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Abstract

Handing over objects is the foundation of many human-robot interaction and col-

laboration tasks. In the scenario where a human is handing over an object to a

robot, the human chooses where the object needs to be transferred. The robot

needs to accurately predict this point of transfer to reach out proactively, instead

of waiting for the final position to be presented. We first conduct a human-to-robot

handover motion study to analyze the effect of user height, arm length, position,

orientation and robot gaze on the object transfer point. Our study presents new

observations on the effect of robot’s gaze on the point of object transfer.

Next, we present an efficient method for predicting the Object Transfer Point

(OTP), which synthesizes (1) an offline OTP calculated based on human preferences

observed in the human-robot motion study with (2) a dynamic OTP predicted based

on the observed human motion. Our proposed OTP predictor is implemented on

a humanoid nursing robot and experimentally validated in human-robot handover

tasks. Compared to using only static or dynamic OTP estimators, it has better

accuracy at the earlier phase of handover (up to 45% of the handover motion)

and can render fluent handovers with a reach-to-grasp response time (about 3.1

secs) closer to natural human receiver’s response. In addition, the OTP prediction

accuracy is maintained across the robot’s visible workspace by utilizing a user-

adaptive reference frame.



Acknowledgements

I want to sincerely thank my advisor Prof. Jane Li for giving me the opportunity

to do research with her and guiding me at every step of my master’s research and

studies. Without her support and unwavering faith in my abilities, probably more

than I had, I may not have been able to successfully complete my graduate research.

Apart from the research work, I truly appreciate all the assistance and care she has

provided to ensure my well-being during and beyond the one and half years of my

graduate studies.

My parents have dedicated the best part of their lives towards ensuring that I

get the education I want to fulfill my dreams. Even though I have never expressed

this to them, I will always be grateful for having such caring and selfless parents.

I can never imagine getting through any hurdles in my life without their love and

support.

Finally I would like to thank Dharini, John, Himanshu, Vishnu, Abhijeet and

every other team member that I have worked with during the course of this research.

All of their contributions have been instrumental in the successful completion of my

thesis work.

i



Contents

1 Introduction 1

2 Related Work 5

2.1 Motion Studies on Human-Human Handovers . . . . . . . . . . . . 5

2.2 Methods for Dynamic OTP Estimation . . . . . . . . . . . . . . . . 6

3 Handover Motion Studies 10

3.1 OTP in Human-Robot Handover . . . . . . . . . . . . . . . . . . . 12

3.2 Effect of Gaze and Receiver Orientation . . . . . . . . . . . . . . . 13

3.3 Natural Response Time of Human Receiver . . . . . . . . . . . . . . 16

4 Methodology 18

4.1 Sensing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Static OTP Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Dynamic OTP Estimator . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Integrated OTP Estimator . . . . . . . . . . . . . . . . . . . . . . . 26

5 Implementation 29

ii



6 Experimental Evaluation 33

6.1 Improved Accuracy at Initial Phase . . . . . . . . . . . . . . . . . . 33

6.2 Faster Handover Response . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Improved Generalization Capability . . . . . . . . . . . . . . . . . . 36

7 Conclusion 38

8 Future Work 40

8.1 Inferring the level of collaboration in handover tasks: From one-to-

one to one-to-many . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1.1 One-to-One Object Handover . . . . . . . . . . . . . . . . . 42

8.1.2 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1.3 One-to-Many Object Handover . . . . . . . . . . . . . . . . 45

iii



List of Figures

1.1 Fluent and natural-looking human-robot object handover is critical

to the performance of collaborative tasks. . . . . . . . . . . . . . . . 2

3.1 Experimental setup for human to robot handover study . . . . . . . 11

3.2 Effect of interpersonal distance and arm length on OTP . . . . . . . 12

3.3 Effect of height of giver and initial wrist position on OTP . . . . . . 13

3.4 The effect of robot gaze on the OTP chosen by human givers: Human

standing at position C . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 The effect of robot gaze on the OTP chosen by human givers: Human

standing at position A . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Human-human handover study to establish ideal human reaction and

reach-to-grasp response time in a handover task. . . . . . . . . . . . 17

4.1 OTP Estimation Module: sensing module communicates skeleton

data and grasping points to the OTP estimators generating a required

trajectory which is executed by the robot controller. . . . . . . . . . 19

4.2 Representation of the user-adaptive reference frame . . . . . . . . . 25

iv



5.1 (Left) The Tele-robotic Intelligent Nursing Assistant (TRINA) sys-

tem. (Right top) The sensing server computer that runs skeleton

tracking system, and (Right Bottom) the operator console displayed

on the robot control computer. . . . . . . . . . . . . . . . . . . . . 29

5.2 Software Architecture: Human skeleton data is streamed over local

network by the sensing server and received by the operator console

client that runs the OTP estimator. . . . . . . . . . . . . . . . . . . 30

5.3 An example of grasp point detection for a cup. The cup is identified

and cropped from the background. Contour (green line) and grasp

points (red) are calculated on the cropped image. . . . . . . . . . . 31

5.4 Kinesthetic learning for 10 different goal locations . . . . . . . . . . 32

6.1 Comparison of the prediction error between the baseline (red) and

the proposed method (blue). . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Comparison of the response time between the baseline (red) and the

proposed method (blue) while ensuring fluent motion. . . . . . . . . 35

6.3 Comparison of the generalization capability between the baseline

(red) and proposed method (blue) across the workspace. . . . . . . 36

8.1 Experiment setup for Pilot Study . . . . . . . . . . . . . . . . . . . 43

8.2 Object transfer point changes based on level of collaboration . . . . 44

8.3 Experiment setup for one-to-many handover study . . . . . . . . . . 46

v



Chapter 1

Introduction

The study of fluent and natural-looking human-robot handovers has been motivated

by the need for physical interactions and collaboration between assistive robots

and their human partners [1]. For instance, a nursing robot needs to hand over

food, beverages, and medicines to patients (see Fig. 1.1(a)), and hand over medical

supplies when assisting a human nurse [2]. Planning these motions require con-

sideration of human preferences like legibility, safety, comfort and reachability [3].

A nursing robot may also need to receive bottles (see Fig. 1.1(b)), food trays or

clothing handed to them by patients and medical supplies handed by nurses. In

this scenario, planning the robot motion not only requires similar consideration of

human preferences but also involves prediction of human partner’s intent and in-

tended actions. Such handover tasks are frequently performed in many interaction

and collaborative tasks, and therefore have a dominant effect on the overall task

performance.
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(a) Robot to Human Handover (b) Human to Robot Handover

Figure 1.1: Fluent and natural-looking human-robot object handover is critical to
the performance of collaborative tasks.

Ideally, we would like an assistive robot to perform handovers that are at least

as good as a human’s, if not better, in nursing tasks. Yet, even state-of-the-art

robotic assistants are considerably slower than human partners causing them to

be inconvenient. This is partly due to hardware limitations that prevent human-

like robots from actuating their limbs with the same efficiency and dexterity as a

human. Another reason for this gap in performance is the difficulty in prediction

of human intent and intended motion. In a human to robot handover scenario, it

is not desirable for the human to hold the object for a considerable amount of time

and wait for the robot to react. Just like humans anticipate how and where an

object could be handed over, we want the robot to predict and proactively respond

to receive the object.

Research on human-robot handovers has predominantly focused on planning

robot to human [3–11] handovers but limited work has investigated the scenario of

handover from a human giver to a robot receiver [12–15] (see Fig. 1.1(b)). For a

human to robot handover, the problem of planning the robot response after the final
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position of the object is presented has been addressed in previous work [1, 16]. In

this work, we focus on how to predict the object transfer point (OTP) in a handover

process and how to render a proactive and adaptive robot reach-to-grasp response

based on online OTP prediction. We do not consider the problem of inferring if

and when a handover will take place and focus on the scenario where the intent for

handover has been communicated, but the point of object transfer is unknown. We

define our problem as prediction of the object transfer point to achieve:

• Fast and Accurate reach-to-grasp response

• Fluent, Natural and Legible robot arm motion

• Generalized OTP prediction across workspace

Contributions: We conduct a human-to-robot handover motion study to analyze

how observable features like height, arm length, position, orientation and gaze of

the human and robot affect the human’s choice of object transfer point. Our study

presents new observations on the effect of the robot’s gaze on the point of object

transfer. To render proactive and adaptive robot motions, we propose a unified

OTP estimation strategy that combines a pre-computed object transfer point (static

OTP) which addresses giver position, safety, reachability and height of giver, with

a dynamic OTP estimate based on real-time handover motion phase estimation.

The parameters that determine the static OTP estimation are evaluated in a

human-robot handover study (with 20 subjects) described in Chapter 3. To eval-

uate the proposed OTP estimator’s performance, we also measured the receiver’s
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response time in natural human-human handover. The integrated OTP estima-

tion framework is proposed in Chapter 4. We extended the Probabilistic Movement

Primitive (Pro-MP) model and learned the temporal and spatial movement in a rel-

ative coordinate frame defined by the human giver’s orientation with respect to the

robot receiver, such that the learned model for dynamic OTP prediction generalizes

across the robot’s reachable workspace. Our proposed OTP-estimation strategy is

implemented on a humanoid nursing platform (see Chapter 5). Experimental re-

sults show that response time is decreased by 19.17% and estimation accuracy at

the start of handover is increased by 32.5%.
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Chapter 2

Related Work

2.1 Motion Studies on Human-Human Handovers

The object transfer point (OTP) in human-robot handover tasks can be approx-

imately predicted by the receiver before a handover motion is initiated. An analysis

of handing over objects on a table showed the majority of reaching motions of the

receiver to be based on experience and not on the visual feedback of the giver’s arm

motion [4]. Feedback is only used for grasping when the receiver’s hand is close

to the object. The study also showed that givers select a direct path to the OTP

without deviating from it so that their motion is predictable for the receiver. Simi-

larly, the giver’s arm motion in a vertical 2D plane was observed to be pre-planned,

feed forward with a fixed maximum velocity regardless of the object pose [5]. How-

ever, the velocity and OTP of the handover motion was affected by the weight and

affordance of the object. Heavier objects were transferred closer to the giver and
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the giver arm velocity was slower while handing over a glass filled with water as

compared to an empty glass. The motion of the giver’s arm is also independent of

the receiver [6], with similar velocity profiles observed for handing over an object

to a human and for placing the object on a table at the same distance. Here the

distance maintained by the giver from the receiver was found to be independent of

their height and arm length, indicating that social proxemics are potentially more

important in determining the interpersonal distance than the physical limitations

of the collaborative partners. Moreover, the handovers occur halfway between the

giver and the receiver. Apart from interpersonal distance, factors like safety, visi-

bility and arm comfort can be considered to postulate the preferred point of object

transfer [3]. As the choice of OTP is completely up to the giver’s discretion, un-

derstanding the factors that impact the giver’s decision can help to estimate the

OTP even before the handover starts. With a pre-computed OTP, a robot receiver

can react as soon as an intent for handover has been detected. However, this OTP

estimation is static and does not adapt to variations in human arm motion.

2.2 Methods for Dynamic OTP Estimation

Dynamic OTP estimation requires observing the human partner’s behavior in real-

time for intent inference and motion prediction. Intent in human-robot interac-

tions is usually inferred from explicit cues like verbal commands, body gestures or

gaze [17]. But maintaining explicit or even exaggerated communication requires sig-

nificant effort from the end user. Instead of inferring the intent from explicit cues,
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inferring the implicit intent encoded in human motion can be more efficient and less

intrusive. At a high-level, the human intent inference problem can be formulated as

inferring the parameters of a dynamic model [18], Bayesian network [19] or Markov

decision process [20] and tackled using techniques such as inverse linear-quadratic

regulation (ILQR) [21] and approximate expectation-maximization [22].

At a low-level, it hinges on whether a robot can predict its human partner’s

motion based on the knowledge of tempo-spatial coordination observed in interac-

tive human motion. If the human holds the object at a fixed location, the robot’s

motion can be planned using random trees to the goal position or by a pseudo

inverse Jacobian controller [16]. Even though such sampling-based planners can

return a feasible solution, there is no guarantee that the plan will produce a natural

and legible motion, unless constraints are applied to confine the random nature of

inverse kinematics solutions. It is also inconvenient for the user to hold the object

for a longer period and wait for the robot to react.

For early prediction of the object transfer point, the human motion can be

modelled as a dynamical system and the point on the human’s trajectory closest to

the robot, selected as the point of object transfer [23]. But knowing that natural

human reaching motions follow minimum-jerk trajectories, the timing and location

of the object transfer can also be predicted early after peak velocity of the human

partner’s hand has been observed [24]. Such methods for dynamic prediction still

require significant human motion to be observed and delay the robot’s response.

To react as soon as the intent for handover is detected, the robot hand velocity

can be controlled proportionally to the hand velocity of the human partner [1].
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But simply following the human partner’s arm motion does not produce a natural-

looking handover. The robot should be specifically trained to reproduce human-like

handover motions so that they are legible for the human partner.

Ideally, the robot should quickly react to the human partner and improve OTP

prediction accuracy as more of the human partner’s motion is observed. Dynamic

Movement Primitives (DMP) can reproduce trained trajectories to new goal loca-

tions through a combination of attractors and forcing components. [12] defines the

goal of a DMP formulation to be the human’s hand and uses a sigmoid weighting

function to reduce the impact of the goal attractor element in the early stages of

the handover. This method can lead to an initial un-natural behaviour if the hu-

man hand is farther from the training pose at the start. Triadic interaction meshes

can be used to model the entire handover including the giver, receiver and the ob-

ject from a single demonstration and generate the motion constraints offline [13].

This method of estimation takes 9.7 secs for a handover including the retraction of

robot’s hand but has a generalization capacity of ±37 cm. Another technique [14]

uses a library of human motions to obtain over 70% accuracy of time series clas-

sification after observing just one-third of the human’s motion during execution.

But it requires over 40% motion to be observed for any further improvement in

the classification, with close to 100% accuracy requiring nearly all motion to be

observed.

To address early OTP estimation for faster handovers, Maeda et al. proposed

probabilistic models for learning and reproducing the phase matching between hu-

man and robot hands [15]. Superior to the minimal jerk model, the phase estimation
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model can reliably predict the object transfer point after observing less than 45%

of the human’s hand motion. The phase estimation approach trains a Probabilis-

tic Movement Primitives (Pro-MP) model to map the human’s arm motion to the

robot’s joint action based on the phase of the handover. Legible motion can be

ensured by providing expert demonstrations during the training phase. But this

model predicts the handover motion phase based on the absolute hand positions of

the human and robot, and therefore will not be valid in cases where the human-

robot distance and relative pose are different from the learned demonstrations. We

consider this approach to be the Baseline for implementing the proposed handover

architecture based on our human-robot handover study.
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Chapter 3

Handover Motion Studies

Motion studies for human-robot handover have analyzed human-human object han-

dovers to determine how a robot should offer an object to a human [4–6]. For a

handover from a human giver to robot receiver, it is not clear where and how the

object will be handed over if the giver is allowed to hand the object from any

direction in the receiver’s reachable workspace. Here we conduct a human-robot

handover study to analyze the effect of relative orientation, height, arm length and

gaze on the point of object transfer.

Shown in Fig. 3.1(a), a robot receiver stands at a fixed location and orientation,

while a human giver stands at one of the bounding boxes in the A, B, and C

directions (referred as Positions A, B, and C). Shown in Fig. 3.1(b), the bounding

box is defined such that distances between robot and human subjects are 116±20 cm

from the receiver, according to the social space in proxemics defined in [6]. Position

B faces directly to robot receiver, while Positions A and C are chosen to be the

10



(a) Subject performing handover (b) Layout of giver positions

Figure 3.1: Experimental setup for human to robot handover study

boundary of the robot’s motion tracking camera. Twenty subjects participated in

the experiment, each performing six handovers at each position: three handovers

with the robot looking at the subject, and another three with the robot looking

away from the human giver (i.e. total 360 handovers). In each trial, a subject

presented a bottle to the robot. As soon as the subject started to reach out,

the robot responded with a pre-programmed reaching action towards the natural

reachable region of the giver ’s arm, which was measured in a pilot study with five

subjects. In the pilot study, the experimenter kinesthetically moved the robot arm

towards a human giver that reached out to hand over an object. The subjects were

asked to hold the object at their preferred object transfer point until the robot’s

reaching motion was complete. The natural reachable regions corresponding to each

position the giver stood at were measured as the average position that a human

giver preferred to transfer the objects.
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3.1 OTP in Human-Robot Handover

We evaluated the parameters that determine the OTP based on the data collected

in our human-robot handover experiment. Let the distance between the human and

robot be dR,H and between the OTP and the human giver be dO,H .

(a) Comparison of dO,H to dR,H (b) Arm length to dO,H relation

Figure 3.2: Effect of interpersonal distance and arm length on OTP

As seen in Fig. 3.2(a), the average dO,H is close to to half of average dR,H ,

differing by just 2.91 cm. We also see that the average dO,H is only 7 mm less than

the average arm length (larm). Fig. 3.2(b) shows a positive relationship between

arm length and distance of OTP from giver. The trend line (red line in Fig. 3.2)

for the increase in dO,H with increase in larm has a slope of 0.96. This indicates

that the average behaviour of users was to present the object at the extent of their

reachability and as close as possible towards the mid-point of the dR,H .

We further evaluated how the height of human givers affects the height of the

OTP, hO (see Fig. 3.3). Let hE and hWi
be the heights of the subject’s eyes and
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(a) Change in hO with hE (b) Change in hO with hWi

Figure 3.3: Effect of height of giver and initial wrist position on OTP

wrists from the ground in their initial position. A multiple regression model trained

with hE and hWi
as independent variables to predict hO has an accuracy of 41.31%.

The regression coefficients for hE and hWi
were 0.143 and 0.119, respectively. Thus,

increase in hE or hWi
leads to small increase in hO. These predictors had p-values

of 0.003 and 0.01, respectively for predicting the hO. Although the range of data is

small, hE and hO have a positive relationship.

3.2 Effect of Gaze and Receiver Orientation

Moreover, we studied how the robot receiver’s gaze direction affects the static OTP.

We instructed human subjects to stand at Positions A and C. For each position, the

robot receiver gazed directly at the human giver in three handover trials. For other

handover trials, the robot gazed to the opposite side (e.g., looked in the direction

of Position C if the subject stood at Position A). Human-human handover studies

13



Figure 3.4: The effect of robot gaze on the OTP chosen by human givers: Human
standing at position C

in [25, 26] pointed out that gazing at the partner’s face and the handover location

helps to communicate the handover intent. Our experiment showed that if the
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Figure 3.5: The effect of robot gaze on the OTP chosen by human givers: Human
standing at position A

robot looks at the human directly, the OTP will be along the line connecting the

positions of the human and the robot. However, as shown in Fig. 3.4 and Fig. 3.5,
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even when the robot diverted its gaze, the average OTP position remained very

close to the line connecting the human and the robot, and only shifted slightly

towards the gaze direction of the robot. In previous work [26], the handovers

occurred from the robot to the human. As the robot was the giver and needed

to take the initiative of handing over an object, it was important for the robot

to use its gaze to communicate its intent to the human receiver. In human to

robot handovers, the human is the giver and may use his gaze to communicate the

handover intent. The robot being the receiver does not need to communicate its

intent unless explicitly required and has to simply respond to the giver’s handover

motion. Thus the receiver’s gaze may not be an important factor that affects the

giver’s choice of OTP. This might be because the human subjects did not associate

robot gaze direction closely with the direction it can sense, as long as the robot

responded to the human’s initial choice of OTP. Hence even when the robot’s gaze

was directed away from the human givers, they still chose the OTP along the plane

connecting their positions in the workspace.

3.3 Natural Response Time of Human Receiver

We measured the receiver ’s response time in human-human handover, to set up

the evaluation standard for the robot receiver’s response. Two human subjects

performed 30 handovers (see Fig. 3.6), each taking turns to be the giver while the

other was the receiver. Markers were placed on the wrists, shoulders, head, and torso

of the subjects and tracked using a Vicon Motion Capture system. The reaction

16



Figure 3.6: Human-human handover study to establish ideal human reaction and
reach-to-grasp response time in a handover task.

time for a handover was measured from the instant the giver started moving their

hand, to the instant the receiver started their reaching motion. The reaction time

was observed to be 0.425 ± 0.035 secs, while the observed response time, which

was the time from the giver starting their motion to the receiver reaching to the

object, was 1.212 ± 0.051 secs. For an efficient handover response, a robot receiver

must react and deliver a reach-to-grasp response as fast as a human giver.
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Chapter 4

Methodology

We propose an OTP estimator that integrates static OTP estimation based on our

human-robot handover study, with a dynamic OTP estimator which updates the

OTP prediction based on observed human motion. Shown in Fig. 4.1, the OTP

estimator module takes input from the sensing module which observes the

object’s and human partner’s motion in real-time. Within the estimation mod-

ule, the offline components- human-robot handover demonstrations and user study

data, are responsible for training (1) a Probabilistic Movement Primitives (Pro-MP)

model to reproduce legible robot motion, as well as (2) a static OTP estimator,

respectively before the handover starts. As soon as the human partner starts a

handover, the integrated OTP estimator takes in the static OTP estimate and

updates it with the estimate from the dynamic OTP estimator by determining

the phase of the human partner’s observed motion. The robot controller receives

the integrated OTP and controls the robot end-effector to reach toward it.

18



Figure 4.1: OTP Estimation Module: sensing module communicates skeleton data
and grasping points to the OTP estimators generating a required trajectory which
is executed by the robot controller.

4.1 Sensing Module

The sensing module tracks the human giver’s motion for OTP prediction and detects

the object to plan a grasping motion during object transfer. The human skeleton

data is obtained as Cartesian coordinates of the wrist, elbow, and shoulder joints

using the NI Mate [27] motion capture system. The robot joint angles were obtained

from its internal functions. The object recognition is done by a Convolutional

Neural Network trained on the COCO data set [28] and detection of the free region

is simplified by using pure coloured objects. Grasp points are determined on the

free region based on a representation of the object contour using Elliptic Fourier

Descriptors [29] and Curvature Maximization [30]. This process involves calculating

the Fourier coefficients of a desired order n (number of harmonics) over a closed

contour. A generalized model for the Fourier approximation of a contour can be
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shown as:

Px(t) = A0 +
k∑

n=1

(ancos
2nπt

T
+ bnsin

2nπt

T
) (4.1)

Py(t) = C0 +
k∑

n=1

(cncos
2nπt

T
+ dnsin

2nπt

T
) (4.2)

Curvature of the contour is used to select the model grasp points [30]. Taking

the first and second derivatives on the model allows us to compute the relative

curvature of each (x,y) location, as well as the sign of the function (concave up,

concave down). The first derivative of the closed contour will yield us the tangent

vectors of the contour:

Z(t) =
k∑

n=1

−an
2nπ

T
sin

2nπt

T
+ bn

2nπ

T
cos

2nπt

T
(4.3)

Note that time can be converted to a parameterized range moving clockwise around

the x,y contour of the object. The second derivative, i.e. the derivative of the

normalized tangent vectors yields the normal vectors:

N =
d Z
‖Z‖

dt
(4.4)

To determine the direction of the normal vector, the dot product of the tangent

and normal vectors is taken. This is equivalent to finding the sign of the curvature:

Curvature = sign(‖Z ·N‖) (4.5)
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Algorithm 1 describes the process to find the grasp point pair residing in

optimal curvature regions. The robot gripper is modelled as a pair of friction-less

contact points. Grasp points must pass a force closure test determined by the

geometry of the Fourier descriptor.

Algorithm 1 Compute Optimal Grasping Pair

1: Form all possible sets of x,y
2: For each set α = Curvaturex + Curvaturey
3: Rank sets by descending α
4: for each set x,y with positive α do
5: β = PerformForceClosure()
6: if β above threshold return

7: Rank sets by ascending α
8: for each set x,y with negative α do
9: β = PerformForceClosure()

10: if β above threshold return

11:

12: procedure Perform Force Closure(x, y)
13: A = Nm1

‖Nm1‖ ·
Pm1−Pm2

‖Pm1−Pm2‖
14: B = Nm2

‖Nm2‖ ·
Pm1−Pm2

‖Pm1−Pm2‖
15: fc = A2 + (π −B)2

16: return

4.2 Static OTP Estimator

Before a handover is initiated, the static OTP-estimator computes the initial object

transfer point (OTPs) in the task space based on three criteria: (a) The Initial

Pose criterion constrains the handover region to be bounded in a 3D space defined

by the relative position and orientation of the giver and receiver. (b) The Midpoint

of Actors which is the centre of the plane passing through the positions of the giver
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and the receiver. And (c) the Reachability, which considers the accessible region

based on position, height and arm length of the giver.

We represent the initial pose of the giver in terms of the relative orientation

(OR,H) to the receiver. The orientation is measured in terms of the angle between

the giver’s current position and the position B as shown in Fig. 3.1(b). The mid-

point criteria is determined by the interpersonal distance (dR,H) between the giver

and the receiver. And the reachability is measured based on the giver’s height

(hE) and arm length (larm) as perceived by the receiver. A tree ensemble model

is trained over these predictors to estimate the 3-D position of the static OTP

i.e. [OTPx, OTPy, OTPz]. Our trained static OTP estimator has a testing mean

squared error of 0.5 cm, given that the users hand over an object in their natural

reachable region. In practice, the users may choose to hand over the object at any

point within their total reachability. Thus, we model a dynamic OTP estimator to

account for the variability in user’s choice of OTP.

4.3 Dynamic OTP Estimator

The core of our dynamic estimation method is to train Multi-dimensional Inter-

action Probabilistic Movement Primitives (Pro-MP) with multiple human-robot

handover demonstrations [31]. This method creates a combined probabilistic repre-

sentation over the motions of both human and robot, thus capturing their interac-

tion. The Pro-MP model classifies the observed human’s motion by predicting the

phase (timing) of the movement and generates the corresponding robot trajectory
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based on the association learned in the human-robot demonstrations. The Interac-

tion Pro-MP model can predict the entire human and robot trajectory even from

partial observations in real-time. Hence, we build upon this method to model our

Dynamic OTP Estimator for human to robot handovers.

Learning phase: The arm of the nursing robot is by default in an “elbow-up”

configuration (see Fig. 1.1(b)). End effector control of the arm to reach the OTP

results in an un-natural behavior. Therefore during the learning phase, the arm of

the robot is moved by a human teacher to produce a natural reaching motion in

response to the human partner’s initiation of handover. At each time step t, the

seven observed degrees-of-freedom (DOF) of the robot arm, six DOFs of the grasp

points on the object and the three observed DOFs of the human partner’s hand are

concatenated into the following human-robot state vector:

yt = [yH1,t, · · · , yH3,t, yO1,t, · · · , yO6,t, yR1,t, · · · , yR7,t]T (4.6)

Including grasp points as states in the learning phase makes the model sensitive

to the object’s grasp configuration and produces accurate reach-to-grasp trajecto-

ries. The trajectory of each DOF is further parameterized by weights (w̄) such

that:

p(yt|w̄) = N (yt|Ht
T w̄,Σ†) (4.7)

where HT
t = diag((ΨT

t )1, · · · , (ΨT
t )3, (Ψ

T
t )1, · · · , (ΨT

t )6, (ΨT
t )1, · · · , (ΨT

t )7) is the di-

agonal matrix of the Gaussian basis functions. Among the M handover demonstra-
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tions, the i-th demonstration correlates the observed DOFs of human and robot in

the handover such that:

w̄i = [(wH
1 )T , · · · , (wH

3 )T , (wO
1 )T , · · · , (wO

6 )T ,

(wR
1 )T , · · · , (wR

7 )T ]T
(4.8)

Parameters of the normal distribution of the weights over all M demonstrations

(w ∼ p(w; θ)), are used to create the joint probability distribution for each DOF.

p(yt; θ) =

∫
p(yt|w)p(w; θ)dw (4.9)

Reproduction phase: Given a new observation of the human’s handover motion

at time t′ (Eqn. 4.10) during execution, the phase of the observation is determined

based on correlation of the observed data with sampled trajectories from the training

demonstrations.

yt′ = [yH
1,t′ , · · · ,yH

3,t′ ,y
O
1,t′ , · · · ,yO

6,t′ ,0
R
1,t′ , · · · ,0R

7,t′ ]
T (4.10)

The joint probability (p(yt; θ) is conditioned to get the new weight distribution

θnew = {µnew
w ,Σnew

w }. The robot and human handover trajectories are generated by

substituting the weights w conditioned on the observed human motion in the basis

function model (Eqn. 4.7).

Generalization across workspace In [15], the demonstrations for training the

Pro-MPs are recorded in the robot’s body frame (FR) or the world frame (FW )
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Figure 4.2: Representation of the user-adaptive reference frame

depending on the sensor placement. As a result, the motion of the human arm

differs from the training demonstrations if the human stands in a new position.

This causes the Pro-MP estimation of the OTP to be inaccurate.

It is highly inefficient to train the Pro-MP with many demonstrations of all

possible handover configurations. Therefore, we learned a dynamic Pro-MP model

from demonstration data collected in a user-adaptive frame. From the user study

(in Section 3.2), we observed that the giver’s handover motion is correlated to the

plane connecting the positions of human and robot, provided the human is within

the robot’s field of view. The user-adaptive frame is thus defined based on the

robot’s frame and human’s position with respect to the Kinect camera’s frame.

The robot to Kinect frame transformation matrix K
RT is found from the position

of the sensor on the robot as shown in Fig. 4.2. The human-centric frame FHC
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can be defined with the Z-axis pointing towards the robot’s position and the Y-axis

perpendicular to the ground. The shoulder positions tracked by the Kinect are used

to calculate the origin (PHCx, PHCy, PHCz) which is chosen as the midpoint of the

shoulder positions and the orientation θ of the frame by trigonometric evaluations.

A point in this human-centric frame is found by:

pHC = HC
KT

K
RTpR (4.11)

In this reference frame, the robot’s end effector and human wrist positions are

recorded and saved from the perspective of the human partner. Since the object

transfer points can be calculated with respect to this user-adaptive frame, the accu-

racy of the predicted points is not affected by the changes in position and orientation

of the human partner with respect to the robot. Overall, using a user-adaptive

frame improves the generalization capability of the Pro-MP model.

4.4 Integrated OTP Estimator

The dynamic Pro-MP model needs to observe at least 45% of the human’s mo-

tion from start of handover to accurately estimate the OTP without further feed-

back [31]. Considering that the robot’s arm movement is not as quick as a human’s,

waiting to observe the human partner’s motion further increases the handover time.

Also, a slow response by the robot increases the discomfort felt by the human as

per the Robot Social Attributes Scale (RoSAS) [32].

The reaction time can be reduced by starting the reaching motion of the robot’s
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arm as soon as intent for handover has been detected. Here, we don’t consider the

intent communication problem and define the start of a handover as:

1. The human is nearby (dH < 1.5m) and oriented towards the robot (π/2 <

θ < 3π/2).

2. The object is in hand.

‖pobject − phand‖ < 0.1m (4.12)

3. The hand is moving towards the OTPs estimate.

|d(ph, OTPs)t − d(ph, OTPs)t−1| > 0.001m (4.13)

As the dynamic OTP estimate is inaccurate during the initial phase of handover,

moving robot end effector to the dynamic OTP estimate as soon as the handover

intent is detected will result in an irregular motion of the robot’s arm. To ensure

fluent robot response, accuracy of the OTP estimate in the initial phase of han-

dover needs to be improved such that the difference between the OTP estimate at

consecutive time steps is small. We propose an Integrated OTP Estimator that

starts with the static OTP estimate, which has better accuracy at the initial phase

of handover, and smoothly transitions toward the dynamic OTP estimate as more

handover motion is observed.

When the human partner initiates the handover, the integrated OTP (OTPI) is

calculated as the weighted sum of OTPs and the dynamic OTP estimate (OTPd)
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and updated until the giver’s motion is complete. This deformation from static esti-

mation to dynamic estimation is done by tracking the following homotopy function:

OTPI = (1− λ) ·OTPs + λ ·OTPd (4.14)

As more of the human partner’s motion is observed, the homotopy parameter λ is

updated as a cubic function based on the estimated phase φ of the human’s motion.

λ = (φ− 1)3 + 1 (4.15)

The phase goes from 0 at the start of the giver’s handover motion, to 1 at the end

of receiver’s reach-to-grasp response. Thus the Dynamic OTP estimate is assigned

0 weight at the start of handover and 1 by the end of the handover motion. We use

a cubic function for updating λ based on our observations of the prediction error

of the Pro-MP model and is specific to our dynamic estimation method. Still, the

strategy for the Integrated OTP estimation remains universal. The Static OTP

prediction has to be given more weight in the initial phase of handover and the

Dynamic OTP prediction should be used in the later stages of a handover motion.

The trained Pro-MP model is then used to generate a natural human-like trajectory

to the current estimate of OTPI . Direct feedback can be used once the final position

of the object has been observed.
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Chapter 5

Implementation

Figure 5.1: (Left) The Tele-robotic Intelligent Nursing Assistant (TRINA) system.
(Right top) The sensing server computer that runs skeleton tracking system, and
(Right Bottom) the operator console displayed on the robot control computer.

We implemented the proposed OTP estimation method on the Tele-robotic In-

telligent Nursing Assistant (TRINA) system shown in Fig. 5.1, which was developed
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Figure 5.2: Software Architecture: Human skeleton data is streamed over local
network by the sensing server and received by the operator console client that runs
the OTP estimator.

for nursing tasks [2]. This robotic platform consists of a dual-armed humanoid torso

(Rethink Robotics Baxter), an omni-directional mobile base (HStar AMP-I), and

two three-fingered grippers (Righthand Robotics ReFlex grippers). A variety of

sensors are placed on the robot to provide visual feedback, including the ultrasonic

range-finders that come with Baxter for detecting people in its vicinity, a Microsoft

Kinect 2 attached to the robot’s chest, two Intel RealSense F200 3D cameras at-

tached to the robot’s wrists, and two Huokuyo LIDAR sensors attached to the

mobile base.

Sensing Module: The Microsoft Kinect 2 sensor is interfaced with a Windows 10

sensing server computer Fig. 5.2. The sensing server computer uses NI Mate [27]

to track the human partner’s motions and streams the human skeleton data for

training the dynamic OTP estimation model as well as for predicting the OTP in

real-time. The human motion data is recorded as the Cartesian coordinates of all

the arm joints in the Kinect’s frame, which is fixed with respect to the robot’s
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Figure 5.3: An example of grasp point detection for a cup. The cup is identified
and cropped from the background. Contour (green line) and grasp points (red) are
calculated on the cropped image.

torso. This data is published in the form of OSC (Open Sound Control) messages.

A JavaScript server transmits this data to any client in the local network. On

the operator console computer, a Python Websocket client converts it into ROS

messages and publishes it to a topic which is subscribed by the OTP Estimator.

Grasp Points Detection: The Kinect 2 sensor data is also used to detect the

object held by the user (Fig. 5.3). Once an object has been recognized, a bounding

box is created, which is used to crop the image out of the scene. The object is

segmented from the residue of the environment that was passed in the cropped

image by converting to HSV format and applying a threshold. The contour of the

segmented object is extracted using built in Open CV functions based on [33]. If

multiple contours are found, the one with the largest area is selected. Once the

contour has been extracted, the grasp planner calculates the grasp points using

Elliptic Fourier Descriptors and Curvature Maximization (see Section 4.1).
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Figure 5.4: Kinesthetic learning for 10 different goal locations

Dynamic OTP Estimation: The estimation model is trained using thirty human-

robot handover demonstrations, in which an experimenter moves the robot arm in a

natural “elbow down” configuration corresponding to a human giver’s handover mo-

tion. In these demonstrations, the human giver stands at Position B (Fig. 3.1(b))

and reaches to hand over the object at ten different OTPs in the natural reachable

region identified in our user study. A total of 30 demonstrations, three at each

OTP, are used to train the dynamic OTP estimation model.

During execution, the human skeleton and grasp points data are constantly

updated to the dynamic OTP estimator. For every observation, the dynamic OTP

estimator predicts the robot joint angles, and the object position and grasp points

for rest of the handover motion. Each joint angle prediction is given to the robot’s

built-in controller to command the robot arm to the predicted configuration.
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Chapter 6

Experimental Evaluation

We compare the proposed Integrated OTP estimation approach with the Baseline

i.e. the standard Pro-MP estimation method [31] over three criteria:

• Accuracy of OTP estimation in the initial phase of handover

• Time taken to generate a reach-to-grasp response

• Generalization of OTP estimation for new positions of human giver

6.1 Improved Accuracy at Initial Phase

In Experiment 1, we compare OTP estimation accuracy using the Pro-MP model

proposed in [31] (i.e. Baseline) and the proposed OTP Estimation method (i.e.

Proposed). The subject stands at the same position as in the training demonstra-

tion (position B) and initiates handovers towards different positions within their

natural reachable region. The Estimation Error is defined as the Euclidean distance
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Figure 6.1: Comparison of the prediction error between the baseline (red) and the
proposed method (blue).

between the estimated and observed final position of the object. The estimation

error was measured at different phases of the handover, when 10%, 20%, · · · , 90%

of the human giver’s handover motion had been observed. Shown in Fig. 6.1, the

estimation errors of the Baseline and Proposed method decrease as more of han-

dover motion is observed. The Baseline method has higher estimation errors at

earlier phases of the handover which cause irregular motion at the start of reach-

ing phase. The Proposed method assigns a smaller weight to the dynamic OTP

estimator (using the Pro-MP model) before its estimation accuracy is better than

the Static OTP, and thus can achieve 32.5% more accurate estimation at the start

of handover. The smooth weight shifting from static to dynamic OTP estimation

leads to a fluent robot reaching motion.
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6.2 Faster Handover Response

Figure 6.2: Comparison of the response time between the baseline (red) and the
proposed method (blue) while ensuring fluent motion.

We further compare the response time of the Proposed and Baseline methods.

The Proposed method can start immediately, because at early handover phase it

primarily relies on the prediction of static OTP estimator, which has reasonable pre-

diction performance. But the Baseline method primarily depends on the dynamic

OTP estimation at early handover phase. For safety concern, the robot was set to

move only when the estimation error is below 0.2 m, according to Fig. 6.1. The

response time measures the time from when the robot starts the OTP estimation

(as soon as it observes the human givers initiates an handover), to when the robot

hand has arrived at the estimated OTP. Shown in Fig. 6.2, the average response

times of the Baseline and Proposed methods are 3.842 secs and 3.105 secs, respec-

tively. The average time the robot takes to plan and execute the reaching motion
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is 2.816 secs (as the dotted line in Fig. 6.2 indicates), given an accurate enough

OTP is specified. Thus the Proposed method reacts in 0.29 secs and reduces robot

response time by 19.17%.

6.3 Improved Generalization Capability

Figure 6.3: Comparison of the generalization capability between the baseline (red)
and proposed method (blue) across the workspace.

In experiment 2, we compare the OTP estimation accuracy using the Baseline

and the Proposed methods, when the human givers stand at different positions (A,

B and C as in 3.1(b)) in the visible workspace of robot motion tracking camera.

Both methods have accurate OTP estimation when human givers stand at Position

B, which was the position of giver during training. However, the average estimation

errors of the Baseline method increase to 0.8322 m and 0.4075 m when the human

giver stands at Positions A and C, respectively. On the other hand, the average
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estimation errors of the Proposed method, which adopted a user-adaptive frame,

are 0.174 m and 0.167 m for Position A and C, respectively. Fig. 6.3 compares the

estimation errors of the Baseline and Proposed methods. Note that Position A is

further away from Position B compared to Position C, and therefore has a larger

increase of estimation error. Thus, using the user-adaptive frame for modelling the

Pro-MPs generalizes the prediction to new user positions and is applicable to any

dynamic estimation approach for human-robot handovers.
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Chapter 7

Conclusion

This work studies human to robot handovers and shows how the distance between

human and robot, the height, initial position of wrist and arm length of the human

giver affect the object transfer point. We present a new inferences on the effect of

gaze in human-robot handovers. Based on our observations, a robot receiver’s gaze

has no impact on the human giver’s choice of OTP. We postulate that a human

giver chooses the OTP simply based on a robot receiver’s position and the human’s

estimate of the robot’s reachability. Gaze is important in communicating intent

in human-robot interaction [25, 26], but may not affect the OTP in human-robot

handovers unless communicated through explicit and exaggerated motion.

We also develop a method that enables a robot to accurately and promptly

predict the object transfer point chosen by the human giver. We improve upon the

Probabilistic Movement Primitive model by training the model in a user-adaptive

reference frame and including grasp points as predictors. Using a user-adaptive
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frame helps to generalize the model predictions to new positions of the human giver.

Our proposed user-adaptive frame can be used with any dynamic OTP estimation

method that creates an interactive model of human and robot motions. Creating a

model with grasp points helps to generate a reach-to-grasp response that aligns the

robot end-effector with the objects grasp configuration. Natural and legible motion

of the robot arm is ensured by kinesthetically training the robot arm to follow

human-like trajectories. Using the Static OTP estimation improves the accuracy at

the start of handover by 0.1 m and allows the robot to initiate its response as soon

as the intent for handover has been established. Our Integrated OTP estimator

smoothly transitions from the Static OTP to Dynamic OTP estimate to generate

fluent handovers that are 19.17% faster than our Baseline Pro-MP model.
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Chapter 8

Future Work

Apart from physical factors like height, distance, orientation and gaze; mental

factors may also play an important role in determining the object transfer point in

human-robot handover tasks. The work in this thesis assumes that both partners

in a handover task equally share the work load of the interaction. But in reality,

one partner may tend to do less work than the other. Therefore, the nature of a

partner to be more or less collaborative can have an effect on their performance

in an object handover tasks. This thesis work also considers an isolated handover

scenario, where the choice of OTP by the giver is dependent on only one receiver.

In a complex collaborative setting, a human or robot may have to perform handover

with multiple agents and therefore the choice of OTP may be affected by the physical

and mental condition of other receivers.

As future work, we look at one-to-one and one-to-many human-human handover

scenarios to determine the effect of collaboration on the object transfer point.
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8.1 Inferring the level of collaboration in han-

dover tasks: From one-to-one to one-to-many

The study of one-to-many handover is motivated by the scenario of (1) one au-

tonomous robot serving many humans, and (2) human supervising multiple low-

autonomy robots to serve their end users. The level of collaboration is about (1)

whether the end user will perceive the autonomous robot or the entire human-robot

teaming system to be collaborative or not, and (2) how to design such system to

behave as a collaborative partner with all (or most) of the remote users.

Research in improving robot performance in handover tasks focuses on inferring

human intent and planning robot motion such that it is efficient, intuitive, safe

and comfortable for the human partner. Robot efficiency in handover tasks de-

pends on the reaction time and accuracy of the robot response. Often, observations

from human-human handover studies [3, 5, 6] are used to model expected human

behaviour. Human posture, arm length and gaze can be used to predict a prior

static estimate of the object transfer point (Section 4.2). This static estimate can

then be updated based on the observed human motion to promptly and accurately

plan the robot reach-to-grasp motion (Section 4.4).

Although predictive control leads to efficient and functional handovers, planning

legible motions that clearly indicate the robot’s intent lead to a more fluent col-

laboration [34]. Characteristics of collaborative fluency, such as the subjective and

objective fluency metrics, observer and participant fluency perception, etc, help to

evaluate the fluency of human-robot handovers [35]. Apart from fluency, factors
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like adaptability [36], compliance [37] and trust [38] also indicate the level of col-

laboration of the human or robot partner. For sequential tasks, adaptability can

be measured based on the probability with which one partner adapts to the other

partner’s reward function [36]. Inferring the robot’s reward function in a task also

helps to build a human partner’s trust in the robot’s capabilities [39].

Although handovers have been studied for face-to-face, dynamic, repetitive and

sequential task scenarios, the majority of the research deals with one-to-one han-

dover tasks. A non-sequential one-to-many handover task would involve the addi-

tional problem of scheduling the robot’s actions to cater to multiple users. In the

case of mixed human-robot teams where a human leader has to allocate tasks to a

human assistant and a robotic co-leader [40], task scheduling can be done by min-

imizing the maximum amount of work assigned to an agent. Constraints for this

problem consider lower bounds on time, number of tasks assigned to each agent and

other temporal and spatial constraints of the task. However, the study only focuses

on how human satisfaction was affected by the level of robot autonomy and not the

level of collaboration. In our proposed study, we aim to evaluate the aspects of a

robot’s performance that affect a human partner’s perception of the robot’s level of

collaboration or vice versa.

8.1.1 One-to-One Object Handover

To determine the factors that indicate the level of collaboration of a partner in an

object handover task, we conducted a one-to-one human-human handover experi-

ment.
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Figure 8.1: Experiment setup for Pilot Study

As shown in Fig. 8.1, the subjects A and B were asked to stand on opposite

sides of a table. 6 objects with different affordances were placed in each of the bins

on either side of the table. The subjects were asked to collaborate in moving all

the red objects to the red bin and yellow objects to the yellow bin. They were only

allowed to handle one object at a time. A trial was considered complete when all

the objects were in their respective bins.

The study comprised of 2 trials. In one trial, Subject B was asked to be Col-

laborative i.e. be helpful to their partner. In the other trial, Subject B was asked

to be Non-Collaborative i.e. offer minimum help to their partner. Subject A

was provided with no specific instruction and was unaware of Subject B’s instruc-

tion. Subject A’s behaviour was assumed to be neutral or collaborative. The order

of collaborative and non-collaborative trials for all subjects was decided based on

balanced latin square.

Subject B’s movements were tracked through a Kinect sensor using the NI Mate

motion capture system. The skeleton data was used to calculate the object trans-
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fer point and the orientation of the subject’s body and head. A video camera

on the side of the table captured the task scene. The video data was used used to

record verbal communication, object affordance, the timing of actions and

total time. At the end of the study both the subjects answered a questionnaire:

• Do you think your partner was collaborative? Explain. (Only Subject A)

• What did you do to act collaborative/non-collaborative? (Only Subject B)

• Who took the charge? Explain.

• Were there any conflicts? If yes, how were they solved?

8.1.2 Preliminary Work

(a) Collaborative trial (b) Non-collaborative trial

Figure 8.2: Object transfer point changes based on level of collaboration

A pilot study of the one-to-one handover experiment was performed with 6 pairs

of subjects. Based on our observation, affordance of the objects had no impact on

collaboration intent. As the objects did not have a function in the task, affordance
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was not considered by Subject B. But the object transfer point during the non-

collaborative trial was lower and closer to the yellow bin than in the collaborative

trial. Attention of Subject B was modelled using the body and head orientation.

During the collaborative trial Subject B paid attention to all actions initiated by

Subject A. While in the non-collaborative trial Subject B gave and received objects

without acknowledging Subject A’s intended actions. The average reaction time

of Subject B was consistent for all actions in the collaborative trial. While the

average reaction time during the non-collaborative trial was slower or inconsistent.

Conflicts occurred when both subjects tried to handover an object at the same

time. Resolution of conflicts was much faster in the collaborative trial than the

non-collaborative trial.

8.1.3 One-to-Many Object Handover

The significant variables inferred from the one-to-one handover experiment will be

used to model and contrast how the level of collaboration is estimated in a one-to-

many handover scenario. We utilize the results of the pilot study to design a similar

one-to-many handover experiment (Fig. 8.3). Here the affordances of objects will

be enforced by defining how the objects should be placed in the bin. Along with

the factors mentioned in the one-to-one scenario, task scheduling will now affect

how the level of collaboration of subject B is perceived by Subjects A1, A2, and

A3.

The human subjects can initiate a Give action where they would offer an object

to the robotic agent or a Demand action where they would raise their arm to
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Figure 8.3: Experiment setup for one-to-many handover study

demand an object from the robotic agent. The robot can respond with a Take or

Give action. The robot can also initiate a Demand action. The robot requires tt

time to execute the Take action and tg time to execute the Give action. The task

scheduling problem will select actions based on the following cost function:

min
3∑

i=1

(CGi
∗ twi

+ CDi
∗ twi

) + ttotal

Where, twi
is the waiting period for subject i, CGi

∗ twi is the cost associated with

the Give action and CDi
∗ twi is the cost associated with the Demand action. ttotal

is the time required to complete the total task. The problem can be formulated

with additional temporal and spatial constraints.

We propose a one-to-many human-human user study to learn the cost factors

CG and CD and the weights for the one-to-one factors: object transfer point,

attention, verbal communication and conflict resolution that lead to a col-

laborative behaviour. This study will help to analyze the low-level and high-level

factors that affect how a service robot will be perceived by its users.
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