Project Code: FC-TRB2

Mapping Underwater Turbulence in Venice

A Major Qualifying Project Report: submitted to the Faculty of

Project Team:

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for
the Degree of Bachelor of Science of
Electrical and Computer Engineering

Advisors:

Nicholas Angelini
nal303 @wpi.edu

Fred Looft, PhD
filooft @ wpi.edu

Jose Brache
jbrache @ wpi.edu

Fabio Carrera
carrera@wpi.edu

Matt Gdula
medula@wpi.edu

Michael Ciaraldi
ciaraldi@wpi.edu

Craig Shevlin
cshevlin@wpi.edu

Date: April 26, 2006

gps-05@wpi.edu

100 Institute Road Worcester, MA 01609

Abstract

The goal of this capstone design project was to design a fully automated data collection
system that could be installed in diesel or gasoline motorboats to monitor engine RPM. The
system is based on processing signals from: the w-terminal on a diesel engines alternator or an
inductive pickup placed on a gasoline engines spark plug. These signals are processed, under
software control, to calculate actual engine RPM. Engine RPM readings are time and position
tagged with GPS data from a small, low power, OEM GPS unit and stored to a DOS compatible
file on a Compact Flash card interfaced to the internal embedded processor system. The
prototype system can be powered from a battery pack for up to a week of data collection. Once
data is collected, the Compact Flash card is downloaded into a desktop system after which
Geographical Information System (GIS) software is used to remap the GPS engine RPM data to a
physical location on a user viewable city map. The prototype is intended to be placed in
motorboats that roam about the Venetian lagoon in order to map the occurrence of underwater
turbulence in the form of engine RPM. This system can aid the city of Venice, Italy in
identifying areas that suffer from constant underwater turbulence and by correctly correlating
canal wall damage to underwater turbulence, canal repair crews can be released more efficiently.

1.
2.

Table of Contents

INTRODUCTION 9
BACKGROUND 10
2.1. TRANSPORTATION IN VENICEcuvviiiieiieeiiiiieeeeeeeeeieitieeeeeeeeeeiitaseeeeeeeeeesasseeeeeeeeesssseeeseeeeesnsseeeeas 10
2.1 0. CANALTEALJIC ..ot 10
2.1.2. CANAL CONGESHION ..ot e 11
2.2. CANAL WALLS ..ottt ettt et e ettt e ettt e e et e e e e tbeeeeeatseeeeaaaeeeeeassaeeeasseeesssseeeeassseeansseeeannns 12
2.2.1. CAUSES OF CANAL WALL DAMAGE.........coiiiitiiiiiiiii ettt eaae e e e e e eare e e eaeaeas 13
2.2.2. Effects of Canal Wall DAMGAZEcccueecueeeiieeciieeiiesiiieeiieseiiesiieesieesseesseesseesseesseesnnes 14
2.2.3. Methods of Preservation Of CAnal WallS...............cccouceeeiueeieeiiieeiieeiieeieeeiieeeieesiee e 15
2.3. THE AGE OLD DEBATEuviiiiiiiiieeiiie e ettt eete e ettt e ettt e e et eeeaae e e eeaaaeeeeaseeesasaeeeeaseeeeesseeeanns 15
2.3.1. PAX 01 AGUA’S POSITION c...oocevveeeeeiiesieeeie ettt ettt et e st e s e sateesnseesnbeeensaesnbeesnseesnses 16
2.3.2. INSULA’S POSITION ...t ssssssssssssssssssssnsssssnsnsssnsnnnssssnnnnns 16
2.4. PREVIOUS STUDIESuuutiiiiiiiiieiiiieeeee e e eeeiee e e e eeeeeattaeeeeeeeeetaaaeeeeeeeeesaaaeeeeeeeeesaaseeaeeseeesrseeeeeas 16
24,1, The MOto ONAOSO INACXK ...t ss s sssnsssssnssnsssssnnnnns 16
2.4.2. Mapping Turbulence in the Canals of VEnicec.cccccccovueveevieciiiiniiinieiiecieeceeesnee 16
2.5. SUMMARY ...ctttitieeeee ettt e e e eeea e e e e e e e ettt ae e e e e e eeeeeaaaseeeeeeeeetssssaeeeeeeeetasaeaeeeseeeaataaseeeeeesaanssrseeeeas 17
PROBLEM STATEMENT 18
3.1. PROBLEM STATEMENT AND PROJECT GOALSccoiiiiiiiiiiieeeiiee e ettt eeteee et e et eeeaaeeeeeaveeeens 18
3.2. OBJIECTIVES AND TASKS ...utiiiiitiieieitie e ettt e eeie e ettt e e e ettt e e e eataeeeeaaeeeeeaaaeeeeaseseseaseeeesassseeesseeeanns 18
3.3. SUMMARY ...ttt ettt eet e e et e e ettt e e e eaae e e e eata e e e easeeeeasseeeeassaeesaseeeeaasseeesatsaeesntseeesassseeenaareas 19
METHODS 20
4.1. REVIEWING ENGINE TYPE MONITORING REQUIREMENTScuvtiiiiiiieeeiiieeeciieeeeeiieeeeeieeeeeiveeeans 20
4.2, REVIEWING SYSTEM REQUIREMENTSuutiiiiiieieiiiiieeeeeeeeeeiitreeeeeeeeeetanseeeeeeeeesnaseeeeeeseesnsseeeeas 21
4.3. IMPLEMENTING DESIGN FROM SYSTEM REQUIREMENTSuuuviiieeeeeiiiirieeeeeeeeeiineeeeeeeeeeinrneeenes 21
44. IMPLEMENTING PACKAGING REQUIREMENTSccccuutiiiieeieiiiiireeeeeeeeeeiineeeeeeeeeeitnneeeeeeeeeesnnneeees 21
4.5. REVIEWING DATA PROCESSING REQUIREMENTSouvviiiiieiiiiiiiieeeeeeeiitineeeeeeeeeecinneeeeeeeeeesnneeeees 22
4.6. SUMMARY ...tttitieeeee ettt e e e eeea et e e e e e ee et ae e e e e e eee et aaaseeaeeeeeetssseeeeeeeeeetssseaeeeeeeeantaeseeeeeeeeansasseeeeas 22
SYSTEM DESIGN 23
5.1. GPS MODULE ...ttt ettt e et e et e e e ta e e e e ata e e e e aaaee e e eateeeeeatseeesssaeeeeassseeansseeeanes 24
5.2. LLCD MODULE.......uttiiiiiiie e ettt et e et e e et e ettt e e e e aaa e e e eta e e e eeaaeeeeeaaeaeeetseeeeeasseeessseeeeaaseaeans 25
5.3. HEALTH AND SAFETY MODULEccoiutiiiiiiiieeeiieeeeeiieeeeeiee e e ettt e e eeteeeeeaseeeaetseeaeesssesesnseeeenaseaaans 27
5.4. RPM MODULEoviiiiiiiiiee ettt et e ettt e ettt e e e e e e e e et e e e e aaeeeeeaaseeeetseseeeassesesssaeeenaseaeans 27
5.5. MICROCONTROLLER MODULEccutiiiiitiiieeeiiieeeiieeeeeiteeeeeteeeeeaaeeeeeaseeeeeaseeeeasseeeeassseeasseeeanns 28
5.6. IMOTHERBOARDcooutiiieiiitiie ettt e eettee e ettt e e eeteeeeeaaeeeeetseeeaeasseeeeasseeasasseeeensseeeessseeeeaseeeeasseeeannns 30
5.7. SUMMARY ...tttitieeeeeeeetae e e e e e eeea et e e e e e e et aeeeeeeeeeeeraaseeaeeeeeetsaseeeeeeeeeatssssaeeeeeeaaistseseeeeeeaaansesseeeeas 31
RESULTS 32
6.1. DIESEL ENGINE RPM MONITORING.......cccccuutiieeeeeeiiiiieeeeeeeeeiitieeeeeeeeeeetasseeeeeeeeeissnseeeeeeseesnsneeeeas 32
6.1.1. W-Terminal Signal Measurements and CalculQtionsc.ccccocevveenieviiiinveniecniecnnns 32
6.1.2. W-Terminal Conditioning CirCUitry RESUILS..............ccccocuevuieviecuiniiniienienieitee e 36
0.1.3. SUIIIATY ..ttt ettt et ettt e st e et e st e et e st e et e et e enbeeeates 37
6.2. HARDWARE RESULTS.....ceiiitiiiiiiiie ettt e et e e ettt e e ettt e e ae e e e e tteeeeeateeeeeaaaeeeetseeeenassesessseaeeanreeeans 37
6.2.1. Health and Safety MOAUIEcccoueeeeeeciieeiieeiiieeiee ettt eiee et esaee st esseesbeesseeennes 38
0.2.2. RPM MOAULEoooooooeneeeeieeeeeeeeeie ettt e e et e e e e eeataaeeeeeeenannes 39
0.2.3. POWET ettt ettt e e e e e e et e e e e ean it —aaaeeeeanaaas 41
0.2.4. SUIIIATY ccveeeieeeiteeiee ettt ettt ettt e et e et e s b e e sab e e easeesabeeanseesabeeeaseesabeeenseesnseesnsaennses 42
6.3. SOFTWARE RESULTS ...uuttiiiiieiiiiiiieee e e eeeettee e e e eeee e e e e e e e eetaaaeeeeeeeeeetaaaaeeeeeeeeeataeseaeeeeeeensaaaeeeeas 42
6.4. TEST RESULTS .eeeiieeiieeiiiieeee ettt ee ettt e e e ettt e e e e e e e e baaaeeeeeeeeataaaaeeeeeeeentaaseeaeeeeeessraeeeeas 45
6.5. SUMMARY ...ctttitieeeeeeeettt e e e e e eeea e e e e e e eeetaaeaeeeeeeeetaaaseeaeeeeeetasasaeeeeeeaesssssseeeeeeaastaaseeeeeeseanssareeeeas 47

7. SUMMARY AND CONCLUSIONS

7.1. SUMMARY OF PROJECT DESIGN, SYSTEM DESIGN AND RESULTS......cuuvviiiiiiieiiiieeeeeeeeeeeiieeeene
7.2. OVERALL ASSESSMENT, FUTURE WORKccoiiiiiiiiiiiiiieeeeeiiiieeeeeeeeeeeiaeeeeeeeeeeeiaaeeeeeeeseesnnneeeeas
7.3. (©0) (@) BLUL (6) K FTTTT SRR

8. REFERENCES
APPENDIX A: DGSCOPE MATLAB DECODER CODE
1. IMATLAB CODE.....cotttiittiiteeite ettt ettt ettt ettt ettt e et e st e e st e s bt e sabeesabeeeabeesabeenateesabeenaees
APPENDIX B: C++ EMBEDDED PROGRAM SOURCE CODE
1. PROGRAM SOURCE CODEcotiiiieiieiieiiieiieeiienitesie et et et s st sat et esa e eae st e steesbeeneeneeaneeanesae
APPENDIX C: MAPINFO/MAPBASIC SOFTWARE

1. MAPBASIC CODE DESCRIPTIONuuuiiiiiieieeietteeeeeteeeseieeeeeessesesenseeesensseessesseesesssesensseessnseeessnnnes
2. MAPINFO SOFTWAREuututiiiieeiieiiiteeeeeeeeeeiaeereeeeeeeseiaaeeeeeeeeeetaareeeseseaestaereeeeeeeasstrareeeeeseenssareeeeas
3. Y N S YN (G GL6] 5) 2RO

APPENDIX D: VALUE ANALYSIS
APPENDIX E: MOTHERBOARD SCHEMATICS
APPENDIX F: RPM MODULE SCHEMATICS
APPENDIX G: EXECUTIVE SUMMARY

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

List of Figures

Distribution of Traffic in VeNICe........cccuevviiiiiiiiiiiiiiiiiieieeeeeeeee 11
Canal CONZESHION .couveiieiiiieeiiieeeiie ettt ettt e et e st e st e e s bee e sabeeeeabeees 11
Pietra D’Istria (IStria STOME) ...ccouvvvriiiiieieeiiieeeeeee et eeeeavee e e e e e 12
Canal Wall Undergoing Repair..........ccoouiieriiiiiiiiiiiiiiieeeieeeeeeee e 13
Wake Produced by a Personal Boatccccueeeiiiiiiiiiiiiiieiececeee e 13
Canal Wall Damage..........cooouiiiiiiiiiieeiieeeeeeee et 14
System Block DIagram..........ccocviieiiieiiiiiiiiieeiieecite et 23
GPS Module Block Diagram...........ccoevuieiiiiiiiiiiiniieeieeeieeeeeeeitee e 24
Garmin GPS25-LVS ... et 25

Garmin GPS25-LVS Pin Out Description...........coocueeerieeinieeniieenieeeieeeeeenn 25
LCD Module Block Diagram...........ccceeeeuieeriieeniieeieeeiee e svee e 26
LICD SCIEM ...ttt st 26
LCD Pin out DeSCTIPtION ...cccuviieiiieeeiieeeiee et eiee et eareeeieeeenee e 26
Health and Safety Module Block Diagramccccceevvieeniiiiniieeniieenieeene, 27
RPM Module Block Diagram...........cccoeecuiieiiiieniieeiieeiee e 28
TERN FlashCore-Bcc.coiiiiiiiiiiiieeeeeeeeee e 29
Tern FlashCore-B Functional Block Diagramc.cccocceeviiiniinicinencnen. 29
Microcontroller Module CONNECIONScccuveeerivierriiieiiiieniieeeiieeeiiee e 30

Figure 19: Motherboard Module..............oocuiiiiiiiiiiiieeiieciieceeeee e 31
Figure 20: Volvo Penta TAMDO3L/P..........cooiiiiiiiiiiiieeiieeeeeeee et 32
Figure 21: Valeo AT13N234 AIETNALOT ...cccuvveeririeeriieeriiieerteeeieeeerireeeareeenneesaneesseeesneees 33
Figure 22: W-Terminal Signal..........coociiiiiiiiiiiiiiieieeceeeeeeeee et 33
Figure 23: W-Terminal Signal Frequency Spectrum.........c.cceccveeevvieeriieeniieeniieeeieeeeneenn 34
Figure 24: W-Terminal Sig. Frequency vs. Engine RPM Plotcccccooviiiiniiinienncnn. 35
Figure 25: W-Terminal Conditioning Circuit SChematiccccccveevvveercieencieeniieeenen. 36
Figure 26: W-terminal conditioning Circuit OULPUL........ceevuveerriveeriiieeniieeniieeniie e 37
Figure 27: LM7809 Configuration from Motherboard.............ccccoooiiiiniiinnii, 38
Figure 28: AD590KF Temperature Sensor Configurationcceccceeeereeereenvennueennens 38
Figure 29: Input Voltage MELETcoiuiiiiiiiiiiiieiieeeee ettt 39
Figure 30: Diesel Engine RPM Conditioning CirCUit..........ccocueevuieriernieeniiennieenieenieennenns 40
Figure 31: Gasoline Engine RPM Conditioning CirCuit..........ccceevveeeriveeniieeniieenireennnnnnn 40
Figure 32: LM7805 Voltage Regulator Configurationccecveeviiieeniieeniieeniieeenneen. 41
Figure 33: RPM Module PCB DESIZNccueieiiiieiieeiiieeiee et 41
Figure 34: Diesel RPM Software FIow Chart...........cccccoooiiiiiiiiiiiiiiiieieeieeeeeeen 43
Figure 35: Pulse Width Demodulationcccceccvieeriieeriiieeieeeiee e 44
Figure 36: Square Wave used to model the W-Terminalcccccooeiiiiiiiiniiinniiennneen. 45
Figure 37: Input Square Wave Frequency (283 HZ).......ccocvvveviiiiiiiiiiiieeieeeeeeeeen 46
Figure 38: Device Displaying RPM in Real Time.........ccccccovviiiniiiiniiiiniiienieeeiieeen 46
Figure 39: Theoretical W-Terminal Freq. vs. RPM Relationshipcccccceevevvveriveennen.. 47
Figure 40: MATLAB Command WIndOW..........ccccueeeriieiiiieniiieiiieeeiieeeiieeeiee e 53
Figure 41: Diesel RPM Software FIOw Chart...........ccccceeeviieeniiiiiiieeiieeieeeeeeee e 63
Figure 42: Add Turbulence Menu...........cccceiiiiiiiiiiiiiiieciieeeeeeeeee e 75
Figure 43: Read TUurbUulenCe.........cccvieriiiiiiiieiie ettt 75
Figure 44: RPM Dialog BOXiiiiiiiiiiiiiiieeeeeeeee et 76
FIgUIE 45: Create IMAPccccuiieeiiieeiieeeiie ettt ettt et e e et e e s aae e esaaeeensaeesnaaeesnseeesnseees 76

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:

WOTCester WOTKSPACE.eiiiuiiiiiiieiitie ettt 76
TUIrbUIENCE TaADIE......evvvveiiiiiieeeeeeeee e 78
SAMPIE MAP...ceiiiiiiiiiiiiie e e 78
BrowWser WINAOWcuvviiiiiiiiiiiiieeieee et eeee et eeeeaa e e e e e e eenanes 78
Motherboard Inter CONNECHIONS.cceeieiiiriiieeeeeeeeeciirreeeeeeeeeeeiirrereeeeeeeeeeanns 87
Motherboard PCB Silkscreen SChematiCcooovvvvuvvieiiiiieiiiiiiieeieeeeeeeeinnns 88
Motherboard PCB Wiring Schematic...........ccccoouiiiiiiiniiiiiiiiiiieeeiceeieee 89
Diesel RPM Conditioning CirCUILeevueeruieniieriiienieeiieniieeieesee e 91
Gasoline Engine Conditioning CITCUILeeervieeriieeniieeeiieeiiieeeieee e 92
RPM Module Header CONNECHIONS.........ccoouvvveieieeeeeeeiiireeeeeeeeeeeeiiiieeeeeeeeeeenanns 93
RPM Module PCB Silkscreen SChematiCcooeevvuvrieeeeeieiiiiiiniieeeeeeeeeens 94
RPM Module PCB Wiring SchematiC.........c..ccoecuerviinieiiiiiniiiienieeeeneeeeen 95

List of Tables

Table 1: Measured Engine RPM Vs. W-Terminal Signal Frequencyccccceeeuveennen.. 34
Table 2: Current Consumption Of SYStEMeeeiiieiriiieriiieiiiieeiieeeteeeeee e 41
Table 3: Compact Flash Stored Dataccocuiveiiieeiiieeiiieeieceeeceeeee e 45
Table 4: Microcontroller Value ANalysisccccoevuieriiieiiiieiiiieiiieeeieeeeese e 85

Acknowledgments

Fred Looft — For his guidance on the project and patience

Fabio Carrera — For his creative ideas

Michael Ciaraldi — For his input in the initial stages of our project

Tyler Benoit — For his advanced knowledge for writing in the C++ language and help writing our
embedded programs.

Tom Angelotti — For helping us with our system enclosure and parts

Larry McMenamy — For providing a yacht for testing.

1. Introduction

Canal walls in the city of Venice, Italy have been subject to severe damage over the past
century. These walls serve as the structural foundation for buildings throughout this unique city.
Constant repair efforts are necessary in the ongoing effort to limit the structural decay of these
buildings; this process comes at a high cost to the government.

There are many theories and known reasons of the causes of canal wall damage. One
hypothesis, made by city structural engineers, is that underwater turbulence caused by motorboats
that accelerate quickly, to stop and go, as they dock on the very walls of canals put so much
pressure on the walls over time that this can lead to collapse. Engineers, however, have not been
able to verify this statement, and thus have been unable to conclusively determine the reason for
rapid deterioration of canal walls.

This document details the design process undertaken by our project team to design and
build a working prototype for a fully automated data collection system that can be used to track
these instances of underwater dispersion in the form of motorboat engine RPM.

2. Background

The introduction of the motorboat solved many transportation issues in Venice. Presently
motorboats are necessary for the regular day to day operation of the city; they provide
transportation for its citizens and millions of tourists yearly, as well as transportation of
perishable goods and wastes. The city of Venice has suffered many problems that can be
attributed to traffic. Canals are now heavily congested and many blame the increased amount of
repairs needed on the structural integrity of many buildings to motorized transportation.

The problem of an increasing number of repairs that have to be made to this unique city
has become a major concern for its citizens, public works entities, private businesses, and the
government. There are differing opinions on what is causing damage to canal walls and how the
problem should be addressed, but currently repair efforts are a serious economic concern to the
Venetian government.

2.1. Transportation in Venice

The city of Venice, Italy is dependent on its canals for transportation. Since the city is in
the middle of a lagoon, boat transportation is used for transporting goods, public services, and the
general public since Venice was founded centuries ago. The waterways that make up the
Venetian canals divide the city into more than 100 small islands. These all need to be accessible
by boat; the current system does not allow for any other alternatives. This society will continue to
thrive on the waterfront as long as these waterways supply the city with the resources needed to
support an ever increasing tourism industry.

2.1.1. Canal Traffic

Since the 1950’s motorboats have become the primary means of transportation in Venice.
The task of rowboats has almost been entirely replaced by the use of motor propelled vessels.
This change has lead to an increasing amount of underwater turbulence caused by engine
propellers. The actual distribution of traffic within the city is shown in Figure 1. As can be seen
from the chart, most of traffic within Venice is attributed to cargo boats, taxis, and public
transportation.

10

Distribution of Traffic

Cargo, 36%

Taxi/Public,
46%

Private, 18%

@ Taxi/Public m Private O Cargo

Figure 1: Distribution of Traffic in Venice'

2.1.2. Canal Congestion

The congestion of canals in Venice can be attributed to different factors. These factors
include the distribution system of cargo boats, sightseeing gondolas, and the physical dimensions
of the canals themselves which can limit the passage of multiple boats.

Cargo boats distribute their goods by traveling to and from different canal docks. This
can cause bottlenecks at the waterways; an organized distribution system could potentially lower
this congestion caused by multiple cargo boats at the same location. An illustration of canal
congestion is shown in Figure 2.

Figure 2: Canal Congestion®

! Carrera, Fabio and Caniato, Giovanni. “Venezia la Citta Dei Rii”. Pg. 149
? Chiu, Jagganath, and Nodine. “The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002

11

The famous gondolas that are used primarily for sightseeing and for crossing people
across canals also obstruct waterways. Gondolas move slowly, and when many of them are
occupying the same area of a canal, traffic can come to a standstill. This is one of the main
reasons for congestion in the canals since the gondolas move slowly and stop other boats from
passing them in smaller canals.

In addition the physical dimension of a given canal can lead to traffic problems. Larger,
heavier boats sit lower on the water; canals that are shallow and narrow impede these boats from
navigating across them. As larger and heavier vessels require the use of wider and deeper canals,
traffic in these larger canals is also increased. The tides also play a role because they cause some
areas of canals to become to shallow or they can rise so as not to let boats pass under bridges.

2.2. Canal Walls

The materials used in the construction of canal walls are primarily Istria stone and brick.
Istria stone is non-porous which allows this material to hold up relatively well against salt water.
The structural foundation of buildings and lower parts of some canal walls are made up of this
stone. The picture shown in Figure 3 shows a canal lined with the durable Istria stone, known
today as Kirmenjak. Brick, on the other hand, is porous and quickly deteriorates but since it is
inexpensive and readily available, brick still remains a popular building material. The photo
shown in Figure 4 shows a canal wall being repaired with brick and concrete for reinforcement.

Figure 3: Pietra D’Istria (Istria Stone)3

? http://www.eramarble.com/eng/projects/main.html

12

Figure 4: Canal Wall Undergoing Repair*

2.2.1.Causes of Canal Wall Damage

Two of the main factors attributed to causing canal wall damage include: physical
changes to the building material and external events. Boat wakes can start a cycle of events that
can cause the mortar holding the bonds between bricks to weaken. The photo shown in Figure 5
illustrates the wakes produced by boats that can ultimately lead to the erosion of canal walls.
Parts of walls can then easily get knocked out of place by other forces, such as a boat docking on
a canal wall. Once a small crevice is formed within the walls, underwater boat turbulence can
cause more extensive damage.

Figure 5: Wake Produced by a Personal Boat®

* Chiu, Jagganath, and Nodine. “The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002
S -
Ibid

13

Other factors contributing to the damage inflicted to the canal walls are rising sea levels
and the sinking of the Venetian land mass. The rising sea level and the extraction of water from
aquifers underneath the city, for industrial purposes, have caused the land mass which Venetian
buildings rest on to sink. The water levels in the Venetian lagoon have risen approximately 23
centimeters since 1897.

Motorboats, however, cause more significant damage to Venetian structures. In addition
to a boats wake produced when a boat propels itself, underwater turbulence caused by engine
propellers weaken the structural integrity of canal walls and its foundations. The constant
underwater thrusting of the canal walls from propelled water is cause for concern.

Although the sewage system in Venice, Italy depends on the canals for dispersing waste,
the sewage lines also can cause costly damages. Sewage enters waterways underwater; the
buildup of silt in front of sewage pipes can cause these pipes to clog. When the pipes clog, due to
the sewage backing up into the pipes, they can burst and seep to the surrounding mortar. This
weakens the structural integrity of canal walls.

In addition to wakes from boats and underwater turbulence, when a boat collides with
walls it can cause minor imperfections. The constant exposure to collisions can produce larger
crevices where more salt water can seep into and “‘eat away” at the walls. The picture shown in
Figure 6 shows a damaged canal wall that requires repair.

Figure 6: Canal Wall Damage

2.2.2. Effects of Canal Wall Damage

In December of 1990 a large cavity was found behind one of the walls lining the Rio
Novo canal. What seemed to be a small hole on the exterior of the wall had actually eroded the
supporting structures behind the wall. The Rio Novo canal had to be closed down since the
supporting structures were on the verge of collapse; boats were rerouted to the Rio Cerris canal.
Within two years, a building near the Ponte Rosso collapsed due to the moto ondoso®, or waves

® Moto Ondoso can be roughly translated to mean “wake impact”

14

caused by motorized boats, from the increased traffic flow. The Rio Cerris canal had become a
taxi highway and the constant water motion produced by motorboats destroyed the structural
foundation of the building beyond repair. Unfortunately, even the twelve owners of the building
were fined for failing to make the much needed repairs on the structure. After seven years and 7
billion euros worth of work, Rio Novo was reopened in 1997.

In 1994 there was another incidence of a building collapse on the Rio Dei Greci canal.
The building collapsed due to the erosion caused from excessive traffic; the canal was closed for
a period of time until it was repaired.

Buildings on the waterfront of the Grand Canal are constantly being subjected to the
effects of moto ondoso since it is the major traffic route through Venice. In 1995 the Ca’ Foscari
building was in risk of collapse and was closed for renovation and repairs.

The Galeazze Canal, near Arsenale, had renovations made and just two years after it was
repaired metal sheeting had to be installed alongside the walls as a blockade to stop erosion.
Within a year of this installment, in 1999, the entire canal was closed from boat traffic because of
the damages that needed to be repaired once again. Some other canals that have been closed for
repair include Rio della Maddalena, San Moise, San Lorenzo, and the Rio de Noal.

The destructive effects of moto ondoso are not only limited to the city of Venice but also
extend to other parts of the Venetian lagoon. City Hall on the Lido once had to be closed for fear
of collapse because of damage stemming from moto ondoso. The cemetery island is in a high
traffic area; therefore is also vulnerable to the effects of boat wakes. One billion euros have been
spent by the Magistrate of Waters to fix and reinforce the Codussi chapel on the cemetery island
that was destroyed by erosion caused by the water.

2.2.3. Methods of Preservation of Canal Walls

There are two methods canals are being preserved. Either preventive measures are taken
to stop ongoing damage, or damaged walls undergo restoration efforts. The preventive measures
currently being used include the required registration of boats and the enforcement of speed limits
within the lagoon. Boat registration allows law enforcement officials to know if a boat is
permitted to operate within the lagoon; this also allows police to enforce speed limits. The
restoration of canal walls involves a long and strenuous process. It includes reforming the bottom
of a canal where damage has occurred, sealing crevices behind damaged walls, and rebuilding the
wall itself.

2.3. The Age Old Debate

The question of what actually causes erosion in the canals of Venice has long been
debated. The group Pax in Aqua attributes moto ondoso as the major influence in causing wall
damage. Another group called Insula states that there are numerous contributing factors to the
deterioration of canal walls. They believe that if canals were reconstructed using modern methods
and different building materials moto ondoso would be negligent.

15

2.3.1. Pax in Aqua’s Position

Pax in Aqua’s position in the debate is that underwater turbulence caused by engine
propellers and boat wakes lead to the destruction of canal walls. This group has raised awareness
in Venice and has succeeded in appointing a special commissioner that has created regulations
regarding these issues for the lagoon.

2.3.2. Insula’s Position

Insula attributes canal wall damage to numerous factors. They state that if certain
construction practices were used, damage to canal walls can be lessened. They insist that if
concrete was used as the building material to form walls that are slanted outward, instead of older
vertical walls, underwater turbulence caused by motor boats will not be as significant to the
eroding of canal walls. Venetians are skeptical with this concept because concrete and reshaping
might affect the aesthetic aspects of these historic canal walls.

2.4. Previous Studies

There have been several observational studies made to determine the effects of motor
boats on the Venetian canal walls. One specific study was made by a Worcester Polytechnic
Institute (WPI) project team completing their junior year design project while in Venice. A senior
year capstone design project was completed in the Electrical Engineering Department of WPI that
addressed the same problem, our problem statement is explored in section 3.1, and also had
similar goals; our project goal is stated in section 3.2 of this report.

2.4.1. The Moto Ondoso Index’

During the summer of 2002 a team of three Worcester Polytechnic Institute students,
completing a junior year design project requirement, they studied the amount of energy dispelled
into the canal system using a shore based visual approximation. Data was collected for boats
within a certain class type, and canal turbulence was indexed based on the correlation between
boat type and annual canal traffic data. Although this was a novel approach addressing the age
old debate it was based on a visual approximation. A study of this magnitude could only allow
researchers to speculate the amount of underwater turbulence discharged in the studied water
ways.

2.4.2. Mapping Turbulence in the Canals of Venice®

In January, 2004 a WPI project team of three students completed their senior year
capstone design project by creating a tool that could aid researchers in mapping turbulent
discharges in the canals of Venice. Their design was an initial effort to map underwater
turbulence; the design of the system outlined in this report is a completely reengineered device
and approach.

7 Chiu, Jagganath, and Nodine. “The Moto Ondoso Index” IQP. Worcester Polytechnic Institute, July 2002
¥ Chiu, Lacasse, and Menard. “Mapping Turbulence in the Canals of Venice” MQP. Worcester Polytechnic
Institute, January 2004

16

2.5. Summary

The background section of this document discussed several issues pertaining to the
transportation in Venice, damage caused to canal walls, debates about the causes of canal wall
damage, and previous studies made to find the causes of canal wall damage. This section
presented a picture of the current state of Venice and how the city is affected by motorboat
transportation in terms of the impact to canal walls and building foundations. Also it discussed
how previous studies have attempted to correlate the effect of motorboats to damage cause to
canal walls.

17

3. Problem Statement

This chapter presents the problem statement and defines the overall goal of this capstone
design project. In addition to stating the overall goal, this section divides the main project
objective into smaller goals; each with their own specific tasks. Each objective was formulated
within context of the main project goal.

3.1. Problem Statement and Project Goals

Underwater turbulence caused from motorboat propellers is believed by many to be the
cause of erosion to the canal walls in Venice. The problem is that, currently, there are no
correlations that have been made to connect underwater turbulence to instances of canal wall
damage. One method of studying this correlation is to record instances of motorboat engine RPM,
since this is a way of measuring how fast propellers are moving underwater. Instances of engine
RPM would have to be mapped across the city, especially where motorboats stop and go, so that
underwater turbulence can be correctly correlated to places suffering from canal wall damage.

Our project goal was to: develop an automated data collection system that can be
installed in motorboats propelled by either diesel or gasoline engine(s) to monitor and store
engine RPM as well as GPS positional data, for boats that navigate the Venetian lagoon.

3.2. Objectives and Tasks

To achieve our project goal, the team had to complete several other objectives, each with
their own separate tasks. In order to complete the final objective of creating a working prototype
of this automated data collection system, the team outlined several milestones. These objectives
are as follows:

1. Familiarize ourselves with the previous senior capstone design project.

2. Develop a method for determining engine RPM from diesel and gasoline engines.

3. Develop a prototype for an embedded system that can collect engine RPM readings,
GPS coordinates, and provide the user with relevant information.

4. Write the software to bring all the components of the device together.

5. Test the device on the field and use graphical information software to produce user
viewable results from engine RPM data.

As seen above in the objective listing, the first one was to familiarize ourselves with the
previous senior design project that attempted to solve the same problem in this design project.
Unfortunately the previous project targeted only gasoline engines and its design was confusing.
Nonetheless, being familiar with the work that was already done allowed us to iterate new designs
more efficiently. We decided to use their choice of using an inductive pickup (placed on spark
plugs) for measuring engine RPM from gasoline engines. In addition we researched the
microcontroller they used and later determined, for another objective, that a similar one from the
same manufacturer was a good choice.

18

The second objective was to develop a method for measuring engine RPM from diesel
and gasoline engines. One way of measuring engine RPM from gasoline engines is by way of an
inductive pickup placed on the engines spark plugs. This works for gasoline engines however
diesel engines do not have spark plugs. Different methods for obtaining RPM from diesel engines
have to be explored, tested, and implemented. Signal processing circuitry for processing the
signals representing engine RPM had to be designed and tested for the completion of this
objective.

The third objective was to develop a prototype for an embedded system that can collect
engine RPM readings, GPS coordinates, and provide the user with relevant information.
Requirements, such as the number of inputs, outputs, storage space, etc. had to be determined in
choosing a microcontroller. GPS was studied and tested. The entire system was put together in
functional blocks. Each subsystem was tested individually. Printed circuit board layout software
was then used to build the connections and subsystems of the device. To complete this objective,
parts, and the PCB were ordered and then built. Once built, each system was tested again for
functionality.

The fourth objective was primarily writing and debugging the software on the
microcontroller in order to bring functionality to the entire system. The GPS receiver, analog
circuitry, LCD display, and buttons were interfaced with the microcontroller under software
control.

The final objective was to test the automated data collection system in the field and
produce user viewable results from engine RPM data. Using GIS software, the data from the
embedded system has to be processed to produce maps that can be used to interpret the data.

3.3. Summary

This chapter broadly described the major goal for this capstone design project as
constructing a prototype for an automated data collection system that can monitor a motorboats
engine RPM and store GPS related positioning data. The objectives and tasks required in
achieving this goal were described along with some major difficulties present in the attempt to
complete the main project goal.

19

4. Methods

This chapter outlines the methods used by our project team to accomplish our project
goals. Briefly, we had to determine our system requirements when choosing a microcontroller to
fit our needs. The team also had to research different means of measuring engine RPM for both
gasoline engines and diesel engines. As a result, the approach used to develop our system was as
follows:

1. Reviewed engine type monitoring requirements (Required to work for diesel or gasoline
engines)

2. Reviewed system requirements (What needed to be recorded, for how long, how often
e.g. every second, etc.)

3. Implemented the design from system requirements

4. Implemented packaging requirements (Easy to mount, small & compact, water resistant,
user interface)

5. Reviewed data processing requirements (How data from unit was going to be used to
produce maps)

4.1. Reviewing Engine Type Monitoring Requirements

The first task of our design project was investigating the different methods for obtaining
engine RPM from both diesel and gasoline engines. Knowing the types of signals our system was
going to be dealing with was the first important step since the next step was establishing our
system requirements. One specific method of measuring engine RPM from gasoline engines
researched was:

1. Measuring gasoline engine RPM from spark plugs.

Other options had to be reviewed for measuring engine RPM in diesel engines since
diesel engines do not have spark plugs. What diesel engines do have, however, are alternators that
are used to charge the batteries that start the engines. Signals from an alternator onboard a diesel
engine are commonly used today in other systems to calculate engine RPM. To design our system
we had to:

1. Measure the tachometer signal from an alternator
2. Design the analog circuitry to condition these signals.

To measure the tachometer signals from an alternator it required that we personally went
onboard a diesel boat for a good determination of the signals our system would be dealing with.

20

4.2. Reviewing System Requirements

The second task of our design project was to outline the system requirements that we
were going to use in the design of the automated data collection system. Knowing the signals our
system had to interface with allowed us to list more specific system specifications. To complete
this task we specified and reviewed:

Reviewed project requirements (What exactly needed to be recorded)
Reviewed previous work done on the problem

Specified length of device operation

Specified amount of memory needed

Specified power requirements

Specified input and outputs on microcontroller

Specified number of serial ports on microcontroller

S AN

Specified number of ADC channels

Once we listed these system requirements we conducted value analysis on a few different
microcontrollers on the market. Choosing the right microcontroller was essential in implementing
our system design.

4.3. Implementing Design from System Requirements

Once we reviewed the system requirements of our system the next task was
implementing our design. Implementing our design involved multiple steps and procedures.
These procedures are outlined below:

1. Constructed analog circuitry to condition signals from diesel alternator and gasoline
engine spark plugs

Constructed circuit on a breadboard and tested in lab

Designed motherboard on printed circuit board layout software

Designed “RPM Module” board on printed circuit board layout software

A

Interconnected system with GPS, LCD, buttons, etc under program control

As seen from the list above, the first procedure in implementing our design was
constructing circuitry for the conditioning of diesel alternators and gasoline spark plug signals.
Printed circuit board layout software was then used to design multiple boards that brought
functionality to the system once connected. The system was finally interfaced with other
subsystems, for functionality, under software control.

4.4. Implementing Packaging Requirements

Once the multiple modules had been implemented, the next task was building its
packaging. From our system requirements we identified the different considerations that had to be

21

taken into account when packaging the device to one standalone system. These considerations
included its size, compactness, water resistance, etc.

4.5. Reviewing Data Processing Requirements

The final task of our project was to develop a way of processing data and outputting it.
The task of processing data was completed by using the software given to us by the manufacturer
of our chosen microcontroller and creating algorithms that successfully recorded the data. The
task of outputting the data was completed by using chosen GIS software and inputting the
recorded data from the microcontroller to the Graphical Information System (GIS) software.

4.6. Summary

This chapter presented the methods used by our team to achieve our project goal. These
methods included reviewing different requirements we were attempting to satisfy. These
requirements included having functionality for both diesel and gasoline engines, and other system
requirements that were decided early on by our project team and project advisors. Another
prerequisite was in data processing where we had to find methods of displaying the recorded data.
This chapter also outlines the methods used for implementing our design.

22

5. System Design

This section presents the overall design approach our team implemented in order to
complete our project goal. The system is broken down into logical blocks that represent how the
system as a whole is intended to function. These different blocks, or subsystems, include the GPS
module, the LCD module, RPM Module, the Microcontroller Module, and the Motherboard
Module. The function of each module is explained throughout this section. A block diagram for
our entire system is shown below in Figure 7.

GPS
Module LCD Module

A Rx

Rx

i RS232 ADC | Health & Safety
i Module

(Temp & Voltage)

Microcontroller
Module

Power Source AMD 188ES) ADC
(Batteries) —> | Compact Flash | (Gas RPM) !

A

Interrupts

(Diesel RPM)
! RPM Module

Diesel Gasoline
Alternator Inductive
W-Terminal Pickup

Figure 7: System Block Diagram

23

5.1. GPS Module

The GPS module of our system, seen in Figure 8, consists primarily of a GPS receiver
that connects, through serial communication, to the microcontroller and is powered by a +5 V
voltage regulator which is located on an external PCB board mounted on the case. The GPS
receiver we used in our design was a Garmin’ GPS receiver, the GPS25-LVS', seen in Figure 9.
This module contains an external antenna that can be mounted onto a glass surface inside the
vehicle. The antenna is connected to the GPS receiver through coaxial cable. Once the antenna is
placed correctly, the GPS receiver acquires satellites and outputs National Marine Electronics
Association (NMEA) strings. These NMEA strings contain useful information such as date, time,
speed, location, and other data. The GPS receiver can be programmed to output multiple NMEA
strings, each containing different pieces of information. Also, note the connections of the GPS
receiver to the microcontroller: the NMEA serial transmit port (Tx) on the GPS receiver is
connected to the serial receive port (Rx) of the microcontroller. The signal ground of the GPS
receiver is connected to the system ground. The GPS receiver also has a serial receive (Rx) port
that can be used to program the types of NMEA strings output. These pin connections can be seen
in Figure 10.

GPS
Antenna
Y
+5V Regulated Nl\rl/{EA Rx| Serial Receive
Power from » GPS Receiver * > _ Porton
Batteries Microcontroller
\ 4
System Ground

Figure 8: GPS Module Block Diagram

The actual GPS receiver used is shown in Figure 9. A PIN-OUT description of the GPS
receiver is shown in Figure 10. The pin out descriptions shows the connections that were made
when connecting power (+5V) to the unit (Pin 10/11), ground (Pin 8), as well as the NMEA
Output (Pin 12). The serial NMEA transmit (NMEA Tx) or NMEA Output was connected to the
Rx pin on the microcontroller SER1 serial port.

? http://www.garmin.com
"% http://www.garmin.com/products/gps25/

24

Figure 9: Garmin GPS25-LVS"

TXDZ2e—| 1 Seriol Data Qutput 2
RXDZ2e—| 2 Serial Data Input 2
PPS &—| 3 Pulse—per—second Qutput
TXD1e—1| 4 Serial Data Output 1
RxXD1e— 5 Serial Data Input 1
PWR_DNe—] 6 Power Down Control
VAUXs—| 7 Auxiliary Bockup Batlery Recharge Input
GND =—| 8 Ground
VIN 9 Connected to Pin 10
VIN 10 Input 3.6Vdc to B.0¥dc (—LV) or 6Vde to 40Vde (—HVY)
NC e[11 Reserved
NMEA®—] 12 NMEA OQutput

Figure 10: Garmin GPS25-LVS Pin Out Description'

5.2. LCD Module

The LCD module of our system, seen in Figure 11, consists primarily of a LCD unit that
connects, via a RS-232 serial port, to the microcontroller and is powered by a +5 V voltage
regulator which is located on an external PCB board mounted on the case. The actual LCD used
in our design was a Crystalfontz13 serial LCD module, model number CFA-632", and is
displayed in Figure 12 along with the pin out descriptions in Figure 13. This unit is stand alone
and displays American Standard Code for Information Interchange (ASCII) characters once
ASCII characters are serially transmitted to the LCD display. This device allows our system to
display functional information about the device, to the user, while the rest of our system is
operating in real time. Also, note the connections of the LCD unit to the microcontroller: the
serial receive port (Rx) on the LCD unit is connected to the serial transmit port (Tx) of the
microcontroller. The signal ground of the LCD unit is connected to the system ground.

' http://www.garmin.com/products/gps25/

"2 http://www.garmin.com/manuals/GPS25LPSeries_TechnicalSpecification.pdf
" http://www.crystalfontz.com

' http://www.crystalfontz.com/products/632/index.html

25

+5V Regulated Rx 1x| Serial Transmit
Power from _ LCD Unit P Port on
Batteries Microcontroller

\ 4

System Ground

Figure 11: LCD Module Block Diagram

A picture of the LCD unit is shown in Figure 12. A PIN-OUT description of the LCD
unit is shown in Figure 13. The pin out descriptions shows the connections that were made when
connecting power to the unit (+5V LCD), ground, as well as the serial receive pin (DATA_IN).
The serial receive (Rx) or DATA_IN was connected to the Tx pin on the microcontroller SER1
serial port.

Figure 12: LCD Screen'

CRYSTALFONTZ
PIN | PIN NAME DISPLAY FUNCTION

1 | GROUND Ground {backlight and controller)

w + +
]E E @ g o2 Q +0V(LCD) | Controller and LCD power (+5 volts anly)
— —_——0
el |> maS +BV(LED) | LED Backlight power (+5 volts only)
- X N E e 3
7 n n a n n n 142 DATA_IN | SPIorRS-232 data in (input)

SPI_CS SPI Chip Select {active low input)
SPI_CLK SPI Clock (input)
SPI_BUSY | SPI Busy (output)

=l T | k=] | R

Figure 13: LCD Pin out Description'®

'3 http://www.crystalfontz.com/products/632/index.html
'® http://www.crystalfontz.com/products/632/data_sheets/CFA-632_v2.0.pdf

26

5.3. Health and Safety Module

The health and safety module’s function is to provide information about the voltage
levels of the power source and ambient temperature. A block diagram of this system is shown in
Figure 14. We determined that measuring these conditions is important for the overall operation
of our device. Whenever these conditions fail, we configured our microcontroller to act
accordingly under software control.

+9V Regulated from Temperature AIDC Channel on
Batteries > Sensor > Microcontroller
+12V Unregulated Voltage ADC Channel on
from Batteries " Divider »| Microcontroller

Health and Safety Module

Figure 14: Health and Safety Module Block Diagram

As is seen in Figure 14, the temperature sensor is connected to a +9V regulated power
supply from the motherboard. The temperature sensor used was an analog devices AD5S90KF two
terminal IC temperature transducer that outputs a current proportional to temperature. The voltage
divider (Voltage meter) is connected directly to the power source, to monitor the voltage. Both
the temperature sensor and the voltage divider connect to their respective ADC channels on the
microcontroller.

5.4. RPM Module

The RPM module’s function is to condition the signals from a diesel engine and a
gasoline engine. A block diagram of this module is shown in Figure 15. For specific details on
the design of the RPM module see APPENDIX F: RPM Module Schematics. The RPM module
has onboard regulators to power the signal conditioning circuitry for both diesel and gasoline
engines. The basic operation of this module when it is functioning for diesel engines is that the
signal from the alternator w-terminal is connected to our signal conditioning circuit. The
conditioned signal is then connected to an external interrupt on the microcontroller. Our program
on the microcontroller calculates the RPM in real time depending on the external interrupts.
When the device is connected to gasoline engines, the signal from an inductive pickup, connected
to the engines spark plugs, is conditioned by the analog circuitry, on the RPM module, to produce

27

a signal that is read on one of the analog to digital converter (ADC) channels on the

microcontroller.
+12V Unregulated
Power from
Batteries
Ext. Interrupt on
v Microcontroller
+5V Regulator
A
Diesel Alternator Signal
W-Terminal "| Conditioning
Gasoline .
Spark Plug R Signal
Inductive Pickup Conditioning
A\ 4
ADC Channel
RPM Module On
Microcontroller

Figure 15: RPM Module Block Diagram

5.5. Microcontroller Module

The microcontroller module is a microcontroller we purchased after performing a value
analysis on different microcontrollers that could function in our system. The value analysis we
conducted in choosing the TERN FlashCore-B is discussed in APPENDIX D: Value Analysis.
The functional description of the TERN FlashCore-B is explained in detail in the FlashCore-
B(FB)™ Technical Manual found on the Tern Inc. website'’. A functional block diagram of the
FlashCore-B microcontroller can be found in Figure 17. A brief description of the FlashCore-B
from the technical manual is quoted below'®:

“The FB is a complete standalone C/C++ programmable embedded controller including a

188 CPU,512KB ACTF Flash, 128KB or 512KB SRAM, 512-byte EEPROM, 2 channel

RS-232 driver, 5Vregulator, with optional real-time clock, battery, 8 channel 16-bit ADC,

and/or 4 channel 12-bit DAC.”

A picture of the FlashCore-B can be seen in Figure 16.

"7 http://www.tern.com
' FlashCore-B(FB)™ Technical Manual. Tern Inc. http:/www.tern.com

28

Figure 16: TERN FlashCore-B"”

ACTF FLASH 183ES SRAM
512K CPU 512K
80x86
SDL P12 Compatible
76550 5V
T ves [DMA(2) regulator
el UEO > 16-Bit Timers(3)
SDA P11 Ext. Interrupts(6)
32 I/'O lines 69 l RTC
2ch [PWM/PWD
RS-232 | i 8 ch.
serial 4 ch. ‘ t 16-bit ADC
ports 12-bit DAC
J1 & 712 CF standard storage cards

Figure 17: Tern FlashCore-B Functional Block Diagram®

We had to interconnect our microcontroller with the other modules explained in this
section (RPM, Health and Safety, GPS, LCD Module’s). A more detailed block diagram showing
the connections between the microcontroller module and the other modules described in this
section is shown in Figure 18. The block diagram from Figure 18 shows how the elements of the
microcontroller module connect to the other modules. As you can see the GPS and LCD module
connect to one of the serial ports on the microcontroller. The health and safety module connects

1 FlashCore-B(FB)™ Technical Manual. Tern Inc. http://www.tern.com
20 110
Ibid

29

to two of the analog to digital converter (ADC) channels on the microcontroller to provide
ambient temperature and voltage readings. The conditioned signal from the RPM module to
measure engine RPM in gasoline engines is connected to one of the ADC channels on the
microcontroller. The conditioned signal from the RPM module to measure engine RPM in diesel
engines is connected to one of the external interrupts of the microcontroller. Power to the
microcontroller module is provided by an external +9V regulator that is placed on the
motherboard. The motherboard is explained in the next subsection.

+9V Regulated
Power from NMEATX | GPS Module
Batteries
v Rx ®Y LCD Module
A 4
Rs-232 [g]| ™
Serial % Health and Safety Module
Ports
8 ADC Channels | Gasoline
X Conditioned Signal
Interrupts - Diesel Conditioned
(INT2)) Signal
Microcontroller Module RPM Module

Figure 18: Microcontroller Module Connections

5.6. Motherboard

The motherboard connects all the different modules together. In addition to
interconnecting the microcontroller with the GPS, LCD, Health and safety, and RPM Module, the
motherboard provides power for all the other modules. Please refer to Figure 7 to see how the
motherboard brings the system together. Everything within the dotted square represents the
interconnections made within the motherboard. The microcontroller and the RPM module are the
only modules which actually mount, via headers, on the motherboard, shown in Figure 19. The
GPS module and the LCD module connect to the motherboard using a male header which
interfaces the microcontroller SER1 serial port. For specific details on the design of the
motherboard see APPENDIX E: Motherboard Schematics.

30

rerwd

ol
|

TERN
FLABHCORE=B

111CROGONTROLLER

Kbt

Figure 19: Motherboard Module

5.7. Summary

This chapter presented various structural block diagrams showing the operation of
different modules. The different modules in our system design include: the GPS, LCD, Health
and Safety, RPM, Microcontroller, and Motherboard module. A system block diagram that
illustrates how all the different modules connect to bring functionality to our entire design was
also presented in this chapter.

31

6. Results

This chapter presents the results of our team’s work when our system design was
implemented. The Methods section presented the methods, employed by this project team, which
outlined the procedure used to implement our system design. Our team researched methods for
obtaining engine RPM from both diesel and gasoline engines and designed the appropriate
conditioning circuitry for both. Once we completed specifying our system requirements we
implemented the design. The design was then packaged accordingly into one unit. The data
recorded by our device was then processed using Geographical Information Systems (GIS)
software called MaplInfo.

6.1. Diesel Engine RPM Monitoring

This section outlines the process in measuring the signal from a w-terminal and describes
the results our team encountered. This section also details the circuitry our project team designed
to condition the signals from the w-terminal.

6.1.1. W-Terminal Signal Measurements and Calculations

The design of the diesel engine RPM conditioning circuit was based on the measurements
made from an actual alternator on a diesel engine. Using a portable oscilloscope and a laptop our
team traveled to Cape Cod, Ma where we measured the alternator w-terminal signal on a diesel
boat. The actual engine we obtained measurements was a Volvo Penta Inboard Diesel
TAMDG63L/P*'. A photo of the diesel engine we tested is shown in Figure 20.

Figure 20: Volvo Penta TAMDG63L/P*

The alternator on the engine was a Valeo A13N234 alternator that supplied 12 Volts DC,
60 amps. A picture of the alternator is shown in Figure 21. One of the terminals on the alternator
is labeled as “W’, this is the terminal used to provide a tachometer signal from the engine.

! http://www.volvo.com/volvopenta/global/en-gb/marineengines/operators_manual/
* http://www.volvo.hu/NR/rdonlyres/AO02F3FF-24CC-44E3-BA01-35710D7D14D8/0/tamd63.pdf

32

Figure 21: Valeo A13N234 Alternator™

Several measurements were taken from the alternator using a portable oscilloscope and a
laptop. We used the Metex Instruments DG SCOPE-20Mhz digital oscilloscope for obtaining
measurements of the signal. APPENDIX A: DGSCOPE MATLAB Decoder Code details how
we transferred this signal to MATLAB for analysis. We recorded various waveforms from the W-
terminal at different engine RPM intervals.

CH1 Signal from file: 600rpm1.dso

Voltage (V)

Figure 22: W-Terminal Signal

3 http://www.go2marine.com/product.do?no=76732F

33

The plot of the waveform shown in Figure 22 shows the waveform recorded from the W-
Terminal on an alternator. By looking at the Fourier transform of the signal from Figure 22 we
came up with a relationship between alternator w-terminal signal frequency and actual engine
RPM after measuring various signals at different RPM intervals. The frequency magnitude
spectrum of the signal from the W-terminal, in Figure 22, is shown in Figure 23. The signal
from the W-terminal at approximately 600 RPM was a 243 Hz signal (Figure 22). We obtained
various recordings, of the signals at the W-terminal, for different engine RPM intervals.

Magnitude Spectra of CH1 Signal from file: 600rpm1.dso

8000

7000

6000

5000

4000

IF|

3000

2000

1000

Frequency f (Hz)

Figure 23: W-Terminal Signal Frequency Spectrum

The different intervals we measured engine RPM from the onboard tachometer and the

w-terminal signals respective frequency (Averaged out from several measurements) is shown in
Table 1.

Measured Engine RPM | W-Terminal Signal Frequency (Hz)
600 RPM 244.3 Hz
1000 RPM 384.57 Hz
1500 RPM 607.67 Hz

Table 1: Measured Engine RPM Vs. W-Terminal Signal Frequency

34

W-Terminal Sig. Frequency Vs. Engine RPM

650

600

550

500

450

400

350

W-Terminal Sig. Frequency (Hz)

300

1 1 1 1
600 700 800 900 1000 1100 1200 1300 1400 1500
Engine RPM

Figure 24: W-Terminal Sig. Frequency vs. Engine RPM Plot

Using the measurements from Table 1 we plotted the measured relationship between the
signal frequency and actual engine RPM; this plot is shown in Figure 24. Figure 24 clearly
shows how W-terminal frequency and engine RPM are proportional to each other. In fact, engine
RPM can be calculated from certain alternator parameters. These parameters include:

1. W-terminal signal frequency
2. Number of poles on an alternator
3. Pulley ratio

The number of poles on the alternator requires looking at the specific alternators data
sheet and the pulley ratio depends on the Equation 1:

DrivePulleyDiameter

PulleyRatio = -
AlternatorPulleyDiameter

Equation 1: Pulley Ratio Calculation

Equation 1 shows how pulley ratio is an actual ratio determined by the drive pulley
diameter and the alternator pulley diameter. This ratio can be calculated by measuring both
diameters and often times is specified in engine manuals. Typically in diesel engines there is a 3:1
pulley ratio.

35

The mathematical equation to calculate actual engine RPM in terms of alternator w-
terminal signal frequency, number of poles on the alternator, and the pulley ratio is shown by

Equation 2:

60Sec 1 N 1
Min AlternatorPoles PulleyRatio

RPM =W —TERMINAL(Sig _Freq _in_Hz)*

Equation 2: Diesel Engine RPM Calculation

6.1.2. W-Terminal Conditioning Circuitry Results

This section discusses the design of the conditioning circuit that conditions the alternator
signal. The output of our conditioning circuitry had to be a TTL compatible waveform since we
planned on driving one of the external interrupts on the microcontroller. Using the TTL
compatible signal to drive the external interrupts we calculated the signal frequency; this is

explained later in the Software Results section.

1 2
74L514
GND
3 4
urSo
saloia Gar]
S | 6
In?ut R1 7aLd14| YL
D1 g q
1.5k 9 |
7a d14| Yk
Sy
11| 18
2ardia| L
GND 13 12
7aLd14
VenD

Figure 25: W-Terminal Conditioning Circuit Schematic

The schematic shown in Figure 25 shows the conditioning circuit we designed to take the
w-terminal input and convert that signal to a TTL compatible signal. The w-terminal signal is
connected to the port labeled “IN” on the schematic. The resistor R1 limits the current of the w-
terminal signal (Figure 22) to protect the 5V zener diode D1 and the hex inverting Schmitt
trigger: 74LS14. If a waveform like Figure 22 is connected to the input “IN”, the 5V zener diode
D1 regulates the voltage of the input waveform (of about (-)8V to +8V) to approximately a OV to
+5V waveform. The resulting waveform at the input 1 of the 74L.S14 resembles a OV to +5V
square wave; however, this waveform is not as clean as a perfect square wave. The function of
the 74LS14 (Hex inverting Schmitt trigger) is to produce a TTL compatible signal at the output

36

“SQR”, that has the same frequency as the w-terminal signal at “IN”. The output signal at “SQR”
is supposed to resemble a perfect square wave. For an input signal like the w-terminal signal
shown in Figure 22 the output signal resembles the waveform shown in Figure 1.

CH1 Signal from file: 250HzCircout.dso

Voltage (V)

1 1 1 1
0 0.005 0.01 0.015 0.02 0.025
Figure 26: W-terminal conditioning circuit output

The function of this circuit is to produce a TTL compatible signal. The output of the
circuit shown in Figure 25 is shown in Figure 26. The output signal shown in Figure 26 is a
TTL compatible signal; it is “cleaner” square wave, with less noise, and is used to drive two of
the external interrupts on the microcontroller.

6.1.3. Summary

This section outlined the method used to record the tachometer signal from an alternator.
Using the w-terminal signal, engine RPM can be calculated using the w-terminal signal
frequency, the number of poles on the alternator, and the pulley ratio. This section also described
the conditioning circuitry designed by our team to interface the w-terminal signal to the
microcontroller.

6.2. Hardware Results

This section discusses the results from the hardware used to implement our design. To
implement all the different modules we separated the design between two printed circuit boards.

37

The complete schematics and layouts for these two PCB’s are included in APPENDIX E:
Motherboard Schematics and APPENDIX F: RPM Module Schematics of this document.
Implementing our design between two printed circuit boards allowed the possible use of the
motherboard for other functions using the same microcontroller.

6.2.1. Health and Safety Module

The basic function of the health and safety module is to provide temperature and readings
and measure the voltage output from the device’s power source. Our real-time embedded program
on the microcontroller then acts accordingly depending on the voltage and temperature readings it
gets (i.e. closes file on compact flash). The program explained in the Software Results section.

We used a LM7809 on the motherboard; wired the +9V DC output of the regulator to the
temperature sensor. The LM7809 regulator configuration is shown in Figure 27.

REG1
LM7809
[+12V C1 In c Out Co { +SR
p— om p—
B.33uF |2 0. 1uF

\Y

Figure 27: LM7809 Configuration from Motherboard

The output of the LM7809 is used to power the Analog Devices AD590KF temperature
sensor shown in Figure 28. This temperature sensor acts as a high impedance, constant current
regulator passing 1uA/K. The resistor R1 placed at the output of the current sensor creates a
voltage potential. At approximately +25°C the sensor outputs 298.2uA, as stated in the datasheet.
The resistor network, R1, creates a voltage potential of about 3.0V at +25°C. The voltage
potential at the output of the temperature then rises or drops accordingly to the ambient
temperature. One of the microcontroller’s ADC channels is connected to the output of the
temperature sensor, ADQ. The real-time program is designed to monitor the voltage at the output
of the temperature sensor using the ADC.

TEMP Temperature Sensor

aDe> 2| 1ouT
== R1

1k AD39OKF

Figure 28: AD590KF Temperature Sensor Configuration

38

Input DC VYoltage Monitor

+12
R2
| 73K
| ADL)
R3
13K

\/

Figure 29: Input Voltage Meter

The “Voltage Meter” shown in Figure 29 is just a simple voltage divider that takes taps
directly into the voltage powering the entire device. One of the microcontroller’s ADC channels
is connected to the output of the voltage divider, AD1. The real-time program is designed to
monitor the voltage at the output of the voltage meter using the ADC.

The health and safety module is placed directly on the motherboard so it can be
interfaced directly to the microcontroller without other connections. This is illustrated in
APPENDIX E: Motherboard Schematics.

6.2.2. RPM Module

The RPM module was designed on one PCB. The details of this printed circuit board are
shown in APPENDIX F: RPM Module Schematics. The RPM module contains two different
circuits that interface through the motherboard to the microcontroller. These two circuits function
differently; one is specifically for use on diesel engines and the other for gasoline engines.

The circuit shown in Figure 30 was previously explained in the W-Terminal
Conditioning Circuitry Results section and functions specifically for diesel engines. An
LM7805 voltage regulator was configured, like the circuit shown in Figure 32, to provide power
for the signal conditioning circuit shown in Figure 30.

39

The circuit shown in Figure 31 functions specifically for gasoline engines where an
inductive pickup is placed on the spark plugs. The LM2907 IC is a frequency to voltage converter
that receives the input from an inductive pickup placed on a spark plug and converts it to a
voltage that is read by an ADC channel on the microcontroller, AD4. The configuration of this
circuit was taken directly from the datasheet of the LM2907*. Software can then be used to
determine the respective frequency. Although this circuit was included in the design of our device
it has to undergo testing in order for the software design to be implemented. This circuit is also

pos

GND

74Lg

74Ld14|

74L9

Figure 30: Diesel Engine RPM Conditioning Circuit

powered by a LM7805 voltage regulator like the one shown in Figure 32.

u3
[Tacp—L{ TAacH N+ coLL TACHYCC
Hoinecra EmL P -
rd
R4 |,C'j (N o 18k
2 2leap 8
188k Ty ¢ Ic= 6 S
u TACHYCC Y+ GMD
8.01uF GND
8
SanD :L
GND
GND

Figure 31: Gasoline Engine RPM Conditioning Circuit

* http://www.national.com/ds/LM/LM2907 .pdf

40

1 LM78LBS 3
[+129—{In Out +5V
Com _l_
e 8. 1uF
GND GND

Figure 32: LM7805 Voltage Regulator Configuration

The circuit configurations described in this section were first tested and then designed on
PCB layout software. The photo shown in Figure 33 shows the final PCB board design for the
RPM module. As seen in the picture, this module has two long headers that connect to the
motherboard. The other headers are used to connect the board to their respective input signal
sources.

c.l.oo_" sabsnnnnsprnst

LT DT |

e

:

ST TErre=

Figure 33: RPM Module PCB Design

6.2.3. Power

The amount of current our device needs to operate was calculated by combining the
current requirements from the GPS, Microcontroller, LCD, and the RPM Module. The total
current drawn by the entire device is shown in Table 2.

Module Amount of Current
GPS 120mA
LCD 9mA
TERN FashCore-B 160mA
RPM Module 11mA
TOTAL= | 300mA

Table 2: Current Consumption of System

41

When considering a power source of two 12V, 7.0 Amp hour batteries and having the
device operational for only six hours a day we estimated the length of operation from a complete
battery charge. For a completely charged battery pack (Total 14.0 Amp hours), our device could
function for about seven and a half days[7.5 Days], approximately six hours per day, if it was
drawing about 300mA of current. This length of time is just about what we were expecting to
have the device operate for.

6.2.4. Summary

This section described the hardware our team implemented in designing our device. The
design and function of the Health and safety module and the RPM module was provided along
with schematics detailing the circuitry we implemented. It is important to note that the
microcontroller module simply connects to the headers of the motherboard. Also the GPS
module, the LCD module, and the RPM module connect to specific headers on the motherboard.
Detailed schematics showing the motherboard and the RPM module are shown in APPENDIX
E: Motherboard Schematics and APPENDIX F: RPM Module Schematics, respectively.

6.3. Software Results

This section presents the results, from a software standpoint, when the microcontroller
was programmed to bring functionality to the entire system. In addition, this section describes the
functions of our program by means of a software flow chart. A complete version of our C++
program source code is included in APPENDIX B: C++ Embedded Program Source Code.

The software flow chart of our embedded program is shown in Figure 34. The basic
operation of our code, from looking at this software flow chart, can be followed from the
initialization of variables down to the “Main Loop”. Our functions check to see which GPS string
type (From the GPS receiver) was received from the SER1 serial port. The program executes
different procedures depending on the GPS String.

If the GPS string is type “GPGGA” the program first parses for time and stores the most
recent time. It also parses for the number of satellites “in view” from the “GPGGA” string.

If the GPS string is type “GPRMC” the program stores it as the most recent GPS
coordinates on onboard memory.

If the GPS string is type “GPVTG” the program parses and stores the most recent
velocity.

42

Initialize Variables

l

Main Loop

v

Parse & Store
Most Recent Time

l

Parse & Store
Most Recent
Satellites

GPS String
Available?

YES

NO
v

Read ADC Channels:
Voltage; Temp

Store Most Recent
“GPRMC”String

YES—

Voltage & Temp OK?

Parse & Store

YES— Most Recent Vel

Button 1
Pressed?

Running = IRunning «YES

NO
Open File IF: Close File IF:
Temp && Volt = True |«N File Open? YES— Temp || Volt = False
NO && Running = True || Running = False

Disable Ext. Interrupts
YES— Get TMRO and TMR1 Values
Enable Ext. Interrupts

New Time = True
&&
Running = True

NO

Calculate Engine RPM

Display on LCD
Real Time Status

«YES Update LCD ?

Write String to File IF:
#Sats >= 4 &&
Vel >0 &&

File is Open

Figure 34: Diesel RPM Software Flow Chart

Once the program processes the current GPS string, it reads the ADC channels to read the
voltage (From Voltage Meter), and the temperature (From Temperature Sensor). It sets a Boolean
variable to represent if the voltage and temperature readings are within a correct range. If the
temperature and voltage readings are outside the given range, either the temperature or voltage
“statistic” is set to false signifying that one of them is invalid for device operation.

43

Then the program goes on to check to see if a button was pressed. Again it also sets a
Boolean function to represent if the button was pressed (Running is set to !Running if pressed).

The program then goes on to check to see if a file accessing the Compact Flash card is
open. If the file is not open, then the file is opened only if the voltage and temperature statistics
are true and if the button was not pressed (Running=True). If a file is currently open, the file is
only closed if the voltage or temperature statistics are false and if the button was pressed
(Running=False).

The program then checks if the time has changed (NewTime=True); this depends on
strings from GPS, and if the button was not pressed (Running=True). If these conditions are true
then the program enters the procedure that writes to compact flash.

The procedure that writes to compact flash first disables the external interrupts so it can
read from the timer 1 and timer 2 on the processor.

The AMD AMIS88ES processor has a pulse width demodulation (PWD) option that
enables us to measure an input signal’s frequency. The illustration in Figure 35 shows how the
timer 1 and timer 2 are used to measure the time elapsed for high and low edges of the waveform.
The program disables the external interrupts for a moment to capture the values read from the
timers and then re-enables the interrupts. If interrupts weren’t disabled there is a possibility an
interrupt is interleaved with the execution of the code that reads from the timers. This might lead
to erroneous measurements.

INT2 || T4 - INT2 Ints generated
>| TMR1 enabled
e — l«— TMRO enabled

Figure 35: Pulse Width Demodulation®

Combining the values from timer 1 and timer 2 yields the period, the program then
calculates the signal frequency based on the period of the waveform and then uses Equation
2Error! Reference source not found. to calculate the diesel engine RPM.

The program then writes to compact flash depending on conditions like the number of
satellites the receiver is tracking and if the file is open. Next the program updates the LCD screen
depending real time data like: voltage, temperature statistics, the calculation of RPM, and the
number of satellites “in view”.

The actual data recorded onto the Compact Flash card resembles the lines shown in
Table 3:

2 Am186 ™ES and Am188 ™ES Users Manual. Advanced Micro Devices, Inc. Http://www.amd.com

44

S3GPRMC,063403,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

SGPRMC,063404,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

SGPRMC,063405,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

SGPRMC,063406,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00
Table 3: Compact Flash Stored Data

The data is stored as a text file on compact flash and then GIS software can be used to
interpret the data graphically on a Venice, Italy city map. A description of the GIS software that
can be used to process this data and source code is included in APPENDIX C:
Maplnfo/MapBasic Software of this document.

6.4. Test Results

To test the device, we had to model the W-terminal signal (Figure 22) using an Instek
Function Generator (CFG-8219A). We used an input square wave like the one shown in Figure
36 to our W-terminal conditioning circuit. The output of the W-terminal conditioning circuit
resembled the waveform shown in Figure 26.

CH1 Signal from file: TESTWAVE.DSO

15 T T T T
L T T —
Morrhrs o Yo T N W S AVWHISY hotA]
R RS B B R e SRS EEEE B e e S
S 3 3 3 3 3
a) | | | | |
8) Hiuiel i s It et et Ed 1 e e A A A el
o 1 1 1 1 1
= 1 1 1 1 1
Sr-- i T I .
Wodw) e Lot b [Vrewmard | e
R
15 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (S)

Figure 36: Square Wave used to model the W-Terminal

45

The frequency of the input square wave (Figure 36) we connected to our W-terminal
conditioning circuit is shown by the image capture of the function generator in Figure 37. The
input square wave had a frequency of about 283 Hz.

Figure 37: Input Square Wave Frequency (283 Hz)

Our device measured an RPM of 708. This can be seen from the figure shown in Figure
38. When comparing the measured 708 RPM to an input signal having a frequency of 283 Hz we
used Figure 39 for comparison. As seen in Figure 39, these results are very close to the
theoretical values.

Figure 38: Device Displaying RPM in Real Time

The image in Figure 38 also shows how other modules in the device are functioning. The
device is displaying in the bottom line “T=Y V=Y SATS=0". This shows that the temperature
“T” is equal to “Y “for yes meaning good. Inversely if the temperature were bad “T” would be
equal to “N” for no meaning bad. The voltage “V” is equal to “Y “for yes meaning good.
Inversely if the input voltage levels were bad “V” would be equal to “N” for no meaning bad. The
device also shows the number of satellites in view, currently “SATS=0" because we tested the

46

device indoors. The device only starts to record data once “SATS=04" or the number of satellites
in view is greater than 3 (More accurate coordinates).

Theoretical W-Terminal Freq. (Hz) vs. RPM Relationship

400

350

300

250

200

W-Terminal Signal Frequency (Hz)

150

100

Engine RPM

Figure 39: Theoretical W-Terminal Freq. vs. RPM Relationship

6.5. Summary

This chapter presented the results of our system design. The design of the RPM module
was discussed in detail; detailing the input signals expected to drive the signal conditioning
circuitry as well as the expected outputs. The design of hardware such as the health and safety
module was also illustrated. The power requirements of the system were detailed as well as the
expected length of time the device can operate, for a fully charged battery pack. In addition to the
hardware results, our team presented the software implemented in bringing functionality to the
entire system; software flow charts and source code were included as reference. The tests we
performed on our system were all done using signals that model the W-terminal signal from a
diesel engine. We verified that the tests matched the theoretical results for measuring diesel
engine RPM.

47

7. Summary and Conclusions

This chapter summarizes the work completed by our project team at Worcester
Polytechnic Institute. The project objectives that were accomplished, with the intent of meeting
the project goal, are also reviewed. The overall goal of this project was to develop an automated
data collection system that can be installed in motorboats propelled by either diesel or gasoline
engine(s) to monitor and store engine RPM as well as GPS positional data, for boats that navigate
the Venetian lagoon.

7.1. Summary of Project Design, System Design and
Results

To complete our project design we followed a methodology that consisted of researching
how to measure engine RPM for both diesel and gasoline engines, establishing our system
requirements, building our system from those system requirements, and finally processing the
data produced by our device to provide analysis.

Our system design consisted of various modules, these modules are listed below:

1. GPS Module

2. LCD Module

3. Health and Safety Module
4. RPM Module

5. Microcontroller Module
6. Motherboard

The GPS module consisted of a GPS receiver that output NMEA string serially to the
microcontroller. The GPS receiver transmitted information like: date, time, number of satellites in
view, velocity, and coordinates among other things.

The LCD module was another stand alone unit, like the GPS receiver, that received serial
data from the microcontroller to display information for the user. The data that was displayed on
the LCD display consisted of real time engine RPM readings, temperature and power source
voltage levels, as well as the number of satellites the device was currently using to store GPS
related data.

The health and safety module allowed the device to monitor ambient temperature’s as
well as power source voltage levels. This module provides a means of letting a user know of a
fault that is causing the system function incorrectly. It also allows the microcontroller to stop
writing to compact flash so that data does not become corrupted.

The RPM module’s function is to condition signals from the W-terminal on a diesel
engine, and from an inductive pickup placed on gasoline engines spark plugs. These signals are
conditioned so that they can be interfaced to the microcontroller for processing and engine RPM
calculation.

48

The microcontroller’s function is to provide data processing, displaying data, and for data
storage on compact flash. In essence the microcontroller is interfaced with all the other modules
for complete system integration by way of the motherboard.

The motherboard provides a means to interconnect all the different modules to the
microcontroller. It also allows the device to function in modules and different modules could be
added to provide for other functions.

Our project team was able to successfully implement all these modules in hardware. In
addition we also wrote the software that allowed the system to properly function as an automated
data collection system for monitoring a diesel engines RPM.

The resulting data acquisition unit was packaged for use, the system, however, was not
tested on the field. Current results are based off inputs that resemble the types of signals from the
W-terminal on an alternator field; further testing is required.

7.2. Overall Assessment, Future Work

While our team successfully modeled, developed, and implemented our system design
there still remains many challenges in the testing stages and post processing stage. The project
completed many of its primary objectives. Overall our project team:

1. Developed a method for determining engine RPM from both diesel and gasoline engines
2. Developed a prototype for an embedded system that can store engine RPM readings and
GPS coordinates on external memory, and provide the user with relevant information.

3. Wrote the software to bring all the components of the device together.

Some future work includes the part of our design describing the use of an inductive
pickup placed on gasoline engines spark plugs. This also needs to be tested for functionality and
have software implemented. Since we designed a modular system, this function could be easily
implemented if a different direction (Instead of the inductive pickup option) is desired.

In addition the current system has to undergo various field tests. At the completion of this
project our team was unable to test the device on a diesel motorboat. The results that we achieved
were based on signals resembling the expected W-terminal signals from a diesel engines
alternator.

Once field tests are completed, future work would involve using the geographical
information systems (GIS) software we provided to prepare the data files produced by our system
for mapping on a Venice, Italy city map. The purpose of the post processing needed for this data
is that a correlation has to be made between engine RPM and damage caused to Venetian canal
walls.

Engine RPM is related to underwater turbulence because it shows how fast an engine’s
propellers are moving; future work may be in the finding ways to correlate instances of RPM to
the underwater turbulence that causes underwater damage. Furthermore, instances of engine RPM
has to be correlated with damaged canal walls.

The current packaging of the device is also a little big. The whole device could be
designed to fit a much smaller enclosure. Having the device plug into a boats electrical system for

49

power could also be an option for making the device more portable. Power requirements of the
system should be considered when attempting to make the entire system consume less power; we
feel the device could draw much less current with modern GPS units, and other components.

Once these issues are assessed, the operation of a device like the one our project team,
that is correctly implemented could potentially aid the city of Venice, Italy in the efficient release
of canal repair resources. In addition, this tool could aid city planners in the monitoring of
underwater turbulence caused by engine propellers, and find correlations between them and canal
wall damage.

7.3. Conclusions

Our team successfully implemented an automated data collection system that can be
installed in motorboats propelled by diesel engines to monitor and store engine RPM as well as
GPS positional data, for boats that navigate the Venetian lagoon. This document outlines the
design process our project team followed in building a working prototype for this automated data
collection system. Options in having this device placed in gasoline motorboats have to be tested
and implemented. In addition, the post processing of data stored on compact flash by our system
has to be considered after multiple field tests are conducted. In addition to the design of our
system we also presented different considerations that should be taken to improve the
functionality of the device and system. Future designs and methods could serve as a tool for
aiding the city of Venice, Italy in the repair of damaged canal walls.

50

8. References

Introduction
This chapter lists the references used for this report. The list ordered by the sequence each
reference appears in the main text. Each reference number corresponds to the appropriate
footnote in the main text.

1. Carrera, Fabio and Caniato, Giovanni. “Venezia la Citta Dei Rii”. Pg. 149

2. Chiu, Jagganath, and Nodine. "The Moto Ondoso Index” IQP. Worcester
Polytechnic Institute, July 2002

3. http://www.eramarble.com/eng/projects/main.html

4. Chiu, Jagganath, and Nodine. "The Moto Ondoso Index” IQP. Worcester
Polytechnic Institute, July 2002

5. Chiu, Jagganath, and Nodine. "The Moto Ondoso Index” IQP. Worcester
Polytechnic Institute, July 2002

6. Moto Ondoso can be roughly translated to mean “wake impact”

7. Chiu, Jagganath, and Nodine. "The Moto Ondoso Index” IQP. Worcester
Polytechnic Institute, July 2002

8. Chiu, Lacasse, and Menard. “Mapping Turbulence in the Canals of Venice”
MQP. Worcester Polytechnic Institute, January 2004

9. http://www.garmin.com

10. http://www.garmin.com/products/gps25/

11. http://www.garmin.com/products/gps25/

12. http://www.garmin.com/manuals/GPS25LPSeries TechnicalSpecification.pdf

13. http://www.crystalfontz.com

14. http://www.crystalfontz.com/products/632/index.html

15. http://www.crystalfontz.com/products/632/index.html

16. http://www.crystalfontz.com/products/632/data_sheets/CFA-632 v2.0.pdf

17. http://www.tern.com

18. FlashCore—B(FB)TM Technical Manual. Tern Inc. http://www.tern.com

19. FlashCore—B(FB)TM Technical Manual. Tern Inc. http://www.tern.com

20. FlashCore—B(FB)TM Technical Manual. Tern Inc. http://www.tern.com

51

21.
22.

23.
24.
25.

26.

http://www.volvo.com/volvopenta/global/en-gb/marineengines/operators _manual/

http://www.volvo.hu/NR/rdonlyres/A002F3FF-24CC-44E3-BAO1-
35710D7D14D8/0/tamd63.pdf

http://www.go2marine.com/product.do?no=76732F

http://www.national.com/ds/LM/LM?2907.pdf

Am186 ™ES and Am188 ™ES Users Manual. Advanced Micro Devices, Inc.
Http://www.amd.com

FlashCore-B(FB)™ Technical Manual. Tern Inc. http://www.tern.com

52

APPENDIX A: DGSCOPE MATLAB Decoder Code

The MATLAB code provided in this appendix allows for the decoding of files
downloaded from the Metex Instruments DG SCOPE 20MHz Oscilloscope. To download files
from the oscilloscope it requires use of their proprietary software and saving those files to a
directory. Once a file has been downloaded onto a PC, place the “.DSO” file under the same
directory as the “.M” file containing the code from the MATLAB Code section. Be sure to name
the MATLAB file containing the code: “decode.m” and set the current working directory to the
folder where “decode.m” is placed. The decoding function can be called in MATLAB by typing
the following in the command window:

decode('FILENAME.DSQO");

Once the code executes, both the signal waveform and the frequency spectrum of the
waveform is shown. A Screen capture showing the command window is shown in Figure 40.
Changing the views on the output waveforms can be modified using the plot parameters in the
end of the MATLAB code.

File Edit Debug Desktop ‘Window Help

D@ & B@ - o Wl | 2 curentDirectory | CDocuments and Seftingsiose BracheDeskiop#aPIDG-Scops View Manipulstions-Terminal Waveforms

Shortcuts [2] How to Add [2] What's New

Current Directory - C:\Documents and Settings\Jose BracheWesktop\MQPWIG Scope ... ® X | |Command Windaw
o 5 (@B
All Flles ~ | File Type | Last Mosified | Description To ger seurced, setect BATLES Hely ob
[1000RPM1.DSO DSO File Sep 18, 2006 1:49.23 ..
[} 1000RPM20S0 DSO File Sep 18, 2005 1:50:17 ... =% Hecode [(TO0HEAn, Aae Y
[} 1000RPM3.DSO DSO File Sep 18, 2005 1:51:40 ...)
[} 1500RPM1.DSO DSO File Sep 18, 2005 1:52:42 .. ot
[} 1500RPM2.D50 DSO File Sep 18, 2005 1:54:05 .. Hoe § FRESkEH 13
[} 1500RPM3.DSO DSO File Sep 18, 2005 1:55:26 ...
[} 250HzCircOut.DSO DSO File Apr 17, 2006 1:07:09 .. N —
() B00RPM1.DS0 DSO File Sep 18, 2005 1:46:30 ...
[} G0ORPM2,DS0 DSO File Sep 18, 2005 1:47:44 ... Coltnie 15 chsough 34
decode. asy ASY File Oct 24, 2005 5:.11:18 ...
[decode.m h-file Oct 24, 2005 5:13:48 .. | 4.8000 3.4000 3.z2000 2.80C
RF'M to Freq Relati... M-file Sep 20, 2005 £:45:50 ...

Columns 25 through 36

=2 _AONN 7 .Aannn A . RONN R.2nr

Figure 40: MATLAB Command Window

1. MATLAB Code

function [n1, n2, fs] = decode(file)
fid = fopen(file, 'r');

¢ = fread(fid, *uint8', 'b");
fclose(fid);

%
% IDENTIFY AND SET THE SCALE PER DIVISION BEING USED

53

% After playing around with all the possible voltage division
% combinations, the HEX value for all the possible scales was
% identified. The HEX value is stored in c(6) for CH1 and c¢(12) for CH2.
% These two variables: ampopt and ampscale are used to set up the correct
% scale in the loops where the array's n1 (CH1) and n2 (CH2) are created.
ampopt = [00 01 02 03 04 05 06 07 08];
ampscale = [1/4000 1/2000 1/1000 1/400 1/200 1/100 1/50 1/20 1/10];

% 00 5SmV/Div scalar = 1/4000;
% 01 10mV/Div scalar = 1/2000;
% 02 20mV/Div scalar = 1/1000;
% 03 50mV/Div scalar = 1/400;
% 04 100mV/Div scalar = 1/200;
% 05 200mV/Div scalar = 1/100;
% 06 500mV/Div scalar = 1/50;
% 07 1V/Div scalar = 1/20;

% 08 2V/Div scalar = 1/10;

%
% SET UP ARRAY n WITH CORRECT DATA POINTS FROM THE HEX FILE
% First checks if the mode being used includes channel 1 or channel 2 or
% both and then checks the timing scale being used for both channels
% accordingly to fit the array n with the correct data points. See notes
% for time scale to undrestand how number of samples is different for
% certain sampling rates.

Yo------------—- EXCLUSIVELY FOR CH1
if (c(4) ~=01); % Check if Channel 1 is used
1=46;
x=1;
if (03 < ¢(18)) & (c(18) < 20); % Check what timing scale is used
while ((1) <= 3884); % If timing scale is between values
nl(x) = c(i); % in the scale check then all the
nl = double(nl); % data points are in this segment of
if (n1(x) <= 80); % the file (CH1)
nl(x) = abs(n1(x)-128);
else
nl(x) = -1*(nl(x)-128);
end
1=1+2;
X = X+1;
end
else
while ((i) <= 524); % If the timing scale is out of the
nl(x) =c(); % bounds set above then this is
nl = double(nl); % the segment where CH1 is stored

if (n1(x) <= 80);

nl(x) = abs(nl(x)-128);
else

nl(x) = -1*(n1(x)-128);
end

54

1=1+2;
X = X+1;
end
end

% This while loop identifies the scale used for the channel and applies
% it to the respective array

i=1;
while 1 <= 9;
if (c(6) == ampopt(i));
nl =nl .* ampscale(i);

1=9;
end
1=1+1;
end
else
nl=0
end
Yo-------------- EXCLUSIVELY FOR CH2
if (c(4) ~= 00); % Check if Channel 2 is used
1=3888;
x=1;
if (03 < ¢(18)) & (c(18) < 20); % Check what timing scale is used
while ((i) <= 7726); % If timing scale is between values
n2(x) = c(i); % in the scale check then all the
n2 = double(n2); % data points are in this segment of
if (n2(x) <= 80); % the file (CH2)
n2(x) = abs(n2(x)-128);
else
n2(x) = -1*(n2(x)-128);
end
1=1i+2;
X = X+1;
end
else
while ((1) <= 4366); % If the timing scale is out of the
n2(x) = c(i); 9% bounds set above then this is
n2 = double(n2); % the segment where CH2 is stored
if (n2(x) <= 80);
n2(x) = abs(n2(x)-128);
else
n2(x) = -1*(n2(x)-128);
end
1=1+2;
X = X+1;
end
end

% This while loop identifies the scale used for the channel and applies

55

% it to the respective array
i=1;
while 1 <= 9;
if (c(12) == ampopt(i));
n2 =n2 .* ampscale(i);
1=9;
end
1=1+1;
end
else
n2 =0;
end

%
% IDENTIFY AND SET THE TIMING SCALE
% An explanation for the numbers in timescale below:

% DG-Scope uses 1920 samples to hold data sampled at a specific rate, I
% figured out that, for the most part, it uses 96 time divisions to

% display the entire signal of 1920 samples. The total amount of time

% that the scope gathers data is defined as: (Number of

% Divisions)*(SweepTime/Division)=Total Time. I used the logic that
% after 1920 samples there would be 96 divisions, 96 divisions

% multiplied by the SweepTime/Division yields the total SweepTime. As
% you can see from the table below, this method is used to determine the
% respective timing scale from the waveform. Since the file is in HEX it
% took some time to determine where this timing scale is saved. That is
% where timeopt comes in, timeopt holds the values for all the possible

% timing scales DG-Scope uses. I use a while loop below to first
% identify what is the timing scale and then link it with the actual
% value of the timing scale.

% IMPORTANT NOTE
% The time divisions below that have an asterisk were noted not to
% follow this characteristic. These only use the first 240 samples to
% display useful data.

timeopt = [00 01 02 03 04 0506 07 08 09 10 11 1213 14 1516 17 18 19 20 21 22 23]

timescale = [

12/240%50*10"(-9) %00 * 50ns/Div timediv = 50%107(-9);
12/240%0.1*%107(-6) %01 * 0.1us/Div timediv = 0.1*%107(-6);
12/240%0.2*%107(-6) %02 * 0.2us/Div timediv = 0.2%10/(-6);
12/240*0.5*%107(-6) %03 * 0.5us/Div timediv = 0.5%10/(-6);
96/1920*1*10"(-6) %04 1us/Div timediv = 1¥107(-6);
96/1920%*2*10"(-6) %05 2us/Div timediv = 2*¥10"(-6);
96/1920*5%10"(-6) %06 Sus/Div timediv = 5*¥107(-6);
96/1920*10*107(-6) %07 10us/Div timediv = 10%10/(-6);
96/1920*20*10°M(-6) %08 20us/Div timediv = 20%10(-6);
96/1920*50*107(-6) %09 50us/Div timediv = 50*%10/(-6);
96/1920%0.1*%107(-3) %10 0.1ms/Div timediv = 0.1¥107(-3);
96/1920%0.2*%107(-3) %11 0.2ms/Div timediv = 0.2*107(-3);
96/1920%0.5*%101(-3) %12 0.5ms/Div timediv = 0.5%107(-3);

56

B

96/1920*%1*10"(-3) %13 1ms/Div timediv = 1*107(-3);

96/1920%2*10/(-3) %14 2ms/Div timediv = 2*107(-3);
96/1920*5*107(-3) %15 Sms/Div timediv = 5*107(-3);
96/1920*10*107(-3) %16 10ms/Div timediv = 10¥107(-3);
96/1920%20*107(-3) %17 20ms/Div timediv = 20%107(-3);
96/1920%50*107(-3) %18 50ms/Div timediv = 50*107(-3);
96/1920*0.1 %19 0.1s/Div timediv = 0.1;
12/240%*0.2 %20 * 0.2s/Div timediv = 0.2;
12/240*0.5 %21 * 0.5s/Div timediv = 0.5;
12/240*1 %22 * 1s/Div timediv = 1;
12/240%2 %23 * 2s/Div timediv = 2;
15

1i=1;

while i <= 24;

if (c(18) == timeopt(i));
timescalar = timescale(i);
i=24;
end
i=1+1;
end

format short;
fs = 1/timescalar;
%

% FOR DISPLAYING THE SIGNAL AND FREQUENCY SPECTRUM FOR
% DIFFERENT MODES

Gl MODE: CHI
if (c(4) == 00)

x = (1:length(nl)) .* timescalar;
samples = length(n1);

tl = O*samples * (1/fs);

t2 = samples * (1/fs);

% Sets the amplitude scale to about +-3/2 of the actual max amplitude for
% CHI
if (max(n1) >= abs(min(nl)));
amp = max(nl) * 3/2;
else
amp = abs(min(nl)) * 3/2;
end

% ORIGINAL SIGNAL PLOT
figure()

plot(x, nl)

grid on

57

title(['Aquired signal in CH1 from file: ', file]);
xlabel('Seconds")

ylabel('Volts")

axis([t] t2 -amp amp])

% FREQUENCY SPECTRUM PLOT
fF1 = abs(fft(n1));

df1 = fs/length(fF1);

fl =0 : df1 :(Iength(fF1)-1) * df1;

figure()
plot(f1, fF1)
grid on

famp = max(fF1) * 3/2;

axis([0 max(f1)/2 -(famp)/10 famp])

title(['Magnitude Spectra of Signal in CH1 from file: ', file]);
ylabel('lFI');

xlabel('Frequency f (Hz)");

S — MODE: CH2
elseif (c(4) == 01)

x = (1:length(n2)) .* timescalar;
samples = length(n2);

tl = O*samples * (1/fs);

t2 = samples * (1/fs);

% Sets the amplitude scale to about +-3/2 of the actual max amplitude for
% CH2
if (max(n2) >= abs(min(n2)))
amp = max(n2) * 3/2;
else
amp = abs(min(n2)) * 3/2;
end

% ORIGINAL SIGNAL PLOT
figure()

plot(x, n2)

grid on

title(['Aquired signal in CH2 from file: ', file]);
xlabel('Seconds")

ylabel('Volts")

axis([t] t2 -amp amp])

% FREQUENCY SPECTRUM PLOT
fF2 = abs(fft(n2));

df2 = fs/length(fF2);

f2 =0 : df2 : (length(fF2)-1) * df2;

58

figure()
plot(f2, fF2)
grid on

famp = max(fF2) * 3/2;

axis([0 max(f2)/2 -(famp)/10 famp])

title(['Magnitude Spectra of Signal in CH2 from file: ', file]);
ylabel('lFI');

xlabel('Frequency f (Hz)");

L — MODE: DUAL
elseif (c(4) == 02)

x = (1:length(nl)) .* timescalar;

% PLOT
figure()

plot(x, nl, x, n2)
grid on

title(['Aquired signal in DUAL Mode from file: ', file]);
xlabel('Seconds")
ylabel('Volts")

S — MODE: ADD
elseif (c(4) == 03)

addmode = nl + n2;

x = (1:length(addmode)) .* timescalar;
samples = length(addmode);

tl = O*samples * (1/fs);

t2 = samples * (1/fs);

% Sets the amplitude scale to about +-3/2 of the actual max amplitude for
% CHI1 + CH2
if (max(addmode) >= abs(min(addmode)))
amp = max(addmode) * 3/2;
else
amp = abs(min(addmode)) * 3/2
end

% PLOT

figure()

plot(x, addmode)
grid on

title(['Aquired signal in ADD Mode from file: ', file]);
xlabel('Seconds")

ylabel('Volts")

axis([tl t2 -amp amp])

59

O MODE: SUB
elseif (c(4) == 04)

submode =nl - n2;

x = (1:length(submode)) .* timescalar;
samples = length(submode);

tl = O*samples * (1/fs);

t2 = samples * (1/fs);

% Sets the amplitude scale to about +-3/2 of the actual max amplitude for
% the CHI1 - CH2
if (max(submode) >= abs(min(submode)))
amp = max(submode) * 3/2;
else
amp = abs(min(submode)) * 3/2
end

% PLOT
figure()

plot(x, submode)
grid on

title(['Aquired signal in SUB Mode from file: ', file]);
xlabel('Seconds")

ylabel('Volts")

axis([tl t2 -amp amp])

Jo----=--===-===-- MODE: X-Y
else
% Sets the time scale to about +-3/2 of the actual max amplitude for
% CHI1 (X)
if (max(n1) >= abs(min(nl)));
ampl = max(nl) * 3/2;
else
ampl = abs(min(nl)) * 3/2;
end
% Sets the amplitude scale to about +-3/2 of the actual max amplitude for
% CH2 (Y)
if (max(n2)>= abs(min(n2)))
amp?2 = max(n2) * 3/2;
else
amp2 = abs(min(n2)) * 3/2;
end

% PLOT
figure()
plot(nl, n2, ")
grid on

title(['Aquired signal in X-Y Mode from file: ', file]);
xlabel('CHI1 (Volts)")

60

ylabel('CH2 (Volts)")
axis([-amp1 amp1 -amp2 amp?2])
end
return

61

APPENDIX B: C++ Embedded Program Source Code

The source code provided in the Program Source Code section of this appendix
comprises the entire operation of the device from a software standpoint. A software flow chart is
included in Figure 41 to provide a functional top level view of our program. Some other
functions defined in other header files are not included in this document. Please explore the files
included in the [Paradigm C++ Light — Tern Edition IDE] CITYLAB project file. In addition to
these files please see the TERN FlashCore-FB technical manual®® for the description of the
functions controlling the FlashCore-B provided by TERN. This code was specifically written for
use when the device is connected to the W-terminal of a diesel engine.

?6 FlashCore-B(FB)™ Technical Manual. Tern Inc. http://www.tern.com

62

Initialize Variables

l

Main Loop

Running = IRunning

Open File IF:
Temp && Volt = True
&& Running = True

N

Display on LCD
Real Time Status

«YES

+YES

GPS String
Available?

NO
v

Read ADC Channels:
Voltage; Temp

Voltage & Temp OK?

Button 1
Pressed?

NO

File Open?

New Time = True
&&
Running = True

NO

Update LCD ?

YES

YES—

YES—

Close File IF:
Temp || Volt = False
|| Running = False

v

Parse & Store
Most Recent Time

l

Parse & Store
Most Recent
Satellites

Store Most Recent
“GPRMC”String

Parse & Store
Most Recent Vel

Disable Ext. Interrupts
Get TMRO and TMR1 Values
Enable Ext. Interrupts

Calculate Engine RPM

Write String to File IF:
#Sats >= 4 &&
Vel >0 &&

File is Open

Figure 41: Diesel RPM Software Flow Chart

extern "C" {

1. Program Source Code

[/ st st ste st e e ke sheshestestese s s ke she sfesteste st s ke she sfesfesteste st s st ske e stestestese s s ke stesfestese sk sk e sfestestestestestosloskostestetokoiokokoskoslolokokok

For C++ object files (.cpp), TERN header files must be
declared as "C" objects.

63

#include " .h"

#include " .h"
#include " .h"
}
3-10-03

- Also, if you're using C++ classes (even if you don't instantiate
objects dynamically), you will need to define a non-zero heap.
Take a look at the 'readme.txt' to see how to define a heap using
heapsize.c
***/
extern "C" {
#include "ae.h" // AES8S initialization */
#include "serl.h"
#include "fileio.h"
#include "string.h"
#include "stdio.h"
#include "adc.h"
#include "math.h"
}
#include <dos.h>
#include <string>
#include <stdlib.h>
#include "gpsstringreader.h"

#define BUFFSIZE 1024

#ifndef NULL
#define NULL 0
#endif

unsigned char inBuff{[BUFFSIZE];
unsigned char outBuff[BUFFSIZE];
extern COM serl_com;

COM* coml = &serl_com;

unsigned int adat[8];
unsigned int fb_ad16(unsigned char k);

/I Control bytes for single ended, internal clock mode of ADS8344

/I'S A2 A1 A0 - SGL/DIF PD1 PDO, 1xxx 0110

unsigned char c_byte[] = {0x86,0xc6,0x96,0xd6,0xa6,0xe6,0xb6,0xf6 };
enum {TEMP, VOLT, POT, DIESEL, GAS};

//ad0 temp

/lad1 volts

/lad2 pot holes

/lad3 diesel

/lad4 gas

[/ st st steste s e she ke shestestese s s ke ke sfesteste st s s sk sfesfestesteste st st skestestesteste skl stestetosiokokoskoskolokolor

* Function: double ConvertVolts(unsigned int Hexval)
* Output: type double representing value in Volts

64

%

* where: int adcVal is value read from ADC (Decimal)
**/

double ConvertVolts(unsigned int adcVal) /I Change value read in from
{

double retVal=adcVal;

retVal /= OxFFFF;

retVal *=5;

return retVal;

}***

* Function: int FindNumSats(const char* gpsStr)

* Output: type int the number of satellites according to
* GPS string

k

*

where: gpsStr is the GPS string type '$GPGGA'

e sfe e sfesfeste st s s st she st stestesteseste ke steste ke stttk skt stestestetololokokokotoekoiokokokoskoloksiololokoskokoek /

int FindNumSats(const char* gpsStr)

{
const char* curTok = gpsStr+41;
int retVal = ((curTok[0]-0x30)*10)+(curTok[1]-0x30);
return retVal;
}
/***
* Function: int FindVelocity(const char* gpsStr)
* Output: type int the velocity in knots (without decimal point) as parsed
* from the GPS string
&
&

where: gpsStr is the GPS string type '$GPVTG'

e e e e sfeste st s s st ke ste st st stk stestestestesiestokskesteststestetololokokokotokosiolokokoskoloksiololokokokok /

int FindVelocity(const char* gpsStr)

{
const char* curTok = gpsStr+19;
int retVal = ((curTok[0]-0x30)*1000)+((curTok[1]-0x30)*100)+((curTok[2]-
0x30)*10)+((curTok[4]-0x30));
return retVal;
}

[/ stestesteste st e st sheste st stesie s s ke ke sheste st st sk skeste st stesteste stttk st stekosiololoskokotokosiokokokokokokokor

Function: void UpdateLcd(char* topLine, bool tStat, bool vStat, int numSats)
INPUT: char* topLine - String holding the characters to be disp. On the
Top Line
bool tStat - Temperature Status
bool vStat - Voltage Status
int numSats - Number of Satellites

EE R S R B G I SR

The topLine is outputted to the LCD display serially. The bottomline

is then outputted after tStat, vStat, and numSats are put together.
**/

void UpdateLcd(char* topLine, bool tStat, bool vStat, int numSats)

{

65

}

char bottomLine[17];
char* tempStr;
char* voltStr;

if(tStat) /I If temp status is true, temp is 'Y, else N
tempStr="Y";

else
tempStr = "N";

if(vStat) /I If voltage status is true, voltage is 'Y', else 'N'
voltStr="Y";

else
voltStr = "N";

sprintf(bottomLine, "T=%s V=%s SATS=%i", tempStr, voltStr, numSats);

putser1(\f', coml); // Clear LCD

putsers1(topLine, com1); // Place topLine on first line

putserl(\n', com1); // New Line

putser1(\r', coml); /I Carriage Return

putsers1(bottomLine, com1); // Output bottomLine

#define MAX_TEMP 0xCCCC
#define MIN_TEMP 0x3333

#define MAX_VOLT 0x80F0
#define MIN_VOLT 0x5300

#define MIN_SATS 0
#define MIN_VEL -1

#define MIN_HZ 0

void interrupt far int2_isr(void);
void interrupt far int4_isr(void);
void interrupt far t2_isr(void);

unsigned int ta,tb,tm,t0_cnt,t1_cnt,t2_cnt;

void main(void){

ae_init(); // A-Engine initialization

for(int 1=0;i<=5;1++) // Delay for about 5sec to wait for GPS
delay_ms(999);

pio_init(9, 1); // A19=P9 as input for ADC data output DOUT
pio_init(2, 0); // P2 as PCS6
for(int 1=0; 1<8; i++)

outportb(0x600+i, 0xff); /I All control pins high

[st stesteste st st sheshestestestesie s s ke stestestestesieloskskeste st stestekosiolokokostokokoiolokokoskokek /

66

pio_init(26, 3);

/[Intialize the serial port
unsigned char baud = 7;

// Button Init as an input

// baud rate for the serial port

s1_init(baud, inBuff, BUFFSIZE, outBuff, BUFFSIZE, coml);

// Initialize flash
fs_descrip* file = NULL;

if(fs_initPCFlash()!=0)
{

putserI(\f', com1);

putsers1("Restart with", com1);

putser1(\n', coml);
putser1('\r', coml);

putsers1("Compact Flash", com1);

while(1)

delay_ms(999);

}
char* topLine = NULL,;

bool tStat = false;
bool vStat = false;

bool needUpdate = true;

bool running = true;
bool butDown = false;
bool record = false;

GPSStringReader sr(coml);
char* gpsStr = NULL;

char curGPS[60] ="";

int numSats = -1;

led(0);
char strType[6] = {0,};

char strnewTime[7] ="";

char strTime[7] = "";
int Vel =0;

/I topline of the display

/[temp status
/I volt status

/I need to update the lcd?

/' All ENV ok or Button pressed?
// Button pressed?
/I Has one second elapsed for next recording?

/I Object to read GPS strings

/I 'The string being read in from GPS

/I 'The last gps string we care about

// 'The current number of satellites in view

/I Array that holds GPS String type ex. '$GPGGA'
// String holding new time

/l String holding current time

/I ' Velocity in knots

double t1, tInew, t0, tOnew, duty, T, Hz, RPM=0;

int iRPM,iHz,telapse=0;

/[Pulley factor is alternator pulley diameter divided by crank pulley diameter

double pulleyRatio = 0.333333;

// Obtain from manufacturers data sheet (6, 8, 10, etc.)

double alternatorPoles = §;

[st steste st e ke ke shestestestese s s ke e sfesteste stk skesfesfesteste st sl steslesteteiolokokoskokok /

67

t0_cnt=0;
tl_cnt=0;

int2_init(1,int2_isr);
int4_init(1,int4_isr);

ta=(unsigned int)Oxffff; // MAXCOUNT
tb=(unsigned int)Oxffff; //

tm = 0xc009; // start timerO, int. enabled, external counts
tO_init(tm,ta,tb,int4_isr);

tm = 0xc009; // start timerl, int. enabled, external counts
t1_init(tm,ta,tb,int2_isr);

/1 40 MHz, 25x4=100 ns per timer clk

ta=(unsigned int)10; // pre-scale for timer0 & timer] .1us*10 = lus
tm = 0xc001; // start 1/4 clk countdown, int. disabled
t2_init(tm,ta,t2_isr);

outport(0xfff0, inport(0xfff0)l0x1000); //Enable PWD
pio_init(31,0); /Mnit INT2

/**/
while(true){ //main loop

if(gpsStr = sr.GetString())

{
for(int i=0;i<5;i++)
strTypeli] = gpsStr[i+1]; /l Parses for string type
if(Istrcmp(strType, "GPGGA")) /I GPS string is 'GPGGA'
{
for(int c=0;c<6;c++) /I For extracting Time
strnewTime[c]= gpsStr[c+7];
int newNumSats = FindNumSats(gpsStr);
if(newNumSats!=numSats) /I Need to change display
{
numSats = newNumSats;
needUpdate = true;
}
if(strcmp(strnewTime, strTime)!=0) // Need to record if sec elapsed
{
strepy(strTime, strnewTime);
record = true;
}
}
if(!strcmp(strType, "GPRMC")) /I GPS string is 'GPRMC'

68

strncpy (curGPS, gpsStr, 59);

if(Istrcmp(strType, "GPVTG")&&(numSats>=MIN_SATS))
/I GPS string is 'GPVTG'

{
int newVel = FindVelocity(gpsStr);
if(newVel!=Vel) /I need to change display
{
Vel = newVel;
/I needUpdate = true;
}
}

}

/**/
//Update values from ADC

for(int 1=0; 1<5; i++)
adat[i] = fb_ad16(c_bytel[i]);

if(tStat)
{
if((adat[TEMP]<MIN_TEMP)ll(adat| TEMP]>MAX_TEMP))
{
tStat = false;
needUpdate = true;
}
}
else
{
if((adat[TEMP]>MIN_TEMP)&&(adat[TEMP]<MAX_TEMP))
{
tStat = true;
needUpdate = true;
}
}

[st st steste s st ke shestestesteste s sk sk ke steste ste stttk stestestetolokokokototokoiololokoskololkoiokokok /

if(vStat)
{
if((adat[VOLT]<MIN_VOLT)ll(adatf VOLT]>MAX_VOLT))
{
vStat = false;
needUpdate = true;
}
}
else
{

69

if((adat[VOLT]>MIN_VOLT)&&(adat[VOLT]<MAX_VOLT))
{

vStat = true;
needUpdate = true;

}

[BUTTON MONTTORIN G st sttt sttt oot sfese sttt |
if(pio_rd(1)&0x400)

{
if('butDown)
{
running = !running;
needUpdate = true;
butDown = true;
}
}
else

butDown = false;

if(file)
{
if(!vStatll!tStatll!running)
{
fs_fclose(file);
file = NULL;
}
}
else
{
if(vStat& &tStat&&running)
{
file = fs_fopen("rpm.txt", O_WRITEIO_APPEND);
if(file&&(file->ff_status!=fOK)) //Make sure it opened ok
{
fs_fclose(file);
file = NULL;
}
}
}
/******Recording Every Second**************************/
if(record&&running)
{

[rEsssECalculate the Signal Frequency® %5 #3%%/
disable();

tInew =tl_cnt;

tOnew = t0_cnt;

enable();

70

1f((tOnew!=0) && (t1new!=0))

{
if(tOnew==t0 & & tInew==tl)
telapse++;
else
telapse=0;
if(telapse<11)
{
/[duty = t0/t1;
t0=tOnew;
tl=tlnew;
T = t0+t1;
Hz = 1/(T*0.000001);
}
else
{
telapse=11;
Hz=0;
}
}
else
Hz=0;
iHz = Hz;

[rEsEREREConvert Frequency to RPMH##ssx/

RPM = Hz;

RPM *= 60;

RPM /= alternatorPoles;
RPM *= pulleyRatio;
iRPM = RPM;
needUpdate = true;
record = false;

if(numSats>=MIN_SATS)&&(iHz>MIN_HZ)& &file)

{
char strSats[] = {((numSats/10)+0x30),((numSats%10)+0x30), \0'};
char strHz[] = {((iHz/1000)%10)+0x30,

((iH2/100)%10)+0x30,
((iH2/10)%10)+0x30,
(iH2%10)+0x30,

\0'};
char strRPM[] = {((RPM/1000)%10)+0x30,
((iRPM/100)%10)+0x30,
((IRPM/10)%10)+0x30,
(iRPM% 10)+0x30,
\0'};

71

fs_fprintf(file, "%s Hz=%s RPM=%s #SATS=%s\r\n", curGPS, strHz,

strRPM, strSats);
//fs_fflush(file);
}
}

[st st steste s st e shestestesteste s sk st ke steste ste stk sttt stestestetolokokokokotokosiololokokolokoiokokok /

/I Update the display if it needs to
if(needUpdate)
{
if(!vStatll!tStat)
sprintf(topLine, "Env Unsafe!");
else if(!running)
sprintf(topLine, "Paused");
else
{
if(RPM==0)
sprintf(topLine, "No Signal");
else
sprintf(topLine, "RPM=%i", iRPM);
}

UpdateLcd(topLine, tStat, vStat, numSats);
needUpdate = false;

}
}

// Function: int4_isr
/I INTP4 interrupt handler. Increment int4_cnt
void interrupt far int4_isr(void)

{
t0_cnt = inport(0xff50); // Read timer O
outport(0xff50,0); // Reset timer
/* Issue the Non-Specific EOI for the interrupt */
outport(0xff22,0x8000);

}

// Function: int2_isr
/I INTP2 interrupt handler. Increment int2_cnt
void interrupt far int2_isr(void)

{
t1_cnt = inport(0xff58); // Read timer 1
outport(0xff58,0); // Reset timer
/* Issue the Non-Specific EOI for the interrupt */
outport(0xff22,0x8000);

}

// Function: t2_isr
// t2 interrupt handler. Increment t2_cnt
void interrupt far t2_isr (void)

72

t2_cnt++;
/* Issue EOI for the interrupt */
outport(0xff22,0x8000);

73

APPENDIX C: MapInfo/MapBasic Software

1. MapBasic Code Description

This supplement is for use of the MapBasic code written to document turbulence for City
Lab MQP. The code has been designed to implement a GIS map of Worcester with orthophotos
(taken from: http://maps.massgis.state.ma.us/massgis viewer/index) and map GPS coordinates

from a text file as an additional layer. The following is a guide explaining the code.

First, functions are declared at the beginning of the file. The three functions of this
program are “main”, “inputturbulence”, and “map.” Every function begins with “sub ‘function
name’” and ends with “end sub.” Once the functions are declared, the main function is executed.
The first step of the main function is to create a unique menu. The menu’s name is “Add
Turbulence” which has two options: “Draw map” which calls the “map” function and “Read
Turbulence” which calls the “inputturbulence” function. Creating this menu for MaplInfo is done
by using the “create menu” statement. The next step in the main function is to add the newly
created menu to MaplInfo’s menu bar. This is executed by the “alter menu bar” statement. Once
this statement is executed the program will terminate.

When called to in the main function, the “inputturbulence” function will prompt the user
the for the rpm text file (which can be located on the flash card). Once the text file is inputted,
MaplInfo will then create a table of GPS coordinates including the rpm value, frequency value,
number of satellites, and Coordinated Universal Time (UTC date and time). The first step in this
function is to create the variables that are going to be needed in this function. The variables in this
function are tablename, yNorS, xEorW, readline, temp1, temp2, temp3, temp4, temp3, temp6, P,
X, Y, v, f, s, day, month, year, date, hour, min, sec, and time. Declaring these variables is done by
using the “dim” statement. Once the variables are declared the program prompts the user to open
the text file which contains the pothole information. This is done by the “open file FileOpenDlg”
statement. Next, the table that contains the turbulence information is created which is executed by
“create table.” Once created, a while loop begins to read all the needed information off of the text
file. Each piece of needed information is located on the same spot of each line of text which
makes the “mid$” statement very valuable in this process. Each line of text is stored into the
“readline” variable and the “mid$” statement can take information from a given location on the
stored line of text. Once this text is located MapBasic uses a statement called “val” which takes
the string and converts it into a numeric value. The first numeric value is stored in temp1 and the
following in temp2. Temp?2 is then divided by 60 and then stored into temp3. This process is done
because the GPS information needs to be converted from decimal minutes to decimal degrees.
Once the correct GPS value is calculated the program checks if it is in the northern or southern
hemisphere. This is done by using an “if...then” statement. After the latitude is finished being
calculated the longitude goes under the same process. Next, the rpm and frequency values are
read in along with the number of satellites and this information is stored into variables “r”, “f”,
and “s” respectively. After the location, voltage, and satellites are stored, MapBasic reads in the
date and time of each point. This text is then formatted for easy use. The next step sets the style of
points. As of right now each point is the same but once a correlation is established between RPMs

74

and turbulence, points can be created to distinguish differences. This step still requires a lot of
testing. Once the value has been calculated, MapBasic creates a point using the “create point into
variable” statement. Each point is put into the table and is ready to be plotted onto a map. When
the text file is ended, the program will close the text file and return to the main function.

After the table of rpm points has been created, the user is able to use the “map” function
(This function is mainly for visual purposes and if the user has another map than Worcester this
step can be removed or the code can be changed to add the needed map). When executed, the user
is prompted to open the Worcester workspace. This previously created workspace contains the
orthophotos and layers needed to create the map. Once the workspace has been opened, the
program prompts the user to open the newly created pothole table. The next step in the code maps
all the files together using the “map from” statement. Next, all the zoom layering constrictions are
removed from each layer using the “Set Map Layer” statement. Next, the function centers the
map on Atwater Kent at -71.809746°, 42.27447°. Finally, a “browser” window is opened
containing all the RPM information so the user can see the created table. The map will appear
with every layer and the RPMs marked on the map.

2. Mapinfo Software

This part of the supplement describes how to use the created executable MapBasic file.
First, double click on the “mqgp.mbx” file to open it. On the menu bar there will be an “Add
Turbulence” menu as seen in Figure 42.

#=MapInfo Professional

File Edit Tools oObjects Query Table Options ‘Window Help add Turbulence

] =3] 0 e)M]) e e N

Figure 42: Add Turbulence Menu

Click on this menu to open it and two options will be given, “Read Turbulence” and
“Create Map”. Click on the “Read Turbulence” option first which can be seen in Figure 43.

#®MapInfo Professional

File Edit Tools ©Objects Query Table Options Window Helpl.ﬂ.dd Turbulence

Dlﬁ'ﬂl@ll@l g:'l |£| ||IE Read Turbulence

Create map

Figure 43: Read Turbulence

This will open a dialog box asking to open the RPM.txt file which can be seen in Figure
44. Move to the directory where the RPM file is located and open it.

75

2=l
Look in: Iuj RPM Fomat Tests j il i
[::—j rpri.bxt
File name: |HF'M j Open I
Files ctyoe: [Tent fle [t] Cancel
(o =b(iaplt’\fft:» Flaces
" Standard Places e

Figure 44: RPM Dialog Box
Next, follow Figure 45 and click on the Create Map option in the menu.

#“MapInfo Professional

File: Edit Tools Ohjects Guery Table Options Window Help | add Turbulence:
Olimed 2| dlezla] » Bl ghedubuene
h g [=]

Figure 45: Create Map

This will open a dialog box that asks the user the open the Worcester workspace. This
can be seen in Figure 46.

Please Dpen Worcester Workspace [_?[,)il
Look in; |k':'3 Software Package j - @ ﬁ‘: “.

[worcester. WOR

File: niarne:

YEE =] e |
Eilesof.'t}lpe |W’orkspace [*.war] ﬂ Caricel |

* Mapinfo Places
" Standard Places

Figure 46: Worcester Workspace

76

After the workspace has been open, another dialog box appears and prompts the user to
open the potholes table that was created when “Add Turbulence” was executed. This dialog box
is shown in Figure 47. After being opened a map with the points will be displayed. This is the
file product of this program. A sample map can be seen in Figure 48 and a sample browser
window can be seen in Figure 49. When exiting Maplnfo you will be asked to save the file, the
option is up to the user to save the results.

77

Please Dpen Turbulence Table
ok in; l@ Desktop j

My Docurnents
a Ak-IFFAKDES1SKC

File name: |T urbulence] j
Fiesofpe: [Table ["tab) =]

& Maplnfa Places
' ‘Standard Places
Figure 47: Turbulence Table

urbulence,streets,grid

Figure 48: Sample Map

EZ turbulence Browser

L de Lon: Frequency Sats

42 2756 -71.8065 70 235944

422756 -71.8068 Ta0 235944

Figure 49: Browser Window

78

3. Map Basic Code

' City Lab MQP
" Adding Turbulence points

" Declare functions

declare sub main

declare sub inputturbulence
declare sub map

sub main

' Create a menu for Maplnfo to execute program
create menu "Add Turbulence" as "Read Turbulence" calling inputturbulence, "Create map"
calling map

" Add the menu to MapInfo Menu Bar
alter menu bar add "Add Turbulence"

end sub

' plot the worcester table and turbulence table
sub map

' Prompt user to open worcester workspace
Run Application FileOpenDIlg("C:\","Worcester","WOR" ,"Please Open Worcester Workspace")

' Prompt user to open the newly created turbulence table
open table FileOpenDIg("C:\","Turbulence","TAB" ,"Please Open Turbulence Table")Interactive

"map all files together
map from turbulence,streets, gridl1, grid2, grid3, grid4,grid5,grid6, grid7,
grid8, grid9, grid10, grid11, grid12, grid13

'remove zoom layering constriction to all grids

Set Map Layer 3 Zoom (0, 20) Units "mi" Off
Set Map Layer 4 Zoom (0, 20) Units "mi" Off
Set Map Layer 5 Zoom (0, 20) Units "mi" Off
Set Map Layer 6 Zoom (0, 20) Units "mi" Off
Set Map Layer 7 Zoom (0, 20) Units "mi" Off
Set Map Layer 8 Zoom (0, 20) Units "mi" Off
Set Map Layer 9 Zoom (0, 20) Units "mi" Off
Set Map Layer 10 Zoom (0, 20) Units "mi" Off
Set Map Layer 11 Zoom (0, 20) Units "mi" Off
Set Map Layer 12 Zoom (0, 20) Units "mi" Off
Set Map Layer 13 Zoom (0, 20) Units "mi" Off
Set Map Layer 14 Zoom (0, 20) Units "mi" Off
Set Map Layer 15 Zoom (0, 20) Units "mi" Off

79

" Center map to Atwater Kent
Set Map Center (-71.809746, 42.27447)

Browse * from turbulence
end sub

"input the rpm text file and convert to latitude and longitutde, making a table
sub inputturbulence

"declaring all variables

dim tablename, yNorS, xEorW, readline as string
dim temp1, temp2, temp3 as float

dim temp4, temp3, temp6 as float

dim P as object

dim x, y, 1, f as float

dim s as integer

dim day,month,year,date as string

dim hour, min, sec, time as string

' Prompt user to open Turbulence output (From GPS)
open file FileOpenDIg("C:\","RPM","TXT" ,"Please Open RPM TXT") for input as 1

" give the table's name "turbulence"
tablename = "turbulence"

"declare the columns latitude and longitude
create table tablename (Latitude float, Longitude float, RPMs float,
Frequency float,Sats integer, UTC_Date char(8), UTC_Time char(8))

' create a map for turbulence
create map for tablename

'read the file until nothing is left
while not eof(1)

' read entire line
line input #1, readline

" change GPS string to decimal degrees from decimal minutes
"negate if value is S

templ = val (mid$ (readline,17,2))
temp2 = val (mid$ (readline,19,7))
temp3 = temp2/60

y =temp] + temp3

yNorS = mid$(readline,27,1)

"if South make latitude negative
if (yNorS ="S") then

Y=y

end if

80

' change GPS string to demical degrees from decimal minutes
"negate if value is W

templ = val (mid$(readline,30,2))

temp2 = val (mid$(readline,32,7))

temp3 = temp2/60

x =templ + temp3

xEorW = mid$(readline, 40,1)

if (xEorW ="W") then

X=-X

end if

'Read in RPMs, sats, and frequency
r = val (mid$(readline,65,4))
s = val (mid$(readline,84,2))
f = val (mid$(readline,73,4))

'Create Date and Time

hour = val (mid$(readline,8,2))
min = val (mid$(readline,10,2))
sec = val (mid$(readline,12,2))

non non

time = hour + ":" + min + ":" + sec

day = val (mid$(readline,54,2))
month = val (mid$(readline,56,2))
year = val (mid$(readline,58,2))

date = month + "/" + day + "/" + year

" set symbol for potholes

Include "mapbasic.def"

Set style Symbol MakeSymbol (33,GREEN, 15)
'make a point

create point into variable P

(x,y)

insert into tablename (Longitude, Latitude, Obj, RPMs, Frequency, Sats,UTC_Date,UTC_Time)
values (X, y, P, r.f,s, date, time)

wend

' close rpm.txt file
close file 1

end sub

81

APPENDIX D: Value Analysis

We decided that it would be best if we completed a thorough value analysis between
microcontrollers to decide which option best fit our needs. We began our analysis by doing
research on microcontrollers, specifically looking for ones which had the capability of having a
CompactFlash Card. After deciding on the TERN FlashCore-B and the BASIC Tiger we listed
the requirements we felt were necessary and gave each of them a value. The following list shows
each criteria and its value:

e Size-3

e Temperature Range — 3
e Ports—8

e Expandability — 5

e Development — 6

e [Language —4

e [/O-7

e Power—7
e Speed -7
e Price-10

With this list we were able to build a value matrix which helped us decide on what
microcontroller would work best for us. We broke down the microcontroller into three different
categories quality, specs, and overall price. Each criterion was given a value, five being the best
and one being the worst. The following shows how each criterion is broken down:

Quality
Size: How large is the microcontroller
Very Small — 5

Small — 4
Medium - 3
Large — 2

Very Large — 1

Temperature Range: How severe of conditions can the microcontroller withstand
Extremely Well — 5
Good — 4
Fair -3
Bad -2
Terrible — 1

82

Specifications

Ports: Amount of Serial Ports
Five or more — 5
Four to Five — 4
Two to Three — 3
One -2
Zero — 1

Expandability: The ease to expand the microcontroller

Very Easy — 5
Easy — 4
Moderate — 3
Poor — 2

Incapable — 1

Development: The software and peripherals included
Everything needed — 5
Complete Software and Microcontroller — 4
Partial Software and Microcontroller — 3
Just Software — 2
Just Microcontroller — 1

Language: The ease of programming it

Very Easy — 5
Easy — 4
Moderate — 3
Hard - 2
Very Hard — 1

I/O: The amount of ADC/DAC and other devices
Ten or more ADC and Twenty Digital I/O — 5
Seven to Nine ADC and Fifteen to Nineteen Digital I/0 — 4
Four to Six ADC and Ten to Fifteen Digital I/O — 3
Two or Three ADC and Five to Nine Digital I/O — 2
One ADC and One to Four Digital I/O — 1

83

Power: The amount of power it takes to run
Very Small - 5

Small — 4
Medium - 3
Large — 2

Very Large — 1

Speed: How fast it runs
Extremely Fast — 5
Fast — 4
Moderate — 3
Slow -2
Very Slow — 1

Price: The Cost of the Development Kit
Expensive — 5
Costly — 4
Reasonable — 3
Economical -2
Inexpensive — 1

Once going through each individual criterion and giving the microcontroller their values,
we came up with Table 4.

84

Market | TERN Tiger
) Value Value Value

Quality point point Total | point Total
1 | Size 3 3 9 2 6

2 | Temp. Range 3 3 9 3 9

Total 18 15

Market | TERN Tiger
Value Value Value

Specs point point Total point Total
1 | Ports 8 4 32 3 24

2 | Expandability 5 2 10 5 25

3 | Development 6 3 18 4 24

4 | Language 4 4 16 3 12

5| 1/0 7 3 21 4 28

6 | Power 7 3 21 4 28

7 | Speed 7 4 28 3 21

Total 146 162

Market | TERN Tiger
Value Value Value

Cost point point Total point Total
1 | Price 10 2 20 3 30

Total 20 30

Customer Value: (Quality*Specs/Cost) 131.4 81

Table 4: Microcontroller Value Analysis

After the value analysis, the TERN is a better choice for our design.

85

APPENDIX E: Motherboard Schematics

This appendix illustrates the interconnections made on the motherboard to connect the
TERN FlashCore-B microcontroller to a temperature sensor, a voltage meter, power, as well as
different headers. The different headers on the motherboard connect to the FlashCore-B pins for
expansion. Figure 50 details all the wirings on the motherboard. The PCB layout shown in
Figure 51 displays the layout of the motherboard, and Figure 52 shows the PCB wiring
schematic. The blue wire layer on the wiring schematic shown in Figure 52 is the top copper
layer and the green is the bottom copper layer. Please see source Schematic and PCB files on our
project CD for more details.

*IMPORTANT NOTE**:

When programming the TERN FlashCore-B microcontroller, a jumper must be placed or
removed between J2.1 and J2.3 header (On the actual FlashCore-B board). If the microcontroller
is mounted on the motherboard, these two pins can be accessed from H2 on the motherboard.
Placing a jumper between H2.7 and H2.8 allows setting up the microcontroller for debug mode or
for standalone mode. Likewise if a module is placed on H1 and H2 (On the motherboard), these
two pins (H2.7 and H2.8) still have to be accessible for the placement or removal of a jumper
between them. Please see the TERN FlashCore-B(FB)™ Technical Manual for more information
on the FlashCore-B Programing Overview. The red square, shown in Figure 51, shows where a
jumper should be placed on the Motherboard PCB schematic.

86

139945 Sep2-+vB- 11

871 NSy

pJUBOGUSY 20}

qe A3t

3J3N0S ¥3MOd

anD 5 INT]
net 1 AMH-
g
A
AST
e
1Y]
ASL
2
G21+]

Joj1uoy abejion Jg andug

Jsieesay 101
£l

wﬂax1\

33
aND,

bl

R ooxas

438 00 {990
TN WD) X M09
15

4n1°p IEED
2 o uig 1l @
608241
539
EEC/ S 290< 3R
T 2 o [58)
o m 3
[20D—5 z 9w <50y
) El 0 v_HIm O
o
E019— s enyE—< 2y
(15— 80s—<@0Y |
vT

!'

ajl

S
|
z
9| o

T J3CY3IH

o & o
| o o

aNg
2
19
!
]
14

T

— ol

o o
a
z
a

[
a

fe
lih
@

T
o 1
all a

<[t
a|l«

al

o 1
ii Ii
al

)
aj

ERGEEREE
iiili ii iill' ‘i
a

TH

NETH

14

ol af ¥ 9 o
o o o @ o

al

'i
| o
al

ELID
BS.1y/
8513/
151d7
1512~

1
[V

2

!'
al
o
<
Q|

T

| [=
==
z||z
all

@
—
z

[

e

iy}

va

n2T+

EEL
oS L
ps10/ -
m
1S13/ 2
151973
BINI ™
TINI
2INI
ELNI
aND
TWN
200

aND

BeEd
62
92
G2
2
21d
S1d
¥1d
E€1d
Bid
9
S
i<
€d
1d|
2]

a aa a

<l

a
<
v
a

a

a
e

[N

[
<
|

a

[ZE
[SE

o]
be!

BeEd
62d

A

T

o & o

al al
0
aj
a

n
Q
a

[\
[

]
<
[N

o
0
e

e
a

of |
I
a

2H

C®mlr e
oS -
D =3
[ED3efey €T
oy 0 fp<T]
D 5 M e]
90>5={%¢ b=
[D0 3
[TND—45OND = 168N =~158A]
D &
[0zt 91d7<21d]
[CD-gpsl & 1s¥5<IS3
R 158/ (=r<s8]
ED—5(E0 T
[2D—oq=0 T
CD-gr'0 0]
-HHVIIﬂmSn o zZ <94
-3 ane—_8n]
Iz e 9A]
[TR>—jano 390390]
0
[330/g(4900 OND[zz<TNT]
[92>-gz92d 62d5<62d]
U517 >—5=05107 Tolez<_1d]
7 oS8/ 7 BS1E/]
[0TD—p1d E1dhz<CETd]
Sedpzfsed oder<_od]
EPgrerd -, vedr<ed)
TS 18/ >57{1513/ 15107 {=r<___15107]
BINT>-5BLN] Edier<_Ed]
[EIND—7{2INT o TINT—<TINT]
[BEDprfeed ENT—EINT]
[sdped S <G
Copod 1l<Tm)
[PiD—r1d pde—<_Fd]
J98>—5| 200 ON9H—<TND

2r

0ns

Motherboard Inter Connect
87

Figure 50

12

SH

JUMPER
PLACEMENT

OND ne 1+

W and -mema

REGL
| |
L2

2] ¢®

A3 TN10ALNOJOATIW| e @
g-3340JHSY1d | oo

Y313 FIYLT0A

o[clee{cdfe

L 2
L 2
L 2
&6 |OND
L 2
L 2
L 2
L 2
L 2
L 2
L 2
L 2
L 2
L 2
L 2
L 2

TH

ngH

[1)
did3l

L 2
L 2
L 2
e
ne
€H

c Na3L oo

e

e

e

sesese St

seseenm | T . me
'Y) b

1sel

:

Figure 51: Motherboard PCB Silkscreen Schematic

88

\
oooqme®®®¢qqqaqqq

[+
O

©©099032a33a59

=4,

O N

QQOO
QQOQ

S

Qoo
leXoXol

;

89

<

m
&

(111

2y cjl:
O

/o/ooob

Figure 52: Motherboard PCB Wiring Schematic

QQO0QQQ QO

A SS==
D LA -

a\\\&

—_

APPENDIX F: RPM Module Schematics

This appendix illustrates the schematics of the RPM Module circuits designed by our
project team. The H1 and H2 headers shown in Figure 55 connect the outputs of the signal
conditioning circuits to the same headers (H1 and H2) on motherboard; the motherboard allows
the RPM module to interface with the FlashCore-B. The H3 and H4 headers, also shown in
Figure 56, provide the pins to connect the input signals to their respective signal conditioning
circuitry. The PCB layout shown in Figure 56 displays the layout of the RPM module, and
Figure 57 shows the PCB wiring schematic. The blue wire layer on the wiring schematic shown
in Figure 57 is the top copper layer and the green is the bottom copper layer. Please see source
Schematic and PCB files on our project CD for more details.

*IMPORTANT NOTE**:

When programming the TERN FlashCore-B microcontroller, a jumper must be placed or
removed between J2.1 and J2.3 header (On the actual FlashCore-B board). If the microcontroller
is mounted on the motherboard, these two pins can be accessed from H2 on the motherboard.
Placing a jumper between H2.7 and H2.8 allows setting up the microcontroller for debug mode or
for standalone mode. Likewise if a module is placed on H1 and H2 (On the motherboard), these
two pins (H2.7 and H2.8) still have to be accessible for the placement or removal of a jumper
between them. Please see the TERN FlashCore-B(FB)™ Technical Manual for more information
on the FlashCore-B Programing Overview. The red square, shown in Figure 56, shows where a
jumper should be placed on the RPM Module PCB.

*IMPORTANT NOTE**:

A revision to our design was made after PCB’s of the RPM module were printed. Please
see the source Schematic and PCB files for more details on the connections. The double sided
arrow shown in Figure 56 shows the two pins that have to be connected, via a long jumper, for
the proper operation of the device using the code for the diesel RPM monitoring
application. No IC is supposed to be placed in U2. U2.2 should be connected to H2.12

90

Seee/vo/11

T 393ys B°1 noy
SThPol WdY
ge h3r)

Ad3L1AW Wdd 13S3IA

21

1

Bve

Bve

1\S)

4871

it u:w:u

t

ircui

ing C

1011

Diesel RPM Conditi

Figure 53

91

Soee/ v 11

£ 3934g PRGEr
SThpol Wdd
ge h31]

Ad3L1IW Wdd S8

aND,

@©

oS

1\S)
A1 M
S
qu
J2MHIBL T

Ry

702

al
Z|
[&]

LM29@7

+M
dvd
NI-

0dJsNI+
+N1 HJBl

N,
u__‘:s.H

? (=

QND,

o

€en

t

ircui

C

ioning

t

i

Cond

Gasoline Engine
92

Figure 54

Soee/ P11

2 393us PR
STNPOW WdY
qe h3r)

ey
900
cau
irao
€ae
eae
1qu
pay
ads
M

21d
18y

o af ¥ 9 o o o ¥ 9 oS v S
Lo R I R I e I R K Y Y I RV I R IR R R R

1084

a

U J3q93H

1837

N9
-]
19
L
]
i<
Sy
95
28
20
90
sa
v
€ea
2a
1a
oa

N o o O o] o o] & 0] & o
Al @ o al @ of @ @ @ o

[

ARERREE

A0S

T g5lnz1+ ano [ge<TND]
BE| [2E
e [SE
e [EE
= BEdfre
had 62dle
57 9dizz
5gl30n Sedl—
oeslys vedl—
=Sz 2l
i EYR R
71819/ vidoT
ST]OINI P Eldier
B DTTV) R i
I sdlr
TN S
—g0ND val—
3 TWN mn_ml
—[998 1o

z ody

2H

ions

RPM Module Header Connect

Figure 55

93

IR B

LA B N J
N
*

"e 14

NG

ONDy

STNPOW Wdd

o[y fo

& 921+

& &-1Nn0D

L Noa

N1d
"G+
g1+

|

]

’

=

3
LA B X B R N J
Heeeoee

TH

193y

Figure 56: RPM Module PCB Silkscreen Schematic

94

Figure 57: RPM Module PCB Wiring Schematic

95

APPENDIX G: Executive Summary

Introduction
This appendix presents the executive summary of our report to serve as a brief overview and
summary of the full report.

96

Project Code: FC-TRB2

Mapping Underwater Turbulence in Venice

Executive Summary

Project Team: Advisors:

Nicholas Angelini Fabio Carrera
nal303@wpi.edu carrera@wpi.edu

Michael Ciaraldi
ciaraldi@wpi.edu

Jose Brache
ibrache @ wpi.edu

Matthew Gdula Ered Looft'
medula@wpi.edu fjlooft@wpi.edu

Craig Shevlin
cshvelin@wpi.edu

Date: April 26, 2006

gps-05@wpi.edu

100 Institute Road Worcester, MA 01609

97

1. Introduction

Canal walls in the city of Venice, Italy have been subject to severe damage over the past
century. These walls serve as the structural foundation for buildings throughout this unique city.
Constant repair efforts are necessary in the ongoing effort to limit the structural decay of these
buildings; this process comes at a high cost to the government.

There are many theories and known reasons of the causes of canal wall damage. One
hypothesis, made by city structural engineers, is that underwater turbulence caused by motorboats
that accelerate quickly, to stop and go, as they dock on the very walls of canals put so much
pressure on the walls over time that this can lead to collapse. Engineers, however, have not been
able to verify this statement, and thus have been unable to conclusively determine the reason for
rapid deterioration of canal walls.

This document details the design process undertaken by our project team to design and
build a working prototype for a fully automated data collection system that can be used to track
these instances of underwater dispersion in the form of motorboat engine RPM.

2. Background

The introduction of the motorboat solved many transportation issues in Venice. Presently
motorboats are necessary for the regular day to day operation of the city; they provide
transportation for its citizens and millions of tourists yearly, as well as transportation of
perishable goods and wastes. The city of Venice has suffered many problems that can be
attributed to traffic. Canals are now heavily congested and many blame the increased amount of
repairs needed on the structural integrity of many buildings to motorized transportation.

The problem of an increasing number of repairs that have to be made to this unique city
has become a major concern for its citizens, public works entities, private businesses, and the
government. There are differing opinions on what is causing damage to canal walls and how the
problem should be addressed, but currently repair efforts are a serious economic concern to the
Venetian government.

Two of the main factors attributed to causing canal wall damage include: physical
changes to the building material and external events. Boat wakes can start a cycle of events that
can cause the mortar holding the bonds between bricks to weaken. Parts of walls can then easily
get knocked out of place by other forces, such as a boat docking on a canal wall. Once a small
crevice is formed within the walls, underwater boat turbulence can cause more extensive damage.

Other factors contributing to the damage inflicted to the canal walls are rising sea levels
and the sinking of the Venetian land mass. The rising sea level and the extraction of water from
aquifers underneath the city, for industrial purposes, have caused the land mass which Venetian
buildings rest on to sink. The water levels in the Venetian lagoon have risen approximately 23
centimeters since 1897.

Motorboats, however, cause more significant damage to Venetian structures. In addition
to a boats wake produced when a boat propels itself, underwater turbulence caused by engine
propellers weaken the structural integrity of canal walls and its foundations. The constant
underwater thrusting of the canal walls from propelled water is cause for concern.

98

3. Project Goal

Underwater turbulence caused from motorboat propellers is believed by many to be the
cause of erosion to the canal walls in Venice. The problem is that, currently, there are no
correlations that have been made to connect underwater turbulence to instances of canal wall
damage. One method of studying this correlation is to record instances of motorboat engine RPM,
since this is a way of measuring how fast propellers are moving underwater. Instances of engine
RPM would have to be mapped across the city, especially where motorboats stop and go, so that
underwater turbulence can be correctly correlated to places suffering from canal wall damage.

Our project goal was to: develop an automated data collection system that can be
installed in motorboats propelled by either diesel or gasoline engine(s) to monitor and store
engine RPM as well as GPS positional data, for boats that navigate the Venetian lagoon.

4. Methods

This section outlines the methods used by our project team to accomplish our project
goals. Briefly, we had to determine our system requirements when choosing a microcontroller to
fit our needs. The team also had to research different means of measuring engine RPM for both
gasoline engines and diesel engines. As a result, the approach used to develop our system was as
follows:

1. Reviewed engine type monitoring requirements (Required to work for diesel or gasoline
engines)

2. Reviewed system requirements (What needed to be recorded, for how long, how often
e.g. every second, etc.)

3. Implemented the design from system requirements

4. Implemented packaging requirements (Easy to mount, small & compact, water resistant,
user interface)

5. Reviewed data processing requirements (How data from unit was going to be used to
produce maps)

Once completing this process, we feel that our system will be fully functional.

5. Results

This section outlines the process in measuring the signal from a w-terminal and describes
the results our team encountered. The design of the diesel engine RPM conditioning circuit was
based on the measurements made from an actual alternator on a diesel engine. Using a portable
oscilloscope and a laptop our team traveled to Cape Cod, Ma where we measured the alternator
w-terminal signal on a diesel boat. The signal obtained from the W-terminal can be seen in
Figure 1, along with the frequency magnitude spectrum of the signal from the W-terminal shown
in Figure 2. The signal from the W-terminal in Figure 1 is at approximately 600 RPM was a 243
Hz signal.

99

Figure 1: W-terminal signal

Figure 2: W-Terminal Signal Frequency Spectrum

Obtaining multiple signals with this process, we were able to plot plotted the measured

relationship between the signal frequency and actual engine RPM which is shown in Figure 3.

Frequency vs. Engine RPM Plot

Figure 3: W-Terminal Sig.

100

Engine RPM can be calculated from certain alternator parameters. These parameters
include:

1. W-terminal signal frequency
2. Number of poles on an alternator
3. Pulley ratio

The number of poles on the alternator requires looking at the specific alternators data
sheet and the pulley ratio depends on the Equation 1.

PulleyRatio = DrivePulleyDiameter

AlternatorPulleyDiameter
Equation 1: Pulley Ratio Calculation

Equation 1 shows how pulley ratio is an actual ratio determined by the drive pulley
diameter and the alternator pulley diameter. This ratio can be calculated by measuring both
diameters and often times is specified in engine manuals. Typically in diesel engines there is a 3:1
pulley ratio.

The mathematical equation to calculate actual engine RPM in terms of alternator w-
terminal signal frequency, number of poles on the alternator, and the pulley ratio is shown by
Equation 2:

60Sec N 1 1

*k
Min AlternatorPoles PulleyRatio

Equation 2: Diesel Engine RPM Calculation

RPM =W —TERMINAL(Sig _Freq _in_Hz)*

Once this relationship was found, we had to condition the signal to be a TTL compatible
waveform since we planned on driving one of the external interrupts on the microcontroller.
Using the TTL compatible signal to drive the external interrupts we calculated the signal
frequency.

Figure 4: W-Terminal Conditioning Circuit Schematic

101

The schematic shown in Figure 4 shows the conditioning circuit we designed to take the
w-terminal input and convert that signal to a TTL compatible signal. The w-terminal signal is
connected to the port labeled “IN” on the schematic. The resistor R1 limits the current of the w-
terminal signal (Figure 1) to protect the 5V zener diode D1 and the hex inverting Schmitt trigger:
74LS14. If a waveform like Figure 1 is connected to the input “IN”, the 5V zener diode D1
regulates the voltage of the input waveform (of about (-)8V to +8V) to approximately a OV to
+5V waveform. The resulting waveform at the input 1 of the 74L.S14 resembles a OV to +5V
square wave; however, this waveform is not as clean as a perfect square wave. The function of
the 74LS14 (Hex inverting Schmitt trigger) is to produce a TTL compatible signal at the output
“SQR”, that has the same frequency as the w-terminal signal at “IN”. The output signal at “SQR”
is supposed to resemble a perfect square wave. For an input signal like the w-terminal signal
shown in Figure 1 the output signal resembles the waveform shown in Figure 5.

CH1 Signal from file: 250HzCircout.dso

Voltage (V)

| | |

| | |

E 1 1 |
0 0.005 0.01 0.015 0.02 0.025

Figure 5: W-terminal conditioning circuit output

Once the design of the conditioning circuit was complete, the module devices were
created. The modules consist of the RPM module and Motherboard Module. The RPM module
consisted of the RPM conditioning circuit shown above. The RPM module, along with the
microcontroller, were plugged into the Motherboard Module. Also on the Motherboard Module
was the Health & Safety module. The basic function of the health and safety module is to provide
temperature and readings and measure the voltage output from the device’s power source. Our
real-time embedded program on the microcontroller then acts accordingly depending on the
voltage and temperature readings it gets (i.e. closes file on compact flash). After the hardware
was designed and working together, the next step was to create the software to bring functionality
to the entire system. The software created was based on the flowchart seen in Figure 6. Once
going through a successful loop of the flowchart, the program then writes to compact flash
depending on conditions like the number of satellites the receiver is tracking and if the file is
open. The actual data recorded onto the Compact Flash card resembles the lines shown in Table
1. The data is stored as a text file on compact flash and then GIS software can be used to interpret
the data graphically on a Venice, Italy city map.

102

SGPRMC,063403,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

SGPRMC,063404,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

SGPRMC,063405,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00

S3GPRMC,063406,V,4216.5799,N,07148.4762,W,000.0,000.0,300306 RPM=0980 Hz=0392 #SATS=00
Table 1: Compact Flash Stored Data

Initialize Variables
A —
4—{ Main Loop

GPS String
Available? YE
NO
+

Read ADC Channels:
Voltage; Temp

Voltage & Temp OK?

_ Button 1
Running = IRunning [«YES:
NO

Parse & Store
Most Recent Time

!

Parse & Store
Most Recent
Satellites

String=
"GPGGA"?

NO

String= Store Most Recent
GPRMC"?2, YES~ “GPRMC"String

b

NO

Parse & Store

YES~ Most Recent Vel

&

Open File IF: Close File IF:
Temp && Volt = True [«NO- File Open? YES—+ Temp || Volt = False
NO &8& Running = True || Running = False

New Time = True Disable Ext. Interrupts
'YES—+ Get TMRO and TMR1 Values

Enable Ext. Interrupts

l

NO
Calculate Engine RPM
Display on LCD R A
Real Time Status [=5 Update LCD 7 l
Write String to File IF:
#Sats >= 4 &&

Vel >0 &&
File is Open

Running = True

Figure 6: Software Flowchart

Upon completion of the software, in lab tests were done. To test the device, we had to
model the W-terminal signal using an Instek Function Generator (CFG-8219A). We used an input
square wave from the function generator as our signal. The frequency of the input square wave
we connected to our W-terminal conditioning had a frequency of about 283 Hz, and the device
measured an RPM of 708. This can be seen from the figure shown in Figure 7. When comparing
the measured 708 RPM to an input signal having a frequency of 283 Hz we used Figure 8 for
comparison. As seen in Figure 8, these results are very close to the theoretical values.

103

|

=

-
BT ram S

Figure 7: Device Displaying RPM in Real Time

Theoretical W-Terminal Freq. (Hz) vs. RPM Relationship

W-Terminal Signal Frequency (Hz)

Engine RPM

Figure 8: Theoretical W-Terminal Freq. vs. RPM Relationship

6. Summary and Conclusions

Our team successfully implemented an automated data collection system that can
be installed in motorboats propelled by diesel engines to monitor and store engine RPM
as well as GPS positional data, for boats that navigate the Venetian lagoon. This
document briefly outlines the design process our project team followed in building a
working prototype for this automated data collection system. Options in having this
device placed in gasoline motorboats have to be tested and implemented. In addition, the
post processing of data stored on compact flash by our system has to be considered after
multiple field tests are conducted. Different considerations, such as reducing power
consumption, the size of the current package, and further testing should be taken to
improve the functionality of the device and system. Future designs and methods could
serve as a tool for aiding the city of Venice, Italy in the repair of damaged canal walls.

104

