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Abstract 
 The goal of this capstone design project was to design a fully automated data collection 
system that could be installed in diesel or gasoline motorboats to monitor engine RPM.  The 
system is based on processing signals from: the w-terminal on a diesel engines alternator or an 
inductive pickup placed on a gasoline engines spark plug.  These signals are processed, under 
software control, to calculate actual engine RPM. Engine RPM readings are time and position 
tagged with GPS data from a small, low power, OEM GPS unit and stored to a DOS compatible 
file on a Compact Flash card interfaced to the internal embedded processor system.  The 
prototype system can be powered from a battery pack for up to a week of data collection.  Once 
data is collected, the Compact Flash card is downloaded into a desktop system after which 
Geographical Information System (GIS) software is used to remap the GPS engine RPM data to a 
physical location on a user viewable city map.  The prototype is intended to be placed in 
motorboats that roam about the Venetian lagoon in order to map the occurrence of underwater 
turbulence in the form of engine RPM.  This system can aid the city of Venice, Italy in 
identifying areas that suffer from constant underwater turbulence and by correctly correlating 
canal wall damage to underwater turbulence, canal repair crews can be released more efficiently. 
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1. Introduction 
 Canal walls in the city of Venice, Italy have been subject to severe damage over the past 
century. These walls serve as the structural foundation for buildings throughout this unique city. 
Constant repair efforts are necessary in the ongoing effort to limit the structural decay of these 
buildings; this process comes at a high cost to the government.  
 There are many theories and known reasons of the causes of canal wall damage. One 
hypothesis, made by city structural engineers, is that underwater turbulence caused by motorboats 
that accelerate quickly, to stop and go, as they dock on the very walls of canals put so much 
pressure on the walls over time that this can lead to collapse. Engineers, however, have not been 
able to verify this statement, and thus have been unable to conclusively determine the reason for 
rapid deterioration of canal walls. 
 This document details the design process undertaken by our project team to design and 
build a working prototype for a fully automated data collection system that can be used to track 
these instances of underwater dispersion in the form of motorboat engine RPM. 
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2. Background 
 The introduction of the motorboat solved many transportation issues in Venice. Presently 
motorboats are necessary for the regular day to day operation of the city; they provide 
transportation for its citizens and millions of tourists yearly, as well as transportation of 
perishable goods and wastes. The city of Venice has suffered many problems that can be 
attributed to traffic. Canals are now heavily congested and many blame the increased amount of 
repairs needed on the structural integrity of many buildings to motorized transportation. 
 The problem of an increasing number of repairs that have to be made to this unique city 
has become a major concern for its citizens, public works entities, private businesses, and the 
government. There are differing opinions on what is causing damage to canal walls and how the 
problem should be addressed, but currently repair efforts are a serious economic concern to the 
Venetian government. 

2.1. Transportation in Venice 
The city of Venice, Italy is dependent on its canals for transportation. Since the city is in 

the middle of a lagoon, boat transportation is used for transporting goods, public services, and the 
general public since Venice was founded centuries ago. The waterways that make up the 
Venetian canals divide the city into more than 100 small islands. These all need to be accessible 
by boat; the current system does not allow for any other alternatives. This society will continue to 
thrive on the waterfront as long as these waterways supply the city with the resources needed to 
support an ever increasing tourism industry. 

2.1.1. Canal Traffic 
Since the 1950’s motorboats have become the primary means of transportation in Venice. 

The task of rowboats has almost been entirely replaced by the use of motor propelled vessels. 
This change has lead to an increasing amount of underwater turbulence caused by engine 
propellers. The actual distribution of traffic within the city is shown in Figure 1. As can be seen 
from the chart, most of traffic within Venice is attributed to cargo boats, taxis, and public 
transportation. 
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2.1.2. Canal Congestion 
The congestion of canals in Venice can be attributed to different factors. These factors 

include the distribution system of cargo boats, sightseeing gondolas, and the physical dimensions 
of the canals themselves which can limit the passage of multiple boats. 

Cargo boats distribute their goods by traveling to and from different canal docks. This 
can cause bottlenecks at the waterways; an organized distribution system could potentially lower 
this congestion caused by multiple cargo boats at the same location. An illustration of canal 
congestion is shown in Figure 2. 

 

                                                 
1 Carrera, Fabio and Caniato, Giovanni. “Venezia la Citta Dei Rii”. Pg. 149�
2 Chiu, Jagganath, and Nodine. ”The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002 

Distribution of Traffic

Cargo, 36%

Private, 18%

Taxi/Public, 
46%

Taxi/Public Private Cargo  
Figure 1: Distribution of Traffic in Venice1 

 
Figure 2: Canal Congestion2 
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The famous gondolas that are used primarily for sightseeing and for crossing people 

across canals also obstruct waterways. Gondolas move slowly, and when many of them are 
occupying the same area of a canal, traffic can come to a standstill. This is one of the main 
reasons for congestion in the canals since the gondolas move slowly and stop other boats from 
passing them in smaller canals. 

In addition the physical dimension of a given canal can lead to traffic problems. Larger, 
heavier boats sit lower on the water; canals that are shallow and narrow impede these boats from 
navigating across them. As larger and heavier vessels require the use of wider and deeper canals, 
traffic in these larger canals is also increased. The tides also play a role because they cause some 
areas of canals to become to shallow or they can rise so as not to let boats pass under bridges. 

2.2. Canal Walls 
The materials used in the construction of canal walls are primarily Istria stone and brick. 

Istria stone is non-porous which allows this material to hold up relatively well against salt water. 
The structural foundation of buildings and lower parts of some canal walls are made up of this 
stone. The picture shown in Figure 3 shows a canal lined with the durable Istria stone, known 
today as Kirmenjak. Brick, on the other hand, is porous and quickly deteriorates but since it is 
inexpensive and readily available, brick still remains a popular building material. The photo 
shown in Figure 4 shows a canal wall being repaired with brick and concrete for reinforcement. 

 

 
 

                                                 
3 http://www.eramarble.com/eng/projects/main.html 

 
Figure 3: Pietra D’Istria (Istria Stone)3 
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2.2.1. Causes of Canal Wall Damage 
Two of the main factors attributed to causing canal wall damage include: physical 

changes to the building material and external events. Boat wakes can start a cycle of events that 
can cause the mortar holding the bonds between bricks to weaken. The photo shown in Figure 5 
illustrates the wakes produced by boats that can ultimately lead to the erosion of canal walls. 
Parts of walls can then easily get knocked out of place by other forces, such as a boat docking on 
a canal wall. Once a small crevice is formed within the walls, underwater boat turbulence can 
cause more extensive damage. 

 

 

                                                 
4 Chiu, Jagganath, and Nodine. ”The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002 
5 Ibid 

 
Figure 4: Canal Wall Undergoing Repair4 

 
Figure 5: Wake Produced by a Personal Boat5 
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Other factors contributing to the damage inflicted to the canal walls are rising sea levels 
and the sinking of the Venetian land mass. The rising sea level and the extraction of water from 
aquifers underneath the city, for industrial purposes, have caused the land mass which Venetian 
buildings rest on to sink. The water levels in the Venetian lagoon have risen approximately 23 
centimeters since 1897. 

Motorboats, however, cause more significant damage to Venetian structures. In addition 
to a boats wake produced when a boat propels itself, underwater turbulence caused by engine 
propellers weaken the structural integrity of canal walls and its foundations. The constant 
underwater thrusting of the canal walls from propelled water is cause for concern. 

 Although the sewage system in Venice, Italy depends on the canals for dispersing waste, 
the sewage lines also can cause costly damages. Sewage enters waterways underwater; the 
buildup of silt in front of sewage pipes can cause these pipes to clog. When the pipes clog, due to 
the sewage backing up into the pipes, they can burst and seep to the surrounding mortar. This 
weakens the structural integrity of canal walls. 

In addition to wakes from boats and underwater turbulence, when a boat collides with 
walls it can cause minor imperfections. The constant exposure to collisions can produce larger 
crevices where more salt water can seep into and “eat away” at the walls. The picture shown in 
Figure 6 shows a damaged canal wall that requires repair. 

 

 

2.2.2. Effects of Canal Wall Damage 
In December of 1990 a large cavity was found behind one of the walls lining the Rio 

Novo canal. What seemed to be a small hole on the exterior of the wall had actually eroded the 
supporting structures behind the wall. The Rio Novo canal had to be closed down since the 
supporting structures were on the verge of collapse; boats were rerouted to the Rio Cerris canal. 
Within two years, a building near the Ponte Rosso collapsed due to the moto ondoso6, or waves 

                                                 
6 Moto Ondoso can be roughly translated to mean “wake impact” 

 
Figure 6: Canal Wall Damage 
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caused by motorized boats, from the increased traffic flow. The Rio Cerris canal had become a 
taxi highway and the constant water motion produced by motorboats destroyed the structural 
foundation of the building beyond repair. Unfortunately, even the twelve owners of the building 
were fined for failing to make the much needed repairs on the structure. After seven years and 7 
billion euros worth of work, Rio Novo was reopened in 1997. 

In 1994 there was another incidence of a building collapse on the Rio Dei Greci canal. 
The building collapsed due to the erosion caused from excessive traffic; the canal was closed for 
a period of time until it was repaired. 

Buildings on the waterfront of the Grand Canal are constantly being subjected to the 
effects of moto ondoso since it is the major traffic route through Venice. In 1995 the Ca’ Foscari 
building was in risk of collapse and was closed for renovation and repairs. 

The Galeazze Canal, near Arsenale, had renovations made and just two years after it was 
repaired metal sheeting had to be installed alongside the walls as a blockade to stop erosion. 
Within a year of this installment, in 1999, the entire canal was closed from boat traffic because of 
the damages that needed to be repaired once again. Some other canals that have been closed for 
repair include Rio della Maddalena, San Moise, San Lorenzo, and the Rio de Noal. 

The destructive effects of moto ondoso are not only limited to the city of Venice but also 
extend to other parts of the Venetian lagoon. City Hall on the Lido once had to be closed for fear 
of collapse because of damage stemming from moto ondoso. The cemetery island is in a high 
traffic area; therefore is also vulnerable to the effects of boat wakes. One billion euros have been 
spent by the Magistrate of Waters to fix and reinforce the Codussi chapel on the cemetery island 
that was destroyed by erosion caused by the water. 

2.2.3. Methods of Preservation of Canal Walls 
There are two methods canals are being preserved. Either preventive measures are taken 

to stop ongoing damage, or damaged walls undergo restoration efforts. The preventive measures 
currently being used include the required registration of boats and the enforcement of speed limits 
within the lagoon. Boat registration allows law enforcement officials to know if a boat is 
permitted to operate within the lagoon; this also allows police to enforce speed limits. The 
restoration of canal walls involves a long and strenuous process. It includes reforming the bottom 
of a canal where damage has occurred, sealing crevices behind damaged walls, and rebuilding the 
wall itself. 

2.3. The Age Old Debate 
The question of what actually causes erosion in the canals of Venice has long been 

debated. The group Pax in Aqua attributes moto ondoso as the major influence in causing wall 
damage. Another group called Insula states that there are numerous contributing factors to the 
deterioration of canal walls. They believe that if canals were reconstructed using modern methods 
and different building materials moto ondoso would be negligent. 
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2.3.1. Pax in Aqua’s Position 
 Pax in Aqua’s position in the debate is that underwater turbulence caused by engine 
propellers and boat wakes lead to the destruction of canal walls. This group has raised awareness 
in Venice and has succeeded in appointing a special commissioner that has created regulations 
regarding these issues for the lagoon. 

2.3.2. Insula’s Position 
Insula attributes canal wall damage to numerous factors. They state that if certain 

construction practices were used, damage to canal walls can be lessened. They insist that if 
concrete was used as the building material to form walls that are slanted outward, instead of older 
vertical walls, underwater turbulence caused by motor boats will not be as significant to the 
eroding of canal walls. Venetians are skeptical with this concept because concrete and reshaping 
might affect the aesthetic aspects of these historic canal walls. 

2.4. Previous Studies 
There have been several observational studies made to determine the effects of motor 

boats on the Venetian canal walls. One specific study was made by a Worcester Polytechnic 
Institute (WPI) project team completing their junior year design project while in Venice. A senior 
year capstone design project was completed in the Electrical Engineering Department of WPI that 
addressed the same problem, our problem statement is explored in section 3.1, and also had 
similar goals; our project goal is stated in section 3.2 of this report. 

2.4.1. The Moto Ondoso Index7 
 During the summer of 2002 a team of three Worcester Polytechnic Institute students, 
completing a junior year design project requirement, they studied the amount of energy dispelled 
into the canal system using a shore based visual approximation. Data was collected for boats 
within a certain class type, and canal turbulence was indexed based on the correlation between 
boat type and annual canal traffic data. Although this was a novel approach addressing the age 
old debate it was based on a visual approximation. A study of this magnitude could only allow 
researchers to speculate the amount of underwater turbulence discharged in the studied water 
ways. 

2.4.2. Mapping Turbulence in the Canals of Venice8 
In January, 2004 a WPI project team of three students completed their senior year 

capstone design project by creating a tool that could aid researchers in mapping turbulent 
discharges in the canals of Venice. Their design was an initial effort to map underwater 
turbulence; the design of the system outlined in this report is a completely reengineered device 
and approach. 

                                                 
7 Chiu, Jagganath, and Nodine. ”The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002 
8 Chiu, Lacasse, and Menard. “Mapping Turbulence in the Canals of Venice” MQP. Worcester Polytechnic 
Institute, January 2004 



 17 

2.5. Summary 
 The background section of this document discussed several issues pertaining to the 
transportation in Venice, damage caused to canal walls, debates about the causes of canal wall 
damage, and previous studies made to find the causes of canal wall damage. This section 
presented a picture of the current state of Venice and how the city is affected by motorboat 
transportation in terms of the impact to canal walls and building foundations. Also it discussed 
how previous studies have attempted to correlate the effect of motorboats to damage cause to 
canal walls. 
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3. Problem Statement 
This chapter presents the problem statement and defines the overall goal of this capstone 

design project. In addition to stating the overall goal, this section divides the main project 
objective into smaller goals; each with their own specific tasks. Each objective was formulated 
within context of the main project goal. 

3.1. Problem Statement and Project Goals 
Underwater turbulence caused from motorboat propellers is believed by many to be the 

cause of erosion to the canal walls in Venice. The problem is that, currently, there are no 
correlations that have been made to connect underwater turbulence to instances of canal wall 
damage. One method of studying this correlation is to record instances of motorboat engine RPM, 
since this is a way of measuring how fast propellers are moving underwater. Instances of engine 
RPM would have to be mapped across the city, especially where motorboats stop and go, so that 
underwater turbulence can be correctly correlated to places suffering from canal wall damage. 

Our project goal was to: develop an automated data collection system that can be 
installed in motorboats propelled by either diesel or gasoline engine(s) to monitor and store 
engine RPM as well as GPS positional data, for boats that navigate the Venetian lagoon. 

3.2. Objectives and Tasks 
 To achieve our project goal, the team had to complete several other objectives, each with 

their own separate tasks. In order to complete the final objective of creating a working prototype 
of this automated data collection system, the team outlined several milestones. These objectives 
are as follows: 

 
1. Familiarize ourselves with the previous senior capstone design project. 
2. Develop a method for determining engine RPM from diesel and gasoline engines. 
3. Develop a prototype for an embedded system that can collect engine RPM readings, 

GPS coordinates, and provide the user with relevant information. 
4. Write the software to bring all the components of the device together. 
5. Test the device on the field and use graphical information software to produce user 

viewable results from engine RPM data. 
 

 As seen above in the objective listing, the first one was to familiarize ourselves with the 
previous senior design project that attempted to solve the same problem in this design project. 
Unfortunately the previous project targeted only gasoline engines and its design was confusing. 
Nonetheless, being familiar with the work that was already done allowed us to iterate new designs 
more efficiently. We decided to use their choice of using an inductive pickup (placed on spark 
plugs) for measuring engine RPM from gasoline engines. In addition we researched the 
microcontroller they used and later determined, for another objective, that a similar one from the 
same manufacturer was a good choice. 
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 The second objective was to develop a method for measuring engine RPM from diesel 
and gasoline engines. One way of measuring engine RPM from gasoline engines is by way of an 
inductive pickup placed on the engines spark plugs. This works for gasoline engines however 
diesel engines do not have spark plugs. Different methods for obtaining RPM from diesel engines 
have to be explored, tested, and implemented. Signal processing circuitry for processing the 
signals representing engine RPM had to be designed and tested for the completion of this 
objective. 
 The third objective was to develop a prototype for an embedded system that can collect 
engine RPM readings, GPS coordinates, and provide the user with relevant information. 
Requirements, such as the number of inputs, outputs, storage space, etc. had to be determined in 
choosing a microcontroller. GPS was studied and tested. The entire system was put together in 
functional blocks. Each subsystem was tested individually. Printed circuit board layout software 
was then used to build the connections and subsystems of the device. To complete this objective, 
parts, and the PCB were ordered and then built. Once built, each system was tested again for 
functionality. 
 The fourth objective was primarily writing and debugging the software on the 
microcontroller in order to bring functionality to the entire system. The GPS receiver, analog 
circuitry, LCD display, and buttons were interfaced with the microcontroller under software 
control. 
 The final objective was to test the automated data collection system in the field and 
produce user viewable results from engine RPM data. Using GIS software, the data from the 
embedded system has to be processed to produce maps that can be used to interpret the data. 

3.3. Summary 
 This chapter broadly described the major goal for this capstone design project as 
constructing a prototype for an automated data collection system that can monitor a motorboats 
engine RPM and store GPS related positioning data. The objectives and tasks required in 
achieving this goal were described along with some major difficulties present in the attempt to 
complete the main project goal. 
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4. Methods 
This chapter outlines the methods used by our project team to accomplish our project 

goals. Briefly, we had to determine our system requirements when choosing a microcontroller to 
fit our needs. The team also had to research different means of measuring engine RPM for both 
gasoline engines and diesel engines. As a result, the approach used to develop our system was as 
follows: 

 
1. Reviewed engine type monitoring requirements (Required to work for diesel or gasoline 

engines) 
2. Reviewed system requirements (What needed to be recorded, for how long, how often 

e.g. every second, etc.) 
3. Implemented the design from system requirements 
4. Implemented packaging requirements (Easy to mount, small & compact, water resistant, 

user interface) 
5. Reviewed data processing requirements (How data from unit was going to be used to 

produce maps) 
 

4.1. Reviewing Engine Type Monitoring Requirements 
The first task of our design project was investigating the different methods for obtaining 

engine RPM from both diesel and gasoline engines. Knowing the types of signals our system was 
going to be dealing with was the first important step since the next step was establishing our 
system requirements. One specific method of measuring engine RPM from gasoline engines 
researched was: 

 
1. Measuring gasoline engine RPM from spark plugs. 

  
 Other options had to be reviewed for measuring engine RPM in diesel engines since 
diesel engines do not have spark plugs. What diesel engines do have, however, are alternators that 
are used to charge the batteries that start the engines. Signals from an alternator onboard a diesel 
engine are commonly used today in other systems to calculate engine RPM. To design our system 
we had to: 
 

1. Measure the tachometer signal from an alternator 
2. Design the analog circuitry to condition these signals. 

  
 To measure the tachometer signals from an alternator it required that we personally went 
onboard a diesel boat for a good determination of the signals our system would be dealing with.   
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4.2. Reviewing System Requirements 
 The second task of our design project was to outline the system requirements that we 
were going to use in the design of the automated data collection system. Knowing the signals our 
system had to interface with allowed us to list more specific system specifications. To complete 
this task we specified and reviewed: 
 

1. Reviewed project requirements (What exactly needed to be recorded) 
2. Reviewed previous work done on the problem 
3. Specified length of device operation 
4. Specified amount of memory needed 
5. Specified power requirements 
6. Specified input and outputs on microcontroller 
7. Specified number of serial ports on microcontroller 
8. Specified number of ADC channels 

 
 Once we listed these system requirements we conducted value analysis on a few different 
microcontrollers on the market. Choosing the right microcontroller was essential in implementing 
our system design. 

4.3. Implementing Design from System Requirements 
 Once we reviewed the system requirements of our system the next task was 
implementing our design. Implementing our design involved multiple steps and procedures. 
These procedures are outlined below: 
 

1. Constructed analog circuitry to condition signals from diesel alternator and gasoline 
engine spark plugs 

2. Constructed circuit on a breadboard and tested in lab 
3. Designed motherboard on printed circuit board layout software 
4. Designed “RPM Module” board on printed circuit board layout software 
5. Interconnected system with GPS, LCD, buttons, etc under program control 

 
 As seen from the list above, the first procedure in implementing our design was 
constructing circuitry for the conditioning of diesel alternators and gasoline spark plug signals. 
Printed circuit board layout software was then used to design multiple boards that brought 
functionality to the system once connected. The system was finally interfaced with other 
subsystems, for functionality, under software control. 

4.4. Implementing Packaging Requirements 
 Once the multiple modules had been implemented, the next task was building its 
packaging. From our system requirements we identified the different considerations that had to be 
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taken into account when packaging the device to one standalone system. These considerations 
included its size, compactness, water resistance, etc. 

4.5. Reviewing Data Processing Requirements 
The final task of our project was to develop a way of processing data and outputting it. 

The task of processing data was completed by using the software given to us by the manufacturer 
of our chosen microcontroller and creating algorithms that successfully recorded the data. The 
task of outputting the data was completed by using chosen GIS software and inputting the 
recorded data from the microcontroller to the Graphical Information System (GIS) software. 

4.6. Summary 
 This chapter presented the methods used by our team to achieve our project goal. These 
methods included reviewing different requirements we were attempting to satisfy. These 
requirements included having functionality for both diesel and gasoline engines, and other system 
requirements that were decided early on by our project team and project advisors. Another 
prerequisite was in data processing where we had to find methods of displaying the recorded data. 
This chapter also outlines the methods used for implementing our design. 
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5. System Design 
 This section presents the overall design approach our team implemented in order to 
complete our project goal. The system is broken down into logical blocks that represent how the 
system as a whole is intended to function. These different blocks, or subsystems, include the GPS 
module, the LCD module, RPM Module, the Microcontroller Module, and the Motherboard 
Module. The function of each module is explained throughout this section. A block diagram for 
our entire system is shown below in Figure 7. 
 

 

 
Figure 7: System Block Diagram 
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5.1. GPS Module 
 The GPS module of our system, seen in Figure 8, consists primarily of a GPS receiver 
that connects, through serial communication, to the microcontroller and is powered by a +5 V 
voltage regulator which is located on an external PCB board mounted on the case. The GPS 
receiver we used in our design was a Garmin9 GPS receiver, the GPS25-LVS10, seen in Figure 9. 
This module contains an external antenna that can be mounted onto a glass surface inside the 
vehicle. The antenna is connected to the GPS receiver through coaxial cable. Once the antenna is 
placed correctly, the GPS receiver acquires satellites and outputs National Marine Electronics 
Association (NMEA) strings. These NMEA strings contain useful information such as date, time, 
speed, location, and other data. The GPS receiver can be programmed to output multiple NMEA 
strings, each containing different pieces of information. Also, note the connections of the GPS 
receiver to the microcontroller: the NMEA serial transmit port (Tx) on the GPS receiver is 
connected to the serial receive port (Rx) of the microcontroller. The signal ground of the GPS 
receiver is connected to the system ground. The GPS receiver also has a serial receive (Rx) port 
that can be used to program the types of NMEA strings output. These pin connections can be seen 
in Figure 10. 
 

 
 The actual GPS receiver used is shown in Figure 9. A PIN-OUT description of the GPS 
receiver is shown in Figure 10. The pin out descriptions shows the connections that were made 
when connecting power (+5V) to the unit (Pin 10/11), ground (Pin 8), as well as the NMEA 
Output (Pin 12). The serial NMEA transmit (NMEA Tx) or NMEA Output was connected to the 
Rx pin on the microcontroller SER1 serial port.  

                                                 
9 http://www.garmin.com 
10 http://www.garmin.com/products/gps25/ 

 
Figure 8: GPS Module Block Diagram 
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5.2. LCD Module 
 The LCD module of our system, seen in Figure 11, consists primarily of a LCD unit that 
connects, via a RS-232 serial port, to the microcontroller and is powered by a +5 V voltage 
regulator which is located on an external PCB board mounted on the case. The actual LCD used 
in our design was a Crystalfontz13 serial LCD module, model number CFA-63214, and is 
displayed in Figure 12 along with the pin out descriptions in Figure 13. This unit is stand alone 
and displays American Standard Code for Information Interchange (ASCII) characters once 
ASCII characters are serially transmitted to the LCD display. This device allows our system to 
display functional information about the device, to the user, while the rest of our system is 
operating in real time. Also, note the connections of the LCD unit to the microcontroller: the 
serial receive port (Rx) on the LCD unit is connected to the serial transmit port (Tx) of the 
microcontroller. The signal ground of the LCD unit is connected to the system ground.  
 

                                                 
11 http://www.garmin.com/products/gps25/ 
12 http://www.garmin.com/manuals/GPS25LPSeries_TechnicalSpecification.pdf 
13 http://www.crystalfontz.com 
14 http://www.crystalfontz.com/products/632/index.html 

 
Figure 9: Garmin GPS25-LVS11 

 
Figure 10: Garmin GPS25-LVS Pin Out Description12 
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 A picture of the LCD unit is shown in Figure 12. A PIN-OUT description of the LCD 
unit is shown in Figure 13. The pin out descriptions shows the connections that were made when 
connecting power to the unit (+5V LCD), ground, as well as the serial receive pin (DATA_IN). 
The serial receive (Rx) or DATA_IN was connected to the Tx pin on the microcontroller SER1 
serial port. 
 

 

                                                 
15 http://www.crystalfontz.com/products/632/index.html 
16 http://www.crystalfontz.com/products/632/data_sheets/CFA-632_v2.0.pdf 

 
Figure 11: LCD Module Block Diagram 

 
Figure 12: LCD Screen15 

 
Figure 13: LCD Pin out Description16 
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5.3. Health and Safety Module 
 The health and safety module’s function is to provide information about the voltage 
levels of the power source and ambient temperature. A block diagram of this system is shown in 
Figure 14. We determined that measuring these conditions is important for the overall operation 
of our device. Whenever these conditions fail, we configured our microcontroller to act 
accordingly under software control. 

 
 As is seen in Figure 14, the temperature sensor is connected to a +9V regulated power 
supply from the motherboard. The temperature sensor used was an analog devices AD590KF two 
terminal IC temperature transducer that outputs a current proportional to temperature. The voltage 
divider (Voltage meter) is connected directly to the power source, to monitor the voltage. Both 
the temperature sensor and the voltage divider connect to their respective ADC channels on the 
microcontroller. 

5.4. RPM Module 
 The RPM module’s function is to condition the signals from a diesel engine and a 
gasoline engine. A block diagram of this module is shown in Figure 15. For specific details on 
the design of the RPM module see APPENDIX F: RPM Module Schematics. The RPM module 
has onboard regulators to power the signal conditioning circuitry for both diesel and gasoline 
engines. The basic operation of this module when it is functioning for diesel engines is that the 
signal from the alternator w-terminal is connected to our signal conditioning circuit. The 
conditioned signal is then connected to an external interrupt on the microcontroller. Our program 
on the microcontroller calculates the RPM in real time depending on the external interrupts. 
When the device is connected to gasoline engines, the signal from an inductive pickup, connected 
to the engines spark plugs, is conditioned by the analog circuitry, on the RPM module, to produce 

 
Figure 14: Health and Safety Module Block Diagram 
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a signal that is read on one of the analog to digital converter (ADC) channels on the 
microcontroller. 

 

5.5. Microcontroller Module 
 The microcontroller module is a microcontroller we purchased after performing a value 
analysis on different microcontrollers that could function in our system. The value analysis we 
conducted in choosing the TERN FlashCore-B is discussed in APPENDIX D: Value Analysis. 
The functional description of the TERN FlashCore-B is explained in detail in the FlashCore-
B(FB)TM Technical Manual found on the Tern Inc. website17. A functional block diagram of the 
FlashCore-B microcontroller can be found in Figure 17. A brief description of the FlashCore-B 
from the technical manual is quoted below18: 

“The FB is a complete standalone C/C++ programmable embedded controller including a 
188 CPU,512KB ACTF Flash, 128KB or 512KB SRAM, 512-byte EEPROM, 2 channel 
RS-232 driver, 5Vregulator, with optional real-time clock, battery, 8 channel 16-bit ADC, 
and/or 4 channel 12-bit DAC.” 
 

A picture of the FlashCore-B can be seen in Figure 16. 
                                                 
17 http://www.tern.com 
18 FlashCore-B(FB)TM Technical Manual. Tern Inc. http://www.tern.com 

 
Figure 15: RPM Module Block Diagram 
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 We had to interconnect our microcontroller with the other modules explained in this 
section (RPM, Health and Safety, GPS, LCD Module’s). A more detailed block diagram showing 
the connections between the microcontroller module and the other modules described in this 
section is shown in Figure 18. The block diagram from Figure 18 shows how the elements of the 
microcontroller module connect to the other modules. As you can see the GPS and LCD module 
connect to one of the serial ports on the microcontroller. The health and safety module connects 
                                                 
19 FlashCore-B(FB)TM Technical Manual. Tern Inc. http://www.tern.com 
20 Ibid 

 
Figure 16: TERN FlashCore-B19 

 
Figure 17: Tern FlashCore-B Functional Block Diagram20 
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to two of the analog to digital converter (ADC) channels on the microcontroller to provide 
ambient temperature and voltage readings. The conditioned signal from the RPM module to 
measure engine RPM in gasoline engines is connected to one of the ADC channels on the 
microcontroller. The conditioned signal from the RPM module to measure engine RPM in diesel 
engines is connected to one of the external interrupts of the microcontroller. Power to the 
microcontroller module is provided by an external +9V regulator that is placed on the 
motherboard. The motherboard is explained in the next subsection. 
 

 

5.6. Motherboard 
 The motherboard connects all the different modules together. In addition to 
interconnecting the microcontroller with the GPS, LCD, Health and safety, and RPM Module, the 
motherboard provides power for all the other modules. Please refer to Figure 7 to see how the 
motherboard brings the system together. Everything within the dotted square represents the 
interconnections made within the motherboard. The microcontroller and the RPM module are the 
only modules which actually mount, via headers, on the motherboard, shown in Figure 19. The 
GPS module and the LCD module connect to the motherboard using a male header which 
interfaces the microcontroller SER1 serial port. For specific details on the design of the 
motherboard see APPENDIX E: Motherboard Schematics. 

 
Figure 18: Microcontroller Module Connections 
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5.7. Summary 
 This chapter presented various structural block diagrams showing the operation of 
different modules. The different modules in our system design include: the GPS, LCD, Health 
and Safety, RPM, Microcontroller, and Motherboard module. A system block diagram that 
illustrates how all the different modules connect to bring functionality to our entire design was 
also presented in this chapter. 

 
Figure 19: Motherboard Module 
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6. Results 
 This chapter presents the results of our team’s work when our system design was 
implemented. The Methods section presented the methods, employed by this project team, which 
outlined the procedure used to implement our system design. Our team researched methods for 
obtaining engine RPM from both diesel and gasoline engines and designed the appropriate 
conditioning circuitry for both. Once we completed specifying our system requirements we 
implemented the design. The design was then packaged accordingly into one unit. The data 
recorded by our device was then processed using Geographical Information Systems (GIS) 
software called MapInfo. 

6.1. Diesel Engine RPM Monitoring 
 This section outlines the process in measuring the signal from a w-terminal and describes 
the results our team encountered. This section also details the circuitry our project team designed 
to condition the signals from the w-terminal. 

6.1.1. W-Terminal Signal Measurements and Calculations 
 The design of the diesel engine RPM conditioning circuit was based on the measurements 
made from an actual alternator on a diesel engine. Using a portable oscilloscope and a laptop our 
team traveled to Cape Cod, Ma where we measured the alternator w-terminal signal on a diesel 
boat. The actual engine we obtained measurements was a Volvo Penta Inboard Diesel 
TAMD63L/P21. A photo of the diesel engine we tested is shown in Figure 20. 
 

 
 The alternator on the engine was a Valeo A13N234 alternator that supplied 12 Volts DC, 
60 amps. A picture of the alternator is shown in Figure 21. One of the terminals on the alternator 
is labeled as ‘W’, this is the terminal used to provide a tachometer signal from the engine. 
                                                 
21 http://www.volvo.com/volvopenta/global/en-gb/marineengines/operators_manual/ 
22 http://www.volvo.hu/NR/rdonlyres/A002F3FF-24CC-44E3-BA01-35710D7D14D8/0/tamd63.pdf 

 
Figure 20: Volvo Penta TAMD63L/P22 
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 Several measurements were taken from the alternator using a portable oscilloscope and a 
laptop. We used the Metex Instruments DG SCOPE-20Mhz digital oscilloscope for obtaining 
measurements of the signal. APPENDIX A: DGSCOPE MATLAB Decoder Code details how 
we transferred this signal to MATLAB for analysis. We recorded various waveforms from the W-
terminal at different engine RPM intervals.  
 

 
                                                 
23 http://www.go2marine.com/product.do?no=76732F 

 
Figure 21: Valeo A13N234 Alternator23 
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Figure 22: W-Terminal Signal 
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 The plot of the waveform shown in Figure 22 shows the waveform recorded from the W-
Terminal on an alternator. By looking at the Fourier transform of the signal from Figure 22 we 
came up with a relationship between alternator w-terminal signal frequency and actual engine 
RPM after measuring various signals at different RPM intervals. The frequency magnitude 
spectrum of the signal from the W-terminal, in Figure 22, is shown in Figure 23.  The signal 
from the W-terminal at approximately 600 RPM was a 243 Hz signal (Figure 22). We obtained 
various recordings, of the signals at the W-terminal, for different engine RPM intervals. 
 

 
 The different intervals we measured engine RPM from the onboard tachometer and the 
w-terminal signals respective frequency (Averaged out from several measurements) is shown in 
Table 1. 
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Figure 23: W-Terminal Signal Frequency Spectrum 

Measured Engine RPM W-Terminal Signal Frequency (Hz) 
600 RPM 244.3 Hz 
1000 RPM 384.57 Hz 
1500 RPM 607.67 Hz 

Table 1: Measured Engine RPM Vs. W-Terminal Signal Frequency 
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 Using the measurements from Table 1 we plotted the measured relationship between the 
signal frequency and actual engine RPM; this plot is shown in Figure 24. Figure 24 clearly 
shows how W-terminal frequency and engine RPM are proportional to each other. In fact, engine 
RPM can be calculated from certain alternator parameters. These parameters include: 

1. W-terminal signal frequency 
2. Number of poles on an alternator 
3. Pulley ratio 

 
 The number of poles on the alternator requires looking at the specific alternators data 
sheet and the pulley ratio depends on the Equation 1: 
 

eterPulleyDiamAlternator
yDiameterDrivePulleoPulleyRati =

 
Equation 1: Pulley Ratio Calculation 

  
 Equation 1 shows how pulley ratio is an actual ratio determined by the drive pulley 
diameter and the alternator pulley diameter. This ratio can be calculated by measuring both 
diameters and often times is specified in engine manuals. Typically in diesel engines there is a 3:1 
pulley ratio. 
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Figure 24: W-Terminal Sig. Frequency vs. Engine RPM Plot 
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 The mathematical equation to calculate actual engine RPM in terms of alternator w-
terminal signal frequency, number of poles on the alternator, and the pulley ratio is shown by 
Equation 2: 
 

oPulleyRatiPolesAlternatorMin
SecHzinFreqSigTERMINALWRPM 1*1*60*)___(−=  

Equation 2: Diesel Engine RPM Calculation 
 

6.1.2. W-Terminal Conditioning Circuitry Results 
 This section discusses the design of the conditioning circuit that conditions the alternator 
signal. The output of our conditioning circuitry had to be a TTL compatible waveform since we 
planned on driving one of the external interrupts on the microcontroller. Using the TTL 
compatible signal to drive the external interrupts we calculated the signal frequency; this is 
explained later in the Software Results section.  

 
 The schematic shown in Figure 25 shows the conditioning circuit we designed to take the 
w-terminal input and convert that signal to a TTL compatible signal. The w-terminal signal is 
connected to the port labeled “IN” on the schematic. The resistor R1 limits the current of the w-
terminal signal (Figure 22) to protect the 5V zener diode D1 and the hex inverting Schmitt 
trigger: 74LS14. If a waveform like Figure 22 is connected to the input “IN”, the  5V zener diode 
D1 regulates the voltage of the input waveform (of about (-)8V to +8V) to approximately a 0V to 
+5V waveform. The resulting waveform at the input 1 of the 74LS14 resembles a 0V to +5V 
square wave; however, this waveform is not as clean as a perfect square wave. The function of 
the 74LS14 (Hex inverting Schmitt trigger) is to produce a TTL compatible signal at the output 

 
Figure 25: W-Terminal Conditioning Circuit Schematic 
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“SQR”, that has the same frequency as the w-terminal signal at “IN”. The output signal at “SQR” 
is supposed to resemble a perfect square wave. For an input signal like the w-terminal signal 
shown in Figure 22 the output signal resembles the waveform shown in Figure 1. 
 

 
 The function of this circuit is to produce a TTL compatible signal. The output of the 
circuit shown in Figure 25 is shown in Figure 26. The output signal shown in Figure 26 is a 
TTL compatible signal; it is “cleaner” square wave, with less noise, and is used to drive two of 
the external interrupts on the microcontroller. 

6.1.3. Summary 
 This section outlined the method used to record the tachometer signal from an alternator. 
Using the w-terminal signal, engine RPM can be calculated using the w-terminal signal 
frequency, the number of poles on the alternator, and the pulley ratio. This section also described 
the conditioning circuitry designed by our team to interface the w-terminal signal to the 
microcontroller. 

6.2. Hardware Results 
 This section discusses the results from the hardware used to implement our design. To 
implement all the different modules we separated the design between two printed circuit boards. 
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Figure 26: W-terminal conditioning circuit output 
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The complete schematics and layouts for these two PCB’s are included in APPENDIX E: 
Motherboard Schematics and APPENDIX F: RPM Module Schematics of this document. 
Implementing our design between two printed circuit boards allowed the possible use of the 
motherboard for other functions using the same microcontroller. 

6.2.1. Health and Safety Module 
 The basic function of the health and safety module is to provide temperature and readings 
and measure the voltage output from the device’s power source. Our real-time embedded program 
on the microcontroller then acts accordingly depending on the voltage and temperature readings it 
gets (i.e. closes file on compact flash). The program explained in the Software Results section. 
 We used a LM7809 on the motherboard; wired the +9V DC output of the regulator to the 
temperature sensor. The LM7809 regulator configuration is shown in Figure 27. 
 

 
 The output of the LM7809 is used to power the Analog Devices AD590KF temperature 
sensor shown in Figure 28. This temperature sensor acts as a high impedance, constant current 
regulator passing 1uA/K. The resistor R1 placed at the output of the current sensor creates a 
voltage potential. At approximately +25oC the sensor outputs 298.2uA, as stated in the datasheet. 
The resistor network, R1, creates a voltage potential of about 3.0V at +25oC. The voltage 
potential at the output of the temperature then rises or drops accordingly to the ambient 
temperature. One of the microcontroller’s ADC channels is connected to the output of the 
temperature sensor, AD0. The real-time program is designed to monitor the voltage at the output 
of the temperature sensor using the ADC. 
 

 
Figure 27: LM7809 Configuration from Motherboard 

 
Figure 28: AD590KF Temperature Sensor Configuration 
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 The “Voltage Meter” shown in Figure 29 is just a simple voltage divider that takes taps 
directly into the voltage powering the entire device. One of the microcontroller’s ADC channels 
is connected to the output of the voltage divider, AD1. The real-time program is designed to 
monitor the voltage at the output of the voltage meter using the ADC. 
 The health and safety module is placed directly on the motherboard so it can be 
interfaced directly to the microcontroller without other connections. This is illustrated in 
APPENDIX E: Motherboard Schematics. 

6.2.2. RPM Module 
 The RPM module was designed on one PCB. The details of this printed circuit board are 
shown in APPENDIX F: RPM Module Schematics. The RPM module contains two different 
circuits that interface through the motherboard to the microcontroller. These two circuits function 
differently; one is specifically for use on diesel engines and the other for gasoline engines.  
 The circuit shown in Figure 30 was previously explained in the W-Terminal 
Conditioning Circuitry Results section and functions specifically for diesel engines. An 
LM7805 voltage regulator was configured, like the circuit shown in Figure 32, to provide power 
for the signal conditioning circuit shown in Figure 30. 
  
 

 
Figure 29: Input Voltage Meter 
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 The circuit shown in Figure 31 functions specifically for gasoline engines where an 
inductive pickup is placed on the spark plugs. The LM2907 IC is a frequency to voltage converter 
that receives the input from an inductive pickup placed on a spark plug and converts it to a 
voltage that is read by an ADC channel on the microcontroller, AD4. The configuration of this 
circuit was taken directly from the datasheet of the LM290724. Software can then be used to 
determine the respective frequency. Although this circuit was included in the design of our device 
it has to undergo testing in order for the software design to be implemented. This circuit is also 
powered by a LM7805 voltage regulator like the one shown in Figure 32. 
 

 
 

                                                 
24 http://www.national.com/ds/LM/LM2907.pdf 

 
Figure 30: Diesel Engine RPM Conditioning Circuit 

 
Figure 31: Gasoline Engine RPM Conditioning Circuit 
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 The circuit configurations described in this section were first tested and then designed on 
PCB layout software. The photo shown in Figure 33 shows the final PCB board design for the 
RPM module. As seen in the picture, this module has two long headers that connect to the 
motherboard. The other headers are used to connect the board to their respective input signal 
sources. 
 

 

6.2.3. Power 
 The amount of current our device needs to operate was calculated by combining the 
current requirements from the GPS, Microcontroller, LCD, and the RPM Module. The total 
current drawn by the entire device is shown in Table 2. 
 

  

 
Figure 32: LM7805 Voltage Regulator Configuration 

 
Figure 33: RPM Module PCB Design 

Module Amount of Current 
GPS 120mA 
LCD 9mA 

TERN FashCore-B 160mA 
RPM Module 11mA 

TOTAL= 300mA 
Table 2: Current Consumption of System 
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 When considering a power source of two 12V, 7.0 Amp hour batteries and having the 
device operational for only six hours a day we estimated the length of operation from a complete 
battery charge. For a completely charged battery pack (Total 14.0 Amp hours), our device could 
function for about seven and a half days[7.5 Days], approximately six hours per day, if it was 
drawing about 300mA of current. This length of time is just about what we were expecting to 
have the device operate for. 

6.2.4. Summary 
 This section described the hardware our team implemented in designing our device. The 
design and function of the Health and safety module and the RPM module was provided along 
with schematics detailing the circuitry we implemented. It is important to note that the 
microcontroller module simply connects to the headers of the motherboard. Also the GPS 
module, the LCD module, and the RPM module connect to specific headers on the motherboard. 
Detailed schematics showing the motherboard and the RPM module are shown in APPENDIX 
E: Motherboard Schematics and APPENDIX F: RPM Module Schematics, respectively. 

6.3. Software Results 
 This section presents the results, from a software standpoint, when the microcontroller 
was programmed to bring functionality to the entire system. In addition, this section describes the 
functions of our program by means of a software flow chart. A complete version of our C++ 
program source code is included in APPENDIX B: C++ Embedded Program Source Code. 
 The software flow chart of our embedded program is shown in Figure 34. The basic 
operation of our code, from looking at this software flow chart, can be followed from the 
initialization of variables down to the “Main Loop”. Our functions check to see which GPS string 
type (From the GPS receiver) was received from the SER1 serial port. The program executes 
different procedures depending on the GPS String. 
 If the GPS string is type “GPGGA” the program first parses for time and stores the most 
recent time. It also parses for the number of satellites “in view” from the “GPGGA” string. 
 If the GPS string is type “GPRMC” the program stores it as the most recent GPS 
coordinates on onboard memory. 
 If the GPS string is type “GPVTG” the program parses and stores the most recent 
velocity. 
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 Once the program processes the current GPS string, it reads the ADC channels to read the 
voltage (From Voltage Meter), and the temperature (From Temperature Sensor). It sets a Boolean 
variable to represent if the voltage and temperature readings are within a correct range. If the 
temperature and voltage readings are outside the given range, either the temperature or voltage 
“statistic” is set to false signifying that one of them is invalid for device operation. 

 
Figure 34: Diesel RPM Software Flow Chart 
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 Then the program goes on to check to see if a button was pressed. Again it also sets a 
Boolean function to represent if the button was pressed (Running is set to !Running if pressed). 
 The program then goes on to check to see if a file accessing the Compact Flash card is 
open. If the file is not open, then the file is opened only if the voltage and temperature statistics 
are true and if the button was not pressed (Running=True). If a file is currently open, the file is 
only closed if the voltage or temperature statistics are false and if the button was pressed 
(Running=False). 
 The program then checks if the time has changed (NewTime=True); this depends on 
strings from GPS, and if the button was not pressed (Running=True). If these conditions are true 
then the program enters the procedure that writes to compact flash. 
 The procedure that writes to compact flash first disables the external interrupts so it can 
read from the timer 1 and timer 2 on the processor. 
 The AMD AM188ES processor has a pulse width demodulation (PWD) option that 
enables us to measure an input signal’s frequency. The illustration in Figure 35 shows how the 
timer 1 and timer 2 are used to measure the time elapsed for high and low edges of the waveform. 
The program disables the external interrupts for a moment to capture the values read from the 
timers and then re-enables the interrupts. If interrupts weren’t disabled there is a possibility an 
interrupt is interleaved with the execution of the code that reads from the timers. This might lead 
to erroneous measurements. 
 

 
 Combining the values from timer 1 and timer 2 yields the period, the program then 
calculates the signal frequency based on the period of the waveform and then uses Equation 
2Error! Reference source not found. to calculate the diesel engine RPM. 
 The program then writes to compact flash depending on conditions like the number of 
satellites the receiver is tracking and if the file is open. Next the program updates the LCD screen 
depending real time data like: voltage, temperature statistics, the calculation of RPM, and the 
number of satellites “in view”. 
 The actual data recorded onto the Compact Flash card resembles the lines shown in 
Table 3: 
 

                                                 
25 Am186 TMES and Am188 TMES Users Manual. Advanced Micro Devices, Inc. Http://www.amd.com 

 
Figure 35: Pulse Width Demodulation25 
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 The data is stored as a text file on compact flash and then GIS software can be used to 
interpret the data graphically on a Venice, Italy city map. A description of the GIS software that 
can be used to process this data and source code is included in APPENDIX C: 
MapInfo/MapBasic Software of this document. 

6.4. Test Results 
 To test the device, we had to model the W-terminal signal (Figure 22) using an Instek 
Function Generator (CFG-8219A). We used an input square wave like the one shown in Figure 
36 to our W-terminal conditioning circuit. The output of the W-terminal conditioning circuit 
resembled the waveform shown in Figure 26. 
 

 

$GPRMC,063403,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063404,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063405,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063406,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 

Table 3: Compact Flash Stored Data 
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Figure 36: Square Wave used to model the W-Terminal 
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 The frequency of the input square wave (Figure 36) we connected to our W-terminal 
conditioning circuit is shown by the image capture of the function generator in Figure 37. The 
input square wave had a frequency of about 283 Hz. 
 

 
 Our device measured an RPM of 708. This can be seen from the figure shown in Figure 
38. When comparing the measured 708 RPM to an input signal having a frequency of 283 Hz we 
used Figure 39 for comparison. As seen in Figure 39, these results are very close to the 
theoretical values. 
 

 
 The image in Figure 38 also shows how other modules in the device are functioning. The 
device is displaying in the bottom line “T=Y V=Y SATS=0”. This shows that the temperature 
“T” is equal to “Y “for yes meaning good. Inversely if the temperature were bad “T” would be 
equal to “N” for no meaning bad. The voltage “V” is equal to “Y “for yes meaning good. 
Inversely if the input voltage levels were bad “V” would be equal to “N” for no meaning bad. The 
device also shows the number of satellites in view, currently “SATS=0” because we tested the 

 
Figure 37: Input Square Wave Frequency (283 Hz) 

 
Figure 38: Device Displaying RPM in Real Time 
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device indoors. The device only starts to record data once “SATS=04” or the number of satellites 
in view is greater than 3 (More accurate coordinates). 
 

 

6.5. Summary  
 This chapter presented the results of our system design. The design of the RPM module 
was discussed in detail; detailing the input signals expected to drive the signal conditioning 
circuitry as well as the expected outputs. The design of hardware such as the health and safety 
module was also illustrated. The power requirements of the system were detailed as well as the 
expected length of time the device can operate, for a fully charged battery pack. In addition to the 
hardware results, our team presented the software implemented in bringing functionality to the 
entire system; software flow charts and source code were included as reference. The tests we 
performed on our system were all done using signals that model the W-terminal signal from a 
diesel engine. We verified that the tests matched the theoretical results for measuring diesel 
engine RPM. 
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Figure 39: Theoretical W-Terminal Freq. vs. RPM Relationship 
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7. Summary and Conclusions 
This chapter summarizes the work completed by our project team at Worcester 

Polytechnic Institute. The project objectives that were accomplished, with the intent of meeting 
the project goal, are also reviewed. The overall goal of this project was to develop an automated 
data collection system that can be installed in motorboats propelled by either diesel or gasoline 
engine(s) to monitor and store engine RPM as well as GPS positional data, for boats that navigate 
the Venetian lagoon. 

7.1. Summary of Project Design, System Design and 
Results 

 To complete our project design we followed a methodology that consisted of researching 
how to measure engine RPM for both diesel and gasoline engines, establishing our system 
requirements, building our system from those system requirements, and finally processing the 
data produced by our device to provide analysis. 
 Our system design consisted of various modules, these modules are listed below: 
 

1. GPS Module 
2. LCD Module 
3. Health and Safety Module 
4. RPM Module 
5. Microcontroller Module 
6. Motherboard 
 

 The GPS module consisted of a GPS receiver that output NMEA string serially to the 
microcontroller. The GPS receiver transmitted information like: date, time, number of satellites in 
view, velocity, and coordinates among other things. 
 The LCD module was another stand alone unit, like the GPS receiver, that received serial 
data from the microcontroller to display information for the user. The data that was displayed on 
the LCD display consisted of real time engine RPM readings, temperature and power source 
voltage levels, as well as the number of satellites the device was currently using to store GPS 
related data. 
 The health and safety module allowed the device to monitor ambient temperature’s as 
well as power source voltage levels. This module provides a means of letting a user know of a 
fault that is causing the system function incorrectly. It also allows the microcontroller to stop 
writing to compact flash so that data does not become corrupted. 
 The RPM module’s function is to condition signals from the W-terminal on a diesel 
engine, and from an inductive pickup placed on gasoline engines spark plugs. These signals are 
conditioned so that they can be interfaced to the microcontroller for processing and engine RPM 
calculation. 
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 The microcontroller’s function is to provide data processing, displaying data, and for data 
storage on compact flash. In essence the microcontroller is interfaced with all the other modules 
for complete system integration by way of the motherboard. 
 The motherboard provides a means to interconnect all the different modules to the 
microcontroller. It also allows the device to function in modules and different modules could be 
added to provide for other functions. 
 Our project team was able to successfully implement all these modules in hardware. In 
addition we also wrote the software that allowed the system to properly function as an automated 
data collection system for monitoring a diesel engines RPM. 
 The resulting data acquisition unit was packaged for use, the system, however, was not 
tested on the field. Current results are based off inputs that resemble the types of signals from the 
W-terminal on an alternator field; further testing is required. 

7.2. Overall Assessment, Future Work 
 While our team successfully modeled, developed, and implemented our system design 
there still remains many challenges in the testing stages and post processing stage. The project 
completed many of its primary objectives. Overall our project team: 
 

1. Developed a method for determining engine RPM from both diesel and gasoline engines 
2. Developed a prototype for an embedded system that can store engine RPM readings and 

GPS coordinates on external memory, and provide the user with relevant information. 
3. Wrote the software to bring all the components of the device together. 

  
 Some future work includes the part of our design describing the use of an inductive 
pickup placed on gasoline engines spark plugs. This also needs to be tested for functionality and 
have software implemented. Since we designed a modular system, this function could be easily 
implemented if a different direction (Instead of the inductive pickup option) is desired. 
 In addition the current system has to undergo various field tests. At the completion of this 
project our team was unable to test the device on a diesel motorboat. The results that we achieved 
were based on signals resembling the expected W-terminal signals from a diesel engines 
alternator. 
 Once field tests are completed, future work would involve using the geographical 
information systems (GIS) software we provided to prepare the data files produced by our system 
for mapping on a Venice, Italy city map. The purpose of the post processing needed for this data 
is that a correlation has to be made between engine RPM and damage caused to Venetian canal 
walls. 
 Engine RPM is related to underwater turbulence because it shows how fast an engine’s 
propellers are moving; future work may be in the finding ways to correlate instances of RPM to 
the underwater turbulence that causes underwater damage. Furthermore, instances of engine RPM 
has to be correlated with damaged canal walls. 
 The current packaging of the device is also a little big. The whole device could be 
designed to fit a much smaller enclosure. Having the device plug into a boats electrical system for 
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power could also be an option for making the device more portable. Power requirements of the 
system should be considered when attempting to make the entire system consume less power; we 
feel the device could draw much less current with modern GPS units, and other components. 
 Once these issues are assessed, the operation of a device like the one our project team, 
that is correctly implemented could potentially aid the city of Venice, Italy in the efficient release 
of canal repair resources. In addition, this tool could aid city planners in the monitoring of 
underwater turbulence caused by engine propellers, and find correlations between them and canal 
wall damage. 

7.3. Conclusions 
 Our team successfully implemented an automated data collection system that can be 
installed in motorboats propelled by diesel engines to monitor and store engine RPM as well as 
GPS positional data, for boats that navigate the Venetian lagoon. This document outlines the 
design process our project team followed in building a working prototype for this automated data 
collection system. Options in having this device placed in gasoline motorboats have to be tested 
and implemented. In addition, the post processing of data stored on compact flash by our system 
has to be considered after multiple field tests are conducted. In addition to the design of our 
system we also presented different considerations that should be taken to improve the 
functionality of the device and system. Future designs and methods could serve as a tool for 
aiding the city of Venice, Italy in the repair of damaged canal walls. 
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APPENDIX A: DGSCOPE MATLAB Decoder Code 
 The MATLAB code provided in this appendix allows for the decoding of files 
downloaded from the Metex Instruments DG SCOPE 20MHz Oscilloscope. To download files 
from the oscilloscope it requires use of their proprietary software and saving those files to a 
directory. Once a file has been downloaded onto a PC, place the “.DSO” file under the same 
directory as the “.M” file containing the code from the MATLAB Code section. Be sure to name 
the MATLAB file containing the code: “decode.m” and set the current working directory to the 
folder where “decode.m” is placed. The decoding function can be called in MATLAB by typing 
the following in the command window: 
   
 decode('FILENAME.DSO'); 
 
 Once the code executes, both the signal waveform and the frequency spectrum of the 
waveform is shown. A Screen capture showing the command window is shown in Figure 40. 
Changing the views on the output waveforms can be modified using the plot parameters in the 
end of the MATLAB code. 
 

 

1. MATLAB Code 
function [n1, n2, fs] = decode(file) 
fid = fopen(file, 'r'); 
c = fread(fid, '*uint8', 'b'); 
fclose(fid); 
 
%------------------------------------------------------------------------- 
% IDENTIFY AND SET THE SCALE PER DIVISION BEING USED 

 
Figure 40: MATLAB Command Window 
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 % After playing around with all the possible voltage division 
  % combinations, the HEX value for all the possible scales was 
 % identified. The HEX value is stored in c(6) for CH1 and c(12) for CH2. 
 % These two variables: ampopt and ampscale are used to set up the correct 
 % scale in the loops where the array's n1 (CH1) and n2 (CH2) are created. 
ampopt = [00 01 02 03 04 05 06 07 08]; 
ampscale = [1/4000 1/2000 1/1000 1/400 1/200 1/100 1/50 1/20 1/10]; 
 
 % 00     5mV/Div scalar = 1/4000; 
 % 01     10mV/Div scalar = 1/2000; 
 % 02     20mV/Div scalar = 1/1000; 
 % 03     50mV/Div scalar = 1/400; 
 % 04     100mV/Div scalar = 1/200; 
 % 05     200mV/Div scalar = 1/100; 
 % 06     500mV/Div scalar = 1/50; 
 % 07     1V/Div scalar = 1/20; 
 % 08     2V/Div scalar = 1/10; 
     
%------------------------------------------------------------------------- 
% SET UP ARRAY n WITH CORRECT DATA POINTS FROM THE HEX FILE 
 % First checks if the mode being used includes channel 1 or channel 2 or 
 % both and then checks the timing scale being used for both channels 
 % accordingly to fit the array n with the correct data points. See notes 
 % for time scale to undrestand how number of samples is different for 
 % certain sampling rates. 
     
%-------------- EXCLUSIVELY FOR CH1 
if (c(4) ~= 01);  % Check if Channel 1 is used 
    i = 46; 
    x = 1; 
    if (03 < c(18)) & (c(18) < 20); % Check what timing scale is used 
        while ((i) <= 3884);  % If timing scale is between values 
            n1(x) = c(i);   % in the scale check then all the 
            n1 = double(n1);   % data points are in this segment of 
            if (n1(x) <= 80);   % the file (CH1) 
                n1(x) = abs(n1(x)-128); 
            else 
                n1(x) = -1*(n1(x)-128); 
            end 
            i = i+2; 
            x = x+1; 
        end 
    else 
        while ((i) <= 524);   % If the timing scale is out of the 
            n1(x) = c(i);   % bounds set above then this is 
            n1 = double(n1);   % the segment where CH1 is stored 
            if (n1(x) <= 80); 
                n1(x) = abs(n1(x)-128); 
            else 
                n1(x) = -1*(n1(x)-128); 
            end 



 55 

            i = i+2; 
            x = x+1; 
        end 
    end 
     
% This while loop identifies the scale used for the channel and applies 
% it to the respective array 
     
    i = 1; 
    while i <= 9; 
        if (c(6) == ampopt(i)); 
            n1 = n1 .* ampscale(i); 
            i = 9; 
        end 
        i = i+1; 
    end 
else 
    n1 = 0 
end 
 
%-------------- EXCLUSIVELY FOR CH2 
if (c(4) ~= 00);  % Check if Channel 2 is used 
    i = 3888; 
    x = 1; 
    if (03 < c(18)) & (c(18) < 20);  % Check what timing scale is used 
        while ((i) <= 7726);   % If timing scale is between values 
            n2(x) = c(i);    % in the scale check then all the 
            n2 = double(n2);    % data points are in this segment of 
            if (n2(x) <= 80);    % the file (CH2) 
                n2(x) = abs(n2(x)-128); 
            else 
                n2(x) = -1*(n2(x)-128); 
            end 
            i = i+2; 
            x = x+1; 
        end 
    else 
        while ((i) <= 4366);  % If the timing scale is out of the 
            n2(x) = c(i);   % bounds set above then this is 
            n2 = double(n2);   % the segment where CH2 is stored 
            if (n2(x) <= 80); 
                n2(x) = abs(n2(x)-128); 
            else 
                n2(x) = -1*(n2(x)-128); 
            end 
            i = i+2; 
            x = x+1; 
        end 
    end 
     
% This while loop identifies the scale used for the channel and applies 
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% it to the respective array 
    i = 1; 
    while i <= 9; 
        if (c(12) == ampopt(i)); 
            n2 = n2 .* ampscale(i); 
            i = 9; 
        end 
        i = i+1; 
    end 
else 
    n2 = 0; 
end 
 
%------------------------------------------------------------------------- 
% IDENTIFY AND SET THE TIMING SCALE 
 % An explanation for the numbers in timescale below: 
 % DG-Scope uses 1920 samples to hold data sampled at a specific rate, I 
 % figured out that, for the most part, it uses 96 time divisions to 
 % display the entire signal of 1920 samples. The total amount of time 
 % that the scope gathers data is defined as: (Number of 
 % Divisions)*(SweepTime/Division)=Total Time. I used the logic that 
 % after 1920 samples there would be 96 divisions, 96 divisions 
 % multiplied by the SweepTime/Division yields the total SweepTime. As 
 % you can see from the table below, this method is used to determine the 
 % respective timing scale from the waveform. Since the file is in HEX it 
 % took some time to determine where this timing scale is saved. That is 
 % where timeopt comes in, timeopt holds the values for all the possible 
 % timing scales DG-Scope uses. I use a while loop below to first 
 % identify what is the timing scale and then link it with the actual  
 % value of the timing scale. 
     
% IMPORTANT NOTE 
 % The time divisions below that have an asterisk were noted not to 
 % follow this characteristic. These only use the first 240 samples to 
 % display useful data. 
     
timeopt = [00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23]; 
timescale = [ 
    12/240*50*10^(-9)  %00  *   50ns/Div timediv = 50*10^(-9); 
    12/240*0.1*10^(-6)  %01  *   0.1us/Div timediv = 0.1*10^(-6); 
    12/240*0.2*10^(-6)  %02  *   0.2us/Div timediv = 0.2*10^(-6); 
    12/240*0.5*10^(-6)  %03  *   0.5us/Div timediv = 0.5*10^(-6); 
    96/1920*1*10^(-6)  %04     1us/Div timediv = 1*10^(-6); 
    96/1920*2*10^(-6)  %05     2us/Div timediv = 2*10^(-6); 
    96/1920*5*10^(-6)  %06     5us/Div timediv = 5*10^(-6); 
    96/1920*10*10^(-6)  %07     10us/Div timediv = 10*10^(-6); 
    96/1920*20*10^(-6)  %08     20us/Div timediv = 20*10^(-6); 
    96/1920*50*10^(-6)  %09     50us/Div timediv = 50*10^(-6); 
    96/1920*0.1*10^(-3)  %10     0.1ms/Div timediv = 0.1*10^(-3); 
    96/1920*0.2*10^(-3)  %11     0.2ms/Div timediv = 0.2*10^(-3); 
    96/1920*0.5*10^(-3)  %12     0.5ms/Div timediv = 0.5*10^(-3); 
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    96/1920*1*10^(-3)  %13     1ms/Div timediv = 1*10^(-3); 
    96/1920*2*10^(-3)  %14     2ms/Div timediv = 2*10^(-3); 
    96/1920*5*10^(-3)  %15     5ms/Div timediv = 5*10^(-3); 
    96/1920*10*10^(-3)  %16     10ms/Div timediv = 10*10^(-3); 
    96/1920*20*10^(-3)  %17     20ms/Div timediv = 20*10^(-3); 
    96/1920*50*10^(-3)  %18     50ms/Div timediv = 50*10^(-3); 
    96/1920*0.1   %19     0.1s/Div timediv = 0.1; 
    12/240*0.2   %20  *   0.2s/Div timediv = 0.2; 
    12/240*0.5   %21  *   0.5s/Div timediv = 0.5; 
    12/240*1   %22  *   1s/Div timediv = 1; 
    12/240*2   %23  *   2s/Div timediv = 2; 
    ]; 
 
i = 1; 
while i <= 24; 
    if (c(18) == timeopt(i)); 
        timescalar = timescale(i); 
        i = 24; 
    end 
    i = i+1; 
end 
 
format short; 
 
fs = 1/timescalar; 
     
%------------------------------------------------------------------------- 
% FOR DISPLAYING THE SIGNAL AND FREQUENCY SPECTRUM FOR 
% DIFFERENT MODES 
     
%---------------- MODE: CH1 
if (c(4) == 00) 
 
    x = (1:length(n1)) .* timescalar; 
    samples = length(n1); 
    t1 = 0*samples * (1/fs); 
    t2 = samples * (1/fs); 
 
    % Sets the amplitude scale to about +-3/2 of the actual max amplitude for 
    % CH1 
    if (max(n1) >= abs(min(n1))); 
        amp = max(n1) * 3/2; 
    else 
        amp = abs(min(n1)) * 3/2; 
    end 
     
    % ORIGINAL SIGNAL PLOT 
    figure() 
    plot(x, n1) 
    grid on 
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    title(['Aquired signal in CH1 from file: ', file]); 
    xlabel('Seconds') 
    ylabel('Volts') 
    axis([t1 t2 -amp amp]) 
     
    % FREQUENCY SPECTRUM PLOT 
    fF1 = abs(fft(n1)); 
    df1 = fs/length(fF1); 
    f1 = 0 : df1 :(length(fF1)-1) * df1; 
     
    figure() 
    plot(f1, fF1) 
    grid on 
     
    famp = max(fF1) * 3/2; 
    axis([0 max(f1)/2 -(famp)/10 famp]) 
    title(['Magnitude Spectra of Signal in CH1 from file: ', file]); 
    ylabel('|F|'); 
    xlabel('Frequency f (Hz)'); 
     
%---------------- MODE: CH2 
elseif (c(4) == 01) 
     
    x = (1:length(n2)) .* timescalar; 
    samples = length(n2); 
    t1 = 0*samples * (1/fs); 
    t2 = samples * (1/fs); 
 
    % Sets the amplitude scale to about +-3/2 of the actual max amplitude for 
    % CH2 
    if (max(n2) >= abs(min(n2))) 
        amp = max(n2) * 3/2; 
    else 
        amp = abs(min(n2)) * 3/2; 
    end 
     
    % ORIGINAL SIGNAL PLOT 
    figure() 
    plot(x, n2) 
    grid on 
     
    title(['Aquired signal in CH2 from file: ', file]); 
    xlabel('Seconds') 
    ylabel('Volts') 
    axis([t1 t2 -amp amp]) 
     
    % FREQUENCY SPECTRUM PLOT 
    fF2 = abs(fft(n2)); 
    df2 = fs/length(fF2); 
    f2 = 0 : df2 : (length(fF2)-1) * df2; 
     



 59 

    figure() 
    plot(f2, fF2) 
    grid on 
     
    famp = max(fF2) * 3/2; 
    axis([0 max(f2)/2 -(famp)/10 famp]) 
    title(['Magnitude Spectra of Signal in CH2 from file: ', file]); 
    ylabel('|F|'); 
    xlabel('Frequency f (Hz)'); 
 
%---------------- MODE: DUAL 
elseif (c(4) == 02) 
     
    x = (1:length(n1)) .* timescalar; 
     
    % PLOT 
    figure() 
    plot(x, n1, x, n2) 
    grid on 
     
    title(['Aquired signal in DUAL Mode from file: ', file]); 
    xlabel('Seconds') 
    ylabel('Volts') 
     
%---------------- MODE: ADD 
elseif (c(4) == 03) 
     
    addmode = n1 + n2; 
    x = (1:length(addmode)) .* timescalar; 
    samples = length(addmode); 
    t1 = 0*samples * (1/fs); 
    t2 = samples * (1/fs); 
 
    % Sets the amplitude scale to about +-3/2 of the actual max amplitude for 
    % CH1 + CH2 
    if (max(addmode) >= abs(min(addmode))) 
        amp = max(addmode) * 3/2; 
    else 
        amp = abs(min(addmode)) * 3/2 
    end 
     
    % PLOT 
    figure() 
    plot(x, addmode) 
    grid on 
     
    title(['Aquired signal in ADD Mode from file: ', file]); 
    xlabel('Seconds') 
    ylabel('Volts') 
    axis([t1 t2 -amp amp]) 
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%---------------- MODE: SUB 
elseif (c(4) == 04) 
    
    submode = n1 - n2; 
    x = (1:length(submode)) .* timescalar; 
    samples = length(submode); 
    t1 = 0*samples * (1/fs); 
    t2 = samples * (1/fs); 
 
    % Sets the amplitude scale to about +-3/2 of the actual max amplitude for 
    % the CH1 - CH2 
    if (max(submode) >= abs(min(submode))) 
        amp = max(submode) * 3/2; 
    else 
        amp = abs(min(submode)) * 3/2 
    end 
     
    % PLOT 
    figure() 
    plot(x, submode) 
    grid on 
     
    title(['Aquired signal in SUB Mode from file: ', file]); 
    xlabel('Seconds') 
    ylabel('Volts') 
    axis([t1 t2 -amp amp]) 
 
%---------------- MODE: X-Y 
else 
    % Sets the time scale to about +-3/2 of the actual max amplitude for 
    % CH1 (X) 
    if (max(n1) >= abs(min(n1))); 
        amp1 = max(n1) * 3/2; 
    else 
        amp1 = abs(min(n1)) * 3/2; 
    end 
    % Sets the amplitude scale to about +-3/2 of the actual max amplitude for 
    % CH2 (Y) 
    if (max(n2)>= abs(min(n2))) 
        amp2 = max(n2) * 3/2; 
    else 
        amp2 = abs(min(n2)) * 3/2; 
    end 
     
    % PLOT 
    figure() 
    plot(n1, n2, '.') 
    grid on 
     
    title(['Aquired signal in X-Y Mode from file: ', file]); 
    xlabel('CH1 (Volts)') 
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    ylabel('CH2 (Volts)') 
    axis([-amp1 amp1 -amp2 amp2]) 
end 
return 
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APPENDIX B: C++ Embedded Program Source Code 
 The source code provided in the Program Source Code section of this appendix 
comprises the entire operation of the device from a software standpoint. A software flow chart is 
included in Figure 41 to provide a functional top level view of our program. Some other 
functions defined in other header files are not included in this document. Please explore the files 
included in the [Paradigm C++ Light – Tern Edition IDE] CITYLAB project file. In addition to 
these files please see the TERN FlashCore-FB technical manual26 for the description of the 
functions controlling the FlashCore-B provided by TERN. This code was specifically written for 
use when the device is connected to the W-terminal of a diesel engine. 

                                                 
26 FlashCore-B(FB)TM Technical Manual. Tern Inc. http://www.tern.com 
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1. Program Source Code 
/********************************************************************* 
 For C++ object files (.cpp), TERN header files must be 
   declared as "C" objects. 
 
   extern "C" { 

 
Figure 41: Diesel RPM Software Flow Chart 
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 #include " .h" 
 #include " .h" 
 #include " .h" 
   } 
   3-10-03 
   - Also, if you're using C++ classes (even if you don't instantiate 
   objects dynamically), you will need to define a non-zero heap. 
   Take a look at the 'readme.txt' to see how to define a heap using 
   heapsize.c 
*********************************************************************/ 
extern "C" { 
 #include "ae.h"   // AE88 initialization */ 
 #include "ser1.h" 
 #include "fileio.h" 
 #include "string.h" 
 #include "stdio.h" 
 #include "adc.h" 
 #include "math.h" 
} 
#include <dos.h> 
#include <string> 
#include <stdlib.h> 
#include "gpsstringreader.h" 
 
#define BUFFSIZE 1024 
 
#ifndef NULL 
#define NULL 0 
#endif 
 
unsigned char inBuff[BUFFSIZE]; 
unsigned char outBuff[BUFFSIZE]; 
extern COM ser1_com; 
COM* com1 = &ser1_com; 
 
unsigned int adat[8]; 
unsigned int fb_ad16(unsigned char k); 
 
// Control bytes for single ended, internal clock mode of ADS8344 
// S A2 A1 A0 - SGL/DIF PD1 PD0, 1xxx 0110 
unsigned char c_byte[] = {0x86,0xc6,0x96,0xd6,0xa6,0xe6,0xb6,0xf6}; 
enum {TEMP, VOLT, POT, DIESEL, GAS}; 
//ad0 temp 
//ad1 volts 
//ad2 pot holes 
//ad3 diesel 
//ad4 gas 
 
/***************************************************** 
* Function: double ConvertVolts(unsigned int Hexval) 
*  Output: type double representing value in Volts 
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* 
*  where: int adcVal is value read from ADC (Decimal) 
****************************************************/ 
double ConvertVolts(unsigned int adcVal)          // Change value read in from 
{ 
 double retVal=adcVal; 
 retVal /= 0xFFFF; 
 retVal *= 5; 
 return retVal; 
} 
/***************************************************** 
* Function: int FindNumSats(const char* gpsStr) 
*  Output: type int the number of satellites according to 
*     GPS string 
* 
*  where: gpsStr is the GPS string type '$GPGGA' 
****************************************************/ 
int FindNumSats(const char* gpsStr) 
{ 
 const char* curTok = gpsStr+41; 
 int retVal = ((curTok[0]-0x30)*10)+(curTok[1]-0x30); 
 return retVal; 
} 
/***************************************************** 
* Function: int FindVelocity(const char* gpsStr) 
*  Output: type int the velocity in knots (without decimal point) as parsed 
*   from the GPS string 
* 
*  where: gpsStr is the GPS string type '$GPVTG' 
****************************************************/ 
int FindVelocity(const char* gpsStr) 
{ 
 const char* curTok = gpsStr+19; 
 int retVal = ((curTok[0]-0x30)*1000)+((curTok[1]-0x30)*100)+((curTok[2]-  
  0x30)*10)+((curTok[4]-0x30)); 
 return retVal; 
} 
 
/***************************************************** 
* Function: void UpdateLcd(char* topLine, bool tStat, bool vStat, int numSats) 
*  INPUT: char* topLine - String holding the characters to be disp. On the  
*     Top Line 
*   bool tStat - Temperature Status 
*   bool vStat - Voltage Status 
*   int numSats - Number of Satellites 
* 
*  The topLine is outputted to the LCD display serially. The bottomline 
*  is then outputted after tStat, vStat, and numSats are put together. 
****************************************************/ 
void UpdateLcd(char* topLine, bool tStat, bool vStat, int numSats) 
{ 
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 char bottomLine[17]; 
 char* tempStr; 
 char* voltStr; 
 
 if(tStat)    // If temp status is true, temp is 'Y', else 'N' 
     tempStr = "Y"; 
 else 
  tempStr = "N"; 
 if(vStat)   // If voltage status is true, voltage is 'Y', else 'N' 
     voltStr = "Y"; 
 else 
     voltStr = "N"; 
 sprintf(bottomLine, "T=%s V=%s SATS=%i", tempStr, voltStr, numSats); 
 
 putser1('\f', com1);  // Clear LCD 
 putsers1(topLine, com1); // Place topLine on first line 
 putser1('\n', com1);  // New Line 
 putser1('\r', com1);  // Carriage Return 
 putsers1(bottomLine, com1); // Output bottomLine 
} 
 
#define MAX_TEMP 0xCCCC 
#define MIN_TEMP 0x3333 
 
#define MAX_VOLT 0x80F0 
#define MIN_VOLT 0x5300 
 
#define MIN_SATS 0 
#define MIN_VEL -1 
 
#define MIN_HZ 0 
 
void interrupt far int2_isr(void); 
void interrupt far int4_isr(void); 
void interrupt far t2_isr(void); 
 
unsigned int ta,tb,tm,t0_cnt,t1_cnt,t2_cnt; 
 
void main(void){ 
 ae_init();       // A-Engine initialization 
 
 for(int i=0;i<=5;i++)  // Delay for about 5sec to wait for GPS 
  delay_ms(999); 
 
 /******ADC INITIALIZATION*******************/ 
 pio_init(9, 1); // A19=P9 as input for ADC data output DOUT 
 pio_init(2, 0); // P2 as PCS6 
 for(int i=0; i<8; i++) 
  outportb(0x600+i, 0xff); // All control pins high 
 /*******************************************/ 
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 pio_init(26, 3);   // Button Init as an input 
 
 // Intialize the serial port 
 unsigned char baud = 7;  // baud rate for the serial port 
 s1_init(baud, inBuff, BUFFSIZE,  outBuff, BUFFSIZE, com1); 
 
 // Initialize flash 
 fs_descrip* file = NULL; 
 
 if(fs_initPCFlash()!=0) 
 { 
  putser1('\f', com1); 
  putsers1("Restart with", com1); 
  putser1('\n', com1); 
  putser1('\r', com1); 
  putsers1("Compact Flash", com1); 
  while(1) 
   delay_ms(999); 
 } 
 
 char* topLine = NULL;  // topline of the display 
 
 bool tStat = false;  // temp status 
 bool vStat = false;  // volt status 
 
 bool needUpdate = true;  // need to update the lcd? 
 
 bool running = true;  // All ENV ok or Button pressed? 
 bool butDown = false;  // Button pressed? 
 bool record = false;  // Has one second elapsed for next recording? 
 
 GPSStringReader sr(com1); // Object to read GPS strings 
 char* gpsStr = NULL;  // The string being read in from GPS 
 char curGPS[60] = "";  // The last gps string we care about 
 int numSats = -1;  // The current number of satellites in view 
 
 led(0); 
 char strType[6] = {0,};  // Array that holds GPS String type ex. '$GPGGA' 
 char strnewTime[7] = ""; // String holding new time 
 char strTime[7] = "";  // String holding current time 
 int Vel = 0;   // Velocity in knots 
 
 double t1, t1new, t0, t0new, duty, T, Hz, RPM=0; 
 int iRPM,iHz,telapse=0; 
 
 // Pulley factor is alternator pulley diameter divided by crank pulley diameter 
 double pulleyRatio = 0.333333; 
 // Obtain from manufacturers data sheet (6, 8, 10, etc.) 
 double alternatorPoles = 8; 
 
 /******************************************/ 
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 t0_cnt=0; 
 t1_cnt=0; 
 
 int2_init(1,int2_isr); 
 int4_init(1,int4_isr); 
 
 ta=(unsigned int)0xffff; // MAXCOUNT 
 tb=(unsigned int)0xffff; // 
 
 tm = 0xc009;  // start timer0, int. enabled, external counts 
 t0_init(tm,ta,tb,int4_isr); 
 
 tm = 0xc009;  // start timer1, int. enabled, external counts 
 t1_init(tm,ta,tb,int2_isr); 
 
 // 40 MHz, 25x4=100 ns per timer clk 
 ta=(unsigned int)10; // pre-scale for timer0 & timer1 .1us*10 = 1us 
 tm = 0xc001;  // start 1/4 clk countdown, int. disabled 
 t2_init(tm,ta,t2_isr); 
 
 outport(0xfff0, inport(0xfff0)|0x1000); //Enable PWD 
 pio_init(31,0);    //Init INT2 
 /******************************************/ 
 
 while(true){  //main loop 
 
 /******GPS STRING HANDLING***********************/ 
 if(gpsStr = sr.GetString()) 
 { 
  for(int i=0;i<5;i++) 
   strType[i] = gpsStr[i+1]; // Parses for string type 
 
  if(!strcmp(strType, "GPGGA"))  // GPS string is 'GPGGA' 
  { 
   for(int c=0;c<6;c++)  // For extracting Time 
   strnewTime[c]= gpsStr[c+7]; 
 
   int newNumSats = FindNumSats(gpsStr); 
   if(newNumSats!=numSats) // Need to change display 
   { 
    numSats = newNumSats; 
    needUpdate = true; 
   } 
   if(strcmp(strnewTime, strTime)!=0) // Need to record if sec elapsed 
   { 
    strcpy(strTime, strnewTime); 
    record = true; 
   } 
  } 
 
  if(!strcmp(strType, "GPRMC"))   // GPS string is 'GPRMC' 
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   strncpy (curGPS, gpsStr, 59); 
 
  if(!strcmp(strType, "GPVTG")&&(numSats>=MIN_SATS)) 
  // GPS string is 'GPVTG' 
  { 
   int newVel = FindVelocity(gpsStr); 
   if(newVel!=Vel) // need to change display 
   { 
    Vel = newVel; 
    // needUpdate = true; 
   } 
  } 
 
 } 
 /************************************************/ 
 
 //Update values from ADC 
 for(int i=0; i<5; i++) 
  adat[i] = fb_ad16(c_byte[i]); 
 
 
 /*******TEMPERATURE MONITORING*******************/ 
 if(tStat) 
 { 
  if((adat[TEMP]<MIN_TEMP)||(adat[TEMP]>MAX_TEMP)) 
  { 
   tStat = false; 
   needUpdate = true; 
  } 
 } 
 else 
 { 
  if((adat[TEMP]>MIN_TEMP)&&(adat[TEMP]<MAX_TEMP)) 
  { 
   tStat = true; 
   needUpdate = true; 
  } 
 } 
 /************************************************/ 
 
 /********VOLTAGE MONITORING**********************/ 
 if(vStat) 
 { 
  if((adat[VOLT]<MIN_VOLT)||(adat[VOLT]>MAX_VOLT)) 
  { 
   vStat = false; 
   needUpdate = true; 
  } 
 } 
 else 
 { 
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  if((adat[VOLT]>MIN_VOLT)&&(adat[VOLT]<MAX_VOLT)) 
  { 
   vStat = true; 
   needUpdate = true; 
  } 
 } 
 
/*****BUTTON MONITORING**************************/ 
 if(pio_rd(1)&0x400) 
 { 
  if(!butDown) 
  { 
   running = !running; 
   needUpdate = true; 
   butDown = true; 
  } 
 } 
 else 
  butDown = false; 
 
/*****FILE OPEN/CLOSE****************************/ 
 if(file) 
 { 
  if(!vStat||!tStat||!running) 
  { 
   fs_fclose(file); 
   file = NULL; 
  } 
 } 
 else 
 { 
  if(vStat&&tStat&&running) 
  { 
   file = fs_fopen("rpm.txt", O_WRITE|O_APPEND); 
   if(file&&(file->ff_status!=fOK)) //Make sure it opened ok 
   { 
    fs_fclose(file); 
    file = NULL; 
   } 
  } 
 } 
 
 /******Recording Every Second**************************/ 
 if(record&&running) 
 { 
  /********Calculate the Signal Frequency********/ 
  disable(); 
  t1new = t1_cnt; 
  t0new = t0_cnt; 
  enable(); 
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  if((t0new!=0) && (t1new!=0)) 
  { 
   if(t0new==t0 && t1new==t1) 
    telapse++; 
   else 
    telapse=0; 
   if(telapse<11) 
   { 
    //duty = t0/t1; 
    t0=t0new; 
    t1=t1new; 
    T = t0+t1; 
    Hz = 1/(T*0.000001); 
   } 
   else 
   { 
    telapse=11; 
    Hz=0; 
   } 
  } 
  else 
   Hz=0; 
 
  iHz = Hz; 
 
  /********Convert Frequency to RPM********/ 
 
  RPM = Hz; 
  RPM *= 60; 
  RPM /= alternatorPoles; 
  RPM *= pulleyRatio; 
  iRPM = RPM; 
  needUpdate = true; 
  record = false; 
 
  /********RECORD********/ 
 
  if((numSats>=MIN_SATS)&&(iHz>MIN_HZ)&&file) 
  { 
   char strSats[] = {((numSats/10)+0x30),((numSats%10)+0x30), '\0'}; 
   char strHz[] = {((iHz/1000)%10)+0x30, 
     ((iHz/100)%10)+0x30, 
     ((iHz/10)%10)+0x30, 
     (iHz%10)+0x30,  
     '\0'}; 
   char strRPM[] = {((iRPM/1000)%10)+0x30, 
      ((iRPM/100)%10)+0x30, 
      ((iRPM/10)%10)+0x30, 
      (iRPM%10)+0x30, 
      '\0'}; 
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   fs_fprintf(file, "%s Hz=%s RPM=%s #SATS=%s\r\n", curGPS, strHz,  
    strRPM, strSats); 
   //fs_fflush(file); 
  } 
 } 
/************************************************/ 
 
 // Update the display if it needs to 
 if(needUpdate) 
 { 
  if(!vStat||!tStat) 
   sprintf(topLine, "Env Unsafe!"); 
  else if(!running) 
   sprintf(topLine, "Paused"); 
  else 
  { 
   if(iRPM==0) 
    sprintf(topLine, "No Signal"); 
   else 
    sprintf(topLine, "RPM=%i", iRPM); 
  } 
 
  UpdateLcd(topLine, tStat, vStat, numSats); 
  needUpdate = false; 
 } 
} 
} 
 
// Function:  int4_isr 
// INTP4 interrupt handler.  Increment int4_cnt 
void interrupt far int4_isr(void) 
{ 
 t0_cnt = inport(0xff50);  // Read timer 0 
 outport(0xff50,0);  // Reset timer 
 /* Issue the Non-Specific EOI for the interrupt */ 
 outport(0xff22,0x8000); 
} 
 
// Function:  int2_isr 
// INTP2 interrupt handler.  Increment int2_cnt 
void interrupt far int2_isr(void) 
{ 
 t1_cnt = inport(0xff58);  // Read timer 1 
 outport(0xff58,0);  // Reset timer 
 /* Issue the Non-Specific EOI for the interrupt */ 
 outport(0xff22,0x8000); 
} 
 
// Function:  t2_isr 
// t2 interrupt handler.  Increment t2_cnt 
void interrupt far t2_isr (void) 
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{ 
 t2_cnt++; 
 /* Issue EOI for the interrupt */ 
 outport(0xff22,0x8000); 
} 
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APPENDIX C: MapInfo/MapBasic Software 

1. MapBasic Code Description 
This supplement is for use of the MapBasic code written to document turbulence for City 

Lab MQP. The code has been designed to implement a GIS map of Worcester with orthophotos 
(taken from: http://maps.massgis.state.ma.us/massgis_viewer/index) and map GPS coordinates 
from a text file as an additional layer. The following is a guide explaining the code. 

First, functions are declared at the beginning of the file. The three functions of this 
program are “main”, “inputturbulence”, and “map.” Every function begins with “sub ‘function 
name’” and ends with “end sub.” Once the functions are declared, the main function is executed. 
The first step of the main function is to create a unique menu. The menu’s name is “Add 
Turbulence” which has two options: “Draw map” which calls the “map” function and “Read 
Turbulence” which calls the “inputturbulence” function. Creating this menu for MapInfo is done 
by using the “create menu” statement. The next step in the main function is to add the newly 
created menu to MapInfo’s menu bar. This is executed by the “alter menu bar” statement. Once 
this statement is executed the program will terminate. 

When called to in the main function, the “inputturbulence” function will prompt the user 
the for the rpm text file (which can be located on the flash card). Once the text file is inputted, 
MapInfo will then create a table of GPS coordinates including the rpm value, frequency value, 
number of satellites, and Coordinated Universal Time (UTC date and time). The first step in this 
function is to create the variables that are going to be needed in this function. The variables in this 
function are tablename, yNorS, xEorW, readline, temp1, temp2, temp3, temp4, temp5, temp6, P, 
x, y, v, f, s, day, month, year, date, hour, min, sec, and time. Declaring these variables is done by 
using the “dim” statement. Once the variables are declared the program prompts the user to open 
the text file which contains the pothole information. This is done by the “open file FileOpenDlg” 
statement. Next, the table that contains the turbulence information is created which is executed by 
“create table.” Once created, a while loop begins to read all the needed information off of the text 
file. Each piece of needed information is located on the same spot of each line of text which 
makes the “mid$” statement very valuable in this process. Each line of text is stored into the 
“readline” variable and the “mid$” statement can take information from a given location on the 
stored line of text. Once this text is located MapBasic uses a statement called “val” which takes 
the string and converts it into a numeric value. The first numeric value is stored in temp1 and the 
following in temp2. Temp2 is then divided by 60 and then stored into temp3. This process is done 
because the GPS information needs to be converted from decimal minutes to decimal degrees. 
Once the correct GPS value is calculated the program checks if it is in the northern or southern 
hemisphere. This is done by using an “if…then” statement. After the latitude is finished being 
calculated the longitude goes under the same process. Next, the rpm and frequency values are 
read in along with the number of satellites and this information is stored into variables “r”, “f”, 
and “s” respectively. After the location, voltage, and satellites are stored, MapBasic reads in the 
date and time of each point. This text is then formatted for easy use. The next step sets the style of 
points. As of right now each point is the same but once a correlation is established between RPMs 
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and turbulence, points can be created to distinguish differences. This step still requires a lot of 
testing. Once the value has been calculated, MapBasic creates a point using the “create point into 
variable” statement. Each point is put into the table and is ready to be plotted onto a map. When 
the text file is ended, the program will close the text file and return to the main function. 

After the table of rpm points has been created, the user is able to use the “map” function 
(This function is mainly for visual purposes and if the user has another map than Worcester this 
step can be removed or the code can be changed to add the needed map). When executed, the user 
is prompted to open the Worcester workspace. This previously created workspace contains the 
orthophotos and layers needed to create the map. Once the workspace has been opened, the 
program prompts the user to open the newly created pothole table. The next step in the code maps 
all the files together using the “map from” statement. Next, all the zoom layering constrictions are 
removed from each layer using the “Set Map Layer” statement. Next, the function centers the 
map on Atwater Kent at -71.809746°, 42.27447°. Finally, a “browser” window is opened 
containing all the RPM information so the user can see the created table. The map will appear 
with every layer and the RPMs marked on the map. 

2. MapInfo Software 
 This part of the supplement describes how to use the created executable MapBasic file. 
First, double click on the “mqp.mbx” file to open it. On the menu bar there will be an “Add 
Turbulence” menu as seen in Figure 42. 
 

 
 Click on this menu to open it and two options will be given, “Read Turbulence” and 
“Create Map”. Click on the “Read Turbulence” option first which can be seen in Figure 43. 
 

 
 This will open a dialog box asking to open the RPM.txt file which can be seen in Figure 
44. Move to the directory where the RPM file is located and open it. 

 
Figure 42: Add Turbulence Menu 

 
Figure 43: Read Turbulence 
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Next, follow Figure 45 and click on the Create Map option in the menu.  
 

 
 This will open a dialog box that asks the user the open the Worcester workspace. This 
can be seen in Figure 46. 
 

 

 
Figure 44: RPM Dialog Box 

 
Figure 45: Create Map 

 
Figure 46: Worcester Workspace 
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 After the workspace has been open, another dialog box appears and prompts the user to 
open the potholes table that was created when “Add Turbulence” was executed. This dialog box 
is shown in Figure 47. After being opened a map with the points will be displayed. This is the 
file product of this program. A sample map can be seen in Figure 48 and a sample browser 
window can be seen in Figure 49. When exiting MapInfo you will be asked to save the file, the 
option is up to the user to save the results. 
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Figure 47: Turbulence Table 

 
Figure 48: Sample Map 

 
Figure 49: Browser Window 
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3. Map Basic Code 
 
' City Lab MQP 
' Adding Turbulence points  
 
' Declare functions  
declare sub main 
declare sub inputturbulence 
declare sub map 
 
sub main 
 
' Create a menu for MapInfo to execute program 
create menu "Add Turbulence" as "Read Turbulence" calling inputturbulence, "Create map" 
calling map 
 
' Add the menu to MapInfo Menu Bar 
alter menu bar add "Add Turbulence" 
 
end sub 
 
' plot the worcester table and turbulence table 
sub map 
 
' Prompt user to open worcester workspace 
Run Application FileOpenDlg("C:\","Worcester","WOR" ,"Please Open Worcester Workspace") 
 
' Prompt user to open the newly created turbulence table 
open table FileOpenDlg("C:\","Turbulence","TAB" ,"Please Open Turbulence Table")Interactive 
 
' map all files together  
map from turbulence,streets, grid1, grid2, grid3, grid4,grid5,grid6, grid7, 
grid8, grid9, grid10, grid11, grid12, grid13  
 
' remove zoom layering constriction to all grids 
 
Set Map Layer 3  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 4  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 5  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 6  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 7  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 8  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 9  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 10  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 11  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 12  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 13  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 14  Zoom (0, 20) Units "mi"  Off 
Set Map Layer 15  Zoom (0, 20) Units "mi"  Off 
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' Center map to Atwater Kent 
Set Map  Center (-71.809746, 42.27447) 
 
Browse * from turbulence 
end sub 
 
' input the rpm text file and convert to latitude and longitutde, making a table 
sub inputturbulence 
 
' declaring all variables 
dim tablename, yNorS, xEorW, readline  as string 
dim temp1, temp2, temp3 as float 
dim temp4, temp5, temp6 as float 
dim P as object 
dim x, y, r, f as float 
dim s as integer 
dim day,month,year,date as string 
dim hour, min, sec, time as string 
 
 
' Prompt user to open Turbulence output (From GPS) 
open file FileOpenDlg("C:\","RPM","TXT" ,"Please Open RPM TXT") for input as 1 
 
' give the table's name "turbulence" 
tablename = "turbulence" 
 
' declare the columns latitude and longitude 
create table tablename (Latitude float, Longitude float, RPMs float,  
Frequency float,Sats integer, UTC_Date char(8), UTC_Time char(8)) 
 
' create a map for turbulence 
create map for tablename 
 
' read the file until nothing is left 
while not eof(1) 
 
' read entire line 
line input #1, readline 
 
' change GPS string to decimal degrees from decimal minutes 
' negate if value is S 
temp1 = val (mid$ (readline,17,2)) 
temp2 = val (mid$ (readline,19,7)) 
temp3 = temp2/60 
y = temp1 + temp3 
yNorS = mid$(readline,27,1) 
' if South make latitude negative 
if (yNorS = "S") then  
 y=-y 
end if 
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' change GPS string to demical degrees from decimal minutes 
' negate if value is W 
temp1 = val (mid$(readline,30,2)) 
temp2 = val (mid$(readline,32,7)) 
temp3 = temp2/60 
x = temp1 + temp3 
xEorW = mid$(readline, 40,1) 
if (xEorW = "W") then  
 x=-x 
end if 
 
'Read in RPMs, sats, and frequency 
r = val (mid$(readline,65,4)) 
s = val (mid$(readline,84,2)) 
f = val (mid$(readline,73,4)) 
 
'Create Date and Time 
hour = val (mid$(readline,8,2)) 
min = val (mid$(readline,10,2)) 
sec = val (mid$(readline,12,2)) 
 
time = hour + ":" + min + ":" + sec 
 
day = val (mid$(readline,54,2)) 
month = val (mid$(readline,56,2)) 
year = val (mid$(readline,58,2)) 
date = month + "/" + day + "/" + year 
 
 
' set symbol for potholes 
Include "mapbasic.def" 
 
Set style Symbol MakeSymbol (33,GREEN, 15) 
 
 
'make a point 
create point into variable P  
(x, y) 
insert into tablename (Longitude, Latitude, Obj, RPMs, Frequency, Sats,UTC_Date,UTC_Time)  
values (x, y, P, r,f,s, date, time) 
 
wend 
 
' close rpm.txt file 
close file 1 
 
end sub 
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APPENDIX D: Value Analysis 
 We decided that it would be best if we completed a thorough value analysis between 
microcontrollers to decide which option best fit our needs. We began our analysis by doing 
research on microcontrollers, specifically looking for ones which had the capability of having a 
CompactFlash Card. After deciding on the TERN FlashCore-B and the BASIC Tiger we listed 
the requirements we felt were necessary and gave each of them a value. The following list shows 
each criteria and its value: 

• Size – 3 
• Temperature Range – 3 
• Ports – 8 
• Expandability – 5 
• Development – 6 
• Language – 4 
• I/O – 7 
• Power – 7 
• Speed – 7 
• Price – 10 

 With this list we were able to build a value matrix which helped us decide on what 
microcontroller would work best for us. We broke down the microcontroller into three different 
categories quality, specs, and overall price. Each criterion was given a value, five being the best 
and one being the worst. The following shows how each criterion is broken down: 
 
Quality 
Size: How large is the microcontroller 
 Very Small – 5 
 Small – 4 
 Medium – 3 
 Large – 2 
 Very Large – 1 
 
Temperature Range: How severe of conditions can the microcontroller withstand 
 Extremely Well – 5 
 Good – 4 
 Fair – 3 
 Bad -2 
 Terrible – 1 
 



 83 

Specifications 
Ports: Amount of Serial Ports 
 Five or more – 5 
 Four to Five – 4 
 Two to Three – 3 
 One – 2 
 Zero – 1 
 
Expandability: The ease to expand the microcontroller 
 Very Easy – 5 
 Easy – 4 
 Moderate – 3 
 Poor – 2 
 Incapable – 1 
 
Development: The software and peripherals included 
 Everything needed – 5 
 Complete Software and Microcontroller – 4 
 Partial Software and Microcontroller – 3 

Just Software – 2 
 Just Microcontroller – 1 
 
Language: The ease of programming it 
 Very Easy – 5 
 Easy – 4 
 Moderate – 3 
 Hard – 2 
 Very Hard – 1 
 
I/O: The amount of ADC/DAC and other devices 
 Ten or more ADC and Twenty Digital I/O – 5 
 Seven to Nine ADC and Fifteen to Nineteen Digital I/O – 4 
 Four to Six ADC and Ten to Fifteen Digital I/O – 3 
 Two or Three ADC and Five to Nine Digital I/O – 2 
 One ADC and One to Four Digital I/O – 1 
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Power: The amount of power it takes to run 
 Very Small – 5 
 Small – 4 
 Medium – 3 
 Large – 2 

Very Large – 1 
 
Speed: How fast it runs 
 Extremely Fast – 5 
 Fast – 4 
 Moderate – 3 
 Slow – 2 
 Very Slow – 1 
 
Price: The Cost of the Development Kit 
 Expensive – 5 
 Costly – 4 
 Reasonable – 3 
 Economical – 2 
 Inexpensive – 1 
 
 Once going through each individual criterion and giving the microcontroller their values, 
we came up with Table 4. 
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After the value analysis, the TERN is a better choice for our design. 
 
 

    Market  TERN   Tiger   

Quality   
Value 
point 

Value 
point Total  

Value 
point Total  

1 Size 3 3 9 2 6 
2 Temp. Range 3 3 9 3 9 

  Total     18   15 
    Market  TERN   Tiger   

Specs   
Value 
point 

Value 
point Total  

Value 
point Total  

1 Ports 8 4 32 3 24 
2 Expandability 5 2 10 5 25 
3 Development 6 3 18 4 24 
4 Language 4 4 16 3 12 
5 I/O 7 3 21 4 28 
6 Power 7 3 21 4 28 
7 Speed 7 4 28 3 21 

  Total     146   162 
    Market  TERN   Tiger   

Cost   
Value 
point 

Value 
point Total  

Value 
point Total  

1 Price 10 2 20 3 30 
  Total     20   30 
Customer Value: (Quality*Specs/Cost)     131.4   81 

Table 4: Microcontroller Value Analysis 
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APPENDIX E: Motherboard Schematics 
 This appendix illustrates the interconnections made on the motherboard to connect the 
TERN FlashCore-B microcontroller to a temperature sensor, a voltage meter, power, as well as 
different headers. The different headers on the motherboard connect to the FlashCore-B pins for 
expansion. Figure 50 details all the wirings on the motherboard. The PCB layout shown in 
Figure 51 displays the layout of the motherboard, and Figure 52 shows the PCB wiring 
schematic. The blue wire layer on the wiring schematic shown in Figure 52 is the top copper 
layer and the green is the bottom copper layer. Please see source Schematic and PCB files on our 
project CD for more details. 
 
**IMPORTANT NOTE**: 
 When programming the TERN FlashCore-B microcontroller, a jumper must be placed or 
removed between J2.1 and J2.3 header (On the actual FlashCore-B board). If the microcontroller 
is mounted on the motherboard, these two pins can be accessed from H2 on the motherboard. 
Placing a jumper between H2.7 and H2.8 allows setting up the microcontroller for debug mode or 
for standalone mode. Likewise if a module is placed on H1 and H2 (On the motherboard), these 
two pins (H2.7 and H2.8) still have to be accessible for the placement or removal of a jumper 
between them. Please see the TERN FlashCore-B(FB)TM Technical Manual for more information 
on the FlashCore-B Programing Overview. The red square, shown in Figure 51, shows where a 
jumper should be placed on the Motherboard PCB schematic. 
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Figure 50: Motherboard Inter Connections 
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Figure 51: Motherboard PCB Silkscreen Schematic 

JUMPER 
PLACEMENT 
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Figure 52: Motherboard PCB Wiring Schematic 
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APPENDIX F: RPM Module Schematics 
 This appendix illustrates the schematics of the RPM Module circuits designed by our 
project team. The H1 and H2 headers shown in Figure 55 connect the outputs of the signal 
conditioning circuits to the same headers (H1 and H2) on motherboard; the motherboard allows 
the RPM module to interface with the FlashCore-B. The H3 and H4 headers, also shown in 
Figure 56, provide the pins to connect the input signals to their respective signal conditioning 
circuitry. The PCB layout shown in Figure 56 displays the layout of the RPM module, and 
Figure 57 shows the PCB wiring schematic. The blue wire layer on the wiring schematic shown 
in Figure 57 is the top copper layer and the green is the bottom copper layer. Please see source 
Schematic and PCB files on our project CD for more details. 
 
**IMPORTANT NOTE**: 
 When programming the TERN FlashCore-B microcontroller, a jumper must be placed or 
removed between J2.1 and J2.3 header (On the actual FlashCore-B board). If the microcontroller 
is mounted on the motherboard, these two pins can be accessed from H2 on the motherboard. 
Placing a jumper between H2.7 and H2.8 allows setting up the microcontroller for debug mode or 
for standalone mode. Likewise if a module is placed on H1 and H2 (On the motherboard), these 
two pins (H2.7 and H2.8) still have to be accessible for the placement or removal of a jumper 
between them. Please see the TERN FlashCore-B(FB)TM Technical Manual for more information 
on the FlashCore-B Programing Overview. The red square, shown in Figure 56, shows where a 
jumper should be placed on the RPM Module PCB. 
 
**IMPORTANT NOTE**: 
 A revision to our design was made after PCB’s of the RPM module were printed. Please 
see the source Schematic and PCB files for more details on the connections. The double sided 
arrow shown in Figure 56 shows the two pins that have to be connected, via a long jumper, for 
the proper operation of the device using the code for the diesel RPM monitoring 
application. No IC is supposed to be placed in U2. U2.2 should be connected to H2.12 
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Figure 53: Diesel RPM Conditioning Circuit 
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Figure 54: Gasoline Engine Conditioning Circuit 
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Figure 55: RPM Module Header Connections 
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Figure 56: RPM Module PCB Silkscreen Schematic 
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Figure 57: RPM Module PCB Wiring Schematic 
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APPENDIX G: Executive Summary 
Introduction 

This appendix presents the executive summary of our report to serve as a brief overview and 
summary of the full report. 
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1. Introduction 
 Canal walls in the city of Venice, Italy have been subject to severe damage over the past 
century. These walls serve as the structural foundation for buildings throughout this unique city. 
Constant repair efforts are necessary in the ongoing effort to limit the structural decay of these 
buildings; this process comes at a high cost to the government.  
 There are many theories and known reasons of the causes of canal wall damage. One 
hypothesis, made by city structural engineers, is that underwater turbulence caused by motorboats 
that accelerate quickly, to stop and go, as they dock on the very walls of canals put so much 
pressure on the walls over time that this can lead to collapse. Engineers, however, have not been 
able to verify this statement, and thus have been unable to conclusively determine the reason for 
rapid deterioration of canal walls. 
 This document details the design process undertaken by our project team to design and 
build a working prototype for a fully automated data collection system that can be used to track 
these instances of underwater dispersion in the form of motorboat engine RPM. 
 

2. Background 
The introduction of the motorboat solved many transportation issues in Venice. Presently 

motorboats are necessary for the regular day to day operation of the city; they provide 
transportation for its citizens and millions of tourists yearly, as well as transportation of 
perishable goods and wastes. The city of Venice has suffered many problems that can be 
attributed to traffic. Canals are now heavily congested and many blame the increased amount of 
repairs needed on the structural integrity of many buildings to motorized transportation. 
 The problem of an increasing number of repairs that have to be made to this unique city 
has become a major concern for its citizens, public works entities, private businesses, and the 
government. There are differing opinions on what is causing damage to canal walls and how the 
problem should be addressed, but currently repair efforts are a serious economic concern to the 
Venetian government. 

Two of the main factors attributed to causing canal wall damage include: physical 
changes to the building material and external events. Boat wakes can start a cycle of events that 
can cause the mortar holding the bonds between bricks to weaken. Parts of walls can then easily 
get knocked out of place by other forces, such as a boat docking on a canal wall. Once a small 
crevice is formed within the walls, underwater boat turbulence can cause more extensive damage. 

Other factors contributing to the damage inflicted to the canal walls are rising sea levels 
and the sinking of the Venetian land mass. The rising sea level and the extraction of water from 
aquifers underneath the city, for industrial purposes, have caused the land mass which Venetian 
buildings rest on to sink. The water levels in the Venetian lagoon have risen approximately 23 
centimeters since 1897. 

Motorboats, however, cause more significant damage to Venetian structures. In addition 
to a boats wake produced when a boat propels itself, underwater turbulence caused by engine 
propellers weaken the structural integrity of canal walls and its foundations. The constant 
underwater thrusting of the canal walls from propelled water is cause for concern. 
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3. Project Goal 
Underwater turbulence caused from motorboat propellers is believed by many to be the 

cause of erosion to the canal walls in Venice. The problem is that, currently, there are no 
correlations that have been made to connect underwater turbulence to instances of canal wall 
damage. One method of studying this correlation is to record instances of motorboat engine RPM, 
since this is a way of measuring how fast propellers are moving underwater. Instances of engine 
RPM would have to be mapped across the city, especially where motorboats stop and go, so that 
underwater turbulence can be correctly correlated to places suffering from canal wall damage. 

Our project goal was to: develop an automated data collection system that can be 
installed in motorboats propelled by either diesel or gasoline engine(s) to monitor and store 
engine RPM as well as GPS positional data, for boats that navigate the Venetian lagoon. 
 

4. Methods 
This section outlines the methods used by our project team to accomplish our project 

goals. Briefly, we had to determine our system requirements when choosing a microcontroller to 
fit our needs. The team also had to research different means of measuring engine RPM for both 
gasoline engines and diesel engines. As a result, the approach used to develop our system was as 
follows: 

 
1. Reviewed engine type monitoring requirements (Required to work for diesel or gasoline 

engines) 
2. Reviewed system requirements (What needed to be recorded, for how long, how often 

e.g. every second, etc.) 
3. Implemented the design from system requirements 
4. Implemented packaging requirements (Easy to mount, small & compact, water resistant, 

user interface) 
5. Reviewed data processing requirements (How data from unit was going to be used to 

produce maps) 
 

Once completing this process, we feel that our system will be fully functional. 
 

5. Results 
This section outlines the process in measuring the signal from a w-terminal and describes 

the results our team encountered. The design of the diesel engine RPM conditioning circuit was 
based on the measurements made from an actual alternator on a diesel engine. Using a portable 
oscilloscope and a laptop our team traveled to Cape Cod, Ma where we measured the alternator 
w-terminal signal on a diesel boat. The signal obtained from the W-terminal can be seen in 
Figure 1, along with the frequency magnitude spectrum of the signal from the W-terminal shown 
in Figure 2. The signal from the W-terminal in Figure 1 is at approximately 600 RPM was a 243 
Hz signal. 
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Figure 1: W-terminal signal 
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Figure 2: W-Terminal Signal Frequency Spectrum 

 
 Obtaining multiple signals with this process, we were able to plot plotted the measured 
relationship between the signal frequency and actual engine RPM which is shown in Figure 3. 
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Figure 3: W-Terminal Sig. Frequency vs. Engine RPM Plot 
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 Engine RPM can be calculated from certain alternator parameters. These parameters 
include: 
 

1. W-terminal signal frequency 
2. Number of poles on an alternator 
3. Pulley ratio 

 
 The number of poles on the alternator requires looking at the specific alternators data 
sheet and the pulley ratio depends on the Equation 1. 

 

  
 Equation 1 shows how pulley ratio is an actual ratio determined by the drive pulley 
diameter and the alternator pulley diameter. This ratio can be calculated by measuring both 
diameters and often times is specified in engine manuals. Typically in diesel engines there is a 3:1 
pulley ratio. 
 The mathematical equation to calculate actual engine RPM in terms of alternator w-
terminal signal frequency, number of poles on the alternator, and the pulley ratio is shown by 
Equation 2: 

 

 
Once this relationship was found, we had to condition the signal to be a TTL compatible 

waveform since we planned on driving one of the external interrupts on the microcontroller. 
Using the TTL compatible signal to drive the external interrupts we calculated the signal 
frequency.  

 

 

eterPulleyDiamAlternator
yDiameterDrivePulleoPulleyRati =  

Equation 1: Pulley Ratio Calculation 

oPulleyRatiPolesAlternatorMin
SecHzinFreqSigTERMINALWRPM 1*1*60*)___(−=  

Equation 2: Diesel Engine RPM Calculation 

 
Figure 4: W-Terminal Conditioning Circuit Schematic 
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 The schematic shown in Figure 4 shows the conditioning circuit we designed to take the 
w-terminal input and convert that signal to a TTL compatible signal. The w-terminal signal is 
connected to the port labeled “IN” on the schematic. The resistor R1 limits the current of the w-
terminal signal (Figure 1) to protect the 5V zener diode D1 and the hex inverting Schmitt trigger: 
74LS14. If a waveform like Figure 1 is connected to the input “IN”, the  5V zener diode D1 
regulates the voltage of the input waveform (of about (-)8V to +8V) to approximately a 0V to 
+5V waveform. The resulting waveform at the input 1 of the 74LS14 resembles a 0V to +5V 
square wave; however, this waveform is not as clean as a perfect square wave. The function of 
the 74LS14 (Hex inverting Schmitt trigger) is to produce a TTL compatible signal at the output 
“SQR”, that has the same frequency as the w-terminal signal at “IN”. The output signal at “SQR” 
is supposed to resemble a perfect square wave. For an input signal like the w-terminal signal 
shown in Figure 1 the output signal resembles the waveform shown in Figure 5. 
 

 
 Once the design of the conditioning circuit was complete, the module devices were 
created. The modules consist of the RPM module and Motherboard Module. The RPM module 
consisted of the RPM conditioning circuit shown above. The RPM module, along with the 
microcontroller, were plugged into the Motherboard Module. Also on the Motherboard Module 
was the Health & Safety module. The basic function of the health and safety module is to provide 
temperature and readings and measure the voltage output from the device’s power source. Our 
real-time embedded program on the microcontroller then acts accordingly depending on the 
voltage and temperature readings it gets (i.e. closes file on compact flash). After the hardware 
was designed and working together, the next step was to create the software to bring functionality 
to the entire system. The software created was based on the flowchart seen in Figure 6. Once 
going through a successful loop of the flowchart, the program then writes to compact flash 
depending on conditions like the number of satellites the receiver is tracking and if the file is 
open. The actual data recorded onto the Compact Flash card resembles the lines shown in Table 
1. The data is stored as a text file on compact flash and then GIS software can be used to interpret 
the data graphically on a Venice, Italy city map. 
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Figure 5: W-terminal conditioning circuit output 



 103 

 
  

����������	
�������

����	����

���	������

����������

�������

��������

����	�	�����

���	������	����

 !�

 !�

�������

�����"��

#$

�����	���	������

%����"�������
 !�

�������

���
����

#$

����	�	�����

���	������

&	���������

����	�	�����

���	������	
��
 !�

���'	�("	")�����*	


������+	����

#$


������	�	����	$,�

-.����	/

����'�

0���	$����

"���	0���	�0*

����	11	
���	�	0���

11	�.�����	�	0���

#$

 !�

$���	0���	�0*

����	��	
���	�	��.�

��	�.�����	�	��.�

#$

�.�����	�	2�.�����  !�

3 ����	������	��	0���	�0*

&���	4�	5	��


��	46	��

0���	�	$���

#�7	����	�	��.�	

��

�.�����	�	��.�

 !�

8�'���	�"(	�

#$

#$

(����9	��	�"(	

����	����	����.
 !�

(�����	!:�;	������.��

���	���6	��'	���/	
��.�

!�����	!:�;	������.��

"���.����	!�����	���

 
Figure 6: Software Flowchart 

 
 Upon completion of the software, in lab tests were done. To test the device, we had to 
model the W-terminal signal using an Instek Function Generator (CFG-8219A). We used an input 
square wave from the function generator as our signal. The frequency of the input square wave  
we connected to our W-terminal conditioning had a frequency of about 283 Hz, and the device 
measured an RPM of 708. This can be seen from the figure shown in Figure 7. When comparing 
the measured 708 RPM to an input signal having a frequency of 283 Hz we used Figure 8 for 
comparison. As seen in Figure 8, these results are very close to the theoretical values. 
 

$GPRMC,063403,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063404,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063405,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 
$GPRMC,063406,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00 

Table 1: Compact Flash Stored Data 
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6. Summary and Conclusions 
 Our team successfully implemented an automated data collection system that can 
be installed in motorboats propelled by diesel engines to monitor and store engine RPM 
as well as GPS positional data, for boats that navigate the Venetian lagoon. This 
document briefly outlines the design process our project team followed in building a 
working prototype for this automated data collection system. Options in having this 
device placed in gasoline motorboats have to be tested and implemented. In addition, the 
post processing of data stored on compact flash by our system has to be considered after 
multiple field tests are conducted. Different considerations, such as reducing power 
consumption, the size of the current package, and further testing should be taken to 
improve the functionality of the device and system. Future designs and methods could 
serve as a tool for aiding the city of Venice, Italy in the repair of damaged canal walls. 

 
Figure 7: Device Displaying RPM in Real Time 
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Figure 8: Theoretical W-Terminal Freq. vs. RPM Relationship 


