

VISIBLE LIGHT COMMUNICATION SYSTEMS

A Major Qualifying Project Report:

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Casey Barney

Alexander Dich

Dennis Koufos

Date: March 28, 2014

Approved: Professor Lifeng Lai, Major Advisor

Abstract
With the radio frequency spectrum becoming crowded, an alternative means to wireless

communication is necessary to accommodate the exponentially increasing wireless traffic demand.

Visible light communication systems provide an alternative to the current standards of wireless transfer

of information, using light from LEDs as the communication medium. In these systems, light-emitting

diodes blink at a rapid rate such that the human eye will not notice the change in light intensity, but a

sensitive photodiode can detect the on-off behavior and decode the information embedded within it.

This project first analyzes various issues with current wireless communication systems, and

discusses how visible light communications can resolve these issues. Then, the design and

implementation processes of the visible light communication system are described in detail, including a

value analysis of the parts used to build the prototype, as well as the necessary steps to wire and/or

code each functional block of the design. The achieved results of the system, including transmission

distance and speed, as well as quality of transmission and type of data are discussed.

Acknowledgements
We would like to thank our advisor, Professor Lifeng Lai, for all of the help he has given us

throughout the course of this project. He has given us constant feedback on our work, as well as

providing helpful suggestions to fix issues that arise.

i

Table of Contents
Abstract .. ii

Acknowledgements .. iii

Table of Figures .. iii

Chapter 1: Introduction ... 1

1.1 Motivations ... 1

1.2 Alternatives in Progress ... 3

1.2.1 Cognitive Radio ... 3

1.2.2 Laser Communication .. 5

1.3 Visible Light Communications .. 6

1.3.1 Advantages ... 6

1.3.2 Disadvantages ... 8

1.4 Potential Applications of Visible Light Communications ... 8

1.4.1 Traffic Lights.. 8

1.4.2 Television Application ... 9

1.4.3 Hospitals ... 10

1.5 Goals and Features .. 12

Chapter 2: Design Approach ... 14

2.1 Functional Block Diagram ... 14

2.2 Modules .. 15

2.2.1 Power Source .. 16

2.2.2 Signal Source ... 16

2.2.3 Microcontroller ... 17

2.2.4 Analog Circuitry ... 17

2.2.5 Transmitter ... 24

2.2.6 Receiver .. 25

2.3 Analog Design .. 25

2.3.1 Value Analysis ... 26

2.3.2 Initial Analog Design .. 29

2.3.3 Final Analog Design ... 31

2.4 Power Source... 32

ii

2.4.1 Wall Outlet.. 32

2.4.2 Batteries ... 33

2.5 Micro Controller .. 33

2.5.1 Cost Analysis ... 34

2.5.2 Setting up Code Composer Studio to Run the DSP ... 37

2.5.3 Pin Configuration .. 38

2.5.4 Configuring Transmitter and Receiver Pins .. 40

2.6 Digital Side of Transmitter.. 41

2.7 Digital Side of Receiver .. 41

2.7.1 Determining when Data is Being Transmitted .. 42

2.7.2 Decoding Data... 43

Chapter 3: Product Results .. 46

3.1 Analog Results ... 46

3.2 Microcontrollers .. 52

3.2.1 Transmitter ... 53

3.2.2 Receiver .. 55

3.2.3 Decoding the Received Signal .. 58

Chapter 4: Failure, Hazard Analysis, Limitations, and Future Improvements .. 60

4.1 Digital Issues .. 60

4.2 Analog Issues ... 61

4.3 Future Improvements .. 63

Chapter 5: References ... 67

Chapter 6: Appendices .. 68

A: Parts List .. 68

B: ASCII Table .. 68

C: Code .. 70

D: User Guide .. 93

iii

Table of Figures
Figure 1: US Frequency Allocations Source:

http://upload.wikimedia.org/wikipedia/commons/6/65/United_States_Frequency_Allocations_Chart_2

003_-_The_Radio_Spectrum.png ... 1

Figure 2: Wireless Data Growth Predictions Source:

http://money.cnn.com/2012/02/21/technology/spectrum_crunch/index.htm .. 2

Figure 3: Estimated occupancy for 2010 Source: http://www.ece.iit.edu/~taher/dyspan11.pdf 5

Figure 4: Visible Light Spectrum Source:

http://nextgenlite.com/images/VisibleLightSpectrumGradientForWeb.jpg.. 7

Figure 5: Functional Block Diagram .. 15

Figure 6: Emission Spectrum of LEDs for Various Frequencies ... 19

Figure 7: Relative Spectral Sensitivity of Photodiodes at Various Frequencies .. 20

Figure 8: USB-B to Breadboard Adapter ... 23

Figure 9: USB-A (left) and USB-B (right) Comparison .. 24

Figure 10: Basic Visible Communication Transmitter .. 29

Figure 11: Basic Visible Communication Receiver with LED .. 30

Figure 12: Prototype Implementations of Transmitter (left) and Receiver (right) 31

Figure 13: LAUCHXL-F28027 development board ... 37

Figure 14: Square wave output measured by the receiver ... 47

Figure 15: Receiver output with 5.1MΩ resistor ... 48

Figure 16: Max Distance when square wave is undistinguishable ... 48

Figure 17: Receiver's output with two photodiodes and 505kΩ resistor ... 49

Figure 18: Ringing observed at the receiver's output ... 50

Figure 19: Noisy Receiver Output... 50

Figure 20: Receiver Schematic with capacitor .. 51

Figure 21: Receiver's output with a capacitor .. 52

Figure 22: Output of Transmitter with Frequency of ~400 kHz ... 53

Figure 23: Transmitter Outputting 1000 .. 53

Figure 24: Transmitted Bit Scheme from ASCII Conversion ... 54

Figure 25: Analog Output of Receiver .. 55

Figure 26: Original MOSFET Design Interfacing MCU Output and LEDs ... 62

Figure 27: Updated MOSFET Design Interfacing MCU Output and LEDs ... 62

Figure 28: Project Explorer Pane and Import File Selection Window .. 94

Figure 29: Selecting Directory of Project .. 94

Figure 30: Configuring Device .. 95

Figure 31: Setting Target Configuration ... 96

Figure 32: General Setup of Target Configuration .. 96

Figure 33: Debug Pane ... 97

Figure 34: Accessing Breakpoint Properties ... 97

Figure 35: Breakpoint Properties Menu ... 98

1

Chapter 1: Introduction
 With the exponentially increasing data demand but limited available radio spectrum,

alternatives will be necessary to accommodate the needs of wire-free communication systems. This

chapter will illustrate the problems of current wireless communication systems and alternatives to these

systems, as well as motivations and possible applications for visible light communications.

1.1 Motivations
As societal dependence upon wireless systems continues to grow, wireless technology needs to

expand to meet the demand. Phones, laptops, and global positioning systems are all devices that

implement certain forms of wireless communication to send information to another location. However,

the availability of current forms of wireless is very limited, and it is not necessarily safe to implement

wireless radio, making it necessary to explore other alternatives to wireless communication to allow

continued expansion upon communication systems and to ensure safe use.

Figure 1 illustrates the frequency allocations of the radio spectrum in the United States.

Figure 1: US Frequency Allocations
Source: http://upload.wikimedia.org/wikipedia/commons/6/65/United_States_Frequency_Allocations_Chart_2003_-

_The_Radio_Spectrum.png

http://upload.wikimedia.org/wikipedia/commons/6/65/United_States_Frequency_Allocations_Chart_2003_-_The_Radio_Spectrum.png
http://upload.wikimedia.org/wikipedia/commons/6/65/United_States_Frequency_Allocations_Chart_2003_-_The_Radio_Spectrum.png

2

The Federal Communications Commission (FCC) regulates many wireless applications in the US,

including radio, television, wire, satellite, and cable [1]. Each application is given a frequency band in

which it is allowed to operate to allow efficient use of the available frequency spectrum. From Figure 1,

it is quite evident that this spectrum is very crowded. At the same time, there is a huge growth in

demand in the limited radio frequency spectrum. From Figure 2, predictions estimated that as soon as

even 2013, the US could potentially be in a spectrum deficit. Therefore, a more efficient way of utilizing

radio frequency is necessary.

Figure 2: Wireless Data Growth Predictions
Source: http://money.cnn.com/2012/02/21/technology/spectrum_crunch/index.htm

In addition to the crowding of the frequency spectrum, interference is also a concern for many

existing wireless systems. Any simultaneous use of a frequency band will cause interference due to the

electromagnetic nature of most wireless devices, which could result in incorrect or loss of information

for those users involved. A prime example of this is the use of mobile devices on planes, which directly

affects safety. The Federal Aviation Administration (FAA) argues that these wireless devices cause

interference to the aircraft’s navigation and communication systems, and the Federal Communications

Commission (FCC) argues that mobile devices used on aircrafts will disrupt cellular towers on the

ground. Other studies indicate that use of mobile electronics on aircrafts can exceed permissible

http://money.cnn.com/2012/02/21/technology/spectrum_crunch/index.htm

3

emission levels for safety with regard to some avionics [2]. Regardless of the reason, it is clear that it is

not feasible to use wireless devices in certain environments in which safety, data integrity, and accuracy

are highly important.

VLC systems have more flexibility and integrity than other communication systems in many

regards. Since the medium for transmission in VLC systems is visible light and not RF waves that can

penetrate walls, the issue of security is inherently solved because light cannot leave the room,

containing data and information in one location. There is no way to retrieve and access the information

unless a user is in a direct path of the light being used to transmit the data. In addition, LEDs are highly

efficient and becoming more durable, adding to the integrity of these systems.

1.2 Alternatives in Progress
Currently, several alternatives to radio frequency communications exist. For example, there are

cognitive radio, which utilizes radios programmed to adapt to surroundings by constantly analyzing the

frequency spectrum to determine how the surrounding spectrum is currently being utilized, and laser

communication systems, which transmits data through free space by shooting a laser with wavelengths

close to the infrared spectrum to a receiver.

1.2.1 Cognitive Radio

Given that one major issue in wireless communication is the crowded frequency spectrum,

many engineers spend their time and effort focusing on determining solutions for this issue. Since there

is limited access to the frequency spectrum, these engineers are focusing on options that could optimize

the spectrum. By optimizing the frequency spectrum’s usage, it would be possible to provide all end

users a portion of the spectrum. As the current trend continues, devices that normally would not be able

to wirelessly communicate, such as lamps or temperature sensors, will be connected to some type of

wireless network. This will increase the number of end users and further crowd the frequency spectrum.

One area that engineers are focusing on to optimize the frequency spectrum involves cognitive

radios. The difference between a cognitive radio and a typical radio system is that a cognitive radio is

programmed to adapt to its surroundings. A cognitive radio is constantly analyzing the frequency

spectrum to determine how the surrounding spectrum is being used. The system could potentially

monitor the entire frequency spectrum, but that would require an antenna that has a large bandwidth.

Since most antennas operate at a range of frequencies, cognitive radios will monitor that specific

4

bandwidth and determine how it is occupied. Once the radio has determined how the spectrum is being

occupied, it will choose non-occupied frequencies to transmit its information. While it is transmitting

information, it continues to monitor the spectrum to determine whether other signals are attempting to

access the same frequencies. If there are other signals, the radio will stop transmitting and switch to

another unused frequency slot. This whole process is called Dynamic Spectrum Access and is a vital part

of how a cognitive radio functions.

The idea of using cognitive radios for optimizing the use of the frequency spectrum will require

the systems to focus on more than one frequency band. Since a majority of these bands have been

dedicated to certain organizations, those organizations have priority or full control over the frequencies.

Out of all the divided frequency bands, researchers are looking at the television bands. There are

multiple television bands ranging between 54-72 MHz, 76-88 MHz, 174-216 MHz, 512-608 MHz, and

614-698 MHz which are used to provide certain television signals to the set top boxes in homes. Each

band’s bandwidth is then further divided to allow all channels to have access to transmission. The

reason the television band is the band of focus is how the spectrum is being used. At the Illinois Institute

of Technology in Chicago, IL, a team of researchers monitored the frequency spectrum over a span of

three years to determine how each frequency band was occupied. The occupancy was measured by

monitoring the frequency band’s spectral density to a threshold. The following figure represents the

occupancies of certain frequency bands [3].

5

Figure 3: Estimated occupancy for 2010
Source: http://www.ece.iit.edu/~taher/dyspan11.pdf

From the data collected in 2010, the researchers determined that the three television bands,

TV2-6 (54-87MHz), TV maritime (174-225MHz), and TV (475-698MHz), had an average occupancy of

32%, 30%, and 50% respectively. Given that the largest television frequency band was only occupied half

the time, researchers believe that the band can be shared with other transmissions. While observing the

entire spectrum, the average occupancy was measured at 14%. This low number suggests how

inefficiently the radio frequency spectrum is used. With cognitive radios, other signals that are not

television signals can monitor the band and use it if that specific area is not being used. As mentioned

earlier, the system will have to monitor any surrounding systems to see if signals are attempting to

access this specific frequency. In this case, if a radio is operating at a specific frequency that corresponds

to a television channel and the channel needs to transmit, then the radio will have to stop transmitting

because the television signal has a higher priority [4][5][6].

1.2.2 Laser Communication

Laser communication systems utilize wireless connections through the atmosphere, transmitting

data through free space by shooting a laser. This form of wireless communication can be effective

because it is not regulated by the government as it operates in a near infrared spectrum, hence avoiding

http://www.ece.iit.edu/~taher/dyspan11.pdf

6

any additional overcrowding of the spectrum with this form of communication. This allows for quick

establishment of communication links, as it does not need to go through the various regulatory

processes that would be necessary to set up an RF system. The system can work for a distance of up to 6

km with bitrates up to 1.25 Gbps[7]. The system also uses relatively low power and has a low noise ratio.

It is also secure, as any sort of eavesdropping on the data transmission will require viewing directly into

the transmitter path, causing an interruption in transmission.

Unfortunately, the system requires a line-of-sight path from the transmitter to receiver. This

renders the two functional blocks relatively immobile. If the path is not calibrated precisely, the laser

could miss the receiver by a large distance, resulting in no data transmission. In addition, although

invisible to the naked eye, the lasers used could result in damage to one’s eye if there is an extended

exposure to the laser [8][9].

1.3 Visible Light Communications
The focus of this project will be Visible Light Communications (VLC). We aim to investigate this

system by designing our own analog circuit to integrate with a computer, and then sending some form

of data using visible light LEDs from a transmitter, and decoding it with a receiver.

Information will be converted into bits through some coding scheme by a microcontroller and

will be transmitted with blinking LEDs. The blinking of these LEDs will not be visible to the human eye as

they are blinking at a high frequency. Photodiodes on the receiving side will detect the fluctuation of the

LEDs from the transmitter and will send signals to a microcontroller which is integrated with a computer

to determine the originally transmitted message. The transmitting system will be powered from a wall

outlet whereas the receiving system will be powered by batteries and the computer/microcontroller

combination.

1.3.1 Advantages

Visible light should be considered as the medium for wireless transmission because it has a few

advantages over other standard wireless transmissions. The first reason to consider is visible light’s

frequency spectrum bandwidth, which ranges from 430 THz to 750 THz [11]. The bandwidth is much

larger than the radio frequency bandwidth, which ranges from 3 kHz to 300 GHz [1]. With a larger

bandwidth it is possible to accommodate more users and potentially achieve higher transfer rates

because each user can be given a larger portion of the bandwidth to transfer information. If the

7

communication system will be used in hospitals, the transmissions will not occur in the Industrial,

Scientific, and Medical (ISM) band, therefore not interfering with medical devices. On top of having a

higher bandwidth, the frequency spectrum has less regulation than the radio spectrum. With little

regulation, the user will be able to choose any frequency to transfer information. If visible light

communication systems become more popular, regulations could be placed on these forms of data

transmission for the same reasons that they were placed for the radio spectrum.

The next major advantage that visible light systems have over other communication systems is

its abundance. Light sources are everywhere, and can be more efficiently used by increasing its

simultaneous functionality by transmitting data in addition to lighting an area. On typical work days,

company buildings, restaurants, grocery stores, etc. will have lights on for at least the duration of hours

of operation, of which could be used for visible light communications.

There are also a few drawbacks to visible light in standard situations that could potentially be

used as advantages for a visible light communication system. Unlike radio waves, light cannot propagate

through walls. Since light cannot propagate out of an enclosed room, the only way to access the

information is if the receiver is in the same room; thus, no outside sources will be able to acquire the

information. Therefore, light sources are more secure than radio waves because they are not

broadcasted for external sources to receive.

Visible light was chosen for a variety of reasons, but primarily because it will not add to the

cluttering of the radio frequency spectrum, which is heavily regulated by the FCC, and also because it

will avoid the issue of interference in sensitive settings such as hospitals and airplanes. Figure 4 shows

the wavelength range of visible light.

Figure 4: Visible Light Spectrum
Source: http://nextgenlite.com/images/VisibleLightSpectrumGradientForWeb.jpg

http://nextgenlite.com/images/VisibleLightSpectrumGradientForWeb.jpg

8

From these wavelengths, the frequency range can be calculated by the following equation:

 (1)

where f is the frequency, c is the speed of light, and λ is the wavelength. Thus, it can be shown that the

range of frequencies for visible light is around 400-800 THz.

1.3.2 Disadvantages

Limitations and drawbacks that we have to consider include noise from ambient light and the

line-of-sight of the system. If the intensity of ambient light is greater than that of the light from our

system, the signal-to-noise ratio (SNR) is low, which will distort transmitted data. To compensate for

this, the SNR will be maximized by setting thresholds on the microcontroller based on voltage signals

produced by the ambient light in conjunction with the transmitter signal.

Also, the system will only be maximized when the LEDs are directly facing the sensor. If the

angle is changed even slightly, the maximum range of the system will decrease significantly. The easiest

solution is to ensure that the transmitter and receiver are facing directly at each other.

1.4 Potential Applications of Visible Light Communications
Lights in the visible spectrum are used everywhere, providing several opportunities to apply

visible light communications. There are many applications in which data transfer via VLC systems could

be useful including traffic lights, which could utilize systems to optimize traffic flow; television sets,

which could supply a user with information on current show listings; and hospitals, which could utilize

the systems for more secure transfer of data.

1.4.1 Traffic Lights

There are many modern applications that use visible light to portray information. Using a visible

communication system in tandem with these devices can increase the devices’ functionality. An example

of a device that can benefit from a visible communication system is a traffic or stop light. In a busy

intersection, traffic lights use visible lighting to maintain the flow of traffic. Because these lights are

common in major cities, incorporating some sort of communication system in them to allow our society

to stay connected and up to date with all sorts of information improves overall efficiency through multi-

tasking. When dealing with traffic lights, a driver or pedestrian remains idle while waiting for their turn

to proceed. The majority of the time, this time is simply wasted by remaining idle. If a visible light

communication system was connected to a traffic light, the user could potentially use his/her phone or

9

car head lights to connect to the traffic lights and retrieve some form of information. The information

may be about local traffic, or even directions to a specific location. The system could even be used as a

local connection to access the internet. By doing this, the user can have an alternative means of

accessing data instead of his/her costly and limited 3G or 4G data connection.

While having an alternative connection point could be beneficial, it could promote drivers to use

handsets while driving, which can be dangerous. If a driver would like to access information, it should be

done in a manner that does not cause harm to or endanger the driver or other drivers. One way to do so

is to incorporate a visible communication system in the vehicle and use the vehicle’s head lights to send

information. Along with this, a voice activated system could be implemented so the driver can access

information hands-free.

While it may be possible to get data transmission over visible light, there are many scenarios

that require consideration in order to ensure a reliable and useful system. Since traffic lights are all

outdoors, natural light can become an issue and cause bad connections due to noise. One way to

minimize the noise from the natural light is to use specific colored lighting to transmit information. By

using a certain colored light, the photodiode used to retrieve the information can be designed to only

recognize certain wavelengths and attenuate all others. Another issue that may arise is the number of

users that the system can handle. One way to resolve this is to use multiple colors to transmit

information. Since every visible color light has a different wavelength, they will operate at different

frequencies and common communication principles can be used to minimize the interference between

the different signals.

1.4.2 Television Application

Another piece of modern technology that uses visible light to portray information is a television.

Unlike a traffic light, a television contains thousands of pixels that are constantly changing colors to

project an image to its viewers. Because there are many individual LEDs in a television, it could be

possible to allocate to a few of them the task of transmitting information through a visible light

communication system. When a user is watching television, there is a possibility that the user may wish

to see what else is airing on other channels. To do this with today’s technology, the user will have to

either constantly switch the channels to see shows that are currently airing on other channels or

minimize what was being watched to bring up the TV guide. If the user has access to a smartphone or a

computer, he/she could use that to look at the guide. Unfortunately, this requires internet access.

Instead of using the internet connection, the smartphone or computer could also incorporate a visible

10

communication system and retrieve the information from the television and display it on the second

device, and not affect what is occurring on the television. Also, if the user is really intrigued by what he

or she is currently watching but does not know what it is, they could use the communication system to

transmit the program information to their other device.

One drawback to using a visible communication system on a television is the fact that a few

pixels are dedicated to transmission and potentially could affect what is being displayed. To not disrupt

the user experience, the LEDs must be placed somewhere that will not affect what is being displayed.

One way to accomplish this is to place the LEDs away from the display, or use the LED to indicate that

the television is ready to transmit the information. Similar to the traffic light scenario, the receiver will

need to minimize the noise that may come from other light sources. This could be accomplished by

filtering out all but a few light color frequencies.

1.4.3 Hospitals

Hospitals have many reasons to employ wireless technology. Applications of wireless technology

in hospitals include updating information by wirelessly maintaining patient records, collecting data as a

real-time handheld patient monitor to detect changes in a patient’s condition, or even observing

medical images via ultrasound. Table 1 lists proposed applications for the use of Bluetooth in hospitals:

APPLICATION
STATUS IN

MARKET
DEVICE TYPE

Telemetry Candidate Embedded device

Heart-rate monitor In trials Embedded device

Ambulance crew device
Soon to be in

trials
Embedded device

Ultrasound Candidate Embedded device

Infusion pump Candidate Embedded device

Glucometer In trials Embedded device

ECG/respiration beside

monitor
In trials Embedded device

Hearing aid programmer In trials Embedded device

Stethoscope Candidate Embedded device

Sleep monitor Candidate Embedded device

Epileptic brain monitor Candidate Embedded device

Defibrillator Candidate Embedded device

Handheld patient monitor Candidate Windows based

Data collection Candidate Windows based
Table 1: Proposed Bluetooth Applications in Hospitals

Source: http://www.mddionline.com/article/implementing-wireless-communication-hospital-environments-bluetooth-
80211b-and-other-technol

http://www.mddionline.com/article/implementing-wireless-communication-hospital-environments-bluetooth-80211b-and-other-technol
http://www.mddionline.com/article/implementing-wireless-communication-hospital-environments-bluetooth-80211b-and-other-technol

11

However, many concerns follow with the use of wireless technology in hospitals, and must be

addressed when implementing a wireless communication system in such a sensitive environment.

Accuracy of information via wireless communication is imperative in a hospital setting. In real-

time applications in which a patient’s physiological conditions are monitored, data loss is intolerable

with a packet error rate (PER) of less than 10-4. For hospital office applications, slight data loss is

tolerable, with a PER on the order of 10-2, but is certainly still undesired.

Operational efficiency is necessary to ensure reliability and short delay time between two

communicating devices. For real-time applications, the devices must be reliable and must have a delay

of less than 300 milliseconds. For office-related applications, reliability is still important, but not critical,

and delay time can be on the order of around 1 second.

Security is necessary in order to maintain confidentiality of patient records, and to ensure that

only authorized personnel have access to the data being transferred wirelessly. This can be done

through some authentication process with software or perhaps some sort of identification card.

Table 2 highlights some of these concerns and their required specifications:

Table 2: Applications and their Requirements
Source: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592499/

Interference is perhaps the most significant concern in a hospital environment. Many medical

devices are sensitive to waveform distortion, and any sort of electromagnetic interference between a

wireless communication device and a medical instrument could cause an unexpected automatic

shutdown or restart of the instrument.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592499/

12

Visible light communication systems do not allow for high mobility through obstacles, providing

a relatively secure method of transferring information between a transmitter and receiver. Only those

directly nodes directly facing one another will be able to obtain any information. In a hospital, there is

much less regulation by the FCC which leads to much more bandwidth. These systems also have less

interference with RF waves, providing a relatively reliable and accurate data transfer without risking

interfering with medical instruments. Hospitals typically use fluorescent lighting, which have a visible

white light wavelength of approximately 400-700 nm [10]. With such a range of wavelengths, visible

light communications can also be implemented with the lighting in a hospital, increasing the overall

efficiency of these lights by making them multi-purpose.

1.5 Goals and Features
The goal of this system is to ultimately be able to send data from one point to another using

only visible light. Ideally, this system would be able to transfer any type of data at a high speed.

However, the success of this design does not depend on the creation of a new type of communication

system that will instantly replace all other means of data transfer. The objective of this system is to be

able to send data reliably and accurately over a short distance at a fair speed.

Initial goals for the functionality of this system include being able to send text or pictures over a

distance of approximately one meter at a data rate of at least 1 Mbps. To do this, the transmitter

portion of the design would receive a signal from a computer and control the flashing of an LED to send

bits to the receiver which would, with the help of another microcontroller, decode the signal and

present the data back in the original format. The system would be powered by external AAA batteries to

allow for more flexibility as the system will be mobile.

Additional functions that would enhance the project but are not mandatory goals of this design

include sending video, sending data at a distance greater than one meter, and transmitting data at a

minimum of 1 Gbps. Other features include using different colored LEDs simultaneously to increase data

transfer rate and/or allow simultaneous use by multiple users, as well as somehow permitting

omnidirectional transmission. The reasons for not including these features include time constraints,

budget concerns, as well as stability issues. When trying to transmit at higher frequencies, stability

becomes more on an issue as parts become less ideal. Also, in order to transmit at a higher frequency

13

the quality of our design parts would have to increase which would cost more money and consume

more time.

Since this project was conducted during the school year during three of the four terms,

milestones were set for the completion of the design by using each term as a checkpoint. For the first

term our goal was to be able to have a signal sent from our transmitter received at the receiver end of

the design. This would ensure that once we increase the frequency of transmission the signal would still

be received since at higher frequencies, the LEDs would not appear to be flashing to the human eye. By

the end of the second term the design should have progressed to a point where the transmitter end of

the circuit is fully operational and interfaced with a microcontroller. The design would come full circle by

the end of the last term with both ends of the design being interfaced with microcontrollers. By this

time a picture or text messages would be able to be sent from transmitter to receiver.

Our initial goals were to transmit first at a range of approximately one meter at a transmission

rate of 1 kbps, and then increase this transmission rate to 1 Mbps. Ideally, this was to occur in a room

that already has some ambient lighting. The system would be powered by external AAA batteries

totaling approximately a 12 V drop. The data transmitted would first be text, and then audio or images.

The receiver and transmitter would need to have a direct line-of-sight in order to ensure accurate data

transmission with minimal errors.

In order to implement a functional prototype, some goals needed to be adjusted. The final

design is capable of transmitting only text over a distance of 20-30 cm. The frequency of transmission

between the transmitter and receiver is 1kHz. In order to output what the receiver has received, the

data is exported to a file that is then decoded using a Matlab script. For a more instantaneous result, the

Matlab script is running in the background and monitors if the file has been updated by constantly

checking the file’s time of modification. Once the script sees a change, it then outputs the decoded data

in the Matlab console in the form of a text message.

14

Chapter 2: Design Approach
This chapter will discuss the specifications required for each block of the system architecture,

and how it was implemented. These functional blocks are the same for both the transmitter and

receiver side, but with different functionalities and implementations. The blocks include power sources,

analog circuitry, a microcontroller or digital signal processing (DSP) chip, and a computer.

2.1 Functional Block Diagram
Figure 5 shows the overall functional block diagram of our system. The transmitter side consists

of a signal source, a microcontroller, and analog circuitry incorporating LEDs, all of which are powered in

some fashion. The receiver side is similar, containing analog circuitry incorporating photodiodes, a

microcontroller and a device capable of receiving and interpreting the output, all of which are also being

powered in some fashion.

The microcontroller is used as the signal source for our design by utilizing a binary system to

transmit text. Each voltage maximum corresponds to a single binary ‘high’ digit and each voltage

minimum corresponds to a single ‘low’ digit. This scheme is used in conjunction with the ASCII binary

values, found in Appendix B, to encode a text message which is sent to the receiver side of the design

utilizing LED flashes.

A power MOSFET is used to amplify the strength of the signal for increased transmission range.

This particular MOSFET includes a built-in gate driver which is necessary for applications involving low-

voltage logic such as the microcontroller used in this design. The device works in a way such that the

signal is transmitted exactly as intended, however the logic highs and lows are inverted. To make up for

this voltage inversion, the output data signal from the computer will also be inverted to produce the

correct signal after the MOSFET block. The operation of this device is explained more in Section 2.2.4.3

MOSFET.

Two different power sources are utilized in the transmitter portion of the circuit. The first is

used to power the MCU and is low maintenance since this source is the computer connected to the

MCU. Since the MCU needs Code Composer Studio to operate the power from the USB port of the

connected computer is used to power the MCU. The second power source is a 5V/2A AC/DC converter

connected on one end to a wall outlet and on the other to the drain of the power MOSFET. The details

of this source are covered in more detail in Section 2.4.1.2 AC/DC Converter.

15

Figure 5: Functional Block Diagram

The power source for the receiver will be AAA batteries that will supply power to the analog

circuitry. The analog circuitry on the transmitter side will be powered by an outlet. The computer will

also be powered by an outlet and will either provide a message on the transmission side, or read a

message on the receiver side. The DSP chip will be powered by the computer and will decode the

message on the transmission side to send a signal through the analog circuit containing the LEDs, or will

decode the message from the analog circuit containing the photodiodes. The LEDs will be blinking at a

rate corresponding to the message being sent, which the photodiodes will receive at a distance away

from this transmission block.

2.2 Modules
Each block has its own specifications that need to be met in order for the system to function.

The following sections will address these specifications. Many of the modules, such as the MCU, power

source and analog circuitry, are present on both the transmitter and receiver.

16

2.2.1 Power Source

Both transmitter and receiver need some source of power; however, each component needs

varying amounts of power. The transmitter end of the design utilizes the same power source but

converts that power differently for different components. Both the MCU and MOSFET utilize a wall

output with 120V AC output, however neither of these devices are connected directly to the AC power.

The MCU is connected to a computer using a USB connection cord which outputs 5V DC. This

voltage is used to power the MCU while the actual signal is sent to the MCU using CCS. The MCU then

outputs either a logic high, 3.3V, or logic low, 0V, to the gate of the next component; the MOSFET. The

signal sent from the MCU is applied to the Gate of the MOSFET device which, when high, turns the

device on and, when low, turns the device off effectively controlling current flow to the LEDs.

Explaining the power source for the MOSFET device is more involved than specifying a single

voltage. This is due to the nature of the MOSFET where the device is only in the Active region and

behaves as desired when there are differing voltages applied to both the Gate and the Drain of the

device. The operation of this device is explained in greater detail in Section 2.2.4.3 MOSFET. The voltage

applied to the Gate is the signal being transmitted while the voltage applied to the Drain is the

converted voltage from the wall outlet. This 120V AC travels through an AC to DC converter which then

outputs a 5V/2A DC signal to the Drain of the MOSFET. This scheme allows for a higher signal amplitude

and therefore results in brighter LEDs. The brighter the LEDs are, the further away they can be from the

photodiodes and have minimal loss in signal integrity.

On the receiver side of the design the only device that needs powering other than the MCU is

the Op-Amp. The AD848 Op-Amp can have rails set to as high as +/-15V and has typical values listed in

the datasheet for 5V and 15V. For our purposes the ratings at 5V were more than sufficient so this

setting was chosen. In order to achieve this voltage rating, 4 AAA batteries, rated at 1.5V each, are

connected to the rails of the Op-Amp. Even though the batteries at rated at 1.5V each, the typical

output voltage is 1.3V which puts the rails at 5.2V instead of 6V. This means that the typical values listed

in the datasheet are accurate guidelines for predicting the behavior of the device. The Op-Amp device is

explained more thoroughly in Section 2.2.4.4 OP-AMP.

2.2.2 Signal Source

On the transmitter side, the signals that will be transmitted are text signals. These signals could

be produced by a computer, but could potentially be produced by some other compatible device, such

as a cell phone. This signal will then be sent to the microcontroller or digital signal processing (DSP) chip

17

for processing. On the receiver side, another computer or compatible device needs to be able to

interpret the original signal by taking the received signal from the receiver microcontroller or DSP chip.

2.2.3 Microcontroller

The microcontroller or DSP on the transmitter side will convert the signal from the source into

bits through an “On/Off” keying scheme using logic 1s and 0s. This could require some coding with

MATLAB to first convert the data into a waveform for processing. The resulting waveform will then be

sent to the analog circuitry for the LEDs. On the receiver side, the microcontroller or DSP will need to be

able to take the signal from the photodiodes set a threshold voltage that will offset the voltage that will

be picked up from the ambient light in the room. Next, the bits will need to be decoded into voltages for

the computer or compatible device. Again, MATLAB will be useful in producing these filters, and some C

programming will be necessary for setting the threshold voltage and converting the bits back into

voltages that can be deciphered by a computer or corresponding device. More on this block will be

discussed in Section 2.5 Micro Controller.

2.2.4 Analog Circuitry

The analog circuitry on the transmitter side needs to take a pulse from the MCU and light LEDs

at a rate equal to the frequency of the pulse. This can be done with a few resistors and an array of LEDs.

22 high-brightness white LEDs are used and connected in parallel for current limiting reasons. The

receiver side analog circuitry will contain photodiodes to detect the fluctuations of pulses from the LEDs.

Resistors and operational amplifiers are also used, as the signal produced by the photodiodes are very

small, and thus need to be amplified in order to produce a signal for further process. This will be further

discussed in Section 2.3 Analog Design.

2.2.4.1 LEDs

 The medium being used to transmit data in our design is light with this light being provided via

LEDs. The most important parameter associated with the LEDs is the brightness of the device which is

measured in units of Lumens. It is important to note that the Lumens unit of light is not the same as the

Candela unit.

Lumens refers to the ‘total’ amount of light that a device emits whereas Candela refers to the

power emitted by a light source in a particular direction. This means that if an LED emits 1 Candela

towards a photodiode but there is a wall in between them that does not allow for light to travel through

it, the photodiode actually sees the LED as emitting 0 Candela.

18

The LEDs used in our design are measured in Lumens instead of Candelas because our LEDs emit

light in a viewing angle of 15: instead of a single direction. This means that not all of the power in

Lumens actually reaches the photodiode, but we set up our design so that the center of the viewing

angle is level with the photodiodes’ 75: viewing angle center of receiving light. This is possible because

both the receiver and transmitter circuits are constructed on breadboards of equal size so when both

LED and photodiode are angled correctly their centers align.

The next thing to note about the LEDs in this design is the amount of current, and therefore

power, drawn from each device used. According to the datasheet of the LEDs selected for our design,

the current draw for each device is approximately 20mA. Since 22 LEDs are used in the design to provide

more light to be received by the photodiode, this means that the total current drawn from all of the

LEDs is equal to approximately 440mA. Taking into account that the typical forward voltage of the LEDs

is 3.2V when the forward current is equal to 20mA, the power dissipated in each LED as well as total

power can be calculated. The equation used for power dissipation is as follows:

 (2)

where IF is the forward current of a single LED and VF is the forward voltage of a single LED. Substituting

the values of 20mA and 3.2V for current and voltage respectively, the power dissipated by a single LED is

found to be 64mW. Taking this value and multiplying by the total number of LEDs, 22, results in the total

power dissipation of the LEDs in the system, totaling 1.408W.

An important characteristic to note about both the LEDs and photodiodes are the frequencies at

which each device emit light and react to light, respectively. From Figure 6, shown below, it is clear that

the LEDs being utilized in this design are most effective at a lower wavelength than the half-way point in

the range of photodiode detection. This means that both devices are not ideal for one another which

leads to the need for an Op-Amp to increase the amplitude of the received signal.

19

Figure 6: Emission Spectrum of LEDs for Various Frequencies

2.2.4.2 Photodiodes

 In order for data transmission to have any significance there must be a way to receive the signal

at the other end of the design. This is the purpose of the photodiodes as they react to the light emitted

from the LEDs and allow for current to flow to the rest of the receiver circuit. When there is no light

emitted from the LEDs the photodiodes do not allow current to flow through to the MCU on the

receiver.

 As mentioned above, the photodiode reacts to the light emitted from the LEDs to create a signal

for the MCU on the receiver end of the design to process and decode. Our design works exceedingly well

in a dark room, as one might expect, since there is no ambient light to interfere with the photodiodes

receiving the LED signal. Our design also works in a lit room with ambient lighting that creates noise.

A simple fix is required to adjust for the ambient lighting in a lit room. The ambient lighting can

be viewed as a approximately a constant signal that, when combined with LED lighting, simply adds as

DC bias to our transmitted data. To resolve this problem with the photodiode, there is digital processing

on the digital receiver circuit to ensure that this biasing does not affect the sampling of the MCU. More

on this will be addressed in Section 2.2.6 Receiver.

Our design implements seven total photodiodes with the purpose of covering the entire

breadboard such that at least two LEDs are aligned directly with each photodiode’s center. According to

the datasheet for the selected photodiodes, the power dissipation for each photodiode is approximately

100mW. Using the same equation used to calculate the power dissipation of each LED, the total power

used by each photodiode is equal to the product of the forward current and forward voltage, 80mA and

20

1.3V respectively. Utilizing the exact power calculated from the datasheet, 104mW, instead of the

approximate value provided, the total power dissipated from all of the photodiodes is 728mW.

Like with the LEDs, the photodiodes have a spectrum of frequencies at which they react to light

more so than other frequencies. This spectrum, shown below in Figure 7, is the sensitivity of the

photodiodes to each frequency of emission from the LEDs. As mentioned above, the disparity between

the two peaks of these spectrums requires the use of the AD848 Op-Amp for easier signal processing

purposes.

Figure 7: Relative Spectral Sensitivity of Photodiodes at Various Frequencies

2.2.4.3 MOSFET

 An analog part implemented solely to amplify the transmitter signal amplitude, the N-Channel

FQP30N06L MOSFET, utilizes an internal gate driver which solves all current limitation issues. In order to

get the LEDs to emit a brighter light and increase the possible transmission distance of our design, it was

necessary to provide more current to the LEDs since the logic output of the MCU was too low.

 In order to explain how the MOSFET device increases the current provided to the LEDs, it is

necessary to have a basic understanding of how such a device functions. There are three primary modes

21

that a MOSFET device can operate in. Those three modes are Cutoff, Triode, and Active or Saturation.

For this design, it is better to operate in the Active region as this region provides the most consistent

measure for Drain current.

While a device is in the Active region, the Drain current is nearly constant and mainly dependent

on the Gate to Source voltage. The equation for the drain current in the device is given as:

 (3)

This equation ignores the channel-length modulation effect that occurs, but since our device

operates at lower voltages and currents this can be neglected for simplicity. The only parameter that can

be controlled in our design is VGS which is the voltage differential between the Gate and the Source of

the MOSFET since the other parameters are determined in fabrication of the device. The above equation

holds only when the MOSFET is in the active region; or when VGS is greater than the threshold voltage,

Vth, and when the Drain to Source voltage, VDS, is greater than the effective voltage, (VGS – Vth).

When the above conditions are not met, the device operates in either the non-ideal Triode

region or is in Cutoff and does not operate at all. The problem with the Triode region is that the Drain

current, ID, is not constant with increasing values of VDS but rather is ohmic and linear in nature. This

makes the exact value of the drain current difficult to evaluate and makes other calculations

approximations rather than accurate representations. The issue with the Cutoff region is that there is no

current flowing through the Drain of the device, and therefore there is no current flowing into the LEDs.

In order to use a Power MOSFET with a low voltage logic device such as the one used in our

design, there must be a Gate Driver to ensure the device can operate at the desired frequency. A

MOSFET device is capable of switching on-states rapidly as long as the Gate Capacitance is charged fast

enough for the device to turn on and off again. When MOSFETs are used in standard DC applications

there is no need to have a Driver because once the device is on there is no need to turn it off unless the

power is cut to the system. However, with our logic input being applied to the Gate of the MOSFET the

VGS is constantly changing from 3.3V to 0V. The MOSFET device selected for our design has a built-in

Driver that takes care of the Gate charging that is needed in order for the device to switch at our desired

frequency.

The power dissipation of this device is the only drawback to this device. According to the

datasheet, the device has a typical power dissipation of 0.53W/:C where the temperature is the ambient

22

temperature around the device. Assuming a room temperature operation of around 25:C, this would

mean the MOSFET dissipates 13.25W of power. This is by far the most power consuming device in the

entire analog design. However, since the wall outlet is the primary source of this device there is not

much concern in the amount of power consumed through that medium since the typical wall outlet

contains 120V AC in the United States which is connected to a circuit breaker of typically 15-20A. This

means a standard wall outlet is capable of providing 1800-2400W.

However, because the device is switching so quickly there is a noticeable heating of the device.

When a MOSFET’s junction temperature is increased, the on-resistance, Ron, is increased which increases

the power dissipation of the device. This means that while the device is left on for transmission the

actual power dissipation of the device is increasing due to the increased Ron with the rising temperature.

This phenomena is known as thermal-runaway and is common when the load of the MOSFET is a

continuous current draining device such as the LEDs used in the design. The absolute maximum power

dissipation for this device is listed on the datasheet at 79W which, while significant when compared to

other aspects of our design, is still not enough for concern when using a wall outlet for power.

2.2.4.4 OP-AMP

 Another analog part that is implemented on the receiver end of the circuit along with the

photodiode is the AD848 operational amplifier. The purpose of this Op-Amp is to amplify the received

signal of the photodiodes. Since the amount of current released from the photodiodes depends on how

close the LEDs are with respect to the photodiodes, it is necessary to amplify the received signal when

the transmission distance is increased.

Another issue with the emission and sensitivity spectrums of each device becomes apparent as

well. Both of these charts are shown above in their respective sections; Section 2.2.4.1 LEDs and Section

2.2.4.2 Photodiodes. Because the peak values for these two charts are not equal, the Op-Amp is

required in order to increase the received signal to an amplitude high enough to be able to perform

signal processing. Although there is amplification on the transmitter end of the circuit utilizing the

MOSFET, the signal is further amplified with the Op-Amp in order to allow for more accurate sampling

by the MCU.

2.2.4.5 USB-B to Circuit Board

 As stated in Section 2.2.4.3 MOSFET, the MOSFET device is powered utilizing an AC/DC

converter from a wall outlet. However, the output of the converter is not directly able to be applied to

23

our breadboard. This is due to the output being USB-A and not wires. In order to get around this

problem we utilized a USB-B breadboard adapter.

 The device, shown below in Figure 8, is an adapter that interfaces a USB-B connection to leads

that can be placed on our breadboard. The device has 4 pins with the two middle unused pins being

differential voltages to add to the power from the USB connection. The two pins being used are the

ground and power pins with the power flowing into the Drain of the MOSFET device.

Figure 8: USB-B to Breadboard Adapter

 The biggest distinction to make in this part of the design is the difference between USB-A and

USB-B. A USB-A and USB-B side-by-side comparison is shown below in Figure 9. The USB-A variety is a

flat, rectangular interface that holds the connection in place with friction. USB-B is more square shaped

than the rectangular type A, and has slightly beveled corners on the top ends of the connector. Type A

connectors are used on hosts that supply power whereas type B connectors are used on hosts that

receive power. This scheme is implemented in order to prevent a user from connecting two devices that

give power to one another which would lead to dangerous circuit conditions such as high currents or

extreme heat resulting in a fire.

24

Figure 9: USB-A (left) and USB-B (right) Comparison

2.2.5 Transmitter

The entire purpose of a communication system is to send data from one location to another in

order to convey information to a user on the end of the system. A transmitter, and in turn a receiver, are

required to achieve this goal so that data can be sent wirelessly. Both analog and digital components are

used on both ends of the system and work simultaneously to transmit and receive data using only visible

light.

The transmitter, although incorporating analog parts, is mostly digital when processing the

actual data itself. Most of the data manipulation is done on a computer program made for use in

conjunction with the C2000 Piccolo LaunchPad being used to transmit data. The specific digital signal

processing chip being used, the F28027, allows for communication between the computer and

LaunchPad through micro USB connection. This board is also referred to as the LAUNCHXL-F28027.

The program used with the F28027, Code Composer Studio (CCS), allows a user to write and

implement C/C+ code to the digital board. After a one-time configuration of connection settings, CCS is

ready to execute all code written onto the board. Data is converted into binary in order for simple

transmission in a digital sense. Once this data was entered into the transmitter C code, and processed at

the specified frequency, the F28027 would output a waveform to the analog circuit board using the an

edited version of the pulse-width modulator (PWM) Texas Instruments (TI) example code to create a

square wave with the appropriate frequency and duty cycle.

The transmitter analog circuit leads to an array of LEDs. The LEDs would stay off when the input

from the F28027 was low and would light when the input was high. This on-off behavior is not visible to

the human eye so the constant switching of the LED would not bother or distract someone in the area as

25

the light would appear to be either constantly on or off. An elaboration on this block will be in Section

2.6 Digital Side of Transmitter.

2.2.6 Receiver

The switching of the LEDs would serve as the wireless means for data transmission as the

receiver analog circuit would pick up on this changing behavior. Photodiodes were used as a way to let

the receiver “know” that data is being transmitted. When the photodiodes detect a change in lighting

from the LEDs, current flows into the next stage of the circuit, the op-amp. The op-amp is configured in a

way so that the waveform from the photodiodes would be amplified for use in the second F28027

board.

The digital aspect of the receiver is the most complicated part of the entire design because this

signal is not being created but rather decoded in the F28027 board’s Analog to Digital Converter (ADC).

Although initially, much of the initial testing and implementation was done with the C2000 board, we

eventually chose to switch from this C2000 board to the MSP430F5529 LaunchPad Evaluation Kit. An

elaboration on the functional aspects of this block will be in Section 2.7 Digital Side of Receiver, and an

explanation on why we ended up switching to the MSP430F5529 will be in Section 2.5 Micro Controller.

2.3 Analog Design
In order to transmit digital information in an ordinary communication system, such as Wi-Fi, the

desired information is converted to an analog signal. Once the data is converted, an antenna is used to

convert the signal into electromagnetic waves to propagate through the air. To collect the propagated

signal, an antenna is also needed on the receiver side. For a visible communication system, the desired

information is transmitted through visible light, instead of electromagnetic waves. Because of this,

transmitting and receiving the desired information must be done differently.

To design the transmitter for the visible communication system, we use LEDs to transmit the

information. Once the desired information is ready to be sent, the digital data that is detected as zeros

and ones can then be converted into an analog voltage and sent to the LEDs. To distinguish between the

different bit values, the LED can either be turned on or off. This can be done by manipulating the voltage

through the LED. If a bit has the value of one, a sufficient positive voltage will be applied to the LED to

turn it on. Conversely, a bit value of zero will drop the supply voltage to the LED to zero and the LED will

26

turn off. This whole process is referred to as ON and OFF Keying because of how the LED is constantly

turning on and off to transmit information.

For the receiver, a device is needed that can distinguish the change in light from the LED. Such a

device is a photodiode. A photodiode will produce a current based on how much light it absorbs. Once

the signal has been received, it will need to be amplified because the output current from the

photodiode is usually on the order of µA. To amplify the signal, an operational amplifier is used to

convert the input current into an output voltage that is then amplified.

2.3.1 Value Analysis

 Upon designing the analog circuitry for both the transmitter and receiver, the team determined

which analog components were needed to complete the design. The transmitter’s analog circuit

consisted of LEDs, a MOSFET, and resistors. The receiver’s analog circuit required photodiodes, an op-

amp, resistors, and a power source. Once the type of component was determined, some research was

done to determine the appropriate component for the design. A value analysis was performed on each

analog component which factored in certain areas of focus such as cost and performance.

2.3.1.1 LEDs

For the value analyses of the LEDs and photodiodes, a green background represents the most

ideal specification within a category. A yellow background indicates an acceptable specification for our

design and red indicates a specification unsuitable for our design. The value that each category held was

determined either by testing or theoretical conjecture.

LED
Luminous
Intensity Color Price

RL5-R12008 12000 mcd Red $0.59

RL5-W18030 18000 mcd White $0.99

WP7113IT 80 mcd Red $0.15

LW514-BULK 32000 mcd White $0.66
Table 3: Categorical Value Analysis of LEDs

From initial prototype testing, the standard LED (WP7113IT) had negligible effect on the output

of the photodiode being used regardless of how close the LED was in relation to the photodiode. When

testing with a white-light LED of higher intensity from a smartphone, the photodiode showed significant

responses. It was then determined that the intensity of the LEDs was not adequate, and so higher

intensity LEDs were found. White-light was deemed most ideal color for our design as the frequency of

white light was not a single peak value as with other colors such as red. Cheap parts are ideal; however,

27

tradeoffs are necessary to meet other specifications. After the initial testing and determining that the

intensity of the LED is the most important factor, this carried the most weight in our decision making

process. That in mind, the LW514-BULK LED is the brightest of the selection of LEDs and is cheaper than

the next brightest LED which led to selecting this device for use in our VLC system.

2.3.1.2 Photodiodes

The table shown below represents the value analysis for several photodiode devices researched

during our initial prototyping phase. Several specifications were looked at with the most important ones

being a very wide range for use with any type of LED and a low cost in order to use multiple of them in

the design.

Photodiode
Spectral
Range Wavelength @ Peak Sensitivity Cost Response Time

SFH 203 P 400-1100 nm 850 nm $0.72 5 ns

SFH 229 400-1100 nm 850 nm $0.66 10 ns

AD800-11-TO52-
S1 300-1100 nm 600 nm $211.24 1 ns

PD70-01C/TR10 150-1200 nm 900 nm $0.83 50 ns

PD15-22C/TR8 400-1100 nm 900 nm $0.47 10 ns

PS1.0-6b TO 350-1100 nm 925 nm $32.33 30 ns/10 ns

720-BPW21 400-1100 nm 550 nm $6.70 1.5 us

PDA10A 200-1100 nm 750 nm $283.00
150 MHz BW ~ 6.7

us
Table 4: Categorical Value Analysis of Photodiodes

Since the project focuses on visible light, it is ideal to restrict the wavelengths that the

photodiode can detect to the range of wavelengths in the visible spectrum. Therefore, having the peak

sensitivity near the center of this range is the most reasonable. Unfortunately, our budget is limited, so

the photodiodes in the $200 range are unsuitable for our design. Because of this limiting factor the

importance of the peak sensitivity was lowered and the importance of a wider range was emphasized;

hence the largest ranges having a green background.

For response time, the device with the lowest response time is the best. However, our goal was

to transmit data in the megabit range so all of the listed photodiodes were acceptable. Taking all the

factors into account, the SFH 203 P device was chosen instead of the SFH 229 for the slightly faster

response time while only costing an additional six cents per device.

28

2.3.1.3 MOSFET

The choice of which MOSFET device to use was not a difficult decision since certain

specifications needed to be met in order for the transmitter to operate properly. Due to the lack of

sufficient output current from the microprocessor, the MOSFET is needed to increase the signal strength

of the transmitted signal. In order to achieve the desired signal strength, the minimum drain current of

the MOSFET had to be above 440mA. This was determined after the number of LEDs being used was

established. Once that number was finalized at 22 and the current draw on each LED was found to be

20mA the total current from the MOSFET had to equal 440mA.

 In order to find a MOSFET that was both through-hole and had a continuous drain current of

440mA, a search in the Mouser database was done to find a suitable part. This database allowed parts

to be searched with specific values for parameters specified. This allowed for the mounting type to be

selected as through-hole instead of surface mount and for the exact drain current to be specified. The

MOSFET that fit both requirements was the ZVN4206A N-channel MOSFET from Diodes Incorporated.

This first of these MOSFETs, however, proved to be the incorrect device for our design. Since the

input to the Gate of the MOSFET device is a low power logic input, there is not enough current supplied

to the device to switch it on and off quickly enough. This required the MOSFET to have an internal Gate

Driver which would charge the gate capacitance to a high enough level for the device to switch on and

off the same frequency of our signal. Upon further research the only device that was found to be

through hole, had an internal gate driver, and operated in low power circuits was the FQP30N06L N-

channel Power MOSFET from Fairchild Semiconductors.

2.3.1.4 OP-AMP

In order to select the proper Op-Amp for use in our VLC system, all specifications had to be

taken into account. The Op-Amp is used on the receiver portion of the analog circuitry in order to have a

gain on the received signal. Since the amplitude of the signal is not as high as desired due to the non-

ideal peak sensitivity of the photodiodes in relation to the peak emission of the LEDs, it is necessary to

have an op-amp connected for gain.

Several parameters were taken into consideration when determining the ideal op-amp for our

VLC system but the three factors that weighed the most were the price of, the unity gain frequency of,

and the voltage required to operate each op-amp. The three op-amps whose rail voltage parameter fit

our specification of 5V are shown in the table below. The rail limits were determined after we had

29

established that four AAA batteries would be used to power the analog receiver sections, as these

batteries can provide up to 6 volts maximum with a typical value of 5.2V.

Op-Amp Unity Gain Frequency (MHz) Cost ($) Rails (V)

AD-484 175 6.75 5-15

LT-1797 10 1.16 5

Max-473 10 2.50 3-5
Table 5: Value Analysis of Op-Amp

Table 5 displays the Op-Amp and the parameters for each. Initially, the second op-amp appears

to be the most efficient for our means. However since we only require one of these op-amps rather than

in bulk, this option becomes less attractive since the listed price is the price paid when bought in bulk

and the minimum order was 1000 for the parts distributor, DigiKey. The third option also fit the

specifications needed for our op-amp, but was no longer in stock anywhere.

 The reasoning for selecting a unity gain frequency of 175MHz is that the system was initially

intended to operate at a much higher frequency than it would in its final state. Although this high

frequency may not look optimal, as long as the frequency we are operating at is lower or equal to this

unity gain limit the op-amp will perform as intended. Therefore, the best Op-Amp for our design is the

AD-484 device.

2.3.2 Initial Analog Design

For our initial step in designing the transmitter and receiver for the visible communication

system, we decided to design and test the analog schematics for both end systems. Before reaching the

analog components in the transmitter, the digital data will be converted to a continuous analog signal.

To model the continuous signal, a signal generator was used to produce a continuous square wave. The

following figure represents the remaining analog components for the transmitter.

Figure 10: Basic Visible Communication Transmitter

30

The square wave was constantly alternating from a high to low voltage, where the high voltage

was set to +5V and the low was set to 0V. The signal was then connected to a 100Ω resistor and a series

of LEDs that were connected in parallel. The resistor was placed in the circuit to limit the amount of

current that would flow through the LEDs. The LEDs are placed in parallel to ensure that enough voltage

can be supplied to each LED. As mentioned earlier, the square wave will constantly switch the LEDs on

and off. If the signal’s frequency is high, the LEDs will appear to be constantly on to the human eye.

Because of this, it is possible to transmit information and not hinder the main purpose of the lights.

Once the LEDs begin to propagate the light, the receiver must absorb the light and reproduce an

example of the propagated signal. The following figure represents the initial receiver design used for the

communication system.

Figure 11: Basic Visible Communication Receiver with LED

The light signal is initially absorbed by the photodiode, which is labeled as D1 in Figure 11. As a

photodiode absorbs light, it produces an output current. If more light is absorbed by the photodiode, it

will produce more current. The current then must be converted into a voltage so it can be passed to the

microcontroller. One way to do this is by using an operational amplifier. The photodiode is connected to

the amplifier’s negative input, while the amplifier’s positive input is connected to ground. A 1MΩ

resistor connects the amplifier’s negative input to its output. Since the input current to the amplifier is

zero, the current produced from the photodiode must flow through the resistor. Because the resistor is

connected to the amplifier’s output, the output is equal to the voltage drop across the resistor.

31

2.3.3 Final Analog Design

After several revisions of our analog design, we decided upon the design shown below in Figure

12.

Figure 12: Prototype Implementations of Transmitter (left) and Receiver (right)

The basic schematic is similar to those of Figure 10 and Figure 11. The difference in the

transmitter is that it has an array of twenty-two white LEDs connected in parallel. Because the devices

are connected in parallel, there is no guarantee that each LED will draw the same current. This means

that the brightness of the transmitter block does not necessarily increase proportionally with an

increased number of LEDs. In order to rectify this issue the MOSFET shown was implemented to provide

enough current to each LED to reach their maximum brightness. More on this solution is discussed in

Section 2.2.4.3 MOSFET.

On the receiver side, the analog block has an array of seven photodiodes to increase the current

flowing through the receiver block. Each photodiode was placed along the board and aligned to the

transmitter to maximize the amount of light captured from the LEDs and increase the current provided

from the photodiodes. The AD848JNZ Op-Amp is connected with a resistor so a voltage can be passed

32

through the Op-Amp, outputted to the receiver MCU, and processed. More on each part of this design is

found in each modules respective section.

2.4 Power Source
Our VLC system is powered with primarily two sources. The first power source is a set of

batteries which powers the Op-Amp on the receiver side of the analog circuitry. The second source of

power in the system is a wall outlet that is used in conjunction with a USB connection to a computer and

an AC/DC converter.

 The batteries being used are AAA 1.5V with four being used for a total of 6 volts. This set of

batteries will be used to power the Op-Amp on the receiver. The second form of power in our VLC

system comes from the USB output of the computer the DSP is hooked up to and the AC/DC converter.

By using the computer as the power source for the DSP there is no need for more batteries in our

system which saves on space and money.

2.4.1 Wall Outlet

2.4.1.1 Computer to MCU via USB

 Of the two wall outlet conversions, this is by far the simplest since a computer is doing all of the

converting instead of other analog parts. This power source is used to power the MCU with the required

5V to operate the device. The typical USB output from a desktop computer is 5V DC. Knowing this as

well as needing the program Code Composer Studio, the decision to power the MCU through the

computer was simple.

 Once the MCU is powered on and the code is sent to the device, the MCU outputs the desired

signal utilizing two pins. The first pin is a ground which is connected to the ground of the breadboard

and the second pin is the output pin. Both pins are interfaced with the breadboard utilizing simple wire

with crimped ends for easy use with the pins. The output signal that is sent to the breadboard is

connected to the Gate of the MOSFET device with a 3.3V peak voltage representing a single ‘1’ bit and a

0V peak representing a ‘0’ bit.

2.4.1.2 AC/DC Converter

2.4.1.2.1 USB-A vs. USB-B

 The second way that the wall outlet is used is by converting the AC power output to a DC power

source for use with the MOSFET. In order to do this, an AC/DC adapter, which takes the 120V AC signal

33

and converts that into a 5V/2A signal, is utilized since the converter is connected to the wall outlet. The

total power available is approximately 1800-2400W, so power consumption is not an issue like it is with

the batteries as described below. See Section 2.2.4.1 LEDs for details on this calculation.

2.4.2 Batteries

 The other source of power in our design is present on the receiver side of the analog circuit. The

Op-Amp requires a 5V rail to operate effectively so 4 AAA batteries are used to supply this voltage. As

discussed earlier, the voltage maximum is 1.5V from each battery but the typical voltage is 1.3V from

each which places the rails at 5.2V. Because the selected Op-Amp can operate with rails ranging from 5V

to 15V the device will still work as expected and behave very closely to the typical values listed in the

datasheet of the device.

The total power available from the four AAA batteries can be calculated using equation 2.

Assuming a 1.3V constant voltage from each battery, the typical voltage from the datasheet, each

battery discharges 100mA over an hour’s time. This is within our timeframe for transmission since

transmission is taking place at a 500Hz and the data being transmitted is only text. The total power

available from all four batteries is 520mW for the first four batteries which is enough to power the Op-

Amp on the receiver end of the circuit.

2.5 Micro Controller
 Since the VLC design is transmitting information through light waves, the continuous analog

signal must be discretized to be recognized by a computer. One way of accomplishing this is by using a

microcontroller. The microcontroller will have an on-board Analog to Digital Converter (ADC), which

would sample the incoming continuous signal. Once the signal is sampled, an assortment of processes

can be performed to convert the collected data back into bits of ones and zeros. Once the binary

information is recovered correctly, it is then possible to decode what was sent from the transmitter.

 Another microcontroller is used on the transmitter to interface a computer to the analog circuit.

The prepared message is sent to the controller and is then converted into binary bits. Once in binary

form, the controller will look at one bit at a time and output a voltage pulse that corresponds to that bit.

If the bit was a zero, the voltage pulse would be 0V, and if the bit was a one, the voltage pulse would be

set to 3.3V.

34

2.5.1 Cost Analysis

2.5.1.1 Factors

 In this visible communication system’s design, both the receiver and the transmitter are

interfaced with a computer using a microprocessor. When it came to deciding which processor to use

for the design, there were a few factors to consider. Since the processor is meant to connect directly to

the computer, the first factor that was considered was USB connectivity. Having a USB connection

between the computer and the processor would allow the system to transfer information to and from

the computer. By not having this functionality, it would not be possible to meet the goal of interfacing

the communication system with the computer. To analyze if a processor met the requirement, it was

given a value of five if it had USB connectivity, or a value of zero if it did not. The following table

represents the breakdown of how the points were assigned for USB connectivity.

USB Connectivity Value

No 0

Yes 5
Table 6: USB Connectivity Value Assignments

Another factor that is as crucial as the USB connectivity is the processor’s sampling rate. One of

the design goals was to have the system’s transfer rate be in the megabits per second (Mbps) range. To

meet this design, the microprocessor must have an analog to digital converter, or ADC, that can produce

at least a million samples per second. The reason for this is due to the Nyquist rate, which states that a

signal must be sampled at a frequency that is twice the signal’s highest frequency content in order to

keep the input signal intact. It is also possible to use a sampling rate that is exactly the same as the

signals input and not cause interference. The following table ranks a few sampling rates into a value

system ranking from zero to five.

Sampling Rate Value

>1000ns 0

800-1000ns 1

600-800ns 2

400-600ns 3

200-400ns 4

0-200ns 5
Table 7: Sampling Rate Value Assignment

As mentioned before, since it is preferred to have a transmission rate in the mbps range, the

ADC on the processor cannot have a sampling rate that is less than 1000 ns, which corresponds to 1

35

MHz. If the processor had a sampling rate that was slower than 1000 ns, it was not considered and given

a zero. As the sampling rate decreases the corresponding value increases, which allows the system to

operate at a higher rate.

The next factor that was considered was price. When deciding which processor to choose, the

price of the processor and its development board were compared. Due to the project budget being set

to roughly $300, the team determined that any board processor combo that was over $100 exceeded

the budget and therefore were not considered. The following table describes the price breakdown for

the processors and the corresponding values for them.

Cost Value

$100+ 0

$60-$80 1

$40-$60 2

$20-$40 3

$10-$20 4

< $10 5
Table 8: Price Value Assignment

The last factor that was considered for choosing the processor was its power supply. Since the

visible light communication system was intended to be powered through batteries, there was a limited

amount of power supply. Because of this, if the processor ran on an average power that exceeded 3.3V

it was given a value of zero, and if the average was at or below 3.3V, the value was set to five. The

following table represents the value breakdown for the processor’s power.

Power Value

> 3.3V 0

< 3.3V 5
Table 9: Power Value Assignment

2.5.1.2 Processors

 When it came to choosing which processor is right for the design, the choices were narrowed

down to four processors. The processors are all manufactured by Texas Instruments, and the

manufacture names are: MSP430BT5190, MSP430F5529, TMDX28069USB, and LAUNCHXL-F28027. The

following table represents each processor’s sampling rate, price, power supply, and USB connectivity.

Processor MSP430BT5190 MSP430F5529 TMDX28069USB LAUCHXL-F28027

Sampling Rate 1000ns 1000ns 289ns 333-950ns

36

USB Connectivity No Yes Yes Yes

Supply Voltage 3.3V 3.3V 3.3V 3.3V

Price $101.00 $15.24 $40.50 $17.70
Table 10: Processor Information

To get a better understanding of how the processors compare to each other, the processors’

information was converted to numerical values using the value assignments. Each factor was also

assigned a weight based on importance. Since the team determined that sampling rate and USB

connectivity were equally important, they were assigned a weight of 50. The processors’ price was also

important but not as significant as the other factors so its weight was assigned to 30. The power was the

least important because all processors had the same power supply; thus, the weight was set to 5.

To get the overall value for the processors, each processor’s factor value was multiplied by the

factor weight and then added up to achieve a total weight value. The following table represents the

results in determining which processor to use for the design.

Weight 30 50 50 5

Processor Price Sampling Rate USB Connectivity Power Total

MSP430BT5190 0 1 0 5 75

MSP430F5529 4 1 5 5 445

TMDX28069USB 2 4 5 5 535

LAUCHXL-F28027 4 4 5 5 595
Table 11: Processor Value Analysis

Based on the results shown in the above table, the LAUCHXL-F28027 and the TMDX28069USB

processors were better than the other options. Both systems use chips that come from the same line of

microprocessors but the development boards are different. We decided to go with the LAUCHXL-F28027

as it had the largest total and that it was cheaper than the TMDX28069USB.

37

Figure 13: LAUCHXL-F28027 development board

 After testing and debugging the LAUNCHXL-F28027 for several weeks on the receiver side, it was

determined that the onboard ADC was not taking samples in a predictable manner. It was imperative

that we could control the sampling rate in order for the receiver module to decode a message correctly.

To compensate for this problem, the decision was made to switch to an actual microcontroller whose

family the team was more familiar with, rather than to continue using the digital signal processing chip.

Although our value analysis indicated that the TMDX28069USB would have been our second choice, we

decided on the MSP430F5529 due to our familiarity and prior experience with the MSP430

microcontroller family.

For our purposes, the main significant difference between the MSP430F5529 and the

LAUNCHXL-F28027 is the sampling rate of the ADC. The MSP430F5529 microcontroller lists a sampling

rate of about 200 kbps, significantly less than that of the LAUNCHXL-F28027 sampling rate of 4.6 Mbps.

However, due to an adjustment in goals outlined in Chapter 4, this high sampling rate was no longer

necessary. Thus, we opted for a slower sampling ADC that had predictable functionality over a faster

sampling ADC that had unpredictable behavior.

2.5.2 Setting up Code Composer Studio to Run the DSP

In order to connect the LAUNCHXL-F28027 to the computer, the program Code Composer Studio

was used to debug and load code the DSP. When a project was created, a few settings were configured

so the computer could recognize the development kit. To configure the project to function with the DSP,

38

it was needed to navigate to the projects properties section. This was done by right clicking on the

project and going all the way down to properties. Once the properties menu was loaded, under the

general tab, there is a section called Connection. Next to Connection there is a drop down menu where

Texas Instruments XDS100 Integrated USB is selected. Above this is a section called variant. From this

drop-down menu, TMS320F28027 is selected.

After all the settings were configured in the properties menu, CCS needs to be connected to the

target device. To do this, you must navigate to the top Code Composer tabs and select Window. A drop

down menu will open, which is where you will select Show View. Once selected, another set of options

are presented. This is where Target Configuration is selected. When it is selected, a side panel will open,

and initially will only contain ‘Projects’ and ‘User Defined’ items. If you right click on ‘User Defined’, a set

of options will be given. The first option, New Target Configuration should be selected to create a new

target. When selected, a pop up menu will be shown to select the desired configurations. First, the

program will ask to name the configuration, and it is up to the user. In the new menu screen, there is a

section called Connection. This is the same as the ‘Connection’ item in the properties section and the

same value, Texas Instrument XDS100 Integrated USB, should be selected. Below ‘Connection’, there is a

section called ‘Board or Device’. There will also be a list present, which will contain different boards that

connect with the same connection. The list was navigated through to select Experimenter’s Kit – Piccolo

F28027. Once selected, navigate to ‘Save Connection’ and click the ‘save’ button.

Once the connection is set, it will be present in the ‘Target Configuration’ pane. To activate the

connection, it was required to right-click the connection and select ‘Launch Selected Configuration’.

Once configured correctly, it was required to navigate to Code Composer Studio’s taskbar and select

Run. There the ‘Connect Target’ option is selected to fully connect the board to the computer.

2.5.3 Pin Configuration

On the LAUCHXL-F28027 development kit, there are a total of 40 input and output pins. Some

pins are dedicated strictly for general purpose I/O pins, but some are configured to be inputs to the

ADC, or Pulse Width Modulation Outputs. The MSP430F5529 Launchpad also has an assortment of input

and output pins. Similar to LAUNCHXL-F28027, the MSP430F5529 has dedicated pins for its ADC inputs

and general purpose I/O pins. Below are tables that represent how both development boards’ pins are

configured.

39

Mux Value
J1 Pin

3 2 1 0

 +3.3V 1

 ADCINA6 2

TZ2 SDAA SCIRXDA GPIO28 3

TZ3 SCLA SCITXDA GPIO29 4

Rsvd Rsvd COMP2OUT GPIO34 5

 ADCINA4 6

 SCITXDA SPICLK GPIO18 7

 ADCINA2 8

 ADCINB2 9

 ADCINB4 10

J5 Pin
Mux Value

0 1 2 3

1 +5V

2 GND

3 ADCINA7

4 ADCINA3

5 ADCINA1

6 ADCINA0

7 ADCINB1

8 ADCINB3

9 ADCINB7

10 NC

40

Mux Value
J6 Pin

3 2 1 0

Rsvd Rsvd EPWM1A GPIO0 1

COMP1OUT Rsvd EPWM1B GPIO1 2

Rsvd Rsvd EPWM2A GPIO2 3

COMP2OUT Rsvd EPWM2B GPIO3 4

Rsvd Rsvd EPWM3A GPIO4 5

ECAP1 Rsvd EPWM3B GPIO5 6

TZ2/ADCSOCA Rsvd/EPWMSYNCI SPISIMOA/SDAA GPIO16/32 7

TZ3/ADCSOCB Rsvd/EPWMSYNCO SPISOMIA/SCLA GPIO17/33 8

NC 9

NC 10

J2 Pin
Mux Value

0 1 2 3

1 GND

2 GPIO19 SPISTEA SCIRXDA ECAP1

3 GPIO12 TZ1 SCITXDA Rsvd

4 NC

5 RESET#

6 GPIO16/32 SPISIMOA/SDAA Rsvd/EPWMSYNCI TZ2/ADCSOCA

7 GPIO17/33 SPISOMIA/SCLA Rsvd/EPWMSYNCO TZ3/ADCSOCB

8 GPIO6 EPWM4A EPWMSYNCI EPWMSYNCO

9 GPIO7 EPWM4B SCIRXDA Rsvd

10 ADCINB6

Table 12: Pin Layout for the LAUNCHXL-F28027, Provided by TI [12]

2.5.4 Configuring Transmitter and Receiver Pins

 The LAUNCHXL-F28027 was used on the transmitter side as an intermediate step to convert the

digital data of 1s and 0s to analog pulses, which would then be sent to the LEDs to transmit the

information. Once the data was converted to analog pulses, the signal was outputted from J6 pin 1. As

seen from the tables above, J6 pin 1 can be configured as a Pulse Width Modulation output. This was

done to be able to send out signals that continuously changed from high to low, depending on which bit

was being represented. Another pin that was used on the transmitter was a ground pin. With no

reference, the circuit would not function properly.

 The MSP430F5529 was configured for the receiver. The analog input coming from the

photodiode and gain stage was connected to the board’s ADC input pin. The P6.0 pin was used as the

41

input to the ADC. The ground pin was also connected to the analog ground to provide a ground

reference to the processor.

2.6 Digital Side of Transmitter
 The American Standard Code for Information Interchange (ASCII) is a character-encoding

scheme that is widely used in representing text when transmitting bits [13]. For our encoding scheme,

we used 7-bits and used an ASCII scheme containing the corresponding ASCII code for all 26 letters in

upper and lower cases, the code for the 10 Arabic numeral digits, as well as code for commonly used

symbols and spaces.

 For the transmission of text, we used a header bit sequence corresponding to the text “This is a

testThis is a test”, which contains 28 characters, representing 196 bits. This header sequence is

necessary in order for a receiver to know when the transmission of the message actually starts. The

initial test message being sent is “Hello World”, containing 11 characters, corresponding to 77 bits. This

message size remains fixed for various different messages. The target data rate was 1 Mbps, but for

testing purposes it has been significantly reduced to a measurable rate of < 1 kbps. Each bit that

represents the header and message will be held at the transmitter’s output for a given period. The

period can be calculated by the following equation:

 (

) (4)

 The parameter, EPW1_TIMER_TBPRD, is defined in the transmission code to alter the output

signal’s frequency. In order to get the transmission frequency of 1kHz, the parameter’s value needs to

be set to 10,000. From equation (4), the resulting period corresponds to 1ms when

EPW1_TIMER_TBPRD is equal to 10,000.

2.7 Digital Side of Receiver
 After the DSP obtains samples from the photodiode analog circuitry, the receiver needs to know

when the message sequence actually starts, as well as the determination of logic highs and logic lows

when the values acquired by the ADC of the DSP are discretized. Since the reference voltage of the 12-

bit ADC is 3.3 V, the corresponding voltage for each discretized value is the following relationship:

42

 (5)

Since there will be noise from the ambient light of the room, the logic low will not be right at 0

V. This value fluctuates, depending on the ambient light. In order to determine the threshold of low to

high, we experimentally determined the range of discretized values using the watch window of the IDE

Code Composer Studio, and select roughly the median as the threshold voltage. Values higher than this

threshold are considered logic high, and values below the threshold are considered logic low.

2.7.1 Determining when Data is Being Transmitted

 In any communication system, the transmitter and receiver are not constantly transmitting.

When no transmission is being sent, both the transmitter and receiver are in an idle state. Once the

transmitter finishes outputting all the necessary information, the output voltage will be set to zero to

keep the LEDs off. The receiver should stay in the idle state until it determines that information is being

sent, which it then will go into receive mode and store information into memory. One way to determine

if any data is being transmitted is to look at the incoming energy levels. The receiver will perform a

moving average by constantly sampling the incoming signal and storing a certain amount of samples into

an array. The values in the array are then averaged and compared to a threshold. If the value is above

the threshold, then the receiver believes data is being transmitted and starts storing the data into

memory until the average goes below the threshold. When all the data is collected, the data will then be

outputted to a file to be used in MATLAB to locate where the data is located and to decode it back into

ASCII text.

 Once all the data is collected, it is possible to use a break point to output the stored data values

to a file. Normally, break points are used to halt the code at a certain line of code. However, Code

Composer Studio allows the user to change the actions of the break points. By accessing the break

point’s properties, there is a parameter called Actions. Under this parameter, there is an option to save

data to a file. A few options arise once this option is selected. The first is called file and it determines

where the desired file to store information is located. The next option is format which determines which

data type the data will be stored. For this project, the integer data type was used. After the format

option is the start address option. The start address option allows the user to specify where the first

data point is stored in the memory. The final option is length which can be adjusted depending on how

many data points need to be exported. Figures 34 and 35 in Appendix D represent the break point

properties menu.

43

2.7.2 Decoding Data

2.7.2.1 MATLAB functionality

 Once the receiver determines that data is being transmitted, it will store the sampled values

from the ADC into flash memory. Since the message’s length in known, the transmitter will collect the

given amount of samples until the entire message was sent. As mentioned earlier, once all the data is

collected, the stored information is extracted to a text file. Once the data is in the text file, a MATLAB

script can be executed to decode what message was sent.

 The MATLAB function, importData(), can retrieve information from a text file and store the data

in an array. The collected data from the MSP430F5529 is a representation of what was sent from the

transmitter however it is not exact. Due to surrounding ambient light, there is a noise level that has

been added as a constant DC voltage to the received signal. This DC voltage can be considered as some

type of threshold. To get the data back to zeroes and ones, the collected data must be compared to a

set threshold. If the value is higher than the threshold, the sample will be considered a representation of

a one bit. If lower than the threshold, the value will be considered a zero. For this to function properly,

the amplitude from high to low in the incoming signal needs to be sufficient enough so that samples will

not be misinterpreted. When testing, the threshold was determined by adding half the amplitude to the

lower voltage level. Using a ‘for’ loop, the collected data was compared to the threshold and a new

array was created that contained only ones and zeroes.

 The data still needed to be processed further because the ADC was taking multiple samples per

bit. Here a form of down sampling must occur to only have one sample per bit. Since the ADC was not

consistent in sampling each bit, downsampling was done by a frame by frame basis. A few parameters,

old_start, start, old_stop, and stop, were used to keep track of when the received data changed from a

zero to a one and vice versa. The entire data was shifted through using a ‘for’ loop. In the loop, the most

current sample is compared to its previous and next sample. If the values were not the same, the

parameters, start and stop, stored the location of the sample. The other parameters, old_start and

old_stop, take on the previous starting and stopping indices.

After the indices are calculated, an ‘if’ statement is used that determines if old_start is not equal

to start and if old_stop is not equal to stop. If the statement was true, the section of the received data

between start and stop is extracted. The extracted data’s length is calculated using the MATLAB function

length() to determine the number of samples that were present in the data. Another if statement is used

to determine if the number of samples in the section is greater than 6. Since it was known that the ADC

44

will produce either 6 or 7 samples per bit, the extracted data’s length was divided by 7. The MATLAB

function, ceil(), rounds this quotient to the next highest integer number.

The function was needed to determine the number of bits present in the selected window. For

example, if the window’s length was 19, when divided by 7, the quotient is approximately 2.71. The ceil

function would then round up the number to 3. If the number of samples is 19, it most likely means that

two bits were sampled 6 times and one was sampled 7 times. Once the number of bits that the window

represents is calculated, an array the size of the number of bits is created. The first value from the

window is then stored in the array because all the values in the window have the same value. The array

containing the down sampled version of the window is then added to an array that contains the

previous down sampling results.

 Once the data has been down sampled, the starting bit location needs to be determined to

extract the sent message. Since it is known that the sent message contained the phrase “This is a test”,

there is a known bit sequence in the data that can be used. To locate where the known sequence is, the

xcorr function in MATLAB was used. The function xcorr can be used to correlate two sequences

together. The function was used to correlate the received data with the known bit sequence. The

correlated output sequence will have a maximum point when the known sequence is overlapping itself

in the data. Once the data was correlated, the find function was used to locate the maximum point. In

the bit sequence that represents the header phrase, there is a total of 45 one’s. The find function was

used to determine the points that had a values greater than or equal to 45. Once the index for the start

of the header is located, the length of the header plus one must be added to determine the starting

index for the received message.

 Once the starting index of the message was found, it became possible to extract the entire

message bit sequence because the number of characters sent is known. In the case of sending the test

message “Hello world”, there is a total of 11 characters. The ASCII coding takes each character and

converts it into seven bit sequences. That means there is a total of 77 bits that correspond to the

transmitted message. Knowing these two parameters allows for the extraction of the bits that represent

the message. Once the data is extracted, the MATLAB function created in a prior course, bin2text(), was

used to convert the data back into ASCII characters.

45

2.7.2.2 Testing MATLAB functionality

 Before testing with data collected from the receiver, another MATLAB script was created that

would mimic the received data from the receiver. A random data vector of zeros and ones, called data,

was created to model any random bits that may have been collected from the receiver. This was done

by using the MATLAB functions, rand and round. The function rand is a uniformly distributed number

generator of values between zero and one. The round function takes those randomly distributed values

and rounds them to a zero or one. The header, “This is a big testThis is a big test”, and message, “Hello

world”, were converted into their binary representation using the text2bin function.

The binary data out of text2bin needed to be upsampled to model the sampled received data

from the receiver. A for loop was used to go through each bit and upsample it by either a 6 or 7. The

rand function was used again with some other functions to produce either a 6 or a 7. Depending on

which number was selected, a vector was created that contained either 6 or 7 values of the most recent

bit from the binary data. The vector was then concatenated to another vector that contained the

previous vectors from the loop’s process. Once the data was upsampled, it was placed into the randomly

generated data vector. This vector was then used with the decoding MATLAB script to determine if the

output message would be the message, “Hello world”.

46

Chapter 3: Product Results
 This section will describe our test results, as well as what was actually achieved with our

implementation. Firstly, we will discuss our results from the analog circuitry from the transmitter and

receiver. The received analog signal after the voltage gain stage at the receiver was monitored to

determine what was being sent to the microprocessor. The transmitter was slowly distanced from the

receiver to determine the transmission distance. By displaying the received signal on an oscilloscope, it

was possible to determine when the transmitter had no effect on received signal.

3.1 Analog Results
To test that the receiver functioned properly, an LED was connected to the amplifier’s output. In

this test, two photodiodes were tested; the SFH203P and the SFH229. The first experiment performed

was to test if the receiver can recognize a change in light from the receiver. To do this, a manual switch

was used to turn the transmitters’ LEDs on and off. While this occurred, the LED on the receiver was

observed to determine if a change in its status occurred. Initially, LED would remain on, even when the

receiver was turned off. It was then determined that the photodiode was absorbing light from the

ambient light that was lighting the room. To verify this hypothesis, the lights in the room were turned

off and, as expected, the receiver LEDs shut off accordingly. The experiment was then repeated with the

room lights off, resulting in the receiver’s LED to turn on when the transmitter turned on.

Once the receiver’s LED was switched on by manually turning the transmitter on, the function

generator was added to the transmitter to supply a square wave. Initially, the square wave’s frequency

was set to 10 Hz to determine that the LEDs were in fact constantly turning on and off. Again in a dark

room, the receiver’s LED flickered. Once it was determined that the receiver could recognize the

transmitter, the distance between the two systems was increased until the receiver was no longer able

to recognize the transmitter. With seven LEDs on the transmitter, the maximum distance for

transmission was measured to be 39.5 cm.

Through experimentation, it was observed that the receiver recognized the transmitter better

when the photodiodes were pointed directly to the transmitter’s LEDs. This is due to the photodiode’s

low angle of visibility. The two photodiodes that were tested, the SFH229 and the SFH203P, have a half

angle lumination detection of ±17: and ±75: respectively. While both photodiodes have similar

47

specifications, the SFH203P functioned better due to its higher half angle. Because of this, the SFH203P

photodiode was used when collecting measurements.

When the room was lighted, the added light would cause the photodiode to emit a constant

current, which resulted in a DC threshold voltage at the amplifier’s output. The constant voltage was

enough to power the LED at the receiver. Knowing that there is a constant DC voltage, when the

received signal enters the microcontroller to be sampled, some programming must be done by setting

the DC threshold.

After determining that the receiver could recognize the transmitter, the amplifier’s output was

measured using an oscilloscope. Initially, the transmitter was set to transmit a square wave with a

frequency of 10Hz. The following figure represents the receiver’s output from the amplifier when the

transmitters’ LEDs were emitting light.

Figure 14: Square wave output measured by the receiver

The receiver was able to recreate the square wave that the transmitter sent. However, even

after the amplification from the amplifier, the distance from high to low was only 80 mV. Also, the signal

contained some noise, but not enough to cause the square wave signal to become indistinguishable. To

get a more accurate square wave output, it was decided to replace the 1 MΩ resistor with a 5.1 MΩ

resistor. The following figure represents the receiver’s output when the transmitter was 27.5 cm away

from the receiver.

48

Figure 15: Receiver output with 5.1MΩ resistor

The receiver’s output continued to contain some noise, but the square wave was still

distinguishable. Because of a higher resistor, the amplifier contained a higher gain, thus increasing the

square wave’s amplitude. The square wave’s amplitude was measured to be 960 mV, which is much

higher than the 80 mV amplitude from before.

After the square wave was found, the distance between the transmitter and receiver was

increased until the square wave was no longer distinguishable. The following figure represents the

receiver’s output when the distance between the two systems was 66 cm.

Figure 16: Max Distance when square wave is undistinguishable

49

From the above figure, the amount of noise present would make it difficult for the

microprocessor to determine the appropriate ones and zeros. The distance measured is very close to the

distance goal of 1 m we set for the prototype. One way to fix the change would be to increase the

number of LEDs at the transmitter. Since we did not have enough LEDs at the time, but had many

photodiodes, photodiodes were placed in parallel at the receiver end. On top of adding more

photodiodes, the amount of gain was adjusted from the amplifier to determine the best design. The first

adjustment we made was using two SFH203P photodiodes along with a 505 kΩ resistor. The following

figure represents the receiver’s output when the adjustments were made.

Figure 17: Receiver's output with two photodiodes and 505kΩ resistor

The receiver’s output had a smaller amplitude than before, which was expected because the

gain was reduced. On top of that, there was much more noise when an extra photodiode was used. The

resistor was changed to a 3.24 MΩ resistor, but the output had more noise than the initial test. Its

amplitude was also smaller, about 100 mV. Because of this, we decided to use the 5.1 MΩ resistor with

only one photodiode.

After determining which circuit configuration functioned better, the frequency at the

transmitter was increased. When the frequency was increased to 3.2 kHz, the receiver’s output

contained some ringing. The following figure represents the ringing observed at the output.

50

Figure 18: Ringing observed at the receiver's output

While some ringing was present, it was not enough to keep the square wave from being

distinguishable. The frequency was increased more until the square wave could not be seen at the

output. The following figure represents the receiver’s output when the transmission frequency was set

to 6 kHz.

Figure 19: Noisy Receiver Output

51

Because the receiver’s output contained a large amount of noise, which hindered the maximum

frequency possible to transmit, a 10 pF capacitor was placed in parallel with the resistor. The following

figure represents the new receiver circuit schematic.

Figure 20: Receiver Schematic with capacitor

The capacitor helped eliminate the noise at the receiver’s output, but there was a slight rise

time that occurred by the RC time constant. The following figure represents the receiver’s output when

a capacitor was added.

52

Figure 21: Receiver's output with a capacitor

Given that a 5.1MΩ resistor and a 10pF resistor were used in the circuit, the RC rise time was calculated

to be:

 (6)

Since it took 51 µs to rise from low to high, if the transmitter would operate at a frequency

higher than 20 kHz, the receiver would not be able to keep up with the transmitted data. Since 20 kHz is

much smaller than our goal of at least 1MHz, we initially decided to look at other options to improve our

transmission rate such as using a different op-amp with a higher unity-gain frequency.

3.2 Microcontrollers
 In this section, we will discuss how the microcontrollers interact with the computer and analog

circuitry for both the transmitter and receiver. On the transmitter side, the microcontroller is mainly

used to convert binary values to an analog signal to drive LEDs. The microcontroller’s output was

monitored by an oscilloscope to get a better understanding of how the LEDs are being driven. The

microcontroller on the receiver side receives an analog signal and quantizes it to retrieve the sent

information. We will also discuss how the ADC was used to take the input analog signal and convert it

into values of ones and zeroes. Once the discrete values were calculated, the start of the message must

be located to convert the bits back into the transmitted information.

53

3.2.1 Transmitter

To test the functionality of the LAUNCHXL-F28027, bit values were first hardcoded into the

board. Standard test values used were alternating 1s and 0s, and then the bit sequence 1000.

Figure 22: Output of Transmitter with Frequency of ~400 kHz

Figure 23: Transmitter Outputting 1000

The frequency of the transmitted bits is controlled by the sample epwm_up_aq code provided

by TI. The values for EPWM1_TIMER_TBPRD and EPWM1_MAX_CMPA were altered to change the

54

frequency of the pulses. Using values of 10 for each, a frequency of approximately 900 kHz was

achieved. Since the board uses a reference voltage of 3.3, the output is a 0-3.3 V square pulse.

Once we created a bit scheme from the ASCII conversions of commonly used characters (see

Appendix B), we were able to send a stream of varying bits, based on the message being sent. The bits

being sent in Figure 24 correspond to a header of ‘Th’ and a message of ‘z’, and is being sent

continuously. Eventually, the header being sent will correspond to the sequence “This is a big testThis is

a big test” and the message will be “Hello World”, or other 11-character text sequences.

Figure 24: Transmitted Bit Scheme from ASCII Conversion

In order to observe that the transmitter was actually transmitting the bit sequence that

corresponds to ‘This is a big testThis is a big testHello World’, the transmission frequency was lowered

to a frequency of 1 Hz to observe when the LEDs were on and off, since the human eye can distinguish

whether flickering lights are on or off for frequencies up to around 20 Hz. With such a long sequence, it

was easier to time the blinking and determine if the transmitter was operating as expected using human

observation rather than the oscilloscope, as an oscilloscope has a limited data viewing window.

 When adjusting our transmission frequencies, equation (4) provides a fairly accurate estimate of

our transmitted bit symbol period, although it is not extremely precise. Thus, we also tweaked the value

of EPW1_TIMER_TBPRD slightly and measured the symbol period with the scope in order to set the

symbol period to exactly what was desired.

After significant issues with the programming of the microcontroller for the receiver, our goals

were modified to be more feasible, given the unexpected complications. Although we could ensure

approximately 1 MHz transmission rates on the transmitter side, which met our original goal of

55

transmitting on the rate of 1 MHz, we could not fully handle this high rate on the receiver side. The

analog circuitry was able to process this quickly, but due to the ADC sampling rate issues described in

Section 3.2.2 Receiver and Section 4.1 Digital Issues, we decided to lower our transmission rate to 1 kHz

in conjunction with our new microcontroller, the MSP430-F5529. This 1 kHz transmission frequency

worked well for initial testing with the new microcontroller; however, as we built upon the receiver, it

was again necessary to lower the transmission frequency again to 500 Hz, for reasons outlined in Section

3.2.2 Receiver.

3.2.2 Receiver

 Figure 25 illustrates the output from the analog portion of the receiver, prior to the signal

entering the ADC.

Figure 25: Analog Output of Receiver

The bit sequence can be seen to match the sequence being transmitted. There is a bit of ringing

that occurs, due to the noise from the ambient light. The noise also affects the high and low voltages.

Instead of a 0 V low, the lower voltage will vary depending on the amount of noise in the room. The

upper voltage can also vary depending on the transmitter’s signal strength. If this is the case, the

amplitude between the high and low voltages will diminish.

The original chip used for the digital processing of the receiver signal was the LAUNCHXL-

F28027. From testing, typical voltages that we have dealt with are around 2.2 V for logic low, and 3.3 V

56

for logic high. Initially for testing purposes, we used the General Purpose Input/Output (GPIO) pins to

display what was being detected by the microcontroller from the analog receiver block. In order for the

microcontroller to distinguish between a logic high and a logic low, a threshold voltage was needed. We

set this threshold voltage to be approximately the average of this range of voltages, 2.7 V. To calculate

the corresponding quantization level for a certain voltage level, the equation 5 was used, resulting in a

value of 3351. For our finalized design, the method of obtaining the threshold was simply to take the

average of the quantized values from the ADC.

The initial plan was to store each sample from the ADC in an array. Then, these samples could be

processed in several ways in order to produce a decoded message for the computer. One such plan was

to take the samples from the ADC now stored in an array, correlate with a known sequence,

downsample the ADC samples, and decode these samples in a similar fashion as we had originally

encoded them on the transmitter side. Several issues arose from this implantation that we did not

foresee.

 First, memory with the board was an issue. When attempting to store any more than roughly

1000 samples, Code Composer Studio would allow compilation of the code, but would not allow

execution of the code. CCS did not specifically indicate that memory was the issue, and simply gave an

error that was not very intuitive in distinguishing the source of the problem. Since the error occurred

upon execution rather than upon compilation, the only reasonable conclusion was that the issue was

with hardware constraints rather than software constraints. When the size of the array was decreased

to around 600-700 samples, the code had no issue executing. Regardless, these sized arrays were not

nearly enough to store, process, and decode a reasonably length header and message from our

transmitter. Our header, “This is a big testThis is a big test”, is 36 characters long, which would

correspond to an ASCII bit sequence of 252 bits (7 bits per character). The message to be sent, “Hello

World”, eleven characters long, is a bit sequence of 77 bits, for a total of 329 bits. It was necessary to

send sample each of these bits several times (ideally, at least 10) to ensure accuracy; thus, if we only

had around 700 samples to work with, we could only sample each bit roughly 4 times, which is

undesirable. Since these samples used most of the resources available on the LAUNCHXL-F28027, it

would then be impossible to correlate, downsample, and decode the samples on the board as well.

 Secondly, the sampling frequency was not operating as we expected. When transmitting at

extremely low frequencies of less than 500 Hz, we were able to sample the signal from the analog

receiver module relatively accurately, as well as output this signal using the GPIO pins on the board.

57

When the transmission frequency was increased, the output frequency of the signal from the GPIO pins

did not increase proportionally. In fact, the receiver output frequencies would cycle between 100-400

Hz as we increased the transmission frequency. It was assumed that the GPIO pins were not

programmed in such a fashion that could output the samples quickly enough. Since this was not a critical

part of the system, rather than using the GPIO pins to output the samples, the watch window in Code

Composer Studio was utilized instead to observe proper functionality of the ADC.

 The switch to troubleshooting via watch window, although an improvement in being able to

measure and observe functionality, was not a cureall for the issues regarding the ADC. At frequencies on

the order of 100 kHz or higher, we would observe an uneven number of ADC samples per bit. This

occurring once every 200 samples or so would not be a significant issue, but this occurred at least once

every 10 samples or so, resulting in undecipherable data. The frequency was lowered until it was

observed that there was roughly the same number of samples per bit for an extended number of

samples, after roughly 200 samples. The test inputs were square waves from the function generator

with a 50% duty cycle. When these square waves were at frequencies of 20 kHz and 10 kHz, the ADC was

mostly accurate except with a few blips. Unfortunately, we did not figure out a way to completely

control the sampling frequency of the ADC, which was a significant handicap to the correct operation of

the LAUNCHXL-F28027 as our digital receiver.

 With these issues, two alternative courses of actions were proposed. First, to address the

memory issue of the LAUNCHXL-F28027, the data could be exported to the computer, and MATLAB

could be used to process the data with correlation, down sampling, and decoding to output the

originally transmitted message. Alternatively, to address both the ADC sampling frequency issue as well

as the memory issue, a MSP430 microcontroller could be used for the ADC. There are several pros to

switching to an MSP430 microcontroller. In general, microcontrollers have more memory than digital

signal processing chips. If there is still not enough memory on the microcontroller, then the data could

still be migrated from the board to the computer for processing with MATLAB. In addition to having

more memory, the team is more familiar with the MSP430 microcontroller family, making it significantly

easier to control the sampling frequency.

 It was decided to switch to the MSP430F5529 LaunchPad Evaluation Kit. The ADC sampling

frequency was controlled by using a combination of the interrupt service routines and controlling the

timers. Using the SMCLK frequency of 1.04 MHz for the timer, a counter is set to count to a value of 52

before an interrupt occurs, which corresponds to the maximum ADC sampling frequency of the

58

MSP430F5529, 200 kHz. After testing several transmission frequencies with our ADC, 1 kHz seemed to

produce the best results, with a consistent 6 samples per bit for over 150 samples.

 The memory allocation is configured differently on the MSP430F5529 than the LAUNCHXL-

F28027. With the LAUNCHXL-F28027, the flash memory could be easily accessed and written into by

simply switching an option in Code Composer Studio prior to building the code. In the MSP430F5529,

specific lines writing into the flash needed to be included in the interrupt service routine. However, the

only way we were able to make this operational was by combining our ADC interrupt service routine as

well as the routine to write to flash into the timer interrupt. This expansion of the interrupt service

routine slowed down our system tremendously. Although able to print the values on the console of

Code Composer Studio, the ADC now was only able to output 3 samples per bit rather than 6 samples

per bit at a transmission rate of 1 kHz. Our next alternative was to decrease the transmission frequency

further, although this alternative is not ideal.

3.2.3 Decoding the Received Signal

The received analog signal was sampled to provide a certain number of samples per bit. Once

the receiver data samples were received, the values are pulled from the memory of the MSP430-F5529

through the use of breakpoints, and stored into a .txt file so that correlation can occur through the use

of the MATLAB function “xcorr”. The function, xcorr, requires the two input signals to have the same

number of samples. If they do not have the same length, the smaller signal is padded with zeroes to

match the length of the larger signal. The resulting correlated signal has a length of 2N-1, where N is the

length or the larger input signal. The correlated signals values can be represented by the following

equation:

 ∑

 (7)

 Similar to the calculation of correlation, the two signals are multiplied together and then added

together. One of the input signals is conjugated and is shifted down one bit every time m increases.

When correlating, the received data is correlated with the corresponding ASCII bit header sequence for

“This is a big testThis is a big test”. Correlation allows for the determination of the start of the

transmitted message, as the output value of the correlation operation will be at its maximum at a

certain index. By correlating our transmitted bit sequence by our header bit sequence, the result will be

at its maximum at the start of the header.

59

After the start of the message is determined, the transmitted sequence, which is predefined in

length, is downsampled by the same oversampled factor of the ADC, currently 6. These values, still

quantized by the microcontroller ADC, are then converted into 0s and 1s by setting all values above a

certain threshold to 1, and all values below a certain threshold to 0. For our purposes, this threshold was

approximately 3351. The message was then ready to decode using a MATLAB script from previous

coursework, ‘bin2text’, which converts ASCII bit sequences to characters, and will display the decoded

transmitted message on the MATLAB console.

60

Chapter 4: Failure, Hazard Analysis, Limitations, and Future

Improvements
Several issues occurred along the way of our design and implementation, causing many of our

initial goals to change and adjustments were made accordingly to meet deadlines and absolutely

necessary functional requirements. These ranged from power issues on the analog transmission side of

the system, to digital issues on the digital receiver side of the system.

Our final system met several, but not all, of our initial design goals. While the system is

operational, it is able to transmit text at a transmission frequency of 500 Hz at a transmission distance of

roughly 25 cm without the implementation of our power source. Certainly, these achieved goals leave

much room for improvement and extensions.

4.1 Digital Issues

There have been many issues with the programming of the C2000 Launchpad evaluation kits. TI

has several versions of example code that may not be the most up-to-date set of files, which caused

compilation errors, initialization errors, etc. Often times to circumvent this issue, it was necessary to re-

download sets of files on different computers to achieve for any sort of functionality.

Code Composer Studio, the integrated development environment (IDE) used to program our

boards would frequently have issues reading files or would not compile due to errors, but not display

what the error was. One major problem was an unresolvable error that occurred consistently on line 18

of our code no matter the fix we tried. The line was commented out and the code would not compile

even though it had no significance on the functionality of the code. Many times, restarting the IDE

solved the issue, but sometimes a complete reinstallation was necessary.

Another problem in using the C2000 board we selected for our prototype was determining the

sampling rate of the ADC as there is no simple way to specify this value. In order to set this value there

had to be calculations done using different parts of the MCU to specify an approximate sampling rate.

While testing, the output waveform from the ADC would not stay constant for various values of the

transmitter frequency.

61

4.2 Analog Issues

4.2.1 LED Brightness

 The original LEDs that were chosen and implemented in the prototype proved to be too dim to

achieve a transmission distance of more than 20 cm. The initial goal of the design was be able to

transmit data at a distance of at least one meter using solely visible light. In an attempt to achieve this

goal, further research and value analysis on LEDs was conducted in hopes of finding brighter LEDs that

fit the same specifications of the previous LEDs. The value analysis on LEDs can be found, and is

explained more in-depth, in Section 2.3.1.1 LEDs.

 Once the brighter LEDs were placed into the circuit the measurement was taken again to see if

the transmission distance had improved as expected. The distance, however, did not improve by more

than 10 cm. The LEDs were not receiving enough current from the MCU output to reach their brightest

potential. In order to remedy this problem a Power MOSFET device was added with the purpose of

supplying enough current to the LEDs, but only when the transmitted signal is ‘on’ or logic high. This

ensures that the LEDs will only flash and activate the photodiodes when desired.

4.2.2 MOSFET Limitations

One version of our design involved using a MOSFET to increase the signal strength from the

MCU that powered the LEDs on the transmitter end of the circuit. Our initial design is depicted below in

Figure 26 but was quickly changed over to Figure 27 upon further investigation of how the MOSFET

drain current works. In the first design the LEDs are connected in series with the drain of the MOSFET in

an attempt to take the current from the MOSFET and power the LEDs when the device is on. However,

being connected in series, the LEDs had no ground reference which made current flow impossible. After

testing this in the lab, the design was quickly altered to that of the second picture to ensure the drain

current flows through the LEDs as intended.

62

Figure 26: Original MOSFET Design Interfacing MCU Output and LEDs

Figure 27: Updated MOSFET Design Interfacing MCU Output and LEDs

 Another design fault was the lack of knowledge of using a MOSFET in a power application. Since

the MOSFET is switching on and off at a high speed and has a high input capacitance, the logic output of

the MCU does not supply enough current to charge the MOSFET gate fast enough. In order to bypass

this problem, a Gate Driver was required to interface the two devices. This Gate Driver generates the

current necessary to turn MOSFETs on and off from the input logic of a DSP or microcontroller. A lack of

experience with MOSFETs in power applications was the cause of this problem and resulted in an

inappropriate MOSFET for the design burning out during testing. When looking for a suitable Gate Driver

it was found that the most of the devices available were surface mount which is not compatible with our

design. Later in the design process, it was found the MOSFET had heating issues that caused failure in

one of our boards so the MOSFET was excluded from the final design.

63

4.3 Future Improvements

4.3.1 Digital Improvements

 Throughout the entire project, many of the issues that arose were from the digital components,

the microprocessors. As mentioned earlier, it was needed to switch from the C2000 processor to the

MSP430F5529 processor at the receiver because there were issues regarding sampling with the ADC on

the C2000. The MSP430F5529 was a quick fix to the problem because it was familiar and available at the

time of consideration. However, because its sampling rate is rather slow, it is not the best option for

communication systems. In this section, we discuss other digital options such as FPGAs, and other digital

signal processing chips.

4.3.1.1 FPGAs

 A Field-Programmable Gate Array, or FPGA for short, is an integrated circuit that contains a large

resource of logic gates and memory to implement digital computations. It is possible to customize the

logic through a hardware description language such as Verilog. With an FPGA, it is possible to have

parallel executions. This would allow the ADC to sample the incoming data without affecting any other

process. Another process could take the data from the ADC and perform a spectral energy computation

or even decoding the samples back into ASCII text.

 FPGAs are also better suited for high frequency signals because the combinational logic inside

the integrated chip typically can run as fast as the built in clock on the FPGA. In most cases, an FPGA’s

internal clock can be as high as 100MHz or higher. With the high frequency operation, it would be

possible to achieve a higher transmission rate as long as the ADC that is used can sample fast enough. It

is possible to choose which ADC can be used because the ADC can be an external module that will be

interfaced with the rest of the FPGA development board.

 Unlike a FPGA, a microcontroller performs its functionality sequentially. Since the

microcontroller’s ADC functions through interrupts, the time the interrupt takes to finish its process can

have an effect on how fast data can be processed. In order to get a faster sampling rate, the number of

computations in the interrupt needs to be done within as little processing cycles as possible or a faster

processor may be needed.

 While a FPGA may have been a better option than a microcontroller, there were a few major

factors that deterred us from choosing one for the digital design of the transmitter and receiver. One

factor was price. FPGA development boards tend to be very expensive. For example, The Xilinx NEXYS 3

64

development board costs a total of about $175. Given our limited budget, buying two boards would not

have left any money for the analog components. The other factor was familiarity. At the time of

choosing how to design the digital components for the project, the entire team was more familiar with

using processors than FPGAs.

4.3.1.2 Better Processing Chips

 When determining the initial microprocessors to use, the deciding factor to use the C2000

boards was their high sampling rate ADCs. Unfortunately, there were many issues that arose when using

the board’s ADC which is why it was discarded on the receiver side. Due to the limiting time, the

MSP430F5529 was chosen to replace the C2000. While the MSP430F5529 may have not been the best

option for the Visible Communication System, it was a quick fix to produce a working prototype.

 If a microprocessor is going to be considered again for future Visible Communication Systems,

there are a few factors that should be considered before selecting the specific chip. The first factor is the

ADCs sampling rate. Without a fast sampling rate, the entire systems transmission’s rate will be limited

by the ADC. The second factor would be available sample code. One issue that arose with the C2000 was

its lack of working sample code. By having sample code, it is much easier to design code for projects

because there are models such as how to set an ADC to produce samples. The third factor is memory

and processing speed. Without memory, it would be impossible to store the sampled data from the

ADC. With a small amount of memory, the number of bits that can be transmitted at a time is limited

because the memory has been filled. On top of having a sufficient amount of memory, it is ideal to have

a fast processing processor. In order to decode the received message, the instructions to decode the

received samples must run within a certain amount of samples that is not larger than the ADC’s

sampling rate. If it takes too long to initiate instructions, it could affect how fast the ADC is actually

sampling. Since most ADCs operate using interrupts, if the interrupt takes longer to process than the

ADC’s sample period, the function is not operating in real time and can cause the receiver to not

function properly.

4.3.1.3 Computer Interface

 One of the main components of a Visible Communication System is its interface with other

devices, such as computers or smartphones. A computer is an excellent source of interfacing the

prototype system because the software that is used to program the digital side is a computer

application. Since the processor used did not have enough memory to process the incoming data, the

data had to be transferred to the computer to be processed in MATLAB. While it would have been

65

better to process the data on the chip itself, there still needs to be a way to transfer the data to the

computer. Due to the many issues that arose with transferring data to the computer, one short term fix

was to export the collected ADC samples through CCS’s console. Once on the console, it would be

possible to copy the information to a file to be later processed by MATLAB. To make the system function

better, it would be better to have the data exported instantaneously to a file. While attempting to

create an instantaneous process, one source that was looked at was the MSP430f5529’s sample code,

emulStorageKeyboard.c.

 The program was able to output data to a file depending on which button on the development

board was pressed. We attempted to modify the code to run with the ADC interrupt to produce the data

that would be outputted. Also the data would have been outputted to the file once all the information

from the transmitter was received. Unfortunately, no progress was made with this approach. Because of

this, other methods of transmitting data was looked into.

 Another method that was looked into was the USB UART interface between the microcontroller

and computer. With the UART interface, it was possible to send the data to a hyper terminal once all the

information was received from the transmitter. A GUI interface could have then be used along with the

hyper terminal to send the data to a file and initiate MATLAB to process the information. With the

limited amount of time, it was decided to not pursue this option.

 Ultimately, it was possible to export the received data instantaneously to a file. A break point

was set in the code that would export the stored data in the flash to a specified file to be later used in

Matlab. The break points functionality was altered by changing its actions in its properties menu. A more

detailed description of how this was done can be found in Appendix D. Figures 34 and 35 represent

screen shots of how to access the properties menu and the menu itself.

At the moment, there is not a very user-friendly way of inputting a message on the transmitter

side to be sent to the receiver. Ideally, some sort of GUI can be implemented to send a text message,

and these individual characters can then be stored in an array to be transmitted, either through Matlab

or through Code Composer Studio.

In addition to transmitting just text, the system could be improved to transmit other forms of

data, including audio data, image data, or even video data. In the GUI, there could be an option to

upload the data from the computer, in order to process it. Of course, universal standards of encoding

and decoding these forms of data should be observed to ensure that not only the computer on the

66

transmitter side is able to contain the data to be transmitted, but also the computer on the receiver side

is able to read the data that is processed and received. To do this, common extensions such as .mp3 or

.wav could be used for audio, .jpeg or .bmp could be used for images, and .mp4 or .avi could be used for

videos.

Implementation of a network would allow multiple users to simultaneously transmit or receive

data. This could be done by using different colored LEDs to differentiate between users through filters,

or have some array of mirrors or other ways of redirecting the light to a node through various

positioning of transmitters and receivers.

67

References
[1] http://www.fcc.gov/what-we-do
[2] http://en.wikipedia.org/wiki/Mobile_phones_on_aircraft#The_debate_on_safety
[3] http://www.ece.iit.edu/~taher/dyspan11.pdf
[4] http://www.pwtc.eee.ntu.edu.sg/News/Documents/Spectrum%20survey%20in%20Singapore_

%20Occupancy%20measurements%20and%20analyses.pdf
[5] http://cognitive2011vtm.trackchair.com/
[6] http://www2.technologyreview.com/article/405522/cognitive-radio/
[7] http://www.bakom.admin.ch/dokumentation/zahlen/00545/00547/00554/index.html?lang=en

&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDdH18gGym162ep
Ybg2c_JjKbNoKSn6A--

[8] http://lasercommunications.weebly.com/index.html

[9] http://www.sahyadri.edu.in/e-journal/laser.pdf

[10]http://en.wikipedia.org/wiki/Fluorescent_lamp#Advantages
[11]http://csep10.phys.utk.edu/astr162/lect/light/spectrum.html
[12]TI C2000 ADC Datasheet: http://www.ti.com/lit/ug/spruge5f/spruge5f.pdf
[13]ASCII: http://en.wikipedia.org/wiki/ASCII

http://www.fcc.gov/what-we-do
http://en.wikipedia.org/wiki/Mobile_phones_on_aircraft#The_debate_on_safety
http://www.ece.iit.edu/~taher/dyspan11.pdf
http://www.pwtc.eee.ntu.edu.sg/News/Documents/Spectrum%20survey%20in%20Singapore_%20Occupancy%20measurements%20and%20analyses.pdf
http://www.pwtc.eee.ntu.edu.sg/News/Documents/Spectrum%20survey%20in%20Singapore_%20Occupancy%20measurements%20and%20analyses.pdf
http://cognitive2011vtm.trackchair.com/
http://www2.technologyreview.com/article/405522/cognitive-radio/
http://www.bakom.admin.ch/dokumentation/zahlen/00545/00547/00554/index.html?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDdH18gGym162epYbg2c_JjKbNoKSn6A--
http://www.bakom.admin.ch/dokumentation/zahlen/00545/00547/00554/index.html?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDdH18gGym162epYbg2c_JjKbNoKSn6A--
http://www.bakom.admin.ch/dokumentation/zahlen/00545/00547/00554/index.html?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDdH18gGym162epYbg2c_JjKbNoKSn6A--
http://lasercommunications.weebly.com/index.html
http://www.sahyadri.edu.in/e-journal/laser.pdf
http://en.wikipedia.org/wiki/Fluorescent_lamp#Advantages
http://csep10.phys.utk.edu/astr162/lect/light/spectrum.html
http://www.ti.com/lit/ug/spruge5f/spruge5f.pdf
http://en.wikipedia.org/wiki/ASCII

68

Appendices

A: Parts List

Manufacture # DigiKey # Quantity

MCP6022-I/P MCP6022-I/P-ND 3

LAUNCHXL-F28027 296-34797-ND 2

2482 2482K-ND 4

AD848JNZ AD848JNZ-ND 1

OPA698ID 296-15860-5-ND 1

MSP-EXP430F5529LN 296-36506-ND 1

LW514-BULK 897-1183-ND 30
Table 13: Parts from DigiKey

Part # Quantity

RL5-W18030: White LED 10 (0 used)

RL5-R12008: Red LED 10 (0 used)
Table 14: Parts from Super Bright LEDs

Manufacture # Mouser # Quantity

ZVN4206A 522-ZVN4206A 5 (1 used)
Table 15: Parts from Mouser

B: ASCII Table
! 033 0100001

" 034 0100010

035 0100011

$ 036 0100100

% 037 0100101

& 038 0100110

' 039 0100111

(040 0101000

) 041 0101001

* 042 0101010

+ 043 0101011

, 044 0101100

- 045 0101101

. 046 0101110

/ 047 0101111

0 048 0110000

1 049 0110001

2 050 0110010

3 051 0110011

4 052 0110100

5 053 0110101

6 054 0110110

7 055 0110111

8 056 0111000

9 057 0111001

: 058 0111010

69

; 059 0111011

< 060 0111100

= 061 0111101

> 062 0111110

? 063 0111111

@ 064 1000000

A 065 1000001

B 066 1000010

C 067 1000011

D 068 1000100

E 069 1000101

F 070 1000110

G 071 1000111

H 072 1001000

I 073 1001001

J 074 1001010

K 075 1001011

L 076 1001100

M 077 1001101

N 078 1001110

O 079 1001111

P 080 1010000

Q 081 1010001

R 082 1010010

S 083 1010011

T 084 1010100

U 085 1010101

V 086 1010110

W 087 1010111

X 088 1011000

Y 089 1011001

Z 090 1011010

[091 1011011

\ 092 1011100

] 093 1011101

^ 094 1011110

_ 095 1011111

` 096 1100000

a 097 1100001

b 098 1100010

c 099 1100011

d 100 1100100

e 101 1100101

f 102 1100110

g 103 1100111

h 104 1101000

i 105 1101001

j 106 1101010

k 107 1101011

l 108 1101100

70

m 109 1101101

n 110 1101110

o 111 1101111

p 112 1110000

q 113 1110001

r 114 1110010

s 115 1110011

t 116 1110100

u 117 1110101

v 118 1110110

w 119 1110111

x 120 1111000

y 121 1111001

z 122 1111010

{ 123 1111011

¦ 124 1111100

} 125 1111101

~ 126 1111110

C: Code

C.1 MATLAB Code

C.1.1 decoding.m

%Import the data collected from CCS
info = dir('receiverData.dat');
date = info.date;
begin = 0;
while begin ~= 1
 info = dir('receiverData.dat');
 date2 = info.date;
 if(strcmpi(date, date2) == 0)
 for i=1: 500000000
 end
 data = importdata('receiverData.dat', ' ', 1);
 A = data.data;
 begin = data.data(end);
 end
end

%Create the Header file to use for correlation
headString = 'This is a big test';%This is a big test';
header = text2bin(headString);

%Determine the threshold by taking the average of the received data
sum = 0;
for i=1:length(A)
 sum = sum + A(i);
end
threshold = sum/length(A);

%Convert the Voltage levels back to zeros and ones
for i=1:length(A)
 if(A(i) > threshold)

71

 A(i) = 1;
 else
 A(i) = 0;
 end
end

%Downsample the input data
down = 0;

%Look at the data frame by frame to see what was sent
%This is to compensate for having 6 samples instead of 7
old_start = 0;
start = 0;
old_stop = 0;
stop = 0;
count = 0;
for i = 2:length(A)-1
 if(A(i) ~= A(i-1))
 old_start = start;
 start = i;
 elseif (A(i) ~= A(i+1))
 old_stop = stop;
 stop = i;
 end

 if((old_start ~= start) && old_stop ~= stop)
 counter = length(A(start:stop));
 count = count + 1;
 if(counter >=5)
 val = A(start:stop);
 len = ceil(length(val)/6);%5.5); %/7
 bit = zeros(1,len);
 for j=1:length(bit)
 bit(j) = val(1);
 end
 down = [down bit];
 end
 end
end

down = down';

%Correlate with header 'This is a test', which has 47 ones
corr = xcorr(down,header);
maxCorr = max(corr);
ind = find(corr >= maxCorr);
startData = ind - length(down) + length(header) +1;

msg = down(startData:startData +76)';
bin2text(msg)

72

C.1.2 upSampleTest.m

% Create Header and Message and up sample it
% After that, set it into the random data
data = round(rand(2500,1));
headMsg = 'This is a big testThis is a big testHello world';
dataMsg = text2bin(headMsg)';
num = [6 7];
count = 0;
samp = 0;
%Upsample each bit up either 6 or 7
for i = 1: length(dataMsg)
 sel = num(1 + floor(rand()*length(num)));
 up = zeros(1, sel);
 for j = 1: length(up)
 up(j) = dataMsg(i);
 end
 samp = [samp up];
end
samp = samp';

%Remove the inital 0 from samp
upSamp = zeros(1, length(samp)-1);
for k =2:length(samp)
 upSamp(k-1) = samp(k);
end
upSamp = upSamp';

%Overwrite data with UpSamp starting at index = 100
start = 100;
for i=1:length(upSamp)
 data(start+i) = upSamp(i);
end

%Overwrite data with UpSamp starting at index = 1300
start = 1300;
for i=1:length(upSamp)
 data(start+i) = upSamp(i);
end

C.1.3 text2bin.m

% n=text2bin(textstring)
% transform text string into a vector of binary 0-1
function n=text2bin(textstring)
bintext=dec2bin(double(textstring)); % text into binary
[rp,cp]=size(bintext);
n=str2num(reshape(bintext',1,rp*cp)')';

C.1.4 bin2text.m

% ztext=bin2text(z)
% transform a vector of 7-bit binary 0-1 into a text string
function ztext=bin2text(z)

73

rp=floor(length(z)/7);
rez=num2str(z(1:7*rp)')';
ztext=char(bin2dec(reshape(rez,7,rp)'))';

C.2 C Code

C.2.1 Transmitter
#include "DSP28x_Project.h" // Device Header file and Examples Include

File

#include "f2802x_common/include/clk.h"
#include "f2802x_common/include/flash.h"
#include "f2802x_common/include/gpio.h"
#include "f2802x_common/include/pie.h"

#include "f2802x_common/include/pll.h"
#include "f2802x_common/include/pwm.h"
#include "f2802x_common/include/wdog.h"
#include "text2ASCII.h"
#include "msh.h"

typedef struct
{
 PWM_Handle myPwmHandle;
 uint16_t EPwm_CMPA_Direction;
 uint16_t EPwm_CMPB_Direction;

 uint16_t EPwmTimerIntCount;
 uint16_t EPwmMaxCMPA;
 uint16_t EPwmMinCMPA;
 uint16_t EPwmMaxCMPB;
 uint16_t EPwmMinCMPB;

}EPWM_INFO;

// Prototype statements for functions found within this file.
void InitEPwm1Example(void);
void InitEPwm2Example(void);
void InitEPwm3Example(void);
interrupt void epwm1_isr(void);

interrupt void epwm2_isr(void);
interrupt void epwm3_isr(void);
void update_compare(EPWM_INFO*);
void update2(EPWM_INFO*);
void text2data(char value);

// Global variables used in this example
EPWM_INFO epwm1_info;
EPWM_INFO epwm2_info;
EPWM_INFO epwm3_info;

// Configure the period for each timer
#define EPWM1_TIMER_TBPRD 10000 // Period register

#define EPWM1_MAX_CMPA 10000 // Actual period = val/10 us
#define EPWM1_MIN_CMPA 0
#define EPWM1_MAX_CMPB 1950
#define EPWM1_MIN_CMPB 50

//Definitions are not changed, are not used

74

#define EPWM2_TIMER_TBPRD 2000 // Period register
#define EPWM2_MAX_CMPA 1950
#define EPWM2_MIN_CMPA 50

#define EPWM2_MAX_CMPB 1950
#define EPWM2_MIN_CMPB 50

#define EPWM3_TIMER_TBPRD 2000 // Period register
#define EPWM3_MAX_CMPA 950
#define EPWM3_MIN_CMPA 50

#define EPWM3_MAX_CMPB 1950
#define EPWM3_MIN_CMPB 1050

#define LENGTHINBUFF 7

int inbuff[LENGTHINBUFF] = {0,0,0,0,0,0,0};
int counter = 7;
int index = 0;

int ii = 0;
int headerFlag = 1; //check to send the header file or data
int numHeader = 0; //in case we want to extend the header length, repeat
it a number of times

// To keep track of which way the compare value is moving
#define EPWM_CMP_UP 1

#define EPWM_CMP_DOWN 0

CLK_Handle myClk;
FLASH_Handle myFlash;
GPIO_Handle myGpio;
PIE_Handle myPie;
PWM_Handle myPwm1, myPwm2, myPwm3;

void main(void)
{
 CPU_Handle myCpu;
 PLL_Handle myPll;
 WDOG_Handle myWDog;

 // Initialize all the handles needed for this application
 myClk = CLK_init((void *)CLK_BASE_ADDR, sizeof(CLK_Obj));
 myCpu = CPU_init((void *)NULL, sizeof(CPU_Obj));
 myFlash = FLASH_init((void *)FLASH_BASE_ADDR, sizeof(FLASH_Obj));

 myGpio = GPIO_init((void *)GPIO_BASE_ADDR, sizeof(GPIO_Obj));
 myPie = PIE_init((void *)PIE_BASE_ADDR, sizeof(PIE_Obj));
 myPll = PLL_init((void *)PLL_BASE_ADDR, sizeof(PLL_Obj));
 myPwm1 = PWM_init((void *)PWM_ePWM1_BASE_ADDR, sizeof(PWM_Obj));
 myPwm2 = PWM_init((void *)PWM_ePWM2_BASE_ADDR, sizeof(PWM_Obj));

 myPwm3 = PWM_init((void *)PWM_ePWM3_BASE_ADDR, sizeof(PWM_Obj));
 myWDog = WDOG_init((void *)WDOG_BASE_ADDR, sizeof(WDOG_Obj));

 // Perform basic system initialization
 WDOG_disable(myWDog);

 CLK_enableAdcClock(myClk);
 (*Device_cal)();
 CLK_disableAdcClock(myClk);

75

 //Select the internal oscillator 1 as the clock source
 CLK_setOscSrc(myClk, CLK_OscSrc_Internal);

 // Setup the PLL for x12 /1 which will yield 120Mhz = 10Mhz * 12 / 1
 PLL_setup(myPll, PLL_Multiplier_12, PLL_DivideSelect_ClkIn_by_1);

 // Disable the PIE and all interrupts
 PIE_disable(myPie);

 PIE_disableAllInts(myPie);
 CPU_disableGlobalInts(myCpu);
 CPU_clearIntFlags(myCpu);

 // If running from flash copy RAM only functions to RAM
#ifdef _FLASH

 memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);
#endif

 // Initalize GPIO
 GPIO_setPullUp(myGpio, GPIO_Number_0, GPIO_PullUp_Disable);
 GPIO_setPullUp(myGpio, GPIO_Number_1, GPIO_PullUp_Disable);
 GPIO_setMode(myGpio, GPIO_Number_0, GPIO_0_Mode_EPWM1A);

 GPIO_setMode(myGpio, GPIO_Number_1, GPIO_1_Mode_EPWM1B);

 GPIO_setPullUp(myGpio, GPIO_Number_2, GPIO_PullUp_Disable);
 GPIO_setPullUp(myGpio, GPIO_Number_3, GPIO_PullUp_Disable);
 GPIO_setMode(myGpio, GPIO_Number_2, GPIO_2_Mode_EPWM2A);

 GPIO_setMode(myGpio, GPIO_Number_3, GPIO_3_Mode_EPWM2B);

 GPIO_setPullUp(myGpio, GPIO_Number_4, GPIO_PullUp_Disable);
 GPIO_setPullUp(myGpio, GPIO_Number_5, GPIO_PullUp_Disable);
 GPIO_setMode(myGpio, GPIO_Number_4, GPIO_4_Mode_EPWM3A);

 GPIO_setMode(myGpio, GPIO_Number_5, GPIO_5_Mode_EPWM3B);

 // Setup a debug vector table and enable the PIE
 PIE_setDebugIntVectorTable(myPie);
 PIE_enable(myPie);

 // Register interrupt handlers in the PIE vector table
 PIE_registerPieIntHandler(myPie, PIE_GroupNumber_3, PIE_SubGroupNumber_1,

(intVec_t)&epwm1_isr);
 PIE_registerPieIntHandler(myPie, PIE_GroupNumber_3, PIE_SubGroupNumber_2,

(intVec_t)&epwm2_isr);

 PIE_registerPieIntHandler(myPie, PIE_GroupNumber_3, PIE_SubGroupNumber_3,

(intVec_t)&epwm3_isr);

 CLK_disableTbClockSync(myClk);

 InitEPwm1Example();
 InitEPwm2Example();
 InitEPwm3Example();

 CLK_enableTbClockSync(myClk);

 // Enable CPU INT3 which is connected to EPWM1-3 INT:
 CPU_enableInt(myCpu, CPU_IntNumber_3);

76

 // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
 PIE_enablePwmInt(myPie, PWM_Number_1);
 PIE_enablePwmInt(myPie, PWM_Number_2);

 PIE_enablePwmInt(myPie, PWM_Number_3);

 // Enable global Interrupts and higher priority real-time debug events
 CPU_enableGlobalInts(myCpu);
 CPU_enableDebugInt(myCpu);

 for(;;) {
 asm(" NOP");

 }
}

interrupt void epwm1_isr(void)
{
 // Update the CMPA and CMPB values

 //update_compare(&epwm1_info);

 update2(&epwm1_info);

 // Clear INT flag for this timer
 PWM_clearIntFlag(myPwm1);

 // Acknowledge this interrupt to receive more interrupts from group 3
 PIE_clearInt(myPie, PIE_GroupNumber_3);

}

interrupt void epwm2_isr(void)

{

 // Update the CMPA and CMPB values
 update_compare(&epwm2_info);

 // Clear INT flag for this timer
 PWM_clearIntFlag(myPwm2);

 // Acknowledge this interrupt to receive more interrupts from group 3

 PIE_clearInt(myPie, PIE_GroupNumber_3);
}

interrupt void epwm3_isr(void)
{

 // Update the CMPA and CMPB values
 update_compare(&epwm3_info);

 // Clear INT flag for this timer
 PWM_clearIntFlag(myPwm3);

 // Acknowledge this interrupt to receive more interrupts from group 3
 PIE_clearInt(myPie, PIE_GroupNumber_3);
}

void InitEPwm1Example()

{

77

 CLK_enablePwmClock(myClk, PWM_Number_1);

 // Setup TBCLK

 PWM_setCounterMode(myPwm1, PWM_CounterMode_Up); // Count up
 PWM_setPeriod(myPwm1, EPWM1_TIMER_TBPRD); // Set timer

period
 PWM_disableCounterLoad(myPwm1); // Disable phase

loading

 PWM_setPhase(myPwm1, 0x0000); // Phase is 0
 PWM_setCount(myPwm1, 0x0000); // Clear counter
 PWM_setHighSpeedClkDiv(myPwm1, PWM_HspClkDiv_by_2); // Clock ratio to

SYSCLKOUT
 PWM_setClkDiv(myPwm1, PWM_ClkDiv_by_2);

 // Setup shadow register load on ZERO
 PWM_setShadowMode_CmpA(myPwm1, PWM_ShadowMode_Shadow);
 PWM_setShadowMode_CmpB(myPwm1, PWM_ShadowMode_Shadow);
 PWM_setLoadMode_CmpA(myPwm1, PWM_LoadMode_Zero);
 PWM_setLoadMode_CmpB(myPwm1, PWM_LoadMode_Zero);

 // Set Compare values

 PWM_setCmpA(myPwm1, EPWM1_MIN_CMPA); // Set compare A value
 PWM_setCmpB(myPwm1, EPWM1_MIN_CMPB); // Set Compare B value

 // Set actions
 PWM_setActionQual_Zero_PwmA(myPwm1, PWM_ActionQual_Set); //

Set PWM1A on Zero

 PWM_setActionQual_CntUp_CmpA_PwmA(myPwm1, PWM_ActionQual_Clear); //

Clear PWM1A on event A, up count

 PWM_setActionQual_Zero_PwmB(myPwm1, PWM_ActionQual_Set); //

Set PWM1B on Zero
 PWM_setActionQual_CntUp_CmpB_PwmB(myPwm1, PWM_ActionQual_Clear); //

Clear PWM1B on event B, up count

 // Interrupt where we will change the Compare Values
 PWM_setIntMode(myPwm1, PWM_IntMode_CounterEqualZero); // Select INT on

Zero event
 PWM_enableInt(myPwm1); // Enable INT
 PWM_setIntPeriod(myPwm1, PWM_IntPeriod_ThirdEvent); // Generate INT

on 3rd event

 // Information this example uses to keep track
 // of the direction the CMPA/CMPB values are
 // moving, the min and max allowed values and
 // a pointer to the correct ePWM registers
 epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing

CMPA & CMPB
 epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
 epwm1_info.EPwmTimerIntCount = 0; // Zero the interrupt

counter
 epwm1_info.myPwmHandle = myPwm1; // Set the pointer to the

ePWM module
 epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; // Setup min/max

CMPA/CMPB values
 epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;
 epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB;

78

 epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB;
}

void InitEPwm2Example()

{
 CLK_enablePwmClock(myClk, PWM_Number_2);

 // Setup TBCLK
 PWM_setCounterMode(myPwm2, PWM_CounterMode_Up); // Count up
 PWM_setPeriod(myPwm2, EPWM2_TIMER_TBPRD); // Set timer period
 PWM_disableCounterLoad(myPwm2); // Disable phase

loading
 PWM_setPhase(myPwm2, 0x0000); // Phase is 0
 PWM_setCount(myPwm2, 0x0000); // Clear counter
 PWM_setHighSpeedClkDiv(myPwm2, PWM_HspClkDiv_by_2); // Clock ratio to

SYSCLKOUT

 PWM_setClkDiv(myPwm2, PWM_ClkDiv_by_2);

 // Setup shadow register load on ZERO
 PWM_setShadowMode_CmpA(myPwm2, PWM_ShadowMode_Shadow);
 PWM_setShadowMode_CmpB(myPwm2, PWM_ShadowMode_Shadow);
 PWM_setLoadMode_CmpA(myPwm2, PWM_LoadMode_Zero);

 PWM_setLoadMode_CmpB(myPwm2, PWM_LoadMode_Zero);

 // Set Compare values
 PWM_setCmpA(myPwm2, EPWM2_MIN_CMPA); // Set compare A value
 PWM_setCmpB(myPwm2, EPWM2_MIN_CMPB); // Set Compare B value

 // Set actions
 PWM_setActionQual_Period_PwmA(myPwm2, PWM_ActionQual_Clear); // Clear

PWM2A on Period
 PWM_setActionQual_CntUp_CmpA_PwmA(myPwm2, PWM_ActionQual_Set); // Set

PWM2A on event A, up count

 PWM_setActionQual_Period_PwmB(myPwm2, PWM_ActionQual_Clear); // Clear

PWM2B on Period
 PWM_setActionQual_CntUp_CmpB_PwmB(myPwm2, PWM_ActionQual_Set); // Set

PWM2B on event B, up count

 // Interrupt where we will change the Compare Values
 PWM_setIntMode(myPwm2, PWM_IntMode_CounterEqualZero); // Select INT on

Zero event
 PWM_enableInt(myPwm2); // Enable INT

 PWM_setIntPeriod(myPwm2, PWM_IntPeriod_ThirdEvent); // Generate INT

on 3rd event

 // Information this example uses to keep track
 // of the direction the CMPA/CMPB values are
 // moving, the min and max allowed values and
 // a pointer to the correct ePWM registers

 epwm2_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing

CMPA
 epwm2_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // and decreasing CMPB
 epwm2_info.EPwmTimerIntCount = 0; // Zero the interrupt

counter

 epwm2_info.myPwmHandle = myPwm2; // Set the pointer to the

ePWM module

79

 epwm2_info.EPwmMaxCMPA = EPWM2_MAX_CMPA; // Setup min/max

CMPA/CMPB values
 epwm2_info.EPwmMinCMPA = EPWM2_MIN_CMPA;

 epwm2_info.EPwmMaxCMPB = EPWM2_MAX_CMPB;
 epwm2_info.EPwmMinCMPB = EPWM2_MIN_CMPB;
}

void InitEPwm3Example(void)
{

 CLK_enablePwmClock(myClk, PWM_Number_3);

 // Setup TBCLK
 PWM_setCounterMode(myPwm3, PWM_CounterMode_Up); // Count up
 PWM_setPeriod(myPwm3, EPWM3_TIMER_TBPRD); // Set timer period
 PWM_disableCounterLoad(myPwm3); // Disable phase

loading

 PWM_setPhase(myPwm3, 0x0000); // Phase is 0
 PWM_setCount(myPwm3, 0x0000); // Clear counter
 PWM_setHighSpeedClkDiv(myPwm3, PWM_HspClkDiv_by_1); // Clock ratio to

SYSCLKOUT
 PWM_setClkDiv(myPwm3, PWM_ClkDiv_by_1);

 // Setup shadow register load on ZERO
 PWM_setShadowMode_CmpA(myPwm3, PWM_ShadowMode_Shadow);
 PWM_setShadowMode_CmpB(myPwm3, PWM_ShadowMode_Shadow);
 PWM_setLoadMode_CmpA(myPwm3, PWM_LoadMode_Zero);
 PWM_setLoadMode_CmpB(myPwm3, PWM_LoadMode_Zero);

 // Set Compare values

 PWM_setCmpA(myPwm3, EPWM3_MIN_CMPA); // Set compare A value
 PWM_setCmpB(myPwm3, EPWM3_MIN_CMPB); // Set Compare B value

 // Set Actions
 PWM_setActionQual_CntUp_CmpA_PwmA(myPwm3, PWM_ActionQual_Set); //

Set PWM3A on event B, up count

 PWM_setActionQual_CntUp_CmpB_PwmA(myPwm3, PWM_ActionQual_Clear); //

Clear PWM3A on event B, up count

 PWM_setActionQual_Zero_PwmB(myPwm3, PWM_ActionQual_Toggle); //

Toggle EPWM3B on Zero

 // Interrupt where we will change the Compare Values
 PWM_setIntMode(myPwm3, PWM_IntMode_CounterEqualZero); // Select INT on

Zero event
 PWM_enableInt(myPwm3); // Enable INT
 PWM_setIntPeriod(myPwm3, PWM_IntPeriod_ThirdEvent); // Generate INT

on 3rd event

 // Information this example uses to keep track
 // of the direction the CMPA/CMPB values are

 // moving, the min and max allowed values and
 // a pointer to the correct ePWM registers
 epwm3_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing

CMPA
 epwm3_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // and decreasing CMPB

 epwm3_info.EPwmTimerIntCount = 0; // Zero the interrupt

counter

80

 epwm3_info.myPwmHandle = myPwm3; // Set the pointer to the

ePWM module
 epwm3_info.EPwmMaxCMPA = EPWM3_MAX_CMPA; // Setup min/max

CMPA/CMPB values
 epwm3_info.EPwmMinCMPA = EPWM3_MIN_CMPA;
 epwm3_info.EPwmMaxCMPB = EPWM3_MAX_CMPB;
 epwm3_info.EPwmMinCMPB = EPWM3_MIN_CMPB;
}

void update2(EPWM_INFO *epwm_info)
{

 //send header first
 if (headerFlag == 1){
 if (counter == 7){
 counter = 0;

 text2data(header[index]);
 index++;
 if (index == HEADSIZE){ //end of header
 index = 0;
 headerFlag = 0; //set headerFlag to 0, meaning start

transmitting msg data
 }
 }
 }
 else //if (headerFlag == 0)

 {
 //Check to see if the message has been sent
 //Output all zeros to turn off the LEDs
 if (counter == 7){
 counter = 0;

 text2data(msg[index]);
 index++;
 if (index == MSGSIZE){
 headerFlag = 1; //set headerFlag to 1, meaning start

transmitting header data

 }
 }
 }

 //Output a High pulse if the bit is a 1
 if(inbuff[counter] == 1)

 {
 epwm1_info.EPwmMinCMPA = EPWM1_MAX_CMPA + 1;
 epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP;
 PWM_setCmpA(myPwm1, EPWM1_MAX_CMPA + 1);
 }

 else //Output a Low pulse if the bit is a 0
 {
 epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;
 epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_DOWN;
 PWM_setCmpA(myPwm1, EPWM1_MIN_CMPA);

 }
 counter++;

 //if(counter == 8)
 // counter = 0;

81

}

void update_compare(EPWM_INFO *epwm_info)
{

 // Every 10'th interrupt, change the CMPA/CMPB values

 if(epwm_info->EPwmTimerIntCount == 10)
 {
 epwm_info->EPwmTimerIntCount = 0;

 // If we were increasing CMPA, check to see if
 // we reached the max value. If not, increase CMPA
 // else, change directions and decrease CMPA

 if(epwm_info->EPwm_CMPA_Direction == EPWM_CMP_UP) {
 if(PWM_getCmpA(epwm_info->myPwmHandle) < epwm_info->EPwmMaxCMPA)

{
 PWM_setCmpA(epwm_info->myPwmHandle, PWM_getCmpA(epwm_info-

>myPwmHandle) + 1);

 }
 else {
 epwm_info->EPwm_CMPA_Direction = EPWM_CMP_DOWN;
 PWM_setCmpA(epwm_info->myPwmHandle, PWM_getCmpA(epwm_info-

>myPwmHandle) - 1);

 }
 }

 // If we were decreasing CMPA, check to see if
 // we reached the min value. If not, decrease CMPA
 // else, change directions and increase CMPA

 else {
 if(PWM_getCmpA(epwm_info->myPwmHandle) == epwm_info->EPwmMinCMPA)

{
 epwm_info->EPwm_CMPA_Direction = EPWM_CMP_UP;
 PWM_setCmpA(epwm_info->myPwmHandle, PWM_getCmpA(epwm_info-

>myPwmHandle) + 1);
 }
 else {
 PWM_setCmpA(epwm_info->myPwmHandle, PWM_getCmpA(epwm_info-

>myPwmHandle) - 1);

 }
 }

 // If we were increasing CMPB, check to see if
 // we reached the max value. If not, increase CMPB
 // else, change directions and decrease CMPB
 if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP) {

 if(PWM_getCmpB(epwm_info->myPwmHandle) < epwm_info->EPwmMaxCMPB)

{
 PWM_setCmpB(epwm_info->myPwmHandle, PWM_getCmpB(epwm_info-

>myPwmHandle) + 1);
 }

 else {
 epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN;
 PWM_setCmpB(epwm_info->myPwmHandle, PWM_getCmpB(epwm_info-

>myPwmHandle) - 1);
 }

82

 }

 // If we were decreasing CMPB, check to see if
 // we reached the min value. If not, decrease CMPB

 // else, change directions and increase CMPB

 else {
 if(PWM_getCmpB(epwm_info->myPwmHandle) == epwm_info->EPwmMinCMPB)

{
 epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP;
 PWM_setCmpB(epwm_info->myPwmHandle, PWM_getCmpB(epwm_info-

>myPwmHandle) + 1);
 }
 else {
 PWM_setCmpB(epwm_info->myPwmHandle, PWM_getCmpB(epwm_info-

>myPwmHandle) - 1);

 }
 }
 }
 else {
 epwm_info->EPwmTimerIntCount++;

 }

 return;
}

void text2data(char value){
 switch (value){
 case 'a':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = a[ii];
 break;
 case 'b':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = b[ii];
 break;
 case 'c':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = c[ii];

 break;
 case 'd':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = d[ii];
 break;

 case 'e':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = e[ii];
 break;
 case 'f':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = f[ii];
 break;
 case 'g':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = g[ii];
 break;
 case 'h':

83

 for(ii=0; ii<7; ii++)
 inbuff[ii] = h[ii];
 break;

 case 'i':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = i[ii];
 break;
 case 'j':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = j[ii];
 break;
 case 'k':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = k[ii];
 break;
 case 'l':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = l[ii];

 break;
 case 'm':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = m[ii];
 break;

 case 'n':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = n[ii];
 break;
 case 'o':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = o[ii];
 break;
 case 'p':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = p[ii];
 break;
 case 'q':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = q[ii];

 break;
 case 'r':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = r[ii];
 break;

 case 's':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = s[ii];
 break;
 case 't':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = t[ii];
 break;
 case 'u':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = u[ii];
 break;
 case 'v':
 for(ii=0; ii<7; ii++)

84

 inbuff[ii] = v[ii];
 break;
 case 'w':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = w[ii];
 break;
 case 'x':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = x[ii];
 break;
 case 'y':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = y[ii];

 break;
 case 'z':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = z[ii];
 break;

 case 'A':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = A[ii];
 break;
 case 'B':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = B[ii];
 break;
 case 'C':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = C[ii];
 break;
 case 'D':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = D[ii];

 break;
 case 'E':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = E[ii];
 break;

 case 'F':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = F[ii];
 break;
 case 'G':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = G[ii];
 break;
 case 'H':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = H[ii];
 break;
 case 'I':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = I[ii];

 break;
 case 'J':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = J[ii];

85

 break;
 case 'K':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = K[ii];
 break;
 case 'L':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = L[ii];

 break;
 case 'M':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = M[ii];
 break;

 case 'N':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = N[ii];
 break;
 case 'O':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = O[ii];
 break;
 case 'P':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = P[ii];
 break;
 case 'Q':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = Q[ii];

 break;
 case 'R':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = R[ii];
 break;

 case 'S':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = S[ii];
 break;
 case 'T':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = T[ii];
 break;
 case 'U':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = U[ii];
 break;
 case 'V':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = V[ii];

 break;
 case 'W':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = W[ii];
 break;

 case 'X':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = X[ii];
 break;

86

 case 'Y':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = Y[ii];

 break;
 case 'Z':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = Z[ii];
 break;

 case '0':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = zero[ii];
 break;
 case '1':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = one[ii];
 break;
 case '2':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = two[ii];
 break;
 case '3':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = three[ii];

 break;
 case '4':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = four[ii];
 break;

 case '5':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = five[ii];
 break;
 case '6':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = six[ii];
 break;
 case '7':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = seven[ii];
 break;
 case '8':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = eight[ii];

 break;
 case '9':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = nine[ii];
 break;

 case '!':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = excl[ii];
 break;
 case '"':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = quot[ii];
 break;
 case '#':

87

 for(ii=0; ii<7; ii++)
 inbuff[ii] = hash[ii];
 break;

 case '$':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = dola[ii];
 break;
 case '%':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = perc[ii];
 break;
 case '&':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = amp[ii];
 break;
 case '(':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = lpar[ii];

 break;
 case ')':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = rpar[ii];
 break;

 case '*':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = time[ii];
 break;
 case '+':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = add[ii];
 break;
 case ',':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = comm[ii];
 break;
 case '-':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = dash[ii];

 break;
 case '.':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = peri[ii];
 break;

 case '/':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = slsh[ii];
 break;
 case ':':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = col[ii];
 break;
 case ';':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = scol[ii];
 break;
 case '<':
 for(ii=0; ii<7; ii++)

88

 inbuff[ii] = lthn[ii];
 break;
 case '=':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = equl[ii];
 break;
 case '>':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = gthn[ii];
 break;
 case '?':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = ques[ii];

 break;
 case '@':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = at[ii];
 break;

 case '{':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = lcbk[ii];
 break;
 case '}':

 for(ii=0; ii<7; ii++)
 inbuff[ii] = rcbk[ii];
 break;
 case '~':
 for(ii=0; ii<7; ii++)

 inbuff[ii] = til[ii];
 break;
 case ' ':
 for(ii=0; ii<7; ii++)
 inbuff[ii] = spac[ii];

 break;
 default:
 for(ii=0; ii<7; ii++)
 inbuff[ii] = 0;
 break;

 }
}

/*
 * This Header File contains the message that will be sent to the receiver
 * Also the header sequence is also defined in this file

 */

const char msg[11] = {'M', 'y', ' ', 'N', 'a', 'm', 'e', ':', 'B', 'o', 'b'};
//const char msg[11] = {'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l',

'd'};
//const char msg[11] = {'G', 'o', 'o', 'd', 'b', 'y', 'e', ' ', ' ', ' ', '

'};
//const char msg[16] = {'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l',

'd', ' ', ' ', ' ',' ',' '};

//const char msg[16] = {'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l',

'd',' ','P','i','k','a'};

89

const char header[40] = {'T', 'h', 'i', 's', 'T', 'h', 'i', 's', ' ', 'i',
's', ' ', 'a', ' ', 'b', 'i', 'g', ' ', 't', 'e', 's', 't','T', 'h', 'i',

's', ' ', 'i', 's', ' ', 'a', ' ', 'b', 'i', 'g', ' ', 't', 'e', 's', 't'};

const int MSGSIZE = 11;
//const int MSGSIZE = 16;
const int HEADSIZE = 40;

/*
 * This Header file defines the ASCII values for all characters

 * The binary values are defined in a 8 bit array
 */

//Numbers
const int zero[8] = {0,1,1,0,0,0,0};

const int one[8] = {0,1,1,0,0,0,1};
const int two[8] = {0,1,1,0,0,1,0};
const int three[8]= {0,1,1,0,0,1,1};
const int four[8] = {0,1,1,0,1,0,0};
const int five[8] = {0,1,1,0,1,0,1};

const int six[8] = {0,1,1,0,1,1,0};
const int seven[8]= {0,1,1,0,1,1,1};
const int eight[8]= {0,1,1,1,0,0,0};
const int nine[8] = {0,1,1,1,0,0,1};

//Lower Case Letters
const int a[8] = {1,1,0,0,0,0,1};
const int b[8] = {1,1,0,0,0,1,0};
const int c[8] = {1,1,0,0,0,1,1};
const int d[8] = {1,1,0,0,1,0,0};

const int e[8] = {1,1,0,0,1,0,1};
const int f[8] = {1,1,0,0,1,1,0};
const int g[8] = {1,1,0,0,1,1,1};
const int h[8] = {1,1,0,1,0,0,0};
const int i[8] = {1,1,0,1,0,0,1};

const int j[8] = {1,1,0,1,0,1,0};
const int k[8] = {1,1,0,1,0,1,1};
const int l[8] = {1,1,0,1,1,0,0};
const int m[8] = {1,1,0,1,1,0,1};
const int n[8] = {1,1,0,1,1,1,0};

const int o[8] = {1,1,0,1,1,1,1};
const int p[8] = {1,1,1,0,0,0,0};
const int q[8] = {1,1,1,0,0,0,1};
const int r[8] = {1,1,1,0,0,1,0};
const int s[8] = {1,1,1,0,0,1,1};

const int t[8] = {1,1,1,0,1,0,0};
const int u[8] = {1,1,1,0,1,0,1};
const int v[8] = {1,1,1,0,1,1,0};
const int w[8] = {1,1,1,0,1,1,1};
const int x[8] = {1,1,1,1,0,0,0};

const int y[8] = {1,1,1,1,0,0,1};
const int z[8] = {1,1,1,1,0,1,0};

//Upper Case Letters
const int A[8] = {1,0,0,0,0,0,1};

const int B[8] = {1,0,0,0,0,1,0};

90

const int C[8] = {1,0,0,0,0,1,1};
const int D[8] = {1,0,0,0,1,0,0};
const int E[8] = {1,0,0,0,1,0,1};

const int F[8] = {1,0,0,0,1,1,0};
const int G[8] = {1,0,0,0,1,1,1};
const int H[8] = {1,0,0,1,0,0,0};
const int I[8] = {1,0,0,1,0,0,1};
const int J[8] = {1,0,0,1,0,1,0};

const int K[8] = {1,0,0,1,0,1,1};
const int L[8] = {1,0,0,1,1,0,0};
const int M[8] = {1,0,0,1,1,0,1};
const int N[8] = {1,0,0,1,1,1,0};
const int O[8] = {1,0,0,1,1,1,1};

const int P[8] = {1,0,1,0,0,0,0};
const int Q[8] = {1,0,1,0,0,0,1};
const int R[8] = {1,0,1,0,0,1,0};
const int S[8] = {1,0,1,0,0,1,1};
const int T[8] = {1,0,1,0,1,0,0};

const int U[8] = {1,0,1,0,1,0,1};
const int V[8] = {1,0,1,0,1,1,0};
const int W[8] = {1,0,1,0,1,1,1};
const int X[8] = {1,0,1,1,0,0,0};
const int Y[8] = {1,0,1,1,0,0,1};

const int Z[8] = {1,0,1,1,0,1,0};

//Symbols
const int excl[8] = {0,1,0,0,0,0,1};
const int quot[8] = {0,1,0,0,0,1,0};

const int hash[8] = {0,1,0,0,0,1,1};
const int dola[8] = {0,1,0,0,1,0,0};
const int perc[8] = {0,1,0,0,1,0,1};
const int amp[8] = {0,1,0,0,1,1,0};
const int apst[8] = {0,1,0,0,1,1,1};

const int lpar[8] = {0,1,0,1,0,0,0};
const int rpar[8] = {0,1,0,1,0,0,1};
const int time[8] = {0,1,0,1,0,1,0};
const int add[8] = {0,1,0,1,0,1,1};
const int comm[8] = {0,1,0,1,1,0,0};

const int dash[8] = {0,1,0,1,1,0,1};
const int peri[8] = {0,1,0,1,1,1,0};
const int slsh[8] = {0,1,0,1,1,1,1};
const int col[8] = {0,1,1,1,0,1,0};
const int scol[8] = {0,1,1,1,0,1,1};

const int lthn[8] = {0,1,1,1,1,0,0};
const int equl[8] = {0,1,1,1,1,0,1};
const int gthn[8] = {0,1,1,1,1,1,0};
const int ques[8] = {0,1,1,1,1,1,1};
const int at[8] = {1,0,0,0,0,0,0};

const int lcbk[8] = {1,1,1,1,0,1,1};
const int rcbk[8] = {1,1,1,1,1,0,1};
const int til[8] = {1,1,1,1,1,1,0};
const int spac[8] = {0,1,0,0,0,0,0};

91

C.2.2 Receiver
#include <msp430.h>
#include <stdio.h>
#include <string.h>

#define LEN 49

int count=0;
int i;
int index = LEN;
float inBuff[LEN];
int dispFlag = 0;

int *Flash_ptr;
float sum=0;

//Function Declarations
void init_tmrb();

int main(void)
{

 init_tmrb();
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC12CTL0 = ADC12SHT02 + ADC12ON + ADC12IE; // ADC12ON, interrupt enabled
 // Sampling time, ADC12 on
 ADC12CTL1 = ADC12SHP; // Use sampling timer

 ADC12IE = 0x01; // Enable interrupt
 ADC12CTL0 |= ADC12ENC;
 P6SEL |= 0x01; // P6.0 ADC option select
 P1DIR |= 0x01; // P1.0 output
 Flash_ptr = (int*)0x10000; //Initialize pointer at start of

Flash address

 while (1)
 {
 __bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force

exit
 __no_operation(); // For debugger

 }
}

#pragma vector = ADC12_VECTOR
__interrupt void ADC12_ISR(void)
{

// switch(__even_in_range(ADC12IV,34))
// {
//
// case 0: break; // Vector 0: No interrupt
// case 2: break; // Vector 2: ADC overflow

// case 4: break; // Vector 4: ADC timing

overflow
// case 6: // Vector 6: ADC12IFG0
 __bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR)
//

// case 8: break; // Vector 8: ADC12IFG1
// case 10: break; // Vector 10: ADC12IFG2

92

// case 12: break; // Vector 12: ADC12IFG3
// case 14: break; // Vector 14: ADC12IFG4
// case 16: break; // Vector 16: ADC12IFG5

// case 18: break; // Vector 18: ADC12IFG6
// case 20: break; // Vector 20: ADC12IFG7
// case 22: break; // Vector 22: ADC12IFG8
// case 24: break; // Vector 24: ADC12IFG9
// case 26: break; // Vector 26: ADC12IFG10

// case 28: break; // Vector 28: ADC12IFG11
// case 30: break; // Vector 30: ADC12IFG12
// case 32: break; // Vector 32: ADC12IFG13
// case 34: break; // Vector 34: ADC12IFG14
// default: break;

// }
}

void init_tmrb()
{
 // Set up to use ACLK as clock source, no divider, 16 bit, up mode

 // MAX_COUNT is 32768 for a interrupt period of 1 sec
 TBCTL = TBSSEL_2 + CNTL_0 + ID_0 + MC_1;
 TBCCR0 = 52;//32767;
 TBCCTL0 = CCIE;
}

/************* TimerB compare interrupt *********/

#pragma vector=TIMERB0_VECTOR
__interrupt void Timer_B0(void)
{
 //Check Threshold, if greater, store samples into Flash
 if (sum > 140000){//170000){

 if (count != 4600)
 {
 ADC12CTL0 |= ADC12SC;// + ENC; // Start a conversion
 FCTL3 = FWKEY;
 FCTL1 = FWKEY+WRT;

 *Flash_ptr++ = ADC12MEM0;
 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY+LOCK; // Set LOCK bit
 count++;
 }

 else
 {
 FCTL3 = FWKEY;
 FCTL1 = FWKEY+WRT;
 *Flash_ptr++ = 1;

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY+LOCK; // Set LOCK bit
 }
 }
 else

 {
 ADC12CTL0 |= ADC12SC;
 index--; //decrement index
 if(index < 0) //check if index is negative
 index = LEN-1; //if so, wrap around

93

 //store most recent sample at index location
 inBuff[index] = ADC12MEM0;

 sum = 0;

 //Sum all collected samples
 for(i=0; i<LEN; i++)
 {
 sum +=inBuff[i];
 }

 }
}

D: User Guide
Code Composer Studio must be installed on both the transmitting computer and the receiving

computer in order to code and debug the various programs needed to operate the system. CCS can be

downloaded from the TI Wiki page: http://processors.wiki.ti.com/index.php/Download_CCS . A license is

also needed for the particular device being used. This information is also included on this webpage.

It is recommended that example code be downloaded prior to creating any projects, as projects

created on CCS require several other files in order to function correctly. The best way to obtain this

example code is through the TI tool, controlSUITE: http://www.ti.com/tool/controlsuite. Occasionally,

the code provided on the board specific TI webpage contains out of date code, where certain files that

are necessary for operation of the example code does not exist, which would cause non-descriptive

errors to occur.

To import a project, right-click on an empty space in the “Project Explorer” pane and select

import. Next select “Existing CCS Eclipse Projects”, make sure the “Select search-directory” option is

selected, and browse for the project to be imported.

http://processors.wiki.ti.com/index.php/Download_CCS
http://www.ti.com/tool/controlsuite

94

Figure 28: Project Explorer Pane and Import File Selection Window

Figure 29: Selecting Directory of Project

Alternatively, a new project can be created by selecting File > New > CCS Project. A project name

will need to be specified, and the parameters under device will also need to be specified. For this

particular system, the transmitter LAUNCHXL-F28027 is of the C2000 family, Experimenter’s Kit – Piccolo

95

F28027 variant, and it uses the Texas Instruments XDS100v1 USB Emulator connection. The receiver

MSP430F5529 is of the MSP430 Family, the MSP430F5529 variant, and uses the TI MSP430 USB1

connection.

Figure 30: Configuring Device

Next, open the Target Configurations pane by selecting Window > Show View > Target Configurations.

Right-click “User-Defined” and select “New Target Configuration”. Specify each field as desired and

select “Finish”, which will open a general setup window to specify the target devices.

96

Figure 31: Setting Target Configuration

Figure 32: General Setup of Target Configuration

The connection and board or device will be the same as those selected when creating a new

project. When finished, hit “save”.

Right-click the newly created target configuration and select “Launch Target Configuration”.

Once this process is complete, select “Run” on the taskbar and then “Connect Target”. Once these steps

are complete, code can be written and executed on the devices.

97

For the LAUNCHXL-F28027, data can be stored on the RAM or the flash memory by selecting the

drop-down menu under the “Build” icon (a hammer icon) in the taskbar. For the MSP430-F5529, writing

to flash must be implemented with code. Code can then be debugged by selecting the “Debug” icon (a

green bug icon) in the taskbar. Once in the debugging view with executable code that contains no errors,

the “Debug” pane will have options to execute, pause, or stop the code, as well as options to step

through code and restart the code.

Figure 33: Debug Pane

The “Expressions” window and “Memory Browser” are good tools to determine if various

sections of code are functioning as expected. In particular, these tools allow quick determination of

whether variables have the correct values when breakpoints are included in the code. These tools can

be found by selecting “View” in the taskbar.

While in the debug mode, breakpoints are useful tools to use to understand how the code is

running. A breakpoint can be set by right clicking the grey bar next to the line of code where the user

wants to stop the program. Breakpoints can be used for more than just halting the program. Once a

breakpoint is set, it is possible to left click on it to bring up a breakpoint menu. From there, it is possible

to access the break points properties.

Figure 34: Accessing Breakpoint Properties

98

 Once the breakpoint ‘properties’ option is selected, a pop up menu will open that will allow the

user to make changes to the breakpoint. There is an action property that determines how the

breakpoint functions. By right clicking on the value section for the action property, it is possible to

change the action to something more desirable. By selecting the option to ‘write data to a file’, the

parameters are file, format, start address, and length will appear. The file option lets the user choose

the file to which the data can be exported. The format option lets the user determine how the data will

be exported. For this project, the data was exported as Integers, but it could have been saved as

hexadecimal values or some other unit. The start address determines where in memory the data to be

saved initially starts. For this project, the data was stored in flash, which starts at the address 0x10000.

The length option determines the number of data points to be saved. Depending on how long of a

message is sent, this value can be changed by the user.

Figure 35: Breakpoint Properties Menu

Once Code Composer Studio is set up correctly, the various blocks of the visible light

communication system can be interfaced with one another. The LAUNCHXL-F28027 is connected directly

to the PC via USB to mini-USB. J6 Pin 1 of the LAUNCHXL-F28027 is connected to the anode of the LEDs,

and the ground pin of the board is connected to the ground on the protoboard of the analog circuit.

99

From Figure 12, J6 Pin 1 is connected to C13 on the protoboard, and the ground pin of the LAUNCHXL-

F28027 is connected to the negative rail of the protoboard.

To power the analog circuitry of the receiver, two 6 V sources are needed. The positive terminal

of the source is connected to one of the positive rails on the protoboard, while each negative rail is

connected onto the protoboard on the negative rail directly next to the corresponding positive rail. The

output of the op-amp, pin C17 on the protoboard, is connected to pin 6.0 on the MSP430F5529, where

the ADC will collect data on the output of the photodiodes. The ground pin of the MSP430F5529 is

connected to one of the grounded rails on the protoboard.

To send a message, first run the “decoding.m” MATLAB script. Using the computer on the

transmission side of the system, edit the characters in the variable “msg” in the “msh.h” file to some

other 11 character text. Once this is complete, click on the debugger icon and run the code.

Two breakpoints will need to be set on the receiver code, occurring on the last two lines of the

first “else” statement. The first will be the breakpoint that needs to be configured as described above.

The next breakpoint will be a standard halting breakpoint. Once the breakpoints have been set on the

receiver code, click on the debugger icon and run the code. The code should automatically stop when it

is done collecting data, and MATLAB will output the transmitted message.

