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Abstract 

This project developed and tested a proof-of-concept of a smartphone-based system for 

classification of balls and strikes in the game of baseball. To demonstrate the feasibility of this 

idea, an automated system was developed to determine if a pitch in the game of baseball was a 

ball or strike. The system consisted of six main steps: data collection, data pre-processing, image 

classification, object detection, parametric estimation, and pitch classification. Data collection 

consisted of recording pitches at 240 frames per second at 1080p resolution with an iPhone 8+ 

camera facing upwards from a home plate. In the data pre-processing stage, the frames were 

extracted from each video and then sorted into two categories: baseball present and baseball not 

present. Frames were classified with a convolutional neural network trained to automatically 

classify whether a baseball was present or baseball was not present. For object detection, the 

baseball’s pixel width and (x, y) pixel location were determined by removing noise and sending 

the frames through a sequence of filtering methods. For parametric estimation, equations were 

empirically derived to estimate the 3D (x, y, z) coordinates of the baseball in each frame in units 

of inches from the previously estimated (x, y) pixel location and pixel width. These estimates 

were then extrapolated from multiple frames to then calculate a best fit line for the path of the 

baseball for a given pitch. Finally, the pitch was classified as a ball or a strike by determining if 

the best fit line intersected the strike zone volume. If an intersection was detected, the pitch was 

classified as a strike. Otherwise, it was classified as a ball. The system successfully outputs a 

pitch classification utilizing the input from a smartphone camera. 
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Executive Summary 

 In the game of baseball, current professional systems used to call balls and strikes are 

expensive and typically require careful and professional installation. These systems are not 

practical for applications outside of the professional leagues, so an umpire’s call is never able to 

be examined for validity. This opens a gap for an inexpensive and accurate solution to calling 

balls and strikes. The solution was to develop an inexpensive and accurate way to detect and 

parametrically estimate the baseball’s location using video captured by a smartphone installed in 

a home plate. The chosen approach was to examine currently implemented systems, which 

consisted of inertial measurement units, camera-based, and radar-based systems. After 

investigating the prior art, other potential system implementations were investigated, such as 

radio-frequency identification tags, hall effect sensors, infrared sensors, ultrasonic sensors, and 

smartphone cameras utilizing machine learning techniques. A system based on a smartphone 

camera and machine learning techniques proved to be the ideal solution after completing a value 

analysis that compared each option. 

An iPhone 8+ with a 240 frames per second HD video recording capability and fisheye 

lens was placed in a custom home plate and was used to record pitches. Six hundred 1920x1080 

pixel frames were extracted in greyscale, downscaled to 200x200 pixels, and sorted into two 

categories: baseball present and baseball not present. A training dataset of 480 frames was used 

to train a convolutional neural network (CNN) and a testing dataset of 120 frames was used to 

test the CNN’s accuracy. A testing accuracy of approximately 90% was achieved. Once a 

baseball is detected by the trained CNN, the next step processes full-resolution grayscale frames 

to estimate the baseball’s (x, y) pixel coordinates as well as the pixel width of the baseball. This 

process was automated and coded in Python. The frames classified as containing a baseball had 

the background removed and were filtered to remove noise. The remaining pixel clusters, one of 

which being the baseball, were sent through an area and curvature constraint outputting the 

baseball’s width and (x, y) center location in pixels. Through controlled experiments with known 

ground-truth baseball positions, equations were empirically generated to derive the relationship 

between the baseball’s width and (x, y) pixel location in the image to the baseball’s real world 

(x, y, z) coordinates in inches. From here, a 3D best fit line was drawn through the path of the 

baseball by using Principal Component Analysis. Lastly, if the baseball path intersected the 
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strike zone volume, the pitch was classified as a strike, and if not, the pitch was classified as a 

ball. By going from raw smartphone video to an outputted binary pitch classification of ball or 

strike, this project provided a proof-of-concept study establishing the framework for an 

inexpensive and accurate system for calling balls and strikes in the game of baseball. 
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1. Introduction 

The Major League Baseball Association (MLB) uses four umpires to manage a 

professional baseball game. The umpire behind the home plate judges if a pitch is a strike or a 

ball. A strike is a pitch that intersects the strike zone volume seen below in Figure 1, and a ball is 

a pitch that does not. The validity of an umpire’s call can currently be examined with 

professional systems. These professional systems are expensive and require careful, professional, 

and often permanent setup. These systems are not practical for lower-level baseball leagues with 

less money or less staff. Therefore, this project fills a gap in the market by establishing an 

accurate and inexpensive system that can call balls and strikes.   

 

 

Figure 1: Volume of strike, according to batters’ dimensions [1]. 

 

 The strike zone volume varies depending on the player, but its cross-sectional surface 

area is always fixed. The dimensions used for the cross-sectional surface area come from the 

dimensions of the home plate shown in Figure 2. Defining this area is crucial to ultimately 

determining a strike or ball. Figure 1 describes how the volume of the strike zone would change 

depending on player height, by showing the specific strike zone for the player in that image. The 

strike zone upper height lines up with the midpoint of the batter’s chest, and the lower height 
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lines up with the bottom of the batter’s kneecap. That height difference is what defines the strike 

zone volume, but this dimension is approximated by the umpire during gameplay, which adds in 

a degree of subjectivity. 

 

Figure 2: Dimensions of an MLB regulation home plate (all measurements in inches) [2]. 

1.1 Project Statement and Justification 

While a full study of the prior art is provided in Section 2, the following table 

summarizes the various systems available at the time of this report that can be used for 

automatically determining balls and strikes in baseball. 

 

Table 1: Summary of prior art seen in Section 2 

Product Estimated Price Setup Used In-Game 

PITCHf/x $30,000+ Professional yes 

Strike Smart Baseball $129.99 Amateur no 

PitchTracker $99+ Amateur no 

TrackMan $30,000+ Professional yes 

FlightScope Strike $18,000 Professional yes 

Rapsodo Baseball $3,000 Professional yes 
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From Table 1 above, there was no inexpensive and easy-to-use system that could remove the 

ambiguity of pitch calls in-game. Therefore, the purpose of this project was to develop an 

inexpensive and accurate way to detect and parametrically estimate a baseball’s location. Only 

MLB teams have the means and resources to use high end camera systems during practice and 

play because these systems are expensive and typically unavailable to non-professional teams. 

Currently, there is no inexpensive and easy-to-use system which removes ambiguity of pitch 

calls. When non-professional baseball teams practice, hiring an umpire to call balls and strikes is 

not feasible, so teams lack the precision of a professional. The precision of these professionals is 

still subject to human error and influenced by the professional players in the game. “While the 

strike zone is clearly set by the MLB rulebook, good pitchers and catchers will work together to 

flirt with the edges of an umpire’s strike zone, thereby expanding it over the course of the game 

[3].” Implementing an accurate, inexpensive, and automated system could alleviate the problem 

of a subjective strike zone that changes over the course of a game. The proposed design 

determines if the pitch was a strike or a ball without the need for an umpire behind home plate. 

The current implementation for this application exists, and it uses high performance cameras, 

inertial measurement units (IMUs), or radar-based systems to record the game. Of these systems, 

the least expensive system that can be used during gameplay costs $3,000 [4]. There is a need to 

develop a system that is accurate, inexpensive, and easy-to-use. The system also needs to use a 

standard baseball and be incorporated into the game without modifying the game itself.  

The ability to locate a baseball in 3D space and parametrically estimate the baseball’s 

location follows a general process that can be applied to other fields as well. Object detection 

and parametric estimation can be used to locate missiles, flying vehicles, or underwater vessels 

for a military. Staying in the sports domain, object detection can be used in other sports such as 

basketball, soccer, football, hockey, or cricket. In security, it can be used to track a fleeing 

perpetrator or a stolen vehicle. There are many applications where the general principles of 

object detection and parametric estimation apply. A custom, accurate, and inexpensive solution 

can be applied to these fields as well. Specifically, this project addresses the gap in affordable 

and accurate technology for a strike/ball detection system.  
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2. Background 

The process to create a smart home plate system that can detect and parametrically 

estimate a baseball began with investigating currently implemented systems. Once the current 

systems’ pros and cons were classified, multiple sensor technologies were researched to find 

other feasible implementations for a smart home plate application. This approach led to the 

consideration of inertial measurement units, radio-frequency identification tags, hall effect 

sensors, infrared sensors, ultrasonic sensors, and a smartphone camera. Each of these sensors 

were given a score between 1 and 10 for seven different criteria: detection/position accuracy, 

baseball modification, affordability, sensor interference, durability, portability, and prototype 

time constraint. Through a value analysis, the best sensing method was determined for detecting 

and parametrically estimating fast-moving objects. 

2.1 Currently Implemented Systems 

High-precision cameras and machine learning techniques are currently used in major 

league baseball to track a baseball’s trajectory in real time, once the baseball is thrown by the 

pitcher. A convolutional neural network, a popular and accurate machine learning framework, is 

primarily used for image classification. This framework, along with other image and data 

processing techniques, is used in unison to produce the real-time trajectory path seen during 

professional baseball on TV. In addition to high precision cameras, IMUs and radar-based 

systems have been implemented for this application as well. Examples of currently implemented 

systems are PITCHf/x, Strike Smart Baseball, PitchTracker, TrackMan, FlightScope Strike, and 

Rapsodo Baseball. 

2.1.1 Camera-based Systems 

PITCHf/x 

PITCHf/x is a pitch tracking system that was implemented in every professional MLB 

stadium by 2006 [5]. This product uses three cameras on the field to fully track the baseball’s 

path and the batter's stance. The cameras on the first and third base line are used to judge the 

trajectory of the baseball and the camera in center field is used to determine the height of the 
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baseball in relation to the batter’s strike zone. Using image recognition, the PITCHf/x system can 

track the velocity, movement, release point, spin, and pitch locations for every pitch thrown in 

baseball [6]. The purpose of something this advanced and data-heavy is to analyze and compare 

the performances of pitchers, and even umpires, at a detailed level.  

Despite its main purpose, PITCHf/x was used in a minor league charity event game in 

2015 to officially call balls and strikes [5]. An uncommon fifth umpire was used to sit behind the 

backstop with an interactive display that notified him where the baseball crossed the plate. The 

umpire would then announce whether the pitch was a ball or a strike. This was mainly done as an 

experiment to test the accuracy of PITCHf/x in its ability to locate a baseball in real time. Ryan 

Zander, the Sportvision general manager of baseball products, claimed that the system was 

accurate to within half an inch. When it was put to the test, the players and the home plate 

umpire were impressed by the consistency of the called balls and strikes and positively reacted to 

the system [3]. This trial run showed that there was a desire for more consistency in baseball, but 

that there is still a gap between accurate and affordable systems. 

2.1.2 IMU-based Systems 

Strike Smart Baseball 

Strike is a startup that is attempting to produce a smart baseball. Their device utilizes 

gyroscopes and accelerometers, or more compactly, an IMU. Their baseball prototype can collect 

data on 3D trajectory, spin, speed, rotation axis, and pitch location. This smart baseball design 

has a small microprocessor with sensors within the baseball itself to collect this information. 

There is a Bluetooth transmitter in the baseball that transmits all the data to a smartphone 

application to be viewed. The IMU, transmitter, and other internal components prevent this 

baseball from being hit. The baseball with an application and wireless charger is projected to 

retail for $129.99 [7]. The Strike Smart Baseball can be seen in Figure 3 below. 
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Figure 3: The Strike Smart Baseball [7]. 

PitchTracker 

PitchTracker is a combination of an IMU integrated baseball and analytics tracking 

smartphone application. The smart baseball provides information about baseball velocity, spin, 

and timing information. This device allows for more in-depth evaluation about a player’s 

pitching, but it cannot be used in game due to the delicate internal electronics. The product costs 

$99.99 and requires a subscription to continue using the smartphone application after a two-week 

free trial [8]. This baseball is very similar to the Strike Smart Baseball mentioned above in terms 

of visual and electronic design. It can be seen below in Figure 4. 

 

Figure 4: Diamond Kinetics PitchTracker product [8]. 



 

 

7 
 

2.1.3 Radar-Based Systems 

TrackMan 

TrackMan baseball is a radar-based system that the MLB decided to use instead of the 

previous system, PITCHf/x. TrackMan is a high-end system that is rumored to cost around 

$30,000 dollars [9]. It only has a cost estimate, as the systems are customly installed in MLB 

stadiums and the price is not advertised [10]. It was believed that TrackMan would result in more 

accuracy than PITCHf/x, but that was not entirely true. It turned out that both systems had 

similar errors in determining horizontal baseball location. TrackMan outperformed PITCHf/x in 

velocity calculations but underperformed in vertical baseball location [10]. The systematic 

difference between the systems and the defining characteristic of TrackMan was that this system 

is radar based. It does not use a camera-based approach for object detection and formulates its 

estimates from thousands of measurements per second, compared to PITCHf/x that uses 20 

frames of the baseball during its flight path to formulate its estimates. 

TrackMan also uses an analytics system, Statcast, that allows for the collection and 

analysis of additional data, such as home run distance, average exit velocity, and pitch speed. It 

also allows you to run a full analysis of a single play. For example, the system can determine that 

the baseball was hit far into left field with an exit velocity of 100 mph and that the left fielder 

had a 0.3 second reaction time. It can also determine that an outfielder began to run 0.1 seconds 

later at an average speed of 17 mph. He reached his max speed of 20 mph before he leaped 3 feet 

off the ground to rob the hitter of a home run [11]. Statcasts’ capabilities of analysis are very 

advanced and cost the MLB tens of millions of dollars of investment [12]. High-precision 

camera systems have the capability to analyze and understand many aspects of baseball, but their 

prices are too expensive for non-professional organizations and recreational users. Below in 

Figure 5, you can see the TrackMan system using Statcast to display game analytics. 
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Figure 5: TrackMan system using Statcast analytics [13]. 

2.1.4 Combined Camera and Radar-based Systems 

 FlightScope Strike  

FlightScope is a hybrid system, originally used in the sport of golf, which is being 

repurposed for deployment into the sport of baseball. It combines video information with data 

from the radar system to provide pitch and baseball flight analytics. The data is displayed in real 

time on a tablet, which is included with the system. The FlightScope system carries a large, one-

time cost of $18,000 for the cameras, radar sensors, and tablet [6]. With its high price point, it is 

comparable to the TrackMan radar-based system. The sensor array, which is about one square 

foot in area on its face, is shown in Figure 6. 
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Figure 6: Flightscope sensor array [14]. 

Rapsodo Baseball 

Rapsodo Baseball, seen below in Figure 7 and priced at $3,000, is the most inexpensive 

system that can also be used during game play. It has the capability to provide several pitching 

metrics: location, velocity, spin, and the axis of rotation. At $3,000, this system is close to filling 

the gap in affordability. Since the product outputs these pitching metrics to a tablet or portable 

computer, access to these devices is required. Although Rapsodo Baseball is much cheaper and 

able to provide more than just strike/ball classification, this price is not practical for many high 

schools, colleges, and private leagues. 

 

Figure 7: Rapsodo system [4]. 
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2.2 Value Analysis of Potential Sensors 

There are several sensors that could be used to detect fast-moving objects. In order to 

make the best decision for the sensors, potential options were evaluated through a value analysis 

comprised of essential criteria. The ideal sensing method used for the design scored the highest 

in the detailed criteria below:  

● Detection/Position Accuracy: The ability to accurately report the (x, y, z) position of the 

desired object. A score of 5 corresponds to a sensor that can locate the object within 1 

object diameter of its actual position. 

● Baseball modification: The degree the sensor option requires modification to the 

baseball. A score of 1 corresponds to a modification so severe it prevents the use of the 

baseball in game. A score of 10 corresponds to no modification to the baseball.  

● Affordability: The ability to implement the final application in comparison to the allotted 

project budget of $600. A score of 5 corresponds to sensors, which uses the entirety of 

the available project budget. A score of 1 corresponds to a design which greatly exceeds 

the available budget, and a score of 10 uses none of the available budget. 

● Sensor interference: The sensor’s level of interference with other sensors in the sensors 

and the environment. A score of 1 corresponds to complete prevention of other sensors, 

and a score of 10 corresponds to a sensor which causes no interference within sensors. 

● Durability: The sensor’s likelihood of receiving damage when implemented in the 

application’s use. A score of 1 corresponds to an incredibly vulnerable sensor that is 

easily damaged, and a 10 corresponds to near immunity to any damage it may receive 

during a baseball game. 

● Portability: The ease of setup/transportation of the sensors. A score of 1 corresponds to a 

non-portable sensor, and a score of 10 corresponds to a sensor which is lightweight and 

easily deployable. 

● Prototype Time Constraint: The feasibility of building a functioning sensor prototype 

within a 7-14-week period. A score of 1 corresponds to a sensing method which exceeds 

14 weeks to build, test, and troubleshoot. A score of 10 corresponds to a sensor, which 

subceeds seven weeks to build, test, and troubleshoot. 
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2.2.1 Methods Modifying the Baseball 

An option for detection was to use sensing methods that physically modified the baseball. 

This included the addition of transmitters or detectable materials, such as metals, passive sensors, 

and magnets, to an object to allow for easier sensing. In the following sections, currently 

implemented baseball-modification solutions were investigated as well as the feasibility of other 

baseball modification techniques, such as radio-frequency identification (RFID) tags and hall 

effect sensors. While these solutions have high accuracy, they also modify the baseball to such a 

degree that it is unusable. These points are outlined in the value analysis in the following 

subsection. 

Inertial Measurement Unit 

Embedding an IMU inside a baseball would provide a suitable sensor suite for position 

and trajectory information to determine a strike or ball. An IMU sensor is mainly a combination 

of gyroscopes and accelerometers. By measuring the direction of acceleration and changes in 

movement, it is possible to track an object during its flight path. The baseball would need to be 

redesigned, as to contain the IMU sensor(s) and maintain the properties that a traditional baseball 

possesses: center of mass, structural integrity, feel and contour, etc.  

Table 2 below shows a value analysis performed on the viability of implementing an 

IMU sensor system for a Smart Home Plate application. The largest downside was the baseball 

modification, since this design required the design of a new baseball that could house the IMU 

sensors. Additionally, this smart baseball was not designed to be hit or used in an actual game of 

baseball, but instead for practicing, viewing, and analyzing pitch data [7]. Ultimately, the 

inclusion of an IMU inside the baseball would not be sufficient for the sensor implementation.  
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Table 2: Value analysis of IMU for a Smart Home Plate application. 

Criteria  IMU 

Detection/Position Accuracy 10 

Baseball Modification 0 

Affordability 8 

Sensor Interference 10 

Durability 0 

Portability 9 

Prototype Time Constraint 5 

Total 42 

  

RFID Passive Sensor 

Radio-frequency identification (RFID) utilizes electromagnetic fields for local object 

detection and consists of a reader and a tag. Tags can be active or passive: active tags emit their 

own radio-frequency (RF) signal detected by the reader, whereas passive tags typically consist of 

just an antenna excited by the reader and could be placed on a baseball for detection. As active 

tags typically need a power source, such as a battery, they were not considered for use in an 

RFID implementation. Alternatively, passive tags use the energy emitted from the reader to send 

a return signal. As a result, the reader must emit a very powerful signal to effectively power the 

RFID passive tag. Battery assisted passive tags boost the tag signal when affected by the RFID 

reader signal, but as previously mentioned, this was not suitable for this application. One 

advantage of RFID was that it did not need line-of-sight between the reader and tag to function.  

Regarding accuracy, RFID tags have two types: read accuracy and location accuracy. 

Read accuracy is described as the percentage of tags which will successfully be read if they are 

sent near a RFID reader. Location accuracy is the ability to triangulate the location of a tag from 

a reader. Most passive tags will only ever notify the reader that they are in the read field, not 

where. Some more sophisticated systems have real-time location functionality which can 

triangulate the tag to a few centimeters using ultra-wideband frequency [15]. The NFL already 
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uses RFID for object and player tracking but sizing this active RFID implementation down to fit 

a baseball is not realistic [16].  

Table 3 below shows a value analysis performed on the viability of implementing a 

passive RFID sensor system for a Smart Home Plate application. The largest downsides to the 

RFID option were that it required modification of the baseball, and that the modifications could 

be damaged if the baseball was struck by a bat. RFID tags could be placed on the surface of the 

baseball, but this option was also not ideal. With regards to durability, RFID tags contain delicate 

circuitry and antennae, which could receive enough damage to impair their functionality. RFID 

passive readers typically fall in the price range of less than $100, where bulk tags are 

inexpensive at $125 for a roll of 500 tags [17], [18]. 

 

Table 3: Value analysis of passive RFID sensors for a Smart Home Plate application. 

Criteria RFID 

Detection/Position Accuracy 9 

Baseball Modification 4 

Affordability 5 

Sensor Interference 10 

Durability 2 

Portability 4 

Prototype Time Constraint 3 

Total 37 
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Hall Effect Sensor 

Another method for tracking a moving object while modifying the baseball, was through 

the implementation of hall effect sensors. At their most basic level, hall effect sensors detect the 

presence of a magnetic field. Figure 8 below shows how the presence of an object’s magnetic 

field polarizes the metal plate in the hall effect sensor–creating a readable voltage. 

 

 

Figure 8: Diagram of hall effect sensor functionality [19]. 

 

There were two ways hall effect sensors could be implemented to detect and locate a 

baseball: coat the baseball internally with magnetic metallic paint or coat the baseball in 

ferromagnetic metallic paint. To triangulate a magnetic baseball, the resulting voltage caused by 

the presence of the baseball would be measured at various locations in 3D space around each 

linear hall effect sensor to generate a model that can predict the baseball’s location. If the 

baseball was a ferromagnetic object, the hall effect sensors always needed to be biased by a fixed 

magnet, unlike Figure 8 above. This fixed magnet gives the hall effect sensor a specific base 

voltage value, so it can then detect any variation in the magnetic field caused by the presence of 

a ferromagnetic object [20]. This method was not viable for triangulation of a baseball because 

the magnets used on each hall effect sensor would interfere with each other–resulting in 

inaccurate detection of a ferromagnetic baseball.   

Table 4 below shows a value analysis performed on the viability of implementing a hall 

effect sensor system for a Smart Home Plate application. As mentioned above, sensor 

interference makes detecting a moving metallic object impossible while other metallic objects or 
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magnets are already present. Even though potential hall effect sensors were an affordable sensor 

(cost varying from less than $1 to roughly $100), methods that modify the baseball are 

unfavorable [21], [22]. Any method that modifies the baseball makes the project’s future 

implementation harder, requiring the design of a new baseball with the appropriate magnetic 

components. 

 

Table 4: Value analysis of hall effect sensors for a Smart Home Plate application. 

Criteria Hall Effect 

Detection/Position Accuracy 7 

Baseball Modification 4 

Affordability 7 

Sensor Interference 3 

Durability 7 

Portability 4 

Prototype Time Constraint 3 

Total 35 

 

2.2.2 Methods Not Modifying the Baseball 

A non-modifying approach would be most ideal, as it avoids tampering with the physical 

properties of the baseball. The current approach that the MLB takes for autonomously detecting 

balls and strikes is a camera-based approach, and it uses real-time image recognition [5]. There 

are several other potential approaches that could determine if the pitch is a strike or ball without 

modifying the baseball, such as infrared proximity sensors, ultrasonic proximity sensors, or using 

a smartphone camera as a sensor. The optimal solution is one that can achieve high accuracy, 

while remaining affordable and minimally disruptive to the game. 

Infrared Proximity Sensor 

Infrared detection works based on the detection of infrared light from the target object to 

an infrared photovoltaic sensor. Any object which has a temperature above 0 Kelvin will emit 
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some degree of infrared radiation. Mechanisms by which the object can be detected are due to 

any changes in intensity of infrared light, such as passive emission, reflection of actively emitted 

infrared light, and detection of a shadows cast by an object naturally emitted infrared light. This 

sensor is less accurate in reporting object distance from the sensor relative to the other sensor 

options due the nature of the detection medium. One experiment using infrared sensors to 

identify and resolve airborne, blob-shaped objects found that fast moving objects were unable to 

be accurately resolved by infrared arrays [23].  

Table 5 below shows a value analysis performed on the viability of implementing an 

infrared sensor system for a Smart Home Plate application. Under perfect test conditions in 

experiment above, the implementation would not detect a moving baseball at high speeds and 

distances greater than 30 cm away, so this sensor receives a low score for detection and position 

accuracy [24]. Also, an array of infrared sensors would likely require several dozen small 

sensors, which individually cost less than $5 [25].  

 

Table 5: Value analysis of infrared sensors for a Smart Home Plate application. 

Criteria Infrared 

Detection/Position Accuracy 1 

Baseball Modification 10 

Affordability 5 

Sensor Interference 5 

Durability 3 

Portability 7 

Prototype Time Constraint 5 

Total 36 

 

Ultrasonic Proximity Sensor 

The ultrasonic proximity sensor sends out and receives sound waves with an ultrasonic 

transmitter and a receiver. The benefits of ultrasonic sensors are that they have wide angles of 

detection and small minimum distances for detection. Some commonly used, cost effective 
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ultrasonic proximity sensors are depicted below with their corresponding prices in Figure 9 and 

Figure 10.  

 

 

Figure 9: HC-SR05 Ultrasonic proximity sensor: $6.99 (left) [26].  

Figure 10: UT2F-EM-0A Ultrasonic proximity sensor: $274 (right) [27]. 

 

Several factors are used to distinguish the capabilities of ultrasonic proximity sensors. 

Sensors operating at lower frequencies, such as those near 40 kHz, can detect objects at further 

distances. Conversely, sensors operating at higher frequencies, such as those near 200 kHz, 

cannot detect these same objects; their detection range is much shorter.  

The feasibility of using multiple ultrasonic sensors to detect and locate fast-moving 

objects depends on the ability to send and receive multiple signals from multiple transmitters and 

receivers at once without interference. Frequency hopping spread spectrum (FHSS) and direct 

sequence spread spectrum (DSSS) techniques have been implemented in sensor arrays with 

many signals to deal with discerning between multiple signals. FHSS involves sending out 

signals at different frequencies at different time intervals whereas DSSS essentially adds unique 

noise to each signal. Both techniques could theoretically be used to discern between two signals 

[28]. 

Table 6 below shows a value analysis performed on the viability of implementing an 

ultrasonic sensor system for a Smart Home Plate application. The ideal sensors would be able to 

be covered, as weather, people, and dirt can damage the sensors. This is not a possibility with the 

ultrasonic sensors, since they need to send ultrasonic signals upward without any obstructions 

preventing the sound waves from reflecting off the baseball. Secondly, affordability is an issue 

because the price of a sufficiently accurate ultrasonic sensor such as the one above in Figure 10, 
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and the budget would be constrained if this this sensor was selected. Therefore, durability, 

affordability, and time constraint received low scores in the value analysis; however, this sensor 

excels in its ability to provide a solution that would not modify the baseball 

 

Table 6: Value analysis of ultrasonic sensors for a Smart Home Plate application. 

Criteria Ultrasonic 

Detection/Position Accuracy 8 

Baseball Modification 10 

Affordability 5 

Sensor Interference 8 

Durability 3 

Portability 7 

Prototype Time Constraint 5 

Total 46 

 

High-Precision Cameras 

A value analysis of the high-precision camera-based systems mentioned above in Section 

2.1 can be seen below in Table 7. The cheapest system implementation on the market is Rapsodo 

Baseball, and it costs $3,000. The camera used in that system, as well as the peripheral 

technology required, would cause a serious budget constraint. This would also result in a system 

that the consumer is not comfortable purchasing, as its cost is too high. Working with a high-

precision camera would not result in a prototype that can be constructed within 14 weeks, as 

there is a large learning curve related to programming the foreign hardware. Therefore, 

affordability and prototype time constraint received low scores in the value analysis. 
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Table 7: Value analysis of a high-precision camera for a Smart Home Plate application. 

Criteria High-Precision Camera 

Detection/Position Accuracy 9 

Baseball Modification 10 

Affordability 1 

Sensor Interference 10 

Durability 10 

Portability 2 

Prototype Time Constraint 3 

Total 45 

Smartphone Camera 

Detecting fast-moving objects with a smartphone camera was another potential option for 

the application. Most modern smartphone cameras have slow-motion 240 fps video capabilities. 

PITCHf/x is an example of using camera-based technology to locate an image. So, the method 

seems possible; however, the viewable area on a smartphone changes depending on the phone 

and specific video capture setting selected. Even with equations describing the field-of-view 

(FOV) of a smartphone camera, the settings alter the result. It also proved to be extremely 

difficult to determine through camera specifications if a smartphone camera would be able to see 

the entire strike zone when placed on home plate facing upwards. A controlled experiment was 

performed to collect the required information to be able to perform a value analysis on this 

sensor type. With an iPhone 8+ readily accessible, we determined that with the 240fps setting 

turned on, the bottom of the strike zone was not fully visible. Since a fisheye lens was also easily 

accessible, we used that to increase the FOV. The resulting image in Figure 11 shows the view of 

a strike zone as seen through the iPhone 8+ by moving a home plate away from the smartphone 

in one-foot increments. 
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Figure 11: Strike zone through iPhone 8+ camera at 1-foot increments from camera. 

 

Table 8 below shows a value analysis performed on the viability of implementing a 

smartphone camera for a Smart Home Plate application. While portability and the prototype time 

constraint were challenges to be faced, this option excelled in not modifying the baseball since a 

standard baseball could be used. It exceeded in affordability, as people are assumed to already 

own a smartphone. It exceeded in sensor interference because the Bluetooth built in on 

smartphones provides little to no interference. Also, it exceeded in durability and portability, as 

the phone could be inserted into a customly designed home plate that would also allow the user 

to remove their phone after use.  
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Table 8: Value analysis of a smartphone camera for a Smart Home Plate application. 

Criteria Smartphone Camera 

Detection/Position Accuracy 9 

Baseball Modification 10 

Affordability 10 

Sensor Interference 10 

Durability 9 

Portability 8 

Prototype Time Constraint 6 

Total 62 

 

2.2.3 Value Analysis  

After examining the investigated options for detecting fast-moving objects, it was 

necessary to compare the options and choose which approach best aligned with the process’ 

criteria. The value analysis in Table 9 shows every investigated option’s criteria and 

corresponding score. 
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Table 9: Total value analysis of sensor possibilities for a Smart Home Plate application. 

Criteria  IMU RFID Hall Effect Infrared 

 

Ultrasonic 

High-Precision 

Camera 

Smartphone 

Camera 

Detection/Position Accuracy 10 9 7 1 8 9 9 

Baseball Modification 0 4 4 10 10 10 10 

Affordability 8 5 7 5 5 1 10 

Sensor Interference 10 10 3 5 8 10 10 

Durability 0 2 7 3 3 10 9 

Portability 9 4 4 7 7 2 8 

Prototype Time Constraint 5 3 3 5 5 3 6 

Total 42 37 35 36 46 45 62 

 

Based on the value proposition, the ideal solution for a system that can detect fast-moving 

objects for a smart home plate application is to use a smartphone camera.    
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3. Methodology 

Given the value analysis performed in Section 2.2, this section describes the detailed 

methodology of our approach to develop a proof-of-concept smartphone-based system for balls 

and strikes classification. Overall, the system must be designed to process raw video from a 

smartphone camera and produce a binary output corresponding to a ball or a strike when a pitch 

is detected.  

 

 

Figure 12: System flowchart. 

 

Figure 12 provides an overview of the methods used to detect a pitch, estimate the 

position and path of the baseball, and classify the pitch as a ball or a strike. A thrown pitch was 

captured by a continuously filming smartphone with a fisheye lens in slow-motion video. This 

video goes through a pre-conditioning process to extract every frame of the slow-motion video 

and prepare the frames for both image classification and object detection. The image 

classification block utilizes a trained convolutional neural network to classify an image as either 

“Baseball Not Present” or “Baseball Present.” To reduce the computation needed for 

classification, the extracted frames were pre-processed by making the image grayscale and 

downsizing the number of pixels. All the image IDs classified as “Baseball Present” are sent into 

an AND gate with the original distorted, full sized frames. This allowed the object detection 

block to only receive high resolution frames classified as “Baseball Present.” Once the baseball 

was detected by the object detection block, it outputs the (x, y) coordinates in pixels of the 

baseball’s center point and the baseball’s width in pixels. The parametric estimation block 

accepts these inputs, all in units of pixels, and then outputs an estimation of (x, y, z) coordinates 
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of the baseball’s center point in inches in a coordinate system where the camera lens was the 

origin at (0,0,0). With this information, the pitch classification block compares the 3D location of 

the baseball and the 3D volume that makes up the strike zone and concludes that the baseball 

was either a “Ball” or a “Strike.” One of the main contributions of this project was a full proof-

of-concept implementation of these steps on a PC. The following sections will delve deeper into 

how each of these blocks were implemented in the Smart Home Plate system.  

3.1 Data Collection 

Data collection for image classification was performed to provide training data for an 

image classification convolutional neural network. The phone that was used for data collection 

was the iPhone8+ because it met the OS requirement and was capable of filming slow-motion 

videos at 240 fps at 1080p. The iPhone 8+ could, therefore, be used for future work on a smart 

home plate application.  To gather the pitch data, the phone was used in combination with a 

fisheye lens placed on the rear camera facing upwards with the screen towards the ground as 

seen in Figure 13.  

 

 

Figure 13: Setup of smartphone with fisheye lens with foam baseball plate for reference. 
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The slow-motion video capture feature of the iPhone 8+ was used to obtain video of 

pitches thrown over the phone. This feature recorded at a frame rate of 240 fps (one frame every 

4.2 ms). Data collection took place on WPI’s elevated sports field seen below in both Figure 14 

and Figure 15. This was done to minimize the number of objects in the image other than the 

baseball, unlike an indoor sporting area such as a gymnasium. A digital range finding tool was 

used to determine the phone orientation and placement. The pitcher was set up approximately 50 

ft from the phone as seen in Figure 14, which was shorter than the standard MLB pitching 

distance. This was done for pitching accuracy purposes and to help simplify the data collection 

process.  

 

 

Figure 14: Image of team member facing the phone (left).  

Figure 15: Image showing the field the data collection took place on (right). 

 

The data collection had to be done during different times of day facing different 

directions to prevent shadows from biasing the data used to in the convolutional neural network 

dataset. Many sessions were conducted to ensure enough frames to train the image classification 

network were collected. 

3.2 Data Pre-processing 

To process these individual frames, VideoLoupe, a 3rd party video processing program, 

was used to perform frame extraction, a process which individually separates all the images of a 

video to prepare them for image processing. Images were extracted using a mono filter to reduce 
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the amount of information they carried by a factor of three. Instead of an intensity value for each 

red, green, and blue pixel, there was now only one light intensity value from 0 (black) to 255 

(white) seen in Figure 16. 

 

 

Figure 16: Sample image after frame extraction and mono conversion. 

 

The images were kept in chronological order with respect to their source video for 

purposes which will be further explained in the methodology. The mono images were then 

separated into a training set and a test set for the convolutional neural network. A total of 600 

images were manually processed before being fed into a convolutional neural network. Half of 

the dataset consisted of images without a baseball, and the other half consisted of images with a 

baseball present. This 600-image dataset was split into 480 images for training the neural 

network, and 120 for testing. The next data-preprocessing step for Figure 16 above would be to 

downsize and reshape the image, shown in Figure 17, for input into the image classification 

network. The image in Figure 17 appears to be distorted because the aspect ratio changed from 

16:9 (or 1920x1080 pixels) down to 1:1 (or 200x200 pixels). It was critical to preprocess the 

frames to be this small to allow for desired computation speed from the convolutional neural 

network block. 
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Figure 17: A downsized image for input into the image classification neural network. 

3.3 Image Classification 

The next step was to determine which processed frames contain a baseball. This involved 

sending individual frames through a tool that outputs the frame’s class: “Baseball Present” or 

“Baseball Not Present.” The tool used to determine these outputs was a convolutional neural 

network (CNN). 

A CNN, often used for image classification as they produce results with high accuracy, 

was constructed for determining whether there was a baseball in a specific image or whether 

there was nothing but the background. The CNN has a general structure seen in Figure 18, with 

the dimensions of a single image as it goes through the network located above the flowchart. 

 

 

Figure 18: CNN flowchart. 

  

The input layer consisted of a 200x200 array of integers from 0 to 255 corresponding to 

the monochrome images described in Section 3.2. Next there was a convolutional layer that 

utilized 16 different kernels (3 x 3 grouping of pixels that slides over the image to locate the 

desired qualities that map to an appropriate output). Next, a pooling layer was used to further 
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reduce the dimensions of the image, providing an even less computationally intense array for the 

fully connected neural network. Next, there was a dropout layer, which was a regularization 

technique that prevented models from overfitting. Specifically, as the model became more 

complex, the variance increased. This meant it became very sensitive to new data, and this 

regularization technique helped reduce variance and ultimately produced better results. Finally, 

the dimensionally reduced and predictive data was sent through dense layers (a fully connected 

neural network). The job of the fully connected neural network was to map the inputted pixel 

values to either a 1 or 0 where a 1 represented a baseball being present in the image and a 0 

represented a baseball not being present in the image. This was a supervised learning problem, as 

the outputs were known and used during the training. The training consisted of sending the 

images through this network many times, as the kernels mentioned earlier were adjusted each 

time to produce kernels that accurately assisted the CNN to produce the appropriate output. 

To implement the CNN in Python, the machine learning package Keras was used with the 

TensorFlow package as a backend. A Keras Sequential Model was implemented. Additional 

layers can be added to this model to create the full flowchart in Figure 18. For the specific CNN 

used, a Sequential object was created and called “model.” Then each component mentioned 

above was added to the model using “model.add(component).” This full implementation in 

Python can be seen in the code snippet in Figure 19 below. 

 

 

Figure 19: CNN implemented in Python. 
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In total, 480 training samples were used to create a trained network, and in order to 

determine if the system accomplished this task with high accuracy, test data was run through the 

network and an accuracy score was outputted. This score described how many frames it 

accurately categorized over the total amount of frames it examined.  A testing accuracy of 

89.17% was achieved when predicting on 120 test images. 

3.4 Object Detection 

 This section explains the required steps taken after an image was classified as a having a 

baseball present. The flowchart in Figure 20 shows the steps executed on images with a ball 

present to identify the location and size of a baseball in the image. As shown in the system 

flowchart in Figure 12, this step outputted the baseball width and baseball center coordinates in 

pixels. 

 

 

Figure 20: Object detection flowchart. 

 

Once the neural network successfully classified images containing a baseball, the images 

were then sent through a mathematical model to detect the baseball’s location in 3D space. This 

task had to utilize many image conditioning techniques to differentiate the baseball from all other 

objects in the given image such as fisheye lens correction, noise subtraction, and filtering. We 

knew from experimentation that a typical 75 mph fastball would consist of 30 frames containing 

the baseball. In a future product implementing this process, once an image was classified as 
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containing a baseball, the previous 15 images and the next 45 images would be stored in an 

image buffer. This would guarantee that the entire baseball path and a background image were 

captured. This was a critical step to ensure the first image in the buffer of 60 images did not have 

a baseball and could be stored as the reference image for the specific pitch, enabling us to 

subtract the reference image from the image with a baseball. This buffer was simulated by 

manually creating a buffer and importing the images into a python environment. Before the 

subtraction was performed, a fisheye lens correction algorithm was applied to all 60 images in 

the buffer. This method was done so it would be easier to characterize the 3D coordinate location 

of the baseball in the next objective. An undistort fisheye function from the OpenCV library, 

which output weights specific to the fisheye lens to correct a distorted image, was implemented 

in Python. Applying these weights to the image took the original, circularly distorted image and 

modified it to look like a normal, square image. The 60 fisheye-corrected images were further 

processed to determine where the baseball was located in the image. In Figure 21 below, a 

distorted line appears curved before fisheye correction (shown top), and a straight undistorted 

line was outputted (shown bottom) after fisheye correction. The color difference between the 

distorted and undistorted images was not an artifact of the fisheye correction function. The 

images in Figure 21 were displayed in different plotting environments, so the color differences 

can be ignored. 

 

 

Figure 21: Distortion versus undistortion with fisheye correction. 
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A grayscale image contains pixels whose values range from 0 to 255 where 0 represents 

the color black, 127 represents gray, and 255 represents white. Therefore when taking one 

1920x1080 grayscale image and subtracting another 1920x1080 grayscale image from it, the 

result was a new 1920x1080 whose pixel values accentuate the differences between the two 

images and zero out the similarities. Next, an image containing a baseball was subtracted from 

the reference background image to isolate the baseball’s pixel location and blackout the other 

pixels. Due to noise, there are several other connected pixels resulting from the image 

subtraction. More filtering methods were then used to reduce this noise and remove the 

remaining connected pixels which were present after image subtraction. 

Filter 1: noise reduction (thresholds) 

Non-idealities are present after the subtraction; some pixels are just above and below zero, 

resulting in pixels with values [0-5] and [250-255]. To eliminate this noise, all pixels with values 

[0-5] and [250-255] were set to 0.   

Filter 2: Gaussian Filtering (Blur radius) to smooth image and remove small objects 

There are still non-idealities present in the image due to the subtraction and imperfect noise 

reduction filter, so a Gaussian blur filter was implemented to smooth the conditioned image and 

remove small objects. 

Filter 3: (ndimg.gaussian_filter object from scipy package) Connected components 

Using the resulting blurred image, the ndimg.gaussian_filter object from scipy package was used 

to classify clustered pixels as an object. The number of objects produced by the scipy package 

was determined by a threshold value: a low threshold results in few, very large objects and a high 

threshold results in many small objects.  

Filter 4: Iterate through objects and filter by area 

Iterating through all found objects in the image, check to see if the object fits within a 

predetermined area constraint that represents a baseball area between (30x30) and (350x350). 

Filter 5: iterate through objects and filter by curvature 

Iterating through all found objects that passed the area constraint, find the upper edge of the 

current object. Then, the upper edge of the found object was compared with a reference curve 

that represents the curvature of a baseball through a mean squared error (MSE) analysis. The 

object with the smallest MSE was outputted as the baseball given that the value was below a 

determined threshold of 10,000. After this filtering, the location and size of the pixel cluster 
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representing the baseball was extracted as the (x, y) pixel location of the center and the 

baseball’s width in pixels. These filtering methods can be visualized in Figures 32 and 33 in 

Section 4.4 of the results.  

3.5 Parametric Estimation 

To determine if the full strike zone falls within the smartphone camera FOV with a 

fisheye lens, the controlled experiment mentioned in Section 2.2.2 was performed. The 

relationship of how the width of an object in an image was a function of the object’s distance 

from the smartphone was formulated from this preliminary controlled experiment. Since the 

plate width and height are exactly 17 inches, the relationship between apparent size of an object 

and the object’s distance from the camera can be calculated. The relationship can be seen in 

Table 10 and Figure 22 below. 

 

Table 10: Distance from camera in inches and pixel width of the object. 
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Figure 22: Pixels vs. Distance in inches. 

 

Given only the baseball’s pixel (x, y) center position and pixel width, the baseball’s (x, y, 

z) location from the camera lens had to be accurately determined in the inches. This meant a 

solution was needed to map pixel width and (x, y) coordinates in an image to (x, y, z) (in inches) 

in 3D space, where the camera lens was located at (0, 0, 0). Figure 23 below shows the strike 

zone with the defined x, y and z axis. The black dot represents the origin and camera lens located 

at (0,0,0). This was done with the limited information extracted after the filtering stages in the 

“Object Detection” block. To characterize (x, y, z) in inches, an experiment was conducted in 

which the baseball’s (x, y, z) locations in pixels and inches, and the baseball’s width in pixels 

were known. This was accomplished by setting up the camera in a fixed position perpendicular 

to a white board table as seen below in Figure 24. 
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Figure 23: Strike zone volume with defined axes. 

 

 

Figure 24: Setup of validation experiment on table. 
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Once the camera was set up, a baseball was placed on the table in pre-measured (x, y, z) 

locations in reference to the camera lens and then recorded via slow-motion video. Recording the 

still baseball in slow-motion video was required to ensure the resolution and distortion were 

consistent with the system’s end use scenario. A total sample size of 20 baseballs in unique (x, y, 

z) locations were recorded for this controlled experiment where 15 baseballs were in different 

locations on the table and 5 baseballs were suspended from the ceiling. Each baseball’s location 

was stored in Table 11 seen below. 

 

Table 11: (x, y, z) and calculated d from controlled experiment. 

 Actual[x,y,z,d] From Experiment 

img_ID_by_order x y z calc, D 

1 9 5.3 24 26.17 

2 9 5.3 36 37.48 

3 11 5.3 48 49.53 

4 11 5.3 60 61.23 

5 13 5.3 66 67.48 

6 0 5.3 24 24.58 

7 0 5.3 36 36.39 

8 0 5.3 48 48.29 

9 0 5.3 60 60.23 

10 0 5.3 66 66.21 

11 -9 5.3 24 26.17 

12 -9 5.3 36 37.48 

13 -11 5.3 48 49.53 

14 -11 5.3 60 61.23 

15 -13 5.3 66 67.48 

16 3.125 -23.3875 53.6875 58.64 

17 10.875 -23.3875 26.125 36.71 

18 -6.875 -23.3875 34.5 42.24 

19 -12.375 -23.3875 49.5 56.13 

20 -4.4375 -23.0125 69.125 72.99 

 

 The next step of this controlled experiment was to extract a frame per baseball position 

out of the slow-motion video, undistort that image with the fisheye correction script, and then 

manually estimate the (x, y) pixel location of the baseball’s center point as well as its width in 
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pixels, thus producing the (XP, YP, WP) vector used as an input to the parametric estimation 

function. This manual image processing was completed with GIMP, a program used for image 

editing. This step was essential to create a control for the expected outputs from the “Object 

Detection” block’s filtering stages. The manually measured pixel (x, y) locations were 

normalized to reflect an origin located in the center of the image (540,960) and the widths were 

collected and stored in Table 12 seen below. After the experimental data was collected, various 

regression models were analyzed with the inputs of pixel widths and center (x, y) pixel locations 

of the baseballs to determine each baseball’s (x, y, z) location in inches. 

 

Table 12: Parameters from manual GIMP measurements (pixels). 

Measured W Measured XP Measured YP Normalized XP Normalized YP 

131 906 1113 366 153 

79 779 1027 239 67 

61 754 988 214 28 

48 711 965 171 5 

46 723 955 183 -5 

118 532 1105 -8 145 

75 538 1026 -2 66 

56 540 988 1 28 

47 542 964 2 4 

44 543 955 3 -5 

121 182 1096 -358 136 

73 310 1020 -230 60 

55 338 981 -202 21 

47 376 959 -164 -1 

45 366 950 -174 -10 

53 597 484 57 -476 

111 895 52 355 -908 

83 376 267 -164 -693 

57 341 459 -199 -501 

41 487 582 -53 -378 

 

Determining x position in inches 

In order to determine the x position in inches, the x position in pixels and the baseballs 

width in pixels were used. The relationship between the inputs and the response variable can be 



 

 

37 
 

seen in equation (1) where XI was the x position from the camera lens in inches, XP was the x 

position away from the normalized pixel origin in pixels, and W was the width of the baseball in 

pixels.   

 

𝑋𝐼  = (3.1895 ⋅  
𝑋𝑃

𝑊𝑃
) − 0.0474       (1) 

 

This model achieved an adjusted R square value of 0.996 when predicting XI values and 

comparing them to the control experiment’s actual x position in inches. The differences between 

the actual x position in inches and the predicted x position in inches can be visualized when 

viewing the histogram of errors in Figure 25 below. 

 

 

Figure 25: Histogram of errors for x in inches. 

 

Determining y position in inches 

In order to determine the y position in inches, the y position in pixels and the baseballs 

width in pixels were used to characterize YI in equation (2) below where YI was the y position 

from the camera lens in inches, YP was the y position away from the normalized pixel origin in 

pixels, and W was the width of the baseball in pixels.   

 

𝑌𝐼  = (3.0739 ⋅  
𝑌𝑃

𝑊𝑃
) + 3.7391       (2) 
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This model achieved an adjusted R square value of 0.985 when predicting YI values and 

comparing them to the controlled experiment’s actual y position in inches. The differences 

between the actual y position in inches and the predicted y position in inches can be visualized 

when viewing the histogram of errors in Figure 26 below. The errors in the y direction were 

larger than the errors in the x direction. This was due to keeping the y direction constant for most 

of the collected data. There were not enough changes in the y direction for the formulas to best 

fit the location of the baseball in the y direction. There also appears to be a bimodal distribution, 

rather than a normal distribution, which can be explained by the lack of a large sample size. With 

this in mind, more controlled data points can be collected to fit an even better model to predict 

the y coordinate in 3D space. 

 

 

Figure 26: Histogram of errors for y in inches. 

 

Determining z position in inches 

In order to determine the z position in inches, the x and y position in inches and the 

baseballs width in pixels were used to characterize ZI in equation (3) where XI was the x position 

from the camera lens in inches, YI was the y position from the camera lens in inches, ZI was the z 

position from the camera lens in inches, and W was the width of the baseball in pixels. Using XP 

and YP as features instead of XI and YI proved to not improve the model’s performance, so XI 

and YI were used. 

 

𝑍𝐼  = (0.1043 ⋅ 𝑋𝐼) − (0.0074 ⋅ 𝑌𝐼) + (2897.7004 ⋅  
1

𝑊𝑃
) − 0.8009  (3) 
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This model achieved an adjusted R square value of 0.986 when predicting and comparing 

ZI values to actual z-position in inches measured from the controlled experiment. The differences 

between the actual z position in inches and the predicted z position in inches can be visualized 

when viewing the histogram in Figure 27 below. It was expected that the greatest error would be 

found when predicting z because z suffers from compounding errors incurred by its dependence 

on x and y. 

 

 

Figure 27: Histogram of errors for z in inches. 

3.6 Pitch Classification 

After the (XI, YI, ZI) location of each baseball was known, a line of best fit was 

approximated using principal component analysis (PCA), a mathematical process that can be 

used to reduce the dimensionality of the data. Specifically, the first principal component was a 

vector pointing in the direction of max variance in the data. With a baseball travelling over the 

home plate, the direction of max variance was the direction from the pitcher towards the catcher. 

The estimated baseballs now located in 3D space were projected onto this best fit line. In 

addition, many more points were projected onto this line, so that the best fit line appeared less 

discretized. 

All of the points projected onto the vector, were checked to see if they were located 

within the strike zone volume. (Please refer to Figure 23 in Section 3.5 for the following process. 

The arrows can represent the bounds of each axis that lie within the strike zone volume.) In order 

to perform this check for each baseball, it was first checked if the baseball’s z coordinate was 
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located within the z bounds. If true, it was checked if the baseball’s x coordinate was within the x 

bounds. Lastly, it was checked if the baseball’s y coordinate was located within the y bounds. If 

all were true for any baseball along the best fit line, the pitch was classified as a strike. If any 

were false for all baseballs along the best fit line, the pitch was classified as a ball. 
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4.0 Results 

The results section outlines the performance of the project process, using a single pitch 

from the collected data dataset. A single extracted pitch from the high-frame-rate video was used 

to verify all the steps in the methodology. Therefore, this section mirrors the methodology, 

following the six steps outlined in the system flow chart: data collection, data pre-processing, 

image classification, object detection, parametric estimation, and pitch classification.  

4.1 Data Collection 

 On the WPI rooftop field, the MQP team pitched 46 pitches (seen in Figure 28 on the 

left), and in the WPI gym, another 50 pitches were thrown (seen in Figure 28 on the right). In 

total, we pitched 96 pitches. The pitches were filmed with the pitching apparatus seen above in 

Figure 13.  Filming at 240fps, the baseball was seen by the camera for about 25 frames per pitch. 

Taking about a ten second break between each pitch resulted in an additional 1,200 empty frames 

per pitch. With 96 pitches and ten seconds between each pitch, there resulted in a total of about 

116,400 frames of data. 

 

 

Figure 28: Pitching for data collection. 

 

4.2 Data Pre-Processing 

The frames for a pitch example were extracted using VideoLoupe. The frame extraction 

process can be seen in Figure 29 below. The pitch frames were added to their own dataset and 

were used to validate the process established in the Methodology Section. The background image 
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was extracted separately and labeled. This process involved the manual extraction of several 

pitches from the dataset of about 116,400 frames, but in a final product the CNN would label and 

aggregate these pitches automatically. Manual extraction was used to simplify the process of 

validating the data pre-processing methodology.  

 

 

Figure 29: VideoLoupe frame extraction. 

4.3 Image Classification 

Once the data pre-processing was complete, the down sampled distorted images were 

sent through the CNN. The output of the CNN was 1 if “Baseball Present” in an image and 0 if 

“Baseball Not Present.” The CNN also kept track of which frames were classified as which class 

by displaying the “Corresponding IDs.” The output seen in Figure 30 shows 18 ones and 3 zeros. 

All these frames contained the baseball, but the CNN was only able to classify 18/21, 

approximately 86%, of the images correctly. This aligned with the previously mentioned testing 

accuracy of approximately 90% when predicting on the full testing set, not just a single pitch. 

You can see in this example that images with IDs 4, 10, and 15 were predicted incorrectly, as 

those images were predicted as 0 instead of 1. 
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Figure 30: CNN output. 

 

 Figure 31 below shows how the image classification process starts with a full-size 

undistorted image, downscales the image, and send it through the CNN to be predicted. When in 

the CNN, convolution extracts the important features, the image is downscaled again with 

pooling layers and the new pixel values are sent through the multi-layer perceptron (MLP) feed-

forward neural network. The CNN then outputs that the baseball was present for this frame 

example. 

 

 

Figure 31: CNN process-flow diagram. 

4.4 Object Detection 

Once the distorted downsized frames were classified, the IDs of the “Baseball Present” 

frames were used to retrieve the same frame from the distorted full-size frames. These full-size 

frames with the baseball were processed through the Object Detection Flowchart, shown above 

in Figure 31, where the images had to be undistorted through fisheye correction, subtracted from 

a background image, and then filtered to reduce noise. Below in Figure 32, a full-sized distorted 

background image can be seen on the left. This distorted image in addition to a full-sized image 

with a baseball present undergoes fisheye correction to become undistorted, as seen in the middle 

of Figure 32. Now that both the background frame and frame with a baseball were undistorted, 

the background image was subtracted from the image with the baseball. This resulted in the 

image on the far right in Figure 32. This step was essential to accentuate the baseball in the 

image.  
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Figure 32: Data collection steps of fisheye correction and subtraction. 

 

Once a subtracted image was created, the image was filtered using a thresholding filter 

and a Gaussian filter to reduce the present noise. Once filtered, the image dimensions were 

squared off, allowing the connected components script to run. This script detected 66 objects in 

the subtracted image as seen below in Figure 33 on the left. After applying the area constraint 

filter, only 6 objects remained in the image that could potentially be the baseball.  

 

 

Figure 33: Data collection steps of connected components and applied area constraint. 

 

The remaining 6 potential objects were then analyzed through the curvature constraint 

filter. The visualization of the curvature constraint applied to object 4 out of 6 can be seen below 

in Figure 34. A curve was collected from the object by plotting the minimum values of each 
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column of the image. Then, a best fit line of that curve, depicted in orange below, was generated. 

This orange curve was the aligned with an empirically derived reference curve, depicted in green 

below, in order to perform a mean-squared-error comparison. Object 4 out of 6 had the lowest 

mean-squared-error value; therefore, object 4 must be the baseball. Object 4’s (x, y) pixel 

location and pixel width were recorded and then used for parametric estimation.  

 

 

Figure 34: Object detection curvature constraint process visualization. 

4.5 Parametric Estimation 

From there, the equations in Section 3.5 are used to determine the (x, y, z) center location 

in inches relative to the origin (the camera located at the center of the plate). The determined (x, 

y, z) center location for the “Baseball Present” outputs from the CNN above are shown in Table 

13 below. As you can see, there were 18 baseballs present as there are 18 “1” images in Figure 

30 above, and there are 18 rows in Table 13. 
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Table 13: Output of parametric estimation section for pitch example. 

 

 

Outliers are removed from this data based on their deviation from the median of the 

returned data. A threshold value was of 95% was empirically derived, meaning that if a baseball 

was larger 1.95 times the median or less than 0.05 times the median in either the x or z direction, 

the baseball was eliminated and labeled as an outlier. A larger threshold of 99% was used for the 

y direction because the baseballs path should not deviate by much in the y direction, as that was 

the direction of travel for a pitched baseball. Therefore, this larger threshold combined with the 

two slightly smaller thresholds ensure that any frame incorrectly detected as a baseball was 

removed. The full path of the baseball can be visualized in 3D space, as seen in Figure 35. 
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Figure 35: Extrapolated (x, y, z) baseball path. 

4.6 Pitch Classification 

The best fit line for the baseball path was determined and plotted in 3D space. In order to 

calculate the best fit line of 3D points in a 3D space, a simple linear regression would not work, 

as it would produce a plane in 3D space, not a line. The dimensionality of the data needed to be 

reduced, so a common mathematical technique, PCA, was used. The technique allows us to 

extract the vectors that correspond to the most variance in the data. The vector that corresponds 

to the direction of most variance in this case was the first principal component and was also the 

best fit line in 3D space. This best fit line can be seen in Figure 36 below. 
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Figure 36: Best fit line of baseball path generated through PCA. 

 

Using the best fit line as the determined path of the baseball, the next step was to 

determine if the line ever intersects the strike zone volume. If it intersects the strike zone volume, 

the pitch was a strike, and if it did not, the pitch was a ball. It was only possible for the baseball 

to intersect the volume if it crosses the plane making up the front of the strike zone, the plane 

making up the right of the strike zone, or the plane making up the top of the strike zone. Those 

planes either have a constant x coordinate (the side planes), a constant y coordinate (the front 

plane), or a constant z coordinate (the top plane). Utilizing this attribute, you can see if a 

particular plane was crossed by checking if the baseball was on the one side of the constant 

dimension that was within the strike zone and within the bounds of the plane in the other two 

dimensions. The proximity of the pitch in reference to the strike zone can be seen in Figure 37 

below. 
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Figure 37: Baseball path and strike zone (showing that pitch was high and outside). 

 

Finally, the constraints are checked using a series of nested if statements and they are 

checked for approximately 1000 points on this line to better check if any point on the line truly 

intersects the strike zone. The line is passed into the “IsStrike” function and an output is 

returned, as seen in Figure 38. In this case, the pitch can be classified as a ball and you can go 

back and examine how close it was to being a strike. 

 

 

Figure 38: Final pitch classified. 
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5.0 Future Work 

While this project successfully developed a proof-of-concept for an inexpensive 

smartphone-based system for calling balls and strikes in a baseball game, there are several 

additional steps that should be carried out to produce a final product that can detect balls/strikes 

in real-time. These steps include developing a more robust baseball detector by collecting more 

pitch images in real and synthetic environments with different backgrounds. These steps also 

include developing enhanced filtering methods for faster and more accurate real-time object 

detection, and a smartphone application to run all the steps described in the methodology in real-

time on an iPhone 8+ or a phone with similar/better camera specifications. 

5.1 Improving Baseball Detection 

As mentioned in Section 4.3, the CNN used for baseball detection had a test accuracy of 

about 90%. However, this CNN was only trained and tested on a single background. To improve 

the detection accuracy and make the detection robust to more challenging environments, a CNN 

must be trained to not only classify images with the background seen in Figure 32, but any 

background. One way to accomplish this goal is through these four major steps:  

1. The baseball should be extracted several times from current pitch frames so that there is a 

collection of baseballs in motion.  

2. Many different background images should be collected. 

3. Synthetic images should be created by pasting the extracted baseball onto the various 

background images in several different locations. 

4. The CNN should then be retrained and possibly re-optimized. 

 Once these steps are completed, it is likely that the testing accuracy will go down or 

remain the same, as there are many more variables with the same proportion of data. If there is 

proportionally more data produced, there is a chance to even improve the current testing 

accuracy while also making the process dynamic and applicable in other environments. 
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5.2 Enhanced Baseball Position and Width Estimation 

The method used to estimate the baseball’s (x, y) pixel position and pixel width involved 

several image processing and filtering steps. These steps are computationally intensive as they 

are comprised of several filtering stages and several complicated and non-ideal techniques. A 

simpler method involves a sliding window approach. This method involves several less 

computationally intensive steps and could replace the object detection portion of this system if 

the current process cannot be made more efficient or if this new approach proves to be more 

accurate. The following steps would be applied to every frame that the CNN predicts a baseball 

was present. 

1. Subtract the background (a frame grabbed shortly before the first pitch was classified to 

contain a baseball) from the current frame, as to keep only the baseball and noise in the 

image. 

2. Convert the frame to black and white (i.e. all pixel values are either 1 or 0), while also 

making very low pixel values 0 to eliminate most of the noise. 

3. Create a 30x30 pixel (approximately the minimum size of a baseball at the top of the 

strike zone) window. 

4. Slide this window over the entire image with overlap and keep track of the max sum 

behind the window. 

5. Move the window back to the spot with the max value, as it was assumed that this was 

the baseball. 

6. Begin zooming out (i.e. increasing the dimensions of the window while still calculating a 

summation behind the window. For every increase in the window, ensure there was a 

minimal (empirically derived) increase in the sum of the frame behind the window.  

Once the window was done growing, you have ideally found the baseball and its width. 

You could then use previously mentioned or possibly new techniques to remove returned objects 

that are not the baseball. The removal of outliers will be necessary as significant noise or an 

incorrect response from the CNN will result in not locating the baseball. Figure 39 on the left 

shows the located baseball before expanding the sliding window; in the middle, the full baseball 

was seen by zooming out, and on the right, the actual baseball in the corresponding frame can be 

visualized. 



 

 

52 
 

 

Figure 39: Sliding window method for baseball detection. 

5.3 Real-Time Smartphone Application Implementation 

Another future implementation for the smart home plate application could be to create a 

phone application that has the capability to run all the steps described in the methodology in real-

time. The ideal smartphone for the task had to be determined. Table 14 shows the comparison 

between the Android operating system and the iPhone operating system (iOS). The decision 

between iOS and Android considered the app development process as if it were to be performed 

by a future team on WPI’s campus. iOS was the clear winner, but only due to “Hardware 

Coding” requirement in the value proposition. This field refers to the ability to write code that 

would utilize the hardware in the phone. Based on extensive research, it was simple to develop 

using the slow-motion camera on an iPhone but requires bypassing the operating system when 

attempting the same thing on an Android device [29].  
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Table 14: Value proposition for mobile phone operating system. 

Value Proposition Out of 10 

Criteria Android IOS 

Coding Learning Curve 5 5 

Availability of Resources 6 4 

Cost of Device 5 5 

Camera Resolution 5 5 

Camera Frame Rate 5 5 

Hardware Coding 2 8 

Total 28 32 
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6. Conclusion 

The detection and parametric estimation of fast-moving objects required many steps from 

determining if the presence of an object exists to determining the object’s location in 3D space. 

For the application with regards to a smart home plate in baseball, a methodology was 

constructed to go from a slow-motion recording of a pitch to an output of a strike or ball 

classification. By collecting the video, processing the frames, classifying the frames based on if 

they contained a baseball, determining the pixel location for the baseball, and using parametric 

estimation to convert these pixel locations to inch locations in 3D space, we classified a pitch as 

a strike or ball. The overall system was determined for the application of a smart home plate but 

can be generalized to apply to all fast-moving objects.  

The system described in this report can be visualized below in Figure 40 as a final 

product concept diagram. The smartphone is resting on the home plate or possibly embedded 

into the home plate itself. Its FOV is encompassing at least the entire strike zone, and the pitch is 

being classified as a strike once the baseball intersects the strike zone volume. 

 

Figure 40: The Smart Home Plate final concept diagram 
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7. Appendix 

Jupyter Notebook 

This Jupyter Notebook contains all our system’s code that takes in fisheye distorted 

images, classifies them as baseball present or not present, detects where the baseball is in each 

image, parametrically estimates where the baseball is located in 3D space, and then classifies the 

pitch as a ball or a strike. Link to notebook: 

https://michaelpanicci.github.io/index.html 

Please contact mapanicci@gmail.com if the link does not work due to further development. 

  

https://michaelpanicci.github.io/index.html
mailto:mapanicci@gmail.com
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