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Abstract

Direct survey estimates for small areas are likely to yield unacceptably large
standard errors due to the small sample sizes in the areas. This makes it necessary to
use models to “borrow strength” from related areas to find more reliable estimate for
a given area or, simultaneously, for several areas. For instance, in many applications,
data on related multiple characteristics and auxiliary variables are available. Thus, mul-

tivariate modeling of related characteristics with multiple regression can be implemented.

However, while model-based small area estimates are very useful, one potential
difficulty with such estimates when models are used is that the combined estimate from
all small areas does not usually match the value of the single estimate on the large area.
Benchmarking is done by applying a constraint to ensure that the “total” of the small
areas matches the “grand total”. Benchmarking can help to prevent model failure, an
important issue in small area estimation. It can also lead to improved prediction for
most areas because of the information incorporated in the sample space due to the ad-
ditional constraint. We describe both the univariate and multivariate Bayesian nested
error regression models and develop a Bayesian predictive inference with a benchmarking
constraint to estimate the finite population means of small areas. Our models are unique
in the sense that the benchmarking constraint involves unit-level sampling weights and

the prior distribution for the covariance of the area effects follows a specific structure.

We use Markov chain Monte Carlo procedures to fit our models. Specifically,
we use Gibbs sampling to fit the multivariate model; our univariate benchmarking only
needs random samples. We use two datasets, namely the crop data (corn and soybeans)
from the LANDSAT and Enumerative survey and the NHANES III data (body mass
index and bone mineral density), to illustrate our results. We also conduct a simulation

study to assess frequentist properties of our models.
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Chapter 1
Introduction

This dissertation is focused on implementing a Bayesian predictive inference to
estimate the finite population means of small domains with benchmarking. We use a
Bayesian nested-error regression model with an internal benchmarking constraint that

incorporates unit-level sampling weight.

In this chapter, we introduce the concept of benchmarking and discuss the rea-
sons for implementing it in small area estimation. In Section [T we discuss the issues
in model-based small area estimation and how benchmarking would help resolve some
of the issues. We introduce our univariate nonbenchmarking Bayesian model in Section
[L2L Moreover, we present detailed discussions of the different studies related to our work
in Section [L.3l Lastly, we will introduce in Section [[.4] the form of the benchmarking
constraint we use in our study. Our benchmarking constraint incorporates unit-level
survey or sampling weights, so we also give a brief discussion of that in Section [L.4. We
would also introduce in Section the two applications on which we apply our results,

as well as discuss some of the literature related to our study.

This dissertation has three additional chapters following the introduction. In
Chapter 2l we describe our benchmarking Bayesian model for the univariate case. Here
we introduce the Bayesian version of the Battese, Harter, and Fullen (1988) nested-error
regression model. We present in Chapter [2] how we incorporate the constraint into the
regression model. We use the resulting univariate Bayesian benchmarking model to
estimate the finite population means of small areas by means of Bayesian predictive

inference procedures. We will present the results of our univariate Bayesian models us-



ing the crop data (Battese, Harter, and Fuller (1988)) and the body mass index (BMI)
and bone mineral density (BMD) data from INHANES III (1996). We also present a
simulation study drawing data similar to the corn hectares data to further compare the

univariate nonbenchmarking (NBM) and univariate benchmarking (BM) models.

In Chapter [3, we extend the univariate results of Chapter 2] to the multivari-
ate setting. We discuss the Bayesian version of the multivariate nested-error regression
model of [Fuller and Harten (1987). There is a practical significance to this extension
of the benchmarking model to the multivariate case because in many small area prob-
lems, data on related multiple characteristics and auxiliary variables are available. For
instance, the two crops, corn and soybean, in the survey and satellite data would be
more appropriately benchmarked simultaneously, so as the two health variables, BMI

and BMD, in the NHANES III data.

Finally, in Chapter 4 we discuss our methodological contributions, summarize
our results, present concluding remarks, and discuss the different problems we want to

do in the future that are related to this research.

1.1 Benchmarking in Small Areas

Small area estimation has gained popularity in recent years due to the growing
demand for reliable small area statistics from both the public and the private sectors
worldwide. For instance, in many countries, including United States and Canada, the
government use small area statistics in the apportionment of funds, as well as in regional
and city planning. On the other hand, the private sectors have demands for small area
statistics because the policy making of many businesses and industries relies on local
socio-economic conditions. One major problem in small area estimation is that the sam-
ple sizes for small areas are typically too small. This is because these sample sizes depend
on the overall sample size in a survey. But the overall sample size is usually determined
to provide specific accuracy at a much higher level of aggregation than that of small
area. For instance, sample survey data are typically used to derive reliable estimators of
totals and means for large areas or domains. Thus, the usual direct survey estimators

for a small area, based on data only from the small units in the area, are likely to yield



unacceptably large standard errors due to the unwarranted small size of the sample in
the area. Thus, making the direct estimates from the small areas unreliable. In or-
der to provide reliable estimates, a common practice in small area estimation is to use
appropriate models that “borrow strength” from neighboring or related small areas, or
other correlated variables (via multivariate approach) and relevant covariate informa-
tion available from other sources, such as administrative records. This concern about
the unreliability of small area estimates led to the development of various model-based
methods in small-area estimation; see Rad (2003) for a complete discussion of small area

estimation, and |Ghosh and Rad (1994) for an appraisal of some of these methods.

Appropriate models are often used to produce reliable small area estimates by
“borrowing strength” from the ensemble. For instance, since there are many appli-
cations with multiple characteristics and auxiliary variables in small area problems,; a
multivariate modeling of related characteristics using a multiple regression model can be
implemented (Fay, 1987). The success of such modeling rests on the strength of depen-
dence among these characteristics. Multivariate analysis can help increase precision by
using data from other characteristics. For instance, in the LANDSAT and Enumerative
Survey data (see Battese, Harter, and Fuller (1988)), the yield of corn may be related
to the yield of soybean, synergistically or antagonistically. This can also be true with
the body mass index (BMI) and bone mineral density (BMD) from NHANES 111 (1996).
The model-based small area estimates can differ widely from the direct estimates of the
individual areas, especially for areas with very low sample sizes. Thus, while model-
based small area estimates are very useful, one potential difficulty with such estimates
is that when aggregated, the combined estimate of all the small areas may be quite
different from the corresponding direct estimate on the large area, the latter being usu-
ally believed to be quite reliable. For example, sample surveys are usually designed to
achieve specified inferential accuracy at a higher level of aggregation. Thus, the samples

from each small area might not yield accurate or reliable estimates.

In the government and public sector, an overall agreement with the direct es-
timates at an aggregate level may sometimes be politically necessary to convince the
legislators of the utility of small area estimates. One way to ensure that the combined
model-based estimates matches the direct design-based estimate is by implementing

benchmarking, which is done by applying a constraint, internally or externally, to ensure



that the “total” of the small areas matches the “grand total.” Internal benchmarking
occurs when the pre-specified estimator can be a weighted average of the direct small
area estimators, and external benchmarking occurs when the pre-specified estimator is
obtained from external sources, such as a different survey census, or other administrative
records. Through benchmarking, the model-based estimates are modified in order to get
the same aggregate estimate for the larger area. We are forcing the combined small
area estimates to match the direct estimate of the large area obtained when the small
areas are collapsed into a single area. Model failure is an important issue in small area
estimation. The problem of non-overall agreement between combined small area esti-
mates and the overall estimate from using model-based estimates can be a more severe
issue if the model fails. This can cause serious problems since most often, there is no
real way to check for validity of the assumed model. Benchmarking can help to prevent
this model failure, because the implementation of benchmarking corrects for some bias.
Thus, it provides some guard against model failure. Benchmarking also shifts the small
area estimators to accommodate the benchmark constraint. In doing so, it can provide
some increase in the precision of the small area estimators of the finite population means
or totals because the sample space is reduced by the constraint. This makes the bench-

marking technique desirable to practitioners of model-assisted small area estimation.

1.2 Basic Problem

Assume that there are ¢ small areas. Let N; be the population size of the "
¢

area of a finite population (i =1,...,¢) and N = Z N; be the total population size.
i=1
Let {y;;,1=1,2,...,0,7=1,2,...,N;} denote a finite population where y;;

is the response associated with the j** unit within the *" small area. Assume that

vij, t=1,...,0, j =1,...,n;, are observed from the finite population, where n; is the
¢
size of the sample from the 7" area (i = 1,...,¢) and n = Z n; is the total sample size.
i=1

We assume N; and n; are fixed known quantities. We write the n x 1 vector of observed

values as y, = (ggl, . 7?1,&»)/ with ys, = (41, - - - Yin,) fori=1,2,... /.

Our main goal is to make inference about the finite population mean of the it
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N;

area, Y; = N; 7! Z Yij, t = 1,...,¢, based on the sample data ys under the nested-error
j=1

regression model of Battese, Harter, and Fuller (1988). To predict the finite population

mean, we need to predict the nonsample values in the population. Our approach is to
use Bayesian predictive inference to generate values of the finite population means from
the small areas based on the sample data. We predict the values of the nonsample data

from its posterior predictive distribution.

The nested-error regression model of Battese, Harter, and Fuller (1988) for finite
population means accommodates covariates at the unit level. Assume z;; is the p x 1
vector of covariates associated with y;;, 7 = 1,2,...,¢,5 = 1,2,..., N;. Note that each
x;; contains an intercept. Let X, be the n x p matrix of covariates for the sample data
Ys. Similarly, let X5 be the (N — n) x p matrix of covariates for the nonsample data

y, .- Also, denote by X, the (N —1—n) xp matrix of covariates for the nonsampled

S(V)

observations without ¥, n,. Note that these matrices of covariates are assumed to be

full-rank.

The population model of the Battese, Harter, and Fuller (1988) nested-error re-

gression model for finite population means is given by
Yij = Ty + vi + e,

i=1,2,...,4,7=1,2,..., N;, where § = (Bo, - - - ,5p_1)' is the p x 1 vector of regression
parameters. Let v = (v1,...,14)" be the £ x 1 vector of random effects. These area

effects are assumed to be independent and each follows a normal distribution. That is,

Vi%Normal{O, (L) 02},i:1,2,...,€
L—=p

and independent of the unit errors e;;, which are also assumed to follow
€ij 2! Normal {0, 02} .

We define p as the intra-class correlation within areas and is the same for each area. We

assume that 0 < p < 1. The introduction of p in the model is a novel idea in this study.



Using the prior
1
2 2
p(@,a ,,0) ox Pt o >0,

the Bayesian nonbenchmarking model (NBM) is given by

yij|y,@,0'2 nd Normal{g:éj@—i-w,UQ}, i=1,...,0, j=1,...,N;, (1.1)
vi|p, o % Normal {0, (%) 02} , 0<p<l, (1.2)
—p
1
P (@,02,/)) x 5, o? > 0. (1.3)

g

Essentially, the model specified by (LI]) and (L2]) is a reparameterization of the
Battese, Harter, and Fuller (BHF) model, and in fact, it is equivalent to the BHF model.
To see this, suppose we replace (L2) by

vi|o?, 62 % Normal {0,6°},

2

then p = P12 is the intra-class correlation of the y;; within each area. This is also
o
the same as

Yij = T30+ vi + e,
where e;; (S Normal {0, 02} and independently v; w Normal {0, 6}, as in the BHF
model. However, there is a minor difference which is p must be strictly less than 1 in

(L2). This reparameterization is helpful to prove propriety of the joint posterior density,

and it also helps to simplify the computation.

Using Bayes’ theorem in (L)) - (L3)), the joint posterior density of the nonbench-

marking model is



Whereys_:— Yij, Ty, = — i, and \; = —forz—12 A
D~ =

Assuming that 0 < p <1and the de51gn matrix is full rank, the joint posterior density
0 (y,@, o ,p|y5) is proper; see Nandram, Toto, and Choi (2010) for a similar proof.

Based on the observed values y;, we want to make inference for the finite

— 1
population mean Y,. Let 7,, = Z z;; and define the sampling fraction
¢ Nz — ny; i
fi = % i =1,2,...,¢. To be able to make inference for Y; (i =1,...,¢), given the

sample observations ys, a possible approach is to sample from the distribution 7i|ys.
The distribution of 7i|ys is

p (?Z|:g$) = /p (?i|y7@7027g8) ™ (737@7‘72@5) dyd@doj (14)

This is called Bayesian predictive inference. Under the nonbenchmarking Bayesian model
(NBM), Y; given Ys, ¥, 3, o? fori=1,...,¢, has the following distribution

Yli, 3, 0% y, ~ Normal {fiysi = £ T8 (= f) v T (1 f»} ~05)

Notice that the mean of the distribution of Y;|v, B, o2, ys depends on information
both from the sample data and nonsample data from the i** area, and are independent
from the distribution of the finite population means of the i*' areas, i* = 1,2, ..., (,i* #

1.

1.3 Literature Review

In this section we mention some of the existing benchmarking literature for
small area estimation. Benchmarking in small area estimation has been an active area
of research in recent years, with the use of Bayesian analysis becoming a more popular

method in executing the procedure.

Pfeffermann and Tilled (2006) used state-space models to benchmark small area
estimators to aggregates of survey direct estimators within a group of areas. Their

method is implemented to improve the procedure of the US Bureau of Labor Statistics



(BLS), which produces monthly employment and unemployment estimates for different
census divisions and states. The work of |Pfeffermann and Tiller (2006) is an example
of internal benchmarking, where their benchmark constraint depended on a weighted
direct estimator of the small area means. Using hierarchical Bayes (HB) approach,
You, Rao, and Dick (2004) studied benchmarked estimators for small area means based
on unmatched sampling and linking area level models proposed by [You and Raa (2002b).
Their method is evaluated using the 1991 Canadian census under-coverage estimation.
You, Rao, and Dick (2004) used external benchmarking to develop their hierarchical

Bayes (HB) estimators for area level unmatched sampling and linking models.

Hillmer and Trabelsi (1987) developed a statistical model-based approach to the
benchmarking problem in the study of time series data. Benchmarking is done when
data from a monthly sample survey are combined with data from an annual census for
the purpose of improving the survey estimates. Previous authors have used numerical
analysis techniques to derive methods to perform benchmarking. This article formulates
the benchmarking problem in a statistical framework and uses times series methods to
derive a solution. This solution is based in part upon the statistical properties of the
time series being benchmarked and upon the properties of the survey errors associated
with that time series. The article makes use of the theory of signal extraction that
has been derived for non stationary time series. Two common types of benchmarking
problems are studied in greater detail. The results of the theory derived in the article

are illustrated by an example.

Wang, Fuller, and Qu (2008) gave a characterization of the “best” linear unbi-

ased predictor (BLUP) for small area means under an area level model
K:L§;@+bz+el, i:1,2,...,n,

that satisfies a benchmarking constraint involving the small area predictors ;

n n
E Wil = E w;Ys,
i=1 i=1

n
where w; are the area-level sampling weights such that Zini is a design consistent
i=1



estimator of the total (or the mean). They aim at minimizing the ‘loss function’ criterion
~a ~q 2
Q") =Y wE@" —v:),
i=1

where ¢;,i = 1,2,...,n are a chosen set of positive weights, while satisfying the bench-
marking constraint above. In fact, all linear unbiased predictors satisfy this ‘loss func-
tion’ criterion. In benchmarking, this characterization led to a unifying view of some
BLUP based predictors (e.g., Battese, Harter, and Fuller (198%), Isaki, Tsay, and Fuller
(2000), [Pfeffermann and Barnard (1991)). [Wang, Fuller, and Qu (2008) also presented
an alternative way of imposing the benchmarking constraint. In this approach, the
BLUP estimator would have a self-calibrated property. They used an approach in which

the weights are included in an augmented model, that is, we have
Y=X10+b+e

where X; = (X,w) and w = (wy,ws, . ..,w,) . This is used to obtain the best linear unbi-
ased predictor (BLUP) or Empirical BLUP (EBLUP). With the weights w in the model,
their adjustment met the benchmarking criterion above, which has smaller adjustment
for the model than without the weights. Their proposed self-calibrated augmented model
reduces bias both at the overall and small area level. However, their model does not
predict finite population means, and so their benchmarking constraint is different from
ours. We wish to benchmark the finite population mean.

You and Rao (2003, 20024) developed self-calibrated estimators for small area
means under the unit level nested error regression model

;@-'-'Ui—i-eij, j:1,2,...,ni,i:1,2,...,€.

Yij = Ly,

You and Rao (2003) benchmarked the Battese, Harter, and Fuller (1988) regression mod-
els using survey weights. They proposed three pseudo-hierarchical Bayes estimators for
the small area means based on survey weights. The use of survey weights in their mod-
els ensured design-consistency of their estimators. Like [You and Rao (2003, 12002a),
we also combine a unit-level benchmarking constraint with a nested error regression
model. They also illustrated the resulting survey-weighted univariate model using the

crop data. [You and Rao (2003) proposed a pseudo-HB estimator obtained from a two-



step estimation process involving both area and unit level models, while [You and Rao
(20024) used a pseudo-EBLUP procedure to find the estimator. The pseudo-HB (or
similarly, pseudo-EBLUP) estimates depend on the survey weights and satisfy design
consistency. An advantage of their proposed estimator is that it automatically satisfies
the benchmarking property when the estimators 0:, are aggregated over i, if the weights

w;; are calibrated to agree with the known population total V; of the ith area, that is,
n;
> @y = =N
i=1

This means Z Niéi equals the direct survey regression estimator Yw + (X — XL@w> ,

of the overalf?gtal Y, where .
n;
Y, = Z Z WijYij
i=1 j=1
is the direct estimator of the overall total Y. They used the Gibbs sampler to obtain
samples of the estimates of the regression coefficients and error-term variance parame-
ters. However, because of the awkwardness of the joint posterior density, it was difficult
for [You and Rad (2003, 2002a) to perform complete Bayesian analyses. Our work is
different from the work of [You and Rad because we discuss a full Bayesian predictive
inference of the finite population means of small areas. Without transforming the data,
we show in Chapter 2 how to do a full Bayesian analysis to estimate the finite population

means of small areas; we also show this for multivariate outcomes in Chapter

Datta, Ghosh, Steorts, and Maples (2009) discussed several Bayesian benchmarked
estimators for area-level models. That is, they found the benchmarked Bayes estimator
of § = (él, o ,ég) of the small area means vector § = (6, ...,60,) such that

L
Z wié = t,
i=1

14

where t is either pre-specified from some other source or ¢t = sz’éi, and w; are the
i=1
weights attached to the direct estimators. They implemented two sets of benchmarking

constraints, one with respect to some weighted mean and another with respect to both

10



weighted mean and weighted variability. [Datta, Ghosh, Steorts, and Mapled (2009) de-
veloped a class of constrained empirical Bayes estimators for area-level models using
either internal or external benchmarking. They applied their results to produce model-
based estimates of the number of poor school-aged children at the state, county, and
school district levels. Their Bayes estimators are obtained by minimizing the posterior

expectation of the weighted squared error loss
é A
> $E [(Qi - 61)2|Q]
i=1

¢
with respect to the e;’s satisfying e, = Zwiei = t. Moreover, the ¢;’s may be the
=1

same as the w;, but this does not necessarﬁy have to be the case. They mentioned that
these ¢; may be regarded as weights for a multiple-objective decision process, that is,
each specific weight is relevant only to the decision-make for the corresponding small
area, who may not be concerned with the weights related to decision-makers in other
small areas. One advantage of their Bayesian approach is its ability to adjust to any
general Bayes estimator, linear or non-linear. This is a decision-theoretic approach to
benchmark small areas with only area-level data. It is interesting that they also showed
that the standard raking procedure arises as a special case from their procedure. Our
approach is different from the work of these authors because they do not make inference

directly about the finite population mean of an area.

Nandram, Toto, and Choi (2010) did a full Bayesian analysis of the finite popula-
tion mean of each area using the Scott-Smith superpopulation model (Scott and Smith,
1969)

Yij ZArz;-CJlNormal{Q—l—1/1-,02} yj=1,...,Nyyi=1,...,¢,

where 6 is an overall effect and the v; are area effects. Note that the nested-error
regression model of Battese, Harter, and Fuller (1988) used in this study is an extension
of the Scott-Smith model to accommodate covariates at the unit level. Similar to the goal
of our study, Nandram, Toto, and Choi (2010) wanted to benchmark the estimators of
the Y;, i = 1,...,£. In this case, Nandram, Toto, and Choi (2010) allowed a practitioner
to specify the finite population mean for all areas combined; one can estimate the finite

population mean for all areas combined and use that as the specified value ignoring the

11



variability. They included the benchmark constraint

N;

Z : yij:aN7

=1 j=1

where it is assumed that a is a fixed known quantity. If a is not known, one would need
to fit an independent model that does not distinguish the small areas to get a “precise”
value of a. Our approach is similar to Nandram, Toto, and Choi (2010), but we are doing

internal benchmarking, which is considerably more difficult.

Lastly, Datta, Day, and Maiti (1998) discussed a multivariate model for Bayesian
small area estimation. They implemented Bayes prediction of small area mean vec-
tors using the multivariate nested error regression model of [Fuller and Harter (1987).
Datta, Day, and Maiti (1998) developed a multivariate hierarchical Bayes approach to
predict the small area mean vectors based on the multivariate nested error regression
model

Y,i=1x;B+u;, (1.6)

where Y, is an g—dimensional row vector of observations on the variables for which
small area estimates are desired, z,; is a p—dimensional row vector of auxiliary variables
for which the small area totals (or means) are known, B is a ¢ X p matrix of coefficients,

and y,; are the g—dimensional row vector of errors. Our multivariate benchmarking

Bayesian model in Chapter Bl is similar to this model. Note that in (L),

Ui = Ui + €5,

v; ~ Normal (0, X,,) ,
e;; ~ Normal (0, ¥e.)

where v; is independent of ¢;; for all 7, j, k. They were interested in predicting

N;
V= Ni_l ZYUW
j=1

the finite population mean for the " domain, i = 1,2,...,¢. Datta, Day, and Maiti

(1998) also applied their model to estimate the finite population means of the crop (corn

12



and soybeans) data (Battese, Harter, and Fuller, [1988). They used Gibbs sampling to
generate their Monte Carlo samples using the full conditional distributions from the
joint posterior distribution, which is the same approach we implement in our numeri-
cal calculation. However, like Battese, Harter, and Fuller (1988), [Datta, Day, and Maiti
(1998) did not incorporate any means of benchmarking in their hierarchical Bayesian
model. Datta, Day, and Maiti (1998) observed some efficiency gains in the use of the
multivariate model over its univariate counterpart. One of the main difference of our
model with |[Datta, Day, and Maiti (1998) is the form of the joint prior imposed in their

hierarchical Bayes model. They used an improper prior of the form
7 (8, Beer Bow) ¢ |Sou| /2 [See| 2.

This type of prior belongs to the family of inverse-Wishart distributions. (Gelman (2006)
discussed the problems with the inverse-gamma family of “noninformative” prior distri-
bution for the variance of the area effects in the two-level normal data. The inverse-
gamma(e, €) model is one of the commonly used improper prior of the scalar area effects
variance. This prior does not have any proper limiting posterior distribution. As a result,
posterior inferences are sensitive to €. It cannot be comfortably set to a low value such as
0.001. This problem can generalize in the inverse-Wishart family of prior distributions.
Despite the use of these improper inverse-Wishart priors, [Datta, Day, and Maiti (1998)
obtain a set of necessary and sufficient conditions for the propriety of the posterior dis-
tributions corresponding to this class of improper priors on the components of variance
matrices. As a difference with the work of [Datta, Day, and Maiti (1998), we use a more
specific form of prior for the distribution of the area effects v to alleviate some of the
issues that |Gelman (2006) brought up in the use of the “noninformative” prior distribu-
tions for variance components. Our prior distribution is more specific that it makes the
numerical computations easier, but it also led to a more complex joint posterior distribu-
tion. To compare the performance of the multivariate approach with the usual univari-
ate approach they analyzed the survey and satellite data of [Battese, Harter, and Fuller
(1988). Their simulations show that the multivariate approach may result in substantial

improvement over its univariate counterpart.
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1.4 The Benchmarking Constraint

Many surveys use differential probabilities of selection (e.g., probability propor-
tional to size) and sampling weights are used to correct for other sources of bias as well.
Sampling weights are used to adjust for oversampling of certain populations; sampling
weight adjustment for noncoverage and nonresponse. Generally, models used in small
area estimation do not make use of the unit level survey weights. For instance, the Third
National Health and Nutrition Examination Survey (NHANES III, [1996), has a large
oversampling of young children, older persons, black persons, and Mexican-Americans
because there are many nonrespondents among children and adolescents, and blacks
and Mexican-Americans are selected with higher probability. To account for this com-
plex survey design, including oversampling and survey non-response, sampling weights
were assigned to each sampled individual; see NHANES III (1996) for more details. To
achieve design consistency, it is essential that sample weights be incorporated into the
model. Otherwise, it is likely that users will misinterpret the results. The sampling
weights are used to produce estimates of population means and standard errors of the

mearl.

For ¢« =1,...,0, j = 1,...,n;, denote the sampling weight corresponding to
the sampled unit Y, a8 wij. Note that the sample weights for the nonsampled units are
not generally available for secondary data analysts. So, the j* sampled unit within
the i"" area must represent w;; units in the entire population including itself. Thus, for
1=1,...4, Zwij = N,. The sampling weights can be w;; = N/n, i =1,...,(, j =

j=1
1,...,n; (e.g., proportional allocation), or w;; = N;/n; for i =1,...,¢, j=1,...,n,

(e.g., simple random sampling within areas).

To estimate the small area mean Y;, we want to determine a standard predic-
tor ?Z—, 1 =1,2,...,0. A practitioner might want to use design-consistent estimator to
predict Y;. Given fixed known sampling weights wij, 1=1,...,0, j=1,...,n; a di-
rect design-based estimator of the small area mean Y, that is popular among survey

practitioners is the Horvitz-Thompson estimator,
~ ijYij
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If the design is simple random sampling within areas, that is, w;; = N;/n;, then a design-

consistent estimator of Y; is the #** sample mean ;.

But, as mentioned earlier, the problem with the use of direct design-based esti-
mators is that the sample sizes for the small areas might be too small and these standard
survey estimators would yield unacceptably large standard error. This enforces the use
of model-based estimators. However, model-based estimators of the small area means
based on unit level model, such as a nested error regression model, do not use the unit
level survey weights, w;;, attached to y;;. Ignoring the sampling weights when using a
unit level model can lead to a small area estimator that is not design-consistent. One
way to achieve design consistency when using model-based estimators is by incorporating
the design-consistent estimator in the model as a benchmarking constraint.

For the area level models, a common form of the benchmarking constraint is,

¢ ¢
sz@i = sz@a (1.7)
i=1 i1

where wj is the area level sampling weights, @Z are the small area predictors (i.e., model-
based), and 7, are the direct area estimators (i.e., design-based). [Wang, Fuller, and Qu
(2008) used (L7) as the restriction satisfied by their proposed EBLUP estimator for
small area mean. In an alternative way of estimating the small area means that satisfy
(L), they included the fixed survey weights w; in the constraint as part of the covariates
in their augmented area level modelg. . ,

It is reasonable to expect Z Zyij = Z Nzﬁz Thus, because Zwii = N;, a

i=1 j=1 i=1 j=1
possible benchmarking constraint is given by

¢ N; J4 n;
DD v =) wii (1.8)
i=1 j=1 i=1 j=1

Note that both sides of (I8 are random, thereby providing an internal benchmarking.
For instance, in the left-hand side of (L)), y;;, i =1,...,¢, j = 1,...,n,, are observed,
and y;,@ = 1,...,0, 5 =n; +1,...,N;, are to be predicted using Bayesian predictive
inference. If a simple random sampling design is assumed, one possible form of the

sampling weight w;; is given by w;; = N/n, for i = 1,...,¢;5 = 1,...,n;. Thus, the
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benchmarking constraint in (I.8]) simplifies to

¢

1 ¢ N; 1 n;
EPMIIEE I3 o an
i=1 j= =

i=1 j=1
Note that (L9) can be written as

LN, - n;y;
N :Z n

i=1 i=1

Nandram and Tota (2010) used (L) as the benchmarking constraint in the nested-error

regression model with unequal sampling variances.

However, note that 7, is not the only choice for an overall direct estimator of Y.

A practitioner could use other values as the direct estimator of Y. For instance, one can

¢ N
use the constraint Z Z Yi; = Na, where a is a fixed known constant to be specified
i=1 j=1
by the practitioner. The value of the benchmark constraint can be specified either by

using a direct estimate of the finite population mean of the large area based on some
auxiliary data or by determining a model that would give a value of a with relatively
small standard error; for example, [Nandram, Toto, and Choi (2010) used a fixed and
known value of a. However, we focus on the benchmark constraints, where both sides of
the equation are random. This avoids the uncertainty in the specification of a, and in

fact, 7, is a design consistent estimator of Y.

In Chapter Bl we incorporate ¢ benchmarking constraints

L N; L ny

Zzywk = Zzwijyijka k=1, 2,...,q. (110)

i=1 j=1 i=1 j=1

Once again in these ¢ constraints, the w;; is the sampling weight of the 5% unit in the
it" population. Because the sampling weight are unit-based, the sampling weights are

the same for all ¢ benchmarking equations.
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1.5 Applications

We apply our results to two illustrative examples. Our first example involves crop
data based on the survey and satellite data conducted by the United States Department
of Agriculture (USDA). The second example is from one of the large-scale national
studies of the US government, the National Health and Nutrition Examination Survey
(NHANES III), which was conducted by the Center for Disease Control, National Center
for Health Statistics (CDC-NCHS). These applications show the diversity of the usage

of the results of our study.

1.5.1 Corn and Soybeans Hectares Data

Knowledge of the area under different crops is important to the U.S. Depart-
ment of Agriculture. Different surveys have been designed to estimate crop areas for
large regions, like crop-reporting districts, individual states, and the whole United States.
However, prediction of crop areas for small domains such as counties has been one of the
problems of the National Agriculture Statistics Service (NASS) because of the lack of
enough available data from farm surveys with small areas. In recent years, the United
States Department of Agriculture (USDA) has been investigating the use of LANDSAT
satellite data in association with farm-level survey observations, both to improve its es-
timates of crop area for crop-reporting districts and to develop estimates for individual
counties (Battese, Harter, and Fullen, [1988).

Most of the corn grown in the United States comes from the Corn Belt, which
consists of ten major states; lowa is the largest corn-producing state in the U.S.. Towa
is also among the major states for soybean production. Producers in the U.S. feed most
of the corn crop to cattle, hogs, sheep and poultry. The rest is used for processed food,
industrial products such as cornstarch and plastic, renewable energy and ethanol. Corn
is the U.S. largest crop, both in volume and value. Iowa has produced the largest corn
crop over the current decade. In an average year lowa produces more corn than most
countries (e.g., three times as much corn as Argentina). Soybean and corn are grown
in rotation in Iowa. Soybean is a healthy and rich source of protein for both animals
and humans (e.g., tofu). Nearly all soybeans are processed into oils, many industrial
products such as lubricants, solvents, cleaners and paints. Soybeans are also used for

animal feed, biodiesel, cleaning product and candles. Thus, it is important to study the
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production of corn and soybean in Iowa; in fact, corn and soybeans are the main products
of the “Breadbasket” or “Grain Belt” of the United States. The “Breadbasket,” also
known as the Granary, of the country is a region which, because of richness of soil and/or
advantageous climate, produces an agricultural surplus which is considered vital for the
country as a whole. “Grain Belt” is an informal name for the prairie-region states across
the Midwest that produces a substantial amount of the world’s grain and soybean. This
region includes the state of lowa, from which our data is based upon. The National
Agricultural Statistics Service (NASS) has an enormous amount of data, but these data
are highly confidential and are kept under strict surveillance.

In this application, we are interested in predicting the mean crop (corn and
soybeans) acreage for a number counties (small area) in north central Iowa using the
enumerative survey and satellite data (see Battese, Harter, and Fuller, [1988). Corn and
soybeans are important crops grown in the United States and they are of enormous
support to the U.S. economy. Our variable of interest y;; is the number of hectares
of corn (or soybeans) in the j* segment of the i county. This study used a simple
random sampling within county (i.e., no weighting for individual sampled unit); we
have taken the survey weight for sampled unit j in area i as w;; = N/n, for all i =
1,...,¢,7=1,...,n; A strong linear relationship between the reported hectares of corn
(soybeans) and the number of pixels of corn (soybean). Thus, we use a linear regression
model to describe the relationship between the survey and satellite data and apply it
to predict the mean crop area per segment in the sample counties. Table [L.I] presents
the sampled crop data from the 1978 June Enumerative survey and LANDSAT satellite
data. Table [Tl is taken from [Battese, Harter, and Fuller (1988). Table [L.T] provides
information from n = 37 sampled segments (units) in the ¢ = 12 counties. Observe that
the sample size n; (i = 1,...,¢) within each county ranges from 1 to 6, while the total
number of segments NN; (population size) within each county ranges from 395 to 965.

The population mean pixels of corn and soybeans were also provided in the data.

1.5.2 Body Mass Index and Bone Mineral Density Data

The National Health and Nutrition Examination Survey (NHANES III) is one
of the surveys used to assess an aspect of health of the United States population. The
general structure of the NHANES IIl sample design is the same as that of the previous
NHANES. Each of the surveys used a stratified, multi-stage probability design. The
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NHANES III sample represented the total civilian, noninstitutionalized population, two
months of age or over, in the 50 states and the District of Columbia in the United States.
Two of the variables in this survey are body mass index (BMI) and bone mineral density

(BMD), which are used as measures to diagnose obesity and osteoporosis respectively.

Obesity is one of the leading public health concern in the United States. Obesity
is associated with increased health-care costs, reduced quality of life, and increased risk
for premature death. Body mass index (BMI) is calculated from a person’s weight and
height. It provides a reasonable indicator of body fatness and weight categories that
may lead to health problems. “Overweight” and “obese” are defined by the person’s
body mass index (BMI). An adult with a BMI between 25 and 30 is classified as over-
weight, while an adult with a BMI of 30 or greater is classified as obese. People who are
overweight are at increased risk for diabetes, heart disease, stroke, high blood pressure,
arthritis, and cancer. Reports in the last two decades showed that the prevalence of
overweight and obesity in the United States remains high. There is little indication
that the prevalence is decreasing in any subgroup of the population. Given the overall
high prevalence of obesity, effective policies and environmental strategies that promote
healthy eating and physical activity are needed for all populations and geographic areas,
but particularly for those populations and areas disproportionately affected by obesity.
This makes the design of the NHANES III and the study of obesity considerably inter-
esting. See Nandram and Choi (2005, 2010) for extensive analysis of the BMI data.

On the other hand, osteoporosis is a disease that causes bones to become thin
and weak, often resulting in fractures (broken bones). A broken bone can interfere with
one’s daily activities and can have serious consequences. For instance, once an elderly
person suffered a fracture, it can negatively impact the standard of living and may lead
to permanent disability. It has been found that the lower the bone mass, the greater
the risk for fracture. Low bone mass, often called osteopenia, is a condition in which
the bone density or bone thickness is lower than the average bone density of healthy
adults of the same gender. The development of osteoporosis or osteopenia is a major
concern as it is estimated that as many as four out of every ten women over the age of
50 in the USA will suffer a bone fracture, to the wrist, spine, or hip in their lifetime.
Bone mineral density (BMD) is used to characterize osteoporosis. Women who suffer

from osteopenia have a 1.8 fold increase in the likelihood of suffering a bone fracture
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compared to a non-osteopenia person, whilst this increases to four times the risk if a
person has osteoporosis. Research also showed that depression is a possible risk factor
for low BMD. The World Health Organization (WHO) uses T-scores to define normal
bone mass, low bone mass (or osteopenia), and osteoporosis. If a person has a BMD
T-score between —1 and —2.5 then the person is diagnosed as having osteopenia, while
a patient has a full blow osteoporosis if the BMD T-score is —2.5 or less. It is estimated
that the risk of suffering a bone fracture doubles with every decrease in BMD T-score
of 1.

In this example, we study the body mass index (BMI) and bone mineral density
(BMD) of the adult domains in the state of New York. We define the adult domains
as the Mexican-American gender domains of the population over 20 years of age in
five counties of the state of New York with over 500,000 people. We obtain the sample
data from the Third National Health and Nutrition Examination Survey, (NHANES 111,
1996). We have five counties and two gender groups (male, female). Hence, we get
¢ = 5 x 2 = 10 adult domains, representing the small areas for this example. We
model BMI and BMD both as a linear function of age, although this is a very rough
approximation for the age group. As in the crop data example, we note that there is
a very large difference between the sample sizes and the population sizes. The sample
size n; (i = 1,...,¢) within each domain ranges from 1 to 8, while the population size N;
within each youth domain ranges from 6 to 150. The information about the population
sizes of the adult domains were obtained from the United States Decennial Census
(2000). We used the information from the |Census to also calculate the population total
age by multiplying the population size with the median age of the different age groups.
Table gives the data for BMI and BMD. We include in Table the information on
the survey weights provided by NHANES III.
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Table 1.1: Data for the crop data from Enumerative Survey and LANDSAT

County Number of segments Reported Hectares Number of Pixel Mean Pixel
Sample County Corn  Soybeans | Corn  Soybeans Corn  Soybeans
1 1 545 165.78 8.09 374 55 | 295.29 189.70
2 1 566 96.32 106.03 209 218 | 300.40 196.65
3 1 394 76.08 103.60 253 250 | 289.60 205.28
185.35 6.47 432 96
4 2 424 116.43 63.82 367 178 290.74 220.22
162.08 43.50 361 137
5 3 564 152.04 71.43 288 206 | 318.21 188.06
161.75 42.49 369 165
92.88 105.26 206 218
6 3 570 149.94 76.49 316 221 | 257.17 247.13
64.75 174.34 145 338
127.07 95.67 355 128
7 3 402 133.55 76.57 295 147 | 291.77 185.37
77.70 93.48 223 204
206.39 37.84 459 7
8 3 567 108.33 131.12 290 217 | 301.26 221.36
118.17 124.44 307 258
99.96 144.15 252 303
140.43 103.60 293 221
9 4 687 98.95 88.59 206 999 262.17 247.09
131.04 115.58 302 274
114.12 99.15 313 190
100.60 124.56 246 270
10 5 569 127.88 110.88 353 172 | 314.28 198.66
116.90 109.14 271 228
87.41 143.66 237 297
93.48 91.05 221 167
121.00 132.33 369 191
11 5 965 109.91 143.14 343 249 | 298.65 204.61
122.66 104.13 342 182
104.21 118.57 294 179
88.59 102.59 220 262
88.59 29.46 340 87
165.35 69.28 355 160
12 6 556 104.00 99.15 %1 9291 325.99 177.05
88.63 143.66 187 345
153.70 94.49 350 190

See [Battese, Harter, and Fulley (1988).
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Table 1.2: Data for the adult domains in the state of New York from NHANES IIT and Census
2000

Domain Sample Population Survey
/ Size, n Size, N BMI BMD | Age | Weights, w
1 1 6 19.3  0.965 | 30 2178.11
2 1 112 26.8 0.983 | 39 4400.50
3 9 96 22.4  1.003 | 28 2913.42

24.2 0920 | 44 3061.85
20.1 0.653 | 20 1970.84
22.0 0971 | 20 1970.84
25.1 0.900 | 20 1970.84
22.5 0.880 | 22 1970.84
4 8 150 21.4 0.806 | 26 1970.84
24.6  1.097 | 29 1996.15
25.4  1.206 | 34 1996.15
26.4 0.809 | 35 2097.44
28.5 1.003 | 23 2320.99
5 4 39 21.9 1.400 | 20 2274.38
20.3 0916 | 23 2513.96
21.3 1.032 | 28 2274.38
6 9 6 21.3  0.727 | 24 3524.08
24.1 0.948 | 30 1872.93
24.5 0.934 | 20 3609.89
7 2 118 28.8 0.792 | 34 3609.89
23.6 0.834 | 23 2389.98
19.5 0.856 | 26 2389.98
8 5 101 20.0 0.726 | 28 2396.26
19.3  0.646 | 34 2396.26
24.5 0.822 | 36 2322.29
349 0923 | 23 1952.89
9 3 142 253 0875 | 35 1952.89
23.2  0.609 | 48 1605.64
23.1 0.865 | 28 1865.75
10 2 37 29.1 0.890 | 29 2062.29

See NHANES 111 (1996).
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Chapter 2
Univariate Benchmarking

In this chapter, we discuss the univariate Bayesian benchmarking model. We
have introduced our Bayesian version of the Battese, Harter, and Fullen (1988) nested-
error regression model. With the benchmarking constraint, our model would include
both covariates and survey weights at the unit-level. We show in this chapter how to
incorporate the constraint into the model. Given the sampled data, we use Bayesian pre-
dictive inference to estimate the finite population means of small areas. We analyze the
two examples and perform some simulation studies to characterize the resulting model.

Let us begin with some basic notations we will use.

We denote by 1,, a column vector of size m with each of its elements being unity,
the identity matrix of size m by I,,, and the r x s matrix with each of its elements being
unity by JI. If r = s, we write J,. Also, let Z; be the n x ¢ block diagonal matrix with
1, on the it" diagonal, i = 1,2,...,¢, Z,, be the (N —n) x £ block diagonal matrix with

1y, _p, On the ith diagonal, i = 1,2,...,/, and Znsy, s the (N —1—n) x{ corresponding
block diagonal matrix with 1, = on the ith diagonal entry, i = 1,2,...,/ — 1, and

1n,_n,—1 On the (" diagonal entry.

We add benchmarking constraint (L8] onto our Bayesian version of the nested

error regression model of Battese, Harter, and Fuller (1988).
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2.1 Univariate Nested-Error Regression Model

The Bayesian benchmarking model (BM) is

l N; L U
yij|7{> @7 0_2 Zﬁ’d Normal {5523@ + v, 02} 5 Z Z Yij = Z Zwijyija (21)
i=1 j=1 i=1 j=1
vilo?, p % Normal {O, (%) 02} , 0<p<l, (2.2)
—p
1
D (@,JQ,p) X — o? > 0. (2.3)

9
o2

Conditional on the benchmarking constraint, we derive the distribution of the

/
data. Let Yy = <y5’, Q"S(N)/> , where Yns is the vector of N —n—1 unobserved y;; val-

/
ues excluding the N/ unit y, v, from the ¢*" area. That is, Yns(wy = (y;wl, e ’%w(M)

with Yns, = (Yinit1, - - - i) fori=1,2... ¢ —1, and Ynse(N) = (Yengr1s - - - S YeN,—1) -
¢

¢ N; n;

Also, anticipating a transformation of y,,, let ¢ = Z Z Yij — Z Z w;;Yi;. Further-
i=1 j=1 i=1 j=1

more, define p;; = zi;8+v;, fori =1,...,¢, j=1,..., N;, and write yp = (g(N)’, /%NZ),,

where vy = (ljs/,lfns(zv)/)/- We write the n x 1 vector of sampling weights as w =
(wlla s 7W€n5) : LaSt1Y7 write ui* - (('L) - ln) y @ = (%*,7 _~/N—n—1),7 and
D ( 1 > [ (@*@*/> - (@*1/(1\7_1_”)) ]
*/ ok */ % :
e Y A I (e Jin-1-n)

Note that we can also write the matrix D in terms of the vector a as follows

aa’
1+ d'a’

Lemma 2.1. Under the benchmarking model, conditional on the benchmarking con-

straint,

Q(N)|,£L,U2,¢ = (0 ~ Normal {H(N) + < —— ) (W,Ne — @/H,(N)) a,0? (Iy_1 — D)} ,

1
w¥w* +w*'l

~n

and

. x/ /
yZ,N[ - (';‘,j :ys - 1N7n71gns(1\7)
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Note that the multivariate normal distribution is a generalization of the
one-dimensional (univariate) normal distribution to higher dimension. A random vector
X = (X1, Xy, ..., Xk) has a multivariate normal distribution if the support of X is the
entire space R* and there exist a k—vector p and a positive-definite k& X k matrix ¥ such

that the probability density function of X can be expressed as

Fix (@) = ——— exp {—%(;{7 )T (2 - g)} ,

2ﬂ_kz/2’2’1/ 2
where |X| is the determinant of X. This expression reduces to the density of the univari-

ate normal distribution if 3 is a scalar (i.e., a 1 X 1 matrix).

Proof.

First, consider the slightly simpler notation in which Zj|az, o 24 Normal (ag,0?), k=
N

1,2,..., N, subject to the constraint sz = Zwkzk. Make the transformation ¢ =
k=1 k=1

sz - Zwkzk with 73, ..., Zy_1 untransformed. We can show that the jacobian is

1 and the JOlIlt distribution is given by

p (217 <3 N1, ¢|Q¢,U2) =

1\ M2 L [
2
(27m2) xp| —53 Z (21 — o)™ +

N-1

where zy = ¢ — Z 2K+ Z wrzi. But since our distribution is subject to the constraint,
k=1 k= L
N n N-1
Z 2 = Zwkzk, =zy+ Z 2L — Zwkzk = 0. Equivalently, zy = Zwkzk — Z
k=1
Therefore, the joint density is p (21, ..., zn_1, ¢ = 0|, 0%). There is some simplic-
ity when we normalize this density over (z1,...,2y_1) to get p(21,...,2y_1]|¢ = 0, a, 0?),

which is the joint density we use. Hence, conditional on the benchmarking constraint,

we have the distribution

1
Z v, 0%, p=0n~ Normal{ Q) + (w w) (aN — @/Qé(N)) a,0 (In_, — D)} ,
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where any = (o, ... ,an_1)". Now, match the original vector y = (gs’, yns’)/ with
(21, -+ s Zns Zngly - - -5 2N) , as well as p with @ = (g(N), aN) , to obtain the desired result.

Lemma [2.T]is a simple result that incorporates the benchmark constraint into the
distribution of the data given the parameters. From the resulting density in Lemma 2.T],
the addition of the benchmark constraint into the model causes the y;;’s to be correlated.
It is interesting that the sample values are negatively correlated and nonsample values are
also negatively correlated but a sample value is positively correlated with a nonsample
value; this will reduce the variance of the sum of the nonsample values. Theorem 2.4]
has the conditional distribution of Yns () given Ys and other parameters. Note that
ye,n, inherits its distributional properties from Q(N)| /NL,O'Z, ¢ = 0. Henceforth, we drop

the notation ¢ = 0, but it must be understood that all distributions are conditional on

¢ =0.

Remark 2.2. Applying the marginal distribution property of the multivariate normal
density in Lemma 2.1, we find that y,|v, 5, o? follows a Normal distribution with

E [?jswa@aﬂ = (.0 + C.v and Var [gs|y,@, 02} =o?[I, - W],

where e
wrw
W = -~
wrw* + WL’
C, = [I, — W] X, + ch (U Xns)
x n S %)*/@*_’_%}*/ln ~N—mn“*ns)»
and i}
C, =11, —W]|Z, = o s

From Remark 2.2] the likelihood function is given by

p (yslv, B,0%)

(Ui>/ exp {_% (g — [+ Ca)) 11 = W] (3 = [Cf + Ct])] }

Now, applying Bayes’ theorem on p (gs|y, B, o?) with the distribution of v|o?, p in (2.2,
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and prior distribution given in (2.3]), we get the joint posterior density

1 1+(n+£)/2 1 — £/2
W(y7ﬂ7027p|ys) (08 (_2> <—p>
~ ~ g

p

1

<o ~gz () [0 B0 (- C0) B (v~ B CA (- C.9)] |

<o {5z (50 [t - ) (a7 v ) - )],

1_ -1
where A = {(_p) (I, — W)] and B = I, + C,AC,.
p

Lemma 2.3. Assuming that 0 < p < 1 and the design matrix is full rank, under the

benchmarking model the joint posterior density 7 (y, B, o2, p|ys) is proper.

Lemma [2.3] shows that the addition of the benchmarking constraint to the model
does not affect the propriety of the joint posterior distribution. To prove Lemma 2.3

we use the multiplication rule
m (v, B,0% plys) = m (¥16, 0%, p,ys) m2 (Blo?, p,ys) 7 (0210, ys) ma (plys)

and show that m (v|3,0%, p,ys) . m (Blo? p.ys), 73 (0%]p,ys), and my (plys) are all
proper densities.
Proof.

Recall that the joint posterior density is

1 1+(n+0)/2 1— 0 £/2
W(y7@7027p|ys) X (F) <—>

p

X exp {—2%2 (%) (v =B CLA(y, = C.8))'B (v = B CLA (3, - Cu9)) | }

<o { - (20 [ - 0 (47 + ) (- )] .

1_ -1
Taking 0 < p < 1, it is easy to show that A = [(_,0) (I, — W)] is positive definite.
)
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Therefore, B = I, + C.LAC, is positive definite. First, it can be shown that

v|3,0% p,ys ~ Normal (B_lC;A (ys — C:f) . 0 <1Tpp> B_1> . (2.4)

Integrating out v from 7w (1~/, B, o2, p\ys) , we get

o ()0 s (59) [ 99}

X exp {_T; (?) [gsl (D — DCxV_lC;D) gs} } ,

and it can be shown that
@‘02,p, ys ~ Normal {@, o? (%) V_l} , (2.5)

where @ =V-'C,Dy,, D= (A" + C,C")~", and V = C.DC,. Then, integrating out 8

from 7 (3,07, plys) , we have

) 1\ LH(n-p)/2 P P2 1 \V2 /1 \1/2
e () () (w) ()

X exp {_T; (?) [gsl (D — DC’xV_lC;D) ys} } ,

and it can be shown that

-p G
o 2|p, ys ~ Gamma (n ) p’ 5) : (2.6)

]_ —
where G = (Tp) [ys' (D - DC,V~-'C!D) gs} :

Finally, integrating out o from = (o2, plys) , we get

n/2 o
i (plys) o (ﬁ) (V)"2(B) [y (D — DCVeiD) y) ) (2)

To complete the proof, we showed that 7 (p|g~/s) is proper for all p, 0 < p < 1. Because A

is a function of p, the matrices B and D are functions of p. The distribution of m4 (p\gs)
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is proper as long as p is set to a value strictly between 0 and 1, say 0.0001 < p < 0.9999. R

To be able to make inference for Y; (i = 1,...,¢), given the sample observations
Ys, a possible approach is to sample from the distribution ?Z-\gs. Theorem 2.4 below

gives us the Bayesian predictive distribution of Y|y,.

Theorem 2.4. The distribution of Yi\gs is

p (Yilys) = /p (Yily, 8,02, ys) (v, 8, 0%|ys) dvdBdo?, (2.8)
where under the benchmarking model,

7i’y7@7 027ys

~ Normal {flysl + (1 - fl)znsl,@ (1 - fl) Vi + Al? N (1 - fl) Z} ) (29)

11— fz % N; —n,; .
WhereAi:<N_n> [%j/gs_< )@ (1{]Vnn5)yj|and‘/;,:1_<N_n)al:
1,...,70.

Proof.
Note that Y; can be written as
— 1 _ _ 1 , , ,
Y, = ﬁl [mysl + (Nz - nZ) ynsz] - FZ (1nzysl + 1Ni—ni,‘gn8i> i=12...,¢

Hence, to prove Theorem 2.4, we need the distribution of ys and y,s. Using the condi-
tional distribution property of the multivariate normal density on Lemma 2.1l we find

that yns ¥, 3,07, ys also follows a normal distribution with

E [ynS(N) |y7 @7 027 gs} =

1 1 1-n
(N — n) Ly 1 nw*ys + {X"S(m - <m> TN X"S] g

1 N—1-n
+ |:Zns(N) - (m) JN—n Zns:| v,
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and

1
Var gnS(N)|y7@70-2a?~J8] =0’ |:]N—1—n - (N—n) JN—l—n:| .

The distribution of Y;|v, B, o2, ys follows from these results and the following expression
-1
_ — 1
for Y, from the benchmarking constraint Y, = E (l;”gse —i—cg*’ys - Z l,]\[inignsi> .
i=1
Note that the distribution of Y;|v, @,O'Q,gs does not depend on p. From Lemma P.3]

o (p|gs) is proper. Thus, 7 (y,@, 02|g5) = /7r (y, B, 02,p|ys) dp is proper. [ |

Thus, we can compare the two distributions of Y|, B, o2, ys without the bench-
marking constraint in (IL5]) and with the benchmarking constraint in ([2.9) to observe
the effects of the benchmarking constraint on the distribution of the finite population
mean. First, we see an overall adjustment A;,7 = 1,2,...,¢, to the expected value in
the distribution of Y|, B, az,gs under the benchmarking model, with respect to the
nonbenchmarking model. Note that unlike Nandram, Toto, and Choi (2010), where the
overall adjustment is constant throughout all areas, here the adjustment A; is different
for each small area, since f; depends on the sample and population sizes in each area;
covariates are not included in INandram, Toto, and Choi (2010). Furthermore, observe
that in the benchmarking model, the variance of the finite population mean in each

small area is reduced by different amounts V;,7 =1,2,... /(.

2.2 Posterior Inference

We use Bayesian predictive procedure to make posterior inference about ?i]ys.

Our approach is to combine samples from the posterior distribution v, 3, o2, p]ys, and
the distribution of Y;|v, B, o?, Yy, via Theorem 2.4

The proof of propriety of the joint posterior density provides a prescription of how

to draw samples from the posterior density. Note that by the multiplication rule,

™ (y7@702ap|ys) =T (Hl@agz»P» ys) 2 (@lo-Zapa ys) 3 (0'2|,07 gs) Ty (p|ys) .

Since the conditional densities m (v|3,0%, p,ys), m2 (6l0”, p,ys) and 73 (0?|p,ys) are
known distributions [see ([2.4)), [2.5) and (2.6)], we can draw samples from 7 (v, B,0?, p|g~/s)

using the composition method. We would first draw samples from ply, [see ([2.7)]using a

30



grid method. With each sample of p, we draw a sample from o~2|p, Ys- Then, with the
resulting pair of values of p and 02, we draw a sample from B |02, p, Ys- Also, with the
sampled values of p, 0%, and 3, draw values of v from v|3, 6%, p, ys. Once the parameters
are obtained, we use them to draw values of the finite population means for each of the
areas from the distribution of Y;|v, B, o2, ys; see Theorem 2.4l We apply this algorithm
to draw samples in both the nonbenchmarking and benchmarking models.

To facilitate inference, we generate M = 10,000 iterates from the sampling
method. We use 200 grids in (0,1) to approximate my (p|g5). This is a reasonable
approximation because the width of each grid is 0.005. It is convenient to use the grid
method because p is bounded in the interval (0,1), and the function my (p|ys) is easy
to compute for each p. It is interesting that we do not need to use Markov chain Monte

Carlo (MCMC) to fit the nested error regression model, with or without benchmarking.

2.3 Applications

In this section, we present two illustrative examples to compare the benchmark-
ing model with its nonbenchmarking counterpart. We summarize the results using the
posterior mean (PM), posterior standard deviation (PSD), and the 95% credible inter-
val (Int) of the finite population mean of each area. In our first example, we apply our
model to estimate the corn and soybeans hectares from the 1978 Enumerative survey
and satellite data. We model the number of hectares of corn (or soybeans) y;; using the
nested error regression model of [Battese, Harter, and Fuller (1988) with two covariates
(p = 3). That is, z;; = (1, 241, xijg)/ , where z;;; is the number of pixels of corn, and ;o
is the number of pixels of soybeans. Information from n = 37 sampled segments (units)
in the £ = 12 counties are available. The sample size n; (i = 1, ..., ¢) within each county
ranges from 1 to 6, while the total number of segments N; (population size) within each
county ranges from 395 to 965. The population mean pixels of corn and soybeans were

also provided in the data.

In our second example, we estimate the body mass index (BMI) and bone mineral
density (BMD) of the adult domains (gender groups of Mexican American population
over 20 years). Note that for the enumerative survey and satellite data the design is self-
weighting within areas, but for the BMI and BMD, there are differential probabilities

of selection (i.e., varying sampling weights). See Section to learn more about the
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background of these two examples.

2.3.1 Corn and Soybeans Hectares Data

Table 2.1l shows that the posterior means from the two models are mostly the same,
with a slight shifting in the posterior means from NBM to BM. These estimates from
NBM are similar to those in [Battese, Harter, and Fullen (1988). Notice too that there
is a slight increase in precision in BM, relative to NBM. In Table 2.1l the posterior
standard deviations (PSD) in BM for most counties in both crops (corn and soybeans)
are smaller than the PSDs in NBM; with the exception of the PSD of County 12 for
soybeans in the NBM. These decreases in the PSDs are also reflected in the 95% credible
intervals in Table 2.l However, notice that the gains in precision observed are not
significantly large. There are even few counties or domains where the NBM has smaller
posterior SD than BM. If the values of n; were more comparable to N;, larger gains in
precision in the benchmarking model could be expected. From Table .1l the means

‘ ¢
for the corn (soybeans) data are N~ ZN@i = 120.32(95.35) = N ! ZNiPM,-(BM),
i=1

1=1
L

but N1 ZNZ»PMi(NBM) = 119.67(96.87). That is, the value of the overall posterior

=1
mean from BM is equal to the sample mean of the data, but that of NBM is not
equal. This observation reflects the benchmarking constraint incorporated into BM. To
further assess the performance of BM over NBM, we looked at the distance between the

direct estimators y, and the PM,; from both NBM and BM. As a summary measure, we
¢
computed the shrinkage SHR = Z (PM; —7,)*. For the corn data, SHR(NpMm) =

i=1

81.05 and SHR ) = 80.84. On the other hand, for the soybeans data, SHRpy) =
92.81 and SHRgar) = 91.03. For both corn and soybeans data, we find that BM has a
slightly lower shrinkage than NBM, indicating that BM is slightly more design-consistent

than NBM. We use box plots to show the general features in Figure 2.1l
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Table 2.1: Comparison of NBM and BM using posterior means (PM) and the posterior stan-
dard deviations (PSD) and 95% credible intervals (Int) for the finite population mean (Y') by
county (area) of the corn and soybeans hectares data

Corn
Nonbenchmarking Benchmarking

County Sample  Population Direct Posterior Credible Posterior Credible

Size Size Estimate Mean SD Interval Mean SD Interval
1 1 545 165.78 | 123.47 9.32  (105.72,143.26) 124.04 8.32  (108.40,142.34)
2 1 566 96.32 | 124.20 9.28  (106.42,143.61) 124.89 8.22  (109.09,142.29)
3 1 394 76.08 | 110.95 10.04 (88.68,128.66) 111.68 9.34 (90.38,127.25)
4 2 424 150.89 | 114.16 8.37 (96.38,130.14) 114.74 7.83 (97.84,129.33)
5 3 564 158.62 | 138.82 8.37  (123.69,156.10) | 139.31 7.95 (125.88,156.42)
6 3 570 102.52 | 109.78 7.66 (95.60,126.05) 110.48 6.83 (98.04,124.89)
7 3 402 112.77 | 116.05 7.20  (101.02,129.52) 116.51 6.72  (102.67,129.35)
8 3 567 144.30 | 122.90 7.20 (108.76,137.60) | 123.46 6.49 (110.69,136.80)
9 4 687 117.59 | 112.07 7.00 (98.78,126.74) 112.74 6.33  (101.27,126.04)
10 5 569 109.38 | 123.99 6.25 (111.29,136.04) | 124.55 591 (112.29,135.69)
11 5 965 110.25 | 111.71 6.96 (97.67,124.48) 112.36 6.47 (98.79,123.43)
12 6 556 114.81 131.25 5.92  (119.35,142.97) 131.69 5.69  (120.05,143.14)

Soybeans
Nonbenchmarking Benchmarking

County Sample  Population Direct Posterior Credible Posterior Credible

Size Size Estimate Mean SD Interval Mean SD Interval
1 1 545 8.09 78.76  11.27  (55.99,100.120) 77.31 10.33 (56.75,97.29)
2 1 566 106.03 94.34  10.92 (72.74,115.87) 92.77 9.98 (73.61,112.99)
3 1 394 103.60 87.71  10.70 (66.48,108.55) 86.20 10.19 (65.32,105.61)
4 2 424 35.15 82.04 10.09 (62.09,101.88) 80.66 9.39 (62.03,99.08)
5 3 564 52.47 67.15 7.93 (51.97,83.16) 65.46 7.51 (50.53,80.26)
6 3 570 118.70 | 113.83 7.34 (99.71,128.24) 112.32 6.91 (98.91,125.91)
7 3 402 88.57 97.23 7.63 (82.15,112.27) 95.95 7.41 (81.48,110.43)
8 3 567 97.80 | 111.93 7.60 (96.72,126.95) 110.41 7.20 (96.08,124.70)
9 4 687 112.98 | 110.06 6.54 (97.18,123.09) 108.39 6.16 (96.46,120.66)
10 5 569 117.48 | 100.36 6.13 (88.15,112.39) 98.97 5.98 (86.97,110.69)
11 5 965 117.84 | 118.28 6.48  (105.02,130.66) 116.73 6.07  (104.26,128.30)
12 6 556 89.77 75.04  5.65 (63.85,85.98) 73.53  5.75 (62.33,84.94)

2.3.2 Body Mass Index and Bone Mineral Density Data

The Third National Health and Nutrition Examination Survey, (NHANES III,

1996), has a complex sampling design and there are survey weights. The sample weights

n;

are calibrated such that Z wij = N;, i =1,...,L. To see the importance of taking into
j=1

consideration the sampling weights in small area estimation, we will fit the benchmark-

ing model to the BMI and BMD data without survey weights. that is, we implement the
use of the benchmarking constraint in [[.L9. This model will be called the self-weighting
benchmarking model (SBM). Thus, we will apply to the BMI and BMD data the three
models (NBM, SBM, BM). Note that while BM contains survey weights, SBM and NBM
do not.

Table shows that the posterior means (PM) of the benchmarking models
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(both BM and SBM) are mostly smaller than the posterior means from NBM, shift-
ing the distribution down with reference to NBM. Under BM, the benchmarking con-

10 n;
straint implies that ¥ = N~! Z Zwijyij. On the other hand, under SBM, we have
i=1 j=1
10 n, 10 n,

Y =n! Z Zyw From our calculations, we find that N—! Z Zwijyij = 24.992 =

i=1 j=1 =1 ] 1
10 10 ny

NN NiPMjpay. Similarly, n™1> ) "y = 23780 = N~ ZNPM (s, but

=1 i=1 j=1
10

N1 Z N; P M;npny = 24.330. The two benchmarking models are closer to each other

i=1
than the nonbenchmarking model. But BM, which is the more appropriate model for the
BMI data, has the smaller shrinkage of SHR gy = 5.606, while SHRspn) = 5.667.
NBM has the greatest shrinkage with SH R NBM) = 6.482. For the BMD data, we

10 n, 10 n,

find that N~ ZZwaU =0.805 = N~ ZNPM Ba)- Similarly, n~ ZZym =

11]1 =1 i=1 j=1

0.903 = N~ Z N;PM(spar), but N~ Z N;PM;npar) = 0.878. For the shrinkage, the

=1
most appropriate model for BMD, the benchmarklng model with unequal survey weights,

has a shrinkage of SHR gy = 0.102, while SH R(spay = 0.029. This implies that the
shrinkage of the model with equal survey weights is smaller than the benchmarking with
unequal weights. NBM again has the greatest shrinkage with SH R(ypa) = 0.258. How-
ever, overall, in this example, the two benchmarking models are closer to each other than
the nonbenchmarking model. The PSDs of all three models are very close to each other.
However, we observe that the PSDs from BM are mostly smaller than those from NBM
and SBM, which reflects the adjustments from the survey weights in the constraint. As
the survey weights are not incorporated in an informative manner (i.e., non ignorable
design) in the model, there may not be gains in precision. We use box plots to show
the general features in Figure 22l Figure shows that the posterior means (PM) of
the benchmarking models (both BM and SBM) are mostly smaller than the posterior
means from NBM, shifting the distribution down with reference to NBM. Moreover, we
see that the length of the whiskers of the boxplots for each domain is shorter for the BM
and SBM models compared to that of NBM.

In summary, the two examples showed us the diversity of the applications of

the univariate benchmarking model presented in this section. From the results, we
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observe the effects of the benchmarking constraint. As our theory shows, we observe
that the model-based estimates from the small areas match the chosen direct estimator
for the single large area when these small areas are collapsed. We also observe that in
most cases there is a gain in precision in using the benchmarking models, relative to the
nonbenchmarking model, although the gains are not so much significant. This is perhaps
due to the samples being relatively too small compared to the population size. Now, we
will compare NBM and BM further using a simulation study, and we will discuss effects

of benchmarking on biases.
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Table 2.2: Comparison of the nonbenchmarking (NBM), self-weighted benchmarking (SBM)
and survey-weighted benchmarking (BM) models using posterior means (PM), the posterior
standard deviations (PSD) and the 95% credible intervals for the finite population mean (Y")
of the BMI and BMD data for the adult domains, gender domains of Mexican American

population over 20 years, in the state of New York

Body Mass Index

Nonbenchmarking Self-Weighting Benchmarking
Benchmarking

. Direct Posterior Credible Posterior Credible Posterior Credible

! " N Estimate | Mean SD Interval Mean SD Interval Mean SD Interval
1 1 6 19.30 | 22.42 2.09 (18.13,26.40) | 21.92 2.04 (17.55,25.62) | 22.80 2.15 (18.21,26.74)
2 1 112 26.80 | 24.68 1.82  (21.21,28.54) | 24.12 1.51 (21.21,27.46) | 25.55 1.59  (22.50,29.04)
3 2 96 23.30 | 23.77 1.52  (20.61,26.73) | 23.23 1.35 (20.28,25.75) | 24.34 1.41 (21.36,27.06)
4 8 150 23.44 | 23.78 1.12  (21.54,26.00) | 23.24 0.96 (21.19,24.99) | 24.33 1.00 (22.25,26.24)
5 4 39 23.00 | 23.61 1.42  (20.71,26.40) | 23.09 1.29 (20.32,25.44) | 24.12 1.34  (21.27,26.60)
6 2 6 22.70 | 23.43 1.64  (20.16,26.58) | 23.01 1.56 (19.83,25.96) | 23.84 1.62  (20.56,26.99)
7 2 118 26.65 | 25.10 1.66  (22.03,26.58) | 24.49 1.32 (22.05,27.41) | 25.93 1.38  (23.38,28.86)
8 5 101 21.38 | 22.64 1.36  (19.87,25.20) | 22.11 1.30 (19.39,24.31) | 23.09 1.34  (20.38,25.41)
9 3 142 27.80 | 25.74 1.60  (22.85,29.08) | 25.18 1.31 (22.97,28.07) | 26.48 1.35  (24.11,29.38)
10 2 37 26.10 | 24.92 1.63  (21.82,28.37) | 24.42 145 (21.62,27.46) | 25.57 1.48  (22.73,28.66)

Bone Mineral Density
Nonbenchmarking Self-Weighting Benchmarking
Benchmarking

i n N Direct Posterior Credible Posterior Credible Posterior Credible

Estimate | Mean SD Interval Mean SD Interval Mean SD Interval
1 1 6 0.965 | 0.900 0.09 (0.732,1.078) | 0.921 0.08 (0.759,1.095) | 0.914 0.08 (0.750,1.087)
2 1 112 0.983 | 0914 0.08 (0.765,1.084) | 0.941 0.07 (0.812,1.092) | 0.935 0.06 (0.812,1.091)
3 2 96 0.962 | 0915 0.07 (0.789,1.066) | 0.940 0.06 (0.826,1.074) | 0.931 0.06  (0.818,1.066)
4 8 150 0.927 | 0.890 0.05 (0.791,0.992) | 0.913 0.04 (0.834,0.997) | 0.904 0.04 (0.820,0.988)
5 4 39 1.088 | 0.971 0.07  (0.838,1.120) | 0.992 0.06 (0.881,1.132) | 0.984 0.06 (0.873,1.115)
6 2 6 0.838 | 0.836 0.07 (0.691,0.978) | 0.852 0.07 (0.712,0.988) | 0.846 0.07 (0.704,0.981)
7 2 118 0.863 | 0.864 0.07  (0.724,1.000) | 0.889 0.06 (0.766,1.003) | 0.886  0.06  (0.769,0.997)
8 5 101 0.776 | 0.813 0.06 (0.688,0.926) | 0.836  0.05 (0.725,0.929) | 0.826  0.05  (0.712,0.920)
9 3 142 0.802 | 0.849 0.06 (0.721,0.970) | 0.874 0.05 (0.760,0.970) | 0.867 0.05 (0.753,0.964)
10 2 37 0.878 | 0.871 0.07  (0.731,1.008) | 0.893 0.06 (0.763,1.018) | 0.886 0.06  (0.752,1.011)
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2.4 Simulation Study

We perform a simulation study to further compare the nonbenchmarking and
the benchmarking models. For simplicity, we assume that the design is self-weighting.
We present four data generating models. We simulate the corn hectares data in the crop
example in Section B To facilitate the simulation, we generate M = 1,000 datasets

from each of the four generating models.

2.4.1 Design

We used four simulation models to generate data for this simulation. The first

model is a homogeneous model, which ignores the small areas,
Yij ! Normal {ggj@, o}, i=1,2...,0,j=12... N, (2.10)

The second model is the nested error regression model,

ind

yij ~ Normal{z},3+v;,0°}, i=1,2,...,0,7=1,2,...,N;  (2.11)

Vi £ Normal{0,<ﬁ>a2},0<p<l, 1=1,2,...., /0.
Note that model ([2I7]) is simply model (2I0) with an addition of the area effect v;, for
each area i, 1 =1,2,...,0 [ie,if v, =0, i =1,...,¢, ([2I1) becomes (2ZI0)].

The third model is the benchmarking model described in Section 2.1l Note that
the third model is the second model in (ZI1]) with the benchmarking constraint. We use
the results from Lemma 2.1 Remark 2.2 and Theorem [2.4] to generate the values of y.
To do this, we first generate the sampled y values, ys, from the distribution in Remark
2.2l Then, we use these generated values of y, to find the values of the nonsampled y’s
from the results in Lemma 2.1] and the proof of Theorem 2.2

Note that the distributions of gs|y, B, o? and Yns ) |y8, v, 5, o? have similar forms
and both can be written in a more general form as
Y ~ Normal {§,0%> (I —aJ)}, 0<a<1. (2.12)
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Observe that from (2.12]), we can write

7 =L (v = §) ~ Normal {0, (I — a.J)}. (2.13)

Q

So, if we can generate values of ¢ from (2.I3]), we can use these values to get the cor-
responding values of y. Using properties of multivariate normal and some algebraic
manipulation in (ZI3]), we find that

Ty ~ Normal (0,1 — a) (2.14)
and
1—ak
Tk|tkz—l ~ Normal {— (1 — a ) th, T)} s (215)
where t;_y = (t1,t2,...,tk-1), k = 2,3,.... So, to generate values of y, we generate

values of ¢ via (2.14) and (215), and solve for the corresponding values of y using
the relation y = ot + 9. We apply this technique to generate both the sampled and
nonsampled values of y. Then, we use Lemma[P.Tlto get the value of the last observation,
Yo, N, -

Since the first three models are either the homogeneous model, the NBM or the
BM, the results might favor either one of the models. Thus, it is sensible to generate data

from a different model. In this fourth model, we use the Parzen-Rosenblatt estimator

2
] h(j)
(y - Z/k) _g=1 opt
, W =

y\ﬂfl,xz Z h(3

k= opt

h(3)

opt

where A A " and h o are the window widths for xy, x5, and y, respectively, with

opts "Yopts
1.06 IQR
Popt = 5 min {STD 1%) 1 ; the values of STD and IQR are based on all observed

data for the respective variables. We use the following algorithm to generate the values

of y :

(1) Draw an integer value k (1 < k < n) with corresponding probability wy of being

chosen.
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opt

(2) Based on the drawn k in step (1), draw the value of y;; from y ~ Normal (yk, h(3)2> :

We also need to generate the values of the covariates for the nonsampled units.

The approach used in the method is similar to our benchmarking technique. Again, we

1 1 T — ]
use the Parzen-Rosenblatt kernel density estimator f(z) = — E " o ( . ) . The
n
=1

opt hopt

distribution of X ,sn) given the sample covariate vector z, = (x1,...,2,) is

Note that the distribution of X, sny|zs also takes the general form we stated in (Z.12)).

Hence, we can also generate the values of X,,,1,..., Xx given zy,...,z,, by using the

technique mentioned above to generate the y values.

In our study we simulate the corn acreage data. We first generate the two
covariates, namely, the number of corn pixels and the number of soybeans pixels, for all
the N; units in each of the i = 1,...,¢ = 12 counties (area) using the above method
for generating covariates. Based on the n = 37 samples from the crop data, we got
Popt(corny = 32.99 and hopi(soybeans) = 24.20. We use these constants and the sampled
covariates to generate all the values of the covariates that would match the information
given in the crop data. The number of sampled units and population units generated
for each data is based on the sample and population sizes given in the corn data. Once
all the values of the two covariates have been generated for the population units, we
fix these values and use them to generate the values of y from all four generating data
models for y. We use the posterior means from the conditional distributions of p, o2,
and (3 = (6o, 81, B2) obtained by fitting the original corn data as the fixed values of the
parameters p, o2, and B = (Bo, 1, B2) to generate the simulated data. The area effects,
vi, 1 =1,2,..., L, are simulated from its distribution given in the nested error regression
model conditional on the observed values of p and ¢? in the corn data. To make the
comparison, we run both NBM and BM in the simulated datasets from the four models.
Again we use M = 10,000 iterates in the model fitting.

2.4.2 Results

To compare the nonbenchmarking and benchmarking models, for each area and

simulation run, we compute the accuracy ratios Ry.. = (PM — 7) /Y, and the shrink-
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age ratios Ry, = (PM —7,)/y,, where PM is the posterior mean for each area, Y
is the true finite population mean of each area, and 7y, is the direct estimate and the
sample mean of each area. In Table 2.3] we present a comparison of the distribution of
the R,.. and Ry, in BM and NBM in all four scenarios. Observe that the medians are
very close to zero in all areas and the interquartile ranges are very small. These results
indicate that the point estimators of the finite population means are very close to the
true values and that there is not much shrinkage or bias using our estimator.

As in the examples above, we also calculated the posterior mean (PM), posterior
standard deviation (PSD) and the 95% credible interval (Int) for each area under each
model fitting of all the simulated datasets. The results are summarized in Table 2.4 for
the first two models, the homogeneous and the nonbenchmarking models while the results
for the benchmarking and nonparametric modelsand are given in Table 2.5 We present
the average posterior mean, the average posterior standard deviation, the average width
of the 95% credible intervals, and the coverage probabilities for each area. Note that
the coverage probability (C) is calculated as the proportion of 95% credible intervals
containing the true finite population mean Y for each area over the 1,000 simulated
data. It is possible to compute these proportions since we know the value of the true
finite population mean Y for each area from the simulated data. The average of the true
values of the finite population mean for each area are also presented in Table 2.4 and
Table 25 We also computed the ‘root posterior mean squared error’ for the k" data set,
RMSE, = \/WSE;C = \/(P]W;C — Y2+ PSD? for each area. We summarize these
values by presenting the average RMSE over the 1,000 data sets and its corresponding

standard error for each area.

The results show that the average posterior means are relatively the same for
both BM and NBM. Moreover, note that the average PSDs from BM are smaller than
NBM in all four cases, exhibiting a better precision in BM. In terms of the interval
estimations, the coverage probabilities for both NBM and BM are reasonably close to
the nominal value of 95%, with those from BM closer to the nominal value in most
areas in all four cases. (The closer coverage to the 95% nominal values are highlighted.)
For the mean squared error, the RMSEs are generally smaller under BM. Observe that
the few cases where BM’s RMSEs are not smaller than those of NBM, the coverage
probabilities of NBM are also better. The standard errors of the RMSEs offset these
extreme differences.

Thus, these results are in concordance with what we have seen in the illustrative
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examples. Both models give roughly the same accuracy and shrinkage. The posterior
means are similar but with BM always giving smaller posterior standard deviations. This
is natural because the benchmarking constraint reduces the sample space. Lastly, the
mostly smaller posterior mean squared error from BM shows that the BM is performing
better in estimating the finite population mean than NBM. Overall, we saw that in
all four models, BM shows better estimation than NBM, with a few non-significant

exceptions.
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2.5 Concluding Remarks

In this chapter, we presented the univariate Bayesian benchmarking model based
on the nested-error regression model of Battese, Harter, and Fuller (1988). We used
Bayesian predictive inference to estimate the finite population means of small areas; see
Toto and Nandram (2010a) for the journal article written based on the results of this
chapter. We discussed both the theoretical and numerical effects of adding the bench-
marking constraint into the Bayesian model. From the results of the examples as well
as the mathematical calculation, we found that there were adjustments in the posterior
mean of the finite population mean after the benchmarking constraint was included in
the model. We also observed that the benchmarking model with the appropriate weights
produces the most precise results. There is a definite gain in precision due to the in-
clusion of the benchmarking constraint into the model. However, we do not see too
much improvement, because our sample sizes are relatively too small compared to the

population sizes.

In the next chapter, we will extend the univariate Bayesian benchmarking model
to the multivariate Bayesian benchmarking model to accommodate multivariate out-
comes. That is, we discuss the Bayesian regression model for any number of responses,
q > 2. There is a practical significance to the extension of the benchmarking model to
the multivariate case because in many small area problems, data on related multiple
characteristics and auxiliary variables are available. For instance, the two crops, corn
and soybean, in the survey and satellite data of Battese, Harter, and Fuller (1988) would
be more appropriately analyzed simultaneously because these two are correlated. Simi-
larly, the body mass index (BMI) and bone mineral density (BMD) from INHANES II1I

(1996) are also correlated characteristics that would be better analyzed at the same time.

We simultaneously model these examples in Chapter B We want to find out if
the possible correlation between the responses would add significant contribution to the
results. The work of Datta, Day, and Maiti (1998) presented a hierarchical Bayes predic-
tion of the small area mean vector using the multivariate nested-error regression model of
Fuller and Harter (1987). They compared the performance of the multivariate approach
with the usual univariate approach and found that the multivariate approach may result

in substantial improvement over its univariate counterpart through some data analysis
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and simulations. Our model is also adapted from the multivariate nested-error regression

model of |E.ll].QLa.D.d_H.aI_tﬂ:| (IlQ_&ﬂ). However, the work of hlam,_[la;g_an_d_MaﬁJ (|19_9_é)

does not include benchmarking in their model, so we can only compare it to our non-

benchmarking model. Like that of [Datta, Day, and Maiti (ILM), we will also compare
the performance of the multivariate approach with the univariate approach both under

nonbenchmarking and benchmarking.
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Figure 2.1: Box plots of the distribution of the finite population mean (7) by county (area)
of the corn and soybeans acreage data
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Note: There is a consistent upward shift in the center of the distributions for the corn acreage. On
the other hand, there is a downward shift in the center of the distributions for the soybeans acreage.
Most of the whiskers of the box plots in both corn and soybeans acreage results for the BM are shorter

compared to the NBM boxplots, indicating an increase in the precision in most of the counties.
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Figure 2.2: Boxplots of the distribution of the finite population mean (?) by domain of the
BMI and BMD data
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Note: There is a shift in the center of the distribution of the finite population means for BMI and
BMD. For the BMI data, notice the downward shift in the center of the distributions. On the other
hand, there is an upward shift in the center of the distributions for the BMD data. Notice also the
shorter whiskers of most of the BM and SBM boxplots compared to the NBM boxplots, indicating an

increase in the precision in most of the domains.
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Table 2.3: Comparison of the distribution of the accuracy ratio Rg,.. and the shrinkage ratio
Rgpy in the nonbenchmarking and the benchmarking models for estimating the finite population

mean
Race Rshr
NonBenchmarking Benchmarking NonBenchmarking Benchmarking

{ Q1 Q2 Q3] @ Q2 Q3] @ Q2 Q3] @ Q2 Qs

Data generated using homogeneous model
1 -0.042  -0.006 0.025 | -0.034 0 0.031 | -0.092 -0.021 0.072 | -0.089 -0.015 0.083
2 -0.036  -0.001 0.036 | -0.028 0.005 0.041 | -0.081 0.004 0.105 | -0.077 0.012 0.117
3 -0.019 0.022 0.056 | -0.013 0.028 0.062 | -0.057 0.024 0.125 | -0.053 0.031 0.133
4 -0.037 0.003 0.038 | -0.028 0.01  0.044 | -0.046 0.002 0.062 | -0.042 0.012 0.072
5 -0.064 -0.032 0.000 | -0.059 -0.027 0.007 | -0.059 -0.032 0 | -0.054 -0.025 0.007
6 0.025 0.076 0.117 0.035 0.083 0.125 0.026 0.068 0.117 0.033 0.079 0.126
7 -0.024 0.013 0.046 | -0.016 0.018 0.054 | -0.021 0.014 0.051 | -0.013 0.022 0.057
8 -0.04  -0.002 0.033 | -0.033 0.003 0.04 | -0.033 -0.002 0.037 | -0.026 0.006 0.044
9 0.013 0.060 0.103 0.021 0.066  0.109 0.023 0.052 0.085 0.029 0.06 0.091
10 | -0.053  -0.020 0.017 | -0.047 -0.014 0.026 | -0.038 -0.02 0.003 | -0.032 -0.013 0.01
11 | -0.038 0.000 0.029 | -0.032 0.006 0.036 | -0.025 -0.003 0.02 | -0.019 0.004 0.028
12 | -0.062 -0.034 0.002 | -0.059 -0.028 0.011 | -0.047 -0.029 -0.01 | -0.041 -0.023 -0.004

Data generated using Nonbenchmarking model

1 -0.042 0.007 0.052 | -0.030 0.019 0.061 | -0.062 0.008 0.102 | -0.051 0.02 0.116
2 -0.088 -0.044 -0.002 | -0.075 -0.036 0.007 -0.1  -0.043 0.024 | -0.093 -0.034 0.039
3 -0.096  -0.057 -0.006 | -0.085 -0.046 0.003 | -0.106 -0.052 0.009 | -0.099 -0.041 0.023
4 -0.074  -0.032 0.013 | -0.064 -0.023 0.022 | -0.071 -0.03 0.015 -0.06 -0.018 0.027
5 -0.061  -0.016 0.025 | -0.050 -0.005 0.037 | -0.036 -0.014 0.01 | -0.027  -0.002 0.022
6 -0.003  0.0490 0.097 0.010 0.061  0.109 0.013 0.045 0.081 0.023 0.059 0.095
7 -0.043 0.000 0.043 | -0.033 0.012 0.054 | -0.029 -0.006 0.021 | -0.018 0.007 0.034
8 -0.016 0.034 0.089 0.001 0.046  0.103 0.006 0.038 0.072 0.019 0.05 0.088
9 0.036 0.102 0.166 0.05 0.118 0.178 0.07 0.099 0.13 0.089 0.116 0.146
10 | -0.064 -0.027 0.012 | -0.057 -0.017 0.024 | -0.039 -0.024 -0.008 -0.03 -0.013 0.005
11 | -0.027 0.016 0.056 | -0.015 0.027  0.068 | -0.001 0.014 0.031 0.009 0.027 0.045
12 | -0.078 -0.041 -0.001 | -0.071 -0.031  0.009 -0.05 -0.036 -0.021 -0.04 -0.026 -0.01

Data generated using Benchmarking model
1 -0.014 0.047 0.111 0.026 0.081 0.142 | -0.027 0.049 0.145 0.004 0.084 0.191
2 -0.044 0.019 0.071 | -0.009 0.05 0.102 | -0.045 0.015 0.096 | -0.021 0.051 0.142
3 0.005 0.068 0.135 0.042 0.102 0.162 | -0.002 0.066 0.149 0.027 0.104 0.191
4 -0.058  -0.002 0.045 | -0.026 0.028  0.075 -0.04  -0.004 0.04 | -0.011 0.028 0.074
5 -0.047  -0.001 0.053 | -0.017 0.029 0.084 | -0.016 0.003 0.024 0.012 0.036 0.06
6 0.022 0.106 0.177 0.067 0.146 0.214 0.065 0.1 0.143 0.105 0.143 0.186
7 -0.059  -0.013 0.03 -0.03 0.015 0.059 | -0.029 -0.011 0.009 0 0.02 0.041
8 -0.023 0.028 0.085 0.008 0.062 0.118 0 0.026 0.057 0.033 0.061 0.093
9 -0.015 0.038 0.09 0.021 0.073  0.123 0.012 0.028 0.051 0.047 0.065 0.088
10 | -0.069  -0.029 0.005 | -0.047 -0.004 0.033 | -0.043 -0.03 -0.019 -0.02 -0.004 0.01
11 | -0.045 -0.008 0.033 | -0.015 0.021  0.064 | -0.012 0 0.012 0.016 0.032 0.046
12 | -0.074  -0.039 -0.003 | -0.056 -0.016 0.025 | -0.052 -0.041 -0.027 | -0.032 -0.016 -0.001

Data generated using nonparametric model
1 -0.05  -0.019 0.025 | -0.043 -0.014 0.028 | -0.105 0.059 0.129 | -0.103 0.065 0.137
2 -0.04  -0.004 0.04 | -0.034 0.003 0.043 | -0.109 0.031 0.117 | -0.108 0.036 0.125
3 -0.01 0.020 0.063 | -0.004 0.027  0.066 | -0.044 0.072 0.145 | -0.044 0.078 0.155
4 -0.036 0.005 0.049 -0.03 0.01 0.052 | -0.052 0.029 0.103 | -0.048 0.037 0.11
5 -0.074  -0.034 0.014 | -0.068 -0.029 0.019 | -0.069 -0.026 0.029 | -0.065 -0.02 0.035
6 0.019 0.048 0.091 0.025 0.055 0.097 0.021 0.065 0.107 0.024 0.073 0.116
7 -0.036 0.007 0.046 | -0.032 0.014 0.051 | -0.038 0.008 0.054 | -0.033 0.012 0.062
8 -0.045  -0.007 0.037 -0.04 -0.002 0.042 | -0.057 -0.008 0.046 | -0.053 -0.002 0.052
9 0.009 0.040 0.08 0.014 0.045 0.086 0.019 0.054 0.086 0.024 0.061 0.093
10 | -0.063  -0.024 0.015 | -0.059 -0.02  0.021 -0.05 -0.021 0.006 | -0.046 -0.016 0.013
11 | -0.032 0.004 0.042 | -0.025 0.008 0.048 | -0.022 0.006 0.037 | -0.018 0.013 0.044
12 | -0.067 -0.034 0.011 | -0.064 -0.03 0.018 | -0.052 -0.026 0.002 | -0.046 -0.021 0.006
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Table 2.4: Comparison of the Average Posterior Mean (PM), Average Posterior Standard
Deviation (PSD), Average Width of the 95% credible intervals (width), Coverage Probabili-
ties (C), and average Root ‘Posterior’ MSE (and its standard error) of the finite population

means for each area over the 1,000 simulation runs for the nonbenchmarking (NBM) and the
benchmarking (BM) models

Nonbenchmarking Benchmarking
FPM Posterior Interval Posterior Interval
im N Y | Mean  SD  width ©  RMSEGE) | y\ian  PSD  width C  RMSE(SE)
Data generated using homogeneous model
1|1 545 12265 | 121.76 11.43 45.97 1 13.55(4.05) | 122.58 10.23 41.37 1 12.34 (3.60)
2] 1 566 121.8 | 121.86 11.36 45.68 1 13.61(3.79) 122.7 10.18 41.23 1 12.49 (3.52)
3| 1 395 118.41 | 120.53 11.26 45.16 1 13.83(4.09) | 121.34 10.38 41.86 0.99 13.17 (3.90)
41 2 424 119.77 | 119.73  10.19 40.59  0.99 12.75 (3.62) | 120.57 9.39 37.64  0.99 12.05 (3.48)
51 3 564 129.24 | 125.36 8.74 34.6 096 11.97 (3.29) | 126.19 8.05 32.03 0.95 11.21 (3.08)
6| 3 570 106.72 | 114.13 9.16 36.07 0.89 14.06 (3.69) | 114.97 8.34 32.89 0.84 13.94 (3.93)
71 3 402 118.73 | 120.02 8.72 34.58 0.98 11.24 (2.86) | 120.86 8.17 32,52  0.96 11.01 (3.02)
81 3 567 121.23 | 120.74 8.83 35.04 099 11.35 (2.75) | 121.58 8.01 32.04 0.97 10.65 (2.63)
9| 4 687 108.22 114.2 8.33 32.79 0.91 1252 (2.93) | 115.03 7.55 29.75  0.85 12.36 (3.16)
100 5 569 128.24 | 126.13 7.59 29.95 0.95 10.57 (2.40) | 126.95 7.25 28.68 0.94 10.44 (2.65)
11 5 965 122.21 | 121.73 7.39 29.25 0.97 10.10 (2.64) | 122.56 6.51 259 0.94 9.41 (2.60)
120 6 566 133.26 | 129.51 7.47 29.34 0.93 10.76 (2.34) | 130.34 7.31 28.67 0.92 10.72 (2.52)
Data generated using Nonbenchmarking model
1|1 545 119.56 | 119.92 13.76 54.86 1 16.59 (5.47) | 121.33 12.49 49.9 1 15.32 (4.56)
2|1 566 130.68 | 125.14 13.74 54.68 0.99 17.46 (5.45) | 126.57 12.53 49.92  0.99 15.87 (4.58)
3| 1 395 132.89 | 126.06 13.57 53.80 098 17.94 (5.72) 127.5  12.75 50.67  0.98 16.69 (5.03)
41 2 424 128.38 | 124.31 11.87 47.02  0.98 15.60 (5.98) | 125.69 11.16 44.29 0.97 14.64 (5.28)
5 3 564 126.36 | 124.33 9.85 38.97 0.98 13.09 (3.63) | 125.75 9.2 36.42 0.97 12.48 (3.57)
6| 3 570 108.43 113.3  10.11 39.87 0.94 14.14 (3.83) | 114.72 9.38 37 092 14.03 (4.13)
71 3 402 12243 122.5 9.87 38.98 0.98 1292 (3.51) | 123.91 9.42 37.35 0.97 12.75 (3.76)
8| 3 567 110.08 113.8 10.18 40.15  0.97 13.94 (3.83) | 115.21 9.47 37.38 0.94 13.69 (3.99)
9] 4 687 93.5 | 102.79 9.91 38.8 0.86 16.27 (5.59) | 104.21 9.27 36.18 0.79 16.64 (5.98)
100 5 569 133.39 | 130.11 8.49 3342 094 11.98 (2.92) | 131.53 8.3 32.63  0.94 11.80 (3.08)
11 5 965 115.66 | 117.23 8.23 32.51 0.97 11.12 (2.55) | 118.65 7.41 29.25 0.94 10.71 (2.65)
121 6 566 142.61 | 137.15 8.42 33.12 0.9 12.91 (3.45) | 138.56 8.42 33 0.9 12.81 (3.45)
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Table 2.5: Comparison of the Average Posterior Mean (PM), Average Posterior Standard
Deviation (PSD), Average Width of the 95% credible intervals (width), Coverage Probabili-
ties (C), and average Root ‘Posterior’ MSE (and its standard error) of the finite population

means for each area over the 1,000 simulation runs for the nonbenchmarking (NBM) and the
benchmarking (BM) models

Nonbenchmarking Benchmarking
FPM Posterior Interval Posterior
im N Y | Mean  SD  width Mean  PSD RMSE(SE)
Data generated using Benchmarking model
1|1 545 110.37 | 115.56 15.32 60.63 119.32  13.97 19.53 (7.74)
21 1 566 117.55 119.3  15.09 59.66 123.07 13.81 17.95 (6.19)
3|1 1 395 107.66 114.7 1491 58.94 118.44  14.02 20.68 (8.41)
41 2 424  120.02 | 119.65 12.7 50.11 123.38  12.02 15.95 (6.12)
51 3 564 119.74 | 120.11 10.4 40.98 123.84 9.78 14.22 (5.29)
6] 3 570 91.07 99.95 11.31 44.45 103.69 10.5 19.23 (7.91)
713 402 125.71 124  10.41 41.04 127.68  10.07 13.47 (3.84)
8| 3 567 110.27 | 113.31 10.7 42.13 117.03 9.96 14.99 (5.08)
9] 4 687 106.98 | 110.81 9.48 37.3 114.54 8.84 14.27 (4.78)
10 5 569 141.95 | 137.66 8.92 35.11 141.38 8.99 12.58 (3.43)
11 5 965 121.34 | 120.77 8.51 33.56 124.49 7.78 11.30 (3.33)
121 6 566 154.55 | 148.71 8.89 35.04 152.41 9.19 13.22 (3.71)
Data generated using nonparametric model
1|1 545 109.55 | 108.67 11.24 45.42 109.24 9.97 12.02 (2.92)
2|1 566 109.1 | 109.39 11.2 45.27 109.97 9.95 12.01 (3.14)
3| 1 395 105.04 | 108.44 11.09 44.64 109 10.13 12.90 (4.74)
41 2 424 106.2 | 107.11 10.2 40.72 107.7 9.3 11.91 (3.51)
51 3 564 114.55 | 111.47 8.92 35.43 112.05 8.12 11.68 (3.67)
6| 3 570 98.77 | 104.24 9.04 35.87 104.83 8.15 11.68 (3.15)
71 3 402 107.63 | 108.43 8.83 35.13 109 8.2 10.75 (2.62)
8| 3 567 109.4 | 109.22 8.98 35.76 109.8 8.1 10.87 (3.31)
9] 4 687 99.31 | 103.74 8.36 33.04 104.31 7.48 10.67 (2.71)
100 5 569 114.79 | 112.51 7.82 30.87 113.09 7.35 10.96 (3.51)
11 5 965 107.33 | 107.96 7.58 30.03 108.55 6.57 9.09 (2.11)
121 6 566 117.04 | 113.88 7.59 29.94 114.45 7.32 11.15 (3.33)




Chapter 3
Multivariate Benchmarking

In this chapter, we extend the Bayesian benchmarking model discussed in Chap-
ter Pl for any finite number of responses, ¢ > 2. The extension of the benchmark-
ing model to the multivariate case is interesting because in many small area prob-
lems, data on related multiple characteristics and auxiliary variables are available.
For instance, the two crops, corn and soybean, in the survey and satellite data of
Battese, Harter, and Fuller (1988) would be more appropriately analyzed simultane-
ously. Similarly, the body mass index (BMI) and bone mineral density (BMD) from
NHANES III (1996) are also correlated characteristics that would be better analyzed
at the same time. [Datta, Day, and Maiti (1998) presented a hierarchical Bayes predic-
tion of the small area mean vector also using the multivariate nested-error regression
model of [Fuller and Harter (1987). We will compare our results with the results of
Datta, Day, and Maiti (1998) for the nonbenchmarking case. We will also compare the
performance of the multivariate approach with the univariate approach with and with-
out the benchmarking constraint. The work of [Datta, Day, and Maiti (1998) did not
incorporate a benchmarking constraint in their model, but they found that the non-
benchmarking multivariate approach may result in substantial improvement over its
univariate counterpart. We present some data analysis and comparison of results for
both the crop and health data.

We first describe the notation used for the Cholesky decomposition.
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Let

I ¢ - P1q
j P11 Pag
¢q1 ¢q2 e 1

be a positive definite matrix. Then Cholesky decomposition of P, denoted by
Chol (P), is given by

1 P12 e D1
0 (1 . %2) ¢2q - ¢12¢1q

(1-¢%)2
Chol(P) = ,

q—1
0 0 (1—2%)
k=1
where ¢1; = 1, and ¢y; = ¢y, ¢ = 2,...,q. Moreover, for i =2,...,q¢—1,
1
i—1 2
;i =0,7=1,2,...,i—1; cii:<1—262i) ;
k=1

i—1
bij — E CkiCkj
k=1

1
q—1 2
_ : . . _ 2
Cij = J=i+1,...,q¢ Cy= 1—2 Chq | -
Cii 1

With most, if not all of our applications in this dissertation, being bivariate vec-

D=

N

tors (¢ = 2), we describe the covariance matrix structure for the bivariate nested-error
regression model. Thus, for ¢ = 2, we will obtain the matrices G and P, given by

( ge! )é 0
G = I=m 1 and P——ll (b]
0 ( V2 )2 o 1
1—’72

Thus, applying the Cholesky decomposition on P, we get

Chol(P) =

¢ ]
0 (1—¢%2 |
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Hence, we will write

( 71 )é ¢< Y2 )é
I' = Chol(P)G = I=m L= 1
0 (1_¢2)2<11272)

71 7 : V2 :

() o) ()

I'T = G'PG = 1’71 . g1 72
¢( 71 )2( V2 )2 ( V2 )
I—m I— L=

3.1 Multivariate Nested-Error Regression Model

and

Fuller and Harter (1987) introduced the multivariate nested-error regression
model with components-of-variance error structure. This model is the multivariate ver-
sion of the model of Battese, Harter, and Fullen (1988). The multivariate nested-error

regression model is given by

Yij1 B, +va
Yij = Z'J ¢ Normal U2~2. ' % (3.1)
Yijq CEqu@q + Vig
= Normal {X;j@ + v, E} ,
Tij1 - Qp ,
where Xy = | 1 . 0| ui= (i, viay e vig) s fori = 1,0, B = (@;,...,@q’) ,
Xp @z]q
with 3, = (Brts - -5 Brp) s for k =1,... ¢, and ¥ is a symmetric, positive-definite matrix.
Suppose that n; samples are given for each 2 = 1,2,...,£. Since each unit y;;, ¢ =

L,2,...,¢,j=1,2,...,n; are independent, the sample data vector y, = (?1,117 . ,ygnz)/

o1



has the following distribution function

p(yle, 5.%) o HH(%) ( )

=1 j=1

< exp{ =g (- X8 -0) S (g - X8 -v) . G2

In Chapter 2 we introduced a novel structure on the distribution of the area
effect v;. In this chapter, we extend that structure for ¢ > 2. That is, for i =1,2,...,¢,

the area effects vector v, has distribution
v, = (Via, Vig, - Vig)' ! Normal {0, I'3T},

where I' = {chol(P)}G is an upper- trlangular matrix such that I"I' = G'PG with

- 1/2
(1% ) 0 L ¢z -+ 1
G = % : , P= on 1 P21 )
~ 1/2 .
i 0 e (—1 _q%) | Gg1 P2 1
with 0 < 3 < 1, kzl,...,q;andgzﬁij:gzﬁji, _]-<¢ij<17 ,j=1...,q

Since each v,,i = 1,...,¢, are independent, the distribution function of v =

(V),...,v) is given by

7 () o li (%)1/2<‘F/12F|>1/2 exp {_; v (I'ST) ! } (3.3)

3.2 The Nonbenchmarking Bayesian Model

In this section, we introduce the nonbenchmarking multivariate model. This
is an extension of the nonbenchmarking Bayesian model discussed in Chapter 2l This
model can also be considered as a Bayesian version of the multivariate nested-error re-
gression model discussed by [Fuller and Harter (1987). This is similar to the multivariate
Bayesian model of Datta, Day, and Maiti (1998). The difference between the model of
Datta, Day, and Maiti (1998) and our nonbenchmarking model lies in the prior specifi-
cation in the model. [Datta, Day, and Maiti (1998) imposed inverse-Wishart priors on

both covariance matrices in the model, whereas, in our model, we applied reparameteri-
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zation, so that we do not have to put priors on one of the covariance structures. This is
one of the novel ideas that we are contributing to this study. We will elaborate on this

in the next paragraphs.

Since our approach is to use Bayesian methodology, we need to put prior distribu-
tions on the following model parameters, 3, 3,7 = (71,...,%) , and ¢ = (¢12, ..., Pg-14) ,

in our model.

We assume the following prior distribution on the parameters 5, %, v, ¢

W(ﬁ)ocl,;

1
T (X) x (W) (Jeffrey’s prior);

fyk%[Uniform(O,l),k::1,...,q—1;
QSZ]%UnlfOI'm(_l)l)’ Z:17277Qa.]:277q’Z7éj

Assuming that the parameters are independent of each other, the joint prior distribution

for §,%,I" is given by

1

where ' =T (:y, (?) . As a result of the structure of the priors on the model parameters
in our model, note that the joint prior distribution is a Wishart-type prior, a degenerate

case. Observe that this generalizes the structure of the prior in the univariate problem.

Note that in the bivariate model,

( 7 )% ¢< V2 );
= Chol(P)G = | \L = L= 1
0 (1-¢?° <—1 1272>

With the structure of the covariance matrix of the area effects v, we only need to esti-

mate the values of the scalar parameters. In this case, the three scalar parameters 7, ¥,
and ¢, of the covariance matrix, instead of estimating the covariance matrix as a whole.
This makes the numerical calculations easier, at the same time avoids the problems of

using the commonly-used inverse-Wishart family of distribution in hierarchical models
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(Gelman, 2006). For instance, in our sampling procedure, we simply need to generate
samples from Uniform (0, 1) to obtain values of the parameters v, k = 1,2,...,k — 1,
and ¢7;. We use a grid to generate the samples from the Uniform (0,1). Then to generate
samples from ¢;;, and get an appropriate prior value of the ¢;;’s, which are supposed
to be Uniform (0,1), i=1,2,...,q,7 =2,...,q,7 # j, we use linear transformation,
;= 207, — 1. Thus, ¢y; ~ Uniform (—1,1), for i =1,2,...,¢, j = 2,...,4,i # J.

Using Bayes’ theorem in ([8.2)), (8.3]), and (3.4]), we find that the joint posterior density
of v, 3,3, T given the sample data y; is given by

(y 8,3 F|ys) ocp(ys|y ﬁ,Z,F) x 7 (v) X W(@,Z,F)

[H II ( o 1/2|2|1/2> e { =y~ (X325 [, - ()] }]

=1 j=1

é 1 1 !t -1 1
x [(H ((2W)1/2|F’EF‘1/2> eXp {_5(% - Qq) (P EF) (751‘ - Qq)})] (W)

Simplifying the above equation, the joint posterior density of v, 3, 3, I" given the sample

data Ys is
(n++q+1)/2 1 , »
& (y,@,Z,Flys) x (|F|> (f) eXp 9 Z (’Zi - Qq) (I"XT) (’Zi - Qq)
i=1
1 14 n; ,
X exp {—5 Z [gij — (Xij@ + yl)} »! [yij — (Xij@ + Igz)} } )
=1 j=1

We use Gibbs sampling (see |Gelfand and Smith (1990)) to draw samples from the
above joint distribution. Hence, we need to know the full conditional distributions of
the parameters we want to estimate. From the joint posterior distribution v, 3, %, F|ys,
under the nonbenchmarking model, we have the following full conditional distributions

of the parameters of the model.

1. Fori=1,2,...,(, the full conditional distribution of v,|y,, 3, %, is given by

yi\gs,@,E,F%lNormal{ 1212 yij — XL, Bfl}, (3.5)
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where B; = n,% 1 + (I'XI) ™"

2. The full conditional distribution of 8 |g~/s, v,>, I is given by

Blys v, =, T ~ Normal {3, D'} (3.6)

V4 n; -1 £ g
whore 5 — (z zxijz—lxgj> (z S5 X gy — yi)’) and
i=1 j=1 i=1 j=1
L n;

D= > X;5'X].

i=1 j=1

3. The full conditional distribution of E\gs, v,,I" is given by

Ylys, v, 8,1 ~ Inverse-Wishart (n + ¢, ) (3.7)

where n + ¢ > g — 1 and S is a positive definite ¢ X ¢ scale matrix given by

¢ L ny

—1\/ _ /
S =3[0 ) (0] + 303 (s = X038 = 1) (yy — X}y — )’
i=1 i=1 j=1
The Inverse-Wishart distribution is the conjugate prior distribution for
the multivariate normal covariance matrix. A degenerate form occurs when v < k.
The probability density function of the inverse-Wishart random k x k matrix W

1S

1
|S|V/2|W|_(V+k’+2)/2 exp {_étrace(sw—l) }

where v is the degrees of freedom, S is a k x k symmetric positive definite scale

matrix, and ['x(+) is the multivariate gamma function.

4. The full conditional density of I' |ys, v,[3,% is given by

T (F|ys,y,@, ¥) (%) exp {;trace [(F’Zf)l (Z ywé)] } (3.8)
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Now, we describe the distribution of the finite population mean under the non-
benchmarking model. For i = 1,...,¢, the ¢ x 1 finite population mean vector for the

it area is defined as
_ 1 &
Y= N, 2 Yij
j:

/
Also, denote by g, = (ysﬂ, e ,@Siq) , the ¢ x 1 sample mean vector for the i** area, and

by f; = n;/N; the i*" sampling fraction. Moreover, X,, = block diagonal (ESZ, AN >

) ¥ Sig

and X; = block diagonal (@il, e ,@q) are the gp x ¢ matrices of the means of the p

covariates for the i area, and the i* population, i = 1,2,...,¢ respectively, where
— — — / — — —

T, = (xsl.kl, . ,:vsikp) ,and Ty, = (Tikt, - - Takp) » for k=1,2,...,¢.

Theorem 3.1. Using properties of multivariate normal distribution, under the

nonbenchmarking model, the distribution of the finite population mean vector, Y; given

ys7y7@72 is

Yilys, v, 3, £ % Normal {figsi + (1= £) (KB +1:). (1 ]_V,f ) E} SNCE)

Observe that if ¢ = 1, the distribution in (8.9) reduces to (L)) given in Chapter Il

Proof.

We can write Y; as

1 &
?z’ = a7 yi‘ = fzgsz + (1 - fZ)ynsz
Ni =1 ~tj
1, 1 ,
= n_z<1n ® I‘I)ysi + Nl —n; <1N¢*m ® Iq)ynsi'

The above expression implies that the distribution of the finite population mean
vector fi|ys, v, 3,2 depends on the distribution of the sampled units, Y, and the non-
sampled units, Yo, in the ¥ area. Using properties of multivariate normal distribution,
the nonsampled units, Yps,» A€ normally distributed. Hence, for ¢+ = 1,2,...,¢, the fi-
nite population mean vector Yi|g~/8, v, 3, ¥ follows a multivariate normal distribution with

mean vector
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and covariance matrix

VCLT' [?A?js,%@ 2} -

1—f;
< N; )2.
[ |

As mentioned earlier, Datta, Day, and Maiti (1998) presented a multivariate
Bayesian nonbenchmarking model for the finite population mean and they used the
crop data as the illustration of their model. Datta, Day, and Maiti (1998) also applied
Bayesian methodology to estimate the small area mean vector in the [Fuller and Harter
(1987) regression model. But they used inverse-Wishart priors (see Appendix) on all
their covariance matrices. Thus we can compare the results from their model with our
nonbenchmarking (NBM) results from both univariate and multivariate Bayesian mod-

els. Table B shows the comparison of the crop data example.

Table 3.1: Comparison of the Univariate Nonbenchmarking model (uUNBM), Multivariate
Nonbenchmarking (mNBM), and the Datta, Day, and Maiti model (DDM) results for the finite
population mean of the crop hectares data for the counties in Iowa.

County Corn Soybean Correlation
mNBM DDM uNBM mNBM DDM uNBM | mNBM | DDM
; Posterior
! Mean s p)
1 124.05(5.75) | 119.98(13.90) 123.47(9.32) | 79.16(11.47) | 83.69(13.47) | 78.76(11.27) —0.51 0.02
2 122.08(7.98) | 130.00(14.03) 124.20(g.28) | 95.03(10.80) | 98.72(13.43) | 94.34(10.92) —0.55 | —0.13
3 116.26 3. 66) 98.83(13.65) | 110.95(10.04) | 87.09(11.76) | 78-54(12.86) | 87-72(10.70) —-0.45 | —0.07
4 12019(892) 9979(1219) 11416(837) 8123(1098) 8101(1213) 8204(1009) 7035 7026
5 138.66(8.20) | 133.13(10.76) 138.82(g.37) 67.68(5.48) 75.90(9.94) 67.15(7.93) —0.44 | —0.44
6 108.14(6.58) | 111.43(10.36) 109.78(7.66) | 114.10(7.54) | 118.23(9.47) | 113.83(7.34) —0.36 | —0.38
7 115.036.45) 120.08(9.93) 116.05(7.20) 97.13(7.60) 94.40(9.47) 97.23(7.63) —0.41 | —0.39
8 120.94(6.83) | 126.62(19.30) 122.90(7.20) | 112.07(7.30) | 111.79(9.44) | 111.93(7.60) —0.42 | —0.36
9 111.236.23) 111.40(9.71) 112.07(7.00) | 110.47(6.69) | 114.09(g.21) | 110.06(6 54) —0.45 | —0.53
10 123.45(5.19) 126.31(5.97) 123.99(6.25) | 100.44(5.7¢) 97.74(8.35) | 100.36(6.13) —0.45 | —0.49
11 110.946.99) 116.69(9.46) 111.716.96) | 117.50(6.71) | 111.43(3.97) | 118.28(6.45) —0.41 | —0.55
12 132.12(5 43) 129.65(5.45) 131.25(5.99) 75.28(5.99) 75.86(7.86) 75.04(5.65) —0.42 | —0.51

Observe from Table [31] that the multivariate nonbenchmarking results have the
most improved precision compared to both the [Datta, Day, and Maiti (1998) and the
univariate nonbenchmarking results. There are some instances in Table B.1] that our
univariate nonbenchmarking yielded some better precision compared to the multivariate

results, however, their values are not so far from each other. Also, observe the last
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two columns of Table B.I] in which we see that the posterior correlation between corn
and soybeans is more consistent over all the areas for the multivariate nonbenchmarking
model than the Datta, Day, and Maiti (1998) correlations; note the correlation in the
first county from the [Datta, Day, and Maiti (1998) output.

3.3 The Benchmarking Bayesian Model

We now extend the univariate benchmarking model to include multivariate out-
comes. We incorporate to the nonbenchmarking model described in ([32), (33), and
(3.4)), the following ¢ benchmarking constraints

Z 2 Yigk = Zzwijyijkak =1,2,...,q (3.10)

i=1 j=1 i=1 j=1

Recall that w;; is the sampling weight of the j™ unit in the i*" area and these weights are
the same for all outcomes. As in the univariate case, this type of benchmarking is called

internal benchmarking, since we are using a weighted average of the direct estimators.

Incorporating the benchmarking constraints in (8.I0) to the nonbenchmarking

model, we get the multivariate Bayesian benchmarking model (MBM) is

gy~ Nommal {X[8+v,S},i=1,2,...,6j=1,2.. N, (311)
£ Ni y4 Mg
Zzyijk = Zzwijyzjk, k=1,2,...,q,
i=1 j=1 i=1 j=1
v, ™ Normal{0,,['STI'},i=1,2,...,1 (3.12)
1 (g+1)/2
m(6,5,7) 53] (3.13)

/

/ o /
Let ys = (lep o »?js/) , where y;, = (ggl, oy > . Similarly, yns = (y/ ,y;N) ,

~1MNg ~’VL8<N) =

!
where ‘yns(N) = (g%sl, .o 7:gns/)/7 gnsi = (‘y;”ﬁ‘l’ s 7g;Nz) ) for ¢« = ]-7 27 s 7£ - 17
, , ! . wrw*
and y - = (yéng+l""’y£Ng—l>' Also, write w* = (w—1,), W = ~—5- =,
Wy I

ot L +::*/1 . Lastly, we write X; = (X11,. .., Xon,) s Xns = (Xing41s -+, Xen,) s
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Zs = block diagonal (1n1, ceey 1né) , and Z,s = block diagonal (1N17m, ceey 1Nﬁn£) :

Conditional on the benchmarking constraint, we find the distribution of the data,

both sampled and nonsampled, in the next two lemmas. Before we state our remarks,
we define first the Kronecker product, which we use in a lot of our results.

We note that the direct product, sometimes called the Kronecker product or

Zehfuss product, of two matrices A,., and B, is defined as

CLHB cee Cbqu
A B = S . (3.14)
apmB - ap, B

Remark 3.2. Under the benchmarking model, conditional on the benchmarking con-

straint,
yslv, 3,% ~ Normal {C’x@ +C.v, (I, —W)® Z} ,

Oy =L — W) L) X' + (W ® Iq> X!

and
C.= (I, —W)® L] [Z. ® I, + [VV ® Iq} (Z0s ® L) .

Remark 3.3. Under the benchmarking model, conditional on the benchmarking con-

straint,

1
yns‘ysa I,{aﬁa > ~ Normal {Kazﬂ + sz + Kyy57 <INn - N JNn) & E} )
~ ~ ~ ~ ~ —n

1 1 .
(1v-n = s ) 90 X By = () (@ 1) and

K, =
1
Kz = l([Nn - JNn) & [q:| [Zns & Iq] .

N —n
Using Bayes’ theorem in (B.11]), (B12)), and (BI3]), we find that the joint posterior

density of v, 8, X, I" given the sample data y; under the multivariate benchmarking model

is
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>
~ (L>"/2 exp {—%(ys B = C) (L~ W) © 5™ (g — Cuff Ozy)}

1 £ 1 L 1 (g+1)/2
x| —= ] exp {——y'([e QI'YT)~ y} (—) )
(m) 2 12

Simplifying the above equation, the joint posterior density of v, 5,3, T given the sample
data Ys is

1 14 1 (n+L+q+1)/2 1 )
™ %ﬁ»Z,ﬂys X <_) <_) eXp{_—y/(Ig(@F/ZF) y}
(e 2 1NN 2

X exp {—%(QS — Cof = Co) (L = W) @] (ys — Cuf — Czy)} .

As in the nonbenchmarking model, we will use Gibbs sampling to generate
estimates of the model parameters. From the joint posterior distribution v, 3, %, F|gs,

under the benchmarking model, we have the following full conditional distributions:

1. The full conditional distribution of y\gs, B, %, I is given by
vlys, 3,5, T ~ Normal { A7 CL[(L, - W) @ 5] " (y, — C.B) , A"} (3.15)

where A = [[, @ T'ST] " 4+ C[(I, — W) @ ¥] ' C..

2. The full conditional distribution of 8 |g~/s, v, >, I is given by
Blys v, 5, T ~ Normal {@, [CA(L, - W) ® 2}‘104‘1} , (3.16)
where
B={ClL, ~ W)@ %] 'C.} O~ W) @] [ys — Cr]} -
3. The full conditional distribution of ¥|y,, v, 3,T" is given by
Y|ys, v, 3,1 ~ Inverse-Wishart (n + ¢, 5) (3.17)
where n + ¢ > ¢ — 1 and S is a positive definite ¢ X ¢ scale matrix given by
S =258.8+8,(I, —W)'5,,
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and S is the ¢ x £ matrix obtained by unstacking the vector (I, ® F)fly taking each
consecutive q elements of the vector as columns, S5 is the ¢ X n matrix obtained
by unstacking the vector y;, — C, 8 — C.v taking each consecutive ¢ elements as the

columns.

4. The full conditional density of I'|y,, v, 3, % is given by

¢ ¢
7r (F]gs, y,@,Z) x (’—;“) exp {;trace [(F’EF)_I <Z yiy;)] } . (3.18)

Using similar notations as in the nonbenchmarking model, we describe the dis-

tribution of the finite population mean under the benchmarking model.

Theorem 3.4. The Bayesian predictive distribution of ?Ags is

p (Yilys) = /p(V@-\Iz,@,UQ,ys)W (v, 8, 0%lys) dvdBds. (3.19)

Using properties of multivariate normal distribution, the distribution of the finite pop-

ulation mean vector, Y, given y,, v, 5, ¥ is

Yilys,
% Normal ¢ f7, + 1—fl( )+Ai,vi —)Th (3:20)
where
A= () [ @ 1) g — (VX X8~ (U Zuw 9 1,) ]
(A3 N—n A/ q iys s) M IN—_néns q) X1\ >
and

Ni—ni
=1 .
== (=)

Note that the mean of the distribution of the finite population mean under the
benchmarking model has an additional ¢ x 1 vector term A; compared to the mean of
its nonbenchmarking counterpart. Moreover, there is an adjustment of a scalar factor
of V; to the covariance matrix of the distribution of the finite population mean in the
benchmarking model with reference to the nonbenchmarking model. Observe that if

we set ¢ = 1, (320) will be equivalent to distribution of the finite population mean
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Y i = 1,2,...,¢ in the benchmarked univariate case (see Equation (2.9) in Section
2.1). Below is the proof of the distribution of Yi|gs,y, $,% under the multivariate
benchmarking model given in Theorem B.4] above.

Proof.

Note that Y, can be written as

1 &
?i = a7 yi’ :fzysz'—f_(l_fz)ynsl
Ni =1 ~4
L., 1 /
- n_z<1m ® Iq)y i + N; — n; <1N¢*nz‘ ® [q)gns

Hence, to prove Theorem [B.4] we need the distribution of ys and yys. Using
the conditional distribution property of the multivariate normal density, we find that
Ynsx [V B, 2, ys also follows a normal distribution (see Remark B.3). The distribution
of ¥i|ys, v, 3,3 follows from the distribution of the nonsampled units. Thus, under the
benchmarking model, the finite population mean vector Yi\ys, v,0, 8,10 =1,2,...,¢,

follows a multivariate normal distribution with mean vector

B [Vilysv, 8.5) = fig, + (1= f) (Xn.8+v,)

" { (;‘_f;) (' @ 1,) g~ (VX ~nX)B— (U o Zon 0 1) ] } ,

and covariance matrix

Var [¥ly.v. 8,5] = {1 - (fjvi - )} (1]—Vifi) -

3.4 Posterior Inference

As in the univariate case, we use Bayesian predictive procedure to make pos-
terior inference about ?i|y$' Our approach is to combine samples from the posterior
distribution v, 3,3, I'ly, and the distribution of Yilv, B3, Y-
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We use Gibbs sampling method to draw samples from v, 3, ¥, I'|y;, using the full con-
ditional distributions given in SectionB.1lfor the multivariate nonbenchmarking Bayesian
model and B.3] for the multivariate benchmarking Bayesian model. Using the obtained
values of the model parameters, we draw samples from Y|y, B, %, ys from the distri-
butions in Theorem [B.I] and Theorem [B.4. We initialize the values of all our model
parameters v, 0,3, I' using some frequentist calculations. In the Gibbs sampling pro-
cess, we first draw samples from F|ys,y, $,% using a grid method on its elements
and ¢. With each set of samples of these parameters, we form the matrix I" and use
it to draw a sample from Z|gs, v,3,T. Then, with the new sampled values of & and I'
we draw a sample from (3 lv, 3, T, ys- Moreover, with the sampled values of I', 3 and f3,
draw values of v from v[3,%, T, y,. Once the parameters are obtained, we use them to
draw values of the finite population means for each of the areas from the distribution of
Yilv, B,%,ys. We apply this algorithm to draw samples in both the nonbenchmarking
and benchmarking models.

To facilitate inference, we generate M = 20,000 iterates for the Gibbs sampling
method. We use 5000 burn-in values and thinned our results to 750 Gibbs samples by
taking every 20" sampled value. We also use 200 grids in (0, 1) to obtain our values of
the 7 and ¢*. Then we use the linear transformation ¢;; = 2¢;; — 1 to generate ¢. We

then form the matrix I'" by simple algebra into the matrix

( 71 ); gb( Y2 )é
= Chol(P)G = | \ = L= :
0o -

L=

3.5 Applications

In this section, we present two illustrative examples to compare the benchmark-
ing model with its nonbenchmarking counterpart. We summarize the results using the
posterior mean (PM), posterior standard deviation (PSD), and the 95% credible interval
(Int) of the finite population mean of each area. In our first example, we apply our model
to simultaneously estimate the crop data, that is, corn and soybeans hectares, from the
1978 enumerative survey and satellite data. In our second example, we simultaneously
estimate the body mass index (BMI) and bone mineral density (BMD) of the Mexican

American adult domains (gender-county groups of population over 20 years). These are
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the same examples discussed in Chapter 2l We will compare later the results of the
multivariate with their univariate counterpart. As in Chapter 2], the enumerative survey
and satellite data use equal weights, but for the BMI and BMD, there are differential

probabilities of selection (i.e., varying sampling weights).

3.5.1 Corn and Soybeans Hectares Data

Below is the summary of the posterior outcomes of the Gibbs sampling for the multi-

variate result for the finite population means of the crop data.

Table 3.2: Comparison of the NBM and BM models for the finite population mean of the crop
hectares data for the counties in Iowa

Nonbenchmarking Benchmarking
Domain Direct Posterior Corr Posterior Corr
i Estimates Meansp) Mean(sp)
Corn Soy | Corn Soy Corn Soy

16578 8.09 | 124.05575 79.16(11.47) —0.53 | 12451745 77.96(1012) —0.47
96.32  106.03 | 122.08(7.05) 95.031080) —0.44 | 12296715 93.6910.60) —0.49
76.08 103.60 | 116.26(5.66) 87.0911.76) —0.44 | 116.05.62) 85.36(11.04) —0.42

150.89  35.15 | 120.195.05) 81.23(100s) —0.35 | 121.07(5.49) 79411069y —0.38

158.62 5247 | 138.66(550) 67.68(545) —0.49 | 139.70(7.50) 66.04(745  —0.42

102.52  118.70 | 108.14(.55 114100751y —0.42 | 108.8914) 11291757 —0.42

11277 88.57 | 115.036.45 97.13(7.60)  —0.37 | 115.226.01) 9555717y  —0.45

14430 97.80 | 120.94(683) 112.07(730) —0.38 | 121.60(574y 110.16(7.45) —0.39

117.60 112,98 | 111.23(05) 11047660 —0.40 | 111.80(553) 10862542 —0.47

109.38  117.48 | 1234535109y 100.44(576) —0.42 | 124.04(515) 9890550  —0.44

110.25  117.84 | 110.94(.00) 17500671y —0.44 | 111.36(6.47 11611515 —0.33

114.81  89.77 | 132.12(545) 75.28(509) —0.46 | 132.77(408) 73.65(579) —0.37

— ==
Do E ©00-10 Utk W~

As in the univariate results, Table [3.2] shows that the posterior means from the
two models are mostly the same, with a slight shifting in the posterior means from NBM
to BM. These estimates from NBM are similar to those in [Battese, Harter, and Fuller
(1988). In Table B2 the posterior standard deviations (PSD) in BM for all counties in
both crops (corn and soybeans) are smaller than the PSDs in NBM. However, notice that

the gains in precision observed are not significantly large, as we have seen in the uni-

¢
variate case. From Table 2] the means for the corn (soybean) data are N~* Z Ny, =
i=1
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120.32(95.35) = N~ ZNPM By, but N— ZNPM (B = 119.48(96.89). Once

again, this is the effect of our benchmarking constralnt that is, the value of the overall
posterior mean from BM is equal to the sample mean of the data, but that of NBM
is not equal. To further assess the performance of BM over NBM, we looked at the

distance between the direct estimators 7, and the PM; from both NBM and BM. As a
¢

summary measure, we computed the shrinkage SHR = Z (PM; — yi)Q. For the corn
i=1

data, SHR(npy) = 81.05 and SHR(py) = 80.84. On the other hand, for the soybeans
data, SHR(npy) = 92.81 and SH R(gyy = 91.03. For both corn and soybeans data, we
find that BM has a slightly lower shrinkage than NBM, indicating that BM is slightly

more design-consistent than NBM. We use box plots to show the general features in
Figure B11
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3.5.2 Body Mass Index and Bone Mineral Density Data

Table presents the posterior results of the Gibbs sampling for the multivari-
ate result for the finite population means of the BMI and BMD data from NHANES 111
(1996).

Table 3.3: Comparison of the nonbenchmarking and benchmarking models for the finite pop-
ulation mean body mass index (BMI) and finite population mean bone mineral density (BMD)
of adult domains (gender domains of Hispanic population over 20 years) in the state of New
York

Nonbenchmarking Benchmarking
. Direct Posterior Corr Posterior Corr
i n N .
Estimate Mean s p) Mean s p)
BMI BMD | BMI BMD BMI BMD

1 1 6 19.30 0.97 | 22.81(1.92y 0.920.005) 0.03 | 23.98(1.82) 0.87(0.061) 0.18

2 1 112 26.80 0.98 | 24.60(1.77y 0.91(0.088y 0.04 | 24.33(165) 0.91(0.051) 0.17

3 2 96 2330 0.96 | 23.49(1.52y 0.92(0.074) 0.07 | 25.62(1.45) 0.90(0.045) 0.16

4 8 150 2344 0.93 | 23.75(1.11) 0.89(0.053) 0.16 | 24.17(1.12) 0.87(0.041) 0.30

5 4 39 23.00 1.09 | 23.32(1.51y 0970077y  0.03 | 24.23(1.31) 0.88(0.048) 0.22

6 2 6 22.70 0.84 | 23.71(1.47) 0.86(0.073y 0.06 | 26.53(1.97) 0.89(0.065) 0.09

7 2 118 26.65 0.86 | 25.18(1.58) 0.85(0.081) 0.01 | 25.19¢1.37) 0.90(g.043y 0.13

8§ 5 101 21.38 0.78 | 23.12(1.43) 0.83(0.069) 0.21 | 24.86(1.03y 0.92(g.043) 0.18

9 3 142 27.80 0.80 | 25.79(1.64) 0.83(0.078) 0.06 | 25.96(1.23) 0.89(0.043) 0.14
10 2 37 26.10 0.88 | 24.89(1.57)  0.86(0.079) 0.07 | 25.20(1.48) 0.90(g.050) 0.24

Table present the multivariate results for the finite population mean BMI
and BMD of the Mexican American adult domains. Observe that the tables show that
the posterior means (PM) of the benchmarking models shifts the direct estimates, as

well as the posterior means from NBM. Under BM, the benchmarking constraint implies

10 n, 10 ny
that Y = N~! ZZwijyij. From our calculations, we find that N~! ZZwijyij =
i=1 j=1 =1 j=1
24.99 = N N;PMjpu for the BMI data, while N7 ) “wyyy; = 0.90 =
i=1 i=1 j=1
10 10 ’
N~ " NiPMjpa for BMD. However, N='> ~ N;PMj(npa = 24.35 for BMI while
=1 1=1

10
N~ " N;PMjnpar = 0.80 for the BMD value.

=1
The BMI data has a shrinkage of SHRpy;y = 5.3049, while the BMD data has a
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shrinkage of SHR gy = 0.0151. The corresponding NBM shrinkages has for BMI and
BMD, respectively are SHRnpar) = 5.645, and SHR(ypa) = 0.1777. The PSDs of all
models are very close to each other. However, we observe that the PSDs from BM are
mostly larger than those from NBM, which reflects the adjustments from the survey
weights in the constraint. As the survey weights are not incorporated in an informative
manner (i.e., non ignorable design) in the model, there may not be gains in precision.
But observe that there is a great increase in precision in most of the benchmarking
results for BMD compared to its nonbenchmarking counterpart. This more significant
gain in precision might be due to the correlation between BMI and BMD, which we see
to be always positive in all areas. This positive correlation is due to the fact that we
have modeled them against age, and since BMI and BMD both depend on factors that
relate to age, we see a positive correlation between BMI and BMD. Again, we use box
plots to show the general features in Figure 3.2

As a summary, in the two examples we observe the effects of the benchmarking
constraint. As our theory shows, we observe that the model-based estimates from the
small areas match the chosen direct estimator for the single large area when these small
areas are collapsed. We also observe that there is a gain in precision in using the
benchmarking models, relative to the nonbenchmarking model, although the gains are

not always so significant because the samples are much too small, with a few exceptions.

3.6 Comparison of Univariate and Multivariate Re-

sults

In Table[3.4lwe present a comparison of the univariate and multivariate results for
BMI and BMD. Observe that the multivariate benchmarking results has the most precise
result, with a few exceptions in the case of the BMI, where the univariate benchmarking
result is better. We can say that most of the gains in precision can be attributed to
the incorporation of the benchmarking constraint in the models and the borrowing of

strength of the two responses between each other, as well as with the other small areas.
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Table 3.4: Comparison of the nonbenchmarking (NBM) and benchmarking (BM) models
(univariate and multivariate) for the finite population mean body mass index (BMI) of adult
domains (gender domains of Hispanic population over 20 years) in the state of New York

Univariate Multivariate
i n N Direct Posterior
Estimate Meansp)
NBM BM \ NBM BM
Body Mass Index (BMI)
1 1 6 19.30 | 22,425 09y 22.80(2.15) | 22.81(1.92) 23.98(1.82)
2 1 112 26.80 | 24.68(1.82) 25.55(1.59) | 24.60(1.77) 24.33(1.68)
3 2 96 23.30 | 23.77(152) 24.34(1.41) | 23.49(152)  25.62(1 45)
4 8 150 23.44 | 23.78(1.12) 24.33(1.00) | 23.75(1.11) 24.17(1.19)
5 4 39 23.00 | 23.61(149) 24120134 | 23.320151) 24.23(1.31)
6 2 6 22.70 | 23.43(1.64) 23.84(1.62) | 23.T1(1a7)  26.53(1.97)
7 2 118 26.65 | 25.10(1.66) 25.93(1.38) | 25.18(1.58) 25.19(1.37)
8 5 101 21.38 | 22.64(136) 23.09(1.34) | 23.12(1.43) 24.86(1.23)
9 3 142 27.80 | 25.74(160) 26.48(1.35) | 25.79(1.64) 25.96(1.23)
10 2 37 26.10 | 24.92(163) 25.57(1.45) | 24.89(157) 25.20(1.48)
Bone Mineral Density (BMD)

1 1 6 0.97 | 0.90(0.089) 0.92(0.084) | 0-92(0.005) 0.87(0.061)
2 1 112 0.98 | 0.910.079) 0.94(0.070) | 0.91(0.088)  0-91(0.051)
3 2 96 0.96 | 0.920.070y 0.94(0.062) | 0-92(0.074)  0.90(0.045)
4 8 150 0.93 | 0.890.051) 0.91(0.041) | 0-890.053)  0.87(0.041)
5 4 39 1.09 | 0.970.072)  0.990.064) | 097 0.077)  0.88(0.048)
6 2 6 0.84 | 0.84¢g.073) 0.85(0.069) | 0-86(0.073)  0.89(0.065)
7 2 118 0.86 | 0.86(0.069) 0.89(0.057) | 0-85(0.081)  0.90(0.043)
8 5 101 0.78 | 0.81(0.060) 0-84(0.053) | 0-83(0.069)  0.92(0.043)
9 3 142 0.80 | 0.85(0.062) 0.87(0.052) | 0-83(0.078)  0.89(0.043)
10 2 37 0.88 | 0.870.070)  0-89(0.064) | 0-86(0.079)  0.90(0.050)

3.7 Concluding Remarks

In this chapter, we presented the multivariate Bayesian benchmarking model.
We discuss the Bayesian regression model for any number of responses, ¢ > 2. There is
a practical significance to the extension of the benchmarking model to the multivariate
case because in many small area problems, data on related multiple characteristics and
auxiliary variables are available. As in the univariate case, we used Bayesian predictive
inference to estimate the finite population mean vector of small areas. We discussed
both the theoretical and numerical effects of adding the benchmarking constraint into
the Bayesian model. From the results of the examples as well as the mathematical cal-
culation, we found that there were adjustment in the posterior mean vector of the finite

population mean after the benchmarking constraint was included in the model, as well
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as a gain in precision due to the decrease in the covariance of the distribution of the
finite population mean vector. However, sometimes, not much improvement is observed,

because our sample sizes are relatively too small compared to the population sizes.

We used again the two crops, corn and soybean, in the survey and satellite
data of Battese, Harter, and Fuller (1988) and the body mass index (BMI) and bone
mineral density (BMD) from INHANES III (1996), both pairs being correlated charac-
teristics as illustration of our multivariate results. We compared also our work with
the work of Datta, Day, and Maiti (1998) who presented a super population approach
to obtain a hierarchical Bayes prediction of the small area mean vector using the mul-
tivariate nested-error regression model of [Fuller and Harter (1987). They compared
the performance of the multivariate approach with the usual univariate approach and
found that the multivariate approach may result in substantial improvement over its
univariate counterpart through some data analysis and simulations. Our model is also
adapted from the [Fuller and Harter (1987) multivariate nested-error regression model.
However, the work of [IDatta, Day, and Maiti (1998) does not include benchmarking in
their model, so we can only compare it to our nonbenchmarking model. Like that of
Datta, Day, and Maiti (1998), we also compared the performance of the multivariate
approach with the univariate approach both under nonbenchmarking and benchmark-
ing. We are currently working on the journal article on the results of this chapter; see
Toto and Nandram (2010b).
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Figure 3.1: Box plots of the distribution of the finite population mean (?) by county (area)
of the corn and soybeans acreage data
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Note: As in the univariate case, we see a consistent upward shift in the center of the distribution of
the finite population means for the corn acreage finite population means. For the soybeans data, we
observe a consistent downward shift in the center of the distributions. There are minimal difference in
the lengths of the whiskers of most of the BM boxplots compared to the NBM boxplots, indicating a
slight increase in the precision in most of the domains; see ¢ = 8 and ¢ = 10 for soybeans, where there
the variability in the NBM model is slightly better than the BM results.
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Figure 3.2: Boxplots of the distribution of the finite population mean (7) by domain of the
BMI and BMD data

Distribution of Small Area Means for BMI

I

25
|

BMI

*
o
N
E2
* Sample Mean
NBM — BM
w % BM NBM

1 2 3 4 5 6 7 8 9 10

Domain

Distribution of Small Area Means for BMD

1.0 11 1.2
| |

BMD
0.9
|

0.8
|

e

_| * Sample Mean
NBM — BM
BM NBM

0.7
|

0.6

1 2 3 4 5 6 7 8 9 10

Domain

Note: Aside from the boxplots for each of the ¢ = 10 small areas, we also plot the direct estimates
for each areas, the sample means 7,. We observe a shift in the center of the distribution of the finite
population means for BMI and BMD when we compare the center for the BM and the NBM models. For
the BMI data, notice that most of the time, there is an upward shift in the center of the distributions
of the BM results compared to the NBM model. On the other hand, there is a downward shift in the
center of the distributions for the BMD data in the BM model compared to the NBM model. Notice
also the shorter whiskers (especially for the BMD results) of most of the BM boxplots compared to the

NBM boxplots, indicating an increase in the precision in most of the domains.
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Chapter 4
Conclusion

In this chapter, we summarize our contributions both in methodology and ap-

plications and discuss some future work.

4.1 Methodological Contributions

We developed a Bayesian predictive inference to estimate finite population means
under a nested error regression model using internal benchmarking. The benchmarking
constraint was constructed using a direct consistent estimator of the overall population
mean based on the unit-level data. We incorporated unit level survey weights into the

benchmarking constraint with the sampled data.

For the univariate Bayesian benchmarking model, conditional on the benchmark-
ing constraint, we obtained closed forms conditional distribution of the model param-
eters. The proof of the propriety of the joint posterior distribution showed a simple
procedure to obtain samples from the posterior distribution of the parameters. Thus,
we do not rely on Markov chain Monte Carlo (MCMC) methods to make inferences;
we simply draw random samples from the posterior density of p|g5 and the composition
method to obtain samples of the other parameters, and the finite population means. The
introduction of the intra-class correlation p into the model is one of our novel ideas in this
dissertation. Because of the introduction of p into the model and the use of unit-level
survey weights in the benchmarking constraint are new, both the nonbenchmarking and

benchmarking Bayesian model are our own results. We developed Bayesian predictive
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distribution for the finite population means.

To get our multivariate Bayesian benchmarking model, we extended the struc-
ture of the univariate models to be able to accommodate the multivariate outcomes.
First, we generalize the implementation of the intra-class correlation into the nested-
error regression model by using a more specific structure of the covariance matrix for
the area effects vector, v,, instead of using a simple positive-definite, symmetric matrix
for the covariance, as in [Datta, Day, and Maiti (1998). This is another novel idea we
have in this dissertation. This covariance structure for the area effects gives a direct link
to the data and the area effects, however, it also made the model more complex. Due to
the complexity of the model, we cannot use the same sampling-based process (i.e., ran-
dom samples), we used for the univariate model to sample from our multivariate model.
We used Gibbs sampling to make inference about the finite population mean vector.
Thus, we generated the full conditional distributions of all the model parameters and
iterate between these resulting full conditional distributions to generate samples of the
parameters, as well as the finite population mean vector. Also, we have not found any
other literature on multivariate Bayesian model that incorporates benchmarking. Thus,
the introduction of benchmarking in the multivariate Bayesian nested-error regression

model is also our original idea.

In both the univariate and multivariate case, we observed important changes in
the distribution of the finite population mean when the benchmarking constraint was
added to the model. Let us consider the multivariate case, since the univariate case is a
special case when ¢ = 1. First note that the distribution of the finite population mean

vector Y, given Ys, v, 0,2 under the nonbenchmarking model is

N in. _ 1 — .
Yilys, v, 8,5 r\leormal{figs‘ +(1—=f) (X/nsig—i_ Bi) 7 ( Nf) E}.
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With the addition of the benchmarking constraint into the model, the distribu-

tion of the finite population mean vector Y, given Ys, v, 0,2 under the benchmarking

model is

Yilysayagaz

md Normal {fly& + (1= fi) (7;&@ + %) + A, V; <1 — fz> E} ;

where

= (722 [ o) n - WX x5 - (4 2o 1)),

N —n
Ni—ni
Vi=1- .
(=)

From these two distributions, we note that there is an additional term +A; added to

and

the mean vector of the distribution of the finite population mean vector. This term

causes a shift in the center of the distribution of the finite population mean due to the
Ni — Ny
-n

of this term in the covariance of the distribution of the finite population mean causes

benchmarking constraint. Moreover, note that V; =1 — < 1, so the addition

the variances of the finite population mean to be smaller, which implies a possible gain
in precision in the distribution of the finite population mean. However, the gain in pre-
cision might be offset for some cases when the variability of v, 3,% is incorporated. In

general though, the gain in precision is small.

4.2 Applications

We applied our nonbenchmarking and benchmarking Bayesian predictive models
(both univariate and multivariate) to the corn and soybeans data (LANDSAT satellite
data and enumerative survey) and to the body mass index (BMI) and bone mineral
density (BMD) data (NHANES III and (Census). We found that relative to the non-
benchmarking model, the benchmarking model contributes an improvement in estimat-
ing the finite population mean. The benchmarking results showed slightly more precise

estimates for most cases with an assurance that the combined estimates from all areas
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matches the single direct estimate from the large area when the small areas are collapsed.

This is a desirable result for a statistical practitioner of model-based estimation.

From the outcome of our numerical calculations, comparing the nonbenchmark-
ing and benchmarking models, both the univariate and multivariate for the finite popu-
lation mean, we found that the multivariate benchmarking model gives the most precise
estimates of the finite population mean. Moreover, we see that both the univariate and
multivariate benchmarking models showed that the combined estimates from all areas
match the single direct estimate from the large area when the small areas are collapsed;
see Table [41] has a summary of both datasets we studied. The values in Table [Z1] are

VA n;
the values of the sample mean 7 = n~* Z Z y;; for each of the four dataset and the
i=1 j=1
R L n;
combined average of the posterior means Y = N1 Z Z w;;PM;; from both nonbench-
i=1 j=1

marking and benchmarking model. Table L1l summarizes the effect of benchmarking we
mentioned earlier. That is, the combined estimates of the finite population means from
the benchmarking model would match the direct estimate of the mean, which the non-

benchmarking model does not achieve.

Table 4.1: Comparison of the nonbenchmarking and benchmarking Bayesian models for Finite
Population Means

Variable Direct Nonbenchmarking Benchmarking

Name Estimate | Univariate Multivariate ‘ Univariate Multivariate
Corn 120.32 119.67 119.48 120.32 120.32
Soybeans 95.35 96.87 96.89 95.35 95.35
BMI 24.99 23.78 24.35 24.99 24.99
BMD 0.90 0.88 0.88 0.90 0.90

Relative to the nonbenchmarking model, we observe in the two illustrative exam-
ples that there is a shift in the posterior densities of the Y;; see Figure 211, Figure 2.2
Figure BIland Figure3.2l Moreover, the examples showed an increase in the precision of
the estimates of the finite population mean in each area under the benchmarking model.
This increased precision is reflected in the slightly narrower 95% credible intervals in the
benchmarking model and shorter whiskers in the boxplots of the distributions shown in

the figures.

76



Our simulation study also showed that the benchmarking model performs better
than the nonbenchmarking model. Both the point estimators of the finite population
means from the benchmarking and nonbenchmarking models were found to be very close
to the true values of the finite population means. Also, we note that there is not much
shrinkage or bias observed in using our estimators compared to the survey direct consis-
tent estimate of the finite population means. The simulation also indicated the gain in
precision from using the benchmarking model compared to the nonbenchmarking model.
The smaller RMSE from the benchmarking model showed that it does a better job in
estimating the finite population mean than the nonbenchmarking model. In most cases
the coverage probabilities are better under the benchmarking constraint. Thus, overall
we conclude that the benchmarking model contributed an improvement in estimating
the finite population means by giving more precise and less biased estimates than the
nonbenchmarking model. Of course, this makes the benchmarking approach appealing
to survey practitioners. The effects of sampling weights were not included in the simu-

lation study because we simulated the corn data with equal weights for all the samples.

4.3 Future Work

The following problems are next in this research.

1. Simulation

Similar to the univariate model, we also want to further study the prop-
erties of the multivariate benchmarking model. Thus, we want to perform some
simulation study on the multivariate benchmarking Bayesian model. Once all
these are done, we would like to create an R library of our computations so that
the statistical community would be able to use our results in doing their statis-
tical research. We also want to include sampling weight in the simulations, both

univariate and multivariate.
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2. Propriety of Models

(a) Propriety of the Multivariate Nonbenchmarking Bayesian Model

We believe that the joint posterior density from our multivariate non-

benchmarking model, TNB )\ (y, B, %, F|ys) , 1s proper.

The joint posterior distribution of the multivariate Bayesian model under

the nonbenchmarking model is

LNE/ 1\ a2 .
™BM (28,5, Tlys) o« (m) (E> HeXP{—§2¢/(FIEF)_1B¢}

i=1
f 1 ng /
-1
X Hexp {—5 2; (yij — [Xij@ + yJ) ) <gij — [Xij@ + yJ)} )
i= j=
Conjecture 4.1. Under the nonbenchmarking model, the joint posterior den-
sity TNBM (y, B, %, F|ys) is proper.
See Appendix [A] for a discussion.

(b) Propriety of the Multivariate Benchmarking Bayesian Model

Similarly, we may be able to show that the joint posterior distribution
from the multivariate benchmarking Bayesian model is proper. We have a
second conjecture.
Conjecture 4.2. Under the benchmarking model, the joint posterior density
TBM (y, 8,3, F|gs) is proper.
Proof.
To prove that the joint posterior density mppp (y, @,02,F|g5), our idea is
to implement a strategy which uses the propriety of the nonbenchmarking

Bayesian model, if the first conjecture is proved.

The joint posterior distribution of the multivariate Bayesian model under
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benchmarking model is

1 14 1 (n+L+q+1)/2
TBM (¥ 8,2, Tys) o (—) (—) (4.1)
s (85 Tl o< (jry ) sy

X exp {—% [(gs — o= Cov) (I, - W) ® E]*l] (ys — CaB — Czy)} :

We can do this process once we prove that the joint posterior distribution
under the nonbenchmarking model is proper. We would attempt to show that
the ratio of the joint posterior distribution from the benchmarking model to

the joint posterior distribution from the nonbenchmarking model,

T™BM (ya @7 Ea F’ys)
TNBM (¢ 0, % Tlys)”

is uniformly bounded.

3. Transformation

In the nested error regression model, we assume normality on the responses,
but normality may be tenuous. Thus, a transformation (e.g., logarithmic) may be
needed. This is true for the data on body mass index; see Nandram and Choi
(2005, 2010). However, the benchmarking is done on the original (untransformed)
responses. This is a difficult problem. [You and Rao (2002h) attempted an approxi-
mation for unmatched linking models. INandram, Toto, and Choi (2010) suggested
a different type of approximation using Taylor series expansion. However, it may

be possible to perform this analysis without making analytic approximation.

Of course, the variables in the multivariate model might need to be trans-

formed as well, which would make the problem more complex.

4. Robustification
Moreover, one can robustify the nested-error regression model and the benchmark-
ing process by using the general skew exponential power distribution instead of the

normal error; see, for example, [Diciccio and Monti (2004) for an excellent discus-
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sion of inference in the skew exponential power distribution. This robustification
can help to reduce the effect of a possibly misspecified nested error regression

model in small area estimation. This is also an extremely difficult problem.

. Informative Sampling

We would like to relate the sampling weights to the responses as in informative sam-
pling; see [Pfeffermann, Krieger, and Rinott (1998), |Sverchkov and Pfeffermann (2004),
Pfeffermann and Sverchkov (2007) and Nandram, Choi, Shen, and Burgos (2006).
Another approach can be obtained by improving the Horvitz-Thompson estimator

using variable weights (Deville and Sarndal, [1992).

. Discrete Outcomes
We plan to incorporate benchmarking into models with discrete outcomes. For
example, the work of [Nandram, Toto, and Katzoff (2009) on multiple responses

for categorical tables can be extended to include benchmarking.

. Application

Our models are not only applicable to health statistics and agriculture
statistics data. We found an application of our results in modeling bacteria data.
Prof. Terri A. Camesano of the Chemical Engineering Department of WPI pro-
vided a dataset on the properties of the molecules on the surface of the Escherichia
coli (E.coli) bacteria. For this dataset, we are interested in estimating the finite
population mean force of adhesion of the different E. coli strains. Each strain is
represented by each of the eight slides of FE.coli strains with different lipopolysac-
charide (LPS) structures. Each slide has an area of 25mm? and it is estimated that
there are 69 bacteria for each 10 um?. These are our small domains in this study.
We can also use the different core types as our small areas. Though in this case,
instead of eight (8) domains, there are only three core types as domains, namely
K12, 0157, and O113. If we will be able to estimate the force of adhesion of the
different strains of F.coli, this can be used to better understand and characterize

how the FE.coli bacteria attach to a surface under different condition and/or phys-
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ical properties.

The O-antigens is considered as a highly variable component of the LPS among
E. coli strains. It is useful for strain identification and assessing virulence. Atomic
force microscopy (AFM) is used to characterize the physicochemical properties
of the LPS of E. coli strains. Moreover, physical properties of the O-antigens,
such as length and density, are important for determining binding of bacteria to
biomolecules and epithelial cells. However, LPS length and density have not been
well studied in characterizing the bacteria. But, LPS length and LPS density
were found to be correlated with the force of adhesion. Thus, we can use this
relationship to estimate the finite population mean force adhesion of each of the

strains of the E. coli by using the LPS length and LPS density as the covariates.
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Appendix A

Discussion of the Conjectures

To prove that the joint posterior density m (y, B, o2, F|ys) under the nonbenchmarking

model is proper, we write the density as

TNBM (¥ 8,8, Tlys) ocm (18, 8,7, ys) m2 (BI, Ty ya) 75 (5,1 Jys)

and attempt to show that each conditional density is proper (as in our univariate proof).

Again, recall that

1\/ 1\ (Htrar1)/2 ¢
m™BM (v, 8,5, Tlys) o (m) (E) H

=1

{45 - )5 1, )}

1 )
exp {—;@’(F’EF) 121}

After some algebraic manipulation, the joint posterior density is given by

¢
T™NBM (% 5,2, Tlys) o {H(|Bi|)l/2}

=1

¢
" [H o {_%(yi — B 'n;57'0,) B (v; — BflmElbi)} (A1)
i=1
/ 12 1 Y4 1 (n+l+q+1)/2 1 ¢ 1 1 1
i) = | | = —= _pnipTinly,
A0} () () e e e
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_ Q RS
where B; = n, 2" + (I'S0) 7', b, = - Zl (yis — X0,8) .
J

ng

and ¢; = Z (wi X{Jﬂ) »! (yij - XZ-'J-@) fori=1,2,...,¢.

j=1
Observe that from ([A.T]), the conditional posterior density of the small area

effects parameters, v, is given by

¢
T <y|@7271—‘7?~/8) X HW(%|@727Fays> ) (AQ)
i=1
where
T (3.5, T, ys) o (1B:])'""? exp {—%(% — B, 'niS7',) ' Bi (v; - BilniE_lbi)} -

Hence, given (3,3, T, and ys, each of the £ area effects vector v, = (Vi1, Vigy - - - yz-q)',i =
1,2,..., ¢, follows a Normal distribution with mean vector E [y|@, 1, gs} = B, 'n; X7,
and covariance matrix Var [y|@, DI ys] = B;~!. That is,

yi|@,02,§~2,gs i Normal{Bf ¥, B’l} 1=1,2,...,¢.
Now, we can write
m (v, 3,8, Tlys) oc my (vI8, 8,7, ys) 7 (8,5, Tlys) -
However, integrating out v in the joint distribution 7 (lg, 5,38, T ]ys) , we get
ysl3, 5, T ~ Normal { X3, (I, ® £) + (Z, ® I) (I, @ I'ST) (Z, @ 1,)'} .
Let R=1,9% F=2,® 1, G=1L®I"Yl', and Q@ = R+ FGF'. Then,
ys|3,%, T ~ Normal { X3, R + FGF') = Normal (X.3,Q} .

Hence,



Now, letting 5 = (XSQ_IX;)f1 (XSQ_lys) , We can write m (QSW, 2, F) as

o d =5 (5 - x3) 0 (- xB) | o { -5 (5 B) xoxs (- B) }

Thus, we can write 7 (@, 2, F\gs) as

7 (yslB, 35, T) o {lel(|3i|)1/2} (|_11“|)Z(|§1|)(n+€+q+1)/2<ﬁ)1/2
<o gl (o) ey B) e -3

Reordering the terms of this product, we get

7 (83,5, Tlys) o< m (815, T, ys) (2, Tlys)

1/2
> {det [(Xsé—lX')‘l} P {_%(@ -B) X (o B)}

X{det “Xs;_lxé)_l}}_l {H . m} <|r|) <|z|)(n+z+q+l)/2(|a|>l/2
i {—% (e = XB) 2 (y }

Hence, the vector of regression coefficients § = (

> given 3, I, and ys

and covariance matrix

IQ)Q

follows a Normal distribution with mean vector £ [ﬂ X, T ys} =
Var 32,1, y,] = (X.Q~ 1X/)"!. That is,

8IS, T, y, ~ Normal {@, (XSQ—lxg)‘l} .
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Then, integrating out (3 from 7 (@, DI F]gs) , we have

1 1/2 ( ¢ 1\ /2 1\¢/ 1 \(Htrat)/2 o N\ 1/2
“(0) A oo ) {H(@) }(m) (1) ()
X exp{—%(gs —X;@)krl (QS _X;@>}

After some algebraic manipulation, 73 (E, F|gs) is given by

LNE/ 1\ (HerarD/2 oo\ 172
S Ty, ) (= —
ma (B Tlys) (m) (m) (\m)

{det (X:Q‘lXé) }1/2 {lj (ﬁ) 1/2}

X exp {—%QS' (Q_l -0t [X; (XSQ_IX;)AXS} Q_1> ys} )

L

¢
But note that H |B;| = H

=1 i=1

4 (P’zr)‘l( - ‘(Z;Zs 29 + (Lg ® (r’zr)*)

Hence,

1N/ 1\ (Herat)/2 oog N 12
5 Ty, ) (= —
s~ (1) () (o)
1

) 12 1/2
{det (X, Q71X)) } {det (Z:Z,@271) + (I, ® (I'ST) )] }

X exp {—%ysl <Q_1 -t [X; (XSQ_lX;)leS} Q_1> gs} )

To be able to conclude that 7 (y, B, %, F|ys) is proper, we need to show that 73 (E, F|gs)
is proper. Once we show that 3 (E, F]ys) is proper, we can conclude that the joint pos-
terior density 7 (y, B, o2, F|gs) is proper. We have a form similar to 73 (E, F|g~/5) for the

benchmarking multivariate model.
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