and the same will happen
for the children of every node in the tree.

The time required to propagate the new message (from the root of the tree) to a group
of N replicas is (Tynsq)loga(N), where (T,54) is the time required to propagate one message
from one replica object to another. When compared to the total time necessary if one
replica has to contact all others ((Tinsq)N), there is a clear advantage in using the binary

tree approach.

3.2 Two Phase Commit Protocol

To ensure the consistency of the data across all the replicas in the group, a protocol
called the Two Phase Commit Protocol [13] is employed. It is used to make all the replicas
change their state consistently, and to ensure that none of the replicas misses the new data.
If the protocol fails, indicating that there is not consistency among all the members of the
group, the state change operation is aborted. The replica that received the client request

contacts the client to tell it that the operation was not completed.

Phase 1 Phase 2
Sender

ANV

Receivers) .
SetState State Commit Commit
Response Response

Figure 3.2: Two Phase Commit Protocol

The operation of this protocol is summarized in figure 3.2. In the first phase, the replica
that initiates the propagation of the data sends the new data to all the replicas (SetState
call). When the other replicas receive this message, they store this new data in a temporary

location, without replacing the old data. At this point they reply to the sender, with the

25

SetState Response message. Upon collecting responses from all the replicas in the group,
the first phase of the protocol is finished. The second phase begins when the original sender
sends a Commit message to the whole group. When the other replicas receive this message,
they are sure that every other replica in the group has received the new data, and can now
change their old data to the new one. They then issue the Commit Response message.
When the original sender has received all the responses from all the replicas in the group, it
is in a position to reply back to the client and confirm that the new data has been stored.
From the client’s point of view, there is no knowledge about the replication of the data. It
only needs to know whether the state was saved correctly or not.

Failures can occur during the first phase, if one of the replicas did not receive the
SetState message, or if its SetState Response message was not received by the initiator of
the protocol. If the first phase fails for any of these reasons, the original sender will issue
a Rollback message to abort the operation. Since all the replicas do not change the state
immediately, they can discard the new data and keep the old one when they receive this
message.

This is the normal operation of the two phase commit protocol between one sender and
one or more receivers. In our case we are using a binary tree to distribute the messages
more efficiently, and therefore the message is not arriving to all the replicas at the same
time. Furthermore, a node in the tree cannot send a reply message directly to the sender
of the original message, but it has to respond to its neighboring nodes first. Therefore,
the two phase commit protocol requires special implementation when using the binary tree
structure.

Let us assume that the replica that receives the client request to change the data is
at the root of the tree. This node will perform the SetState call on its two children. In
turn, these replicas perform the same call on their children, and so on. Next, a replica does
not reply back up to its parent until it has received the SetState Response messages from
both of its children, if it has any. Therefore, the replicas at the lowest level of the tree will
initiate the response because they do not have any children. When their parents receive
these responses, they can then reply to their parents, and so on, until the responses reach
the root of the tree. This concludes the first phase of the protocol. The second phase works
analogously.

IGOR presents an easily scalable solution for distributing a common message to a set of

replicas. The fault tolerance is achieved by object replication and by blending the two phase

26

commit protocol into the binary tree structure. As mentioned earlier, part of the reliability
in IGOR is due to the use of CORBA as the communication system between replicas. The
CORBA implementation used contributes some of the fault tolerant features of IGOR. For
instance, it is possible to have an object automatically be restarted if it suffers a crash. If
an object A attempts to communicate to another object B which is not running anymore,

CORBA lets A know that object B is not available. [23, 22]

3.3 Enhancements to IGOR

The central problem that IGOR tries to address is the addition of fault tolerance. This
is accomplished through replication of the database object. However, this translates into an
implementation problem for fast communication among replicas. IGOR solves this problem
by structuring the replicas in a binary tree.

There is an alternative to the binary tree solution: to use multicast for distributing the
messages, as noted in [11]. By switching from a unicast system to a multicasting one, the
need for the binary tree disappears. If the message indicating the update of the information
is sent by multicast, all of the replicas will receive it literally at the same time, except when
delays are introduced by routers. The binary tree was used to reduce from N to logsIN
the time to propagate the message to a group of N replicas. With multicast, the reduction
factor a constant K instead.

While multicast can be used to distribute messages to the group, it may not be ap-
propriate for the responses from the group back to the sender. If all the replicas were to
respond with a multicast, they would all do it at the same time, since they all receive the
first message at the same time. This implies that the original sender, who is collecting the
responses from all other replicas, would have to process N — 1 incoming messages. This
solution does not scale.

Therefore, it is more appropriate to use the binary tree structure to collect the responses
as they progress up the tree. With this approach, one replica has to process at most two
responses, from its two children. This will yield a total time to collect all responses of
(Timsg)logaN. The use of multicast for this task would require a time of (T5,s5) N at the
replica receiving the responses to process all of them. In addition to this, the implosion
of responses could cause buffer overflows and collisions on the network, thus making the

process even slower.

27

In summary, it is feasible to implement the multicast to distribute messages, in both
the SetState and Commit calls. For the corresponding responses from the group of replicas

(SetState Response and Commit Response), the tree can be used to collect the responses.

3.4 Multicast for Fault Tolerance

As described in section 2.1, multicast does not provide a reliable service like TCP.
Consequently, the choice of multicast for a fault tolerant application may seem like a wrong
one. One of the reliable multicast protocols described in section 2.7 might be used as
the replacement for unicast (TCP). It would ensure the same reliability as TCP, but the
advantage of plain IP multicast would be lessened. All the reliable multicast protocols must
provide the reliability at some cost over simple multicast. Even so, reliable multicast would
be a more efficient and scalable solution than unicast.

On the other hand, the need for reliable multicast in the IGOR framework may be
unjustified. IGOR bases its fault tolerance and reliability both on CORBA (using unicast
TCP) and on the two phase commit protocol. The two phase commit protocol comes into
play when there has been a failure in the TCP delivery mechanism. In the case that the
message distribution mechanism is multicast, the two phase commit protocol is still in place

to handle failures in the transport protocol.

3.5 MIGOR

MIGOR is the name given to the Multicast-enabled version of IGOR. The architecture
of MIGOR is very similar to IGOR.

The application object inherits the fault tolerant characteristics from a MIGOR object.
The MIGOR object keeps knowledge of the binary tree structure, and it also handles the
transaction processing operations defined by the two phase commit protocol. MIGOR
in turn inherits the multicast capability from another class called Multicast, which is
derived from McastModule. This last one implements the actual operations for joining and
leaving multicast groups, and sending and receiving data through a multicast port. The
class Multicast is a CORBA wrapper around the McastModule class to provide a CORBA
interface for the use of multicast. Presently this class is quite simple and does not implement

the CORBA interface yet. However, the addition of the CORBA interface would be placed

28

on this class, and not on McastModule. This way it is possible to modify the implementation
of the multicast functionality without affecting the rest of the modules, since the interface

would remain the same.

29

Chapter 4

Multicast IGOR (MIGOR)

The focus of this thesis was to design, implement and test a version of IGOR that uses

multicast in order to compare its performance with the original work developed in [11].

4.1 Choice of ORB

In [11], the Visigenic (now Borland) ORB (Object Request Broker) called Visibroker was
used for the insertion of CORBA into IGOR. It is a CORBA 2.0 compliant ORB, with some
additional features. One of these is the naming service, which is not part of the CORBA
2.0 specification but Visibroker includes a proprietary implementation of a naming service.
A naming service provides the ability to find an active object implementation in a network
given an identifier. It is possible to specify only the type of object it is (i.e., its interface
name, as specified by the IDL) or the interface name along with the name of a specific
object. The naming service is used when an object A (of interface type interfaceA, say)
needs to obtain a reference to another object B (with type interfaceB). The location of
the object B (the computer and TCP port it is running on) is unknown by object A, and
this is precisely the problem that the naming service solves. The naming service provides
A with the information it needs to contact B. In order to do this, A has to do a bind
operation specifying the interface type of the object of which it wants to get a reference.
It can optionally indicate a particular name. The naming service uses this name to locate
a particular object, in the case that there are several active implementation objects of the
same type of interface.

IGOR makes use of it for allowing the new replicas to automatically find the registry

30

service on the network without user interaction.
By using the same ORB in MIGOR as well, its performance can be compared to the

IGOR system more accurately.

4.2 MIGOR Overview

The MIGOR system consists of three main entities: a Registry Service, a client and
one or more servers. The servers are the different replicas of a single database object.
The registry is in charge in charge of keeping track of the number of replicas present. It
also provides the replica objects knowledge about each other. Finally, the client is the
application that retrieves data (current state) from the servers, or makes changes to the

state.

4.3 Registration of Replicas

When a new replica is started, its first task is to obtain knowledge about other replicas
that may exist already. Rather than sending a broadcast-type of query to find other replicas
on the network, it contacts a special server, called the registry. Thanks to the naming service
in Visibroker, it is possible to find a CORBA object on the network given the name of its
interface. This interface refers to the IDL-defined interface.

The registry’s IDL interface name is RegInterface. Through a CORBA operation called
bind, the new replica obtains a pointer to the replica object. That is, it gathers information
about the host where the registry is running and how to contact it. By performing a call on
a method that the registry provides (called AddReplica), the replica registers itself with the
registry object. This is done by passing a reference to itself as a parameter In the method
call.

While the registry represents a single point of failure in the IGOR system, it can also be
replicated for fault tolerance. The IGOR system uses a feature of CORBA to enhance the
availability of the registry service. CORBA automatically can restart the registry object if
it crashes. In the original IGOR system in [11], the registry maintains a database of the
replica group membership in permanent storage, to recover the information in case of a
crash.

Figure 4.1 illustrates the process of obtaining a reference to the registry object. The

31

Naming Service

N.S. returns
Registry

Request for reference

reference to
to egistry

Cal to AddReplica

New Replicaj ~~ -~~~ ~~~°7° @ ““““ = Registry
ORB Ly | "o s e | oRg Ly

Figure 4.1: Action of the Naming Service

program only needs to make a call to bind to the registry. Since the replica is a CORBA
object, it has an ORB layer that knows how to find the naming service. It then contacts
the naming service, requesting a reference to the registry, by providing its interface name,
RegInterface (indicated by the arrow labeled 1). The naming service uses the interface
name to locate the registry, and responds to the new replica providing the reference to the
registry object (arrow 2). Note that these two operations take place as a result of the bind
operation. The interaction with the naming service is hidden from the user.

On the other hand, the operations indicated by arrows 3 and 4 in figure 4.1 are part
of the operation of MIGOR. After receiving the reference to the registry, the new replica
passes a reference to itself to the registry, for the registry to include it in the binary tree.

Upon receiving the reference of the new replica, the registry adds the new replica to
the binary tree. Since the registry saves references to all the replicas, it can use them to
communicate with the replicas as well. For instance, suppose the registry needs to tell
the newly added replica about its neighbor replicas in the tree. The registry calls a set of
methods on the replica to pass it references to the replica’s parent and children. Likewise,
if this replica attached itself to a certain branch in the tree, this means that one of the
existing replicas now has a new child. This replica is also contacted by the registry to let it
know about the new child.

Figure 4.2 illustrates the process of adding the first replica in the tree and two other
replicas afterwards. Initially, the tree is empty as shown in the figure. The registry object

receives a request from a new replica “A” to be registered. Since the tree is empty, the

32

registry places the reference to replica “A” at the root of the tree. Next, a new replica “B”
requests registration as well. The registry object places the new replica’s reference at the
left child of the root node. Therefore, it needs to let the root of the tree know about its new
child, and it also needs to let the new replica know which replica is its parent. The third
replica to join the group (“C”), presents the same request to the registry. This replica gets
placed as the right child of the root node. It receives information about its parent from the
registry, and its parent (replica “A”) receives also an update from the registry to notify it
of its new right child.

During the operation of MIGOR, new replicas (servers) can join the tree at any time.
The binary tree can also be rebuilt when a replica leaves the group, or when it is not
responsive anymore. This feature is not a part of MIGOR currently, but it is a necessary

feature to insure fault tolerance. The IGOR implementation in [11] includes this capability.

4.4 Client contacting server

A client application may contact any of the replicas of the server to retrieve the data of
the current state. It is possible to contact a specified replica in particular, or a random one.
The client application can specify a name along with the interface name when performing
the bind operation, and thus bind to a specific replica. The other possibility is to indicate
only the interface name, and let the ORB subsystem (the naming service) return a reference
to an implementation of that interface. The client in this case has no knowledge about which
replica it is communicating with. This is the usually desired mode of operation, given that
the server replication process ought to be transparent to the client application.

Therefore, by simply contacting a particular type of interface, the client always sees in
effect the same interface. The same data can be retrieved from the server in two consecutive
queries, even if the client contacts different copies of the server. Figure 4.3 depicts the fact
that the group of replicas presents a single interface to the client, and it looks like a single
server to the client.

If the replica that the client has contacted crashes during a transaction, the client will
simply see a failure and will try the transaction again. This time it will get attached to a

different replica, and it can try the transaction once again.

1)

2)

3)

4)

N e
o —
2 \
\
\
<

Registry

:

T Registrarion Request

(I

Registry

—_—

Registrarion Request

Set Left Child Registry

(I

Set Parent

Registrarion Request

Set Right Child

. # Set Parent

Registry

(I

Figure 4.2: Adding Replicas to the Tree

33

34

o) - [i

Replica Group

Figure 4.3: Client contacting the Server

4.5 Server State Update

There is no communication among the replicas when the client tries to simply retrieve
information about the current state. However, when the client is performing an update on
the data, all the replicas need to be updated so as to provide a homogeneous response to
other client requests.

In this case the client contacts an individual replica as well. This replica is then re-
sponsible for propagation of the new data to the other replicas in the group. After all the
replicas have received the new information, the replica that received the client request can
reply to the client indicating that the operation was completed successfully. It is important
to emphasize once more that the client has no knowledge about the group of replicas. To
the client, the update transaction seems to take place between itself and the server it has
contacted.

The method used to carry out the state change among the replicas represents the novel
contribution of this thesis. IGOR [11] uses a two phase commit protocol [13], along with a
binary tree arrangement to distribute messages to all replicas efficiently. This is explained
in detail in section 3.2. MIGOR introduces a modification in the way messages are sent to
the group. In the two phase commit protocol, the replica that receives the client request to
change the state sends one message to the other replicas, collects responses from all, sends
another message and collects responses once again.

MIGOR uses multicast to send messages to all the replicas. A representation of the

35

multicasting of messages to the group can be seen in figure 4.4. In this picture, replica “A”
was the one to receive the client’s request. It is therefore the one that is responsible for
distribution of the information to the rest of the replicas, through a multicast. The curves
in figure 4.4 indicate that there is no specific path that the messages follow from replica “A”

to each of the other replicas. Instead, the message reaches all the replicas simultaneously.

ReplicaA
= Multicast
ReplicaB : ReplicaC
2\ o 1 .)

;{ReplkicaD J[bl%e‘p‘licaE‘ J [Réblicravllzy J [‘%%pli(?aG]

v

Figure 4.4: Multicast of a message

A multicast transmission is used both for the SetState and Commit messages, since
both of them originate in one replica and are sent to all the others. On the other hand, the
collection of responses from the group of replicas is done using the binary tree arrangement
as explained in section 3.3. This method is more efficient than having the replicas multicast
the responses. That is, by using the binary tree, replicas “D” and “G” in figure 4.5 can
respond to their parents (“B” and “C” respectively) simultaneously. In addition to this,
“B” and “C” may also be running on separate CPUs, and do not contend with each other
for the CPU. This means that the responses are collected in parallel in both branches of
the main tree. In addition to this, the every replica has to handle a maximum of three
operations: two responses from its children, and a response to its parent. On the other
hand, if one replica (“A” for instance) had to collect responses from all other replicas, it
would have to handle all the responses arriving at the same time. Replica “A” would have
to handle a large load of responses, and the solution would not scale as larger groups of
replicas are used.

Figure 4.6 shows the state machine that governs the sequence of events that every replica

goes through during the reception of a new message. The square boxes indicate the states

36

Replica A
PN
PN PN

[ReplicaDJ [ReplicaE J[ReplicaF J [ReplicaGJ

Figure 4.5: Collection of Responses

in which the replica is waiting for a multicast, at the beginning of both phases in the two
phase commit protocol. The circles indicate the transition states between the other two. In
the event that the transaction fails while the replica is in one of the three waiting states,
a Rollback message will be received. The replica then aborts the operation, and returns to
wait for a new SetState message.

An application that uses multicast will inherit the unreliability characteristic of multi-
cast. However, in the case of MIGOR, the main source of reliable service is not the transport
layer protocol used, but the two phase commit protocol that is implemented at the applica-
tion layer level. In the implementation of the original IGOR the two phase commit protocol
was also used to ensure reliable delivery of information in case of a failure in the IIOP
communication mechanism. IIOP is essentially TCP communication.

In MIGOR, multicast is used as a replacement for TCP. While this change may mean
that failures can happen at the network layer, these will be dealt with by the two phase
commit protocol, yielding the same reliability level that the IGOR implementation provided.

Entry point on

initialization ﬁ

Respond to
Paren/

Ready to
Respond to
Parent

Responses

Recaived Rollback

Wait for
Response from
Children

Commit\
Multicast

Received

Waiting
for SetState

Message

Rollback

Rollback

Waiting for

StateCommit

Message

SetState
Multicast
Received

Wait for
Response from
Children

Responses
Received

Ready to
Respond to
Parent

Reply to Parent

Figure 4.6: IGOR State Machine

37

38

Chapter 5

Multicast Network Programming

Programming a multicast application involves writing code at the network layer level.
Since multicast works with UDP sockets, the programming of client/server applications that

use multicast is very similar to the use of UDP unicast.

5.1 Sender Code

The sender of the multicast only needs to send information to a specific IP address,
which is chosen to be a multicast IP address from the range 224.0.0.0 to 239.255.255.255.
No other special set up is required from the server (the sender). The following is a summary
of the steps necessary to set up a multicast sender using the C language’s API (Application

Programming Interface).

1. Open a UDP socket. sendSock is an int data type used to store the socket descriptor.
The AF_INET tag specifies that this socket will be used for IP protocol communication,
and SOCK_DGRAM indicates that this socket is going to be used in UDP mode [17].

sendSock = socket (AF_INET, SOCK_DGRAM, 0);

2. Set up the destination address; i.e., the address of the multicast group. A sockaddr_in

structure is filled in with the information about the multicast group.

struct sockaddr_in multicast_address;

multicast_address.sin_family = AF_INET;

39

multicast_address.sin_addr.s_addr inet_addr (MCAST_GROUP) ;

multicast_address.sin_port htons (GROUP_PORT) ;

where the MCAST_GROUP constant denotes the IP class D address of the group to send to
and GROUP_PORT is an int constant with the local port number assigned for multicast

communication.

3. Send data to the multicast group. This function sends PACKET_SIZE bytes from the
buffer data buffer to the address specified by the structure multicast_address,
through the socket sendSock.

sendto(sendSock, data_buffer, PACKET_SIZE, O,

multicast_address, sizeof (multicast_address);

5.2 Receiver Code

The implementation of multicast in the receiver end (client) of the communication chan-
nel involves setting up the network protocol to accept IP packets destined for the multicast

address. These are the steps used to set up a multicast client.

1. Open a UDP socket to receive data:

recvSock = socket(AF_INET, SOCK_DGRAM, 0);

2. Create a sockaddr_in structure with the information about the multicast group:

struct sockaddr_in multicast_client;

multicast_client.sin_family AF_INET;
htonl (INADDR_ANY) ;

htons (GROUP_PORT) ;

multicast_client.sin_addr.s_addr

multicast_client.sin_port

where the constant INADDR_ANY indicates that messages can be received from any host.

The constant GROUP_PORT specifies the port to listen to for multicasts.

3. Bind the receiving socket with the structure that contains the multicast information:

40

bind(recvSock, (struct sockaddr *) (&multicast_client),

sizeof (multicast_client));

4. Set up a structure of type ip_mreq with the address of the multicast group that we

wish to join:

struct ip_mreq multicastReq;

inet_addr (MCAST_GROUP) ;
htonl (INADDR_ANY) ;

multicastReq.imr_multiaddr.s_addr

multicastReq.imr_interface.s_addr

where MCAST_GROUP gives the class D IP address of the multicast group to join.

5. Configure the socket to listen to multicasts:

setsockopt(recvSock, IPPROTO_IP, IP_ADD_MEMBERSHIP,

&multicastReq, sizeof (multicastReq);

A socket has several levels of options. This function call operates on the TPPROT0_IP
level, to add this socket to a multicast group (through the option IP_ADD_MEMBERSHIP)

using the multicast information included in the multicastReq structure.

The IP layer in this host will now accept packets destined to the address MCAST_GROUP,
to be used by the client application.

5.3 Multicast Encapsulation

The implementation of multicast functionality is written using C functions. To facilitate
the interaction with the other parts of IGOR, in MIGOR the multicast code is encapsulated
within a C++ class that has a set of methods to make use of the multicast. This class,
called McastModule, is explained in detail in section 6.3.1. This class provides the basic
I/O methods needed to send and receive multicast data. Another class, Multicast, intro-
duces a higher level interface. This class can also be equipped with a CORBA interface.
McastModule provides a general low level interface to multicast, while Multicast provides

the interface with specific functionality for MIGOR.

41

5.4 Multicast vs. IIOP

In this thesis all multicast communications bypass the CORBA IIOP protocol process.
The advantage that multicast provides thus comes with the added cost of having to introduce
into a fully CORBA compliant multicast class a great deal of functionality only found in
CORBA’s IIOP. The most important of these is the handling of data marshaling by the
ORB. Using multicast to bypass the IIOP channel implies that we lose the automatic
conversion of data types between different computer architectures. The current realization
of MIGOR does not implement data marshaling, and hence the use of MIGOR is restricted
to operation on a single type of platform.

It is certainly feasible to create a multicast-capable IIOP protocol that would add the ad-
vantage of multicast communication to the existing CORBA features. Such implementation
is beyond the scope of this work.

The CORBA specification for the future version 3.0 of CORBA include means for event
and message handling that may provide a more direct access to multicast, depending on

the implementation.

DAIS Multicast Event Service

The Object Software Laboratories at ICL [1] have developed a multicast event service
integrated into an ORB. The multicast facility is incorporated in the CORBA event service.
The event service is a framework to allow suppliers of messages to send messages to receivers
through an event channel. The DAIS Multicast event service extends this concept to have
multiple receivers of a single message.

DAIS uses a form of reliable multicast based on negative acknowledgements with re-
transmissions from the original sender. To avoid the NACK-implosion problem, a delay is

introduced in the receiver before sending a retransmission request.

42

Chapter 6

MIGOR Implementation

Description

Incorporating multicast into IGOR involved a new, “from the ground up” implementa-
tion of IGOR in addition to developing the multicast layer for IGOR. Hence this chapter
does not describe simply an addition to the previous IGOR implementation, but rather a

new implementation at all levels.

6.1 IGOR Evolution into MIGOR

The incorporation of multicast into IGOR introduced a few implementation issues that
led to a need for a completely new implementation of the original IGOR. The use of multicast
instead of the unicast-based CORBA remote method invocation forces a few changes in the
way fault tolerance is implemented. At the same time, an alternative method to accomplish
class inheritance was used to simplify the design and make it more extensible.

The new IGOR, in its multicast version (MIGOR), at a fundamental architectural level,
operates in the same way as the original IGOR in [11], as described in chapter 3. However,
given that the IGOR architecture is not the main focus of this work, the new IGOR im-
plementation incorporates the basic functionality, but not the rest of the functionality that
can be found in the original IGOR.

This section describes the main parts of the design in which IGOR and MIGOR differ.

43

6.1.1 Data Type Conversion

Multicast communication was intended as a replacement for the common CORBA op-
eration of invoking a method on a remote object, to effectively perform this method call
on a set of remote objects simultaneously. In CORBA, the developer needs only to invoke
a method on a local reference to the remote object, and CORBA performs the necessary
network communication to perform the method call on the actual remote object, and possi-
bly return some information. The IIOP communication system that CORBA uses is based
on the TCP protocol, which provides a one-to-one (unicast), connection-oriented reliable
service. This is the very part of CORBA that is being replaced when we are introducing
multicast.

When we paint the picture of IGOR with multicast, MIGOR has to use multicast instead
of TCP. This implies that the incorporation of multicast into IGOR must either require
changes in CORBA, or use an add-on to CORBA. The second option was chosen, as it
allows for modularity in the design of multicast services for CORBA. Such a module would
provide a CORBA-like interface for sending data through multicast, but the actual operation
of sending the data would lack the data marshaling performed by CORBA. That is, if a
multicast is to be distributed among objects that are located in differing platforms, the
interpretation of the data at the receiver end may vary from host to host. For example,
the byte ordering of two different processors would lead to erroneous data interpretation if
data is exchanged between these two processors via multicast. CORBA solves this problem
by marshaling the data into a platform-independent format that allows for transmission as
a raw stream of bytes. The ORB receiving the data has the knowledge to transform such
data into the appropriate data type for the machine on which it is running.

A solution to the problem of data conversion is the CORBA externalization service,
which is described in the CORBAservices manual, by the OMG [14]. By using this service,
it is possible to convert a CORBA object, or any CORBA data structure for that matter,
into a form that is suitable for transportation over the network, or for storage. This service
could be used in MIGOR to make the multicast module able to perform data marshaling
in the same way that a normal CORBA remote method invocation does.

The externalization service was not used in the implementation of MIGOR, however,

due to the fact that it is not available in the Visibroker ORB used.

44

6.1.2 Client Communication

MIGOR implements a simple binary tree that allows for insertion of replicas in a tree,
ordered by a label associated to each replica. The original IGOR allows also for deletion
of nodes, rebuilding of the tree in case of a replica failure, and load balancing during the
insertion of new replicas in the tree [11]. In this sense MIGOR is fairly limited, but the
performance benefits of the multicast communication can be evaluated with this basic binary
tree.

Once the tree is built, the client ought to be able to contact any of the replicas in the
group to update the current state. This implies that if the replica that receives the client
request is not at the root of the binary tree, it needs to propagate the new state both to its
children and to its parent. In the same way, it has to collect responses from all three sides.
The current implementation of MIGOR allows for the client to contact only the root of the
tree in order to gather all the responses correctly.

It is possible, however, to obtain the current state of the system from any of the replicas.

6.1.3 Object Database

IGOR has an object database that maintains information about the current membership
in the group of replicas. Should the registry service fail, it can be restarted immediately
and read the object database to obtain the list of objects currently available. Upon doing
so, it builds a new binary tree with the existing objects and the system is ready to handle
replicas leaving and joining the group.

This is another part of the larger IGOR framework that was not implemented in MIGOR.

6.2 Inheritance in CORBA and C++

One of the original goals of IGOR was to add fault tolerance to an existing application
without major modifications to the code in the application [11]. The original intention was
that the application object would inherit fault tolerance from another object, the IGOR
object. The application object would simply need to overwrite a few methods found in
IGOR. The fault tolerant transaction would be handled by the IGOR object, transparently
to the application.

Due to some implementation problems that arise in combining CORBA multiple inheri-

45

tance with C++ multiple inheritance, the actual way to incorporate IGOR into an existing
application is to create an IGOR object inside the application object. The methods that
could have been overwritten otherwise have to use another proxy method in the application
object to access the IGOR object’s method. Because of these problems, the implementation
of IGOR turned into a more complex architecture than it would have otherwise been, and
the impact on the application programmer was also larger than desired.

The approach taken in the new version of IGOR avoids those problems. A CORBA
application must be defined through an interface definition specified in Interface Definition
Language (IDL). The IDL code is used by a CORBA compiler to produce C++ code.
This code implements base classes and virtual methods from which the developer has to
derive the specific functionality for the application. Let us suppose that a new class is
to inherit from two different IDL interfaces. This means that the IDL for the new class
must inherit from the other two IDL definitions, and the C++ implementation of the new
class must also inherit from the corresponding C++ implementations. Figure 6.1 shows the
problematic inheritance tree. The IDL interface “C” inherits from IDLs “A” and “B”. All
three IDL definitions produce skeleton classes. If there are implementation objects in C++
for skeletons “A” and “B”, then the implementation for “C” could inherit from them, as

well as inheriting from its own skeleton class (“C”).

¢y f o

\ \ @ Inherits from
i

C++Impl. A C++Impl. B

> U 4>

C++Impl.C

:

L
L

i

—

i

Figure 6.1: Inheritance Problem Illustration

46

However, this cannot be done using the Visigenic Visibroker ORB. It is not a problem of
CORBA, but a problem of this particular implementation of CORBA. Visibroker generates
a particular method in the skeleton of a class, that is present in all the skeletons. Therefore,
the implementation of “C” will inherit this method via its own skeleton, and also via the
two implementations of “A” and “B”. When trying to compile this inheritance tree, the
compiler cannot determine which of the three implementations of this method to use.

In the IGOR framework, an application object may have to inherit from an IGOR
object and from other CORBA objects. This is the same situation as in figure 6.1. CORBA
provides another mechanism to enable inheritance, that can be used to bypass this problem.
This is the concept of tie classes. The C++ code generated by the IDL compiler includes a
template definition of a class called a “tie class”. It includes virtual method definitions that
must be implemented in a normal C++ class. This C++ class normally would inherit from
the skeleton class with the approach that one typically applies and was applied in IGOR.
When using tie classes, on the other hand, the inheritance is not specified in the declaration
of the C++ class implementation. Rather, a separate C++ class is created and then “tied”

together with the skeleton class, through the use of the corresponding tie class, at runtime.

McastModule
Class

CORBA
Top Level Class

i

MIGOR MIGORIface
Application Applicationlface

C++ Implementation IDL-Generated
(User) C++ Code

Figure 6.2: Inheritance Tree

This can be seen in figure 6.2. The white boxes denote the pure C++ implementation
of the functionality that the program is to have. The dark boxes denote the C++ code

resulting from the compilation of the corresponding IDL files. The upward white arrows

47

indicate inheritance. The box from which the arrow originates inherits from the box pointed
to by the arrow.

The inheritance structure on the interface definition side must be paralleled by the
same inheritance relations between the implementation objects. These objects are not
limited to inheriting from the skeleton classes. Figure 6.2 shows that the classes MIGOR and
McastModule are not tied to skeleton classes. This is because these classes do not have a
interface definition in IDL. The class MIGOR does not inherit from McastModule, but rather

contains an instance of that class.

6.2.1 TIE Class Approach Example

A comparison of the normal way of CORBA server programming and the tie class
approach is presented in this section. The first section of code contains the definition of all

the IDL interfaces involved. These definitions are the same for both approaches.

IDL Objects Definitions [COMMON] Objects.idl
1: interface aclass {
2: void method_a();
3: };
4:
5: interface bclass {
6: void method_b();
7: ks
8:
9: interface cclass : aclass, bclass {
10: void method_c();
11: cclass test();
12: };

The interface definitions for classes aclass and bclass are at lines 1 and 5. Each
interface defines only one method. The interface cclass inherits from the other two (line

9). The syntax of IDL is fairly similar to C++.

Usual Inheritance Approach

In the next section of code one can find the C+-+ header with the definitions of the

implementation of the interfaces first defined in the IDL:

48

C++ Objects Definitions [NON-TIE] Objects.h

1: // *x
: // ** Class AClass

2
3 // xx

4: class AClass : public _sk_aclass {
5: long _class_data;

6: public:

7 AClass(void);

8: AClass(int class_data);

9: virtual ~“AClass(void);

10: virtual void method_a(void);
11: };

12:

13: // *x

14: // ** Class BClass

15: // *x

16: class BClass : public _sk_bclass {
17: long _class_data;

18: public:

19: BClass(void);

20: BClass(int class_data);

21: virtual “BClass(void);

22: virtual void method_b(void);

23: };

24 :

25: // *xx*

26: // *x Class CClass
27: [/ *x*

28: class CClass : public AClass, public BClass {
29: long _class_data;

30: public:

31: CClass(void);

32: CClass(int class_data);

33: virtual ~“CClass(void);

34: virtual void method_c(void);

35: 3}

In the file Objects.h we can find the definitions for classes AClass and BClass at lines 4
and 16, respectively. Note that these two classes inherit from _sk_aclass and _sk _bclass,
which are the skeleton classes generated by the IDL compiler from the IDL code. As seen
at line 28, the class CClass inherits both from AClass and BClass.

The next step is to implement the methods in C++. The code for doing so is the same
for both the non-tie class and the tie class approaches. All the method implementations

can be found in this code listing.

C++ Implementations [COMMON]

49

Objects.C

0 ~NO O WN -

#include <Objects.h>

// xx
// *x METHOD DEFINITIONS: AClass

// xx
AClass::AClass(void) {
_class_data = 0;

3

AClass::AClass(int class_data) {
_class_data = class_data;

}
AClass::"AClass(void) {
_class_data = 0;

3

void AClass::method_a(void) {

cout << "AClass::method_a() " << endl;
cout << " _class_data is : " << _class_data << endl;
}

// xx

// *x METHOD DEFINITIONS: BClass

// xx

BClass: :BClass(void) {

_class_data = 0;

}

BClass::BClass(int class_data) {

_class_data = class_data;
}

BClass::"BClass(void) {
_class_data = 0;
}

void BClass::method_b(void) {
cout << "BClass::method_b() " << endl;
cout << " _class_data is : " << _class_data << endl;
}

// xx

// *x METHOD DEFINITIONS: CClass
// xx

CClass::CClass(void) : AClass(0), BClass(0) {

_class_data = 0;

3

50

50: CClass::CClass(int class_data): AClass(class_data), BClass(class_data) {
51: _class_data = class_data;

52: T

53:

54: CClass::"CClass(void) {

55: _class_data = 0;

56: }

57:

58: wvoid CClass::method_c(void) {

59: cout << "CClass::method_c() " << endl;
60: cout << " _class_data is : " << _class_data << endl;
61: ¥

As a result of this implementation, the CClass is now a class with its own method
(method_c) and with two inherited methods, method_a and method_b. Since classes AClass
and BClass inherit from _sk_aclass and _sk_bclass, the link is established between the
C++ implementation and the CORBA interface for the three methods mentioned above.
This is what is done differently when the tie class approach is used, as we will see in the
next example.

Finally, the main function in the server program creates a CClass object at line 7 in the

following listing.

Server Program [NON-TIE] Server.C
1: #include <0Objects.h>
2
3: int main(int argc, char **argv, char **) {
4 CORBA::0RB_var orb = CORBA::0RB_init(argc, argv);
5: CORBA::BOA_var boa = orb->BOA_init(argc, argv);
6:
7: CClass c_obj(1024);
8
9 boa->obj_is_ready(&c_obj);
10 boa->impl_is_ready();
11 }

A reference to the newly created object (c_obj) is passed to the Basic Object Adapter
(BOA) at line 9.

Tie-Class Approach

Two of the files explained above (Objects.C and Objects.idl) do not present any

changes when using the tie class approach to do inheritance. However, the C++ definition

51

of the implementation of the classes does need some changes to use the tie class approach.

The following code listing contains these changes:

C++ Objects Definitions [TIE] Objects.h
1: // *x
: // ** Class AClass
// *%

2
3
4: class AClass {

5: long _class_data;
6.

7

8

public:
AClass(void);
: AClass(int class_data);
9: virtual ~“AClass(void);

10: virtual void method_a(void);
11: };

12:

13: // *x

14: // ** Class BClass

15: // *x

16: class BClass {

17: long _class_data;

18: public:

19: BClass(void);

20: BClass(int class_data);

21: virtual “BClass(void);

22: virtual void method_b(void);

23: };

24 :

25: // *x*

26: // *x Class CClass
27: [/ *x*

28: class CClass : public AClass, public BClass {
29: long _class_data;

30: public:

31: CClass(void);

32: CClass(int class_data);

33: virtual ~“CClass(void);

34: virtual void method_c(void);

35: };

The differences with respect to the file Objects.h used in the non-tie class approach can
be seen at lines 4 and 16. The new definitions of the first two classes (AClass and BClass)
do not inherit from the respective skeleton classes, like in the previous case. Since there is
no link here between the IDL interface (skeleton classes) and the implementation in C++,
the link must be done somewhere else. When using tie classes, this linking is done in the

Server.C file:

52

Server Program [TIE] Server.C

#include <Objects.h>

1
2
3: int main(int argc, char **argv, char **) {

4. CORBA::0RB_var orb = CORBA::0RB_init(argc, argv);
5: CORBA: :BOA_var boa = orb->BOA_init(argc, argv);
6
7
8

CClass c_obj(1024);
_tie_cclass<CClass> c_tie(c_obj);

10: boa->obj_is_ready(&c_tie);
11: boa->impl_is_ready();
12: }

In this code listing, at line 7, an object of type CClass is create, like in the previous
case. However, this is not the object whose reference is passed to the BOA. Instead, a
new object (c_tie) is created, of type _tie_cclass<CClass>. This data type is a tie class,
implemented as a template. The type CClass is used in the template _tie_cclass to link
the implementation (CClass) to the IDL interface definition (cclass). The object of this
type is the one that is finally passed to the BOA to activate the implementation.

6.3 Implementation Details

A description of the IDL interfaces and C++ implementation of the different parts of
MIGOR is presented in this section.

6.3.1 McastModule Class

The constructor for this class sets up the IP layer to use multicast, as introduced in

section 5. The following section of code shows the definitions of the methods in this class.

McastModule Method Definitions

102: int sendData(char *, int);

103: ObjectState * recvData(struct sockaddr *);

104: ObjectState * recvData();

105: boolean readyTo (actionType) ;

106: int setClientAddr (struct sockaddr *);
107: int writen(int, const void *, int);
108: int readn(int, const void *, int);

109: char getReceivedType();

53

There are two methods that give access to multicast communication (at lines 102 and 104).
These are sendData and recvData. The first one takes two arguments: a pointer to a
buffer with the data to send, along with an int value specifying the number of bytes to
be sent. There are two versions of the method for receiving a multicast. At line 103 there
is a definition of a method that takes as an argument a sockaddr structure pointer. The
second method definition does not take any arguments, but both versions return a pointer
to a ObjectState object. When a multicast is received, it is possible to retrieve the address
that originated the multicast. For this reason, the recvData method can also return this
information to the user through a sockaddr structure. If the user is not interested in this
information, the other definition can be used, which simply makes a call to the first definition
of the function, discarding the return address information. In either case the method returns
a pointer to an ObjectState object, with the new state just received through the multicast.

Method readyTo at line 105 is meant to allow the user to probe the multicast socket to
determine whether it is ready to read or write data. The last method of interest to the user
of this class is at line 109. getReceivedType returns the type of data received: either new
data (identified by D) or a commit message (C). The rest of the methods are used internally

by McastModule.

6.3.2 Multicast Class

This class is designed to be a wrapper class around the McastModule class. It has similar
methods to McastModule, which form a specific data packet for either a SetState message

or a Commit message, for instance.

Multicast Class Definition

115: class Multicast {
116: private:

117: ObjectState laststate;

118: public:

119: McastModule * mcastc;

120: McastModule * mcasts;

121: int seq_number;

122:

123: Multicast(const char *object_name=NULL);
124: virtual “Multicast();

125: char getData();

126: CORBA: :Long setData(const ObjectState& newstate,

54

127: CORBA: :Long new_size) ;
128: CORBA: :Long setCommit () ;

129: virtual void McastReceived() = 0;

130: ObjectState getState();

131: I

This class contains two instances of McastModule objects; one for sending multicasts and
another one for receiving. That is, an application that inherits from the Multicast class
can act both as a multicast server (sender) and client (receiver). This way it is potentially
possible to send and receive on different multicast groups.

At line 126 there is the definition for setData, which is used to send the state contained
in newstate, of size new_size bytes. It is worth noting that the arguments as well as the
return values are defined using CORBA data types. This is so because this class could also
be implemented as a CORBA object, to facilitate the integration of this class in a CORBA
system. This would be more relevant when an externalization service can be used together
with this class to encapsulate the data into a platform-independent form. That would be
the most suitable way to use this combination of the Multicast class with the McastModule
object.

However, the current implementation of MIGOR does not include a CORBA version of
the Multicast class, because of the lack of an externalization service.

Similarly, the method setCommit at line 128 works like setData. It prepares a data
packet with a commit message to send it by way of the methods in the McastModule object
to the multicast group. The method getData is used to retrieve the data that has arrived at
the multicast socket, be it a SetState message or a Commit message. The method getState
returns the actual state after being retrieved by getData.

The McastReceived method is defined as pure virtual, to force it to be overwritten
by any class that derives from this one. Specifically, the MIGOR class will implement this
method. When a multicast is received, this method is called in the class Multicast, but the
MIGOR class is the one to take the appropriate action after the multicast has been received.
For this reason, MIGOR must overwrite this method, so that its method gets called upon
the reception of a multicast. Please note that we have not specified from where the call to

McastReceived comes. This is explained in the next section.

55

6.3.3 Dispatcher Class

The Dispatcher class contains methods to handle specific events. It implements one
method only, to handle the arrival of a multicast packet at the network interface. This class
is used in conjunction with a signal handler.

There are two approaches to finding out when a multicast has arrived at a UDP socket:
polling the socket constantly, or catch a special signal raised by the operating system when
new data has arrived at a socket. The first solution makes intense use of the CPU, and is
not appropriate. The solution for this project was to catch this special signal, called SIGIO,
through a signal handler.

The signal handler is precisely the method implemented by this class. IncomingMcast
gets called when a signal SIGIO is generated by the O.S. [18]. This method, in turn, is the
one to call McastReceived in the object mcast of type Multicast. This reference (mcast)
is obtained when the Dispatcher object is created. This occurs during the initialization
of the MIGOR object, whose explanation follows in the next section. MIGOR inherits from
Multicast, so MIGOR can pass a reference to itself to the Dispatcher object when MIGOR

creates it.

Dispatcher Class Definition

141: class Dispatcher {
142: private:

143: static Multicast *mcast;

144: public:

145: Dispatcher() { mcast = NULL; }
146: Dispatcher(Multicast *);

147: int IncomingMcast(int);

148: };

The signal handler for the signal SIGIO is a method (IncomingMcast)in an object (Dispatcher)
that is created dynamically inside the MIGOR object. In addition to this, the reference
to Multicast inside the Dispatcher is a pointer. Because of all of this, this pointer to
Multicast does not keep its value at run time, when the signal occurs. For this reason, the
reference mcast has to be defined static, as seen at line 143, to ensure that the signal will

trigger the signal handler.

56

6.3.4 MIGOR IDL Interface

The MIGOR class contains the transaction processing functionality to coordinate the
state updates among all the replicas. This class is the one that makes decisions based on
the multicast packets received, or the responses received through the tree. This object
communicates with the other MIGOR objects in the other replicas. The responses in the
two phase commit protocol that are passed up traversing the tree are CORBA calls. The

methods used in this communication are defined in the MIGOR IDL file:

MIGOR IDL Definition

1: #include "McastInterface.idl"

2

3: interface MigorInterface {

4: long SetState(in ObjectState newstate, in long size);
5: long Commit();

6: long setParent(in MigorInterface parent_);

7 long setLchild(in MigorInterface 1lchild_);

8: long setRchild(in MigorInterface rchild_);

9: long num();

11: // ** TP functionality:
12: void StateResponse();
13: void CommitResponse();
14: };

The two methods at lines 13 and 14 are the ones used by the children to perform the
responses in both phases of the two phase commit protocol. At lines 4 and 5 are the
function definitions for the SetState and Commit calls. These definitions describe the
parameters they require. Even though they will be implemented by CORBA methods in
the MIGOR class, these methods in turn use the multicast mechanism to distribute these
messages among all the replicas.

Other necessary methods in the MIGOR class are the ones in lines 6 to 8. These are used

by the registry to inform this replica about its new parent or children.

6.3.5 MIGOR Class

This class includes the same methods described earlier, since it is the implementation
in C++ of the interface defined with the IDL in the previous section. These methods
are defined in lines 176 through 180, and lines 187 and 188. In addition, there are three
methods that this implementation adds to the ones defined by the interface. Not being

57

CORBA methods, they cannot be accessed remotely. They are only meant to be used by

the classes that may be derived from this class.

MIGOR Class Definition

176: CORBA: :Long SetState(const ObjectState&, CORBA::Long) ;
177: CORBA: :Long Commit () ;

178: CORBA: :Long setParent(MigorInterface_ptr);
179: CORBA: :Long setLchild(MigorInterface_ptr);
180: CORBA: :Long setRchild(MigorInterface_ptr);
181: CORBA: :Long num() ;

182:

183:

184: // ** TP funcionality:

185: virtual void McastReceived();

186:

187: void StateResponse();

188: void CommitResponse();

189: virtual void SaveNewState() = 0;

190: virtual void CommitState() = 0;

SaveNewState and CommitState are two pure virtual methods that need to be implemented
by classes deriving from this one. The class Application is the one that has MIGOR as its
parent class. The application maintains the current state of the application. Therefore,
MIGOR only needs to make a function call on the application to indicate when to operate
on the state. The MIGOR class calls its own SaveNewState and CommitState methods, which
will in turn cause the same methods to be called in the application, since it is overwriting
these two methods.

The other method included in this class is McastReceived, which gets called by the
signal handler mechanism when a multicast is received at the socket. When this method is
called, it uses the methods from the Multicast class (which is this object’s parent class)
to retrieve the data from the multicast socket. If the multicast received was a SetState
message, the replica will wait for the responses from its children, if it has any. If this is not
the case, or when all the responses are received, this replica will respond to its parent by
calling the StateResponse method of the parent. Recall that when a replica registers with
the registry, it receives information about its parent and children. This is how it obtains a
reference to the parent replica, to be able to perform this StateResponse call at this point.

A similar process takes place when the received multicast is a Commit message. The

replica once again waits for the responses for as many children as it has, and then responds

58

with a CommitResponse to its parent by making a method call on it, in the same way the

StateResponse is made.

6.3.6 Server Application IDL Interface

In the application interface definition it can be seen how this interface inherits from the
MIGOR interface (line 16). In lines 17 and 18, two methods are defined for setting the state

and retrieving it, respectively. These methods are called by the client application.

Application IDL Definition
1: #include "McastInterface.idl"

16: interface ApplicationInterface : MigorInterface {
17: long NewState(in ObjectState newstate);

18: void GetState(out ObjectState state);

19: s

6.3.7 Server Application Class

This definition shows the inheritance from the Migor class, to mirror the inheritance
relation defined in the IDL interface definition. In lines 229 and 230 one finds the definitions

of the functions in the Migor class that have to be overwritten here.

Application Class Definition
218: class Application : public Migor {
219: private:

220: ObjectState temp;

221: ObjectState mystate;

222: public:

223: Application(const char *ob_name,long num);
224: virtual “Application();

225: CORBA: :Long NewState(const ObjectState&) ;
226: void GetState(ObjectState&);
227:

228: // * TP specific functionality:

229: virtual void SaveNewState();

230: virtual void CommitState();

231: s

In lines 225 and 226 are the methods defined in the IDL for this class. It is also worth
noting that the Application class maintains two ObjectState objects: one with the actual
state and another one (temp) to store the new state during the first phase of the two phase

commit protocol.

59

6.3.8 Registry IDL Interface

The registry is in charge of maintaining a list, or rather, a binary tree, of replicas that
currently exist. Therefore, its interface definition includes a method for adding replicas.

This is the only operation that the registry needs to supply for another object.

Registry IDL Interface

#include "Migor.idl"

oneway void AddReplica(in MigorInterface a);

1
2:
3: interface Reglnterface {
4
5 };

This method is defined as oneway, which means that a call on this method does not block
waiting for it to return. For instance, the server application (the replicas) obtain a reference
to the registry object from the naming service of the ORB. They then invoke the method
AddReplica on the registry reference. Because it is a oneway method, the method invocation
will return immediately, without waiting for the registry to finish processing the method.
This is necessary because of the sequence of events that take place for the replica to

register. This is explained later.

6.3.9 Registry Class

After compiling the IDL file with an IDL compiler, the class _sk_RegInterface is in-
cluded in the C++4 code that results. This is the skeleton class that links CORBA with the
user implementation. Therefore, the Registry class inherits from _sk RegInterface, and
it has to overwrite the method on line 4 of the IDL code, to provide the implementation of

AddReplica.

Registry Class Definition

199: class Registry : public _sk_RegInterface {
200: private:

201: BinTree<MigorInterface> *tree;

202: public:

203: MigorInterface_ptr templ,temp2;
204: Registry();

205: virtual “Registry();

206: Registry(const char *ob_name);

207: void AddReplica(MigorInterface_ptr a);

208: };

60

It also worth noting that the Registry class contains a binary tree object, specified by the
BinTree template. This template describes a basic binary tree with capability to insert
nodes and retrieve information from the tree. The object declaration at line 201 creates a
pointer (tree) to a binary tree of MigorInterface data types. That is, the tree is to hold

references to MigorInterface types. This is how the list of replicas is kept in the tree.

6.3.10 Server Application (Replicas)

When a replica is started, it needs to communicate with the registry to add itself to the

list of replicas, and to obtain knowledge about its own position within the binary tree.

Replica Code

23: // Bind to the registry:

24: reg = Reglnterface::_bind();
25: Reglnterface::_duplicate(reg);

26:

27: // Create application object

28: Application * this_app = new Application(name,number) ;

29: _tie_ApplicationInterface<Application>app_tie(*this_app, name) ;
30:

31: boa->obj_is_ready(&app_tie);

32: reg->AddReplica(MigorInterface::_narrow(&app_tie));
33: boa->impl_is_ready();

34: 1}

In line 24 in the code listing above we can see the act of getting a reference to the registry
in which a reference to an interface of type RegInterface is requested from the ORB. This
way, the replica can find the registry automatically when it starts. The next task is to
create an instance of the actual server object (of type Application, which is done at line
28.

Line 29 contains the invocation necessary for realizing the “tie class” approach described
earlier. An object of type _tie_ApplicationInterface<Application> is created with the
name app-tie. _tie_ApplicationInterface is a template generated as a result of IDL
compilation of the Application IDL definition. The object type passed to the template
(Application) is the name of the class that realizes the implementation in C++ of the
methods defined through the IDL definition. Therefore, through this declaration, app-tie
will be a CORBA object using the interface of ApplicationInterface and the implemen-

tation of Application.

61

Chapter 7

Performance Analysis and

Comparison

7.1 Analysis Environment

Given that the current implementation of MIGOR can only operate among homogeneous
platforms due to the lack of an externalization service, the machines available to perform
the timing analysis were four DEC Alphas running Digital Unix. The names of these
hosts are visionl, vision2, vision3, and fusion. These workstations are located in the
WPI Machine Vision Laboratory (MVL), and are connected through a 10 Mbps Ethernet
network. See table A.1 for a description of the workstations’ specifications.

The measurement of interest is time elapsed from the time that a client contacts the
a replica to update the state, until the time that the replica responds to the client, after
completing the update of the state in the replica group. Each measurement consists of 1000
consecutive state updates on the replica group, to record the minimum, maximum and
average times. The state being updated consists of one CORBA Long data type. The client
application is run from xfactor, because the SGI architecture has better clock resolution.

In order to perform measurements on a configuration with a balanced binary tree, the
tests were carried out in three scenarios: using one replica, using three replicas and using

seven replicas.

7.1.1 One Replica

With a single server object no intra-group communication takes place, and therefore

the latency in this test equals the latency of a simple CORBA call (from the client to the

server).
Object State: 1 Long
1 MIGOR Replica

Machine || Minimum | Average | Maximum | Standard Deviation

fusion 2.90 ms | 3.39 ms 11.73 ms 0.57ms

visionl 4.62 ms | 5.43 ms 27.81 ms 0.36ms

vision2 4.58 ms | 5.93 ms 82.54 ms 3.97 ms

vision3 4.45 ms 6.00ms | 120.49ms 4.96ms

62

Table 7.1: Latency Measurements with One MIGOR Server

In this test, and in all the rest, it is important to consider the minimum observed
latency, and not the other values. The machines used for the test had other processes
running, therefore, the all timings recorded in these tests represent cases in which the
program running the test had to share the CPU with other processes. For this reason the
maximum and average delay values do not represent the maximum achievable performance
that would be obtained in a “clean” system with the only latency being that imposed by

CORBA and communications processing. The minimum latency value comes closest to

representing this information.

7.1.2 Three Replicas

For this test, each of the replicas runs on a separate machine. This way, when the
multicast is received at the same time by all the replicas, all three of them can process it
simultaneously since they are using separate processors. The replica at the root of the tree

was running on visionl, the right child on vision2 and the left child on vision3.

Object State: 1 Long
3 MIGOR Replicas

Standard Deviation
14.71 ms

Maximum
175.57 ms

Average
13.455 ms

Minimum
8.76 ms

Table 7.2: Latency Measurements with Three MIGOR Servers

63

Considering one CORBA call between visionl and fusion takes about 4 ms, the 8.76
milliseconds observed with three replicas corresponds to two CORBA calls which are the
SetStateResponse and the CommitResponse that come from the children to the parent.
The two children reply in parallel, so the two SetStateResponse calls come in the parent
at the same time, and take only about 4 ms. The CommitResponse from the two children

takes another 4 ms, which adds up to the approximately 8 ms observed.

7.1.3 Seven Replicas

Two variants of this test were performed. In one of them, the seven replicas were
distributed among the four machines available in a way so as to avoid two of them executing
on the same processor at the same time. The second set up involved running all the replicas
on the same host (fusion) to study the impact of a sharing of the processor by a large

group of replicas.

Shared Load

The following figure shows the names of the machines on which the replica in the corre-

sponding tree location was run.

‘I' fusion
o o
/N /N
oo oo

vi sion3 vision2 fusion visionl

Vi si on2

Figure 7.1: Computers Hosting the 7 Replicas

All load on fusion

When the test is performed with all the replicas running on the same host, we can
observe that the times are approximately equal to those obtained for the shared load across

machines.

64

Object State: 1 Long
7 MIGOR Replicas

Minimum | Average | Maximum | Standard Deviation
21.45 ms | 25.143 ms | 150.46 ms 6.47 ms

Table 7.3: Latency Measurements with Seven MIGOR Servers on four hosts

Object State: 1 Long
7 MIGOR Replicas

Minimum | Average | Maximum | Standard Deviation
2047 ms | 23.43 ms | 180.23 ms 3.60 ms

Table 7.4: Latency Measurements with Seven MIGOR, Servers on fusion

All load on visionl

For comparison, the test was run on visionl as well, since fusion has two CPUs, and
visionl has one. ence the fusion based results mask some of the processor load effects that

are clearly visible below.

Object State: 1 Long
7 MIGOR Replicas

Minimum | Average | Maximum | Standard Deviation
53.22 61.93 398.58 13.76

Table 7.5: Latency Measurements with Seven MIGOR, Servers on visionl

7.2 Performance Comparison

The performance of MIGOR was compared to the original IGOR system by performing
the same tests with both systems. In addition to testing these two systems, a third one was
also evaluated. As described in chapter 6, the contribution of this thesis was not only to
add multicast to IGOR, but also to build a completely new implementation of IGOR, using
a different programming approach. The timing results for 1, 3 and 7 replicas are presented
in tables 7.6, 7.7 and 7.8, respectively, for all three versions of IGOR.

The test with seven replicas was performed with the load being shared among the four

Digital Unix machines available, since the original timing analysis of IGOR was done this

Object State: 1 Long
1 Object Replica

System || Minimum | Average | Maximum | Standard Deviation
IGOR 1.87 ms | 2.02 ms 4.74 ms - ms
New IGOR 3.15ms | 3.85ms | 23.87 ms 0.98 ms
MIGOR 4.62 ms | 5.43 ms 27.81 ms 0.36ms

Table 7.6: Performance comparison for all types of IGOR with 1 replica

Object State: 1 Long
3 Object Replicas

System | Minimum Average | Maximum | Standard Deviation
IGOR || 310.24 ms | 407.41 ms | 1181.51 ms - ms
New IGOR 3727 ms | 41.82ms | 195.53 ms 7.27 ms
MIGOR 8.76 ms | 13.455 ms | 175.57 ms 14.71 ms

Table 7.7: Performance comparison for all types of IGOR with 3 replicas

way [11].

Object State: 1 Long
7 Object Replicas

System | Minimum Average | Maximum | Standard Deviation
IGOR || 650.64 ms | 710.35 ms | 1559.50 ms - ms
New IGOR || 126.41 ms | 140.67 ms | 640.95 ms 34.21 ms
MIGOR 21.45 ms | 25.143 ms | 150.46 ms 6.47 ms

65

Table 7.8: Performance comparison for all types of IGOR with 7 replicas

It can be seen that the performance difference between the original IGOR system and
the new multicast IGOR is very large. The main reason for such difference is not a result
of the use of multicast. As seen earlier, multicast is used to send two messages to the group
of replicas, and the binary tree is used for collecting two other messages progressing up the
tree. We might expect a non-multicast version of IGOR to show a latency of approximately
twice that of MIGOR.

However, this is not the case. The reason for the big performance difference between
the original IGOR and MIGOR is that the two implementations of IGOR used different
design approaches. The largest factor that affects the performance of the original version

of IGOR is described in a paper by Hazzard and Cyganski [8]. Some CORBA calls used in

66

IGOR are one-way calls. That is, they do not return any information, nor do they return
a void type. The object that originates the call invokes the method on the object being
called, and does not wait for the call to finish processing at the object called. The TCP
packet used to make the call must be acknowledged, but because there is no information
returned immediately, the TCP ACK cannot be attached to any returning TCP packet.
Therefore, the TCP acknowledgement mechanism times out after a long period of time (as
much as 200 ms) and sends a packet containing only the acknowledgement. This is the
delayed ACK mechanism of TCP, which due it its interaction with the Nagle algorithm,
introduces a considerable delay in implementations that use CORBA one way calls.

The greater than two-to-one performance difference between the new IGOR and MIGOR
is driven by the fact that messages ascend the binary tree more quickly than they descend
owing to the parallel responses that children generate versus the serial method calls that

parents make on children.

67

Chapter 8

Conclusions

Distributed low latency systems require efficient communication among all members of
the system.

The results show that a multicast transmission can certainly deliver messages to a group
of receivers faster than a unicast for each receiver. In the context of distributed computing,
it is clear that multicast is a very promising solution for the distribution of messages when
the same message must reach a group of hosts.

However, by using IP multicast, an application inherits the unreliability of the UDP
protocol used with IP multicast. There are several new protocols that provide reliable
multicast at different levels. An implementation of IGOR using reliable multicast could be
realized which would take advantage of an efficient multicast message delivery mechanism
with TCP-like reliability.

In the framework of IGOR reliability is achieved with the two phase commit protocol.
For this reason, it is advantageous to exclude the reliability service from the network layer
because of the performance gain through the use of IP multicast. A distributed system like
IGOR can benefit specially from the multicast transmission of messages, because in IGOR
it is necessary to send the same message to many receivers.

The MIGOR system achieves fault tolerance through server object replication. The
definition of fault tolerance is given in the context of transaction services. The MIGOR
system is fault tolerant in that it can withstand specified faults in the services on which it

depends.

68

8.1 Future Work

As stated in the thesis presentation, it will be necessary to use a CORBA externalization
service to incorporate data marshaling capabilities in MIGOR. In order to obtain a system
with comparable fault tolerance to the original version of IGOR, it will also be necessary
to implement some of the features that IGOR introduced that are not present in MIGOR
at the moment. Some such features are an object database, and the ability to restructure
the binary tree in case one or more replicas fail.

Another potentially interesting area of research is the investigation of using a decentral-
ized non-blocking atomic commitment protocol [7]. Such protocols allow any member of a
group of objects to send a message to the group, while each host arrives individually at the
decision as to whether to commit the new state or not; but all objects arrive at the same
decision. The protocol operates by sending multiple messages from all objects to all other

objects.

Appendix A

Machine Vision Laboratory

Workstations

A.1 Hardware/Software Environment

‘ Name ‘ Processor ‘ CPU Speed ‘

RAM ‘ Operating System ‘

fusion

visionl
vision2
vision3
xfactor

DEC Alpha
DEC Alpha
DEC Alpha
DEC Alpha
MIPS

1901 MHz
150 MHz
150 MHz
150 MHz
200 MHz

576 MB
48 MB
48 MB
64 MB

384 MB

Digital Unix v3.2
Digital Unix v3.2
Digital Unix v3.2
Digital Unix v3.2
SGI Irix 6.2

T two 190 MHz processors

Table A.1: Machine Vision Laboratory Workstations

70

Bibliography

[1]
2]

3]

[4]

[5]

[6]

DAIS Multicast Event Service. http://www.daisorb.com/, 1998.

BECKER, D. Beowulf Project. =~ Web Page, http://cesdis.gsfc.nasa.gov/linux-
web/beowulf/beowulf.html. Accessed April, 1998.

CoOULOURIS, G., DOLLIMORE, J., AND KINDBERG, T. Distributed Systems Concepts
and Design, second ed. Addison-Wesley, Englewood Cliffs, New Jersey 07632, 1994.

DEERING, S. RFC 1112: Host extensions for IP multicasting. Tech. rep., Internet
Engineering Task Force, 1989.

DEERING, S. E., AND CHERITON, D. R. RFC 966: Host groups: A multicast extension

to the internet protocol. Tech. rep., Internet Engineering Task Force, 1985.

Frovyp, S., JACcOBsON, V., McCANNE, S., Liu, C., AND ZHANG, L. A reliable

multicast framework for light-weight sessions and application framing. In ACM SIG-

COMM’95 (1995), ACM.

GUERRAOUI, R., AND SCHIPER, A. The decentralized non-blocking atomic commit-

ment protocol. IEEE International Symposium on Parallel and Distributed Processing

(1995).

HAzzarRD, B., AND CYGANSKI, D. Large anomalous TCP and CORBA latencies:

Observation, analysis and mitigation. To be submitted for publication, 1998.

Lampson, B. W., PAauL, M., AND SIEGERT, H. J., Eds. Lecture Notes in Computer

Science. Distributed Systems - Architecture and Implementation, first ed. Springer-

Verlag, 1981.

[10]

[11]

[12]

[16]

[17]

18]

[19]

[20]

[21]

71

LiN, J. C., AND PAUL, S. RMTP: A reliable multicast transport protocol. vol. 3,
pp. 1414-1424.

MoDzELEWSKI, B. E. Interactive-group object-replication: An approach to fault
tolerance in a CORBA distributed computing environment. Master’s thesis, Worcester

Polytechnic Institute, 1997.

MoDzELEWSKI, B. E., CYGANSKI, D., AND UNDERWOOD, M. V. Interactive-group

object-replication fault tolerance for corba. In The Third Conference on Object-
Oriented Technologies and Systems (COOTS) Proceedings (1997), The USENIX Asso-

ciation.
MULLENDER, S., Ed. Distributed Systems, second ed. Addison-Wesley, 1993.

OBJECT MANAGEMENT GROUP. CORBAservices: Common Object Services Specifica-
tion, November 1997.

STARDUST TECHNOLOGIES, I. Introduction to ip multicast routing. Web Page,

http://www.ipmulticast.com/community /whitepapers/introrouting.html. ~ Accessed
April, 1998.
STARTDUST FORUMS. The IP Multicast Initiative. Web Page,

http://www.ipmulticast.com. Accessed April, 1998.

STEVENS, W. R. Uniz Network Programming, first ed. Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1990.

STEVENS, W. R. Advanced Programming in the UNIX Environment, first ed. Addison-
Wesley, 1992.

STROUSTRUP, B. The C++ Programming Language, second ed. Addison-Wesley, 1991.

TALPADE, R., AND AMMAR, M. H. Single connection emulation (SCE): An architec-

ture for providing a reliable multicast transport service. College of Computing, Georgia

Institute of Technology, Atlanta, GA 30332.

TANENBAUM, A. S. Computer Networks, third ed. Prentice Hall, Upper Saddle River,
New Jersey 07458, 1996.

72

[22] VISIGENIC SOFTWARE INC. Visibroker for C++ Programmer’s Guide, October 1996.

[23] VISIGENIC SOFTWARE, INC. Visibroker for C++ Reference Guide, October 1996.

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Terms, Acronyms and Definitions
	Chapter 1: Introduction
	1.1 Problem Statement
	1.2 Definition of Fault Tolerance
	1.3 Multicast Technologies
	1.3.1 Multicast Layers
	1.3.2 Multicast Internetworking

	Chapter 2: Reliable Multicast
	2.1 Problem Description
	2.2 Retransmission
	2.3 Multicast Subgroups
	2.4 Keeping track of group membership
	2.5 Retransmission Request
	2.6 Other Issues
	2.7 Previous Work on Reliable Multicast
	2.8 RMTP: A Reliable Multicast Transport Protocol
	2.9 Reliable Multicast Framework
	2.10 Single Connection Emulation (SCE)
	2.11 Reliable Multicast Protocol (RMP)
	2.12 The IP Multicast Initiative

	Chapter 3: IGOR
	3.1 IGOR Implementation
	3.2 Two Phase Commit Protocol
	3.3 Enhancements to IGOR
	3.4 Multicast for Fault Tolerance
	3.5 MIGOR

	Chapter 4: Multicast IGOR (MIGOR)
	4.1 Choice of ORB
	4.2 MIGOR Overview
	4.3 Registration of Replicas
	4.4 Client contacting server
	4.5 Server State Update

	Chapter 5: Multicast Network Programming
	5.1 Sender Code
	5.2 Receiver Code
	5.3 Multicast Encapsulation
	5.4 Multicast vs. IIOP

	Chapter 6: MIGOR mplementation Description
	6.1 IGOR Evolution into MIGOR
	6.1.1 Data Type Conversion
	6.1.2 Client Communication
	6.1.3 Object Database

	6.2 Inheritance in CORBA and C++
	6.2.1 TIE Class Approach Example

	6.3 Implementation Details
	6.3.1 McastModule Class
	6.3.2 Multicast Class
	6.3.3 Dispatcher Class
	6.3.4 MIGOR IDLInterface
	6.3.5 MIGOR Class
	6.3.6 Server Application DLInterface
	6.3.7 Server Application Class
	6.3.8 Registry DLInterface
	6.3.9 Registry Class
	6.3.10 Server Application (Replicas)

	Chapter 7: Performance Analysis and Comparison
	7.1 Analysis Environment
	7.1.1 One Replica
	7.1.2 Three Replicas
	7.1.3 Seven Replicas

	7.2 Performance Comparison

	Chapter 8: Conclusions
	8.1 Future Work

	Appendix A: Machine Vision Laboratory Workstations
	Bibliography

