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Abstract

Mining frequent patterns is an important component of many prediction systems. One

common usage in web applications is the mining of users’ access behavior for the purpose

of predicting and hence pre-fetching the web pages that the user is likely to visit.

Frequent sequence mining approaches in the literature are often based on the use of

an Apriori-like candidate generation strategy, which typically requires numerous scans of

a potentially huge sequence database. In this paper we instead introduce a more efficient

strategy for discovering frequent patterns in sequence databases that requires only two

scans of the database. The first scan obtains support counts for subsequences of length

two. The second scan extracts potentially frequent sequences of any length and represents

them as a compressed frequent sequences tree structure (FS-tree). Frequent sequence pat-

terns are then mined from the FS-tree. Incremental and interactive mining functionalities

are also facilitated by the FS-tree. As part of this work, we developed the FS-Miner, an

system that discovers frequent sequences from web log files.The FS-Miner has the ability

to adapt to changes in users’ behavior over time, in the form of new input sequences, and

to respond incrementally without the need to perform full re-computation. Our system

also allows the user to change the input parameters (e.g., minimum support and desired

pattern size) interactively without requiring full re-computation in most cases.

We have tested our system using two different data sets, comparing it against two other

algorithms from the literature. Our experimental results show that our system scales up

linearly with the size of the input database. Furthermore, it exhibits excellent adaptability

to support threshold decreases. We also show that the incremental update capability of

the system provides significant performance advantages over full re-computation even for

relatively large update sizes.
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Chapter 1

Introduction

1.1 Web Usage Mining

A sequence database stores a collection of sequences, whereeach sequence is a collection

of ordered data items or events. Examples of sequences are DNA sequences, web usage

data files or customers’ transactions logs. For web applications, where users’ requests are

satisfied by downloading pages to their local machines, the use of mining techniques to

predict access behaviors and hence help with prefetching ofthe most appropriate pages

to the local machine cache can dramatically increase the runtime performance of those

applications. These mining techniques analyze web log filescomposed of listings of page

accesses (references) organized typically into sessions.These techniques are part of what

is calledWeb Usage Mining, a term first introduced by Cooley et al. [CSM97].

Typically web usage mining techniques rely on a Markov assumption with depthn.

This means that it is assumed that the next request page depends only on the lastn pages

visited. A study conducted in [JPT03] showed that Markov based structures for web usage

mining is best suited for prefetching, targeted ads, and personalization.

Web usage mining approaches can be classified based on the type of patterns they
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produce into three categories [GH03]: association rules, frequent sequences, and fre-

quent generalized sequence. With association rules, the problem of finding web pages

visited together is similar to finding association among item sets in transaction databases.

Frequent sequences can be thought of as an ordered (by time) list of non-empty item sets,

and hence frequent sequence mining can be thought of as association rule mining over

temporal data sets. A frequent generalized sequence is a frequent sequence that allows

wildcards in order to reflect the user’s navigation in a flexible way [GST00]. [GH03]

evaluated the three approaches and found that the frequent sequence approach gives bet-

ter results than the association rules and the frequent generalized sequence approaches

when we need to find the correct predictions within the fist predictions.

Frequent sequences are also known asTraversal Patterns. According to [Dun03],

traversal patterns can be classified based on four main features:

• Whether or not the order of page references in a pattern matters.

• Whether or not duplicate page references are allowed. A duplicate page occur-

rence in a sequence can be either backward traversal (the same page reference can

appear more than one time in the sequence in a non-contiguousmanner), or page

refresh/reload (the same page reference can appear more than one time in the se-

quence in a contiguous manner). For example, in the sequence<abcafr> page

a has a backward traversal pattern, and in the sequence<abcccafr> pagec has a

page refresh/reload pattern.

• Whether patterns must consist of contiguous page references or they can have gaps.

In other words, whether wildcards are allowed or not.
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• Whether or not only maximal patterns are considered. A pattern is maximal when

it is not part of another pattern. For example, if a mining algorithm outputs as a

frequent sequence the pattern<abcd> this implies that all subsequences of that

frequent pattern:<ab>, <abc>, <abcd>, <bc>, <bcd>, and<cd> are indeed

frequent. And since the algorithm output only the maximal pattern of these smaller

patterns we classify this algorithm a maximal pattern algorithm. Note that although

it is visible to extract all those subsequences from the discovered maximal pat-

tern, this is not exactly equivalent to discovering the samefrequent subsequences

as frequent patterns by another mining algorithm that generates them as well their

maximal pattern. The reason is that, besides generating thepatterns themselves,

the second approach can also give their frequency, while thefirst approach will

give the frequency of the maximal pattern and can not give thefrequencies of its

subsequences.

1.2 Problem Description

In this work we are particularly interested in web usage mining for the purpose of ex-

tracting frequent sequence patterns that can be used for pre-fetching and caching. For

pre-fetching and caching, knowledge of such ordered contiguous page references is use-

ful for predicting future references [Dun03]. Furthermore, knowledge of frequent back-

ward traversal is useful for improving the design of web pages [Dun03]. In other words

we are interested in mining fortraversal patterns, wheretraversal patternsare defined

to be sequences with duplicates as well as consecutive ordering between page references

[XD01]. Our goal is to introduce a technique for discoveringsuch sequence patterns,

that is efficient, yet incremental and can adapt to user parameter changes. The patterns

extracted by our system follow the Markov assumption discussed above and have four
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properties: (1) the order of page references in patterns is important; (2) duplicate page

references are allowed (backward traversals and page refreshes); (3) patterns consist of

contiguous page references; and (4) maximal and non-maximal patterns are allowed.

1.3 Mining Cost

In general, discovering frequent patterns in large databases is a costly process in terms

of I/O and CPU costs. One major cost associated with the mining process is the gen-

eration of potentially frequent items (or sequences), called candidate item sets. Many

mining techniques use an Apriori style level-wise candidate generation approach [AS94,

NLHP98, STA98] that requires multiple expensive scans of the database, one for each

level, to determine which of the candidates are in fact frequent. To address this issue, Han

et al. [HPY00] proposed a frequent pattern growth (FP-growth) based mining method that

avoids costly repeated database scans and candidate generation. Their work focuses on

the discovery of frequent item sets in transactional databases. In that work the order of the

items in each record (i.e. in each transaction) is not of consideration. Hence it does not

support mining for sequences where order among items is important. We now propose an

extension of their technique to tackle the sequence mining case.

The mining cost is even more prohibitive for dynamic databases which are subject to

updates such as the continuous insertion of new sessions to the web log. In this case the

reconstruction of frequent sequences may require re-executing the mining process from

the beginning. The problem of incrementally mining for association rules has been stud-

ied widely [FAAM97, TBAR97]. Parthasarathy et al. [PZOD99]introduced an interactive

and incremental sequence mining approach using a lattice structure. In their approach, the

discovery of frequent sequences is done by traversing the lattice and intersecting subse-

quences of common suffixes to obtain their support. Their performance study has shown
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that the incremental capability of their system is more efficient than re-computing fre-

quent sequence mining process from scratch. However, the limitation of their approach,

as they point out, is the resulting high memory utilization as well as the need to keep

an intermediate vertical database layout which has the samesize as the original database

[PZOD99].

1.4 Contributions of this Thesis

Our work is similar to [HPY00] in that we also aim to avoid the expensive candidate gen-

eration process, particularly in the presence of large number of items (page references).

We propose a frequent sequence tree structure (FS-tree) forstoring compressed essential

information about frequent sequences. Unlike [HPY00], which aims to discover frequent

item sets in which order is not important, our work takes order among page references

into consideration. We introduce an algorithm which we callFrequent Sequence min-

ing (FS-mine) that analyzes the FS-tree to discover frequent sequences.Our approach is

incremental in that it allows updates to the database to be incrementally reflected in the

FS-tree and in the discovered frequent sequences, without the need to reload the whole

database or to re-execute the whole mining process from scratch. Finally the user can

interactively change key system parameters (in particularthe minimum support thresh-

old and the maximum pattern size) and the system will remove the patterns that are no

longer frequent and will introduce the patterns that are nowfrequent according to the new

parameter values, without the need for scanning and loadingthe entire database.

The results of the experiments that we have conducted using our approach, and com-

pared against two other approach from the literature, show that our system, as well as the

other two systems, scales up linearly with the size of the input database. Furthermore, our

system shows a much better response time to the decrease in the support level than the

5



other two systems that experience a dramatic increase in cost when they hit lower sup-

port values. The incremental update capability of the our approach provides significant

performance advantages over full re-computation even for relatively large update sizes.

1.5 Outline of this Document

The rest of this document is organized as follows. Chapter 2 discusses related work.

Chapter 3 introduces the FS-tree data structure design and the FS-tree construction al-

gorithm. Chapter 4 describes the FS-mine algorithm for discovering frequent sequences

from the FS-tree structure. Chapter 5 describes the incremental and interactive mining

algorithms. Chapter 7 discusses our experiment results. Lastly, Chapter 8 provides some

conclusions and future work ideas.
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Chapter 2

Related Work

Nanpoulos et al. [NKM01] proposed a method for discovering access patterns from web

logs based on a new type of association patterns. They handlethe order between page

accesses, and allow gaps in sequences. They use a candidate generation algorithm that

requires multiple scans of the database. Their pruning strategy assumes that the site struc-

ture is known.

Srikant and Agrawal [SA96] presented an algorithm for finding generalized sequential

patterns that allows user-specified window-size and user-defined taxonomy over items in

the database. This algorithm required multiple scans of thedatabase to generate candi-

dates.

Yang et al. [YZL01] presented an application of web log mining that combines caching

and prefetching to improve the performance of internet systems. In this work, associ-

ation rules are mined from web logs using an algorithm calledPath Model Construc-

tion [SYLZ00] and then used to improve the GDSF caching replacement algorithm. These

association rules assumes order and adjacency informationamong page references. The

left hand side of the association rule is a substring of length n (calledn-gram substring),

and is obtained by scanning through all substrings ranging between 1 andn in each user
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session and pruning substrings that do not satisfy a pre-defined minimum support. Like

us, they assume contiguous page references in sequence patterns.

Han et al. [HPY00] proposed a technique that avoids the costly process of candi-

date generation by adapting a pattern growth method that uses a highly condensed data

structure to compress the database. This work also used a divide-and-conquer method to

decompose the mining task into a set of smaller tasks that reduce the search space. The

proposed technique discovers un-ordered frequent item sets. However, is does not support

the type of sequences we are interested in.

Parthasarathy et al. [PZOD99] introduced a mining technique given incremental up-

dates and user interaction. This technique avoids re-executing the whole mining algorithm

on the entire data set. A special data structure called incremental sequence lattice and a

vertical layout format for the database are used to store items in the database associated

with customer transaction identifiers. Sequence supports are obtained by performing in-

tersection between different nodes in the lattice and obtaining count supports from the

intermediate vertical database. Due to the size of the intermediate vertical database and

lattice that together typically exceeds memory limits, this process is broken into smaller

processes by forming suffix-based equivalence classes. Each class is brought to the mem-

ory and processed independently. Similar in spirit to [PZOD99], we store in the FS-Tree

additional data as that reduces the work required at later stages although we use very

different data structures and algorithms to achieve that.

Xiao and Dunham [XD01] proposed an incremental and adaptivealgorithm for mining

for traversal patterns. This work relies on a generalized suffix tree structure where all

sequences in the database and their suffixes are inserted into it. This tree grows quickly

in size, since inserting a sequence into the suffer tree involves inserting all its suffer into

the tree. Whenever the size of the tree reaches the size of theavailable memory during

tree construction, pruning and compression techniques areapplied to reduce its size in
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order to be able to continue the insertion process of the remaining sequences from the

database. This process of reducing the size of the tree to fit into the available memory

is referenced to as adaptive property. Conversely, we do notneed to interrupt the FS-

Tree construction process to prune or compress the tree as weprune the input sequences

before inserting them into the tree and we insert only potentially frequent subsequences.

Unlike [XD01], the adaptive mining here means that the system adapts to changes in

user-specific parameters.
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Chapter 3

FS-tree Construction

3.1 Frequent Sequences

Let I = {i1, i2, ..., im} be a set of unique items, such as page references. A sequenceSeq

= <p1p2...pn> is an ordered collection of items withpi ∈ I for 1≤ i ≤ n. A databaseDB

(for web usage mining typically a web log file) stores a set of records (sessions). Each

record has two fields: the record ID field,SID, and the input sequence field,InSeq. The

order of the items does matter within such an input sequence.When an itempi+1 comes

immediately after another itempi we say that there is a linkli from pi to pi+1. We denote

that asli = pi − pi+1. We may also represent a sequence asSeq= p − P , wherep is the

first element in the sequence andP is the remaining subsequence.

For a linkh, thesupport count, Supplink(h), is the number of times this link appears

in the database. For example if the linka − b appears in the database five times we say

that Supplink(a − b) = 5. For a sequenceSeq = <p1p2...pn> we define its size asn

which is the number of items in that sequence. Given two sequenceS = <p1p2...pn>

and R = <q1q2...qm> we say thatS is a subsequence ofR if there is somei, 1 ≤ i

≤ m − n + 1, such thatp1 = qi, p2 = qi+1, ..., pn = qi+(n−1). For a given input
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sequenceSeq = <p1p2...pn> we consider only subsequences of size≥ 2. For example, if

a record in the database has an input sequence<abcd> we extract subsequences<abcd>,

<abc>, <bcd>, <ab>, <bc>, and<cd> from that input sequence. The support count

Suppseq(Seq) for a sequenceSeq is the number of times the sequence appears in the

database either as a the full sequence or as a subsequence of sessions. We allow item

duplicates in frequent sequences, which means that the sameitem can appear more than

once in the same sequence. Duplicates can be either backwardtraversal, e.g. the pageb

in <abcb>, or refresh/reload of the same page, e.g. the pagea in <aabc>.

3.2 Sequence Support

The behavior of our system is governed by two main parameters. The first parameter

is minimumlink support count, MSuppC link, which is the minimum count that a link

should satisfy to be considered potentially frequent.MSuppC link is obtained by mul-

tiplying the total number of links in the database by a desired minimum link support

threshold ratioMSuppRlink. MSuppRlink is the frequency of the link in the database

to the total number of links in the database (Supplink/total # of links in the database)

which a link has to satisfy in order to be considered potentially frequent.MSuppRlink is

a system parameter (not set by the user) and is used by the FS-tree construction algorithm

to decide what links to include in the FS-tree as will be discussed later. The second pa-

rameterMSuppCseq, is theminimumsequence support count, that denotes the minimum

number of times that a sequence needs to occur in the databaseto be considered frequent.

MSuppCseq is obtained by multiplying the total number of links in the database by a

desired minimum sequence support threshold ratioMSuppRseq. This desired ratio is the

frequency of the sequence in the database to the total numberof links in the database
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(Suppseq/total # of links in the database1) which a sequence has to satisfy in order to

be considered frequent.MSuppRseq is set by the user and is used by the FS-Mining

algorithm during the mining process.

MSuppCseq is the main parameter needed for sequence mining in our system. At all

times, we assume thatMSuppC link ≤ MSuppCseq. The reason for havingMSuppC link

is to allow the system to maintain more data about the input database than required for the

mining task at hand. This will help in minimizing the amount of processing needed when

handling incremental updates to the database, or when the user changes system parame-

ters. This issues will be discussed in more detail in the incremental and interactive mining

sections. In short, we consider any sequenceSeq that hasSuppseq(Seq) ≥ MSuppCseq

a frequent sequenceor a pattern. We consider any linkh that hasSupplink(h) ≥

MSuppCseq a frequent link (also considered a frequent sequence of size 2) . And if

Supplink(h) ≥ MSuppC link andSupplink(h) < MSuppCseq we callh apotentially fre-

quent link. And if Supplink(h) does not satisfyMSuppC link andMSuppCseq we callh

anon-frequent link .

3.3 Frequent Sequence Tree

We now describe our proposed data structure that we use to store potentially frequent

sequences to facilitate the mining process.

Definition 1 A frequent sequence tree is a structure that consists of the following three

components:

1Note that this is slightly different from the definition of support ratio in other work [XD01], which has
the same patterns assumptions. [XD01] defines this ratio to be the frequency of the sequence to the total
number of pages in the database. We think that our ratio is more appropriate since it eliminates the effect
of sessions with single page reference in the input web log onthe desired ratio (given that we are interested
in patterns of size≥ 2).
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• A tree structure with a special root nodeR and a set of sequence prefix subtrees as

children of the root. Each noden in the FS-tree has anode-name field that rep-

resents an item from the input database2. Each edge in the tree represents alink

relationship between two nodes. Each edge has three fields:edge-name, edge-

count, andedge-link. Edge-name represents thefrom andto nodes that are linked

using this edge,edge-count represents the number of sequences that share this edge

in the particular tree path, where a tree path is the prefix path that starts from the

tree root to the current node.

• A header tableHT that stores information about frequent and potentially frequent

links in the database. Each entry in the header tableHT has three fields:Link

which stores the name of the link,count stores the count of that link in the database,

and listH pointer, which is a linked list head pointer that points to the first edge in

the tree that has the sameedge-name as the link name. Note that theedge-link field

in each edge in the tree is pointing to the next edge in the FS-tree with the same

edge-name (or null if there is none).

• A non-frequent links tableNFLT , that stores information about non-frequent links.

This table is only required for supporting the incremental feature of the system. The

NFLT has three fields:Link which stores the name of the link,count which stores

the count of that link in the database, andSIDs which stores the IDs of records in

the database that have sequences that include that link3.

2For supporting the incremental property of the system, we extent the node by adding a structure that
stores a single session ID that ends at this node for certain sequences. We will introduce this structure in
more details in the incremental mining chapter.

3For optimization, if more than one of these sessions have exactly the same sequence we might store
only the ID of one of them along side with their count. For example if the link a-b was non-frequent and
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Link  Count ListH

d-g       4

g-i       2

c-d       7

d-e       6

e-h       3

h-i       2

b-c       5

c-b       2

a-b       4

b-d       2

f-a        2

(b) Header Table (HT)(a) Web Log  File

SID InSeq

1 d g i

2 d g

3 c d e h i

4 c d e

5 c b c d g

6 c b

7 a b c d g i

8 a b c d

9 b d e h i

10 b d e h

11 c d e b f a b c

12              c d e f a b c

13 a i c

14 d i e

15 i g d b a

Link  Count   SID

e-b       1            11

b-f       1            11

e-f       1            12

a-i       1            13

i-c       1            13

d-i       1             14

i-e       1             14

i-g       1             15

g-d       1             15

d-b       1             15

b-a       1             15

(c) Non-Frequent Links Table (NFLT)

Frequent

Links

Potential

Frequent

Links

Non-frequent

Links

Figure 3.1: (a) Web log file example, (b) Header tableHT and (c) Non-frequent links
tableNFLT .

3.4 Frequent Sequence Tree Construction

Consider the web log file in Figure 3.1(a). It stores a set of users’ sessions where each

session has two fields:SID filed that stores the session id andInSeq filed that stores

sequence of page references accessed by the user in a certainorder. Given such input web

log file, and assumingMSuppC link = 2 andMSuppCseq = 3, 4 we construct the FS-tree

as follows:

1) We first perform one scan of the input database (log file) to obtain counts for links

in the database.

2) We identify those links that haveSupplink ≥ MSuppC link, and we insert them in

the header table (HT ), along side with their counts, as shown in Figure 3.1(b). For links

that do not satisfy the predefinedMSuppC link we insert them in the non-frequent links

if it appeared in three sessions in the database:{5, <abc>} {9, <eabd>} and{15,<abc>} we may store
this information in theNFLT as{a-b, 3,{(5:2), (9:1)} } where a-b is the link name, 3 the link count and
{(5 : 2), (9 : 1)} means that a-b appears in a session with SID=5 and in another session that has exactly the
same sequence as the one in session 5, and also appeared in a session with ID=9 that had different sequence.

4Frequent links are those satisfying both support thresholds, Potentially Frequent links are those satis-
fying only MSuppClink and Non-frequent links are those not satisfying any of the two support thresholds.
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table (NFLT ), along side with their counts and the SID of sessions they are obtained

from5, this is shown in Figure 3.1(c).

3) We create the root of the FS-tree.

4) We then perform a second scan of the database calling theinsertTree function

(shown in Figure 3.2) for each input sequence. TheinsertTree function inserts the input

sequences in the FS-tree starting by the first link in the sequence, frequent links (and

potentially frequent links) are stored as edges in tree branches (sharing nodes and edges

when possible), until some non-frequent link is encountered, or the input sequence is

exhausted. If a non-frequent link is encountered in the inserted sequence we do not insert

it, rather, the insertion process is started over again fromthe root of the tree, with the

remaining input subsequence, in a recursive manner. Besides inserting sequences into the

FS-treewe also maintain theListH linked lists that link different edges in the tree to the

header table (HT).

Function insertTree (tree root node S, sequence p-P) :

Updated FS-tree in which all the potentially frequent

subsequences are inserted .

(1)  If (link p-P Î HT) {

(2)       If (S has a child N and N.node-name = p) {

(3)           increment S-N.edge-count by 1

(4)       }Else {

(5)            Create node N with N.node-name = p

(6)            Create edge S-N with S-N.edge-count = 1

(7) Append edge S-N to HTS-N.ListH }

(8)     If (P is non-empty) {call insertTree(N, P)}

(9)  }Else if (link p-P Î NFLT) {

(10)    If (P is non-empty) {call insertTree(R, P) } }

(11) If P is last page in InSeqi and InSeqi was not cut,
store Seq.ID in seqEnd.ID

FS-tree construction Algorithm

Input: Sequence Database DB

and minimum link support MSuppl

Output: Frequent sequence tree FS-tree of DB

Method:

(1) Scan the DB once to collect counts for all links

(2)  Classify links and insert them in HT and NFLT
tables

(3) Create a root R for the FS-tree

(4) For (each record in DB get sequence InSeqi)

call insertTee (R, InSeqi)

(5) Return FS-tree

Figure 3.2: FS-tree construction.

Figure 3.3 shows the FS-tree constructed for the example in Figure 3.16. The total

5only required for supporting incremental mining
6Note that we only show some of the lines that link the header table to edges in the FS-tree for simplicity
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number of links in the database is 52, based on first database scan. And assuming that

the system definesMSuppRlink to be 4% and the user definesMSuppRseq to be 6%, we

obtainMSuppC link = 2 andMSuppCseq = 3 accordingly (note thatMSuppC link is used

in FS-tree construction, whileMSuppCseq is used later in FS-tree mining). We create

the FS-tree root node R. We then insert sequences into the tree starting from the tree root

using the procedure described above. For the sequence<dgi> we start from the root and

since the tree is empty so far, we create two new nodes with namesd andg. We also create

an edged − g that is assignededge-count= 1. In addition, we link theListH pointer for

link d − g in HT to the new edge. Lastly, we insert the nodei into theFS-treecreating a

new node and the edgeg − i with edge-count=1, and linkListH pointer for linkg − i in

HT to that edge. When inserting the second input sequence<dg>, we share the nodesd

andg and the edged − g and increment the count of that edge to 2.

Header table

Link Count ListH

d-g 4

g-i 2

c-d 7

d-e 6

e-h 3

h-i 2

b-c 5

c-b 2

a-b 4

b-d 2

f-a 2

R

d

g:2

i:1

2

1

c

d

e:4

h

4

4

1

i:3

1

a

b

c

d:8

2

2

2

i:7

g

1

1

b

d

e

h:10

2

2

2

i:9

1

b:6

c

d

g:5

2

1

1

1

f

a

b

2

2

c

2

f

a

b

2

2

c

2

Figure 3.3: The FS-tree constructed for the example in Figure 3.1

Next we insert the sequence<cdehi> by creating new nodes and edges (with counts

= 1) for all the items and links in the sequence since there wasno possible path sharing.

Sequences in sessions with ids 3 to 10 are inserted followingthe same logic described
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above. Session 11 (<cdebfabc>) is a different from prior sessions, since the sequence

in this session has non-frequent links, namelye − b andb − f . First, the sub-sequence

<cde> is inserted in the tree. Insertion here involves sharing existing nodes and edge

and incrementing edges counts. Then we ignore the two non-frequent linkse − b and

b − f . The sub-sequence<fabc> is inserted from the tree root by creating new nodes

and edges as described above. For session 12 we insert the sub-sequence<cde> into the

tree, then we encounter the non-frequent link e-f, so we skipit and insert the remaining

sub-sequence<fabc> starting from the root node of the tree. Sessions 13, 14 and 15are

not inserted, totally or partially, into the FS-tree since all their links are non-frequent. See

Figure 3.3 for the fully constructed FS-tree.

3.5 FS-Tree Size

The FS-tree is a compressed form for representing sequencesscanned from the input web

log file. It is compressed in two manners, first, not all sequences are stored in the tree, only

those sequences/subsequence that are potentially frequent are inserted and stored in the

FS-Tee. This insures that any non-potential sequence/subsequence are pruned from the

beginning and are not inserted in the tree. Second, insertion into the tree involves sharing

of all possible existing nodes and edges, this is even more powerful with the existence

of the inial pruning step discussed earlier. So if a sequenceis pruned (cut into smaller

subsequence as a result of having non-frequent links in it),each of these subsequences

has the chance of sharing nodes and edges when they are inserted from the top of the FS-

tree. Due to these properties of the FS-tree, the size of the tree is typically much smaller

than the original web log file.

To give an idea about how small our proposed FS-Tree is we examine another web

usage mining work that used a tree to store and mine frequent sequences. The work pre-
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sented in [XD01], that we discussed in the Background Chapter, constructs a suffix tree

and mine it for frequent sequences. Insertion in the suffix tree is done as follow: for each

sequence in the input log file each suffix of the sequence is inserted from the root of the

tree, sharing nodes and edges if possible. For example, if weinsert the sequence<dgi>

from session 1 in the input log file shown in Figure 3.1(a) we insert the suffix sequences:

<dgi>, <gi>, and<i>. The same thing happens for each sequence in the input log

file. This makes the suffix tree grows very quickly especiallywith the exitances of long

sequences. For example the sequence<cdebfabc> in session 11 will cause the inser-

tion of the following suffix sequences:<cdebfabc>, <debfabc>, <ebfabc>, <bfabc>,

<fabc>, <abc>, <bc>, <c>. To give an idea of how big is the initial suffix tree needed

to represent the sequences in the web log file in Figure 3.1(a), we constructed this tree

and are showing it in Figure 3.4. Note that for the clarity of presentation, the suffix tree

in Figure 3.4 shows the accessed pages on the nodes themselves, while typically they are

shown on the edges. Note that the symbol$ is used to represent a terminating simple and

is considered as leaf node that indicates the ending of a suffix sequence. For more details

on suffix trees in general refer to [Gus97].

To overcome the problem of the suffix tree size, one can collapse nodes on tree that

have single child to reduce the number of nodes and edges. Figure 3.5 shows a collapsed

version of the suffix tree shown in Figure 3.4. Note that nodeswith more than one child

in the original tree can not be collapsed (terminating nodes$ are considered as a child).

Only consecutive nodes with one child are collapsed into onenode. The same technique

is applicable to our FS-tree. Figure 3.6 shows how the FS-tree in Figure 3.3 looks like

after collapsing (note that we still maintain counts but arenot shown in the figure). By

comparing the collapsed FS-tree and the collapsed suffix tree we see clearly that, even

after collapsing, out FS-tree continues to be much smaller in size than the suffix trees.

Please refer to the Related Work Chapter for more detailed comparison between our work
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Figure 3.4: The very large suffix tree that would be needed to store the sequences in the
input log file shown in Figure 3.1(a). Contrast this to the much smaller FS-tree that we
propose as shown in Figure 3.3

and the work in [XD01].

Through out the reaming of this document we will be showing the non-collapsed

version of the FS-tree for simplicity of illustration.

19



R

d

g

i

g

i

i

c

d

h

i

h

i

c,d,g

e

$

e

h

i

$
b

c,d

g

b

c,d,g,f

g

$

a

b,c

d

g,i

$

i

$

$

$

d

e,h

i

$
$

$

$

$

$

$

$

$

$

b,f,a,b,c

b,f,a,b,c

$

a
$

h,i

e

$

b,f,a,b,c

f,a,b,c

f,a,b,c

$

i,c

c

i,e

e

g,d,ba

d,b,a

b,a

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$ $

$ $
$

f,a,b,c

$

f,a,b,c

$

f,a,b,c

$

Figure 3.5: A collapsed version of the suffix tree in Figure 3.4.

Header table

Link  Count ListH

d-g 4

g-i       2

c-d      7

d-e      6

e-h      3

h-i       2

b-c      5

c-b      2

a-b      4

b-d      2

f-a 2

R

d,g,i

2

d,e,,h,i

2

c

4

b,c,d,g

A,b,c,d,g,i b,d,e,h,i f,a,b,c

Figure 3.6: A collapsed version of the FS-tree in Figure 3.3.
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Chapter 4

Frequent Sequences Mining from the

FS-tree

Based onMSuppC link andMSuppCseq we classify the links in the database into three

types (See Figure 3.1):

• Frequent links: links with support countSupplink ≥ MSuppCseq ≥ MSuppC link.

These links are stored inHT and are represented in the FS-tree and can be part of

frequent sequences.

• Potentially Frequent links: links with support countSupplink ≥ MSuppC link and

Supplink < MSuppCseq. These links are stored in theHT and are represented

in the FS-tree but they can’t be part of frequent sequences (needed for efficient

incremental and interactive performance).

• Non-frequent links: links with support countSupplink < MSuppC link. These links

are stored inNFLT and are not represented in the FS-tree (needed for efficient

incremental and interactive performance).
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Only frequent links may appear in frequent sequences, hence, when mining the FS-

tree we consider only links of this type. Before we introducethe FS-mine algorithm, we

highlight the properties of the FS-tree.

4.1 Properties of the FS-trees

The FS-tree has the following properties that are importantto the FS-mine algorithm:

• Any input sequence that has non-frequent link(s) is pruned before being inserted

into the FS-tree. only potentially frequent subsequences of it are to be inserted in

the FS-tree.

• If MSuppC link < MSuppCseq, the FS-tree is storing more information than re-

quired for the current mining task. Hence, the mining algorithm would not care

about all sequences encoded in the FS-tree.

• We can obtain all possible subsequences that end with a givenfrequent linkh by

following theListH pointer ofh from the header table to correct FS-tree branches.

• In order to extract a sequence that ends with a certain linkh from an FS-tree branch,

we only need to examine the branch prefix path that ends with that link (h) back-

ward up to the tree root. The frequency count of that sequenceis equal to the

count associated with the edge that ends this prefix path. We also can extract cer-

tain length of the prefix path based on user maximum pattern size preference. This

feature is important for optimizing the mining phase1.

Now we describe in detail the mining steps that we use to extract frequent sequences

from the FS-tree. We assume the FS-tree shown in Figure 3.3, andMSuppC link = 2 and

1For example if we follow theListH pointer for linkg− i from header table in Figure 3.3 to the second
edge and assuming that, at the mining stage, the user is interested in patterns of maximum size of 4, we
need to extract only the path prefix (c-d:2, d-g:1, g-i:1) instead of the full path starting from the tree root.
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MSuppCseq = 3 as our running example.

4.2 FS-tree Mining Steps

Figure 4.1 lists the FS-Mine Algorithm. The algorithm has four main steps that are per-

formed for only frequent links (potentially frequent linksare excluded) in the header table

(HT ):

FS-Mine Algorithm

Input: FS-tree root R, and minimum sequence support MSuppS

Output: Frequent sequences

Method:

(1) Frequent sequences set FSS ¬ f

(2) For (all links li Î HT and li..count ³ MinSupps) {

(3)        Conditional sequence set CSS ¬ f

(4)        For (all paths Pj in FS-tree reachable from HT.ListH(li)){

(5)             CSS ¬ CSS È extract Pj, remove last link, and adjust Pj.count = last link count }

(6)        Conditional FS-tree CFST ¬ f

(7)        Construct CFST

(8)        For (all sequences Seql in CFST){

(9)              FSS ¬ FSS È concatenate (Seql , li)    } }

Figure 4.1: FS-Mine Algorithm.

Extracting derived paths. For link h in HT with Supplink(h) ≥ MSuppCseq we

extract its derived paths by following theListH pointer ofh from HT to edges in the

FS-tree. For each path in the FS-tree that containsh we extract its path prefix that ends at

this edge and go maximum up to the tree root2. We call these pathsderived pathsof link

h. For example, from Figure 3.3, if we follow theListH pointer for the linke − h from

the header table we can extract two derived paths:(c − d : 4, d − e : 4, e − h : 1) and

2Note the backward prefix extraction might terminate before the tree root and return a smaller prefix path
in two cases: (1) reaching the limit determined by the user asthe maximum pattern length he is interested
in discovering or (2) encountering a potentially frequent link (since we do not mine for them).
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(b − d : 3, d − e : 2, e − h : 2).

Constructing conditional sequence base.Given the set of derived paths of linkh

extracted in previous step we construct theconditional sequence basefor h by setting the

frequency count of each link in the path to the count of theh link (this gives the frequency

of the full derived path). We also removeh from the end of each of the derived paths, since

it is a common ending for all of them. For example, given the two derived paths extracted

above for linke − h, the conditional base for that link consists of:(c − d : 1, d − e : 1)

and(b− d : 2, d− e : 2) sincee−h frequency was 1 for the first one and 2 for the second

one.

Constructing conditional FS-tree.Given the conditional base forh, we create a tree

and insert each of the paths from the conditional base ofh into it in a backward manner.

We create necessary nodes and edges or share them when possible (incrementing edges

counts). We call this tree theconditional FS-treefor link h. For example, given the

conditional base for linke−h the constructed conditional FS-tree is shown in Figure 4.2.

Extracting frequent sequences.Given aconditional FS-treeof a link h, we perform

a depth first traversal for that tree and return only sequences satisfyingMSuppCseq. We

appendh to the end of each of the sequences extracted from the tree to obtain the full

length frequent sequences for linkh. By traversing the conditional FS-tree of linke − h

only the sequence<de> satisfies theMSuppCseq, so we extract it. We then append the

link e − h to the end of it to get the full size frequent sequence:<deh : 3> where 3

represents the support (count) of that sequence.

We perform the same steps for the other frequent links inHT , namelyd − g a − b,

b − c, d − e, andc − d. The detailed mining steps for these links are shown in Table4.1.

The last column in that table gives the final result for the mining process. The generated

frequent sequences are:<deh : 3>, <abc : 4>, <cde : 4>, and<bcd : 3> in addition to

the frequent links themselves: (<eh : 3>, <dg : 4>, <ab : 4>, <bc : 5>, <de : 6>, and
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Figure 4.2: Mining steps for linke − h from the example in Figure 3.1.

<cd : 7>) as they are considered frequent sequences of size 2.

Link Derived Paths Conditional Sequence base Conditional FS tree Frequent Sequences generated
e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1) , (b-d:2, d-e:2) (d-e:3) <deh : 3>

(b-d:3, d-e:2, e-h:2)
d-g (d-g:2), (c-b:2, b-3:1,c-d:1,d-g:1), (c-b:1, b-c:1,c-d:1), φ φ

(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1, b-c:1 ,c-d:1)
a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) φ φ

b-c (c-2:2, b-c:1), (c-b:1), (a-b:2), (a-b:4) <abc : 4>

(a-b:2,b-c:2), (f-a:2, a-b:2)
(f-a:2, a-b:2,b-c:2)

d-e (c-d:4, d-e:4), (c-d:4),(b-d:2) (c-d:4) <cde : 4>

(b-d:3, d-e:2)
c-d (c-d:4), (c-b:1, b-c:1), (b-c :3) <bcd : 3>

(c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2)
(a-b:2,b-c:2 ,c-d:2)

Table 4.1: Mining for all sequences that satisfyMSuppCseq=3.
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Chapter 5

Incremental and Interactive Mining

5.1 Incremental Mining

In the presence of incremental updates△DB to the sequence database, our goal is to

propagate these updates into the generated frequent sequences with minimum cost. In

particular, we aim to develop an incremental maintenance strategy that avoids the need

for expensive scans of the complete sequence database and the complete recomputation of

frequent sequences. In this section, we discuss requirements for supporting Incremental

feature of the FS-miner. We then address how to maintain the FS-tree incrementally with-

out reconstructing it from scratch and how to mine incrementally for frequent sequences.

5.1.1 Requirements for Supporting Incremental Mining in the FS-

miner

We first highlight the additional information we need to maintain to support incremental

mining:

1) The Non-Frequent Links TableNFLT , described earlier in Definition 1.

2) We extend the FS-tree node by adding to it a new structure called seqEnd. This
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structure has two fields:sid andcount. sid stores a record id of a sequence (from the

database), or null. The value ofsid of seqEndis assigned at tree construction time. At the

end of input sequence insertion into the tree, we might setsid of the node corresponding

to the last item in the input sequence to be equivalent to the input sequence id. To assign a

new value forsid two conditions must be satisfied: if the input sequence is inserted as one

piece into the tree without being pruned1 and if thesid does not contain another sequence

id already (since we store only one id in this field). For each node withsid not equivalent

to null we know that the tree branch that starts from the tree root and ends at that node

is representing a complete input sequence(s) from the database. The second field,count,

stores a count that indicates how many complete (unpruned) input sequences share the

same tree branch that ends at this node. Figure 3.3 shows nodes in the tree withsid set to

session IDs from the database2.

5.1.2 Maintaining the FS-tree Incrementally

The FS-miner supports both database inserts and deletes. Our incremental FS-tree con-

struction algorithm takes as input the FS-tree representing the database state before the

update and△DB. Then it inserts (or deletes) sequences from the tree. In some cases,

the FS-tree construction algorithm performs partial restructuring of the tree, that is, some

branches might be pruned or moved from one place to another inthe FS-tree. Figure 5.1

shows the incremental FS-tree construction algorithm.

The algorithm first obtains the count of links in△DB by performing one scan of

△DB (step 1 in the algorithm in Figure 5.1). In step 2, link countsin HT andNFLT

are incremented or decremented.MSuppCseq andMSuppC link values are updated if

applicable. Link entries inNFLT that now become frequent (or potentially frequent)

1All links in the sequence are frequent.
2Counts are not shown there for simplicity since they are all equal to 1 for current example.
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are moved toHT . Links that were originally inHT and moved toNFLT , because they

are no longer satisfyingMSuppCseq andMSuppC link should no longer be presented in

the FS-tree, so we prune edges that represent them from the FS-tree. This can be done

by following their ListH pointer to their edge occurrences in the FS-tree. We remove

each edge, then insert the subsequent tree whose root was attached to the removed edge,

from the top of the FS-tree, sharing nodes and edges when possible (steps 4 through 8).

For links that were originally inNFLT and moved toHT , we obtain input sequences

in the order which they appear from the original database3. We insert them into the FS-

tree using the functioninsertTreeInc (steps 9 through 12). The main difference between

this function and the normalinsertTree function described earlier is thatinsertTreeInc

aims to compose sequences that were previously decomposed by the insertTree at the

initial tree construction phase4. For each of the obtained sequences, theinsertTreeInc

function traverses the sub-path of it already represented in the FS-tree (staring for the

root). When we encounter a link in the inserted sequence thatwas not frequent before the

update and now is frequent (or potentially frequent), we create a new edge and node for

it (or share an edge and a node and increment edge’s count). After this point, we insert

the remaining subsequence starting from the current node. At the same time we call the

deleteTree function that deletes the same remaining subsequence from the top of the FS-

tree (as it had previously been inserted there). This is doneby traversing the tree from the

top for that subsequence and decrementing the count of any traversed edge. If the count

of decremented edge becomes 0, the edge and its subsequent subtree are deleted from the

FS-tree. The last phase (steps 14 through 17) inserts (or deletes) input sequences from

△DB into the tree using theinsertTree (or thedeleteTree) function.

3Recall that for each we maintained a list of sequence IDs in which the link appeared in the database.
4This is needed because if a certain link was non-frequent before the update and became frequent later,

during initial tree construction time, theinsertT ree function has previously broken any input sequence that
contained that link at this place and inserted it as subsequences in the FS-tree. But now as that link becomes
frequent due to the update, theinsertT reeInc will bridge that gap again and put those subsequences
together.
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Example 1: As an example for incremental inserts, assume that the following tuples

where inserted into the log file in our running example in Figure 3.1: {16, < efa >} ,

{17, < ef >}, {18, < efab >}. Figure 5.2 shows the effect of inserting the new input

sequences. First, we scan the new records to obtain counts oflinks in the inserted session

and we update counts of linksa− b andf −a in HT and linke−f in NFLT . Assuming

theMSuppC link andMSuppCseq maintain the same values (2 and 3 respectively), link

a − b maintains the same status (frequent), linksf − a ande − f becomes frequent thus

are moved to tableHT . The next step is to prune the tree by removing edges for any link

transitioned from frequent to non-frequent. In this example we do not have any. Next we

restructure the tree for links that were not frequent and became frequent (linke − f in

our example). We obtain from theSIDs field of link e − f entry inNFLT sequence id

= 12 as the only sequence where the link appears in original database. We retrieve this

sequence (<cdefabc>)from the original database and insert it into the FS-tree using the

insertTreeInc function. This function will first traverse the tree branch that corresponds

to the subsequence represented in the tree from before (<cde>) and create a new edge

for it when it encounters the linke − f . Insertion will then continue for the remaining

subsequence (<fabc>) following this point. At the same time it calls thedeleteTree

function for the subsequence<fabc> to delete it from the root of the FS-tree. The last

step in the incremental FS-tree constructions is to insert all the input sequences from△DB

in the FS-tree using theinsertTree function, resulting in the tree shown in Figure 5.1.

Example 2: As an example for incremental deletes, assume that we deletethe tuple

{8, <bdehi>} from theDB. In Figure 5.3 we note that as a result of deleting that tuple

the linksb−d andh−i become non-frequent and should not be represented in the FS-tree

anymore. The tree pruning step will cause the tree branch (b − d − e − h − i) to be cut

at b − d andh − i edges, and the part (b − d − e) to be inserted at the root of the tree

sharing the existing noded and creating nodese andh. also the edgeh − i in the tree
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branch (c − d− e − h− i) is pruned. Now the last step is to call the functiondeleteTree

to delete the sequence<bdehi>. This will cause the tree branch (b− d− e) edges counts

to decrement to 1.

Note that the incremental FS-tree construction algorithm shown in 5.1 can accept both

types of updates, insertion of new sessions and deletions ofexisting sessions, in a batched

mode, and process them together.

5.1.3 Mining the FS-tree Incrementally

After refreshing the FS-tree, the incremental mining is invoked for certain links inHT ,

namely those affected by the update. We first need to understand the effect of database

updates on different types of links5. We can classify the possible change in the type of a

link due to database updates into 9 different transaction types as shown in Figure 5.46. We

categorize how the incremental mining algorithm deals withthese different transaction

cases into four categories:

(1) For transaction of type 1: we mine for those links if they are affected7.

(2) For transactions of type 2 and 4: we mine for these links.

(3) For transactions of type 3 and 5: we delete previously discovered patterns that

include these links.

(4) For transactions of type 6, 7, 8 and 9: we do nothing. The incremental FS-mine

algorithm is shown in Figure 5.5. The mining algorithm starts by dropping any sequence

in the previously discovered frequent sequences that is either of transaction type 3 or 5

(no longer satisfying the newMSuppCseq, if changed due to the update). Then for all

links in theHT if the link satisfies the newMSuppCseq and if it is of transaction type 2,

5The three different types of links we discussed earlier (frequent, potentially frequent and non-frequent).
6The starting point of the arrow refers to where the link used to be before the database updates and the

ending point of the arrow refers to where the link ends up as a result of the database update.
7By affected we mean if the link was in△DB, or if the link was in one of the subsequences that were

deleted from the FS-tree in the tree restructuring process described earlier.
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4 or of type 1 and affected by the update, the algorithm applies theFS −mine algorithm

for these links.

Example 3: Consider that△DB denotes an insertion of{16, < efa >} , {17, <

ef >}, {18, < efab >} described in example 3. linka − b is affected by the update

and maintained the same frequent status after the update. Link f − a status is changed

from potentially frequent to frequent due to the update. Link e− f status is changed from

non-frequent to frequent due to the update. These three links are the only ones affected

by the update, hence we need to mine for these three links. Table 5.1 shows the steps in

mining for these links and the resulting generated frequentsequences.

Link Derived Paths Conditional Sequence base Conditional FS tree Frequent Sequence generated
a-b (c-d:4, d-e:4, e-f:1, f-a:1, a-b:1), (c-d:1, d-e:1, e-f:1, f-a:1) (f-a:3) <fab : 3>

(a-b:2), (f-a:1, a-b:1), (f-a:1)
(e-f:3, f-a:2, a-b:1) (e-f:1, f-a:1)

f-a (c-d:4, d-e:4, e-f:1, f-a:1), (c-d:1, d-e:1, e-f:1), (e-f:3) <efa : 3>

(f-a:1), (e-f:3, f-a :2) (e-f:2)
e-f (c-d:4, d-e:4, e-f:1), (e-f:3) (c-d:1, d-e:1) φ φ

Table 5.1: Incrementally Mining for link e-h whereMSuppCseq=3.

Example 4: Consider that△DB denotes a deletion of the record with ID = 8 from the

web file in Figure 3.1. In this case the affected links are:b − d, d − e, e − h, andh − i.

And sinceb − d, e − h andh − i are no longer supporting theMSuppCseq (assuming 3)

we delete any frequent sequences previously discovered that contain any of those links.

Namely from the frequent sequences previously generated (and shown in Table 4.1) we

delete the sequence<deh : 3>. Now we look in theHT for those link that satisfy the

MSuppCseq and of type 2, 4, or 1 (and affected by the update). Only linksd−e ande−h

are satisfying this criteria so we apply the mining steps foreach of them.

5.2 Interactive Mining

We want to allow the user to make changes to the minimum support value and get a

response in a small amount of time. To achieve this goal we need to minimize the need to
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access the database and to re-execute the mining algorithm.We can support this goal in

our system by setting theMSuppC link to a small enough value that is less than any value

of MSuppCseq that the user is likely to use. The rational here is that sinceMSuppC link

is responsible for determining the potentially frequent links and hence allow them to be

represented in the FS-tree. This ensures that if the user lowered theMSuppCseq to a

value that is≥ MSuppC link we will have enough information in the FS-tree to calculate

the new frequent sequences without the need to reference theoriginal database. This is

done by applying the FS-mine algorithm for the subset of links inHT that is satisfying the

newMSuppCseq. On the other hand, if the user increased theMSuppCseq, we directly

provide him/her with the subset of frequent sequences previously discovered that satisfies

the newMSuppCseq without the need for any further computation. Our system also

allows the user to vary the size of the frequent patters he is interested in discovering. In

this case the system does not use the input database, it only uses the FS-tree to extract the

frequent sequences for the required size.

Now we give an example for lowering theMSuppCseq. The frequent sequences

shown in Table 4.1 were generated based onMSuppCseq = 3. Assume thatMSuppC link

= 2 was small enough to satisfy most of the expected changes tothe systemMSuppCseq

and that the user later on setsMSuppCseq to 2, we can directly apply the FS-mine since

our FS-tree already has all the information about links and sequences with minimum fre-

quency of 2. For this we can obtain the result shown in Table 5.2 without the need for

re-scanning any part of the input database.
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Link Derived Paths Conditional Sequence base Conditional FS-tree Frequent Sequence generated
f-a (f-a:2) φ φ φ

h-i (c-d:d,d-e:4 ,e-h:1,h-i:1), (c-d:1,d-e:1 ,e-h:1) (d-e:2,e-h:2) <dehi : 2>

(b-d:3,d-e:3 ,e-h:2,h-i:1) (b-d:1,d-e:1 ,e-h:1)
g-i (d-g:2,g-i:1) (d-g:1), (d-g:2) <d− g − i : 2>

(a-b:2,b-c:2 ,c-d:2,d-g:1,g-i:1) (a-b:1,b-3:1 ,c-d:1,d-g:1)
c-b (c-b:2) φ φ φ

b-d (b-d:2) φ φ φ

e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1) , (d-e:3), <deh : 3>

(b-d:3, d-e:2, e-h:2) (b-d:2, d-e:2) (b-d:2, d-e:2) <bdeh : 2>

d-g (d-g:2), (c-b:2, b-c:1,c-d:1,d-g:1), (c-b:1, b-c:1,c-d:1), (b-c:2 ,c-d:2) <bcdg : 2>

(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1,b-c:1 ,c-d:1)
a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) (f-a:2) f-a-b :2
b-c (c-b:2, b-c:1), (a-b:2,b-c:2), (c-b:1), (a-b:2), (a-b:4) <abc : 4>

(f-a:2, a-b:2,b-c:2) (f-a:2, a-b:2) (f-a:2, a-b:2) <fabc : 2>

d-e (c-d:4, d-e:4), (c-d:4), (c-d:4) <cde : 4>

(b-d:3, d-e:2) (b-d:2) (b-d:2) <bde : 2>

c-d (c-d:4), (c-b:1, b-c:1), (b-c :3) <bcd : 3>, <abcd : 2>

(c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2) (a-b:2, b-c:2)
(a-b:2,b-c:2 ,c-d:2)

Table 5.2: Mining forMSuppCseq=2.
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Incremental FS-tree construction Algorithm

Input: FS-tree root R and DDB, and new minimum link support MSuppl

Output: updated FS-tree

Method:

(1)  Scan DDB, and collect counts (+ and -) for links

(2) Update counts of links in HT and NFLT

(3) Move links,between HT and NFLT, based on MinSuppl

(4) For (all links ll moved from HT to NFLT) {

(5)       Start from ll.ListH pointer

(6)      For (every edge p-P in the FS-tree reachable from ll.ListH)

(7)             Cut the edge p-P

(8)      Call insertTree (R, P) }

(9)  For (all links ll moved from NFLT to HT) {

(10)     For (every sequence ID in ll.SIDs) {

(11) Obtain input sequence inpSeq with ID from DB

(12)         Call insertTreeInc (R, inpSeq) } }

(13) For (each record Reci in DDB get Reci.inpSeq) {

(14)     If (Reci is an insert)

(15)         Call insertTree(Reci.InSeq, R)

(16)     Else if (Reci is a delete)

(17)         Call deleteTree (Reci.InpSeq, R)}

Function insertTreeInc (tree root node S, sequence p-P) :

Updated FS-tree.

(1)  If (link p-P Î HT) {

(2) If (p-P was originally in HT){

(3) If (S has no child with name = p) {

(4) Create node N with N.node-name = p

(5) Create edge S-N with S-N.edge-count = 1}

(6)      }Else if (p-P was originally in NFLT){

(7) Node ptr = call deleteTree (R, P)

(8)                    add ptr as a child to p }

(9)        If (P is non-empty) {call insertTreeInc(N, P)}

(10) }Else if (link p-P Î NFLT ) {

(11)       If (P is non-empty) {call insertTreeInc(R, P) } }

Function deleteTree (tree root node S, sequence p-P) : Updated
FS-tree.

Precondition: counts of links in HT and NFLT are already updated

(1)  If  (S has child N and S-N = p-P) {

(2) Decrement S-N.count, and deleted it if count became 0.

(3)           If (P is non-empty){call deleteTree (N, P) }

(4)  }Else{

(5) If (P is non-empty) call deleteTree (R, P)}

Figure 5.1: Incremental FS-tree construction.
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Figure 5.2: The effect of inserting records to the database in Figure 3.1.
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Figure 5.3: The effect of deleting records from the databasein Figure 3.1
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Figure 5.4: The effect of incremental updates on links in thedatabase
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Incremental FS-Mine Algorithm

Input: FS-tree root R, set of frequent sequences fSeq and set of affected links affLinks

Output: new frequent sequences based on affLinks

Precondition: all counts for links are updated in HT and NFLT

Method:

(1) For (all frequent sequences fSeqi )

(2)     If (fSeqi count < Min-Supps or fSeqi has link with count < Min-Supps){

(3) delete fSeqi}

(4) For (all links li Î HT where li.count >= Min-Supps)

(5)           if (li moved from NFLT or li count was < Min-Supps or li Î affLinks ) {

(6)               call FS-Mine (R) for li}

Figure 5.5: Incremental FS-Mine Algorithm.
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Chapter 6

Implementation

Figure 6.1 shows The FS-Miner system. The system has been implemented in Java on

a Windows machine. It has four main parts: FS-Tree Constructor, FS-Miner, Incremen-

tal/Interactive FS-Tree Maintainer, and Incremental/Interactive FS-Miner.

Input Log

File

Sequences

Prediction

Sequences
Updates

FS-tree

Frequent

Sequences

Prefetcher

RecommenderFS-Miner

Predictor

Monitor

System

parameter

Incremental / Interactive

FS-Miner

FS- Miner
FS-Tree

Constructor

Incremental/

Interactive FS-Tree

maintainer

User Input

Initial Mining

Incremental Mining

Figure 6.1: FS-Miner architecture

The FS-tree Constructor takes as input a web log file and two system parameters:
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Minimum Link Support RatioMSuppRlink and a Minimum Sequence Support Ratio

MSuppRseq. It first performs one scan for the input log file and finds the count of each

distinct link in the input file and the total count for all links in the input log file and

depending on the last count and theMSuppRlink it finds theMSuppC link that is used to

decide which links are to be represented in the FS-Tree and which ones are not. Also using

the count of total links in the input file and theMSuppRseq it calculates theMSuppCseq

that is used later in the mining steps. The FS-tree Constructor module next constructs the

FS-Tree and theHT and theNFLT tables as described in section 3.4.

TheFS-Miner uses the FS-Tree previously constructed to mine for frequent sequences

given the Minimum Sequence SupportMSuppCseq parameter. The mining process is

done in four main steps as discussed in section 4.2 and will result in all frequent sequences

that satisfy the predefinedMSuppCseq. The discovered frequent sequences can be used

as an input for a recommender system for the purpose of predicting users’ access behav-

ior and hence prefetching pages to their machine. This can bedone interactively during a

user session by tracing the user current page access patternand matching that to frequent

sequences pattern previously discovered, and from this point we can predict the user next

page request(s). Besides using the new page access sequences of users for predicting

their access behavior, these new sequences themselves are considered as an incremental

input to the input log file we started with, and hence, they might change the result (the set

of frequent sequences previously discovered). This we might invalidate some previously

discovered frequent sequences, introduce new frequent sequences, and/or change the fre-

quency of perviously discovered frequent sequences. For that we collect all new users’

input sessions, that were encountered after the last FS-Tree construction, and store them

as an update to the web log file. This incremental input is to beused later for incremental

mining as we will describe next.

The Incremental/Interactive FS-tree Maintainer takes as input the update web log
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file and performs a scan over the file to obtain link counts. Using these link counts the

module updates bothMSuppC link andMSuppCseq. And after that it restructure the FS-

Tree if needed with any added or deleted sequences and then insert the new sequences into

the FS-Tree as described in section 5.1.2. This module is also responsible for maintaining

the FS-Tree in case of changingMSuppRlink and henceMSuppC link.

The Incremental/Interactive FS-Miner works on the FS-Tree that was maintained

by the Incremental/Interactive FS-tree Maintainer. It incrementally invalidate previously

discovered frequent sequences, discover new ones, and/or modify frequencies of previ-

ously discovered ones as a result of the incremental web log file. This process is described

in details in 5.1.3. This module is also responsible for maintaining discovered frequent

sequences in case of change to theMSuppCseq by the user, as was discussed in 5.2.
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Chapter 7

Experimental Evaluation

7.1 Data Sets and Experimental Setup

We use two data sets to test our system, the Microsoft Anonymous Web Data Set and the

MSNBC Anonymous Web Data Set, both obtained from [Het99]. Each data set consists

of a collection of sessions where each session has a sequenceof page references. The

Microsoft anonymous data set has 32711 sessions, each session contains from 1 up to 35

page references. The MSNBC data set has 989818 sessions. A session contains from 1

up to up to several thousands of page references1. The main difference between the two

data sets of interest to us is the number of distinct pages. The Microsoft data set has 294

distinct pages, while the MSNBC data set has only 17 distinctpages (as each one of these

pages is in fact encodes a category of pages).

We compare the performance of our algorithm against two other algorithms from the

literature: thePathModelConstruction algorithm [SYLZ00], and a variation of Apriori

algorithm [AS94] for sequence data2. We have implemented the three systems in Java

1We preprocessed the MSNBC data sets to keep a maximum of 500 page references for each session to
smooth the effect of very large sessions on experimental time.

2Optimized using hashing techniques and modified to provide the same sequential patterns we use.
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in a Windows environment. We ran the experiments on a PC with a733 MHz Pentium

processor and 512 MB of RAM.

7.2 Experimental Results

We have conducted three different experiments using both data sets. We first tested the

scalability of our approach with respect to changes in inputdatabase size.

7.2.1 Varying data set size

Figure 7.1 shows that our system, and the other two systems, scale linearly in the database

size. Our system tends to outperform the other two systems with data sets that have a large

number of distinct items (such as the MS data set) while Apriori tends to perform slightly

better in the case of data sets with a very small distinct items (such as the MSNBC set).

This is because the candidate generation cost in this case issmall. Note that part of

the cost of our system is due to maintaining the extra data needed for incremental and

interactive tasks. So while the other two systems are only performing the mining task at

hand, our system is also maintaining as a byproduct the FS-tree that can later be used for

incremental and interactive operations.

7.2.2 Varying support threshold level

We also tested the scalability of the system with respect to adecrease of the support

threshold level. Figure 7.2 shows that our system scales better with a decrease of support

level. In fact our system shows a very smooth response time tothe decrease in the support

level unlike the other two systems that experience a dramatic increase in cost when they

hit lower support values. This implies that even if we chooseto utilize a lowMSuppC link,
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Figure 7.1: Scalability with number of input sessions

to better support the incremental and interactive tasks of the system at later stages, our

system does not experience a significant overhead.

7.2.3 Incremental mining

The third experiment compares the performance of the incremental mining versus recom-

putation. Figure 7.3 shows that even with an incremental update size of up to one quarter

of the size of the original database size, the FS-Miner’s incremental feature provides sig-

nificant time savings over full recomputation.

43



MS Data Set

1

10

100

1000

10000

0
.0

1

0
.0

1

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0.
1

0.
1
2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4

Min Support (%)

T
im

e
(s

e
c
)

Apriori

PMC

FS-Miner

MSNBC Data Set

1

10

100

1000

10000

0.
00

01
3

0.
00

02
5

0.
00

5
0.
01

0.
02

0.
04

0.
06

0.
08 0.

1
0.

12
0.
14

0.
16

0.
18 0.

2
0.

22
0.
24

Support (%)

T
im

e
(s

e
c
)

Apriori

PMC

FS-Miner

Figure 7.2: Scalability with support threshold
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have proposed the FS-Miner, an incrementalsequence mining system.

The FS-Miner constructs a compressed data structure (FS-tree) that stores potentially fre-

quent sequences and uses that structure to discover frequent sequences. This technique

requires only two scans for the input database. Our approachallows for incremental dis-

covery of frequent sequences when the input database is updated eliminating the need

for full recomputation. The FS-miner calculates the incremental effect of these updates

directly from the updated FS-tree. Our approach also allowsinteraction with the user

in the form of changes to the system minimum support, and in most cases we can sat-

isfy these requests without having to use the original database. Our experiments show

that the performance of our system scales linearly to increases in the input database size.

It shows an excellent time performance when handling data sets with large number of

distinct items. The FS-miner also shows great scalability with the decrease of the mini-

mum support threshold when typically other mining algorithms tend to exhibit dramatic

increases in response time. Finally the incremental functionality of our system shows a
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significant performance gain over recomputation even with large update sizes relative to

the size of the original database.

8.2 Future Work

The mining system we have developed is basically targeted towards discovering frequent

sequences for the purpose of prediction. The way we calculate the minimum sequence

support threshold (by dividing the frequency of the sequence on the total number of links

in the input web log file) takes into account the need to consider duplicates in sequence

patterns, which is an important requirement in the context of web usage mining.

For other mining applications it might be needed that we calculate the minimum sup-

port of sequences (or item sets) as the frequency of sequences related to the total number

of sessions (transactions) with no consideration to duplicates. In this case the support

will be similar to the one calculated in association rule mining. It is easy to adapt our

proposed system to work with this other notion of support. The main adaptation needed

is to count the occurrence of each link (item) in each input session (transactions) one time

regardless of how many times it appears. This involves a minor change in the tree con-

struction subsystem only and will not affect the mining subsystem. If we run the system

using this modified notion of support on a web log file we will get as output new frequent

sequences, in which duplicates are not considered and the frequency is based on the total

number of sessions in the input web log file.

A more interesting scenario is to extend the system to incorporate both the current

support threshold (based on total number of link) and the support calculated as the fre-

quency of sequences to the total number of sessions. This will require adding some new

parameter to the system:

• Link support (session support)Supps
link
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• Sequence support (session support)Supps
seq

• Minimum Link support ratio (session support)MSuppRs
link

• Minimum Sequence Support Ratio (session support)MSuppRs
seq

• Minimum Link support count (session support)MSuppCS
link

• Minimum Sequence support count (session support)MSuppCs
seq

These new parameters are similar in meaning to their counterparts previously used in

this document (discussed in Section 3.2). The main difference is that they do not consider

duplicates and the support threshold calculation is based on the total number of sessions

and not the total number of links as a cetraria for determining the frequent sequences.

We need also to extend the data structures we currently have as follows:

• Edges on the FS-tree need to have one more count field to store the count when not

considering duplicates.

• Both theHT andNFLT need to have one more column for storing the count of

link when not considering duplicates.

With these extensions, the system can run in three modes:

• Link support criteria: this is the standard case that we have so far. In this mode

theFS −Tree theHT andNFLT tables are built based onMSuppRlink, and the

mining is done based onMSuppRseq. We output patterns that are frequent based

only on the total number of links.
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• Session support criteria: in this mode theFS−Tree and theHT andNFLT tables

are built based onMSuppRs
link, and the mining is done based onMSuppRs

seq.

We output patterns that are frequent based only on the total number of sessions.

• Both support criteria: in this mode theFS − Tree and theHT andNFLT ta-

bles are built based onMSuppRlink andMSuppRs
link. This means that theHT

will include links that are frequent based onMSuppRlink or MSuppRs
link, the

FS − Tree will include potentially frequent sequences based the sametwo para-

ments. TheNFLT will include links that are not frequent based on either the two

paraments. These settings will allow perform three different mining tasks:

- Mining for frequent sequences based onMSuppRseq. We output patterns that

are frequent based on total number of links.

- Mining for frequent sequences based onMSuppRs
seq. We output patterns

that are frequent based on total number sessions.

- Mining for frequent sequences based on bothMSuppRseq andMSuppRs
seq.

In this mining scenario, the mining will involve less links from theHT since we

have to satisfy bothMSuppRseq andMSuppRs
seq, and hence will also involve less

cost on the mining phase since we will be extracting less conditional paths from the

FS − Tree. We output patterns that are frequent based on both total number of

links and total number of sessions.

Other future work might involve designing an efficient persistent storage mechanism

for storing the FS-Tree, better design for theNFLT to eliminate or minimize the need

to access original input file in case of huge update. Also it might be interesting to study

possible extension to this approach to support generalizedfrequent sequences that allow

wildcards.
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