
Robocart
System Framework for Machine Vision Component of an

Autonomous Vehicle

Submitted by

Gabriel Isko
Robotics Engineering

Advised by

Professor Alexander Wyglinski, Advisor-of-Record
Professor Taskin Padir, Co-Advisor

September 2014–December 2015
Project Code: MQP-AW1-PATH

This report represents the work of WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more infor mation about the projects program at
WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html.

Abstract

This project documents a framework for an extensible, flexible machine vision software implemen-
tation for the Robocart project. It uses a distributed mobile computing framework in order to best
leverage the scalability of machine vision. This process aims to improve upon current machine
vision implementations in commercial autonomous vehicles, as well as provide a basis for further
development of Robocart’s autonomous navigation systems. This framework is tested with the use
case of road detection.

i

Table of Contents

Abstract i

Table of Contents ii

List of Figures iv

Acronyms v

Acknowledgements vii

Executive Summary viii
0.1 Sample Results . xi

1 Impetus for a New Autonomous Vehicle 1
1.1 Establishment . 1
1.2 Scope . 2
1.3 Research Gap . 2
1.4 Goals . 2
1.5 Project Objectives . 3
1.6 Report Structure . 3

2 Literature Review 4
2.1 Major Milestones in Autonomous Vehicles . 5
2.2 Government Regulations and Issues with Autonomous Vehicles 9
2.3 Computer Vision Systems in Autonomous Vehicles 10

2.3.1 Mobileye Vision system . 10
2.3.2 Advances in Vision integration in Robotic Systems 12

2.4 ROS Overview . 14
2.5 Computer Vision and Image Processing / Gabriel Isko 15

3 Implementation 17
3.1 System Overview . 17
3.2 System Configuration for Video streaming . 17
3.3 Image Calculation . 18

ii

4 Results 20
4.1 Network Framework in Practice . 20
4.2 Testing Method . 20
4.3 Results . 21
4.4 Discussion . 22
4.5 Chapter Summary . 23

5 Conclusions and Recommendations 24

References 27

Appendix A Vision Code Repository / Gabriel Isko 35
A.1 ROS RTP Relay Initialize Bash Commands . 35
A.2 ROS Image Subscriber Node . 35
A.3 Image Road Detection Color Test . 36

ii

List of Figures

1 An example of a collaborative network consisting of ground and aerial vehicles. x

2.1 Timeline of Autonomous Vehicle Development from 1948 to 2032 [5]. 5
2.2 Prototypes of VisLab Autonomous Vehicles [42]. 8
2.3 Status of bills regarding autonomous vehicles in the U.S. as of 2014 [13], [39]. 9
2.4 “Mobileye‘, EyeQ system" [38]. 11
2.5 Agnevis in action. [3]. 13
2.6 ROS example setup [15]. 14
2.7 Illustration of triangulation from stereo vision [47]. 16
2.8 An example of SIFT Feature matching on two pictures of the Arc De Triomphe

in Paris, France [48]. 16

3.1 MQP Framework Overview . 18

4.1 Road Image . 21
4.2 Lawn Image . 22

5.1 An example of a collaborative network consisting of ground and aerial vehicles. 25

iv

List of Acronyms

ALV Autonomous Land Vehicle

API Application Program Interface

CAD Computer Aided Design

CAM Computer-Aided Manufacturing

CMU Carnegie Mellon University

CNC Computer Numerical Control

DARPA Defense Advanced Research Projects Agency

ECE Electrical and Computer Engineering

GPIO General Purpose Inputs and Outputs

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

IN-DASH Intuitive Dashboard

LIDAR Light Image Detection and Ranging

MQP Major Qualifying Project

PWM Pulse Width Modulation

RALPH Rapidly Adapting Lateral Position Handler

RAM Random Access Memory

RBE Robotics Engineering

RC Remote Controlled

ROS Robot Operating System

v

RXD Receive Data

SIFT Scale Invariant Feature Transform

SSH Secure Shell

TXD Transmit Data

URDF Universal Robotic Description Format

USB Universal Serial Bus

VIAC VisLab’s Intercontinental Autonomous Challenge

VPN Virtual Private Network

API Application Programm Interface

WPI Worcester Polytechnic Institute

vi

Acknowledgements

The Author would like to acknowledge the following individuals for providing support and

assistance throughout the entirety of our project. Without all of you, this project would not

have been possible.

To our Advisor, Professor Alexander Wyglinski: Thank you for meeting with us weekly and

guiding us in the right direction for the duration of this MQP.

To Professor Ken Stafford: Thank you for helping us determine logistics for storing our wireless

server within the Rec Center Loading Dock.

To Meredith Merchant: Thank you for providing us with access and granting us space in the

Rec Center Loading Dock to work on our MQP.

To Tracey Coetzee: Thank you for placing part orders for the Robocart MQP in a timely manner.

To Prateek Sahay: Thank you for creating the CAD model of the Robocart and working with

us to develop mechanical systems for the first-generation autonomous golf cart.

To Liz Miller: Thank you for your work in testing and systems engineering work on the first-

generation autonomous golf cart.

vii

Executive Summary

Motivation

The promise of saving 1.2 million lives a year [1] and solving traffic congestion problems

has struck a chord with scientists, engineers, and programmers around the world. As result,

autonomous vehicles are expected to contribute to roughly half of the total cars produced by

the early 2030s [2]. This project focuses on the implementation of a software computer vision

processing system that is capable of running on an autonomous vehicle.

Proposed Design

The scope of this MQP is to give an example of a design for a software system that can be used

for an autonomous vehicle in a way that is extensible for further development, and is intended

to be used in a robotic system. This is achieved by creating a system that shares video data for

possessing among a network. This system is designed using tools that are designed for modular

expansion of a single robot and flexible processing among multiple sources.

Implementation and Experimental Results

The implementation of this system is designed to provide the frame for a system that inte-

grates vision processing from multiple sources moving forward, and has not currently been

implemented on an autonomous vehicle. Provided in this MQP are recommendations for this

viii

systems implementation in autonomous vehicles that enable use vision.

The purpose of this system is to achieve a framework for an autonomous vehicle that uses

computer vision to navigate. This system is designed to integrate vision from any IP enabled

source, and is not limited by dedicated hardware stationed on a single vehicle.

Conclusions and Recommendations

Continuing with development in this framework should be in the pursuit of a system that can be

an experimental test bed for using machine vision in vehicle navigation. While going forward,

these recommendations that are concluded from this project:

Recommendation #1: An autonomous vehicle that uses machine vision for navigational pur-

poses should be agnostic to the source of its image data.

In order to take advantage of the scalability [3] strengths of computer vision, any vehicle

that uses computer vision for autonomous navigation should not be locked into a single hard-

ware setup. Since the system put forward in this project uses networking systems to control

the flow of data throughout an autonomous vehicle, providing a system for agnostic data flow

will make it possible to add more data sources or even dynamically integrate potential data

sources. Recommendation #2: The design of an API to extend the usability of this framework

needs to be considered.

Parallel to the system proposed in this MQP’s flexibility when it comes to hardware design

on a single autonomous vehicle, a software framework must also be put in place in order to

make software development under this framework possible. This should be achievable with

the open source frameworks this project uses for image processing and for data coordination.

A design that will allow future developers to employ dedicated functions and systems that en-

capsulate various computer vision algorithms and abilities will make it possible for developers

to completely leverage the advantages of this system. One of the major advantages that can

be leveraged by providing a diverse development system around this framework is that it can

ix

Figure 1: An example of a collaborative network consisting of ground and aerial vehicles.
Data is relayed from/to the aerial vehicle to/from the ground vehicle to obtain more reliable
information and greater accuracy about the vehicles’ surroundings [4]. This network is very
well suited to using agnostic video sources because it opens up for much more flexibility in its
configuration - multiple combinations of these vehicles cooperating together can be achieved
without defining new standards for each new vehicles video stream.

take advantage of the internet. Developers can add improvements to an autonomous vehicle

through software updates delivered online, rather than having to install new hardware in order

to improve an autonomous vehicle.

Recommendation #3: More dedicated hardware should be used for critical real time perfor-

mance and safety functions.

While it is important for data to be shared across a network to take advantage of the higher

level aspects that can be gained from computer vision, under this framework it is still possible

to use data streams from local sources. Maintaining the flexibility of this setup is important

for critical safety functions that could be optimized through dedicated hardware. While this

dedicated hardware is not explored in this project to avoid pre-mature optimization, the ap-

proach of optimizing certain vision functions might be necessary for applications where real

time performance, safety, and security is a risk.

x

0.1 Sample Results

Using an approach that relays data from a local camera over a network interface to a ROS node

that performed a road detection test, this method was proven viable. A ROS node was able to

get consistent different readings on the mean green color value when looking at a road or a

lawn. This information can be used in an autonomous vehicle to gather information about the

location of a road that it is on and be integrated into navigation decisions.

Limitations of this Research

The scope of this project’s research is limited by the following factors:

1. While a current test bed for an autonomous vehicle is being developed through other

MQPs at WPI, it is not currently ready yet - this research still needs to be tested on an

autonomous vehicle.

2. Requirements of passengers and future developers of autonomous vehicle should be

taken into account as this project is expanded upon.

Potential Uses of the Recommendations

This project establishes a beginning framework for the software design and approach for an

autonomous vehicle. It is a place to start at, and provides examples of possible test cases of

the research in action. Further efforts in designing an usable framework should be expanded

upon. The development, implementation, and maintenance of a software package that can be

used to establish this framework in order to create an autonomous vehicle is a good next step

for a future MQP.

xi

Chapter 1

Impetus for a New Autonomous Vehicle

1.1 Establishment

Autonomous vehicles are large and complex projects that are currently only accessible to ef-

forts with large capital and engineering resources. It is a problem that current efforts depend

on a proprietary solution. Mobile Eye is a company that provides solutions to autonomous car

sensing systems, such as collision warning, pedestrian detection, and lane tracking. Mobile

eye is not available to general consumers or researchers, and is instead targeted at car makers

and corporate engineering efforts such as Tesla and Google. Proprietary solutions such as mo-

bile eye are not accessible to researchers who are striving to work on new autonomous vehicle

techniques. Instead, an autonomous vehicle must be built on open standards. Problem Identi-

fication: Image processing is a powerful tool in the development of an autonomous vehicle that

is readily available to researchers. Image processing can be used to solve problems such as ob-

ject recognition that is normally done by the driver in a non-autonomous vehicle. Open source

libraries such as openCV make image processing accessible, and provide a scalable solution

that does not depend on specialized hardware such as a LIDAR. However mobile computing,

despite recent advancements, is still a long way from providing a commercially available so-

lution for the amount of image processing needed for an autonomous vehicle. Current mobile

1

computers that exist at a research level are not powerful enough to leverage the full potential

of computer vision, as its scalability has the potential to outstrip computers that could exist on

a vehicle.

1.2 Scope

A solution to the lack of specially designed hardware that is commercially available is to split the

computation between multiple mobile computers. Ethernet IP is a widely used open standard

to share data between computers, and can provide a way for computers already on the market

to share computed data and distribute the computation required for computer vision, or to

deliver data to dedicated processors on a non - mobile network. The processing of video data

should be agnostic to its source in order to provide the greatest flexibility in terms of processing

it on a network.

1.3 Research Gap

Efforts to create open source solutions to address this issue are underway, but are still in their

infancy. In order to create systems that are coordinated over an Ethernet network, systems like

ROS exist to provide a way to organize computational clusters into separate nodes that can

exist on different locations in an IP network. However, a solution for ROS to apply camera

data to autonomous vehicle solutions does not currently exist.

1.4 Goals

The goal of this project is to provide a solution to employ a solution to use the rocon_rstp_camera_relay

package to provide image data under a ROS framework in order to develop a solution to au-

tonomous vehicle functions in ROS. This project will investigate the applications of such a

2

solution, and explain and provide examples of usage for an autonomous vehicle. The imple-

mentation of road detection will be used as a case study in how a distributed vision processing

solution would look in practice.

1.5 Project Objectives

The objectives of this project is to propose and provide example implementations of a design

for the software component of a vision processing system for Robocart. The goal of this system

is to provide the basis for future development of Robocart. The objectives of this system are

the following:

Objective #1: Make it easy to integrate multiple forms of hardware as development on

Robocart continues.

Objective #2: To use agnostic video sources in order to make the location of vision calcu-

lations flexible.

Objective #3: To use tools and practices that are designed to represent the structure of

Robocart in software.

1.6 Report Structure

The rest of this document provides the documentation of the vision system for the Robocart,

as well as an example of it’s implementation. A description of the proposed framework is

contained in chapter 2, which goes over its design. Chapter 3 contains the implementation of

the framework. Chapter 5 presents the conclusions that can be drawn from this project.

3

Chapter 2

Literature Review

Autonomous vehicles have been in development for over 65 years [5]. In 1948, cars were intro-

duced to the first cruise-control systems [5]. By 2030, cars are expected to be fully autonomous

and driver less. The promise of saving 1.2 million lives a year [1] and solving traffic congestion

problems has struck a chord with scientists, engineers, and programmers around the world.

Thanks in part to advances made in computing technologies over the past 30 years, inexpen-

sive sensors, reliable object recognition, and real-time, portable, large-scale data analysis has

become a reality. Inspired by ongoing research today from around the world, this MQP aims

to explore autonomous vehicle technology from the perspective of modern vision algorithms

combined with affordable sensing technology.

Several other labs have demonstrated the viability of autonomous cars in general, such

as those of Google and the Autonomous Systems Laboratory at the University of California,

Santa Cruz, but these systems use expensive, bulky, and ungainly roof-mounted Light Image

Detection and Ranging (LIDAR) detectors [6]. The mission of this MQP is to explore vision-

based systems for autonomous vehicles that use sensors in a manner that is similar to the way

a human perceives his/her environment. The VisLab of Parma University in Italy, as well as

several others, have demonstrated the viability of this option [6].

Autonomous vehicle research has exploded in past decades, due to increased fascination

4

with driverless vehicles and the impact they can have on society. Cars today come with options

for adaptive cruise control, lane detection, and automated parallel parking. Further advanced

autonomous vehicles blend human-control with autonomous systems, and as result, have the

ability to control brakes and alert drivers of dangers [7]. Tracing the origins and historical

discoveries of autonomous vehicle technologies leads us to the basis for the Robocart MQP.

2.1 Major Milestones in Autonomous Vehicles

Figure 2.1: This timeline depicts the development of autonomous vehicles from 1948 to today.
Starting with the invention of cruise control in 1948, vehicles are becoming more autonomous
and less operator-dependent. It is expected that by 2032, half of all new cars will be fully
autonomous [5].

Early on, fully-autonomous vehicles (ones that did not rely on devices embedded into roads)

were few and far between. Before Martin Marietta, in conjunction with several of the research

facilities and funded by Defense Advanced Research Project Agency (DARPA), introduced the

Autonomous Land Vehicle (ALV) Project in 1985 [6], [7]. Martin Marietta’s ALV used computer

vision and laser scanning for sensing and six server racks for path correcting. It successfully

traveled a half mile on an empty road in 1985, but was notoriously fickle and easily tricked by

shadows and small variations in lighting [8]. During the same time period, Ernst Dickmanns

5

in Munich introduced saccadic vision and Kalman probabilistic filters for use in autonomous

vehicles [6].

A decade later, in 1995, Carnegie Mellon developed the Rapidly Adapting Lateral Position

Handler (RALPH) which used computer vision to determine the location of the road ahead to

autonomously steer a car as two researchers controlled the throttle and brakes [6], [9]. Dean

Pomerleau was able to "teach" an artificial neural network to drive the car (it learned to use

the grass as boundaries) and was able to successfully drive on a highway at 55 mph [10].

Researchers from Carnegie Mellon were able to use this software, in a project called computer

vision and No Hands Across America, to drive an autonomous car from Pittsburgh, PA to San

Diego, CA for over 98% of the journey [6], [9]. By this point, autonomous path planning was

in existence, but there were still many issues to be resolved before a car could actually drive

itself.

DARPA also hosts a Grand Challenge prize competition for autonomous vehicles. Compet-

ing universities and organizations build autonomous vehicles to race through the competition

field. This competition is over ten years old and has helped set the foundation for autonomous

vehicles used in research, today. For example, the DARPA Grand Challenge in 2005 challenged

universities to have driverless cars traverse a 132 mile-long off-road driving course in the Mo-

jave Desert [11]. The competition was actually the second of its kind—the first DARPA Grand

Challenge in 2004 was unsuccessful [10]. The competitors again took a wide number of ap-

proaches, utilizing combinations of Global Positioning Systems (GPS), radar, LIDAR, computer

vision, sonar, and machine learning to navigate a trafficless desert course at speeds up to 25

mph [6]. The winning autonomous car, Stanley of Stanford University, used machine learning

to distinguish errant sensor readings. Stanley was equipped with sensors that could detect

bumpiness, differing light conditions, and accounted for them using probability distributions.

Essentially, Stanley could calculate the accuracy of its readings and make fewer errors—only

about 1 error in 50,000 readings [10].

Four years later, in 2010, the VisLab from the University of Parma in Italy constructed a

6

fully-electric autonomous vehicle that embarked upon and completed a VisLab Intercontinental

Autonomous Challenge (VIAC): an 8,000 mile road trip from Parma to Shanghai [1]. Refer to

the prototype vehicles in Figure 2.2. Throughout the journey, the vehicle encountered a variety

of traffic, road, and weather conditions [6]. Unlike cars from the DARPA Grand challenge, the

VisLab vehicle largely relied on image processing for local mapping. Other sensors on board

included laser-scanning and GPS, but the lasers were mainly used for detecting terrain [1].

VisLab proved the reliability and viability of vision algorithms rather than the use of complex

sensors—more akin to the way humans navigate.

Beginning in 2011, Google started a self-driving car project that leveraged their mapping

technology in order to navigate roads (see Section 2.3.1). This prompted the Nevada Depart-

ment of Motor Vehicles to issue the first Driver’s License for an autonomous vehicle. Along

the way, Google discovered more challenges with autonomous driving, including the need to

program behavior for moving through a four-way intersection and for city driving.

In 2014, Volkswagen implemented the AdaptIVe Project with the objective of creating au-

tonomous vehicles that function in various levels of traffic and different driving scenarios. Spe-

cific goals include navigating a traffic jam, parking in a parking garage, and creating a robot

taxi.

Autonomous vehicles of today, and even within the next 20 years [2], have high potential

to provide intuitive and innovative solutions to everyday transportation needs. Autonomous

vehicle research today can be grouped into three distinct sectors—government regulations,

motivation of automobile manufacturers, and motivation within research institutions.

7

Figure 2.2: VisLab has many prototypes for testing autonomous navigation and path planning.
As shown above, majority of the autonomous vehicles are sedan styles, whereas a the Vehicle for
the Vislab Intercontinental Autonomous Challenge is more similar to a van. What separates
VisLab from some of the other organizations, is their focus on algorithms and cross-vehicle
compatibility. In the future, I expect to see enhanced vehicle autonomy influenced by VisLab’s
algorithms.

8

2.2 Government Regulations and Issues with Autonomous

Vehicles

The lack of consistent laws regarding autonomous, driverless vehicles in the United States is

the main barrier hindering widespread implementation. Due to the fact fact that automated

driving is a new technology, it requires legislative and regulatory action from federal and local

governments. Figure 2.3 shows which states have passed, rejected, or considered implement-

ing autonomous vehicle laws.

Figure 2.3: Majority of the states in the U.S. have not considered passing laws for au-
tonomous vehicles. Of the states that have filed bills, only four states have passed: California,
Nevada [12], Florida, and Michigan. In order to promote the development of autonomous
vehicles, legislatures will need to consider passing autonomous vehicle laws and incentives for
use on public roads and interstates.

Autonomous, driverless vehicles provide a multitude of benefits such as:

• Faster reaction time for decision-making

• Increased safety by eliminating driver error and thus reducing the number of traffic fa-

talities and crashes

• Reduced costs from accidents and damages

9

• Reduced congestion at peak-hours

• Greater fuel economy

• Greater mobility for handicapped drivers

Downsides of autonomous vehicles include policies that need to be developed around their op-

eration. As our vehicles get smarter, complex questions such as “Who is at fault in the event of a

crash?" or “If the vehicle is lost or stolen, is there enough encryption to protect the information on

board?" are asked by policymakers in order to form ideas about how to mandate autonomous

vehicle use. Even though there seems to be more benefits than barriers of autonomous vehi-

cles, only four states, (California, Nevada, Michigan, and Florida), have passed bills allowing

the use of autonomous vehicles on roadways [13]. As time progresses, and automakers’ inno-

vations become more reliable, governments will have to modify their policies in order to keep

up with the modern technology. Autonomous vehicle development has been driven by both

technology companies (such as Google), the automotive industry, and academic research. The

next sections delve into the motivation behind such development.

2.3 Computer Vision Systems in Autonomous Vehicles

The Autonomous vehicles of today are starting to integrate computer vision in order to perform

various tasks. The following Sections 2.3.1-2.3.2, provide insight about the current solutions

for computer visions employed in road ready vehicles, as well as other autonomous mobile

robotic systems.

2.3.1 Mobileye Vision system

The current solution for vision in commercially produced vehicles comes from the company

Mobileye [14]. Mobileye makes a suite of vision tool that integrates vision data with other

data input streams such as radar in order to perform multiple driving and safety functions,

10

including pedestrian collision detection and lane switch detection. Mobileye’s system also pro-

vides various functionality beyond computer vision. Radar fusion is a big feature of Mobileye’s

system, which is the ability to combine radar data with camera data to provide up to date infor-

mation about surrounding obstacles. The feature was first used in the Volvo S80 in 2007[14].

This solution was used to generate collision warnings in the S80, using radar for range de-

tection and computer vision for angle detection. This marked the first deployment of EyeQ,

Mobileye’s custom hardware chip that is designed to integrate sensor data to provide various

roadside driving functions. Figure 2.4 is a hardware layout of the chip:

Figure 2.4: The hardware layout of the EyeQ system allows it to directly integrate sensor data
in order to generate collision warnings. Sensor inputs and integration is tied to dedicated
hardware components, making it impossible to extend the system to have more camera inputs.
Instead, Mobileye adds more functionally by releasing future revisions of EyeQ

Mobileye’s vision system is strictly a monovision, or one camera, system. The EyeQ system

11

is programmable, but is also designed to contain an entire application directly on the chip. It

is not designed to connect to or provide data to any external processors.This design is built

around taking advantage of native processing on the EyeQ system to provide for all of the

Vision calculations that could be used for the autonomous vehicle. Native functions included

on the chip include a classifier engine, a tracker engine, a Lane detection engine, and a window

preprocessing engine. All vision functions on the chip have to use one of these features.

2.3.2 Advances in Vision integration in Robotic Systems

Since the introduction of machine vision into autonomous vehicle’s on the market, advances

have been made in the area of using integrated Machine Vision in Robotic Systems. Large

strides have been made in using multiple streams of vision data for a single application. Re-

searcher Enric Cervera in particular has put forward an implementation for a video source

agnostic system for multiple networked robots equipped with video cameras called Agnevis

[3]. The Design purpose of Agnevis is to Agent based Networked Vision. Agnevis uses the Eth-

ernet IP protocol to share data from different video sources across multiple robots. As displayed

in figure 1.5.

The design of Agnevis leverages 3 things to make full use of the scalability of computer vi-

sion. the Real time protocol for Ehternet transmission, which makes the real time transmission

transmission of video data to different parts of a network. the real time protocol is a comprise

between traditional Ethernet transmission protocols such as TCP and UDP, which respectively

are too slow, and too unreliable for video transmission. The real time protocol is what allows

for agnostic data sharing between different actors in it’s network. This avoids the problems

encountered by current solutions on the market since vision data can be pulled from multiple

sources. This is what provides extensibility to Agnevis - it can work with multiple hardware

setup

The second thing it leverages is the native power of C/C++ vision libraries. It does this to gain

fast vision processing. Although not optimizing vision calculations in hardware, C/C++ vision

12

Figure 2.5: Agnevis is designed to network multiple robotic agent’s video sources in order to
perform complex tasks using computer vision [3].

calculations were chosen by Cervera due to them "providing an excellent, robust toolset for

the development of more complex algorithms." [3]. These libaries are a good compromise for

both fast calculation as well as the robust application of computer vision algorithms that are

currently lacking in commercial applications.

The last tool that Cervera employs in the development of Agnevis is the Java media framework,

which is what the controller software for Agnevis were written in. The Java media framework,

allows for controller classes to both integrate video data and run on multiple types of hard-

ware. In order to make this implementation work, software written in the Java programming

language had to be developed specifically for this application. Cervera’s research delves into

his implementation of this software.

13

2.4 ROS Overview

ROS is an open source software system designed to coordinate multiple parts of a single

robot [15]. Each part of the robot is represented in ROS as a "Node". This node structure

is ideal for imposing modular design, since each node is self contained. By using ROS, all the

principles that were put forward in Agnevis [3] can be attained.

Figure 2.6: This picture shows an example of hardware implementations of ROS nodes. Nodes
can either communicate with each other locally or over a network.

Information is passed between ROS nodes through topics. Topics act as information broad-

casts that can be subscribed to through other nodes. For this framework, two nodes have to

be defined - one that relays camera data over a ROS topic, and a node that subscribes to the

ROS topic in order to decode and compute the information. Because topics can be subscribed

to from any Node, it acts as an Agnostic data stream, fulfilling another goal from Agnevis.

14

2.5 Computer Vision and Image Processing

Computer vision is the study and implementation of computers to analyze imagery from data

gathered from the real world and process it into a numerical representation. Similar and re-

lated fields include signal processing and artificial intelligence. Vision analysis can come in

multiple forms: 2D image analysis, extracting 3D information from 2D images, object recog-

nition, or transforming images through the use of mathematical filters. It is a technology used

in applications such as controlling manufacturing processes and inspection [16], navigation

in autonomous vehicles [17], and in human computer interaction. Image processing relies on

the quick application of algorithms to image data. In ROS, support for these algorithms is

provided through OpenCV. OpenCV acts as an open source interface for implementations of

various vision algorithms.

The ultimate goal of the computer software when processing data from the cameras will

be to perform calculations relevant to autonomous vehicles. For instance, by using triangula-

tion [18] we can find the position of a point in space based on the two pictures. This method

involves projecting rays from each camera to a point that is included in both pictures. Once

the rays are computed, an intersection can be found between them, which corresponds to the

position of the point. Refer to Figure 2.7 for a visual of triangulation.

A method for computing this intersection is given in [18] that involves computing camera

matrices, and then using them to construct the rays to two similar points in the camera image

based on their 2D position. Each line is represented by a parametric equation and the distance

between the points on each line corresponding to each camera is minimized. The absolute

minima of this will be the point in which the rays intersect, or come closest to intersecting.

In order to employ this algorithm, similar features must be found in the images from the

two cameras in order to indicate that they indicate a single point in 3D space. This can be done

using common feature matching algorithms. One such algorithm is the Scale Invariant Feature

Transform (SIFT) algorithm [19]. SIFT is able to match features of objects by estimating the

gradient position and orientation of locations on different pictures and matching key locations

15

Figure 2.7: Stereo reconstruction consists of emulating human vision by using the differences
between two images focused on the same scene. Each image is captured from a different
point of view; triangulation and geometry then can be used to infer 3D information about the
surroundings.

where they are similar (See Figure 2.8). By doing this, it is able to match locations on 3D objects

with 2D images. OpenCV includes an implementation for using the SIFT algorithm [20].

Figure 2.8: Two separate photographs of the Arc De Triomphe were taken as shown above.
The blue connecting lines show that SIFT algorithm can find and recognize the same features
of each photograph shown using the blue connecting lines.

16

Chapter 3

Implementation

3.1 System Overview

The vision design proposed by this MQP is as follows: A central server receives image data

over the RTP protocol from multiple image camera sources. A ROS node running on that

server relays the RTP video streams to a ROS topic, which both local ROS nodes running on

the server and ROS nodes running on other locations of a network that the server is on can

subscribe to that ROS topic for video data. Calculations based on that video data can be made

from each ROS node. A visual representation of this framework is depicted in Figure 3.1.

3.2 System Configuration for Video streaming

For video streaming, the node rocon_r tsp_camera_rela y is used. This node is a prebuilt

node for ROS that is part of a series of nodes designed for robots that work together. This node

is able to take IP enabled camera sources and relay them into a ROS image topic. The Bash

commands that are used to launch this can be found in Appendix A section A.1

The roslaunch command for rocon_r tsp_camera_rela y first takes the argument of an IP

camera’s URL, and is used to start the ROS node that will relay camera data to a ROS topic

named RTSP. It is important to take into consideration that this node converts data from the

17

Figure 3.1: In order to take advantage of sharing video data across a network, the approach
should be extensible, optimized for a central machine, but also be able to support distributed
computing. This chart shows an approach that is capable of those requirements.

RTP format into a ROS image format that it then transports over a network. To get the best

performance and to preserve the advantages of using RTP data transfer, this node should be

run locally to the nodes that are performing the bulk of the vision calculations. However, this

setup allows for image data to be received over an ethernet network in order for additional

calculations to be done on remote ROS nodes.

3.3 Image Calculation

Once there is a ROS topic with relevant image data, a node can be created to subscribe to

that data and perform calculations on it. The code to create this subscriber can be found in

Appendix A section A.2

18

This code block is an example of a node that is able to turn a received message into an

OpenCV image. As an open CV image, multiple calculations can be performed on it, including

a sift algorithm for feature recognition, or simple color calculations.

19

Chapter 4

Results

4.1 Network Framework in Practice

In order to test the feasibility of this network framework, it was run on a laptop using an RTP

IP video stream from the laptop’s web cam. The laptop running ROS and the designed ROS

nodes, was put to the test of detecting whether or not it was viewing a street, as opposed to

a lawn. This use case is important for autonomous vehicles since they will have to adhere to

street guidelines, navigate turns, and make sure that are able to stay on a road if they are a

road vehicle.

4.2 Testing Method

A use case was implemented by aiming the camera both at a road and lawn. Video streams

from these are pushed through the framework for vision defined by this MQP and then a test is

performed to see if the camera is looking at a street or at a lawn through color detection. Two

sample images of a road and lawn that were taken by the camera are included in this section.

Figure 4.1 is a picture taken of a road, while Figure 4.2 is taken of the lawn. Both were taken

from above, pointing down as if the camera were mounted to an autonomous vehicle.

20

Figure 4.1: A picture of a road. This image includes variances in the road, such as cracks and
wear. These are expected to be encountered on drivable roads, and a road detection test should
account for them.

4.3 Results

Each image was able to be successfully pushed through the stack and delivered to a ROS node

running a color detection test that isolates the green colors in an image and then computes

the mean RGB values of the image. For the image in Figure 4.2, the mean green value after

isolation came out to 50.240625, while for Figure 4.1 was at 2.006485. Throughout testing,

images of lawn stayed consistently over a meant green color value of 38.2, while images of

roads stayed below 7.6. For the code used to perform this test, please refer to Appendix A

section A.3

21

Figure 4.2: An image of a lawn. After being pushed through the vision stack, a script should
be able to detect that this is a picture of a lawn, and an autonomous vehicle should avoid it.

4.4 Discussion

These results show that is is possible to use this framework in order to relay images within an

autonomous vehicle. One of the constraints of these tests is that it only tested the framework

as an implementation on a local machine. However, although it does not completely test the

flexibility of this approach, it is an ideal running condition for it. This use case also acts as a

real time test, and it does prove that this method is useful for a real time application. This is

important for when this framework is implemented in an autonomous vehicle as it will have

to deliver camera data and make calculations in real time. The road detection test can be

replaced by other methods of detection including pattern matching for pedestrians or road

signs. however as the complexity of these tests grow, computational time can become an issue.

This can be combated by performing multiple calculations in parallel by doing them on nodes

that are running on separate machines on the network.

22

4.5 Chapter Summary

This framework was tested with the use case of trying to detect whether a road or a lawn was

in a picture from the camera in real time. Images from the camera were relayed to a ROS node

that calculated the mean green color value in the image. Based on this mean value, a threshold

test can be performed in order to decide whether there is a lawn or not in the picture.

23

Chapter 5

Conclusions and Recommendations

The scope of this MQP is to give an example of a design for a software system that can be used

for an autonomous vehicle in a way that is extensible for further development, and is intended

to be used in a robotic system. This is achieved by creating a system that shares video data for

possessing among a network. This system is designed using tools that are designed for modular

expansion of a single robot and flexible processing among multiple sources.

Implementation and Experimental Results

The implementation of this system is designed to provide the frame for a system that inte-

grates vision processing from multiple sources moving forward, and has not currently been

implemented on an autonomous vehicle. Provided in this MQP are recommendations for this

systems implementation in autonomous vehicles that enable use vision.

The purpose of this system is to achieve a framework for an autonomous vehicle that uses

computer vision to navigate. This system is designed to integrate vision from any IP enabled

source, and is not limited by dedicated hardware stationed on a single vehicle.

24

Conclusions and Recommendations

Continuing with development in this framework should be in the pursuit of a system that can be

an experimental test bed for using machine vision in vehicle navigation. While going forward,

these recommendations that are concluded from this project:

Recommendation #1: An autonomous vehicle that uses machine vision for navigational pur-

poses should be agnostic to the source of its image data.

In order to take advantage of the scalability [3] strengths of computer vision, any vehicle

that uses computer vision for autonomous navigation should not be locked into a single hard-

ware setup. Since the system put forward in this project uses networking systems to control

the flow of data throughout an autonomous vehicle, providing a system for agnostic data flow

will make it possible to add more data sources or even dynamically integrate potential data

sources. Recommendation #2: The design of an API to extend the usability of this framework

Figure 5.1: An example of a collaborative network consisting of ground and aerial vehicles.
Data is relayed from/to the aerial vehicle to/from the ground vehicle to obtain more reliable
information and greater accuracy about the vehicles’ surroundings [4]. This network is very
well suited to using agnostic video sources because it opens up for much more flexibility in its
configuration - multiple combinations of these vehicles cooperating together can be achieved
without defining new standards for each new vehicles video stream.

needs to be considered.

25

Parallel to the system proposed in this MQP’s flexibility when it comes to hardware design

on a single autonomous vehicle, a software framework must also be put in place in order to

make software development under this framework possible. This should be achievable with

the open source frameworks this project uses for image processing and for data coordination.

A design that will allow future developers to employ dedicated functions and systems that en-

capsulate various computer vision algorithms and abilities will make it possible for developers

to completely leverage the advantages of this system. One of the major advantages that can

be leveraged by providing a diverse development system around this framework is that it can

take advantage of the internet. Developers can add improvements to an autonomous vehicle

through software updates delivered online, rather than having to install new hardware in order

to improve an autonomous vehicle.

Recommendation #3: More dedicated hardware should be used for critical real time perfor-

mance and safety functions.

While it is important for data to be shared across a network to take advantage of the higher

level aspects that can be gained from computer vision, under this framework it is still possible

to use data streams from local sources. Maintaining the flexibility of this setup is important

for critical safety functions that could be optimized through dedicated hardware. While this

dedicated hardware is not explored in this project to avoid premature optimization, the ap-

proach of optimizing certain vision functions might be necessary for applications where real

time performance, safety, and security is a risk.

Limitations of this Research

The scope of this project’s research is limited by the following factors:

1. While a current test bed for an autonomous vehicle is being developed through other

MQPs at WPI, it is not currently ready yet - this research still needs to be tested on an

26

autonomous vehicle.

2. Requirements of passengers and future developers of autonomous vehicle should be

taken into account as this project is expanded upon.

Potential Uses of the Recommendations

This project establishes a beginning framework for the software design and approach for an

autonomous vehicle. It is a place to start at, and provides examples of possible test cases of

the research in action. Further efforts in designing an usable framework should be expanded

upon. The development, implementation, and maintenance of a software package that can be

used to establish this framework in order to create an autonomous vehicle is a good next step

for a future MQP.

27

References

[1] J. L. Kent, “Driverless van crosses from Europe to Asia,” 2010. [Online]. Available:

http://edition.cnn.com/2010/TECH/innovation/10/27/driverless.car/index.html?iref=allsearch

[2] J. Fingas, “Self-driving vehicles and robotic clerks could take your job in 20 years,” 03

2015. [Online]. Available:

http://www.engadget.com/2015/03/08/robots-may-take-more-jobs/

[3] E. Cervera, “Integrating computer vision libraries in networked robotic systems,” in

Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings.

2005 IEEE International Symposium on, June 2005, pp. 267–272.

[4] J. H. Kim, “Multi-uav-based stereo vision system without gps for ground obstacle

mapping to assist path planning of ugv read more at:

http://phys.org/news/2014-09-air-ground-based-robot-vehicles.html#jcp,” Electronics

Letters, vol. 50, no. 20, pp. 1431–1432, 09 2014. [Online]. Available:

http://phys.org/news/2014-09-air-ground-based-robot-vehicles.html

[5] P. E. Ross, “Driverless Cars: Optional by 2024, Mandatory by 2044 - IEEE Spectrum,”

2014. [Online]. Available: http://spectrum.ieee.org/transportation/advanced-

cars/driverless-cars-optional-by-2024-mandatory-by-2044

[6] J. Schmiduber, “Professor Schmidhuber’s Highlights of Robot Car History,” 2011.

[Online]. Available: http://people.idsia.ch/ juergen/robotcars.html

28

[7] L. Martin, “Driving Forces: Lockheed Martin‘s Autonomous Land Vehicles,” 2012.

[Online]. Available: http://www.lockheedmartin.com/us/100years/stories/alv.html

[8] M. Novak, “DARPA Tried to Build Skynet in the 1980s,” 2013. [Online]. Available:

http://paleofuture.gizmodo.com/darpa-tried-to-build-skynet-in-the-1980s-1451000652

[9] D. Pomerleau, “RALPH: Rapidly Adapting Lateral Position Handler,” IEEE Symposium,

no. September 25-26, 1995, 1995. [Online]. Available:

http://www.cs.cmu.edu/ tjochem/nhaa/ralph.html

[10] J. Davis, “Say Hello to Stanley,” 2006. [Online]. Available:

http://archive.wired.com/wired/archive/14.01/stanley.html?pg=1&topic=stanley&topic_set=

[11] DARPA, “DARPA Grand Challenge 2005,” 2005. [Online]. Available:

http://archive.darpa.mil/grandchallenge05/gcorg/

[12] C. Dobby, “Nevada state law paves the way for driverless cars,” 2011. [Online].

Available: http://business.financialpost.com/2011/06/24/nevada-state-law-paves-the-

way-for-driverless-cars/?__lsa=e443-35b3

[13] U. H. of Representatives, “How Autonomous Vehicles Will Shape the Future of Surface

Transportation,” p. 1, 2013. [Online]. Available:

http://transport.house.gov/calendar/eventsingle.aspx?EventID=357149

[14] Mobileye. (2014, 09) Artificial vision technology. Mobileye. [Online]. Available:

http://www.mobileye.com/technology/

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,

“Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, no. 3.2, 2009, p. 5.

29

[16] D. Vernon, “An Optical Device for Computation of Binocular Stereo Dispairity with a

Single Static Camera,” in Opto-Ireland 2002: Optical Metrology, Imaging, and Machine

Vision, vol. 38, 2003.

[17] D. L. Baggio, Mastering OpenCV with Practical Computer Vision Projects, 2012.

[18] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding,

vol. 68, no. 2, pp. 146–157, 1997. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S1077314297905476

[19] D. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the

Seventh IEEE International Conference on Computer Vision, vol. 2, 1999.

[20] “Feature Matching — OpenCV 3.0.0-dev documentation.” [Online]. Available:

http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html

[21] M. Bertozzi, A. Broggi, M. Cellario, A. Fascioli, P. Lombardi, and M. Porta, “Artificial

vision in road vehicles,” Proceedings of the IEEE, vol. 90, no. 7, 2002.

[22] H. Fountain, “Yes, Driverless Cars Know the Way to San Jose,” 2012. [Online].

Available: http://www.nytimes.com/2012/10/28/automobiles/yes-driverless-cars-

know-the-way-to-san-jose.html?pagewanted=1&_r=0

[23] L. Gannes, “Here’s What It’s Like to Go for a Ride in Google’s Robot Car,” 2014.

[Online]. Available: http://recode.net/2014/05/13/googles-self-driving-car-a-smooth-

test-ride-but-a-long-road-ahead/

[24] A. Goncalves and S. Joao, “Low Cost Sensing for Autonomous Car Driving in Highways.”

[Online]. Available: http://welcome.isr.ist.utl.pt/img/pdfs/1663_hans_icinco07.pdf

[25] E. Guizzo, “How Google’s Self-Driving Car Works,” 2011. [Online]. Available:

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-

driving-car-works

30

[26] L. Hardesty, “Think Fast, Robot,” 2014. [Online]. Available:

http://newsoffice.mit.edu/2014/think-fast-robot-0530

[27] A. Heyden and M. Pollefeys, “Multiple view geometry,” in Emerging Topics in Computer

Vision, 2005, pp. 45–107.

[28] A. Iliafar, “LIDAR, Lasers, and Logic: Anatomy of an Autonomous Vehicle,” 2013.

[Online]. Available: http://www.digitaltrends.com/cars/lidar-lasers-and-beefed-up-

computers-the-intricate-anatomy-of-an-autonomous-vehicle/

[29] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, “Cloud-based robot

grasping with the Google object recognition engine,” 2013 IEEE International Conference

on Robotics and Automation, pp. 4263–4270, May 2013. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6631180

[30] T. Lassa, “The Beginning of the End of Driving,” 2013. [Online]. Available:

http://www.motortrend.com/features/auto_news/2012/1301_the_beginning_of_the_end_of_driving/

[31] D.-J. Lee, J. Archibald, X. Xu, and P. Zhan, “Using distance transform to solve real-time

machine vision inspection problems,” Machine Vision and Applications, vol. 18, no. 2,

pp. 85–93, Nov. 2006. [Online]. Available:

http://link.springer.com/10.1007/s00138-006-0050-2

[32] M. de Paula, “Autonomous driving,” Popular Science, May 2014. [Online]. Available:

http://www.popsci.com/blognetwork/tags/autonomous-driving

[33] S. J. D. Prince, “Computer vision : models , learning and inference,” 2012.

[34] P. Stenquist, “On the Road to Autonomous, a Pause at Extrasensory,” 2013. [Online].

Available: http://www.nytimes.com/2013/10/27/automobiles/on-the-road-to-

autonomous-a-pause-at-extrasensory.html?pagewanted=all

31

[35] “Automated Driving Applications and Technologies for Intelligent Vehicles - AdaptIVe

FP7 project- Automated Driving Applications and Technologies for Intelligent Vehicles.”

[Online]. Available: http://www.adaptive-ip.eu/

[36] “Volvo Car Group‘s first self-driving Autopilot cars test on public roads around

Gothenburg - Volvo Car Group Global Media Newsroom.” [Online]. Available:

https://www.media.volvocars.com/global/en-gb/media/pressreleases/145619/volvo-

car-groups-first-self-driving-autopilot-cars-test-on-public-roads-around-gothenburg

[37] A. Davies and A. Gallery, “Self-driving cars will make us want fewer cars,” 03 2015.

[Online]. Available:

http://www.wired.com/2015/03/the-economic-impact-of-autonomous-vehicles/

[38] A. Stoklosa, “Google shows off how its autonomous vehicles aren‘t killing cyclists or

hitting parked cars,” Car and Driver, 04 2014. [Online]. Available:

http://blog.caranddriver.com/google-shows-off-how-its-autonomous-vehicles-arent-

killing-cyclists-or-hitting-parked-cars/

[39] ——, “California attempts to wade into the uncharted waters of autonomous-car

regulation,” Car and Driver, 03 2014. [Online]. Available:

http://blog.caranddriver.com/california-attempts-to-wade-into-the-uncharted-waters-

of-autonomous-car-regulation/

[40] J. Holloway, “Rinspeed releases details of micromax swarm car concept,” Gizmag, 02

2013. [Online]. Available: http://www.gizmag.com/rinspeed-micromax/26392/

[41] C. Weiss, “Rinspeed shows what the self-driving car will be like to ride in,” Gizmag, 12

2013. [Online]. Available:

http://www.gizmag.com/rinspeed-self-driving-concept/30104/

[42] VisLab. (2015) Automotive. [Online]. Available: http://vislab.it/automotive/

32

[43] C. Atiyeh, “European manufacturers leading r&d for autonomous cars we may actually

want to drive,” Car and Driver, 02 2014. [Online]. Available:

http://blog.caranddriver.com/european-manufacturers-leading-rd-for-autonomous-

cars-we-may-actually-want-to-drive/

[44] “Characteristics of Fifth-Wheel (Wagon Steer) Steering Page,” in Engineering Design

Handbook - Automotive Series - Automotive Suspensions: (AMCP 706-356). U.S. Army

Materiel Command, Nov. 2012. [Online]. Available:

http://app.knovel.com/web/view/swf/show.v/rcid:kpEDHASAS1/cid:kt00AC8JW7/viewerType:pdf/root_slug:engineering-

design-handbook-18?cid=kt00AC8JW7&page=4&b-q=ackermann

steering&sort_on=default&b-subscription=TRUE&b-group-by=true&b-sort-

on=default&q=ackermann

steering

[45] “Systems Engineering Management,” in Systems Engineering Fundamentals. U.S.

Department of Defense, Jun. 2001. [Online]. Available:

http://app.knovel.com/web/view/swf/show.v/rcid:kpSEF00001/cid:kt00TYSBI1/viewerType:pdf/root_slug:systems-

engineering-fundamentals?cid=kt00TYSBI1&page=2&b-q=system

engineering&sort_on=default&b-subscription=TRUE&b-group-by=true&b-search-

type=tech-reference&b-sort-on=default&b-toc-cid=kpSEF00001&b-toc-root-

slug=systems-engineering-fundamentals&b-toc-url-slug=purpose&b-toc-title=Systems

Engineering Fundamentals

[46] U. D. of Transportation. (2013, 08) Model systems engineering documents for adaptive

signal control technology (asct) systems. [Online]. Available:

http://ops.fhwa.dot.gov/publications/fhwahop11027/sec_b.htm

[47] F. Brunet. (2011, 07) First definitions and concepts. [Online]. Available:

http://www.brnt.eu/phd/node16.html

33

[48] J. V. Does. (2014, 08) Openmvg photo reconstruction. [Online]. Available:

http://blog.htmlfusion.com/openmvg/

[49] Minidoodle. Gear ratio. [Online]. Available: http://jleibovitch.tripod.com/id111.htm

[50] D. Bray. (2014, 09) Getting a raspberry pi on worcester polytechnic institute (wpi) wifi

(wpa-eap). esologic.com. [Online]. Available: http://www.esologic.com/?p=1088

34

Appendix A

Vision Code Repository

This Appendix serves as a repository for all code used throughout this MQP

A.1 ROS RTP Relay Initialize Bash Commands

The following is the bash command that initializes and launches the ROS node that performs

a relay of RTP video stream data to a ROS topic.

> export ROCON_RTSP_CAMERA_RELAY_URL=r t s p ://YOUR IPCAM URL

> ros launch rocon_r tsp_camera_re lay r t sp_camera_re lay . launch −−screen

A.2 ROS Image Subscriber Node

The following is the code used to create a ROS node that subscribes to the RTP image topic.

from SimpleCV import ∗

import rospy

from std_msgs . msg import S t r ing

#ana l y z e s image data from camera , t r i e s to v e r i f y i f t h e r e i s a road .

35

def c a l l b a c k (data) :

Roadimg = Image (imgmsg_to_cv2 (data ,

encoding=" passthrough ") , cv2image=True)

#Roadimg S t o r e s an image tha t can have v i s i o n c a l c u l a t i o n s done on i t .

def l i s t e n e r () :

rospy . in i t_node (’ node_name ’)

rospy . Subsc r ibe r (" RTSP " , imgmsg , c a l l b a c k)

sp in () s imply keeps python from e x i t i n g u n t i l t h i s node i s s topped

rospy . sp in ()

A.3 Image Road Detection Color Test

The following is the code that was used to conduct the road detection test for an image taken

and routed through this framework

from SimpleCV import ∗

import rospy

def Road_test (tes t Image) : #Thi s i s the f u n c t i o n tha t t e s t s Roadimg .

greenExt rac t = tes t Image . co lo rD i s t ance (Color .GREEN)

Lawn = tes t Image − greenExt rac t

rospy . l o g i n f o (Lawn . meanColor ())

#t h i s w i l l l o g through l o s s the mean RGB c o l o r v a l u e s o f a green e x t r a c t e d

#image .

#The green c o l o r va lue can be u s e f u l i f t r y i n g to d e t e c t a lawn vs .

#a road .

36

