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Abstract

Mining frequent patterns is an important component of mamgdigtion systems. One
common usage in web applications is the mining of users’sscibehavior for the purpose
of predicting and hence pre-fetching the web pages thatdéeisi likely to visit.

Frequent sequence mining approaches in the literatureftne lmased on the use of
an Apriori-like candidate generation strategy, which tghly requires numerous scans of
a potentially huge sequence database. In this paper wadhstiEoduce a more efficient
strategy for discovering frequent patterns in sequencabdaes that requires only two
scans of the database. The first scan obtains support caurgaldsequences of length
two. The second scan extracts potentially frequent se@sasfa@ny length and represents
them as a compressed frequent sequences tree structureélrS-requent sequence pat-
terns are then mined from the FS-tree. Incremental andhictige mining functionalities
are also facilitated by the FS-tree. As part of this work, wealoped the FS-Miner, an
system that discovers frequent sequences from web log TilesFS-Miner has the ability
to adapt to changes in users’ behavior over time, in the fdrnew input sequences, and
to respond incrementally without the need to perform fultoenputation. Our system
also allows the user to change the input parameters (e.gimuam support and desired
pattern size) interactively without requiring full re-cpotation in most cases.

We have tested our system using two different data sets, aongat against two other
algorithms from the literature. Our experimental resutitsvg that our system scales up
linearly with the size of the input database. Furthermamexhibits excellent adaptability
to support threshold decreases. We also show that the ieatairupdate capability of
the system provides significant performance advantagegwl/ee-computation even for

relatively large update sizes.
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Chapter 1

Introduction

1.1 Web Usage Mining

A sequence database stores a collection of sequences, @dodreequence is a collection
of ordered data items or events. Examples of sequences akesBiences, web usage
data files or customers’ transactions logs. For web appiicstwhere users’ requests are
satisfied by downloading pages to their local machines, sigeafl mining techniques to
predict access behaviors and hence help with prefetchitigeofnost appropriate pages
to the local machine cache can dramatically increase thiamarperformance of those
applications. These mining techniques analyze web logddesposed of listings of page
accesses (references) organized typically into sessldrese techniques are part of what
is calledWeb Usage Mining a term first introduced by Cooley et al. [CSM97].

Typically web usage mining techniques rely on a Markov aggion with depthn.
This means that it is assumed that the next request pageatepely on the last pages
visited. A study conducted in [JPT03] showed that Markowedlastructures for web usage
mining is best suited for prefetching, targeted ads, angguedization.

Web usage mining approaches can be classified based on theftygatterns they



produce into three categories [GHO3]: association rulexjuent sequences, and fre-
guent generalized sequence. With association rules, tt#dgm of finding web pages
visited together is similar to finding association amongitets in transaction databases.
Frequent sequences can be thought of as an ordered (by ista)don-empty item sets,
and hence frequent sequence mining can be thought of asagsocule mining over
temporal data sets. A frequent generalized sequence igjaeine sequence that allows
wildcards in order to reflect the user’s navigation in a fléxivay [GST00]. [GHO3]
evaluated the three approaches and found that the fregegueisce approach gives bet-
ter results than the association rules and the frequentgleresl sequence approaches
when we need to find the correct predictions within the fistjmtéons.

Frequent sequences are also knowm@versal Patterns. According to [Dun03],

traversal patterns can be classified based on four mairrésatu

e Whether or not the order of page references in a pattern raatte

e Whether or not duplicate page references are allowed. Aichtpl page occur-
rence in a sequence can be either backward traversal (theesage reference can
appear more than one time in the sequence in a non-contignanser), or page
refresh/reload (the same page reference can appear marerieaime in the se-
guence in a contiguous manner). For example, in the sequenee fr> page
a has a backward traversal pattern, and in the sequente:ca fr> pagec has a

page refresh/reload pattern.

e Whether patterns must consist of contiguous page refesendbey can have gaps.

In other words, whether wildcards are allowed or not.



e Whether or not only maximal patterns are considered. A pattemaximal when
it is not part of another pattern. For example, if a miningoaiitnm outputs as a
frequent sequence the pattetiabed> this implies that all subsequences of that
frequent pattern<ab>, <abc>, <abcd>, <bc>, <bcd>, and <cd> are indeed
frequent. And since the algorithm output only the maximalgya of these smaller
patterns we classify this algorithm a maximal pattern atgor. Note that although
it is visible to extract all those subsequences from theadised maximal pat-
tern, this is not exactly equivalent to discovering the sdmeguent subsequences
as frequent patterns by another mining algorithm that gegasithem as well their
maximal pattern. The reason is that, besides generatingatierns themselves,
the second approach can also give their frequency, whilditsteapproach will
give the frequency of the maximal pattern and can not givergmuencies of its

subsequences.

1.2 Problem Description

In this work we are particularly interested in web usage ngrfior the purpose of ex-
tracting frequent sequence patterns that can be used fdefoleéng and caching. For
pre-fetching and caching, knowledge of such ordered coatig page references is use-
ful for predicting future references [Dun03]. Furthermdteowledge of frequent back-
ward traversal is useful for improving the design of web Eaf@n03]. In other words
we are interested in mining fdraversal patternswheretraversal patternsare defined
to be sequences with duplicates as well as consecutiveilngdagtween page references
[XDO01]. Our goal is to introduce a technique for discoversurh sequence patterns,
that is efficient, yet incremental and can adapt to user pete@mchanges. The patterns

extracted by our system follow the Markov assumption disedsabove and have four



properties: (1) the order of page references in patternap®itant; (2) duplicate page
references are allowed (backward traversals and pagesiel¥ (3) patterns consist of

contiguous page references; and (4) maximal and non-méagatarns are allowed.

1.3 Mining Cost

In general, discovering frequent patterns in large datésa costly process in terms
of 1/0 and CPU costs. One major cost associated with the mipmcess is the gen-
eration of potentially frequent items (or sequences),edallandidate item sets. Many
mining techniques use an Apriori style level-wise candidggneration approach [AS94,
NLHP98, STA98] that requires multiple expensive scans efdhtabase, one for each
level, to determine which of the candidates are in fact feeuTo address this issue, Han
et al. [HPYO0O] proposed a frequent pattern growth (FP-gndpwased mining method that
avoids costly repeated database scans and candidate tg@mefdeir work focuses on
the discovery of frequent item sets in transactional datedan that work the order of the
items in each record (i.e. in each transaction) is not of idenation. Hence it does not
support mining for sequences where order among items isriaato \WWe now propose an
extension of their technique to tackle the sequence mirasg.c

The mining cost is even more prohibitive for dynamic datalsaghich are subject to
updates such as the continuous insertion of new sessiohs teeb log. In this case the
reconstruction of frequent sequences may require re-érgcilne mining process from
the beginning. The problem of incrementally mining for asation rules has been stud-
ied widely [FAAM97, TBAR97]. Parthasarathy et al. [PZOD98froduced an interactive
and incremental sequence mining approach using a lattieetste. In their approach, the
discovery of frequent sequences is done by traversing thedand intersecting subse-

guences of common suffixes to obtain their support. Thefopsance study has shown



that the incremental capability of their system is more fitthan re-computing fre-
guent sequence mining process from scratch. However,rtii@ation of their approach,
as they point out, is the resulting high memory utilizatianveell as the need to keep
an intermediate vertical database layout which has the saaas the original database

[PZOD99].

1.4 Contributions of this Thesis

Our work is similar to [HPYO0Q] in that we also aim to avoid theensive candidate gen-
eration process, particularly in the presence of large rerrobitems (page references).
We propose a frequent sequence tree structure (FS-tresfofimg compressed essential
information about frequent sequences. Unlike [HPYO0O],chiiaims to discover frequent
item sets in which order is not important, our work takes oalaong page references
into consideration. We introduce an algorithm which we €a#quent Sequence min-
ing (FS-mine) that analyzes the FS-tree to discover frequent seque@eegsapproach is
incremental in that it allows updates to the database to crenmentally reflected in the
FS-tree and in the discovered frequent sequences, witheutded to reload the whole
database or to re-execute the whole mining process frontickcr&inally the user can
interactively change key system parameters (in partichiaminimum support thresh-
old and the maximum pattern size) and the system will rembgepatterns that are no
longer frequent and will introduce the patterns that are fiegquent according to the new
parameter values, without the need for scanning and loddangntire database.

The results of the experiments that we have conducted usingpproach, and com-
pared against two other approach from the literature, shaivwdur system, as well as the
other two systems, scales up linearly with the size of thatidatabase. Furthermore, our

system shows a much better response time to the decrease sagport level than the



other two systems that experience a dramatic increase tnwtwn they hit lower sup-
port values. The incremental update capability of the oyr@gch provides significant

performance advantages over full re-computation everelatively large update sizes.

1.5 Outline of this Document

The rest of this document is organized as follows. Chapteis@udses related work.
Chapter 3 introduces the FS-tree data structure designhenB3-tree construction al-
gorithm. Chapter 4 describes the FS-mine algorithm foralisang frequent sequences
from the FS-tree structure. Chapter 5 describes the inar&zhand interactive mining

algorithms. Chapter 7 discusses our experiment resulsthyi . &hapter 8 provides some

conclusions and future work ideas.



Chapter 2

Related Work

Nanpoulos et al. [NKMO01] proposed a method for discoveriogesas patterns from web
logs based on a new type of association patterns. They hémellerder between page
accesses, and allow gaps in sequences. They use a candidatatgn algorithm that
requires multiple scans of the database. Their pruningestyassumes that the site struc-
ture is known.

Srikant and Agrawal [SA96] presented an algorithm for figdyeneralized sequential
patterns that allows user-specified window-size and uskned taxonomy over items in
the database. This algorithm required multiple scans ofitttabase to generate candi-
dates.

Yang et al. [YZL01] presented an application of web log mgniihat combines caching
and prefetching to improve the performance of internetesyst In this work, associ-
ation rules are mined from web logs using an algorithm calfath Model Construc-
tion[SYLZ00] and then used to improve the GDSF caching replacgéaigorithm. These
association rules assumes order and adjacency informati@mg page references. The
left hand side of the association rule is a substring of lengicalledn-gram substring),

and is obtained by scanning through all substrings rangetgéden 1 and. in each user



session and pruning substrings that do not satisfy a praatefninimum support. Like
us, they assume contiguous page references in sequenempatt

Han et al. [HPYO0O] proposed a technique that avoids the y@sticess of candi-
date generation by adapting a pattern growth method thatai$éghly condensed data
structure to compress the database. This work also usedde-&ind-conquer method to
decompose the mining task into a set of smaller tasks thateesthe search space. The
proposed technique discovers un-ordered frequent itesnidetvever, is does not support
the type of sequences we are interested in.

Parthasarathy et al. [PZOD99] introduced a mining techmigjuen incremental up-
dates and user interaction. This technique avoids re-éxgahe whole mining algorithm
on the entire data set. A special data structure called nmen¢al sequence lattice and a
vertical layout format for the database are used to stomesiie the database associated
with customer transaction identifiers. Sequence suppogtslatained by performing in-
tersection between different nodes in the lattice and olrtgicount supports from the
intermediate vertical database. Due to the size of thergdrate vertical database and
lattice that together typically exceeds memory limitssthiocess is broken into smaller
processes by forming suffix-based equivalence classeb. diass is brought to the mem-
ory and processed independently. Similar in spirit to [P2OPDwe store in the FS-Tree
additional data as that reduces the work required at ladgrestalthough we use very
different data structures and algorithms to achieve that.

Xiao and Dunham [XDO01] proposed an incremental and adaplgaithm for mining
for traversal patterns. This work relies on a generalizdtixstiee structure where all
sequences in the database and their suffixes are inserted ifthis tree grows quickly
in size, since inserting a sequence into the suffer tredvaganserting all its suffer into
the tree. Whenever the size of the tree reaches the size ai/#tilable memory during

tree construction, pruning and compression techniquea@ked to reduce its size in



order to be able to continue the insertion process of the irengasequences from the
database. This process of reducing the size of the tree tatdithe available memory
is referenced to as adaptive property. Conversely, we domeed to interrupt the FS-
Tree construction process to prune or compress the tree psume the input sequences
before inserting them into the tree and we insert only pa#nfrequent subsequences.
Unlike [XDO01], the adaptive mining here means that the syséslapts to changes in

user-specific parameters.



Chapter 3

FS-tree Construction

3.1 Frequent Sequences

Let 7 = {iy,4s, ..., 1, } e a set of unique items, such as page references. A segqbeqce
= <p1p2...pn> is an ordered collection of items with € [ for 1 <i < n. A databas®B
(for web usage mining typically a web log file) stores a setemiords (sessions). Each
record has two fields: the record ID fieldID, and the input sequence fieldSeq. The
order of the items does matter within such an input sequenen an itenp, ; comes
immediately after another itep) we say that there is a link from p; to p; ;. We denote
that asl; = p; — p;+1. We may also represent a sequenc&eg=p — P, wherep is the
first element in the sequence aRds the remaining subsequence.

For a link h, thesupport countSupp'™(h), is the number of times this link appears
in the database. For example if the link- b appears in the database five times we say
that Supp'™*(a — b) = 5. For a sequencfeq = <p,ps...p,> we define its size as
which is the number of items in that sequence. Given two SeIpIE = <pip>...p,>
and R = <q1¢»...q,,> We say thatS is a subsequence @t if there is some;, 1 < i

<m —mn+ 1, such thatp, = ¢, p» = ¢i+1, ... Pn = Giv(n—1)- FOr a given input

10



sequenc&eq = <pips...p,> We consider only subsequences of siz. For example, if
arecord in the database has an input sequented> we extract subsequencesbcd>,
<abc>, <bed>, <ab>, <bc>, and<cd> from that input sequence. The support count
Supp*?(Seq) for a sequencéeq is the number of times the sequence appears in the
database either as a the full sequence or as a subsequeressiohs. We allow item
duplicates in frequent sequences, which means that the isamean appear more than
once in the same sequence. Duplicates can be either backaeedsal, e.g. the pade

in <abcb>, or refresh/reload of the same page, e.g. the page<aabc>.

3.2 Sequence Support

The behavior of our system is governed by two main parameféng first parameter
is minimumlink support count M SuppC**, which is the minimum count that a link
should satisfy to be considered potentially frequehfSuppC'"* is obtained by mul-
tiplying the total number of links in the database by a deksim@nimum link support
threshold ratioM SuppR' ™. M SuppR"* is the frequency of the link in the database
to the total number of links in the databas#ufp'*/total # of links in the database)
which a link has to satisfy in order to be considered potéptisequent. M SuppR'"* is

a system parameter (not set by the user) and is used by the&Sanstruction algorithm
to decide what links to include in the FS-tree as will be désad later. The second pa-
rameterM SuppC**?, is theminimumsequence support countthat denotes the minimum
number of times that a sequence needs to occur in the datalaseonsidered frequent.
M SuppC®*? is obtained by multiplying the total number of links in thetalaase by a
desired minimum sequence support threshold rafigupp R°“?. This desired ratio is the

frequency of the sequence in the database to the total nuofibeiks in the database

11



(Supp®“itotal # of links in the databa¥ewhich a sequence has to satisfy in order to
be considered frequentM SuppR**? is set by the user and is used by the FS-Mining
algorithm during the mining process.

M SuppC®*? is the main parameter needed for sequence mining in oumsy#eall
times, we assume thaf SuppC'™* < M SuppC*?. The reason for having/ SuppC'"*
is to allow the system to maintain more data about the inpiatodesse than required for the
mining task at hand. This will help in minimizing the amoumpoocessing needed when
handling incremental updates to the database, or when #rechianges system parame-
ters. Thisissues will be discussed in more detail in thesimamtal and interactive mining
sections. In short, we consider any sequefiegthat hasSupp®“?(Seq) > M SuppC**?
a frequent sequenceor a pattern. We consider any link: that hasSupp'™*(h) >
M SuppC®*? a frequent link (also considered a frequent sequence of size 2) . And if
Supp™(h) > M SuppC'™* and Supp'™ (h) < M SuppC**? we callh a potentially fre-
quent link. And if Supp"™*(h) does not satistW/ SuppC'™* and M SuppC**? we callh

anon-frequent link.

3.3 Frequent Sequence Tree

We now describe our proposed data structure that we use @ gtdentially frequent
sequences to facilitate the mining process.
Definition 1 A frequent sequence tree is a structure that consists obtleaiing three

components:

INote that this is slightly different from the definition offgoort ratio in other work [XD01], which has
the same patterns assumptions. [XDO01] defines this ratie tind frequency of the sequence to the total
number of pages in the database. We think that our ratio i® @ppropriate since it eliminates the effect
of sessions with single page reference in the input web lathenesired ratio (given that we are interested
in patterns of size> 2).

12



e A tree structure with a special root nodeand a set of sequence prefix subtrees as
children of the root. Each node in the FS-tree has aode-name field that rep-
resents an item from the input databds&ach edge in the tree representgiak
relationship between two nodes. Each edge has three fieltg-name, edge-
count, andedge-link. Edge-name represents théom andto nodes that are linked
using this edgegdge-count represents the number of sequences that share this edge
in the particular tree path, where a tree path is the prefixiptitat starts from the

tree root to the current node.

e A header tablegl/ T that stores information about frequent and potentiallyfrent
links in the database. Each entry in the header tabl€ has three fieldsLink
which stores the name of the lirdgunt stores the count of that link in the database,
andlistH pointer, which is a linked list head pointer that points te first edge in
the tree that has the sanedge-name as the link name. Note that tledge-link field
in each edge in the tree is pointing to the next edge in ther€&Swith the same

edge-name (or null if there is none)

e Anon-frequentlinks tabl&’ F' LT, that stores information about non-frequent links.
This table is only required for supporting the incremenéstfire of the system. The
NF LT has three fieldstink which stores the name of the lirdgunt which stores
the count of that link in the database, aBtDs which stores the IDs of records in

the database that have sequences that include that link

2For supporting the incremental property of the system, wergsthe node by adding a structure that
stores a single session ID that ends at this node for ceragnences. We will introduce this structure in
more details in the incremental mining chapter.

3For optimization, if more than one of these sessions havetlgxhe same sequence we might store
only the ID of one of them along side with their count. For exdarif the link a-b was non-frequent and

13



SID | InSeq

1 dgi

2 dg

3 cdehi

4 cde Link Count ListH Link Count SID

5 chedg o T eb| 1 1

6 cb Frequent -~ gi | 2 bf | 1 1

7 abedgi Links A oed| 7 ef | 1 12

8 abced de| 6 adi | 1 13

9 bdehi eh| 3 Non-frequent e | 1 13

10 bdeh h-i | 2 Links di | 1 14

11 cdebfabe Potential i b-c| 5 e | 1 14

12 cdefabe Frequent < b | 2 g | 1 15

13 aic Links \ a-b| 4 g-d 1 15

14 die \ b-d| 2 d-b| 1 15

15 igdba f-a 2 b-a 1 15
(a) Web Log File (b) Header Table (HT) (c) Non-Frequent Links Table (NFLT)

Figure 3.1: (a) Web log file example, (b) Header tablé and (c) Non-frequent links
table NFLT.

3.4 Frequent Sequence Tree Construction

Consider the web log file in Figure 3.1(a). It stores a set efsissessions where each
session has two fieldsS7D filed that stores the session id ahdSeq filed that stores
sequence of page references accessed by the user in a oett&inGiven such input web
log file, and assuming/ SuppC'"* = 2 andM SuppC**? = 3,* we construct the FS-tree
as follows:

1) We first perform one scan of the input database (log fileptaio counts for links
in the database.

2) We identify those links that hav@upp'™ > M SuppC'™*, and we insert them in
the header tablef{7T"), along side with their counts, as shown in Figure 3.1(b). lir&s

that do not satisfy the predefinéd SuppC'™* we insert them in the non-frequent links

if it appeared in three sessions in the datab@Sexabc>} {9, <eabd>} and{15, <abc>} we may store
this information in theV F'LT as{a-b, 3,{(5:2), (9:1} } where a-b is the link name, 3 the link count and
{(5:2),(9:1)} means that a-b appears in a session with SID=5 and in anetbsioa that has exactly the
same sequence as the one in session 5, and also appearessioa gé&th ID=9 that had different sequence.
4Frequent links are those satisfying both support threshétdtentially Frequent links are those satis-
fying only M SuppC*™* and Non-frequent links are those not satisfying any of thesupport thresholds.

14



table (VF LT), along side with their counts and the SID of sessions theyoatained
from®, this is shown in Figure 3.1(c).

3) We create the root of the FS-tree.

4) We then perform a second scan of the database callingnthetTree function
(shown in Figure 3.2) for each input sequence. #hertTree function inserts the input
sequences in the FS-tree starting by the first link in the esecgy, frequent links (and
potentially frequent links) are stored as edges in treediras (sharing nodes and edges
when possible), until some non-frequent link is encountece the input sequence is
exhausted. If a non-frequent link is encountered in thertadesequence we do not insert
it, rather, the insertion process is started over again fiteenroot of the tree, with the
remaining input subsequence, in a recursive manner. Begiderting sequences into the
FS-treewe also maintain theistH linked lists that link different edges in the tree to the

header table (HT).

FS-tree construction Algorithm Function insertTree (t'ree r(?ot node S, sequﬁ:nce p-P):
Updated FS-tree in which all the potentially frequent
Input: Sequence Database DB subsequences are inserted .
and minimum link support MSupp, (1) If (link p-P € HT) {
Qutput: Frequent sequence tree FS-tree of DB ) If (S has a child N and N.node-name = p) {
Method: 3) increment S-N.edge-count by 1
(1) Scan the DB once to collect counts for all links 4) }Else {
(2) Classify links and insert them in HT and NFLT 5) Create node N with N.node-name = p
tables (6) Create edge S-N with S-N.edge-count = 1

(3) Create a root R for the FS-tree
@) Append edge S-N to HT .ListH }

(8) If (P is non-empty) {call insertTree(N, P)}
(9) }Else if (link p-P € NFLT) {
(10) If (P is non-empty) {call insertTree(R, P) } }

(11) If P is last page in InSeq; and InSeq; was not cut,
store Seq.ID in seqEnd.ID

(4) For (each record in DB get sequence InSeq;)
call insertTee (R, InSeq,)
(5) Return FS-tree

Figure 3.2: FS-tree construction.

Figure 3.3 shows the FS-tree constructed for the examplégim& 3.£. The total

Sonly required for supporting incremental mining
5Note that we only show some of the lines that link the headde t@ edges in the FS-tree for simplicity
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number of links in the database is 52, based on first dataltase $\nd assuming that
the system defines/ SuppR""* to be 4% and the user defindsSuppR**? to be 6%, we
obtainM SuppC'"™* = 2 andM SuppC**? = 3 accordingly (note that/ SuppC'"* is used
in FS-tree construction, whilé/ SuppC*“? is used later in FS-tree mining). We create
the FS-tree root node R. We then insert sequences into thetading from the tree root
using the procedure described above. For the sequetl¢e> we start from the root and
since the tree is empty so far, we create two new nodes witleséandg. We also create
an edgel — g that is assigneddge-count= 1. In addition, we link theListH pointer for
link d — g in HT to the new edge. Lastly, we insert the nadeto theFS-tree creating a
new node and the edge- i with edge-count=1, and linkListH pointer for linkg — 7 in
HT to that edge. When inserting the second input sequeinige-, we share the nodes

andg and the edgé — g and increment the count of that edge to 2.

Header table
Link Count ListH

d-g| 4
g-i

c-d
d-e
e-h
h-i

b-¢
c-b
a-b
b-d

NN AN NN W SN

f-a

Figure 3.3: The FS-tree constructed for the example in Ei§ut

Next we insert the sequenee-dehi> by creating new nodes and edges (with counts
= 1) for all the items and links in the sequence since therenegsossible path sharing.

Sequences in sessions with ids 3 to 10 are inserted follothi@egame logic described
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above. Session 1kdebfabc>) is a different from prior sessions, since the sequence
in this session has non-frequent links, namely b andb — f. First, the sub-sequence
<cde> is inserted in the tree. Insertion here involves sharingtelg nodes and edge
and incrementing edges counts. Then we ignore the two remuént linkse — b and

b — f. The sub-sequencefabc> is inserted from the tree root by creating new nodes
and edges as described above. For session 12 we insert tiequéncecde> into the
tree, then we encounter the non-frequent link e-f, so we iskipd insert the remaining
sub-sequence fabc> starting from the root node of the tree. Sessions 13, 14 armlel5
not inserted, totally or partially, into the FS-tree sintieteeir links are non-frequent. See

Figure 3.3 for the fully constructed FS-tree.

3.5 FS-Tree Size

The FS-tree is a compressed form for representing sequscaesed from the input web
log file. Itis compressed in two manners, first, not all segesrare stored in the tree, only
those sequences/subsequence that are potentially fiteapeeimserted and stored in the
FS-Tee. This insures that any non-potential sequencedqubace are pruned from the
beginning and are not inserted in the tree. Second, insartio the tree involves sharing
of all possible existing nodes and edges, this is even moneiol with the existence
of the inial pruning step discussed earlier. So if a sequépeuned (cut into smaller
subsequence as a result of having non-frequent links irah of these subsequences
has the chance of sharing nodes and edges when they aredhfsen the top of the FS-
tree. Due to these properties of the FS-tree, the size ofelked typically much smaller
than the original web log file.

To give an idea about how small our proposed FS-Tree is we ieeaamother web

usage mining work that used a tree to store and mine freqeenesces. The work pre-
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sented in [XDO01], that we discussed in the Background Chapbastructs a suffix tree
and mine it for frequent sequences. Insertion in the su#éi& ts done as follow: for each
sequence in the input log file each suffix of the sequence &t from the root of the
tree, sharing nodes and edges if possible. For example, ifisest the sequencedgi>
from session 1 in the input log file shown in Figure 3.1(a) weeimthe suffix sequences:
<dgi>, <gi>, and<i>. The same thing happens for each sequence in the input log
file. This makes the suffix tree grows very quickly especialith the exitances of long
sequences. For example the sequenecéeb fabc> in session 11 will cause the inser-
tion of the following suffix sequences:cdeb fabc>, <debfabc>, <ebfabc>, <bfabc>,
<fabc>, <abc>, <bc>, <c>. To give an idea of how big is the initial suffix tree needed
to represent the sequences in the web log file in Figure 3.M@&)xonstructed this tree
and are showing it in Figure 3.4. Note that for the clarity cégentation, the suffix tree
in Figure 3.4 shows the accessed pages on the nodes themsdive typically they are
shown on the edges. Note that the symbis used to represent a terminating simple and
is considered as leaf node that indicates the ending of x s@ffjuence. For more details
on suffix trees in general refer to [Gus97].

To overcome the problem of the suffix tree size, one can cadlagmdes on tree that
have single child to reduce the number of nodes and edgesteF3gs shows a collapsed
version of the suffix tree shown in Figure 3.4. Note that nogliés more than one child
in the original tree can not be collapsed (terminating nddage considered as a child).
Only consecutive nodes with one child are collapsed intormue. The same technique
is applicable to our FS-tree. Figure 3.6 shows how the FSitrd=igure 3.3 looks like
after collapsing (note that we still maintain counts but o€ shown in the figure). By
comparing the collapsed FS-tree and the collapsed sufixvike see clearly that, even
after collapsing, out FS-tree continues to be much smallesize than the suffix trees.

Please refer to the Related Work Chapter for more detailetgpatison between our work
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Figure 3.4: The very large suffix tree that would be neededa®ghe sequences in the
input log file shown in Figure 3.1(a). Contrast this to the msmaller FS-tree that we
propose as shown in Figure 3.3

and the work in [XDO1].

Through out the reaming of this document we will be showing tlon-collapsed

version of the FS-tree for simplicity of illustration.
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Figure 3.5: A collapsed version of the suffix tree in Figuré. 3.

Header table
Link Count ListH

d-g| 4
g-i
c-d
d-e
e-h

h-i

b-¢
c-b
a-b
b-d

NN R N N W S 9w

f-a

Figure 3.6: A collapsed version of the FS-tree in Figure 3.3.
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Chapter 4

Frequent Sequences Mining from the

FS-tree

Based on\/ SuppC'™ and M SuppC** we classify the links in the database into three

types (See Figure 3.1):

e Frequent links links with support counSupp™™* > M SuppC*°? > M SuppC'*.
These links are stored iAT and are represented in the FS-tree and can be part of

frequent sequences.

e Potentially Frequent linkslinks with support counSupp'™* > M SuppC'™* and
Supp'™ < MSuppC®®. These links are stored in théT and are represented
in the FS-tree but they can’t be part of frequent sequencesdgd for efficient

incremental and interactive performance).

¢ Non-frequent linkslinks with support counupp™* < M SuppC'™*. These links
are stored inVF LT and are not represented in the FS-tree (needed for efficient

incremental and interactive performance).
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Only frequent links may appear in frequent sequences, hevioen mining the FS-
tree we consider only links of this type. Before we introdtloe FS-mine algorithm, we

highlight the properties of the FS-tree.

4.1 Properties of the FS-trees

The FS-tree has the following properties that are impottattie FS-mine algorithm:
e Any input sequence that has non-frequent link(s) is prurefdre being inserted

into the FS-tree. only potentially frequent subsequentésane to be inserted in

the FS-tree.

o If MSuppC'™* < MSuppC®*, the FS-tree is storing more information than re-
quired for the current mining task. Hence, the mining aldyoni would not care

about all sequences encoded in the FS-tree.

e We can obtain all possible subsequences that end with a gequent linkh by

following theListH pointer ofh from the header table to correct FS-tree branches.

¢ Inorder to extract a sequence that ends with a certairhliinim an FS-tree branch,
we only need to examine the branch prefix path that ends wathlitik (i) back-
ward up to the tree root. The frequency count of that sequenegual to the
count associated with the edge that ends this prefix path.|8@ecan extract cer-
tain length of the prefix path based on user maximum pattemsieference. This

feature is important for optimizing the mining phéase

Now we describe in detail the mining steps that we use to eixtraquent sequences

from the FS-tree. We assume the FS-tree shown in Figure 83}/ uppC'™* = 2 and

1For example if we follow thelist H pointer for linkg — i from header table in Figure 3.3 to the second
edge and assuming that, at the mining stage, the user igsteerin patterns of maximum size of 4, we
need to extract only the path prefix (c-d:2, d-g:1, g-i:1}eéasl of the full path starting from the tree root.
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M SuppC®*? = 3 as our running example.

4.2 FS-tree Mining Steps

Figure 4.1 lists the FS-Mine Algorithm. The algorithm haarfaain steps that are per-
formed for only frequent links (potentially frequent linkee excluded) in the header table

(HT):

FS-Mine Algorithm

Input: FS-tree root R, and minimum sequence support MSuppg

Output: Frequent sequences

Method:

(1)  Frequent sequences set FSS < ¢

(2)  For (all links I, € HT and L, .count > MinSupp,) {

3) Conditional sequence set CSS <« ¢

“4) For (all paths P, in FS-tree reachable from HT. ListH(1))) {
®) CSS « CSS U extract P}, remove last link, and adjust P;.count = last link count }
(6) Conditional FS-tree CFST <« ¢

7 Construct CFST

(8) For (all sequences Seq, in CFST){

) FSS <~ FSS U concatenate (Seq,, 1) } }

Figure 4.1: FS-Mine Algorithm.

Extracting derived paths. For link /4 in HT with Supp'™*(h) > M SuppC** we
extract its derived paths by following tHastH pointer of  from HT to edges in the
FS-tree. For each path in the FS-tree that contawe extract its path prefix that ends at
this edge and go maximum up to the tree fodVe call these pathderived pathof link
h. For example, from Figure 3.3, if we follow thieist H pointer for the linke — i from

the header table we can extract two derived paths: d : 4,d —e : 4,e — h : 1) and

°Note the backward prefix extraction might terminate befbesttee root and return a smaller prefix path
in two cases: (1) reaching the limit determined by the usé¢hasnaximum pattern length he is interested
in discovering or (2) encountering a potentially frequémit (since we do not mine for them).
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(b—d:3,d—e:2,e—h:2).

Constructing conditional sequence baseGiven the set of derived paths of lirtk
extracted in previous step we construct teaditional sequence baser h by setting the
frequency count of each link in the path to the count ofitti@k (this gives the frequency
of the full derived path). We also remoXdrom the end of each of the derived paths, since
itis a common ending for all of them. For example, given the terived paths extracted
above for linke — h, the conditional base for that link consists 6f:— d : 1,d — e : 1)
and(b—d : 2,d—e: 2) sincee — h frequency was 1 for the first one and 2 for the second
one.

Constructing conditional FS-tree. Given the conditional base far, we create a tree
and insert each of the paths from the conditional bageiofo it in a backward manner.
We create necessary nodes and edges or share them wherepfssiementing edges
counts). We call this tree theonditional FS-treefor link /. For example, given the
conditional base for link — h the constructed conditional FS-tree is shown in Figure 4.2.

Extracting frequent sequencesGiven aconditional FS-treef a link i, we perform
a depth first traversal for that tree and return only sequesagsfyingM SuppC*“?. We
appendh to the end of each of the sequences extracted from the treletacndhe full
length frequent sequences for lihk By traversing the conditional FS-tree of liak— h
only the sequencede> satisfies thel/ SuppC*“?, so we extract it. We then append the
link e — h to the end of it to get the full size frequent sequeneeleh : 3> where 3
represents the support (count) of that sequence.

We perform the same steps for the other frequent linkg i, namelyd — g a — b,

b— ¢, d — e, andc — d. The detailed mining steps for these links are shown in Tadle
The last column in that table gives the final result for theingrprocess. The generated
frequent sequences aredeh : 3>, <abc : 4>, <cde : 4>, and<bcd : 3> in addition to

the frequent links themselves<¢h : 3>, <dg : 4>, <ab : 4>, <bc : 5>, <de : 6>, and
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Header table
Edge Count Link

Extract Derived Paths ©==——=——=>> Construct Conditional Sequence base

(c-d:1, d-e:1),
(b-d:2, d-e:2)

az| 4 Construct Conditional FS-tree
c-d 7
d-e 6 o
eh| 3 3
hi| 2
b-c 5
c-b 2
a-b 4
b-d 2 Extract Frequent Sequences
f-a 2
<deh:3>
Figure 4.2: Mining steps for link — h from the example in Figure 3.1.
<cd : 7>) as they are considered frequent sequences of size 2.
Link | Derived Paths Conditional Sequence basg Conditional FS tree| Frequent Sequences generated
e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1), (b-d:2, d-e:2) (d-e:3) <deh : 3>
(b-d:3, d-e:2, e-h:2)
d-g (d-g:2), (c-b:2, b-3:1,c-d:1,d-g:1)| (c-b:1, b-c:1,c-d:1), ) ¢
(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1, b-c:1 ,c-d:1)
a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) 1) 10}
b-c (c-2:2, b-c:1), (c-b:1), (a-b:2), (a-b:4) <abc : 4>
(a-b:2,b-c:2), (f-a:2, a-b:2)
(f-a:2, a-b:2,b-c:2)
d-e (c-d:4, d-e:4), (c-d:4),(b-d:2) (c-d:4) <cde : 4>
(b-d:3, d-e:2)
c-d (c-d:4), (c-b:1, b-c:1), (b-c:3) <bcd : 3>
(c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2)
(a-b:2,b-c:2 ,c-d:2)

Table 4.1: Mining for all sequences that satig#ySuppC*“I=3.
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Chapter 5

Incremental and Interactive Mining

5.1 Incremental Mining

In the presence of incremental updat®®B to the sequence database, our goal is to
propagate these updates into the generated frequent segueith minimum cost. In
particular, we aim to develop an incremental maintenanegesgly that avoids the need
for expensive scans of the complete sequence databasesasuhtblete recomputation of
frequent sequences. In this section, we discuss requitsrf@msupporting Incremental
feature of the FS-miner. We then address how to maintain@gde incrementally with-

out reconstructing it from scratch and how to mine increranfor frequent sequences.

5.1.1 Requirements for Supporting Incremental Mining in the FS-
miner

We first highlight the additional information we need to niain to support incremental
mining:

1) The Non-Frequent Links TabMFLT , described earlier in Definition 1.

2) We extend the FS-tree node by adding to it a new structuledcseqEnd This
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structure has two fieldssid and count. sid stores a record id of a sequence (from the
database), or null. The value sifl of seqEndis assigned at tree construction time. At the
end of input sequence insertion into the tree, we mighsisiedf the node corresponding
to the lastitem in the input sequence to be equivalent taetisequence id. To assign a
new value foisid two conditions must be satisfied: if the input sequence isrted as one
piece into the tree without being prurteahd if thesid does not contain another sequence
id already (since we store only one id in this field). For eastienwithsid not equivalent

to null we know that the tree branch that starts from the toe¢ and ends at that node
is representing a complete input sequence(s) from the asgali he second fieldpunt,
stores a count that indicates how many complete (unprumgal) sequences share the
same tree branch that ends at this node. Figure 3.3 shows motihe tree wittsid set to

session IDs from the database

5.1.2 Maintaining the FS-tree Incrementally

The FS-miner supports both database inserts and deletesnédemental FS-tree con-
struction algorithm takes as input the FS-tree represgrttia database state before the
update andADB. Then it inserts (or deletes) sequences from the tree. Iresmases,
the FS-tree construction algorithm performs partial testiring of the tree, that is, some
branches might be pruned or moved from one place to anotlieeiRS-tree. Figure 5.1
shows the incremental FS-tree construction algorithm.

The algorithm first obtains the count of links fnDB by performing one scan of
ADB (step 1 in the algorithm in Figure 5.1). In step 2, link couintd?T" and N F LT
are incremented or decremented! SuppC*? and M SuppC'™* values are updated if

applicable. Link entries inVF LT that now become frequent (or potentially frequent)

LAl links in the sequence are frequent.
2Counts are not shown there for simplicity since they aredaliaéto 1 for current example.
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are moved taHT'. Links that were originally inid’7" and moved taV F LT, because they
are no longer satisfying/ SuppC*°? and M SuppC'"* should no longer be presented in
the FS-tree, so we prune edges that represent them from tireé&SThis can be done
by following their ListH pointer to their edge occurrences in the FS-tree. We remove
each edge, then insert the subsequent tree whose root welseattto the removed edge,
from the top of the FS-tree, sharing nodes and edges wheibfe&steps 4 through 8).
For links that were originally inVF LT and moved taHT', we obtain input sequences
in the order which they appear from the original databa¥¢e insert them into the FS-
tree using the functiomsertTreelnc (steps 9 through 12). The main difference between
this function and the normahsertTree function described earlier is thatsertTreelnc
aims to compose sequences that were previously decompgdbd insertTree at the
initial tree construction phaseFor each of the obtained sequences,ithertTreelnc
function traverses the sub-path of it already representdtie FS-tree (staring for the
root). When we encounter a link in the inserted sequencevaisnot frequent before the
update and now is frequent (or potentially frequent), waiere new edge and node for
it (or share an edge and a node and increment edge’s couné) tAfs point, we insert
the remaining subsequence starting from the current notlthefAsame time we call the
deleteT'ree function that deletes the same remaining subsequence fi@top of the FS-
tree (as it had previously been inserted there). This is 8grieaversing the tree from the
top for that subsequence and decrementing the count of amgrsed edge. If the count
of decremented edge becomes 0, the edge and its subsedoteae sue deleted from the
FS-tree. The last phase (steps 14 through 17) inserts (etedglinput sequences from

ADB into the tree using théisertTree (or thedeleteTree) function.

3Recall that for each we maintained a list of sequence IDs iichvtine link appeared in the database.

4This is needed because if a certain link was non-frequentbéiie update and became frequent later,
during initial tree construction time, thasertT'ree function has previously broken any input sequence that
contained that link at this place and inserted it as subsempsan the FS-tree. But now as that link becomes
frequent due to the update, thesertT'reelnc will bridge that gap again and put those subsequences
together.
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Example 1: As an example for incremental inserts, assume that thewwitptuples
where inserted into the log file in our running example in F&g8.1: {16, < efa >},
{17, < ef >}, {18, < efab >}. Figure 5.2 shows the effect of inserting the new input
sequences. First, we scan the new records to obtain coulmg&®fn the inserted session
and we update counts of links-bandf —ain HT and linke — f in NFLT. Assuming
the M SuppC'™* and M SuppC**? maintain the same values (2 and 3 respectively), link
a — b maintains the same status (frequent), litks « ande — f becomes frequent thus
are moved to tablé/T". The next step is to prune the tree by removing edges for aky li
transitioned from frequent to non-frequent. In this exagnpé do not have any. Next we
restructure the tree for links that were not frequent andabmecfrequent (linke — f in
our example). We obtain from tH&IDs field of link e — f entry in NF'LT sequence id
= 12 as the only sequence where the link appears in originabdae. We retrieve this
sequence<cde fabc>)from the original database and insert it into the FS-treeguthe
insertTreelnc function. This function will first traverse the tree branblat corresponds
to the subsequence represented in the tree from befaré ) and create a new edge
for it when it encounters the link — f. Insertion will then continue for the remaining
subsequence<fabc>) following this point. At the same time it calls th&leteTree
function for the subsequeneefabc> to delete it from the root of the FS-tree. The last
step in the incremental FS-tree constructions is to indléhteainput sequences fromDB
in the FS-tree using thia.sertT'ree function, resulting in the tree shown in Figure 5.1.

Example 2: As an example for incremental deletes, assume that we daketeple
{8, <bdehi>} from theDB. In Figure 5.3 we note that as a result of deleting that tuple
the linksb — d andh —i become non-frequent and should not be represented in tihe€&S-
anymore. The tree pruning step will cause the tree bralehd — e — h — i) to be cut
atb — d andh — i edges, and the park ¢ d — ¢) to be inserted at the root of the tree

sharing the existing node and creating nodesandh. also the edgé — ¢ in the tree
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branch ¢ — d — e — h — @) is pruned. Now the last step is to call the functitiieteTree
to delete the sequenegdehi>. This will cause the tree branch+{ d — ¢) edges counts
to decrement to 1.

Note that the incremental FS-tree construction algorithows in 5.1 can accept both
types of updates, insertion of new sessions and deletiogeasting sessions, in a batched

mode, and process them together.

5.1.3 Mining the FS-tree Incrementally

After refreshing the FS-tree, the incremental mining ioked for certain links i T,
namely those affected by the update. We first need to underste effect of database
updates on different types of limksWe can classify the possible change in the type of a
link due to database updates into 9 different transactipesyas shown in Figure 3.4Ve
categorize how the incremental mining algorithm deals whibse different transaction
cases into four categories:

(1) For transaction of type 1: we mine for those links if theg affected .

(2) For transactions of type 2 and 4: we mine for these links.

(3) For transactions of type 3 and 5: we delete previouslgalisred patterns that
include these links.

(4) For transactions of type 6, 7, 8 and 9: we do nothing. Tkeemental FS-mine
algorithm is shown in Figure 5.5. The mining algorithm sdoy dropping any sequence
in the previously discovered frequent sequences thatheredf transaction type 3 or 5
(no longer satisfying the new/ SuppC*®“?, if changed due to the update). Then for all

links in theHT if the link satisfies the new/ SuppC*“? and if it is of transaction type 2,

5The three different types of links we discussed earliegfient, potentially frequent and non-frequent).

5The starting point of the arrow refers to where the link usete before the database updates and the
ending point of the arrow refers to where the link ends up &salt of the database update.

"By affected we mean if the link was iADB, or if the link was in one of the subsequences that were
deleted from the FS-tree in the tree restructuring processribed earlier.
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4 or of type 1 and affected by the update, the algorithm apptie/'S — mine algorithm
for these links.

Example 3: Consider thatADB denotes an insertion dfl6, < efa >}, {17, <
ef >}, {18,< efab >} described in example 3. link — b is affected by the update
and maintained the same frequent status after the updat&. fL+ « status is changed
from potentially frequent to frequent due to the updatekldr- f status is changed from
non-frequent to frequent due to the update. These three &éirkthe only ones affected
by the update, hence we need to mine for these three linkse Bab shows the steps in

mining for these links and the resulting generated freqaequiences.

Link | Derived Paths Conditional Sequence base Conditional FS tree| Frequent Sequence generated
a-b (c-d:4, d-e:4, e-f:1, f-a:1, a-b:1)} (c-d:1, d-e:1, e-f:1, f-a:1) | (f-a:3) <fab:3>
(a-b:2), (f-a:1, a-b:1), (f-a:1)
(e-f:3, f-a:2, a-h:1) (e-f:1, f-a:1)
f-a (c-d:4, d-e:4, e-f:1, f-a:1), (c-d:1, d-e:1, e-f:1), (e-f:3) <efa:3>
(f-a:1), (e-f:3, f-a:2) (e-f:2)
e-f (c-d:4, d-e:4, e-f:1), (e-f:3) (c-d:1, d-e:1) ¢ ¢

Table 5.1: Incrementally Mining for link e-h wherd SuppC?*“1=3.

Example 4: Consider thatADB denotes a deletion of the record with ID = 8 from the
web file in Figure 3.1. In this case the affected links &e: d, d — e, e — h, andh — 1.
And sinceb — d, e — h andh — ¢ are no longer supporting the SuppC*“? (assuming 3)
we delete any frequent sequences previously discoverédahg&ain any of those links.
Namely from the frequent sequences previously generatetigaown in Table 4.1) we
delete the sequencedeh : 3>. Now we look in theHT for those link that satisfy the
M SuppC®“? and of type 2, 4, or 1 (and affected by the update). Only lihks: ande — h

are satisfying this criteria so we apply the mining stepsefch of them.

5.2 Interactive Mining

We want to allow the user to make changes to the minimum stmatue and get a

response in a small amount of time. To achieve this goal we teeminimize the need to
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access the database and to re-execute the mining algomiencan support this goal in
our system by setting th&/ SuppC'"* to a small enough value that is less than any value
of M SuppC*“ that the user is likely to use. The rational here is that sicguppC'™*
is responsible for determining the potentially frequenkd and hence allow them to be
represented in the FS-tree. This ensures that if the usaréamtheM SuppC*“? to a
value that is> M SuppC'™* we will have enough information in the FS-tree to calculate
the new frequent sequences without the need to referenawithieal database. This is
done by applying the FS-mine algorithm for the subset odimHT that is satisfying the
new M SuppC?®1. On the other hand, if the user increased AguppC*?, we directly
provide him/her with the subset of frequent sequences pusly discovered that satisfies
the new M SuppC*? without the need for any further computation. Our systeno als
allows the user to vary the size of the frequent patters hatésaested in discovering. In
this case the system does not use the input database, itsadythe FS-tree to extract the
frequent sequences for the required size.

Now we give an example for lowering th& SuppC®“?. The frequent sequences
shown in Table 4.1 were generated basedb$uppC*®? = 3. Assume thad/ SuppCl*
= 2 was small enough to satisfy most of the expected changbs &ystem\/ SuppC*?
and that the user later on seétESuppC*“? to 2, we can directly apply the FS-mine since
our FS-tree already has all the information about links atiences with minimum fre-
guency of 2. For this we can obtain the result shown in Tal2ewBthout the need for

re-scanning any part of the input database.
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Link

Derived Paths

Conditional Sequence bas

e Conditional FS-tree

Frequent Sequence generated

f-a (f-a:2) ¢ ¢ ¢

h-i (c-d:d,d-e:4 ,e-h:1,h-i:1), (c-d:1,d-e:1 ,e-h:1) (d-e:2,e-h:2) <dehi : 2>
(b-d:3,d-e:3 ,e-h:2,h-i:1) (b-d:1,d-e:1 ,e-h:1)

g-i (d-g:2,g-i:1) (d-g:1), (d-g:2) <d—g—1:2>
(a-b:2,b-c:2 ,c-d:2,d-g:1,9-i:1) (a-b:1,b-3:1 ,c-d:1,d-g:1)

c-b (c-b:2) ¢ ) )

b-d | (b-d:2) ) ¢ ¢

e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1), (d-e:3), <deh : 3>
(b-d:3, d-e:2, e-h:2) (b-d:2, d-e:2) (b-d:2, d-e:2) <bdeh : 2>

d-g (d-g:2), (c-b:2, b-c:1,c-d:1,d-g:1)| (c-b:1, b-c:1,c-d:1), (b-c:2 ,c-d:2) <bcdg : 2>
(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1,b-c:1 ,c-d:1)

a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) (f-a:2) f-a-b :2

b-c (c-b:2, b-c:1), (a-b:2,b-c:2), (c-b:1), (a-b:2), (a-b:4) <abc : 4>
(f-a:2, a-b:2,b-c:2) (f-a:2, a-b:2) (f-a:2, a-b:2) <fabc:2>

d-e (c-d:4, d-e:4), (c-d:4), (c-d:4) <cde : 4>
(b-d:3, d-e:2) (b-d:2) (b-d:2) <bde : 2>

c-d (c-d:4), (c-b:1, b-c:1), (b-c:3) <bcd : 3>, <abed : 2>
(c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2) (a-b:2, b-c:2)

(a-b:2,b-c:2 ,c-d:2)

Table 5.2: Mining forM SuppC**1=2.
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Incremental FS-tree construction Algorithm

Input: FS-tree root R and ADB, and new minimum link support MSupp,

Output: updated FS-tree

Method:

(1) Scan ADB, and collect counts (+ and -) for links
(2) Update counts of links in HT and NFLT

(3) Move links,between HT and NFLT, based on MinSupp,
(4) For (all links I, moved from HT to NFLT) {

(5)  Start from l,.ListH pointer

(6)  For (every edge p-P in the FS-tree reachable from 1,.ListH)
@) Cut the edge p-P

(8) Call insertTree (R, P) }

(9) For (all links I, moved from NFLT to HT) {

(10)  For (every sequence ID in 1,.SIDs) {

(11) Obtain input sequence inpSeq with ID from DB

(12) Call insertTreelnc (R, inpSeq) } }

(13) For (each record Rec; in ADB get Rec;.inpSeq) {

(14)  If (Rec; is an insert)

(15) Call insertTree(Rec,InSeq, R)

(16)  Else if (Reg; is a delete)

17 Call deleteTree (Rec.InpSeq, R)}

Function insertTreelnc (tree root node S, sequence p-P) :
Updated FS-tree.

(1) If (link p-P € HT) {

(2) If (p-P was originally in HT){

3) If (S has no child with name = p) {

4) Create node N with N.node-name = p

5) Create edge S-N with S-N.edge-count =1}
(6)  }Else if (p-P was originally in NFLT){

7 Node ptr = call deleteTree (R, P)

®) add ptr asachildtop }

Q) If (P is non-empty) {call insertTreelnc(N, P)}
(10) }Else if (link p-P € NFLT) {
(11) If (P is non-empty) {call insertTreelnc(R, P) } }

Function deleteTree (tree root node S, sequence p-P) : Updated
FS-tree.

Precondition: counts of links in HT and NFLT are already updated
(1) If (S has child N and S-N = p-P) {

2) Decrement S-N.count, and deleted it if count became 0.
3) If (P is non-empty){call deleteTree (N, P) }
(4) }Else{

(5) If (P is non-empty) call deleteTree (R, P)}

Figure 5.1: Incremental FS-tree construction.
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Header table
Link Count ListH
d-g 4

g-i

c-d
d-e
e-h
h-i

b-¢
c-b
a-b
b-d
f-a

P T R N " - N

c_f 4 .........

Non-Frequent Links
Link Count SID

2| 1 T

bf| 1 1

ad | 1 13

i-c 1 13

d-i 1 14

i-e 1 14

g | 1 15

gd| 1 15 R— :

d-b 1 15 .

pal 1 s Inserted sessions {16, <e f a>} , {17, <e f>}, {18, <e f a b>}

Figure 5.2: The effect of inserting records to the databasegure 3.1.
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Header table
Link Count ListH

c-d 7
d-e 5
b-c 5
a-b

d-g 4
e-h 2

c-b 2
g-i 2

f-a

e-b 1 11
b-f 1 11
e-f 1 12
1-i 1 13
i-C 1 13
d-i 1 14
:: 1 i: Deleting tuple: [8, <b d e h i>]
g-d 1 15
d-b 1 15
b-a 1 15

Figure 5.3: The effect of deleting records from the datalaségure 3.1

Header Table (HT) Non-Frequent Links Table (NFLT)

1 < Frequent 4

Links

4

Non-

N 9

5 Frequent >

3 Potentially % Links
Frequent

8 < Links

Figure 5.4: The effect of incremental updates on links inda@base

A
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Incremental FS-Mine Algorithm

Input: FS-tree root R, set of frequent sequences fSeq and set of affected links affLinks
Output: new frequent sequences based on affLinks

Precondition: all counts for links are updated in HT and NFLT

Method:

(1) For (all frequent sequences fSeq; )

(2)  If (fSeq; count < Min-Supp, or fSeq; has link with count < Min-Supp,){

3) delete fSeq,}

(4) For (all links I; € HT where I,.count >= Min-Supp,)

%) if (I, moved from NFLT or |, count was < Min-Supp, or |, € affLinks ) {

(6) call FS-Mine (R) for L}

Figure 5.5: Incremental FS-Mine Algorithm.
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Chapter 6

Implementation

Figure 6.1 shows The FS-Miner system. The system has bedanmpted in Java on
a Windows machine. It has four main parts: FS-Tree ConsiruES-Miner, Incremen-

tal/Interactive FS-Tree Maintainer, and Incrementaditattive FS-Miner.

FS-Miner Recommender
Sequences Updates
A 4
Incremental/
s Incremental / Interactive Prefetcher T
Interactive FS-Tree T ?
ner
maintainer Frequent
Predict
> FS-Tree Sequences redictor
FS- Miner f
Constructor
Monitor
Sequences T
> User Input | Prediction
Input Log
File v
Initial Mining

Incremental Mining -

Figure 6.1: FS-Miner architecture

The FS-tree Constructor takes as input a web log file and two system parameters:
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Minimum Link Support RatioM SuppR'™ and a Minimum Sequence Support Ratio
M SuppR**. It first performs one scan for the input log file and finds thertof each
distinct link in the input file and the total count for all liskn the input log file and
depending on the last count and theSuppR'"™* it finds the M SuppC"* that is used to
decide which links are to be represented in the FS-Tree amthwhes are not. Also using
the count of total links in the input file and thé Supp R**? it calculates thél/ SuppC*“?
that is used later in the mining steps. The FS-tree Consirnobdule next constructs the
FS-Tree and thé/T" and theN F LT tables as described in section 3.4.

TheFS-Miner uses the FS-Tree previously constructed to mine for frettgesuences
given the Minimum Sequence SuppditSuppC*“? parameter. The mining process is
done in four main steps as discussed in section 4.2 and willtri; all frequent sequences
that satisfy the predefinetl SuppC*“?. The discovered frequent sequences can be used
as an input for a recommender system for the purpose of piregligsers’ access behav-
ior and hence prefetching pages to their machine. This calobe interactively during a
user session by tracing the user current page access pattématching that to frequent
sequences pattern previously discovered, and from thig p@ can predict the user next
page request(s). Besides using the new page access sexjoémusers for predicting
their access behavior, these new sequences themselvamardered as an incremental
input to the input log file we started with, and hence, theyhmaphange the result (the set
of frequent sequences previously discovered). This we nimghlidate some previously
discovered frequent sequences, introduce new frequenésegs, and/or change the fre-
guency of perviously discovered frequent sequences. Romta collect all new users’
input sessions, that were encountered after the last FS€bmstruction, and store them
as an update to the web log file. This incremental input is todsel later for incremental
mining as we will describe next.

Thelncremental/Interactive FS-tree Maintainer takes as input the update web log
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file and performs a scan over the file to obtain link counts.ngshese link counts the

module updates both/ SuppC'™* and M SuppC*®. And after that it restructure the FS-
Tree if needed with any added or deleted sequences and gerhtime new sequences into
the FS-Tree as described in section 5.1.2. This moduleagedponsible for maintaining

the FS-Tree in case of changingSuppR'* and hence\l SuppC"*.

The Incremental/Interactive FS-Miner works on the FS-Tree that was maintained
by the Incremental/Interactive FS-tree Maintainer. Ir@mentally invalidate previously
discovered frequent sequences, discover new ones, andfifynfrequencies of previ-
ously discovered ones as a result of the incremental webléodis process is described
in details in 5.1.3. This module is also responsible for rramng discovered frequent

sequences in case of change to AhguppC*“? by the user, as was discussed in 5.2.
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Chapter 7

Experimental Evaluation

7.1 Data Sets and Experimental Setup

We use two data sets to test our system, the Microsoft Anongriideb Data Set and the
MSNBC Anonymous Web Data Set, both obtained from [Het99hedata set consists
of a collection of sessions where each session has a seqokpage references. The
Microsoft anonymous data set has 32711 sessions, eachrseesitains from 1 up to 35
page references. The MSNBC data set has 989818 sessionssiArseontains from 1
up to up to several thousands of page referehc@&fie main difference between the two
data sets of interest to us is the number of distinct pages.Mibrosoft data set has 294
distinct pages, while the MSNBC data set has only 17 dispages (as each one of these
pages is in fact encodes a category of pages).

We compare the performance of our algorithm against twor@lgerithms from the
literature: thePathModelConstruction algorithm [SYLZ00], and a variation of Apriori

algorithm [AS94] for sequence data We have implemented the three systems in Java

We preprocessed the MSNBC data sets to keep a maximum of s@0eferences for each session to
smooth the effect of very large sessions on experimental.tim
2Optimized using hashing techniques and modified to providesame sequential patterns we use.
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in a Windows environment. We ran the experiments on a PC witBaMHz Pentium

processor and 512 MB of RAM.

7.2 Experimental Results

We have conducted three different experiments using bathskds. We first tested the

scalability of our approach with respect to changes in infasabase size.

7.2.1 Varying data set size

Figure 7.1 shows that our system, and the other two systeails, linearly in the database
size. Our system tends to outperform the other two systethslata sets that have a large
number of distinct items (such as the MS data set) while Aptémds to perform slightly
better in the case of data sets with a very small distinctsté&uch as the MSNBC set).
This is because the candidate generation cost in this casmalf. Note that part of
the cost of our system is due to maintaining the extra datdetkeéor incremental and
interactive tasks. So while the other two systems are onffippaing the mining task at
hand, our system is also maintaining as a byproduct thedeSttiat can later be used for

incremental and interactive operations.

7.2.2 Varying support threshold level

We also tested the scalability of the system with respect deaease of the support
threshold level. Figure 7.2 shows that our system scalesrbeith a decrease of support
level. In fact our system shows a very smooth response tirtieetdecrease in the support
level unlike the other two systems that experience a drantatrease in cost when they

hit lower support values. This implies that even if we chdosgtilize a lowM SuppC'"™,
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Figure 7.1: Scalability with number of input sessions

to better support the incremental and interactive taskb@fkystem at later stages, our

system does not experience a significant overhead.

Incremental mining

iment compares the performance of the inenég@hmining versus recom-
putation. Figure 7.3 shows that even with an incrementaategslize of up to one quarter
e original database size, the FS-Miner'ssimental feature provides sig-

nificant time savings over full recomputation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have proposed the FS-Miner, an incremsetgience mining system.
The FS-Miner constructs a compressed data structure @epttrat stores potentially fre-
guent sequences and uses that structure to discover ftesgorences. This technique
requires only two scans for the input database. Our appralémhs for incremental dis-
covery of frequent sequences when the input database isagpdbminating the need
for full recomputation. The FS-miner calculates the inceemal effect of these updates
directly from the updated FS-tree. Our approach also allomesaction with the user
in the form of changes to the system minimum support, and istroases we can sat-
isfy these requests without having to use the original deteb Our experiments show
that the performance of our system scales linearly to ise®an the input database size.
It shows an excellent time performance when handling dagwsigh large number of
distinct items. The FS-miner also shows great scalabilithh the decrease of the mini-
mum support threshold when typically other mining algorithtend to exhibit dramatic

increases in response time. Finally the incremental fonetity of our system shows a
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significant performance gain over recomputation even veithd update sizes relative to

the size of the original database.

8.2 Future Work

The mining system we have developed is basically targetedrtts discovering frequent
sequences for the purpose of prediction. The way we catetia minimum sequence
support threshold (by dividing the frequency of the segaeenmtthe total number of links
in the input web log file) takes into account the need to cangildiplicates in sequence
patterns, which is an important requirement in the contésted usage mining.

For other mining applications it might be needed that weuwtate the minimum sup-
port of sequences (or item sets) as the frequency of segsieglaged to the total number
of sessions (transactions) with no consideration to daf@& In this case the support
will be similar to the one calculated in association rule imgn It is easy to adapt our
proposed system to work with this other notion of supporte Wain adaptation needed
is to count the occurrence of each link (item) in each inpss&m (transactions) one time
regardless of how many times it appears. This involves a nahange in the tree con-
struction subsystem only and will not affect the mining sigbsm. If we run the system
using this modified notion of support on a web log file we wilt ge output new frequent
sequences, in which duplicates are not considered andefyeency is based on the total
number of sessions in the input web log file.

A more interesting scenario is to extend the system to iraratp both the current
support threshold (based on total number of link) and thesupgalculated as the fre-
guency of sequences to the total number of sessions. THisaglire adding some new

parameter to the system:

e Link support (session suppastypp,'"*
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Sequence support (session suppSipp,*?

Minimum Link support ratio (session suppoi)SuppR,""*

Minimum Sequence Support Ratio (session suppbst)pp R, *?

Minimum Link support count (session suppdftyuppC'™*

Minimum Sequence support count (session suppbst)ppC',*“?

These new parameters are similar in meaning to their cquantisrpreviously used in
this document (discussed in Section 3.2). The main difisenthat they do not consider
duplicates and the support threshold calculation is bareti@total number of sessions
and not the total number of links as a cetraria for deterngitie frequent sequences.

We need also to extend the data structures we currently lsafoi@ws:

e Edges on the FS-tree need to have one more count field to Beoetnt when not

considering duplicates.

e Both the HT and N F'LT need to have one more column for storing the count of

link when not considering duplicates.

With these extensions, the system can run in three modes:

e Link support criteria this is the standard case that we have so far. In this mode
the F'S — Tree the HT and N F LT tables are built based avf SuppR'™, and the
mining is done based ol SuppR**?. We output patterns that are frequent based

only on the total number of links.
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e Session support criterian this mode thé'S—Tree and theHT'and N F LT tables
are built based oA/ SuppR,'™*, and the mining is done based dhSuppR, .

We output patterns that are frequent based only on the totaber of sessions.

e Both support criteria in this mode theF'S — Tree and theHT and NFLT ta-
bles are built based ol SuppR!™* and M SuppR,""*. This means that th&T
will include links that are frequent based adiSuppR"™ or M SuppR,*, the
'S — Tree will include potentially frequent sequences based the davogara-
ments. TheV F LT will include links that are not frequent based on either the t

paraments. These settings will allow perform three difieraining tasks:

- Mining for frequent sequences basedMibupp R*“?. We output patterns that

are frequent based on total number of links.

- Mining for frequent sequences based bt uppR,*“?. We output patterns

that are frequent based on total number sessions.

- Mining for frequent sequences based on bbthupp R*“? and M SuppR*.
In this mining scenario, the mining will involve less linkom the HT since we
have to satisfy boti/ Supp R*“? and M SuppR,*“?, and hence will also involve less
cost on the mining phase since we will be extracting lessitiondl paths from the
FS — Tree. We output patterns that are frequent based on both totabauof

links and total number of sessions.

Other future work might involve designing an efficient pstsnt storage mechanism
for storing the FS-Tree, better design for tNé'LT to eliminate or minimize the need
to access original input file in case of huge update. Also ghtibe interesting to study
possible extension to this approach to support generaliegdent sequences that allow

wildcards.
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