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Abstract

The goal of this project was to develop an FPGA-based 3D graphics accelerator. Research

of previous work in the �eld preceded the development of a full hardware implementation

of a graphics platform capable of realizing 3D graphics with an FPGA. Furthermore, a

graphics application programming interface (API) and various rendering algorithms were

implemented in software. We tested these implementations and veri�ed that our goal was

achieved with reasonable performance. Methods explored by this project showed promise

for future customizable and portable 3D graphics platforms that may be utilized within

mobile and embedded applications.
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Executive Summary

The growing trend in the popularity of mobile computing has led to an increase in the

demand for mobile graphics platforms. While graphics accelerators using Application-

Speci�c Integrated Circuit (ASIC) designs have historically constituted the industry stan-

dard, they have presented roadblocks to developers who have wished to recon�gure the

hardware or develop the platform in an open environment. Additionally, the long develop-

ment cycle for ASIC designs has implied that only the leading hardware developers were

able to produce worthy products. Although some open graphics acceleration platforms

existed, these implementations (such as Mesa 3D, or Vincent 3D for embedded systems)

were de�ned primarily as software systems. One possible option for a graphics accelera-

tion platform was a design using a Field-Programmable Gate Array (FPGA). The FPGA

presented design advantages such as its suitability for parallel processing applications,

for example certain graphics operations, and its accessibility to developers who wish to

modify the hardware platform to �t their speci�c needs. For these reasons, we explored

a design of a graphics accelerator using an FPGA.

Our goals for a fully realized FPGA implementation of a graphics accelerator included

a Hardware Descriptor Language (HDL) graphics hardware core, an accessible graphics

software API using the OpenGL 1.1 speci�cation and a basic implementation of the 3D

graphics pipeline in Register Transfer Level (RTL) hardware. Finally, to test and verify

the capabilities of our custom graphics platform, we needed to benchmark the system's

performance using OpenGL-based applications.

The hardware we chose to use for this project was the Spartan-6 LXT FPGA residing

on the Xilinx SP605 Development Board. Our implementation included a full Graphics

Processing Unit (GPU), rasterizer, and video interface on the FPGA. Furthermore, we

utilized the board's 128MB of DDR3 component memory for storing two framebu�ers.

We used the FPGA's MicroBlaze Central Processing Unit (CPU) to execute the plat-

form's software driver, API and user graphics applications. The driver and API, im-

plemented in C, included all of the functions necessary for a programmer familiar with
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the OpenGL speci�cation to easily execute graphics applications on our platform. The

platform implemented point, line, and triangle drawing, triangle �lling, and color inter-

polation. Furthermore, we used the software to realize a�ne transformations of vertices

and realistic ambient and di�use lighting e�ects according to the Phong Re�ection Model.

Additionally, we used OpenGL graphics applications to benchmark the performance of

our graphics accelerator platform. Furthermore, we tested each demo application on both

the hardware implementation and a custom, fully-realized software emulator designed to

use precisely the same driver and libraries as the hardware. We found that the limitations

of the CPU at only 75 MHz, and being responsible for the preparation of each primitive

rendering, was often responsible for a bottleneck in performance. We concluded that

this performance limitation was indicative of a shortcoming in the processor speed rather

than in the FPGA's theoretical capability for graphics processing. Quantitatively, each

of our simple graphics application demos achieved reasonable performance marks over

thirty (30) Frames-Per-Second (FPS).

Considering the �nal architecture of our platform and the positive results of our test

applications, we concluded that a graphics accelerator may be e�ectively realized through

an FPGA design. For this reason, we recommended that future research be considered

in the area of graphics applications of FPGA systems.
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1 Introduction

When considering the growing popularity of a wide variety of mobile and embedded de-

vices capable of three-dimensional (3D) graphics, it's prudent to consider the direction of

the evolution of such devices. Current technology trends have precipitated newer graph-

ics processing units (GPUs) that can produce 3D visualizations on compact and portable

devices. These may reside on a single chip and can typically perform advanced 3D ren-

dering techniques, including programmable pixel and vertex processors. As computing

technologies have advanced, companies including NVIDIA and Texas Instruments have

o�ered high end graphics systems with increased portability and functionality (with the

Tegra and OMAP system-on-chip families, respectively). However, such implementations

are only realizable by the few major graphics hardware vendors due to the substantial

costs of developing such devices. Furthermore, once such hardware is developed, it may

only be further customized or improved with a subsequent generation of chips.

While many devices capable of realizing 3D graphics currently do so through the im-

plementation of application-speci�c integrated circuit (ASIC) designs, it may be worth

considering the implementation of �eld-programmable gate arrays (FPGA) for future

designs of mobile 3D graphics devices. An FPGA design may implement a hardware

descriptor language (HDL) and may be fully con�gurable, making this option appealing

to developers. Because the FPGA is a relatively small and powerful type of chip, its ap-

plications are intrinsically scalable and portable. These characteristics make the FPGA

ideal for mobile and embedded devices. Furthermore, the use of parallel processing on

the FPGA is conducive to applications such as graphics rendering. For these reasons,

implementing FPGA designs to realize the rendering of 3D graphics in mobile devices

could potentially herald great advances over current ASIC technology.

Research into an FPGA-based 3D graphics platform has yielded some new promising

undertakings, but none of these had been fully developed and distributed to consumers.

One such of these projects, Vincent 3D, had attempted to develop an open source im-

plementation of the OpenGL ES API family with some success. However, at this time,

Vincent 3D had only implemented a few components of the 3D graphics pipeline in HDL,

with the majority of the API implemented as much slower software rendering. Another

such project, Manticore, attempted to implement a 3D graphics accelerator on an FPGA,
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with complete triangle rasterization and VGA output. However, development on Manti-

core had completely ceased, leaving the project lacking even the most basic but essential

abilities of a 3D accelerator.

In this project, we described and tested an FPGA-based 3D graphics accelerator de-

sign. With this design, we implemented various stages of the graphics pipeline and its

necessary subsystems on an FPGA using hardware descriptor languages. These stages

included command and vertex processing, primitive setup, color shading, triangle raster-

ization, and video output. Taking advantage of the FPGA's parallel processing, various

advanced 3D mathematical algorithms were executed in parallel to rendering operations

on a separate Microblaze softcore microprocessor. We used a double-bu�ering based ap-

proach to implement smooth, animated visualizations to an output display device via the

Digital Visual Interface (DVI). Finally, we adapted a graphics API from the OpenGL

speci�cation. This implementation allowed for communication with the 3D graphics

hardware via a platform-independent device driver. Within this software layer, we also

implemented the Phong lighting model using the hardware's color shading abilities.

Through the completion of this project, we made signi�cant contributions to the develop-

ment of a complete 3D graphics platform on an FPGA. We met our goal of realizing 3D

graphics output using a single chip with a platform that is both con�gurable and portable.

However, time and resource constraints on the project resulted in several performance

�aws. These shortcomings primarily included the implementation of the graphics per-

spective transformations on a softcore microprocessor rather than using HDL. With addi-

tional development time, a complete hardware implementation of these transformations

would have yielded a substantial performance increase. Future work on this project could

also include implementing the lighting model and more complex rendering techniques in

hardware for optimal performance.

The remainder of this report �rst provides the reader with background research (Chapter

2) in the relevant areas of graphics processing and algorithms, FPGA technology, and

related work. Chapter 3 then describes an overview of the project including goals, objec-

tives, and a high level design. Chapter 4, 5, and 6 discuss the details of the embedded

platform, the hardware graphics core, and the software and driver components of the

project, respectively. Chapter 7 describes system testing and results. Chapter 8 contains

the conclusions we drew about the process we used as well as our recommendations for
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future work. Finally, Chapter 8 contains our analysis of the opportunities to apply the

knowledge we gained through realizing this system. Following the body of the report,

the appendices contain additional technical information such as selected source code that

support the project, but were too large to include as inline elements in the main text.
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2 Background Research

In order to formulate an appropriate design, it was vital to understand the current state of

portable graphics hardware and technology. This chapter discusses the graphics pipeline

both in concept and with speci�c details about implementing it with an FPGA.

2.1 Graphics Rendering Pipeline

The graphics rendering pipeline traditionally refers to an abstraction for the process which

modern Graphics Processing Units (GPUs) use to produce visualizations. Computer

graphics hardware typically implement six stages within the pipeline and often various

substages within these. At a very basic level, these six stages in sequence are: (1) the front

end, (2) vertex processing, (3) primitive assembly, (4) rasterization and interpolation, (5)

fragment processing and (6) frame bu�er output. These stages all run in parallel, however

it is important to note that vertices pass through each of them sequentially. OpenGL, a

standard speci�cation de�ning a cross-platform computer graphics API, implements the

graphics pipeline as seen in the �gure below:

Figure 1: A high level representation of the graphics pipeline used in realtime rendering
(Source Adapted from: NVIDIA Cg User's manual, 2010)

This �gure shows all of the major components of the graphics rendering pipeline for mod-

ern graphics hardware. This pipeline typically starts at the front end, where commands

and vertices are sent from a host system. The graphics data will then �lter through

the pipeline, while the hardware performs necessary processing and transformation to
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produce raw displayable data. The graphics commands control how each stage conducts

these processes and transformations. The output of this system is an image updating in

real time that can be drawn by a display device. This section describes the high level

functionality of these stages, and how they interact with each other.

2.1.1 Front End

The front end of graphics hardware provides the necessary interface for all commands

and data sent to the GPU. This block typically consists of a number of basic layers: (1) a

device driver on the host system, (2) a hardware interface physically connecting the GPU

to the host system, and (3) a command processor that receives and decodes commands

and data from the hardware interface. After this third layer, decoded commands and

data are then used to de�ne the operations of the GPU and render visualizations by

distributing them to the other components within the graphics hardware. This may be

implemented with only a write interface, but it is often advantageous to have certain read

signals, for example, to initiate an interrupt request upon the completion of each frame

drawing.

2.1.2 Vertex Processing

In 3D graphics processing, a vertex is typically speci�ed in the form of an (x,y,z) triple

as a discrete position within the 3D coordinate system. These are often accompanied

by many other parameters and vectors, representing such data as shading color, texture

coordinates, or normal direction. The vertex processing block is responsible for decoding

this data received by the GPU and preparing them to be assembled as primitives and

then rasterized. The vertex positions must be transformed from their 3D coordinates into

2D space as approximated by a display device for this to be done. This occurs in two

distinct transformation phases. In the �rst phase, the modelview transformation, vertices

are transformed within the 3D coordinate system, thus providing hardware accelerated

rotation, translation, and scaling of objects.[11, 13] In the second phase, perspective trans-

formation, vertices are transformed to be drawn as they appear on a 2D plane from the

viewer's perspective.
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2.1.3 Primitive Assembly

A primitive consists of one or more vertices to form a point, line, or closed polygon. This

stage takes the perspective-transformed vertices from the vertex processing stage and

groups them into primitives.[14] In the stage immediately following primitive assembly,

primitives are clipped to �t just within the viewport or view volume and then prepared

for rasterization to the display device, typically within some form of bu�er.

2.1.4 Rasterization and Interpolation

In computer graphics, a raster image is a 2D array of discrete pixels that represent

intensity samples.[13] As such, rasterization is the stage within the graphics rendering

pipeline where a 2D image is generated from transformed primitive data. More formally,

rasterization is de�ned as converting a line drawing, mathematical expression in space,

or a 3D scene into intensity values of a group of pixels to be written to the frame bu�er,

which is then propagated to an output device. As part of rasterization, interpolation is

the process of constructing intermediate data points in the form of color intensity values

within the interval connecting two vertices.[5] Interpolation is necessary in computer

graphics for generating vertex colors and fog, among other e�ects.

There are two main challenges that designers often face when creating a rasterizer: (1)

determining the pixel(s) that accurately describe the current primitive being rendered,

and (2) e�ciency.[13] For this project, rasterization of primitives is limited to simply

points, lines, and triangles. This section describes ideal algorithms for rasterizing these,

as well as proper methods of clipping and Z-bu�er generation.

Points In rasterization, point primitives represent a single pixel drawn to the frame-

bu�er. Points are rasterized by writing the pixel's color to the framebu�er memory at the

address speci�ed by the pixels X- and Y-coordinates. This is expressed as the equation:

Addresspixel = BaseAddressframebuffer + (ypos ∗Widthframebuffer) + xpos

Lines Line primitives are two points on the framebu�er connected by the pixel ap-

proximation of a straight line. One of the more common and simple methods for ras-
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terizing a line is Bresenham's algorithm, which is able to correctly approximate a line

primitive.[13][6] This algorithm computes a line starting at a pixel at location (x0, y0)

and approximates subsequent pixels downward until reaching the ending location, (x1,

y1). The algorithm is initially de�ned for the �rst octant (the �rst of eight divisions of a

2D coordinate system) such that the line extends downward and to the right. As such,

seven separate versions of the algorithm must also be implemented to rasterize a line

within the remaining seven corresponding octants. The illustration below shows a line

approximation computed by Bresenham's algorithm.

Figure 2: Illustration of Bresenham's line algorithm
(Source: http://www.jobscochin.com/introduction-computer-graphics-algorithms, 2010)

Bresenham's line algorithm selects the next pixel integer Y-coordinate that is closest to

the fractional Y- for the same X-coordinate. Successively, Y- can as such remain the

same or increase by one. Pixels chosen by Bresenham's algorithm are then rasterized to

the framebu�er as point primitives.

Triangles Triangles are the base primitive for rendering complex 3D meshes. An ex-

ample of how a complex mesh can be constructed from simple triangle primitives can be

seen in the �gure below.
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Figure 3: Wireframe teapot mesh
(Source Adapted from: http://caig.cs.nctu.edu.tw/course/CG2007/, 2007)

One very simple method of rasterizing a triangle can be performed by �rst computing

the wireframe of the triangle (three connected lines). This can be done by connecting

the three vertices of a triangle using Bresenham's Line Algorithm and saving the X-

coordinate, Y-coordinate, and color value for each pixel in that wireframe. Next, the

triangle wireframe can then be �lled by using a scan line rasterization algorithm to draw

horizontal lines across the triangle (with the saved pixel data) for each vertical pixel in

the triangle wireframe. Figure 4 illustrates this concept below.

Figure 4: Illustration of the triangle �lling algorithm
(Source: http://www.devmaster.net/articles/software-rendering/part3.php, 2004)

Consequently, all primitive rasterization stems from the ability to put a single pixel in the
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framebu�er - point rasterization. Line rasterization can then be performed by successive

points, and triangle rasterization can be performed by successive lines. Complex scenes

can then be constructed by rasterizing a series of triangles.

2.1.5 Frame Bu�er

After the GPU has produced a synthesized image and performed on it the necessary pixel

transformations, the pixels are stored in an image bu�er - the frame bu�er. As its name

suggests, the frame bu�er stores the current �frame� to be rendered, in an animation

sequence.[13] This intermediate storage between the graphics pipeline and the output

display is necessary because the two are not synchronized with each other. Displays

are typically clocked, which depend on both the display resolution and refresh rate.

Display updates are synchronous processes that perform continuously and sequentially

by a constant clock signal. The GPU conversely produces data asynchronously in a

manner depending on the CPU sending it data or commands.

The frame bu�er for a graphics accelerator is generally either pre-allocated in a systems

main memory, or in a dedicated memory device onboard the graphics accelerator. Specif-

ically, with realtime graphics systems, the frame bu�er is where all pixel color data from

rasterization is stored before being drawn to the display. Furthermore, this is necessary

because rasterization is performed on primitives and there is no guarantee that the ras-

terized primitives are actually drawn to the display.[13] For simplicity and e�ciency, pixel

color data within the framebu�er is typically encoded in a format most compatible with

the input signals of the display device.

Many issues can arise due to the con�ict between a GPU's sporadic access to the frame

bu�er and the display device's sequential access. First and foremost, it is likely that

the display device will begin reading a scanline, the a horizontal pixel line traced by a

display's rasterbeam, before the GPU has �nished drawing it.[13] An ideal solution to

this problem would be for the output circuit of the graphics accelerator to wait for the

rendering of a frame to be completed before starting to read the frame bu�er. However,

this is not possible because the output image must be updated at a very speci�c rate that

is independent of rasterization time.

The solution to this problem is to introduce double bu�ering, which is the use of two frame
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bu�ers by the GPU.[13, 6] The �rst frame bu�er, the back bu�er, is used for writing only

from the rasterizer and therefore may accept data liberally. The second framebu�er, the

front bu�er, is used only for reading from the output circuit, and can therefore be read

sequentially and independently from the time at which data is written. When the current

frame is �nished rendering to the back bu�er, the two bu�ers then switch their positions

and the next frame is drawn. This mechanism prevents the bu�er currently being drawn

from ever being overwritten.

Basic double bu�ering may fail to prevent all frame bu�er-related artifacts. The most

common of these, tearing, occurs when the bu�ers swap before the sequential reading

of the front bu�er has completed the frame.[13] This results in some lower portion of

the display coming up a frame ahead of the upper portion. Tearing may be avoided by

only swapping the bu�ers in the refresh interval, the vertical blank count (VBLANK),

between the previous and next frames. Swapping during the VBLANK period, however,

introduces potentially signi�cant latency in this process. On many modern graphics

accelerators, this is a setting that can be disabled in order to maximize speed.

2.2 3D Mathematics

Graphics accelerators exist to perform the mathematical calculations that render 3D

visualizations more e�ciently than computer CPUs. These mathematics are often com-

plex as they provide all of the necessary routines to build a 3D scene and animate it as

needed. This section describes the fundamental concepts of these operations, as well as

the necessary considerations for implementing such routines on an FPGA.

2.2.1 Transformation

Modern computer graphics accelerators typically take advantage of highly optimized math

co-processors to perform �oating point transformations of objects in 3D space. Trans-

formation is divided into two categories. The �rst of these is modelview transformation,

which provides the necessary operations to translate, rotate, and scale objects.[5] The

second of these is perspective transformation, which transforms objects in 3D space so

that they will appear on a 2D display as if they were being viewed from the camera's
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perspective. All of these transformations are implemented as matrix multiplications with

specially de�ned scale, rotate, translate, and perspective matrices.

In a modelview transformation for 3D objects, quaternions given as four-by-four matrix

specify the movements of each vertex in a homogeneous coordinate space.[5] Although a

vertex represents an imaginary point in space with no visible size, the notion of scaling

its position refers to the modi�cation of the distance from the origin to that point. For

example, the distance of a point along a single axis at position 2 scaled by a factor of 2

would result in 2 ∗ 2 = 4. In 3D space, a point speci�ed by an ordered triple (x, y, z)

may be scaled by the matrix:

T =


Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1


where each S value corresponds to the factor by which each distance value will be scaled.

A given vertex will be scaled by the multiplication:

T =


Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

 ∗


x

y

z

1

 =


Sxx

Syy

Szz

1


In a vertex rotation, the vertex is typically rotated about one of the axes of the coordinate

space. The transformation matrix used to rotate each vertex is dependent upon the axis

used for the rotation. For example, a rotation of n degrees counterclockwise about the

x-axis, called an x-roll, is given by the transformation matrix:

T =


cos (n) − sin (n) 0 0

sin (n) cos (an) 0 0

0 0 1 0

0 0 0 1


Finally, vertex translation is accomplished by specifying the vector by which the vertices

are translated in the rightmost column in the transformation matrix. To translate a

vertex by the vector [Tx, Ty, Tz], one may use the following transformation matrix:
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T =


1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1


Using this combination of a�ne transformations as they are called, one may describe

any movement or reshaping of vertices in a 3D space.[5] In 3D graphics using 2D display

devices, however, it becomes necessary to simulate the third dimension or axis through a

series of perspective transformations. Using perspective projection, objects far away from

the viewer will have a smaller projection and objects close to the viewer will have a larger

projection. A perspective projection is de�ned by a series of parameters that de�ne the

dimensions of the view volume: l and r as the left and right boundaries, b and t as the

bottom and top boundaries, and n and f as the near and far boundaries, respectively.

The following transformation matrix is valid as long as l 6= r, b 6= t, and n 6= f :

T =


2n
r−1

0 r+1
r−1

0

0 2n
t−b

t+b
t−b

0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0


By combining these a�ne and perspective transformations, graphics software and hard-

ware may convert mathematical data in the form of 3D vertices into a 2D mapping of

objects that faithfully represent a scene in space.

2.2.2 Fixed-Point Computations

Floating-point units (FPUs), the components of CPUs used to natively perform arith-

metic operations on �oating point numbers, are often unavailable on FPGAs and are

few and far between on low-power micocontrollers and microprocessors. In these cases,

�oating point math may be implemented in software, or simply not used at all. On

such devices, acceptable computational performance may be achieved using �xed-point

arithmetic operations for 3D mathematics rather than using a software-de�ned FPU.[9][8]

With �xed-point arithmetic, the decimal point of a number is ��xed� before a speci�c

digit. For example, during integer math, the decimal is placed after the least signi�cant
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bit (LSB), meaning that there is no memory allocated for a possible fraction.[9] In this

scenario, the fraction is discarded and the result of a computation is rounded to whole

numbers. However, it is possible to �x the decimal point at a di�erent position within

the number. This allows for fractions to be represented, even if they are still just rounded

approximations. With this form of number representation, math can be done by a tradi-

tional arithmetic logic unit (ALU) and 3D vectors may still be approximated enough to

render realistic visualizations. This incorporates simple integer math, along with some

additional steps to account for the decimal point position.

For the application of 3D mathematics, it is seldom ideal to represent �xed numbers with

equal allocation for both whole numbers and fractions.[9]This is due to the frequent need

for a signed most signi�cant bit (MSB), which constrains the integer component of the

number. Instead, a format such as 18.14 or 17.15 (in the format M.N, where M represents

the integer component in bits and N represents the fractional component in bits) is often

much more e�ective for 32-bit 3D �xed-point math.[15] For 16-bit math, the format 10.6

is ideal to ensure a substantial enough integer component.

2.3 Target Platforms

This project required two concentric platforms: the FPGA development board upon

which the system was developed, and the embedded system that served as the host

device, which utilized the graphics accelerator to render 3D visualizations. This section

identi�es the selected platforms and discusses how the selected devices met the needs of

the project.

2.3.1 Spartan-6 FPGA and SP605 Evaluation Kit

The Spartan-6 is the latest iteration of Xilinx's Spartan family of low-cost, low-power

FPGAs. Xilinx, the leading FPGA manufacturer, has designed the Spartan 6 with high

performance and cost-sensitive applications in mind.[2] Using 45nm, 9-metal copper layer,

dual-oxide process technology, the Spartan 6 includes advanced power management and

memory support, among other features. The selected XC6SLX45T-FGG484-3C FPGA

includes 150,000 logic cells and supports integrated hard memory, block RAM, high per-

formance clocking and serial IO, and an integrated PCI-Express (PCI-E) endpoint block.
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The Spartan-6 LTX is Xilinx's ideal o�ering for FPGA-based graphics acceleration as it

balances both price-point and the resources necessary for GPU computations.

The SP605 Evaluation Kit enables developers to easily prototype designs with the XC6SLX45T

FGG484-3C Spartan-6 FPGA. The kit includes all the basic components of the Xilinx

Base Targeted Design Platform in one package. [2] With the SP605, developers can

easily take advantage of the features of the Spartan 6. Additionally, the kit includes

DVI video output, a 200MHz oscillator, 128MB of DDR3 memory, and various expansion

connections. The �gure below shows the SP605 board.

Figure 5: Spartan-6 SP605 Evaluation Kit
(Source: http://www.xilinx.com/products/devkits/EK-S6-SP605-G.htm, 2010)

The support for the Spartan-6 LXT FPGA, digital video output interface, and 200MHz

clock all made the SP605 an appropriate choice for FPGA-based graphics acceleration.

Additionally, its support for PCI-E created an additional advantage for potential appli-

cations in a desktop PC environment.

2.4 Graphics Application Programming

Developing graphics applications necessitates the consideration of portability. A graphics

acceleration system must provide an accessible interface to allow its users to develop

high-level programs that are easily maintained and may potentially be ported to and

from other systems.
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2.4.1 OpenGL

OpenGL is an open source graphics library originally developed speci�cally to enable

device-independent graphics programming. Its free and open nature combined with its

widespread use in industry and academia additionally have made it an ideal choice for

many computer graphics systems. [6]

As an Applications Programming Interface (API), OpenGL speci�es a library of func-

tions and data types that interact together to enable a wide range of simple or complex

computer graphics applications. Its de�nition as an interface provides developers with a

powerful basis to structure a graphics system while providing users with �exibility and the

assurance that their application may be compiled and run on any two OpenGL-compliant

systems. In this way, the user has access only to the interface and need not consider the

underlying graphics driver or hardware. The developers, in turn, need only focus on

rigorous compliance to the standard rather than providing support for users of a graphics

driver. In this way, such an interface is a valuable tool to both developers and users.

2.4.2 Lighting in OpenGL

OpenGL provides the tools to develop many visual e�ects to enhance the images attain-

able with basic modeling. Among these features is the capability for lighting in scenes

rendered by OpenGL as a means of increasing scene realism and enriching the viewer

experience. Lighting e�ects are accomplished in OpenGL through the use of shading

models. The shading model or shader describes how light is scattered or re�ected from

a surface. [6][11]

Most shaders use two types of light sources to illuminate objects in a scene: incident

and ambient light sources.[11] While incident light sources model the physical behavior

of light in the real world, ambient light sources simulate the seemingly nondirectional

background light that is di�cult and expensive to model accurately. Ambient light may

also be considered to be the background glow in the surrounding environment. [6]

In OpenGL implementations of 3D lighting, there are two categories of incident light:

• Di�use scattering, which describes the e�ect of light slightly penetrating a surface

and radiating uniformly in all directions. Since the light has such a strong interac-
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tion with the object's surface, the qualities of the surface material, such as color, are

very important to this e�ect. Re�ections from di�use scattering are independent of

the position of the viewer in relation to the surfaces or lights.[6]

• Specular re�ections, which describe the mirror like re�ections of light o� of an

object's outer surface. This e�ect produces bright highlights on a surface and

suggests a shiny quality. In general, the color of the highlights observed on a

surface are determined by the color of the light rather than the color of the surface.

Re�ections from specular highlights are inextricably related to the position of the

viewer in relation to the surface and light sources.[6]

In general, most objects in a scene will include varying levels of both di�use and spec-

ular re�ections. The speci�c amounts of each re�ection type depend upon the material

properties de�ned as part of the scene. [6][11]

Ambient light is included in shading models address the inability of di�use and specular

re�ection to accurately simulate background light in an environment. When considering

the e�ects of only incident light on a scene, any una�ected surface will appear totally

black. This creates deep shadows on objects that give the scene a harsh look. Ambient

light is therefore used to provide an approximation of the light that is re�ected from many

directions from many di�erent surfaces in the scene. This e�ectively provides a soft glow

that acts on all objects in a scene and provides a more realistic e�ect.[6][11]

2.4.3 Mathematics of Lighting

To apply the shading model to a scene, a series of calculations are performed upon each

user-de�ned vertex in the scene based on the lights' properties as objects in the scene,

the vertices' positions, colors and orientations and the camera's position and orientation

in the scene. The color of a vertex is a simple sum of the lighting contributions for all

lights, i, acting on it:

V ertex color =
∑lights

i (ambienti + diffusei + speculari)

Each lighting component, as seen in the �gure below, has a unique e�ect on the scene.
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Figure 6: Observable Components of the Phong Re�ection Model
(Source: http://en.wikipedia.org/wiki/File:Phong_components_version_4.png, 2010)

Ambient lighting is mathematically the simplest of these components since it acts as a

linear scaling e�ect on the vertices' material properties.[6] The ambient light contribution

is a simple product of the ambient material color and the ambient light value:

Ambient contribution = ambientlight ∗ ambientmaterial

Di�use lighting intensity depends on the dot product of the unit vector pointing from

the vertex to the light position, L, and the unit normal vector of the vertex, n. If the

dot product is negative, then the vertex is not acted upon by di�use light and the di�use

component is 0 by default.[6] The di�use lighting component for each light is thus de�ned

as:

Diffuse contribution = diffuselight ∗ diffusematerial ∗max (L • n, 0)

Similarly to the di�use component, the specular component only applies if the dot prod-

uct of the light and normal vectors is greater than zero. The specular term is further

dependent upon the dot product of normalized sum of the light and view vectors, s, and

the unit normal vector, n. This sum is then raised to the power of a user-de�ned term,

shininess, which is a number between 0 and 128 that controls the focus of the specular

highlight.[6]

Specular contribution =specularlight ∗ specularmaterial ∗ (max (s • n, 0))shininess L • n > 0

0 L • n ≤ 0
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These contributions are then added together to de�ne the �nal vertex color. According

to the Phong model, the colors of the intermediate pixels between these vertices may be

determined by a variety of shading or interpolation methods. One method of coloring

objects in the scene is on a per-vertex basis, that is, each pixel's color in the displayed

scene is determined by lighting through linear interpolation of colors from vertex to vertex.

Given the 2D coordinates and the color value of two vertices, the color slope between

them is de�ned as:

m = ∆C
∆X

where ∆C speci�es the change in color values and ∆X speci�es the change along the in-

dependent axis (i.e. X-axis for mostly horizontal lines or Y-axis for mostly vertical lines).

Using this color slope, the formula of a line functionally determines each intermediate

point's color value as follows:

y = mx + b

where y is the intermediate color value, x is the independent axis position and b is the

color value of the �rst or �source� vertex taken in the interpolation.

2.5 Related Work

Several projects have attempted to implement the OpenGL speci�cation and computer

graphics pipeline as discussed in this chapter. However, the majority of these have con-

sisted primarily of software implementations rather than FPGA-based implementations.

This section discusses a few of these related works.

2.5.1 Mesa 3D

Mesa is an open-source implementation of the OpenGL speci�cation, providing a system

of rendering interactive 3D graphics[1]. Originally started in 1993 by Brian Paul, Mesa

has evolved to a very comprehensive set of libraries used in a variety of device drivers,

software emulators, and modern GPUs. In addition to being cross-platform, Mesa has

been one of the most advanced and complete implementations of OpenGL. However,
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Mesa consists entirely of a software implementation, which would be much slower than a

potential hardware implementation (on either an ASIC or an FPGA). At the time of this

project, Mesa had implemented the complete OpenGL 2.1 speci�cation, as well as various

extensions from OpenGL 3 and 4. The �gure below shows a scene rendered entirely by

the Mesa 3D library.

Figure 7: OpenGL gears rendered with Mesa 3D
(Source: http://www.icewalkers.com/Linux/Software/534890/Mesa3D-for-MiniGUI.html, 2010)

2.5.2 Vincent 3D

The Vincent 3D Rendering library, like Mesa, is an open source graphics library that

implements the OpenGL speci�cation. However, unlike Mesa, Vincent instead had im-

plemented the OpenGL ES 1.1 API speci�cation, published by the Khronos Group[3].

While Vincent had recently shifted its focus to various HDL implementations of the

graphics pipeline, at the time of this project the current release of Vincent was entirely

software-based. Like Mesa, this made the project much slower than a potential hardware

implementation of a graphics accelerator. Figure 8 shows a visualization produced by the

Vincent 3D renderer on a mobile device.
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Figure 8: Vincent3D running on a mobile device
(Source: http://www.vincent3d.com/software/software.html, 2010)

2.5.3 Manticore

The Manticore project was an attempt at an open source hardware design for a 3D

graphics accelerator written entirely in VHDL[4]. At the time the project was discontin-

ued, Manticore was capable of triangle rasterization, framebu�er support, VGA support,

and an SDRAM controller. This implementation was tested on a Altera APEX20K200E

FPGA[4]. However, while Manticore was one of the earliest and only strictly HDL imple-

mentations of a 3D graphics core, it never implemented enough of the graphics pipeline

to render a complete 3D scene. The project has not been updated since 2002.

2.6 Summary

The main purpose of this chapter was to present the background research of elementary

3D graphics processing. Furthermore, the necessary information to implement these

graphics principles and algorithms on an FPGA were also discussed. The next chapter

(Chapter 3: Project Overview and Design) discusses goals, objectives and a high-level

design of the project.
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3 Project Overview and Design

This chapter presents a general overview of the project, discussing its goal and the objec-

tives that had to be met. Additionally, this chapter presents a high level design, describing

how we implemented the project's various components and met the design requirements.

3.1 Goal

The main goal of this project was to implement a portable graphics accelerator on an

FPGA. This device needed to provide single-chip 3D graphics acceleration for low-power

and space-conscious environments, such as with mobile and embedded systems. Imple-

mented in Hardware Description Language (HDL), this accelerator need to be entirely

open and con�gurable, providing a graphics system that could be easily adapted or op-

timized for speci�c system requirements.

3.2 Objectives

To achieve the goal of this project, three primary objectives had to be met. The graphics

accelerator needed to:

• Provide a fast and simple input interface

• Generate an image at reasonable speeds from graphics data

• Provide a display output interface

These objectives were completed through the design and implementation of a number of

subsystems.

The �rst objective was to interface with other systems that needed to display graphics.

The device needed to easily connect to other systems through a standard input/output

(I/O) format, wherein it would use an easy and intuitive means of communication.

The second objective was to rasterize a two-dimensional (2D) image from the three dimen-

sional (3D) data provided by another system. This needed to be accomplished e�ciently

because many images needed to be generated per second to produce smooth animated
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visualizations. Consequently, the device needed to use optimal algorithms to perform

these operations.

The third and �nal objective was to provide a means to display the generated image. This

needed to adhere to a standardized display format, allowing the graphics accelerator to

be used with many di�erent platforms. Also necessary were an output connection and

the underlying hardware controller for the selected format.

3.3 Design Requirements

The design for this project included �ve subsystems. These systems and their responsi-

bilities are described in the table below.

Input Interface Provided a cross-platform interface for graphics

commands and data.

Graphics Processor Decoded, transformed, and rasterized 3D primitive data

to a 2D pixel bu�er.

Output Interface Implemented a standardized display output.

Device Driver Provided the interface between software and the graphics

hardware.

Graphics API Abstracted the driver interface to a cross-platform graphics

programming speci�cation.

Table 1: The major components of the design requirements

Each subsystem had its own speci�c requirements. The input interface provided a com-

munication connection for graphics commands and data to the accelerator. This hardware

implemented the link between a host system and the the graphics processing unit (GPU).

This interface needed to be independent of the platform used with the accelerator, ad-

hering to a known and standardized I/O format. This format needed to transfer graphics

commands and data at a fairly high rate such that 3D visualizations could be realized at

smooth frame rates.

The graphics processor needed to render 3D primitive data to 2D space and was ful�lled

by the functional implementation of a GPU. The GPU implemented the 3D graphics

pipeline and all of its components. The GPU received encoded commands and data from

the input interface and decoded these and their required parameters. Next, it performed

necessary modelview and perspective transformations on them and rasterized the result

to a pixel bu�er. These components needed to run e�ciently and integrate seamlessly

with the desired input and output devices. The GPU needed to also implement optimal

rasterization and transformation algorithms that run in parallel to each other and achieve

the highest possible speeds for the target platform.
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The output interface needed to implement a standardized display output format, provid-

ing the interface between the GPU and a target output device. This interface implemented

a digital video out standard ensuring that it could be used for multiple di�erent displays.

This required a hardware implementation of the display format controller to generate

necessary output signals.

The device driver needed to provide the software interface between the graphics API and

the hardware input interface. The device driver implemented the de�ned functionality

of the API by sending commands and data to the input interface. This driver needed to

be compatible with multiple hardware systems by being implemented within a standard

driver model.

The graphics API (Application Programming Interface) needed to de�ne an abstraction

layer that allowed a user to easily send graphics commands and data to the accelerator

from their applications. This API needed to be implemented in a standard programming

language and follow a consistent and logical speci�cation. The API implemented all

con�guration settings of all graphics features of the accelerator. The API needed to

also provide an intuitive interface for drawing and manipulating graphical data using the

GPU.

3.4 Design

This section describes the overall system design for the project, implementing the re-

quirements previously discussed. The core of the system, the graphics processor and all

of its necessary subsystems, was implemented within the Xilinx Spartan-6 LXT FPGA

on the SP605 Development Board (described in Chapter 2: Background Research).

To render 3D visualizations, data �owed �rst from the application, then to the graphics

driver, and then to the FPGA. The FPGA performed all necessary processing to rasterize

the 3D visualizations to a framebu�er located in memory. Due to project time and

resource constraints, certain stages of the transformation (including the lighting and

normal transformations) were implemented in driver-space.

We selected the 128MB DDR3 component memory, located on the SP605, to hold all

video memory. This memory synchronously sent framebu�er data to the display device

via the SP605's Digital Visual Interface (DVI) control circuitry. Figure 9 provides a simple

overall system diagram of the graphic hardware and its input and output interfaces.
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Figure 9: System overview

3.4.1 Software Design Overview

The software design for this project implemented all of the necessary abstractions for an

application programmer to render 3D data with the graphics accelerator. This composite

system consisted of: (1) the graphics API as a wrapper for (2) the softcore graphics driver

commands, and (3) the stages of the graphics pipeline that could not be implemented

in hardware. Additionally, the software designs for this project included various test

modules whose purpose was to qualitatively and quantitatively benchmark the FPGA-

based graphics accelerator, and an implementation of the Phong lighting model.

Graphics Driver The graphics driver served as the software interface to the softcore

GPU, allowing 3D visualizations to be drawn for an application by invoking a logical and

standardized set of functions. In the interest of hardware independence and streamlined

use, the system partially implemented OpenGL 1.1 as the graphics API rather than
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designing a custom software interface. However, many functions of the OpenGL library

had been left out due to missing hardware features. The API itself simply served as

a high-level wrapper for users familiar with the widely used OpenGL speci�cation to

communicate in terms of the graphics core's instruction set. In this way, the API and the

graphics driver comprised an inseparable link between the user's 3D graphics application

and the data transfer to the graphics core. The graphics driver also implemented various

essential API functions that do not exist within OpenGL, including frame swapping,

initialization, and cleanup.

The scope of this project included the implementation of those functions that could be

de�ned within the constraints of the graphics hardware features in addition to several

advanced features that serve to extend the capabilities of the hardware. Vertex light-

ing, for example, would have required complex trigonometric calculations in a hardware

implementation that were much more easily handled by the software. The remaining func-

tions in the API were implemented as blank stubs to ensure compatibility with OpenGL

applications and to increase the potential for future scalability.

Lastly, certain phases of the hardware modelview and perspective transformation were

implemented on a softcore CPU within the driver-space due to RTL limitations on the

Spartan 6 LXT. This speci�cally included the matrix/vector multiplications necessary to

calculate 2D screen coordinates from 3D space coordinates, which required signed 48-bit

multiplication.

Test Modules A series of test modules were written to qualitatively and quantitatively

benchmark the graphics hardware. These were written as 3D demos, and performed the

following:

• Identi�ed the maximum performance limitations of the graphics hardware, and

produced quanti�ed data on these (e.g. triangles-per-second, etc.)

• Implemented test cases to demonstrate and validate each individual feature of the

graphics hardware

• Created a �nal, presentable, 3D visualization that took full advantage of the graph-

ics hardware to produce an animated scene, demonstrating all of the capabilities of

the system
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3.4.2 RTL Design Overview

The Register Transfer Level (RTL) design for the graphics accelerator implemented a

number of subsystems to control the various stages of the graphics pipeline and its nec-

essary input and output interfaces. The �gure below provides a system diagram for the

RTL hardware design of the project. This system performed the necessary steps to render

3D graphics to an output display device from an input command stream provided by a

user application.

Figure 10: RTL design overview

Commands controlling the graphics accelerator were �rst pushed into the GPU by the

graphics driver over the Processor Local Bus (PLB), followed directly by their relevant

parameters or other data. The GPU then dispersed the commands and data to the

necessary subsystems, speci�cally the Vertex and Transformation Unit (VTU) and the
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Rasterizer (RAS). These two units ran in parallel, albeit sequentially on data. Trans-

formed and rasterized data were then read sequentially by the Video Interface (VI), which

ran independently of the other subsystems, constantly refreshing the output display de-

vice signals. An example execution for a program that draws simple 3D primitives with

the proposed implementation is as follows:

1. Initialization routine

(a) Set clear color and other state values

(b) Set viewport

(c) Set view transformation mode (perspective or orthogonal)

2. Draw primitives

(a) Translate, scale, and rotate the modelview matrix

(b) Send vertex position and color data

3. Wait for vertical synchronization (last frame to �nish being displayed)

4. Repeat steps 2 and 3 inde�nitely

Graphics Processing Unit The GPU processed the stream of data and commands

(graphics instructions) sent to the graphics accelerator. Acting as the frontend for the

entire system, the GPU implemented the various instructions needed to control the states

of the remaining subsystems and draw primitive data. These instructions were queued

into the GPU by a First-In First-Out (FIFO) bu�er, and then decoded and executed

sequentially by the GPU. Consequently, the FIFO stored the sequence of instructions

to be executed, as well as the necessary parameters these commands provided to the

graphics accelerator. The GPU instruction set that de�ned all control over the graphics

accelerator is presented below.
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Name Description

NOP No operation

DISPCNT Sets GPU control register

DISPSTAT Sets GPU status register

DRAWDONE Denotes the end of a frame being drawn (swaps buffers)

VIEWPORT Sets the viewport width, height, and X- and Y- locations

CLEAR_COLOR Sets the clear color

PIXEL Draws a pixel directly to the framebuffer

VTX_BEGIN Begins a vertex list

VTX_END Ends a vertex list

VTX_POS_X32 Set XYZ vertex coordinates, signed fixed-point 32-bit

VTX_COL_565 Set RGB vertex color, 565 mode 16-bit

For the graphics accelerator to process a command, the opcode �rst needed to be sent

through the FIFO followed by its necessary parameters. The parameters for each com-

mand are discussed in Chapter 5: RTL Graphics Core Implementation.

Vertex and Transformation Unit The Vertex and Transformation Unit (VTU) de-

�ned two primary subsystems: (1) the Matrix Processor (MP) and (2) the Geometry

Processor (GP). All vertex and matrix commands decoded by the GPU were processed

by the VTU.

The Matrix Processor implemented all matrix operations and stored two matrices to

de�ne how primitives were transformed in 3D space and how 3D space was converted

to the 2D viewing window (modelview and projection matrices, respectively). The MP

implemented all of its matrix transformations by multiplying the current matrix by an-

other matrix, which could be de�ned for translation, scaling, rotation, or orthogonal and

perspective projection. All matrices were 4x4 32-bit �xed point, with the fractional part

in the lower 16 bits (signed 16.16 format).

The Geometry Processor performed all of the necessary routines to prepare incoming

vertex streams to be rasterized to the frame bu�er. Upon receiving a VTX_BEGIN

command, the GP began processing a vertex list of the speci�ed primitive type (points,

lines, or triangles). To do this, the VTU invoked the following sequence of events:

1. Upon receiving the VTX_BEGIN command, the VTU entered geometry processing

mode, and could not receive any non-VTX commands until completion

2. The VTU then received a VTX_POS command for the speci�ed X, Y, and Z
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vertices of a primitive, and executed the following:

(a) Transformed the X, Y, and Z vertices of the primitive by the modelview matrix

(b) Transformed the X, Y, and Z vertices of the primitive by the projection matrix

(c) Sent the resulting 2D primitive X and Y values to the rasterizer, as well as the

last color data speci�ed by the VTX_COL command

3. The VTU then repeated step 2 for the remaining vertices that had been sent to the

GPU

4. The VTU then exited geometry processing mode upon receiving the VTX_END

command

At the completion of all drawing, the VTU would then wait to be signaled that drawing

of the current frame was completed with the DRAWDONE command.

Rasterizer The Rasterizer's (RAS) main purpose was to perform all of the drawing

to the framebu�er. The RAS performed this in two steps: (1) primitive rasterization,

the process of computing the necessary pixels to be written to approximate points, lines,

and triangles, and (2) color rasterization, the process of determining the necessary pixel

color via interpolation. The core functionality of the rasterizer was the implementation

of a line rasterization algorithm, which was then used to draw the other primitives. For

example, a single point could be rasterized with a line of length 1, and a triangle could be

rasterized by drawing a series of horizontal lines (see Chapter 2: Background Research for

discussion on these methods). The rasterizer received data from the VTU and rasterized

all vertices to the framebu�er.

Upon completion of rasterization, the rasterizer then waited until the Video Interface

entered the vertical blanking period, the time elapsed between two frames being drawn

to the display device. During this window, the framebu�ers swap addresses, and the new

framebu�er is subsequently cleared. The Rasterizer would then proceed to process the

next frame upon receiving new data from the VTU.
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Video Interface The Video Interface provided all of the necessary interfacing to the

output display device. This primarily included, (1) timing synchronization of the whole

system with the display rate, and (2) sequential generation of the RGB signals to the

output display device from framebu�er 1. The VI operated completely independent of the

entire system on its own 25MHz clock, constantly outputting the data from framebu�er

1 synchronously with the vertical and horizontal timing signals. This resulted in smooth,

60 frames per second (FPS) visualizations. The VI fed back a single active-high control

signal to the GPU, indicating when it is in the VBLANK phase, for synchronization

purposes. This ultimately triggered the entire system's only interrupt to prevent the

CPU from starting to send the next frame of data.

3.5 Summary

This chapter discussed the goals and objectives of this project. Furthermore, a high level

design of this project was detailed. In the next chapter (Chapter 4: Embedded Platform

Implementation) the hardware design and implementation of the embedded platform is

described. It focuses on how the graphics core was implemented within an embedded

system.
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4 Embedded Platform Implementation

After developing an overall design of the system, we implemented a hardware platform

that would drive the graphics acceleration core. For the hardware platform, we used the

Xilinx Embedded Development Kit (EDK) to generate a single-core Microblaze system.

Furthermore, this system utilized Xilinx's Multi-Port Memory Controller (MPMC) to

arbitrate memory transactions and minimize time that we would have needed to spend on

implementing a custom memory interface. This chapter describes the embedded platform.

4.1 Hardware Implementation

With the hardware implementation of the embedded platform, we made a few key design

decisions to allow for all necessary functionality of the graphics core and to ensure speed

and e�ciency. Primarily, the system needed to utilize a bus for peripherals that supported

FIFO-like write access and external interrupts. Based on these needs, we chose the

CoreConnect Architecture Processor Local Bus (PLB) v4.6 as the interface to our graphics

hardware core.

The Processor Local Bus not only allowed for a con�gurable FIFO interface and an

external interrupt signal, but it also provided register space that could be mapped to

main memory. As such, this allowed for a simpli�ed graphics command set, as certain

graphics commands could be designated a register rather than being queued into the

FIFO. This additionally provided for near-immediate hardware response, as there is a

several-cycle delay before command data is popped o� the FIFO, decoded, and executed.

Furthermore, we also generated a few key peripherals that ensured complete functional-

ity of the system. In addition to the MPMC, we added a RS232 UART core for debug

communication, as well as the Xilinx Clock Generator core to generate the bus and pixel

clocks. For the development platform, we chose a clock frequency of 75MHz to drive

the peripheral bus and Microblaze CPU. However, this frequency could very easily be

increased or decreased, depending on the performance and power consumption require-

ments of the system. We chose a constant pixel clock of 25MHz, as the graphics hardware

core was designed only to use a single resolution.

With the essential hardware components included in the embedded platform, we added
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a few other Xilinx cores for extra miscellaneous features. These included the Xilinx

Platform Studio General Purpose Input/Output (GPIO) for the development board's

(SP605) LEDs, push buttons, and DIP switches. This was so that they could potentially

be used as debug tools within the software stack, or for more complex user-controlled

demos. Lastly, we added the Compact Flash core as a potential storage medium for

application data that would use the graphics core.

The �gure below shows the EDK generated block diagram of the embedded platform.

This entire system was synthesized and loaded on to the Spartan 6 FPGA. With the

exception of the OGC_IP_0 (Open Graphics Core) peripheral instance, we generated all

components of the system with the Xilinx toolset. OGC implemented the custom VHDL

that describes the implementation of the RTL hardware graphics core (See Chapter 5 -

RTL Graphics Core Implementation).

Figure 11: Embedded platform block diagram
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4.2 Software Implementation

As part of the software implementation of the embedded platform, we used a script-

based scheme to automatically generate the hardware's Board Support Package (BSP).

This script, invoked by the Eclipse IDE, would automatically fetch all of the latest driver

sources (based on the hardware platform speci�cation) for all peripherals used (including

both the Xilinx cores and our custom graphics core), and then rebuild it for use with

the current application being loaded on the platform. Such a scheme allowed us to easily

make driver modi�cations to the graphics core without having to manually reconstruct

the BSP each time. Furthermore, this allowed for a more modular graphics source base,

which opened the possibility for the core to be shared among multiple embedded hardware

platforms.

Each individual application written to run on both the hardware and graphics plat-

form was created as a C stand-alone application. The stand-alone option was chosen

for simplicity, as none of the implemented demos required any OS-centric features (e.g.

no threading or extensive memory management requirements). Alternatively, for more

complex applications, the Linux operating system or Xilkernel (a lightweight Microblaze

kernel and software stack) could possibly have been used with the platform. Each stand-

alone demo statically linked the BSP libraries and could be independently loaded and

executed on the hardware platform. The BSP included our custom graphics hardware

driver.

4.3 Summary

This chapter discussed the hardware design and implementation of the embedded plat-

form. It focused on the design decisions we made to construct the environment to im-

plement the hardware graphics core. The next chapter (Chapter 5: RTL Graphics Core

Implementation) discusses the hardware architecture and implementation of the graphics

core peripheral.
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5 RTL Graphics Core Implementation

We implemented the RTL graphics core, the center of the FPGA-based graphics ac-

celeration platform, as a custom intellectual property (IP) core within the Spartan 6

FPGA. The core adhered to the Xilinx speci�cation for PLB v4.6 cores, making it en-

tirely portable to other Xilinx platforms. We implemented this core primarily in VHDL.

Additionally, we used Verilog for several digital video control modules. This chapter

discusses the hardware implementation of the RTL graphics core.

5.1 Architecture and Features

The implementation of the graphics core met and exceeded the initial design criteria.

The following features were implemented in hardware:

1. Graphics Processing Unit

(a) Command Processor running at 75MHz

(b) 32-bit FIFO command and data interface

2. Video Interface

(a) Digital Video Out (DVI) and VGA support (25MHz, 640x480 resolution)

(b) Framebu�er (16-bit color depth, format RGB565)

(c) Double bu�ering with a video-synchronization interrupt

3. Rasterizer

(a) Point, line, and triangle primitive rasterization

(b) Color interpolation (16-bit)

We implemented these features within a hierarchical architecture. As a Xilinx PLB

peripheral, a top level VHDL module was generated that interfaced with the Microblaze

system and processor bus. This interface was constant and as such not at all modi�ed

during the development of the peripheral. It did, however, instantiate a user logic module
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that served as the top level for all of the custom user logic that described the functionality

of the graphics hardware core. The four main modules that it instantiated were: (1) the

Graphics Processing Unit (GPU), (2) the Memory Interface (MI), (3) the Video Interface

(VI) and (4) the Rasterizer (RAS). The hierarchical structure of this implementation can

be seen in Figure 12.

Figure 12: Hierarchical look at the RTL hardware core architecture

Additionally, the system instantiated several other logic blocks that were not custom

user logic. These were: (1) a Block RAM interface, (2) a TFT interface and (3) a DVI

interface. These modules were all Xilinx generated interfaces. Additionally, there were

two other modules that were utilized within the project: the serial division module by

John Clayton (licensed under the GNU Lesser General Public License) and the 640x480

video timing module by Ulrich Zoltán (licensed by Diligent, Inc). These modules were

used to implement the red, green, and blue slope dividers (of the rasterizer) and the video

timing generator (of the video interface), respectively.
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5.2 Implementation

We divided the implementation phase of the RTL graphics core into the �ve main custom

user modules. This section discusses their speci�c implementations.

5.2.1 Graphics Processing Unit

The Graphics Processing Unit (GPU) interfaces all input data streams to the graphics

hardware, decodes these data, and subsequently sends these data to the other modules

within the core. Consequently, we implemented the GPU in two tiers. With the �rst

tier, the GPU received the command and data stream from the PLB FIFO. With the

second tier, it decoded and dispatched the commands and data received to the various

other subsystems. This two-tier architecture is illustrated by the diagram in Figure 13.

Figure 13: GPU tiered architecture

In Figure 13 above, each circle represents a VHDL process running concurrently. As
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such, there is one process that implemented the command and data receiver, and another

process for each command decoder.

We implemented the �rst tier of the GPU, the command and data receiver, using a simple

VHDL process that synchronously checked whether a new data word had been enqueued

in the FIFO (the WFIFO2IP_RdAck signal of the FIFO interface will go high). If this

signal went high, the GPU would then assume that the �rst word is the command data,

and that every subsequent word received would be parameter data for that command.

Each GPU command (see Chapter 3: Project Overview and Design) has a �xed size,

so subsequently the GPU would count received words until it has received all necessary

data. At this point, it would then assume that the next word received is a command,

and the process would continue.

With this design, it was imperative that data be sent to the FIFO correctly aligned

with the proper command size, otherwise the FIFO may corrupt with invalid �elds.

Consequently, if �elds need not be speci�ed for a particular command, the command

must still be padded with zeros such that it is still aligned within the FIFO.

With the second tier of the GPU, the command decoders were each implemented in the

same fashion - as state machines that wait for each parameter of that command to be

received. A generic command decoder state machine diagram can be seen in the �gure

below. This diagram accurately describes the behavior of all of the command decoders.
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Figure 14: GPU command decoder state machine

When the hardware was powered on, all of the command decoders started in the reset

state, which reset all states, variables, and signals. The command coders then went

into the idle state, where they waited until their speci�c command was received. Each

command decoder checked within its idle state if the current command was its command.

If it was, it proceeded to the next state - if not, it simply waited until it did receive the

correct command.

Next state, receiving1, simply waited until the next data word was received from the FIFO.

Once it was received, it then decoded the parameters of it for that given command, and

then continued to the receiving2 state. This continued until all parameters were received,

and then it entered a done state. The done state returned back to the idle state, where

the process continued when the same command was send through the FIFO again.

The table below shows the commands that were implemented in the �nal RTL design,

using the command decoder scheme described above. For a description of each command,

see Chapter 3: Project Overview and Design.
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Command Parameter1 Parameter2 Parameter3

NOP 0x45000000 N/A N/A N/A

DISPCNT 0x45000001 Unused[31:1] N/A N/A

WireframeOnO�[0]

DRAWDONE 0x45000003 N/A N/A N/A

PIXEL 0x45000007 Unused[31:16] X-Pos[31:16] N/A

Color[15:0] Y-Pos[15:0]

VTX_BEGIN 0x45000020 Unused[31:4] N/A N/A

PrimitiveType[3:0]

VTX_END 0x45000021 N/A N/A N/A

VTX_POS_X32 0x45000025 X-Pos[31:0] Y-Pos[31:0] Z-Pos[31:0]

VTX_COL_565 0x45000027 Unused[31:16] N/A N/A

Color[15:0]

Table 2: Command parameter decodings

All commands implemented in hardware, with the exception of VTX_POS_X32, simply

set states within the graphics core. These states were used to describe how primitives

were to be rendered. The VTX_POS_X32 command, on the contrary, was di�erent in that

vertex positions were not controlled as states, but rather as continuous streams of data.

Furthermore, there was an additional process running in the GPU hardware that stored

each vertex position received and waited until enough had been received to rasterize the

next primitive. Upon having received all necessary information (e.g., 3 vertices to draw

a triangle, 2 for a line) it sent the information to the rasterizer core and triggered the

rasterization to the backbu�er. The other states set by the other commands (e.g. color,

primitive type, wireframe �ag) were also passed along to the rasterizer.

5.2.2 Memory Interface

The memory interface (MI) provided an interface to an external memory device (the

128MB DDR3 RAM on the SP605 Development Board) for the purpose of reading the

frontbu�er to the Video Interface. However, it was not the only interface to memory since

the rasterizer implemented its own separate write interface to the backbu�er. The HDL

implementation simply wrapped Xilinx's Native Port Interface (NPI) with a much simpler

read interface. NPI is a Personality Interface Module (PIM) type for Xilinx's Multi-Port

Memory Controller (MPMC), the controller for the DDR3 RAM, among many other

memory devices. This read interface performed 8-word burst reads, and sent those 8

words back to the Video Interface. This was ideal for a framebu�er read, as the entire
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framebu�er must be synchronously read and displayed on the output video device. The

read interface was con�gured for 32-bit address and data buses.

The MI was implemented as an HDL state machine. This state machine is described in

Figure 15.

Figure 15: Memory Interface state machine

As can be seen in this diagram, the state machine started in the idle state, and waited

until the mem_req signal went high. This signal was part of the external interface to

the memory interface (along with an acknowledge signal, a start address, and 8 data

out signals), and was used to start a burst read. Once it had been received, the state

machine then went to the acknowledge state, where it waited for the NPI to acknowledge

the read transaction. In this state, the mem_ack signal went high, signaling to the external

interface that the memory interface was busy. Once the transaction was acknowledged by

the MPMC, the state machine then proceeds based on the latency of the read transaction.

This latency could be one or two clock cycles, depending on the state of the MPMC.

If there was no latency on the transaction, the state machine received the �rst data word

on the acknowledge state, and then proceeded to receive one word each clock cycle until

all 8 words were received. If there was a latency of one clock cycle, the state machine

proceeded to the receive_latent1 state, received the �rst data word, and then continued

to receive the remaining 7 words. If there was a latency of two clock cycles, the state
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machine proceeded to �rst the receive_latent1 state, then the receive_latent2 state, and

then received the �rst data word. Again, it �nished receiving the other 7 data words after

this, as the prior two examples did. The state machine changed states on a rising clock

edge, and latched data words on a falling clock edge.

Once all 8 data words had been received by the burst read, the state machine then

returned to the idle state and the mem_ack signal went low. This signi�ed that the

transaction completed and that the data words were now available to be used by the

Video Interface.

5.2.3 Video Interface

We implemented the Video Interface (VI), the interface to the DVI output display device,

with two objectives: (1) generating the video output color and timing signals and (2)

retrieving the color information from the framebu�er . Consequently, we implemented

the VI as two concurrent modules.

The �rst of these two modules generated the video output color and timing signals,

primarily using the video timing module by Ulrich Zoltán (see section 5.1: Architecture

and Features). This module was developed to generate VGA timing signals for the Nexys2

Development Board by Diligent, Inc. However, because DVI uses the same timing as

VGA, we chose to use this module for the sake of convenience. This module generated

the timing signals, described in Table 3, for the 640x480 resolution.

Signal Description

HorizontalSync Active low, goes active at the end of a row being drawn.
VerticalSync Active low, goes active at the end of a frame being drawn.
VerticalBlank Active low, goes active during the period between two frames being drawn.
HorizontalCount Horizontal pixel that is currently being drawn (current pixel X-position).
VerticalCount Vertical pixel that is currently being drawn (current pixel Y-position)

Table 3: VGA timing signals

This module was also driven by a 25MHz pixel clock that was generated by the Xilinx

Clock Generator (see Chapter 4: Embedded Platform Implementation). We then used

the �ve output VGA signals to correctly time the DVI signals.

The DVI output required 6 main control signals - a HorizontalSync and VerticalSync

(which could be directly used from the VGA timing module), a 5-bit red signal, a 6-bit
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green Signal, a 5-bit blue signal (RGB565), and a DE (deinterlacing) signal. To implement

these, a VHDL process was used that counted on the bus clock and checked if the system

was in a blanking period (between frames) or not. If it was, it would deassert DE, and

output no color on the DVI color signals (black). If it was not in a blank, it asserts DE,

and fetches pixels from the framebu�er as needed to draw them to the output DVI red,

green, and blue color signals.

We implemented the second main module, which retrieved color information from the

framebu�er, primarily by instantiating the MI (described in section 5.2.3: Memory In-

terface). As previously noted, the MI reads 8-word bursts from RAM which allows it to

read a maximum of 16 pixels at a time. As such, we implemented the module by creating

a VHDL process that used the VGA timing signals to trigger the MI to burst read on a

16 pixel interval. This had to occur while the system was not in a blanking period, and

the next 16 pixels always had to be read while the current 16 pixels were being drawn.

As such, the starting address of the burst read was calculated by:

Pixeladdress = FrontbufferBaseAddress+(V erticalCount∗FramebufferPixelWidth∗ColorByteWidth)+

(BurstCount ∗ ColorByteWidth ∗ 16)

In the VI, the color byte width was of course 2 (16-bit color, RGB565) and the frontbu�er

base address was passed to the VI from the software driver (as the framebu�ers are

allocated in RAM by the MicroBlaze CPU). To ensure that the next 16 pixels were

always fetched, and not the current ones, burst count was initialized as 1, not 0.

At the end of each 16 pixel intervals, the color data from the burst read data words are

stored, and then the next fetch is triggered. The stored words were then used by the DVI

timing module to output the correct color data at the correct pixel locations.

5.2.4 Rasterizer

The rasterizer (RAS) was the module responsible for fabricating the 3D scene from vertex

data. We implemented this module hierarchically, by �rst implementing pixel rasteriza-

tion. We then used the pixel rasterization to implement line rasterization. Lastly, line

rasterization was used to implement triangle rasterization. This section describes the

speci�c implementations of these.
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Pixels We implemented pixel rasterization by performing the inverse of the VI (which

read from the frontbu�er) by writing to the backbu�er. That being said, the hardware

required a second interface to external memory that could write concurrently to the VI's

reads. This was also done by using the NPI PIM, as the MPMC arbitrated these memory

transactions. Like in the MI, memory write transactions were implemented using a state

machine similar to the one discussed in Section 5.2.2.

Due to the fact that pixels are not often written sequentially in the framebu�er, this NPI

interface did not use burst writes. Instead, it was implemented to write only one 32-bit

data word at a time. Furthermore, either the two high or two low bytes were disabled, as

pixels are only 16 bits wide (and NPI does not support a 16-bit interface). This simple

state machine is described in Figure 16.

Figure 16: Rasterizer pixel write state machine

As can be seen in this diagram, the RAS pixel write state machine started in a reset

state upon powerup of the graphics hardware. Immediately after this, it went into the

idle state, where is waited until the system requested a pixel to be rasterized. When this

request was received, the state machine pushed the pixel address within the backbu�er

into the NPI's address FIFO and then changes to the transmit state.

While in the transmit state, the state machine holds the address push until the transaction

was accepted, which is delineated by the NPI address acknowledge signal going high.

Upon receiving this, the state machine then pushed the pixel color into the NPI data

FIFO, and returns to the idle state. The state machine is then ready to rasterize another

pixel, as needed. With the last pixel's address and color value in the respective NPI

FIFOs, the MPMC will complete the write transaction to external memory automatically.
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Lines Line rasterization was performed by developing an RTL implementation of Bre-

senham's Line Algorithm (see Chapter 2: Background Research for more information).

Furthermore, this implementation wrapped the pixel rasterizer, due to the limited num-

ber of NPI interfaces available (as such, to rasterize a pixel, the hardware draws a line

starting and ending at the same point). Bresenham's Line Algorithm (BLA) was im-

plemented using 3 separate concurrent processes: (1) the setup process, (2) the pixel

position approximation process and (3) the pixel color approximation process.

We implemented the setup process to complete any calculations necessary before line

rasterization. These included calculating the change in red, green and blue values from

the beginning of the line to the end of the line and triggering the division to calculate

the color slope for these components. The system performed division in hardware serially

using the Serial Division Module by John Clayton (licensed under the GNU Lesser General

Public License from OpenCores.org). As can be seen in Section 5.1, an instance of this

module was created for each color component. The dividend of the color division, the

change in color from endpoint to endpoint, was shifted left 8 bits (and padded with zeros)

in order to maintain fractional precision. The divisor of this division was the change in

y-value of the line from endpoint to endpoint (or x-value, if the x-axis is the major axis).

As this requires at least a 14-bit division (for the largest shifted color value, the 6-bit

green �eld), 14 clock cycles are necessary to compute the division serially. For the sake

of simplicity, all �elds were de�ned as 16-bits, so there was a 16-bit latency in calculating

the color slopes.

With the pixel approximation process, the line rasterizer calculated the X- and Y-

positions of each subsequent pixel from endpoint to endpoint to closely approximate

the line. This speci�cally was the core of the RTL implementation of Bresenham's Al-

gorithm. To implement the algorithm, the major octant of the line was �rst determined

(by comparing the change in X- and change in Y- of the line), and then the line was

drawn pixel by pixel incrementally from the endpoint closest to the origin to the end-

point furthest away. Each pixel iteration increased by only one pixel, either in the X-

or Y- directions, or both. This continued until a close approximation of the line was

completed.

Lastly, the pixel color approximation process used the color slopes calculated in the

setup process to interpolate color data points for each pixel between the color de�ned
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at one endpoint of the line and the color de�ned at the other. This was calculated at

the beginning of each new pixel for the next pixel in sequence. The following example

describes the necessary calculation:

ColorRed = (ColorSlopeRed ∗ (Endpoint0Y−pos − PixelY−pos)) + Endpoint0RedComponent

With this equation, the color component (in this example, red) was calculated by multi-

plying the color slope of that component by the change in pixel position and adding the

original color component at the �rst endpoint to it. This was a simple linear interpola-

tion (i.e. Y=m*X + b). Furthermore, with the actual RTL implementation, the color

slope was left shifted by 8-bits to maintain a fractional component through the division.

Consequently, the end result needed to be shifted back 8-bits to the right.

Triangles Triangle rasterization was implemented by invoking the line rasterizer in

two phases, (1) drawing the wireframe of the triangle and (2) �lling the wireframe of the

triangle using horizontal lines (see Chapter 2: Background Research for more information

on this process). These two phases were implemented using a VHDL state machine. This

state machine is described in Figure 17.

Figure 17: Triangle rasterization state machine

In this state machine, the �rst phase of the triangle rasterization was kicked o� from the

idle state when the ras_tri signal went high. This resulted in the �rst line of the triangle

being rasterized by invoking the line rasterizer (which was previously instantiated within

the triangle rasterizer) using two of the endpoints of the speci�ed triangle. Subsequently,
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the next two lines of the triangle were rasterized within the next two states using the

remaining endpoint of the triangle.

With the rasterization of the triangle wireframe, each pixel X-position and color value

must be stored to perform the �lling algorithm. Due to the fact that this could be a

relatively sizable amount of data points dependent on the size of the triangle, these data

needed to be stored in the Block RAM located within Spartan 6 FPGA. To do this,

a Block RAM (BRAM) core was created via the Xilinx CoreGen, speci�ed to have a

32-bit data width and a depth of 1440 words (to store three bu�ers of a depth of 480

words for each line of the triangle). As such, this contained enough storage for all pixel

information of any possible triangle wireframe, as the X-position and color of each pixel

of each line are stored at their respective Y-position address (each being 16-bits wide,

both components were encoded in single 32-bit words).

In the next phase of triangle rasterization, the triangle was �lled by �rst calculating which

line (the major line) of the triangle had the greatest Y-distance between endpoints. Then,

for each Y-position of the framebu�er, the state machine checked if there existed pixel

information stored in the BRAM for both the major line and either of the two minor

lines. If both of these conditions were satis�ed, then a horizontal line was drawn via

the line rasterizer between these two points, using the endpoint data previously stored

in BRAM. This process was completed for every vertical pixel in the framebu�er (480

pixels total), which resulted in the triangle primitive being �lled.

5.3 Summary

This chapter discussed the RTL implementation of the graphics core. It focused on how

all of the main subsystems of the graphics core were implemented in hardware and the

communication interfaces between them. In the next chapter (Chapter 6: Driver and

API Implementation) the software architecture and implementations are discussed.
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6 Driver and API Implementation

The driver for the 3D graphics hardware platform served as the interface between a

user's OpenGL application and the platform's hardware. Running as a C module on

the MicroBlaze softcore processor, this software library provided the framework to allow

any user familiar with the OpenGL standard to run graphics applications on the hard-

ware. This chapter describes the software implementation of the driver and application

programming interface.

6.1 Architecture and Features

The implementation of the software driver and graphics API were su�cient for the proof of

the project's concept, which was the realization of hardware-based graphics acceleration.

The driver consisted of the following software components and capabilities:

1. Graphics Hardware Memory Interface

(a) FIFO command and data queue

(b) Hardware register read/write

2. Graphics Hardware Driver

(a) Pixel and bu�er data management

(b) Hardware interrupt capability

3. OpenGL Implementation

(a) Point, line and triangle primitive drawing
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(b) Full color and material support

(c) A�ne vertex transformations

(d) Parallel and perspective projection modes

(e) Ambient and di�use lighting according to the Phong re�ection model

The software necessary to implement graphics capabilities in the system was fully con-

tained in items 1 and 2, the graphics hardware memory interface and the driver. Consid-

ering only these components, the user could hypothetically render a scene by sequentially

drawing individual pixels or by sending vertex data. To make the graphics capabilities

of the platform more accessible, users could also work in the system's custom implemen-

tation of OpenGL. However, many features provided in the vast OpenGL speci�cation

remain unimplemented and represent a signi�cant area of potential future expansion.

These areas are discussed in section 1.3. A full diagram of data �ow in the driver is given

in Figure 18.

Figure 18: Driver and API data �ow
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6.2 Hardware Command Interface

The hardware interface is conceptually divided into a small subset of memory management

routines and a larger subset of graphics capabilities routines that use them as part of the

platform's API.

6.2.1 Memory Management

At the lowest level of the software interface, the platform provided several basic commands

from which all of the graphics programming capabilities were devised. The driver's most

basic function was to facilitate data to the graphics hardware FIFO queue and registers.

Driver Method Name Purpose

GPU_FIFO_PUT32 Pushes a 32-bit word onto the FIFO queue
OGC_WriteReg Writes a 32-bit word to a given hardware register
OGC_ReadReg Reads the contents of a given hardware register

Table 4: Graphics hardware memory management

As seen in the table above, the three basic functions served to push data onto the FIFO

queue (which were popped by the hardware programming in the GPU) and to read and

write data to and from the hardware registers, respectively. Using these commands, the

user may send any 32-bit word of data to the hardware and read the contents of any

register from the hardware. When it was necessary in the driver to send less than 32 bits

of data, we used a mask or o�set to pad the data sent. In general, we used the FIFO queue

to send data and commands related to pixels and vertices. We used the hardware register

methods in the API to manage the display synchronization and interrupts and double

bu�ering con�guration. The following table presents the hardware register memory map.

Address Register

BASEADDR+0x00 Front bu�er address (R/W), 32-bit
BASEADDR+0x04 Back bu�er address (R/W), 32-bit
BASEADDR+0x08 Initialization complete on write, (W), 32-bit
BASEADDR+0x0C Clear Color (W), least signi�cant 16-bits only
BASEADDR+0x10 Video interface status/fault register (R), 32-bit

Table 5: Hardware register memory map
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6.2.2 Graphics Driver

We utilized the basic functionality of memory management in software by de�ning a set of

command words in the driver that were read as operation codes by the hardware. These

codes corresponded precisely to the RTL commands previously described in Section 5.2.1.

The data prefaced by these codes were then interpreted by speci�c functions within the

hardware program.

Data/Command Code Purpose

OGC_CMD_NOP No-Operation

OGC_CMD_DISPCNT Display control

OGC_CMD_DRAWDONE Informs the hardware that the driver has �nished

drawing to the backbu�er frame

OGC_CMD_PIXEL De�nes the next pixel in terms of screen

coordinates and color value

OGC_CMD_VTX_BEGIN Set the hardware to begin acceptance of vertex data

OGC_CMD_VTX_END Set the hardware to terminate acceptance of vertex data

OGC_CMD_VTX_POS_X32 De�nes current pixel 3D position in the X32 numerical

data union format

OGC_CMD_VTX_COL_565 De�ne current pixel color in the RGB565 color format

Table 6: Graphics hardware FIFO commands

Using the operation codes in Table 6, the user could push many types of data and

commands through the GPU FIFO queue for the hardware to interpret. These commands

combined with the ability to read and write to various hardware registers (e.g. frame

bu�er and display control registers) provided us with the tools necessary to develop more

advanced graphics capabilities. The complete list of graphics driver routines is described

in Table 7.
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Driver Method Name Purpose

OGC_VI_DrawPixel Sends single pixel data (X-position, Y-position, and 16-bit

color value) through the FIFO queue

OGC_VI_SwapBu�ers Exchanges the registers containing front and back bu�ers,

e�ectively drawing the next frame in an animation

OGC_VI_WaitForVSync Executes a wait loop which allows the front bu�er to �nish

drawing before swapping with the back bu�er

OGC_EnableInterrupt Sets the Interrupt Enabled Registers in hardware to

allow the software to send interrupt messages

OGC_VI_VSyncIntrHandler Interrupt handler for the Video Interface vertical

synchronization interrupt

OGC_Init Initializes the hardware components for software interface

OGC_Shutdown Shuts down the hardware components' software interface

Table 7: Graphics hardware driver functions

Used together, these driver routines formed the basis of the graphics engine running on

the hardware platform. These methods functioned together to allow the platform to draw

and swap entire frame bu�ers �lled with pixel data. To make use of this hardware capa-

bility to render graphics, we then implemented our own custom version of the OpenGL

speci�cation to work within the constraints of the platform's graphics driver.

6.3 OpenGL Implementation

For users to develop 3D graphics applications, we implemented the OpenGL speci�ca-

tion for the graphics driver according to the provisions and limitations of our hardware

platform. The driver de�ned many basic functions declared in the OpenGL standard

libraries and used many data types, enumerated types, and constants typical of OpenGL

implementations. Although several of the OpenGL functions included in our custom

API served simply as wrappers for the most basic driver functions, others required ex-

tensive data and state management within the software system. Although the API we

developed includes only a small fraction of the large quantity of OpenGL methods, it

included enough functionality to fully realize all the steps of the basic graphics pipeline

in conjunction with the hardware implementations.
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6.3.1 State Management

In a typical implementation of the OpenGL speci�cation, many of the data used in

graphics calculations were set in the API as states. States in OpenGL were global in that

any part of the application and API may access the data contained there. Once a state

variable had been set by an API call, any future reference to that data invoked the data

stored in that state. Only once the state had been modi�ed by an API call may references

to the data re�ect any changes. Some examples of OpenGL states implemented in our

API are given in Table 8.

OpenGL State Variable Diver Struct Purpose

GL_CURRENT_COLOR, API_Color Stored current color data used by vertex processing

GL_COLOR_MATERIAL and whether color material mode was enabled

GL_CURRENT_NORMAL API_Normal Stored vertex normal vector coordinates used by

lighting processing

GL_COLOR_MATERIAL_ API_Material Controlled the color material mode used by color

PARAMETER processing

Table 8: Implemented OpenGL states

In our implementation, we de�ned some of these states in a combined fashion using data

structures to store many thematically related state variables. In this way, states were

conveniently grouped and tracked according to their e�ects and instantiated together as

global structures. To modify states through the API, the application developer would

need only use the standard OpenGL functions according to the speci�cation, such as

glEnable.

Supporting OpenGL states in this way would allow users familiar with OpenGL to develop

their graphics applications in the usual way even though the driver interfacing with

the hardware platform transmits data according to a much di�erent protocol. In our

implementation, states like the color and material attributes were �nally used in color and

lighting calculations in our glVertex function, at the end of which a simple burst of FIFO

push commands sent the vertex positions and �nal color values. Consequently, the data

stored in OpenGL states were used only by the API routines and never explicitly passed

to hardware calculations. This protocol saved complexity and resource requirements on
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the FPGA and worked conveniently within the scope of the API.

6.3.2 OpenGL Features

We used open-source Mesa 3D OpenGL 1.1 header �les, namely gl.h and glu.h, as the

framework for our API implementation. These �les provided the speci�cation necessary

for all graphics commands that might be invoked by the user in this environment. In a

commercial implementation of OpenGL, there are extensive graphics features supported

by a wide variety of functions, types and data structures. For the purposes of this project

we de�ned twenty (20) OpenGL functions in our API. These functions are enumerated

below in Table 9.

OpenGL Function Purpose

glClear Clears the display

glClearColor Resets color values

glViewport De�nes screen dimensions

glEnable Toggles OpenGL states

glDisable Toggles OpenGL states

glBegin Prepares driver for primitive data input

glEnd Indicates conclusion of primitive data input

glColor3f Sets OpenGL color state data

glMaterialf Sets certain material parameters

glMaterialfv Sets OpenGL material state data

glVertex3f De�nes a vertex in the API

glNormal3f Sets OpenGL normal state data

glLightfv De�nes lights in the scene

glFrustum Multiplies the current matrix by a perspective matrix

gluPerspective Sets up a perspective matrix

glMatrixMode De�nes the current working matrix

glLoadIdentity Loads an identity matrix onto matrix stack

glTranslatef Performs a�ne translation

glScalef Performs a�ne scaling

glRotatef Performs a�ne rotation

Table 9: OpenGL Function Implementations

Preparing the Display Before any visualizations could be rendered in an OpenGL

application, the screen needed to be initialized and prepared for input. Our API de�ned

the OGC_Init() function as the method by which the driver initialized the graphics

hardware and API global state variables. This method was not a feature of OpenGL,
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but was necessary in graphics applications running on our platform before any OpenGL

functions could be used. After this step, the application programmer would proceed by

invoking the typical sequence of OpenGL routines such as glClearColor() as necessary.

Finally, the applications programmer could use the view and perspective functions to

de�ne the screen coordinate system and viewing volume.

Managing Matrices We fully implemented the modelview and perspective matrix

transformations in our API in such a way that the user could rely on glMatrixMode()

and glLoadIdentity() to function as expected to manage the perspective and modelview

matrices. These matrices were allocated by the driver. In the current implementation,

transformations and other mathematical operations on these were calculated in the driver

due to resource limitations on the FPGA. Furthermore, our current implementation did

not include a matrix stack.

Drawing Primitives In an OpenGL application, the standard method of drawing

primitive shapes involves �rst preparing the driver to accept vertex data. Our API used

the glBegin() and glEnd() functions according to speci�cation including the enumerated

values GL_POINTS, GL_LINES and GL_TRIANGLES to specify the type of primitive

to draw. Other more complex primitive types were not supported by our implementation.

De�ning Lights and Colors An application programmer using the graphics plat-

form would have many options regarding lighting and color control within their graphics

application. Our platform featured full support of the color data states and partial im-

plementations of the material data states. Furthermore, we implemented many of the

basic lighting states, available in the API.

To set the current vertex color, the glColor() function was used to de�ne a 16-bit RGB565

color value in a global data structure that was accessible as a state anywhere in the

application and the API. Additionally, the user could enable color material mode to
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de�ne vertex material properties for applications that utilized lighting features. Since

this implementation didn't distinguish between front- and back-faces, it was not possible

to specify this option in the material parameters.

In applications where lighting may be used, the user had the option to either specify

each change in material color state using glMaterialfv(), or to save time by enabling color

material mode. When this mode was enabled, invoking the glColor() function served

as a wrapper for glMaterial() and could be more convenient. To de�ne lighting e�ects

in this environment, the user could enable and disable lights according to the OpenGL

speci�cation lighting values. Our implementation included ambient and di�use lighting

modes, but did not include specular lighting e�ects. Directional lights could be speci�ed

through the glLightfv() function and need not be normalized by the user as that step was

performed internally by the API before lighting calculations were made.

Ending the Application Our platform currently required the user to end each display

loop with a custom function we developed, OGC_VI_WaitForVSync(). This is the

method that enables double bu�ering by waiting for the front and back bu�ers to be

swapped. Additionally, the user should terminate graphics applications on the platform

with the custom method OGC_Shutdown() that performs all cleanup routines.

6.4 Summary

This chapter discussed the Driver and API implementation of the software components.

It focused on the methods we used to tailor our graphics API to the hardware driver we

developed while still faithfully implementing various core components of the OpenGL 1.1

speci�cation. Examples of graphics applications developed using our API are available

in Appendix E. In the next chapter (Chapter 7: Testing and Results) the entire graphics

hardware and software system was tested to the extent of its capability and evaluated
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according to quantitative and qualitative criteria through a series of graphics applications

we developed.
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7 Testing and Results

To verify the functionality of the systems described in chapters 4, 5, 6, and 7, we carried

out a number of tests. We performed qualitative tests to visually verify the implemented

features and quantitative tests to benchmark the platform's performance. These tests

were implemented as OpenGL applications that implemented these features and measured

the performance in frames-per-second (FPS). Sample source code for many of these tests

can be found in Appendix E: Simple OpenGL Demo Source.

For this project, we developed a software emulator that implemented all of the features

of the intended hardware (See Appendix B: Graphics Accelerator Emulator for more

information). We performed two phases of testing: the �rst was running the given demos

in the emulator, and the second was running the given demos on the actual graphics

hardware. The emulator served as a qualitative and quantitative benchmark that we

attempted to match with the hardware implementation. This chapter compares these

benchmarks for the two implementations for each demo.

All demos tested with the emulator were launched on a Core 2 Duo T9600 2.8GHz

computer, with 4GB of RAM and Windows 7 Ultimate 64-bit. Due to the huge speed

di�erence between the test computer and the embedded platform (which ran the demos at

75MHz), the embedded platform was expected to perform much slower than the emulator.

With the hardware tests, all demos were ran on the XC6SLX45T FGG484-3C Spartan-6

FPGA and SP605 development board using a DVI-HDMI cable to display the results on

a 32� SHARP Aquos LCD television. While the output display speci�cs are negligible,

this television was used over a standard DVI-compatible monitor as it provided better

color contrast for photography.

It also should be noted that all demos executed on the FPGA hardware had yellow text

overlayed on the framebu�er to display frame rate data. Demos launched within the

emulator instead displayed a frame rate on the title bar.

7.1 Framebu�er

The �rst demo that we implemented to test the functionality of the graphics core was

a framebu�er demo. This framebu�er demo tested the 2D capabilities of the graphics
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core, which were essential as all 3D renderings are rasterized to a 2D plane. This demo

generated a random �re pattern in C, and then wrote that pattern to the backbu�er.

The graphics core then swapped the frame bu�ers, and this process was repeated. An

'X' pattern was also overlayed on top of the �re to verify that pixels are drawn exactly

where they are written. The result of this demo was a smooth �ame animation that can

been seen running in the emulator in Figure 19, below.

Figure 19: Framebu�er demo running in the emulator

With the emulator, this demo ran a consistent 30-35 FPS. However, as expected, the

demo performed more slowly on the actual graphics hardware. The �re demo can be seen

below running in Figure 20, below, on the FPGA.

Figure 20: Framebu�er demo running on the FPGA
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Qualitatively, the results were identical to the emulator, verifying that double bu�ering

worked as expected, and that pixels appear as they were written to the framebu�er.

Quantitatively, this demo averaged at approximately 10 FPS, which was quite slow. It

must be noted that this was not due to a limitation in the RTL implementation, but

rather the speed that the CPU generates the patterns. As will be seen in subsequent

tests, demos that used just hardware for drawing performed substantially better. It also

must be noted that for this demo, and the others presented in this chapter, colors values

were signi�cantly under saturated due to the photography quality. In the actual demos,

the color values displayed from the FPGA implementation were essentially identical to

their emulator counterparts.

7.2 Simple Triangle Drawing

The second test, the triangle demo, was implemented as a qualitative test to ensure the

correct drawing of a single-color (no interpolation) triangle to a 2D plane. This test

veri�ed the rasterizer's ability to correctly approximate a triangle primitive, the building

block of complex 3D scenes. This was a very simple OpenGL demo that simply sent three

vertices to the graphics hardware. This demo can be seen running on the emulator in the

�gure below.

Figure 21: Triangle demo running on the emulator

Qualitatively, this was an ordinary rendering of a simple white triangle. Because this is

only one triangle, the performance of the demo (in either emulator or hardware) was not
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relevant, as the speed limitation was within the overhead to setup a frame, not the actual

drawing of it. This demo running on the graphics hardware implemented on the FPGA

can be seen in Figure 22, below.

Figure 22: Triangle demo running on the FPGA

The most noticeable glitch in the hardware implementation of the project is very obvious

in this photograph. That is, the white line appearing horizontally on the top of the

triangle, which is an artifact of the �lling algorithm used. However, it still may be visually

observed that the �lling works nearly as well as expected. Due to time constraints, we

were unable to further develop the triangle rasterizer to the point where this bug was

no longer present. However, the objective of triangle rasterization was still nonetheless

achieved.

It may also be noted that this demo ran near the speed of the emulated test, which

was roughly three orders of magnitude faster than the frame bu�er demo running on

hardware. This was, of course, due to the fact that the graphics core, not the MicroBlaze,

was performing the drawing in this demo.

7.3 Transformation

In the next test, we used a demo to test vertex transformation. This demo used our

OpenGL implementation to draw an octahedron (8 sided shape) of solidly �lled triangles.

Furthermore, this demo used OpenGL to scale, rotate, and translate the vertices of this
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object in 3D space. The result was a 3D octahedron spinning on the Y-axis. A screen

capture of this can be seen in Figure 23, below, running on the emulator.

Figure 23: Transformation demo running on the emulator

As can be seen above, this demo still averaged at roughly 40 FPS. This demonstrated,

again, that the bottleneck was not the rendering, but rather the frame setup. Next, this

demo was launched on the actual FPGA graphics hardware, seen in Figure 24, below.

Figure 24: Transformation demo running on the FPGA

With this demo, as more triangles are drawn, the glitching due to the triangle �lling

has become much more apparent. However, the triangle primitives were still drawn

nearly correctly, demonstrating that qualitatively the objective of triangle rasterization

61



was essentially met. Furthermore, no new qualitative issues were presented by this test

demo. All transformation, including scaling, rotating, translation, and perspective, were

veri�ed to function as expected. The frame rate of this demo, again, peaked at 32 FPS -

the same as the single triangle demo - showing that the performance bottleneck, even on

hardware, was still not in the number of vertices processed.

7.4 Color Interpolation

In the next test, the previous demo was modi�ed to demonstrate color interpolation. This

demo also rendered an octahedron, but this time rotating around the X-axis. Additionally,

each vertex of each triangle was speci�ed a di�erent color (red, green, or blue) to give a

smooth shaded e�ect. This smooth shading was generated by the ability of the graphics

hardware to approximate color values at each pixel of the triangle. This can be seen as

executed by the emulator in Figure 25, below.

Figure 25: Transformation demo running on the emulator

Again, this demo was also tested in hardware. A photograph of the color interpolation

test demo running on the FPGA can be seen in Figure 26, below.
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Figure 26: Color interpolation demo running on the FPGA

In this test, the triangle �lling glitch is still apparent. However, as in the last demo, no

new qualitative errors were introduced by this test. The demo was visually veri�ed to

interpolate the colors as expected, resulting in smoothly shaded triangles. Furthermore,

as the same number of triangles were drawn, performance was near identical to the

previous octahedron demo. This is due to the fact that the same line algorithm is utilized

in RTL regardless of whether the two endpoints of a line have di�erent color values.

Discussion on this implementation may be found in chapter 5.

7.5 Lighting

The purpose of the lighting demo was to test the functionality of the software imple-

mentation of directional lighting. With this demo, a single directional light source was

applied to the OpenGL color interpolation demo discussed in section 7.4. This demo used

the OpenGL implementation of di�use and ambient lighting. This can be seen running

in the emulator with an average framerate between 38-42 FPS in the �gure below.
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Figure 27: Lighting demo running in the emulator

A photograph of the same demo can be seen running on the actual graphics hardware

FPGA implementation in the �gure below.

Figure 28: Lighting demo running on the FPGA

With this demo, the frame rate ran at a near constant 32 FPS, demonstrating the capa-

bilities of the FPGA implementation of the graphics hardware. Even though the FPGA

was clocked at only 75MHz (and the test computer at 2.8GHz), it was still able to run

the demo at nearly 80% of the test computer's 40 FPS average. Qualitatively, as with

the previous demos, some triangle �lling glitching were evident by a few of the �ll lines

being drawn at seemingly random locations. Nonetheless, this demo demonstrated that
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the software lighting implementation worked as expected, as the 3D octahedron was still

directionally lit correctly.

7.6 Complex Mesh

With the last demo, the purpose of the complex mesh test was to measure the limitations

of the graphics hardware implementation. Consequently, the goal of this test was to

approximate the number of triangles that could be drawn in a second. To do this, a

humanoid 3D model that had 2012 triangle faces was drawn in OpenGL. This model was

released royalty-free from TurboSquid, a website that distributes 3D art content. This

mesh can be seen in Figure 29, below, rendered on a PC using a commercial graphics

accelerator.

Figure 29: Humanoid model rendering on a PC
(Source: http://www.turbosquid.com/FullPreview/Index.cfm/ID/351964, 2010)

Next, the mesh was converted to OpenGL vertex calls using a Python script, and executed

as an OpenGL demo on the FPGA-based graphics hardware. This can be seen in the

�gure below. No normals or color data were converted, the demo was purely written to

test the number of triangles that the graphics hardware was capable of rendering.
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Figure 30: Humanoid mesh demo running on the FPGA

This demo was executed in wireframe mode so as to visually demonstrate the shear

magnitude of triangles being drawn. As can be seen above, the demo qualitatively drew

the humanoid mesh perfectly, albeit in wireframe. It must be noted that wireframe

rasterization was not any faster than full triangle primitive rasterization. This was due to

the fact that the bottleneck in speed in both situations was with the software perspective

transformation, not the hardware rasterizer.

Quantitatively, this demo really pushed the limits of the graphics hardware, bringing it

to an unbearably slow 3.1 FPS. Being that this mesh was 2012 triangles, this quanti�ed

the graphics accelerators performance to be approximately 6240 triangles-per-

second (frame rate multiplied by the number of triangles being drawn). Unfortunately,

this was only a fraction of the speed of modern 3D graphics accelerators, which are able

to render millions of triangles per second. Regardless, the performance still demonstrated

that as a proof of concept, the results for the project were very promising.

The main bottlenecks in this �nal performance test were determined to be the lack of

optimizations within the RTL and the perspective transformation stages performed in

software. Modern graphics accelerators utilize signi�cantly more optimized and complex

algorithms than could be implemented within the constraints of the project. Furthermore,

the perspective transformation stages were originally intended to be implemented in RTL,

but were instead implemented on a MicroBlaze CPU due to the time limitations that we

experienced. Lastly, the demos were only running on a MicroBlaze clocked at 75MHz,
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which severely limited the speed that data could be sent to the RTL graphics hardware.

7.7 Summary

This chapter discussed the system testing that was performed to qualitatively and quan-

titatively verify the �nal implementation of the project. We found that most qualitative

goals were achieved, except for a minor bug that still persisted within the triangle �lling

algorithm. Furthermore, we found that quantitatively, the implementation could achieve

a maximum performance of approximately 6240 triangles-per-second. The next chapter

(Chapter 8: Conclusions and Recommendations) contains conclusions drawn about the

process we used as well as our recommendations for future work.
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8 Conclusions and Recommendations

We identi�ed four objectives in this project that would achieve our original goal of de-

veloping a 3D graphics accelerator on an FPGA. These were: (1) to implement the core

entirely in a hardware description language, (2) to develop an API for this core by im-

plementing various components of the OpenGL 1.1 speci�cation, (3) to implement the

core components of the 3D graphics pipeline and (4) to provide a series of technical de-

mos that qualitatively and quantitatively tested and benchmarked the capabilities of our

implementations. We have successfully realized these objectives and met our goal in the

following ways.

We divided the ful�llment of these goals into four distinguishable phases consisting of

background research, design, implementation and testing. In our background research,

we identi�ed previous work that attempted to solve the problem presented by our project.

We furthermore explored background information relating to 3D graphics, as well as the

concepts and algorithms necessary to implement our designs. In the design phase, we

devised solutions to meet our goal and objectives. In the implementation phase, we de-

veloped all subsystems of the project, speci�cally implementing the various hardware and

software stages of the 3D graphics pipeline per our designs. In order to verify that the

preceding phases of the project met our objectives, we carried out tests in the bench-

marking phase of our project to qualitatively and quantitatively measure the results of

our implementations. Additionally, in the testing and benchmarking stages, we identi�ed

potential areas of improvement and suggestions for future work.

In response to the �rst objective, we determined that there were no true, complete, open

implementations of a 3D graphics accelerator implemented in HDL. Consequently, we

decided to develop an HDL implementation of a 3D graphics accelerator that would be

easily customizable, portable, and low in cost. We did this by using the Spartan-6 FPGA

and Xilinx SP605 Development board as our primary platform. We started by instan-

tiating a MicroBlaze softcore CPU on the Spartan-6 to drive graphics applications and

developing a hardware implementation of a 3D graphics core. This graphics core imple-

mented various stages of the 3D graphics pipeline, providing a graphics processing unit

command decoding interface, vertex setup, and primitive rasterization to a framebu�er

located within external component memory. We implemented the basic necessities of

68



the graphics pipeline in RTL logic to realize satisfactory hardware-accelerated graphics

performance using a system-on-chip architecture.

As part of the hardware architecture, we implemented an instruction-based protocol that

worked seamlessly with the OpenGL speci�cation. As such, we were able to meet the

second objective wherein the hardware fostered an environment that could easily adapt

to the OpenGL structure. We implemented many OpenGL methods using several simple

graphics core instructions. However, in the driver development, we attempted to imple-

ment more complex OpenGL features in software that could not be developed in hardware

within our time and resource constraints. These included a partial implementation of the

Phong lighting model, as well as a�ne rotation, translation, and scaling transformation.

This resulted in enough of the core components of the OpenGL 1.1 speci�cation to be

implemented for an application programmer to be able to develop simple 3D applications,

thus meeting our second objective.

The third objective, an implementation of the 3D graphics pipeline, was realized through-

out the completion of all components of the project. For ideal performance speed, the

platform would have implemented as much of the pipeline as possible in hardware. How-

ever, through the completion of the project, we were only able to develop a GPU com-

mand processor, primitive rasterizer, and output video signal interface. Consequently,

in order to complete our implementation, we ful�lled the remaining core components of

the pipeline in software. This included vertex setup, transformation and color calcula-

tion. However, as all components (hardware and software) were implemented through

one means or another, we succeeded in addressing the third objective of our project.

Finally, we successfully met the fourth objective of our project through developing var-

ious technical demonstrations to test and benchmark the capabilities of our hardware

and software implementations. We accomplished this aspect of our project through a

series of OpenGL applications that utilized the primary features of our graphics core

and demonstrated its capabilities. The demos rendered various images so that we could

determine on a qualitative level whether we had correctly implemented each feature. Ad-

ditionally, we also used the performance results of these applications to determine the

speed capabilities of our graphics platform, in frames per second.

Through the development of this graphics accelerator, we found that our design process
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was e�ective. The approach that we took for implementing this, in �rst developing an

embedded platform, then an RTL graphics hardware core, and lastly the software and

driver components, proved remarkably e�ective. We mitigated several potential hardware

and software integration setbacks by developing for our platform a software emulator that

allowed us to develop the API and driver without requiring the hardware implementation

to be complete.

We left some of the features of modern graphics hardware unimplemented in our project.

Most importantly, various basic components of a 3D graphics accelerator were imple-

mented in software rather than in the hardware. In order to attain optimal performance,

we recommend that essentially all of these software components be implemented in hard-

ware on the FPGA. Furthermore, we recommend pursing more complete implementations

of the OpenGL speci�cation, including the complete Phong re�ection model. With future

iterations of this project, we would recommend developing within hardware the support

for clipping, depth sorting, and texturing. These features comprise many of the basic ca-

pabilities of OpenGL 1.1 that were beyond the scope of our work. Additional technologies

beyond those already mentioned include programmable pixel and vertex processors that

can be utilized for such advanced features as multitexturing, re�ecting and refraction,

per-pixel lighting, and shadow projection.

In conclusion, we were able to meet our objectives, resulting in a graphics accelerator

platform that achieved reasonable performance within the scope of our project. We

implemented all of the features that we planned for our 3D graphics accelerator and we

determined that our graphics core was capable of rendering roughly 6240 triangles per

second. These features, however, represent only some of the most basic features possible

in a graphics accelerator. In comparison to modern commercial graphics platforms, the

performance of our system in frames per second was very poor. While we were able to

render complex 3D meshes, the speed at which the platform did so proved impractical

for most animated applications. However, the results of our project still provided proof

of concept for our goal of implementing a 3D graphics accelerator on an FPGA. Based

on the results of our project, we believe that a full implementation of the 3D graphics

pipeline with practical performance is attainable.
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Appendix B: Graphics Accelerator Emulator

The graphics accelerator emulator was a software implementation of the proposed hard-

ware design that allowed the software components of the project to be developed in-

dependently of the actual hardware implementation. The emulator accomplished this

by implementing a software renderer that had all of the proposed functionality of the

hardware and used the same command write interface for render control. The emulator

fully implemented and tested the project's graphics API and test module components

without ever needing the actual FPGA interfaces. Additionally, the emulator provided a

test bed for implementing and debugging graphics algorithms and other design decisions.

Furthermore, it provided a benchmark to compare with the hardware implementation, as

seen in Chapter 7: Testing and Results.

Current Implementation

By the start of the hardware implementations of the project, all components of the

graphics accelerator had been completed in the emulator. We planned its development

period to fall between July and August, but we completed it well in advance of this time.

We implemented the following:

• The Video Interface, with a 16-bit framebu�er and double-bu�ering and a sim-

ulated vertical blanking period, which uses Simple DirectMedia Layer (SDL) for

windowing and graphics output, allowing for cross-compatibility.

• The Rasterizer, which incorporates �xed-point rasterization algorithms for lines,

triangles, and points, as well as 16-bit color interpolation.

• The Graphics Processing Unit command interface, with a fully simulated FIFO

and data write, and command decoding for all proposed commands.

• The Vertex and Transformation Unit for vertex decoding and computing a�ne

transformations in 3D space.

Again, the design for this emulator was nearly identical to the actual hardware imple-

mentation project, except implemented entirely in software. Consequently, Chapter 3:
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Project Overview and Design may be consulted for indications of how the emulator was

realized.

Example Use

Using the emulator was very simple. To alternate between compiling demo applications

within the emulator the and the actual hardware libraries, the C/C++ test module or ap-

plication needed to simply de�ne or unde�ne the identi�er USE_GRAPHICS_ACCELERATOR_EMU.

Both the emulator and the hardware implemented the same write interface, and as such

no further code changes needed to be made. Below shows a simple code example that

will draw a pixel to the framebu�er using the PIXEL command with the emulator or

hardware interface:

1 // Initialize subsystems

2 GPU_OPEN ();

3
4 Vertex myPixel;

5 myPixel.x._u16 = myPixel.y._u16 = 10;

6 myPixel.col.rgba = 0x001f;

7
8 // Main demo loop

9 for (;;) {

10 // Push the PIXEL command into the FIFO

11 GPU_FIFO_PUT8(PIXEL);

12
13 // Push the PIXEL command parameters into the FIFO

14 GPU_FIFO_PUT16(myPixel.x._u16); // Pixel x-coord

15 GPU_FIFO_PUT16(myPixel.y._u16); // Pixel y-coord

16 GPU_FIFO_PUT16(myPixel.col.rgba); // Pixel 16-bit color

17
18 // Push the DRAWDONE command into the FIFO (Swap buffers)

19 GPU_FIFO_PUT8(DRAWDONE );

20 }

This simple code excerpt demonstrates the basic nature of communication with the graph-

ics accelerator, regardless of hardware or simulation. Both the emulator and the hardware

implemented a frontend for GPU_OPEN to initialize the hardware, as well as GPU_FIFO_PUT

to push commands and data into the FIFO queue to be processed sequentially by the

GPU. Data can be pushed in as a byte, halfword, or word, however the hardware simply

implements these as single padded 32-bit FIFO pushes. As described in the Chapter

3, these low level command calls were abstracted by the graphics API implementation,
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such that a programmer using the graphics accelerator need not access them directly.

Figure 31, below, shows a more complex demo OpenGL lighting demo running within

the graphics accelerator emulator.

Figure 31: Emulator running an OpenGL demo

Furthermore, it is important to note that the emulator was developed to use the same

exact driver sources as the hardware core, and that these were just simply recompiled

depending on the build environment. This allowed us to test all of our software imple-

mentations locally before attempting to run them on our FPGA hardware.
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Appendix C: Graphics Formats

C.1 RGB565

The RGB565 format is a 16-bit representation of an RGB (Red, Green, Blue) color.

This was the only color format used throughout our project for a few primary reasons.

Foremost, this was because our video output hardware only supported 16-bit color for-

mats. Secondly, this format was chosen as it more accurately represents the visible color

spectrum than High Color - which has 5 bits encoded for each color component. With

RGB565, there is a 6th bit for the green component, as the green contributes most to the

brightness of a color in the human eye. The �gure below shows the color encoding of an

RGB565 value:

Figure 32: RGB565 color encoding
(Source:

http://www.imagingcontrol.com/en_US/support/documentation/class/PixelformatRGB565.htm, 2010)

C.2 X32

To account for fractional precision on our FPGA hardware, we developed a signed 32-

bit �xed-point number format, X32 (See Chapter 2: Background Research for more

information on �xed-point mathematics). This format encoded a 16-bit signed integer

number in the high 2 bytes of the data word, and the fractional component in the low

2 bytes. As such, the decimal point was ��xed� between bits 15 and 16 of the number.

The �gure below shows the encoding of this.
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Integer component Fractional Component

Bits 31-16 Bits 15-0

Figure 33: X32 number encoding

With each Nth-bit of the fractional component, an additional 1/Nth could be used to

approximate decimal numbers. With 16-bits, this was enough precision to meet all of the

needs of our applications. This furthermore could be easily and quickly processed on the

FPGA and MicroBlaze CPU.
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Appendix D: OpenGL Source

D.1 OGC_OPENGL.C

/*! * Copyright (C) 2010 Eric M. Nadeau / Skyler B. Whorton

*

* \file ogc_opengl.c

* \author Skyler B. Whorton <swhorton@wpi.edu>

* \date Created 22 Sept 2010

* \brief Implements OpenGL 1.0

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <ogc.h>

#include <ogc_opengl.h>

API_GL_Vertex_Mode API_Vertex_Mode;

API_GL_Lighting API_Lighting;

API_GL_Color API_Color;

API_GL_Material API_Material;

API_GL_Normal API_Normal;

u16 g_reg_viewport_x = 0; ///< Viewport lower left x-value

u16 g_reg_viewport_y = 0; ///< Viewport lower left y-value

u16 g_reg_viewport_width = 640; ///< Viewport width (def: 640)

u16 g_reg_viewport_height = 480; ///< Viewport height (def: 480)

extern u32* vi_bfb_addr;

void apiInitGlobals() {

API_Vertex_Mode.mode = GL_LINES;

API_GL_Light API_Light0 = {0, {0.0, 0.0, 0.0, 1.0}, {1.0, 1.0, 1.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light1 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light2 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light3 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light4 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light5 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light6 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

API_GL_Light API_Light7 = {0, {0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 0.0, 1.0},

{1.0, 1.0, 1.0, 1.0} };

83



API_Lighting.isEnabled = (GLboolean) 0;

API_Lighting.lights[0] = API_Light0;

API_Lighting.lights[1] = API_Light1;

API_Lighting.lights[2] = API_Light2;

API_Lighting.lights[3] = API_Light3;

API_Lighting.lights[4] = API_Light4;

API_Lighting.lights[5] = API_Light5;

API_Lighting.lights[6] = API_Light6;

API_Lighting.lights[7] = API_Light7;

API_Normal.currentNormal.x = 0.0;

API_Normal.currentNormal.y = 0.0;

API_Normal.currentNormal.z = 0.0;

}

void glClear(GLbitfield mask) {

if (mask & GL_COLOR_BUFFER_BIT) {

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_CLEAR);

GPU_FIFO_PUT32(OGC_CNT_COLOR_BUFFER);

#else

memset(vi_bfb_addr, 0, 640*480*2);

#endif

}

}

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) {

u8 r = (u8)(red * (GLclampf)OGC_FB_RED_MASK);

u8 g = (u8)(green * (GLclampf)OGC_FB_GREEN_MASK);

u8 b = (u8)(blue * (GLclampf)OGC_FB_BLUE_MASK);

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_CLEAR_COLOR);

GPU_FIFO_PUT32((r <�< 11) | (g <�< 5) | b);

#endif

}

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height) {

g_reg_viewport_x = x & 0xffff;

g_reg_viewport_y = y & 0xffff;

g_reg_viewport_width = width & 0xffff;

g_reg_viewport_height = height & 0xffff;

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_VIEWPORT);

GPU_FIFO_PUT32((g_reg_viewport_x <�< 16) | g_reg_viewport_y);

GPU_FIFO_PUT32((g_reg_viewport_width <�< 16) | g_reg_viewport_height);

#endif

}

void glEnable(GLenum cap) {

if (!apiSetEnabled(cap, (GLboolean) 1)) {

LOG_WARNING(TAPI, "glEnable: Unsupported capacity 0x%08x!\n", cap);

}

}

void glDisable(GLenum cap) {

if (!apiSetEnabled(cap, (GLboolean) 0)) {

LOG_WARNING(TAPI, "glDisable: Unsupported capacity 0x%08x!\n", cap);

}

}

GLboolean apiSetEnabled(GLenum cap, GLboolean setting) {

switch (cap) {

case GL_LIGHTING:

API_Lighting.isEnabled = setting;

return 1;
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case GL_LIGHT0:

API_Lighting.lights[0].isEnabled = setting;

return 1;

case GL_LIGHT1:

API_Lighting.lights[1].isEnabled = setting;

return 1;

case GL_LIGHT2:

API_Lighting.lights[2].isEnabled = setting;

return 1;

case GL_LIGHT3:

API_Lighting.lights[3].isEnabled = setting;

return 1;

case GL_LIGHT4:

API_Lighting.lights[4].isEnabled = setting;

return 1;

case GL_LIGHT5:

API_Lighting.lights[5].isEnabled = setting;

return 1;

case GL_LIGHT6:

API_Lighting.lights[6].isEnabled = setting;

return 1;

case GL_LIGHT7:

API_Lighting.lights[7].isEnabled = setting;

return 1;

case GL_COLOR_MATERIAL:

API_Color.colorMaterialEnabled = setting;

return 1;

default:

return 0;

}

}

void glLightfv(GLenum light, GLenum pname, const GLfloat * params) {

int lightNumber;

// Translate GL light enum to an integer to serve as API array index value

switch (light) {

case GL_LIGHT0:

lightNumber = 0;

break;

case GL_LIGHT1:

lightNumber = 1;

break;

case GL_LIGHT2:

lightNumber = 2;

break;

case GL_LIGHT3:

lightNumber = 3;

break;

case GL_LIGHT4:

lightNumber = 4;

break;

case GL_LIGHT5:

lightNumber = 5;

break;

case GL_LIGHT6:

lightNumber = 6;

break;

case GL_LIGHT7:

lightNumber = 7;
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break;

default:

lightNumber = -1;

break;

}

// Validate light number 0-7. Call parameter "set" subroutine

if (lightNumber >= 0 && lightNumber <= 7) {

apiSetLightParam(lightNumber, pname, params);

} else {

LOG_WARNING(TAPI, "apiSetLightParam: Unsupported light number %d!\n", lightNumber);

return;

}

}

void apiSetLightParam(int lightNumber, GLenum pname, const GLfloat * params) {

f32 apiParams[4];

f32 mag;

int i;

// Copy parameter information into f32 formatted array

for (i = 0; i <= 3; i++) {

apiParams[i] = (f32) params[i];

}

// Set parameter "pname" in the API data structure to apiParams values

switch (pname) {

case GL_POSITION:

// If supplying a direction vector (i.e. w == 1), normalize these values first

if (apiParams[3] == 1.0) {

mag = sqrt(pow(apiParams[0],2) + pow(apiParams[1],2) + pow(apiParams[2],2));

apiParams[0] /= mag;

apiParams[1] /= mag;

apiParams[2] /= mag;

}

for (i = 0; i <= 3; i++) {

API_Lighting.lights[lightNumber].position[i] = apiParams[i];

}

break;

case GL_AMBIENT:

for (i = 0; i <= 3; i++) {

API_Lighting.lights[lightNumber].ambient[i] = apiParams[i];

}

break;

case GL_DIFFUSE:

for (i = 0; i <= 3; i++) {

API_Lighting.lights[lightNumber].diffuse[i] = apiParams[i];

}

break;

case GL_SPECULAR:

for (i = 0; i <= 3; i++) {

API_Lighting.lights[lightNumber].specular[i] = apiParams[i];

}

break;

default:

LOG_WARNING(TAPI, "apiSetLightParam: Unsupported parameter 0x%08x!\n", pname);

return;

}

}
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D.2 OGC_OPENGL_MATRIX.C

/*!

* Copyright (C) 2010 Eric M. Nadeau / Skyler B. Whorton

*

* \file ogc_opengl_matrix.c

* \author Skyler B. Whorton <swhorton@wpi.edu>

* \date Created 22 Sept 2010

* \brief Implements all OGL 1.0 matrix related functions.

*

*/

#include <math.h>

#include <ogc.h>

#include <ogc_opengl.h>

extern u16 g_reg_viewport_x; ///< Viewport lower left x-value

extern u16 g_reg_viewport_y; ///< Viewport lower left y-value

extern u16 g_reg_viewport_width; ///< Viewport width (default: 640)

extern u16 g_reg_viewport_height; ///< Viewport height (default: 480)

u32 g_mtx_mode = OGC_MODELVIEW; ///< Current matrix mode

Matrix44 g_mtx_current[OGC_NUM_MATRICES]; ///< Current matrices

void MatrixMultiply44(Matrix44* _dst, Matrix44* _src0, Matrix44* _src1) {

int i, j, k;

x32 val;

for (i = 0; i < 4; i++) {

for (j = 0; j < 4; j++) {

val = 0;

for (k = 0; k < 4; k++) {

val += x32_mult(_src0->s[(i * 4) + k], _src1->s[(k * 4) + j]);

}

_dst->s[(i * 4) + j] = val;

}

}

}

/// Transforms a vertex in 3D space to 2D screen coordinates

void apiTransformVertex(Vertex* _p_vtx) {

#ifdef USE_OGC_EMU

#else

x32 xf = _p_vtx->x._x32;

x32 yf = _p_vtx->y._x32;

x32 zf = _p_vtx->z._x32;

Matrix44* pmtx = &g_mtx_current[OGC_MODELVIEW & 0xf];

Matrix44* vmtx = &g_mtx_current[OGC_PROJECTION & 0xf];

// Modelview transformation

// ------------------------

x32 x = x32_mult(pmtx->s[0], xf) + x32_mult(pmtx->s[4], yf) +

x32_mult(pmtx->s[8], zf) + pmtx->s[12];

x32 y = x32_mult(pmtx->s[1], xf) + x32_mult(pmtx->s[5], yf) +

x32_mult(pmtx->s[9], zf) + pmtx->s[13];

x32 z = x32_mult(pmtx->s[2], xf) + x32_mult(pmtx->s[6], yf) +

x32_mult(pmtx->s[10], zf) + pmtx->s[14];

x32 w = kOne;

xf = x;

yf = y;

zf = z;

// Perspective transformation

// --------------------------

x = x32_mult(vmtx->s[0], xf) + x32_mult(vmtx->s[4], yf) +

x32_mult(vmtx->s[8], zf) + vmtx->s[12];
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y = x32_mult(vmtx->s[1], xf) + x32_mult(vmtx->s[5], yf) +

x32_mult(vmtx->s[9], zf) + vmtx->s[13];

z = x32_mult(vmtx->s[2], xf) + x32_mult(vmtx->s[6], yf) +

x32_mult(vmtx->s[10], zf) + vmtx->s[14];

w = x32_mult(vmtx->s[3], xf) + x32_mult(vmtx->s[7], yf) +

x32_mult(vmtx->s[11], zf) + vmtx->s[15];

x = x32_div(x, w);

y = x32_div(y, w);

z = x32_div(z, w);

x32 width = x32_encode_s32(g_reg_viewport_width >�> 1);

x32 height = x32_encode_s32(g_reg_viewport_height >�> 1);

_p_vtx->x._u32 = (u32) x32_decode_s32(x32_mult(width, x)) +

(g_reg_viewport_width >�> 1) + g_reg_viewport_x;

_p_vtx->y._u32 = (u32) x32_decode_s32(x32_mult(height, y)) +

(g_reg_viewport_height >�> 1) + g_reg_viewport_y;

_p_vtx->z._u32 = z;

#endif

}

void glFrustum(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top,

GLdouble near, GLdouble far) {

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_MULT_44);

GPU_FIFO_PUT32(x32_encode_f32((2*(f32)near) / ((f32)right - (f32)left)));

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(x32_encode_f32((2*(f32)near) / ((f32)top - (f32)bottom)));

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(x32_encode_f32(((f32)right + (f32)left) / ((f32)right - (f32)left)));

GPU_FIFO_PUT32(x32_encode_f32(((f32)top + (f32)bottom) / ((f32)top - (f32)bottom)));

GPU_FIFO_PUT32(x32_encode_f32(-((f32)far + (f32)near) / ((f32)far - (f32)near)));

GPU_FIFO_PUT32(-kOne);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(x32_encode_f32(-(2 * ((f32)far*(f32)near)) / ((f32)far - (f32)near)));

GPU_FIFO_PUT32(0);

#else

Matrix44 temp0 = {{

x32_encode_f32((2*(f32)near) / ((f32)right - (f32)left)),

0,

0,

0,

0,

x32_encode_f32((2*(f32)near) / ((f32)top - (f32)bottom)),

0,

0,

x32_encode_f32(((f32)right + (f32)left) / ((f32)right - (f32)left)),

x32_encode_f32(((f32)top + (f32)bottom) / ((f32)top - (f32)bottom)),

x32_encode_f32(-((f32)far + (f32)near) / ((f32)far - (f32)near)),

-kOne,

0,

0,

x32_encode_f32(-(2 * ((f32)far*(f32)near)) / ((f32)far - (f32)near)),

0

}};
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Matrix44 temp1 = g_mtx_current[g_mtx_mode & 0xf];

MatrixMultiply44(&g_mtx_current[g_mtx_mode & 0xf],

&temp0,

&temp1);

#endif

}

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar) {

f32 xmin, xmax, ymin, ymax;

ymax = (f32)zNear * tan((f32)fovy * 3.1415972 / 360.0);

ymin = -ymax;

xmin = ymin * (f32)aspect;

xmax = ymax * (f32)aspect;

glFrustum(xmin, xmax, ymin, ymax, zNear, zFar);

}

void glMatrixMode(GLenum mode) {

u32 ogc_mode;

switch(mode) {

case GL_MODELVIEW:

ogc_mode = OGC_MODELVIEW;

break;

case GL_PROJECTION:

ogc_mode = OGC_PROJECTION;

break;

case GL_TEXTURE:

case GL_COLOR:

default:

LOG_WARNING(TRAS, "glMatrixMode: Unsupported matrix type 0x%08x!\n", mode);

return;

}

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_MODE);

GPU_FIFO_PUT32(ogc_mode);

#else

g_mtx_mode = ogc_mode;

#endif

}

void glLoadIdentity(void) {

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_LOAD_I);

#else

g_mtx_current[g_mtx_mode & 0xf].s[0] = kOne;

g_mtx_current[g_mtx_mode & 0xf].s[1] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[2] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[3] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[4] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[5] = kOne;

g_mtx_current[g_mtx_mode & 0xf].s[6] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[7] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[8] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[9] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[10] = kOne;

g_mtx_current[g_mtx_mode & 0xf].s[11] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[12] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[13] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[14] = 0;

g_mtx_current[g_mtx_mode & 0xf].s[15] = kOne;

#endif;

}
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void glTranslatef(GLfloat x, GLfloat y, GLfloat z) {

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_TRANS);

GPU_FIFO_PUT32((u32)x32_encode_f32(x)); // Translate X-component

GPU_FIFO_PUT32((u32)x32_encode_f32(y)); // Translate Y-component

GPU_FIFO_PUT32((u32)x32_encode_f32(z)); // Translate Z-component

#else

Matrix44 temp0 = {{

kOne,

0,

0,

0,

0,

kOne,

0,

0,

0,

0,

kOne,

0,

x32_encode_f32(x),

x32_encode_f32(y),

x32_encode_f32(z),

kOne

}};

Matrix44 temp1 = g_mtx_current[g_mtx_mode & 0xf];

MatrixMultiply44(&g_mtx_current[g_mtx_mode & 0xf],

&temp0,

&temp1);

#endif

}

void glScalef(GLfloat x, GLfloat y, GLfloat z) {

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_SCALE);

GPU_FIFO_PUT32((u32)x32_encode_f32(x)); // Translate X-component

GPU_FIFO_PUT32((u32)x32_encode_f32(y)); // Translate Y-component

GPU_FIFO_PUT32((u32)x32_encode_f32(z)); // Translate Z-component

#else

Matrix44 temp0 = {{

x32_encode_f32(x),

0,

0,

0,

0,

x32_encode_f32(y),

0,

0,

0,

0,

x32_encode_f32(z),

0,

0,

0,

0,

kOne

}};

Matrix44 temp1 = g_mtx_current[g_mtx_mode & 0xf];

MatrixMultiply44(&g_mtx_current[g_mtx_mode & 0xf],
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&temp0,

&temp1);

#endif

}

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {

f32 axis[3];

f32 sine = sin(angle);

f32 cosine = cos(angle);

f32 one_minus_cosine = 1.0f - cosine;

axis[0]=x;

axis[1]=y;

axis[2]=z;

#ifdef USE_OGC_EMU

GPU_FIFO_PUT32(OGC_CMD_MTX_MULT_44);

GPU_FIFO_PUT32(

(u32)x32_encode_f32(cosine + (one_minus_cosine * (axis[0] * axis[0]))));

GPU_FIFO_PUT32(

(u32)x32_encode_f32((one_minus_cosine * (axis[0] * axis[1])) + (axis[2] * sine)));

GPU_FIFO_PUT32(

(u32)x32_encode_f32(((one_minus_cosine * axis[0]) * axis[2]) - (axis[1] * sine)));

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(

(u32)x32_encode_f32(((one_minus_cosine * axis[0]) * axis[1]) - (axis[2] * sine)));

GPU_FIFO_PUT32(

(u32)x32_encode_f32(cosine + ((one_minus_cosine * axis[1]) * axis[1])));

GPU_FIFO_PUT32(

(u32)x32_encode_f32(((one_minus_cosine * axis[1]) * axis[2]) + (axis[0] * sine)));

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(

(u32)x32_encode_f32(((one_minus_cosine * axis[0]) * axis[2]) + (axis[1] * sine)));

GPU_FIFO_PUT32(

(u32)x32_encode_f32(((one_minus_cosine * axis[1]) * axis[2]) - (axis[0] * sine)));

GPU_FIFO_PUT32(

(u32)x32_encode_f32(cosine + ((one_minus_cosine * axis[2]) * axis[2])));

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32(0);

GPU_FIFO_PUT32((u32)kOne);

#else

Matrix44 temp0 = {{

x32_encode_f32(cosine + (one_minus_cosine * (axis[0] * axis[0]))),

x32_encode_f32((one_minus_cosine * (axis[0] * axis[1])) + (axis[2] * sine)),

x32_encode_f32(((one_minus_cosine * axis[0]) * axis[2]) - (axis[1] * sine)),

0,

x32_encode_f32(((one_minus_cosine * axis[0]) * axis[1]) - (axis[2] * sine)),

x32_encode_f32(cosine + ((one_minus_cosine * axis[1]) * axis[1])),

x32_encode_f32(((one_minus_cosine * axis[1]) * axis[2]) + (axis[0] * sine)),
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0,

x32_encode_f32(((one_minus_cosine * axis[0]) * axis[2]) + (axis[1] * sine)),

x32_encode_f32(((one_minus_cosine * axis[1]) * axis[2]) - (axis[0] * sine)),

x32_encode_f32(cosine + ((one_minus_cosine * axis[2]) * axis[2])),

0,

0,

0,

0,

kOne

}};

Matrix44 temp1 = g_mtx_current[g_mtx_mode & 0xf];

MatrixMultiply44(&g_mtx_current[g_mtx_mode & 0xf],

&temp0,

&temp1);

#endif

}

D.3 OGC_OPENGL_VERTEX.C

/*!

* Copyright (C) 2010 Eric M. Nadeau / Skyler B. Whorton

*

* \file ogc_opengl_vertex.c

* \author Skyler B. Whorton <swhorton@wpi.edu>

* \date Created 12 Sept 2010

* \brief Implements all OGL 1.0 vertex related functions

*

*/

#include <ogc.h>

#include <ogc_opengl.h>

#include <math.h>

void glBegin(GLenum mode) {

u32 ogc_mode;

switch (mode) {

case GL_POINTS:

ogc_mode = OGC_POINTS;

break;

case GL_LINES:

ogc_mode = OGC_LINES;

break;

case GL_TRIANGLES:

ogc_mode = OGC_TRIANGLES;

break;

case GL_LINE_STRIP:

case GL_LINE_LOOP:

case GL_TRIANGLE_STRIP:

case GL_TRIANGLE_FAN:

case GL_QUADS:

case GL_QUAD_STRIP:

case GL_POLYGON:

default:

LOG_WARNING(TRAS, "glBegin: Unsupported primitive type 0x%08x!\n", mode);

return;

}

API_Vertex_Mode.mode = mode;

GPU_FIFO_PUT32(OGC_CMD_VTX_BEGIN);
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GPU_FIFO_PUT32(ogc_mode);

}

void glEnd(void) {

GPU_FIFO_PUT32(OGC_CMD_VTX_END);

}

void glColor3f(f32 r, f32 g, f32 b) {

f32 * mparam = (f32 *) malloc(4 * sizeof(f32));

mparam[0] = r;

mparam[1] = g;

mparam[2] = b;

mparam[3] = 1.0;

int i;

if (API_Color.colorMaterialEnabled && API_Lighting.isEnabled) {

glMaterialfv(API_Color.colorMaterialFace, API_Color.colorMaterialMode, mparam);

} else {

for (i = 0; i <= 3; i++) {

API_Color.rgba[i] = mparam[i];

}

}

free(mparam);

}

void glMaterialf(GLenum face, GLenum pname, const GLfloat param) {

switch (pname) {

case GL_SHININESS:

API_Material.shininess = (f32) param;

break;

default:

LOG_WARNING(TAPI, "glMaterialf: Unsupported pname 0x%08x!\n", pname);

break;

}

}

void glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {

int i;

// Ignore face parameter; by default, apply material only to front face

switch (pname) {

case GL_AMBIENT:

for (i = 0; i <=3 ; i++) {

API_Material.ambient[i] = params[i];

}

break;

case GL_DIFFUSE:

for (i = 0; i <=3 ; i++) {

API_Material.diffuse[i] = params[i];

}

break;

case GL_AMBIENT_AND_DIFFUSE:

for (i = 0; i <=3 ; i++) {

API_Material.ambient[i] = params[i];

API_Material.diffuse[i] = params[i];

}

break;

case GL_SPECULAR:

for (i = 0; i <=3 ; i++) {

API_Material.specular[i] = params[i];

}

break;

default:

LOG_WARNING(TAPI, "glMaterialfv: Unsupported pname 0x%08x!\n", pname);
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break;

}

}

void glColorMaterial(GLenum face, GLenum mode) {

API_Color.colorMaterialFace = face;

API_Color.colorMaterialMode = mode;

}

void glVertex3f(f32 x, f32 y, f32 z) {

Vertex vtx;

Vertex newNorm;

Color16 col;

int i, j;

f32 dot;

f32 * lightVector = (f32 *) malloc(3 * sizeof(f32));

f32 * finalColor = (f32 *) malloc(4 * sizeof(f32));

f32 * vertex = (f32 *) malloc(3 * sizeof(f32));

f32 * lightPos = (f32 *) malloc(3 * sizeof(f32));

// Set normal data

newNorm.x._x32 = x32_encode_f32(API_Normal.currentNormal.x);

newNorm.y._x32 = x32_encode_f32(API_Normal.currentNormal.y);

newNorm.z._x32 = x32_encode_f32(API_Normal.currentNormal.z);

// Set vertex data

vtx.x._x32 = x32_encode_f32(x);

vtx.y._x32 = x32_encode_f32(y);

vtx.z._x32 = x32_encode_f32(z);

apiTransformVertex(&vtx);

vertex[0] = x32_decode_f32(vtx.x._x32);

vertex[1] = x32_decode_f32(vtx.y._x32);

vertex[2] = x32_decode_f32(vtx.z._x32);

finalColor[0] = 0.0;

finalColor[1] = 0.0;

finalColor[2] = 0.0;

finalColor[3] = 1.0;

// Modelview transformation

// ------------------------

Matrix44 pmtx = {kOne, 0, 0, 0,

0, kOne, 0, 0,

0, 0, kOne, 0,

0, 0, 0, kOne};

f32 xn = (x32_decode_f32(pmtx.s[0]) * API_Normal.currentNormal.x)

+ (x32_decode_f32(pmtx.s[4]) * API_Normal.currentNormal.y)

+ (x32_decode_f32(pmtx.s[8]) * API_Normal.currentNormal.z);

f32 yn = (x32_decode_f32(pmtx.s[1]) * API_Normal.currentNormal.x)

+ (x32_decode_f32(pmtx.s[5]) * API_Normal.currentNormal.y)

+ (x32_decode_f32(pmtx.s[9]) * API_Normal.currentNormal.z);

f32 zn = (x32_decode_f32(pmtx.s[2]) * API_Normal.currentNormal.x)

+ (x32_decode_f32(pmtx.s[6]) * API_Normal.currentNormal.y)

+ (x32_decode_f32(pmtx.s[10]) * API_Normal.currentNormal.z);

f32 mag = sqrt(pow(xn,2) + pow(yn,2) + pow(zn,2));

xn /= mag;

yn /= mag;

zn /= mag;

// If there are lighting effects, apply them to the color applied to this

// vertex. Otherwise, use the pre-existing color data sent explicitly by

// the OpenGL program.

if (API_Lighting.isEnabled) {

col.rgb565.rgb = (u16) 0;

// Calculate OpenGL lighting contributions to vertex color for each
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// light source

for (i = 0; i <= 7; i++) {

if (API_Lighting.lights[i].isEnabled) {

// Calculate light vector

if (API_Lighting.lights[i].position[3] == 1.0) {

for (j = 0; j <= 2; j++) {

lightPos[j] = API_Lighting.lights[i].position[j];

}

} else {

for (j = 0; j <= 2; j++) {

lightPos[j] = vertex[j] + API_Lighting.lights[i].position[j];

}

}

apiGetUnitVector(lightPos, vertex, lightVector);

// Calculate Ln dot product

dot = (lightVector[0] * xn) +

(lightVector[1] * yn) +

(lightVector[2] * zn);

if (dot < 0.0) {

dot = 0.0;

}

for (j = 0; j <= 2; j++) {

// Calculate ambient contribution

finalColor[j] += API_Material.ambient[j] *

API_Lighting.lights[i].ambient[j];

// Calculate diffuse contribution

finalColor[j] += dot * API_Material.diffuse[j] *

API_Lighting.lights[i].diffuse[j];

// Clamp the color at 1.0

if (finalColor[j] > 1.0) {

finalColor[j] = 1.0;

}

}

}

}

} else {

for (i = 0; i <= 3; i++) {

finalColor[i] = API_Color.rgba[i];

}

}

// Encode final color data

col.rgb565.r = (u8) (OGC_FB_RED_MASK * finalColor[0]);

col.rgb565.g = (u8) (OGC_FB_GREEN_MASK * finalColor[1]);

col.rgb565.b = (u8) (OGC_FB_BLUE_MASK * finalColor[2]);

// Send final color data

GPU_FIFO_PUT32(OGC_CMD_VTX_COL_565);

GPU_FIFO_PUT32(col.rgb565.rgb);

// Send vertex data

GPU_FIFO_PUT32(OGC_CMD_VTX_POS_X32);

GPU_FIFO_PUT32(vtx.x._u32);

GPU_FIFO_PUT32(vtx.y._u32);

GPU_FIFO_PUT32(vtx.z._u32);

free(lightVector);

free(finalColor);

free(vertex);

}
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void glVertex3x(x32 x, x32 y, x32 z) {

Color16 col;

col.rgb565.r = x32_encode_f32(API_Color.rgba[0]);

col.rgb565.g = x32_encode_f32(API_Color.rgba[1]);

col.rgb565.b = x32_encode_f32(API_Color.rgba[2]);

GPU_FIFO_PUT32(OGC_CMD_VTX_COL_565);

GPU_FIFO_PUT32(col.rgb565.rgb);

GPU_FIFO_PUT32(OGC_CMD_VTX_POS_X32);

GPU_FIFO_PUT32(x); GPU_FIFO_PUT32(y);

GPU_FIFO_PUT32(z);

}

void apiGetUnitVector(f32 * tip, f32 * tail, f32 * output) {

int i;

float length;

for (i = 0; i <=2; i++) {

output[i] = tip[i] - tail[i];

}

length = sqrt(pow(output[0], 2) + pow(output[1], 2) + pow(output[2], 2));

for (i = 0; i <=2; i++) {

output[i] /= length;

}

}

void glNormal3f(f32 nx, f32 ny, f32 nz) {

API_Normal.currentNormal.x = nx;

API_Normal.currentNormal.y = ny;

API_Normal.currentNormal.z = nz;

}
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Appendix E: Simple OpenGL Demo Source

E.1 Triangle Demo
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E.2 Transformation Demo
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E.3 Interpolation and Lighting Demo
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