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Abstract. Two-dimensional, steady-state, stratified, isother-
mal atmospheric flow over topography is governed by Long’s
equation. Numerical solutions of this equation were derived
and used by several authors. In particular, these solutions
were applied extensively to analyze the experimental obser-
vations of gravity waves. In the first part of this paper we
derive an extension of this equation to non-isothermal flows.
Then we devise a transformation that simplifies this equation.
We show that this simplified equation admits solitonic-type
solutions in addition to regular gravity waves. These new an-
alytical solutions provide new insights into the propagation
and amplitude of gravity waves over topography.

1 Introduction

Two-dimensional steady-state flow of an isothermal, incom-
pressible stratified fluid over topography is modeled by
Long’s equation (Long, 1953, 1954, 1955, 1959). A gener-
alization of this equation to three-dimensional flows has ap-
peared in the literature (Akylas and Davis, 2001). However,
in the following we restrict our discussion to two dimensions.

Numerical solutions of Long’s equation for base flow
without shear over simple terrain, which consists of one hill,
were derived and analyzed in the literature by several authors
(Drazin, 1961; Yih, 1967; Drazin and Moore, 1967; Lily and
Klemp, 1979; Smith, 1980, 1989; Peltier and Clark, 1983;
Durran, 1992; Smith and Kruse, 2017).

In these studies it was usual to approximate the Brunt–
Väisälä frequency by a constant or a step function. In ad-
dition, two physical parameters which control the stratifica-
tion and dispersive effects of the atmosphere were set to zero.
Under these approximations, one of the leading second-order
derivatives in Long’s equation drops out. Moreover, the equa-
tion becomes linear (the nonlinear terms disappear). In this

singular limit Long’s equation reduces to that of a linear har-
monic oscillator over the computational domain. The impact
of these approximations on the validity of the solution was
analyzed in depth in the literature (Smith, 1980, 1989; Peltier
and Clark, 1983). These studies demonstrated that these ap-
proximations set limits on the physical applicability of these
solutions.

Solutions of Long’s equation were also used as a frame-
work for the examination and study of experimental data on
gravity waves (Shutts et al., 1988, 1994; Fritts and Alexan-
der, 2003; Jumper et al., 2004; Vernin et al., 2007; Richter et
al., 2010; Geller et al., 2013). In all of these studies it was
assumed that the base flow is shearless. However, this as-
sumption is incorrect, in general, and is not justified by the
experimental data. (For a comprehensive list of references,
see Yih, 1980, Baines, 1995, and Nappo, 2012.)

A new method to derive analytic solutions of Long’s equa-
tion was initiated by the present author in Humi (2004, 2007,
2009, 2010, 2015). It was demonstrated that Long’s equation
can be simplified for shearless base flow with mild assump-
tions about the nonlinear terms. In this framework we were
able to identify the “slow variable” in Long’s equation. This
variable controls the emergence of nonlinear oscillations in
this equation. In addition we proved the existence of self-
similar solutions and derived a formula for the attenuation
of the gravity wave amplitude with height. These results fol-
low from the general properties of Long’s equation and the
nonlinear terms present in this equation.

We considered the effect that shear in the base flow has
on the generation of gravity waves and their amplitude in
Humi (2006). A new form of Long’s equation in which the
stream function is replaced by the atmospheric density was
derived in Humi (2007). Finally a generalization of Long’s
equation to time-dependent flows appeared in Humi (2015).
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It obvious however that atmospheric flows over topogra-
phy are not isothermal in general (see Miglietta and Rotunno,
2014; Richter et al., 2010; Smith and Kruse, 2017, and their
bibliography). With this motivation we derive, in the first
part of this paper, an extension of this equation to include
non-isothermal flows with free convection. This extension of
Long’s equation is new.

The novel part of the current paper consists of a sequence
of transformations which linearize Long’s equation and lead
to an analytic form of the solution without scarifying any
of the physical contents of this equation. In particular, we
demonstrate that there exist “solitonic-type solutions” to this
equation in addition to regular gravity waves. These types of
solutions have never appeared in the literature before. The so-
lutions presented also show how the amplitudes of the grav-
ity waves depend on the height. The presentations in Sect. 2.1
and 2.3 are made in order to put the new novel aspects of this
paper in context and to give the reader a sense of their impor-
tance. The bulk of the paper, which comprises Sects. 2.2, 3
and 4, presents completely new results which have never ap-
peared in the literature before.

The plan of the paper is as follows: in Sects. 2.1 and 2.3
we present an overview of the derivation of the isothermal
Long equation and the approximations that are made for its
numerical solutions. In Sect. 2.2 we derive the corresponding
Long equation for flows with free convection. In Sect. 3 we
introduce a transformation which (essentially) linearizes the
equation for the perturbation from the base flow. Section 4
discusses the application of this transformation to a flow with
shear and presents an analytic solution for this flow. We end
with some conclusions in Sect. 5.

2 Derivation of Long’s equation

In the first part of this section we provide a short overview
of the (classical) isothermal Long equation and in the second
part we generalize this equation to include free convection.

2.1 Isothermal Long equation

In two dimensions (x,z) the flow of a steady isothermal, in-
viscid and incompressible stratified fluid is modeled by the
following equations:

ux +wz = 0, (1)
uρx +wρz = 0, (2)
ρ(uux +wuz)=−px, (3)
ρ(uwx +wwz)=−pz− ρg. (4)

In these equations, subscripts denote differentiation with
respect to the subscripted variable, u= (u,w) is the fluid ve-
locity, p denotes the pressure, ρ denotes the density and g is
the acceleration of gravity.

To non-dimensionalize Eqs. (1)–(4), we introduce the fol-
lowing scaled variables:

x =
x

L
, z=

N0

U0
z, u=

u

U0
, w =

LN0

U2
0
w,

ρ =
ρ

ρ0
, p =

N0

gU0ρ0
p. (5)

In these equations L represents a characteristic length, U0 is
the free stream velocity, and ρ0 is the averaged base density
which is considered to be a constant. N2

0 represents an aver-
aged value of the Brunt–Väisälä frequency which is defined
as

N2
=−

g

ρ0

dρ0

dz
(6)

where ρ0(z) is the base density.
Using these new variables, Eqs. (1)–(4) take the following

form (the bars were dropped for brevity):

ux +wz = 0, (7)
uρx +wρz = 0, (8)
βρ(uux +wuz)=−px, (9)

βρ(uwx +wwz)=−µ
−2(pz+ ρ), (10)

where

µ=
U0

N0L
, (11)

β =
N0U0

g
. (12)

In these equations µ is the longwave parameter which con-
trols dispersive effects or equivalently the deviation from the
hydrostatic approximation. When µ= 0 the hydrostatic ap-
proximation is fully satisfied (Smith, 1980, 1989). The coef-
ficient β is the Boussinesq parameter (Baines, 1995; Nappo,
2012), which controls stratification effects (assuming U0 6=

0).
Equation (7) implies that it is possible to introduce a

stream function ψ so that

u= ψz, w =−ψx . (13)

Using this definition of ψ , it is possible to rewrite Eq. (8)
as

J {ρ,ψ} = 0. (14)

The symbol J (f,g) is defined for any two smooth functions
f and g as

J {f,g} =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
. (15)

It is easy to show that when J (f,g)= 0 it is possible to
express each of these functions in terms of the other (Yih,
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1980). It follows then from Eq. (14) that the functions ρ and
ψ are dependent on each other. This means that one can ex-
press ρ as ρ(ψ) or ψ as ψ(ρ).

Using Eq. (13) one can rewrite the momentum Eqs. (9) and
(10) in terms of ψ .

βρ(ψzψzx −ψxψzz)=−px (16)

βρ(−ψzψxx +ψxψxz)=−µ
−2(pz+ ρ) (17)

To eliminate p from Eqs. (16) and (17), we multiply
Eq. (17) by µ2 and then differentiate Eqs. (16) and (17) with
respect to z and x, respectively, and subtract. We obtain

ρz(ψzψzx −ψxψzz)+ ρ(ψzψzx −ψxψzz)z

−βµ2ρx(−ψzψxx +ψxψxz)

−βµ2ρ(−ψzψxx +ψxψxz)x = ρx . (18)

Using Eq. (14) and the fact that

ρx = ρψψx, ρz = ρψψz, (19)

we can eliminate ρ from Eq. (18) and obtain after some al-
gebra

J {ψzz+µ
2ψxx,ψ}

−N2(ψ)J

{
β

2
(ψ2

z +µ
2ψ2

x ),ψ

}
=N2J {z,ψ} (20)

where

N2(ψ)=−
ρψ

βρ
(21)

is the non-dimensional Brunt–Väisälä frequency which is (by
definition) a function of ψ .

As a result we obtain the following equation forψ (Baines,
1995; Nappo, 2012):

ψzz+µ
2ψxx −N

2(ψ)

[
z+

β

2
(ψ2

z +µ
2ψ2

x )

]
=G(ψ). (22)

Equation (22) is referred to in the literature as “Long’s equa-
tion”, but it was derived first by Dubreil-Jacotin (Dubreil-
Jacotin, 1935).

In Eq. (22), G(ψ) is a function that has to be determined
from the base flow. To do so we consider Eq. (22) at x =−∞
and assume that the base flow is a function of z only. Then
we express the left-hand side of Eq. (22) in terms of ψ only
to determineG(ψ). (Here we assumed, following Yih, 1967,
1980, and Baines, 1995, that the disturbances from the base
flow do not propagate upstream.)

For example, if we consider a shearless base flow with
u(−∞,z)= 1, then

ψ(−∞,z)= z (23)

and

G(ψ)=−N2(ψ)

(
β

2
+ψ

)
. (24)

Equation (22) becomes

ψzz+µ
2ψxx

−N2(ψ)

[
z−ψ +

β

2

(
ψ2
z +µ

2ψ2
x − 1

)]
= 0. (25)

It follows from this example that different base flows at
x =−∞ will yield different functional forms of G(ψ).

We consider now a perturbation η from a shearless base
flow u(−∞,z)= 1, viz.

η = ψ − z. (26)

Substituting this expression into Eq. (22) leads to

ηzz+µ
2ηxx −

N2β

2
(η2
z +µ

2η2
x + 2ηz)+N2η = 0. (27)

2.2 Long’s equation with free convection

When the flow is not isothermal, Eq. (4) has to be modified
as follows:

ρ(uwx +wwz)=−pz− γ Tρg, (28)

where T is the temperature and γ is the thermal expansion
coefficient of the fluid. Moreover, an equation for the tem-
perature has to be added:

u · ∇T = χ∇2T , (29)

where χ is its thermometric conductivity. These equations
hold under the assumption that

gh

c2 � γ T0

where h is the fluid column height, c is the velocity of sound
in the fluid and T0 is the characteristic temperature differ-
ence.

We can non-dimensionalize these equations using Eq. (5)
with the addition of

T =
T

T0

(as in the previous subsection we drop the bars). Equa-
tions (28) and (29) become

βρ(uwx +wwz)=−µ
−2(pz+ γ Tρ), (30)

u · ∇T =
1
Pe
∇

2T , (31)

where Pe= U0L
χ

is the Peclet number.
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Using Eq. (7) to introduce a stream function ψ , the mo-
mentum Eqs. (9) and (30) become

βρ(ψzψzx −ψxψzz)=−px, (32)

βρ(−ψzψxx +ψxψxz)=−µ
−2(pz+ γ Tρ). (33)

Using the same strategy as in the previous subsection to elim-
inate p from these equations leads to

ρz(ψzψzx −ψxψzz)+ ρ(ψzψzx −ψxψzz)z

−µ2ρx(−ψzψxx +ψxψxz)

−µ2ρ(−ψzψxx +ψxψxz)x =
γ

β
(Tρ)x . (34)

If the diffusion processes in Eq. (31) can be ignored, i.e.,
|

1
Pe∇

2T | � 1, then this equation can approximated by

J {T ,ψ} = 0; (35)

i.e., T = T (ψ). Furthermore, since ρ = ρ(ψ), it follows that

(Tρ)x =−J {z,Tρ} = −
∂(Tρ)

∂ψ
J {z,ψ}. (36)

Using Eqs. (14), (35) and (19), we can eliminate ρ from
Eq. (34) and obtain, after some algebra,

J {ψzz+µ
2ψxx,ψ}

−N2(ψ)J

{
β

2
(ψ2

z +µ
2ψ2

x ),ψ

}
=M2J {z,ψ} (37)

where

M2
=−

γ

βρ
(Tρ)ψ . (38)

Using these definitions, it follows that

ψzz+µ
2ψxx −N

2(ψ)
β

2
(ψ2

z +µ
2ψ2

x )

−M2(ψ)z=G(ψ). (39)

Eq. (39) can be considered a generalized form of Long’s
equation which includes the effects of free convection. It con-
tains two parameters N2 and M2. The additional parameter
M2 controls the change in the temperature profile in the flow.

The function G(ψ) in Eq. (39) can be determined using
the same strategy as before. Thus, if ψ(−∞,z) is given by
Eq. (23), then

G(ψ)=−N2(ψ)
β

2
−M2(ψ)ψ (40)

and Eq. (39) becomes

ψzz+µ
2ψxx −N

2(ψ)
β

2
(ψ2

z +µ
2ψ2

x − 1)

−M(ψ)2(z−ψ)= 0 . (41)

For a perturbation η = ψ − z, from a base flow
u(−∞,z)= 1, we obtain from Eq. (39)

ηzz+µ
2ηxx −

N2β

2
(η2
z +µ

2η2
x + 2ηz)+M2η = 0. (42)

2.3 Boundary conditions and approximations

We consider here numerical solutions of Long’s equation
over an unbounded domain with a general base flow. The to-
pography of the domain is represented by a function h(x)
whose maximum height is H . The boundary conditions that
are imposed on the stream function ψ are

ψ(−∞,z)= ψ0(z), (43)

ψ(x,τh(x))= constant, τ =
HN0

U0
. (44)

The constant in Eq. (44) which represents the value of the
stream line over the topography h(x) is (usually) set to zero.

To determine the proper boundary condition on ψ(∞,z),
we note that Long’s equation has no dissipation terms. There-
fore radiation boundary conditions have to be imposed on ψ
in this limit. Similarly it is appropriate to impose radiation
boundary conditions on ψ(x,∞) (Durran, 1992).

When |τ | � 1 the boundary condition (44) can be approx-
imated (using Eq. 26) by

η(x,0)=−τh(x). (45)

When N and M are set to a constant, Eqs. (27) and (42)
become invariant with respect to translations in x,z. This im-
plies that these equations admit self-similar solutions in the
form η = f (mx+ nz) (Humi, 2004). These solutions repre-
sent gravity waves that are generated by the flow over the
topography.

To compute numerical solutions for the perturbation η over
topography, it has been common in the literature to consider
Eq. (27) in the limits µ= 0 and β = 0 (Durran, 1992; Lily
and Klemp, 1979). In addition, N is set to a constant or a
step function over the computational domain.

In these limits Eq. (27) becomes a linear equation:

ηzz+N
2η = 0 . (46)

The limit β = 0 can be obtained by letting either N0→ 0 or
U0→ 0. For the stratification to persist, one has to assume
that the limit β = 0 is obtained as U0→ 0.

Equation (46) is a singular limit of Eq. (27). This is due to
the fact that one of the leading second-order derivatives drops
when µ= 0. Moreover, the nonlinear terms in this equation
drop out when β = 0. The approximate solutions that are de-
rived from Eq. (46) and their physical limitations have been
considered extensively in the literature (Drazin and Moore,
1967; Durran, 1992; Humi, 2004, 2006). It was found that
strong restrictions have to be imposed on the validity of these
solutions even under the assumption that the base flow is
shearless. However, these approximations and the solutions
that are derived from Eq. (46) are used routinely in the anal-
ysis of experimental atmospheric data (Shutts et al., 1988;
Baines, 1995; Jumper et al., 2004; Vernin et al., 2007).

The general solution of Eq. (46) is of the form

η(x,z)= q(x)cos(Nz)+p(x)sin(Nz). (47)
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The functions p(x) and q(x) have to satisfy the boundary
conditions derived from Eq. (44) and the radiation bound-
ary conditions. To satisfy the radiation boundary conditions,
p(x) and q(x) have to satisfy (Baines, 1995; Nappo, 2012)
p(x)=H [q(x)], where H [q(x)] is the Hilbert transform of
q(x).

To satisfy the boundary condition on the terrain, one has
to solve the following integral equation (Drazin, 1961; Lily
and Klemp, 1979; Durran, 1992):

q(x)cos(τNf (x))+H [q(x)]sin(τNf (x))=−τh(x) . (48)

3 Reductions and transformations

To begin with we observe that in Eqs. (22), (39), (27), and
(42) one can suppress the appearance of the parameter µ2

(µ 6= 0) by applying the transformation x = µx. Perform-
ing this transformation and assuming that N and M are
constants, these equations become invariant with respect to
translations in x and z. As a result they have solutions of the
form η = f (kx+mz) (Humi, 2004). These are gravity waves
that are generated by the atmospheric flow over the terrain.

Equation (27) becomes

ηzz+ ηxx −α
2(η2

z + η
2
x + 2ηz)+N2η = 0 (49)

where

α2
=
N2β

2
.

Similarly, Eq. (42) becomes

ηzz+ ηxx −α
2(η2

z + η
2
x + 2ηz)+M2η = 0. (50)

To these equations we apply the transformation

φ = e−α
2η
− 1. (51)

Remark: the mathematical “inspiration” for this transfor-
mation comes from somewhat similar transformations which
linearize the Ricatti and Burger equations. From a physical
point of view the motivation comes from the desire to replace
the nonlinearities due to the derivatives of η in Eq. (50) with
expressions that correspond to η itself. This replacement will
enable us to make approximations which are based on phys-
ical insights.

Equations (49) and (50), respectively, become

∇
2φ− 2α2 ∂φ

∂z
+N2(1+φ) ln(1+φ)= 0, (52)

∇
2φ− 2α2 ∂φ

∂z
+M2(1+φ) ln(1+φ)= 0. (53)

Since |α2η| � 1 it follows that |φ| � 1, and we can make
the approximation ln(1+φ)≈ φ. Equations (52) and (53) be-

come

∇
2φ− 2α2 ∂φ

∂z
+N2(1+φ)φ = 0, (54)

∇
2φ− 2α2 ∂φ

∂z
+M2(1+φ)φ = 0. (55)

To simplify Eqs. (54) and (55), we introduce the transforma-
tion

φ = eα
2zy. (56)

Equation (54) becomes

∇
2y+ (N2

−α4)y+N2eα
2zy2
= 0. (57)

If |α2z| � 1 (in the domain of interest), we can approximate
this equation by

∇
2y+ (N2

−α4)y+N2y2
= 0. (58)

This equation has an analytic closed form solution

y =
3(N2

−α4)

n2

[
tanh2(C1+C2x− iνz)− 1

]
(59)

where

ν2
=N2

−α4
+ 4C2

2

and C1 and C2 are integration constants.
Equation (59) represents solutions to a nonlinear equation

for y (and hence η). Since there is no superposition principle
for these solutions, Eq. (59) represents a new “soliton-type
solution” for η (in Eq. 49). Using the approximation eα

2z
=

1+α2z, this solution for φ (using Eq. 56) satisfies Eq. (52)
up to terms on order α2.

If α2z is not small, one can approximate eα
2z by 1+α2z

and use a perturbation expansion y = y0+α
2y1 to compute

y1 (numerically).
Similar treatment can be applied to Eq. (55).

3.1 Linearized equations and solutions

To obtain a real solution for φ, we neglect the φ2 term in
Eqs. (54) and (55) as being of second order. These approxi-
mations linearize Eqs. (52) and (53) and yield (respectively)

∇
2φ− 2α2 ∂φ

∂z
+N2φ = 0, (60)

∇
2φ− 2α2 ∂φ

∂z
+M2φ = 0. (61)

These equations can be solved using separation of variables.
Due to the similarity between Eqs. (60) and (61) we discuss
henceforth the solution procedure for Eq. (60) only.
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If we substitute φ = f (x)g(z) into Eq. (60) and perform
separation of variables, we obtain the following equations for
f and g:

d2f

dx2 +ω
2f = 0, (62)

d2g

dx2 − 2α2 dg
dz
+ (N2

−ω2)g = 0. (63)

Hence,

fω = A(ω)e
iωx
+B(ω)e−iωx, (64)

gω = e
α2z
(
C1(ω)e

iνz
+C2(ω)e

−iνz
)
, (65)

where C1 and C2 are constants and ν =
√
N2−α4−ω2.

Hence for a wave to exist (in the z-direction) we must have
N2
≥ α4
+ω2. In addition the wave amplitude increases with

height by a factor of eα
2z.

Similarly to Eq. (61) we obtain the same expression for
f (x) and

gω = e
α2z(C3(ω)e

iλz
+C4(ω)e

−iλz) (66)

where λ=
√
M2−α4−ω2.

The general solution of Eq. (60) can be written as

φ =

eα
2z

∫
[(D1(ω)e

i(νz+ωx)
+D2(ω)e

−i(νz+ωx)
]dω

+ eα
2z

∫
[D3(ω)e

i(νz−ωx)
+D4(ω)e

−i(νz−ωx)
]d.ω (67)

Since the exponents multiplying D1 and D2 are conjugates,
it follows that for φ to be real we must haveD1 =D2 (where
the bar stands for complex conjugation). Similarly we must
have D3 =D4.

The radiation boundary condition at z→∞ requires that
the group velocity of the outgoing wave is positive. For a
hydrostatic flow the dispersion relation is given by

λ(ω)= ω−
sgn(ν)Nω

ν

and the group velocity is

vg =
∂λ

∂ν
=

sgn(ν)Nω
ν2 .

Hence vg > 0 if νω > 0.
Since the integration in Eq. (67) is over positive ω, it fol-

lows then that the last two terms in this equation must be zero
(νω < 0).

To satisfy boundary condition (45), we observe (using
Eq. 51) that

η =−
ln(1+φ)
α2 . (68)

Hence the boundary condition (45) becomes

φ(x,0)= eα
2τh(x)

− 1≈ α2τh(x). (69)

It follows then from Eq. (67) that∫
2ReD1(ω)cos(ωx)dω

−

∫
2ImD1(ω)sin(ωx)dω = α2τh(x). (70)

This can be satisfied by standard Fourier integral expansion
of h(x).

The special case µ= 0 was treated in detail in
Humi (2004).

3.2 Application

To examine the application of the formulas derived above,
we consider the flow over a “witch of Agnesi” hill where the
height of the topography is given by

h(x)=
a2

(a2+ x2)
. (71)

The Fourier integral expansion of h(x) is

h(x)=

∞∫
0

A(ω)cos(ωx)dω (72)

where

A(ω)= ae−aω.

Using Eq. (70), this implies that ImD1 = 0 and

D1(ω)=
α2τA(ω)

2
. (73)

Substituting this result in Eq. (67) yields

φ = eα
2z

{∫
[D1(ω)e

i(νz+ωx)
+D2(ω)e

−i(νz+ωx)
]dω

}
. (74)

Hence,

φ = α2τeα
2z

∫
e−aωcos(νz+ωx)dω. (75)

From this expression we can compute η using Eq. (68). Fig-
ure 1 displays the solution for η for isothermal flow with
N = 1.5, β = 0.01, a = 1, and τ = 1. Figure 2 displays the
solution for η for non-isothermal flow with the same param-
eters as in Fig. 1 but with M = 2. These plots demonstrate
the dependence of the gravity wave amplitude on the height
and the impact that non-isothermal flow might have on the
direction and amplitude of the wave.
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Figure 1. Contour plot of η for isothermal flow over a topography.

4 Solutions with shear

We consider here a base flow with u= z, i.e., ψ(−∞,z)=
z2. Using Eq. (22) to compute G(ψ), we find that

G(ψ)= 2−N2(ψ1/2
+ 2βψ). (76)

Long’s equation (22) (with µ 6= 0) becomes

ψzz+µ
2ψxx −N

2(ψ)

[
z+

β

2
(ψ2

z +µ
2ψ2

x )

]
= 2−N2(ψ1/2

+ 2βψ). (77)

Applying the transformation x = x
µ

, we obtain (after drop-
ping the bars)

(ψzz−α
2ψ2

z )+ (ψxx −α
2ψ2

x )−N
2z

= 2−N2(ψ1/2
+ 2βψ). (78)

For a perturbation η from the base flow, i.e., ψ = z2
+ η, we

obtain the following equation (where the square root was lin-
earized assuming |η| � 1)):

ηzz− 4α2zηz−α
2(ηz)

2
+ ηxx

−α2(ηx)
2
+

(
4α2
+
N2

2z

)
η = 0. (79)

We now introduce the transformation

φ = e−α
2η
− b (80)

where b 6= 0 is a parameter to be determined later. Applying
this transformation to Eq. (79) and making the approxima-
tion ln(b+φ)= ln(b)+ φ

b
(assuming |φ| � b) leads to the

x

z

 

 

−6 −4 −2 0 2 4 6 8 10 12

2

4

6

8

10

12

14

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Contour plot of η for non-isothermal flow over a topogra-
phy.

following:

2bzφzz+ 2bzφxx − 8bα2z2φz

+ (8α2z+N2)[φ2
+ b(ln(b)+ 1)φ+ b2 ln(b)] = 0. (81)

Dropping the nonlinear term in φ2 and letting b = e−1 (to
suppress the term containing φ), Eq. (81) becomes

2zφzz+ 2zφxx − 8α2z2φz− e
−1(8α2z+N2)= 0. (82)

A particular solution φp of this (linear) equation is
(Abramowitz and Stegun, 1974)

φp =−
1
4

∫
e2α2z2

−1
[−4α

√
2π erf(

√
2αz)

+N20(0,2α2z2)]dz. (83)

The homogeneous part of Eq. (82) can be solved by sepa-
ration of variables, viz. φ = f (x)g(z), where f (x) satisfies
Eq. (62). The resulting equation for g(z) has an analytic solu-
tion in terms of Kummer functions (Abramowitz and Stegun,
1974).

g(z)= C1zKummerM
(
ν1,

3
2
,2α2z2

)
+C2zKummerU

(
ν1,

3
2
,2α2z2

)
(84)

where ν1 =
4α2
+ω2

8α2 .
For µ= 0 the equation for the perturbation η is

ηzz− 4α2zηz−α
2(ηz)

2
+ η

(
N2

z
+ 4α2

)
= 0. (85)

Applying the transformation Eq. (80) to Eq. (85) with b =
e−1 and omitting the nonlinear term in φ2, we obtain for φ
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the same equation as Eq. (82) without the derivatives with
respect to x. A particular solution of this equation is given
by Eq. (83), while the solution of the homogeneous equation
is

φ(z)= c1 erf(i
√

2αz)+ c2 (86)

where c1 and c2 are constants.

5 Summary and conclusions

Computing numerical solutions for Long’s equation has al-
ways been a challenge, even in some (singular) limiting
cases. In this paper we introduced a transformation of this
equation which under mathematically acceptable approxima-
tions leads to analytic expressions for the solutions. In par-
ticular, these solutions capture the dependence of the wave
amplitude on the height.

The paper also provides an extension of Long’s equation to
the case where the atmospheric flow is not isothermal. This
new equation can be solved analytically by the same trans-
formation that is used for Long’s equation.

Data availability. The MATLAB programs used to generate the
plots in this paper are available from the author upon request.
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