
A Behavioral Model System for

Implicit Mobile Authentication

A Major Qualifying Project

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree in Bachelor Science

In

Computer Science

By

Arun Donti

Arthur Dooner

Walter Ho

Stephen Lafortune

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial

or peer review. For more information about the project program at WPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Date: April, 2017

Project Advisor:

Prof. Emmanuel Agu, Advisor

http://www.wpi.edu/academics/ugradstudies/project-learning.html

1

Abstract
Smartphones are increasingly pervasive in users’ everyday lives. Security concerns of data

compromises are growing, and explicit authentication methods such as passwords are proving to

be inconvenient and inadequate. To address this, behavioral authentication approaches have

been proposed wherein a user is authenticated continuously and implicitly, by utilizing

consistent patterns in their behavior. This research project develops a Behavioral Model System

(BMS) that records users’ behavioral metrics on an Android device and sends them to a server to

develop a behavioral model for the user. Once a strong model is generated using deep learning,

a user’s most recent behavior is queried against the model to authenticate them, 2 out of 4 test

subjects had unique behaviors that identified them.

2

Contents
Abstract .. 1

1. Introduction ... 6

1.1. Authentication Methods .. 6

1.2. Importance of the Modern Smartphone .. 7

1.3. Current Security Measures on Smartphones .. 8

1.4. Limitations of Current Security Methods ..11

1.5 Behavioral Authentication...12

1.6 The Goal of This Project...13

2. Background ...15

2.1 Data Smartphones Collect ...15

2.2 Doze: Android's Power Saving Mechanism ..17

2.3. Deep Learning/Neural Networks ...20

3. Related Work ...23

3.1 Comparative Research on Positive Identification ...23

3.2 Generalized Algorithm for Categorizing Behavioral Authentication27

3.3 Deep Neural Nets for Modeling Mobile Soft Keystroke Authentication..........................28

3.4 Touchalytics ...29

3.5 Soft Authentication with Low-Cost Signatures ..31

3.6 Continuous Authentication on Mobile Devices Using Power Consumption, Touch

Gestures and Physical Movement of Users ..32

3.7 Authentication Feature and Model Selection using Penalty Algorithms33

3.8 Miscellaneous ..34

3.9 Summary ...34

4. Methodology ..36

4.1 Pilot Study ..36

4.2 Assumptions ..36

4.3 Metrics Selected for Inclusion in BMS ..37

4.4 Gathering the Data ...40

4.5 Privacy Concerns ...41

4.6 Authentication ..41

5. BMS System Implementation ..43

5.1 Implementing Our Authentication Modality ..44

3

5.2 Implementing Data Collection as a Background Process ..45

6 Results ...51

6.1 Discussion of Behavior of Users Surveyed ...51

6.2 Battery Tests ..52

6.3 Authentication Results ...52

6.4 Individual Metrics ...59

6.5 Discussion of Results ...67

7 Future Works ..69

7.1 Modular Implementation Allowing User to Select Various Combinations of Metrics69

7.2 Negative Sample Models ...69

7.3 Multi-User Support on Shared Devices ..70

7.4 Distinguishing Group of Friends with Many Shared Behavioral Patterns.70

7.5 Multi-Device Connection and Internet of Things ...71

7.6 Evaluating Different Neural Networks ...72

8 Conclusions ..73

Citations ... Error! Bookmark not defined.

4

Table of Tables

Table 1. Methods used to Authenticate Smartphones .. 9

Table 2. Vulnerabilities of Current Smartphone Authentication Methods12

Table 3. Common Smartphone Hard Sensors[25] ..16

Table 4. Soft Sensor Features used by Rachuri et al [26]. ..17

Table 5. Some Common Neural Network Types [34]...21

Table 6. A Comparison of Sensors, Methods, and Accuracy for
Identification/Authentication[24] ...25

Table 7. Recognition, verification, and error rates of behavioral metrics26

Table 8. The sensors we are tracking and the API's used to do it. ..45

Table 9. Summary of data gathered from our selected behavioral metrics.46

Table 10. Metrics implemented by BMS and Features extracted from them49

Table 11. Battery drain with and without the BMS app. ...52

Table 12. Day 11 Confusion Matrix of training on all metrics. ..56

Table 13. List of most commonly used applications by Subject ...59

5

Table of Figures

Figure 1. Wakelocks in Android with Doze (off, then turned on) [31]. ..19

Figure 2. An example neural network [33] ...20

Figure 3. Smartphone strokes recorded for eight different users, showing unique user touch

behavior ..30

Figure 4. Features’ effectiveness to identify an individual. ...31

Figure 5. Feeding into the ANN for an authentication output ...41

Figure 6. BMS design. ...44

Figure 7. Wi-Fi, Tilt, App Usage, and Location on subject A's model ...54

Figure 8. Wi-Fi, Tilt, App Usage, and Location on subject B's model ...54

Figure 9. Wi-Fi, Tilt, App Usage, and Location on subject C's model ..55

Figure 10. Wi-Fi, Tilt, App Usage, and Location on subject D's model55

Figure 11. App Usage on subject A's model ..60

Figure 12. App Usage on subject B's model ..60

Figure 13. App Usage on subject C's model ..61

Figure 14. App Usage on subject D's model ..61

Figure 15. Location on subject A's model ..62

Figure 16. Location on subject B's model ..62

Figure 17. Location on subject C's model ..63

Figure 18. Location on subject D's model ..63

Figure 19. Wi-Fi on subject A's model ...64

Figure 20. Wi-Fi on subject B's model ...64

Figure 21. Wi-Fi on subject C's model ...65

Figure 22. Wi-Fi on subject D's model ...65

6

1. Introduction

1.1. Authentication Methods

 Authentication is the process by which a system verifies the identity of a user to allow

access to it [1]. Authorization refers to the permissions and rules that determine the access that

a user has [1]. On a college campus or at a workplace, an identification badge may authenticate a

person, but it does not necessarily authorize him or her to access every building. These two

concepts pertain to allowing access and the level of access granted to aspects of a secured system;

however, both are central to the design of a security system. In a simple, single user system, these

concepts have a one-to-one relationship. If a user’s credentials are accepted by the system they

are said to be “authenticated” and “authorized”, otherwise they are both “unauthenticated” and

“unauthorized”. For the sake of this research, we assumed that authentication and authorization

have this one-to-one relationship such that an authenticated user is also authorized to access

the system. The process of authentication can be placed into two of four general subcategories

based on both temporal attributes and authentication schemes. In time-based categories,

authentication can either be Continuous or Episodic, while in scheme, authentication can either

be Explicit or Implicit.

Definitions:
1. Continuous authentication: The process in which a system will constantly

attempt to verify the identity of a user using a specific scheme [2].
2. Episodic authentication: The process in which a system will attempt to verify the

identity of a user when the user’s authorization status expires or is needed to
perform a specific action [3].

3. Explicit authentication: The process in which a system will request users to
specifically present credentials, to verify the identity of a user [4].

7

4. Implicit authentication: The process in which a system will verify a user through
their behavior or actions [5].

 Episodic authentication proves to be less computationally demanding in comparison to

continuous authentication. However, Continuous authentication is inherently more secure as it

authenticates in the same way as Episodic authentication, but runs more frequently. Explicit

authentication is simpler to implement than Implicit authentication, as implicit requires

significant research and overhead to program a device to understand how to distinguish between

and authenticate the correct user. In theory, Implicit authentication is more secure than Explicit

authentication as it offers more opportunities for authentication and is more difficult to spoof

or replicate a person’s behaviors and actions, rather than some sort of passcode [6].

Many systems used today follow the Episodic and Explicit authentication paradigm,

usually implementing passwords, pins, and fingerprints. For instance, a website with personal

information will generally ask for a username and password at the beginning, a smartphone

might ask for a fingerprint, a campus might use a badging system to let personnel into a building

and into specific rooms, and an important document might require a signature. Despite the

intrigue and research opportunities of Implicit authentication, those approaches usually are

regarded as too difficult to be a means of authentication in professionally-designed systems [7].

1.2. Importance of the Modern Smartphone

 Over the past decade, smartphones have become ingrained into daily life, used for

purposes ranging across gaming, social media, shopping, banking, email, and more. Estimates

show that over two billion people were using smartphones worldwide by the end of 2016 [8].

8

Smartphones have sensors for measuring the user’s environment and implicitly accumulate large

volumes of personal data from frequent use - messages, pictures, documents, call logs, location

traces, and usage logs. These data are unique to the user and can be viewed as their usage

signature. Over the past few years, smartphone services have started to utilize this available data

to improve functionality for the end user, for example, by remembering where you’ve parked

your car.

Data from smartphones is growing easier to access simultaneously with their users

interacting with them more. According to a study conducted by Time magazine in 2015, people

in the United States checked their phones 46 times a day. That number rose to 74 times a day

among users from ages 18 – 24 [9]. The 2015 Internet Trends report estimates that the average

adult spent 5.6 hours a day on the internet with 2.8 of those hours being on a mobile device [10].

As the user interacts more with and relies more on their smartphone the data it accumulates is

increasingly personal and sensitive. The phone collects email data, internet search data, access

to social media accounts, bank accounts, and so much more.

1.3. Current Security Measures on Smartphones

 Smartphones contain sensitive personal and non-personal data. Developers and

researchers understand the personal nature of this locally-stored data, and have approached user

authentication in a variety of ways. Table 1 lists some of the methods currently used to

authenticate smartphones.

Method Description

Pin 4 digit number the user enters to unlock the

9

phone [11].

Password A combination of letters, numbers, and
symbols the user types in to unlock the phone
[11].

Pattern The user swipes a specific pattern to unlock
their phone [11].

Pictures The user touches/swipes a picture in the
correct place(s) to unlock the phone [12].

Fingerprint The user places one of their remembered
fingers on the fingerprint scanner to unlock
their phone [13, p. 0].

Iris The phone will scan the user’s eye to unlock
the phone [14].

Trusted Devices The phone will check the proximity of a
trusted device (ex. smartwatch) through the
Bluetooth connection to unlock the phone
[15].

Voice Recognition The phone recognizes the user’s voice to
unlock the phone [15].

NFC Tags The user taps a paired object with an NFC tag
on the phone to unlock it [15].

Location Based The phone will automatically unlock if in a
trusted location [15].

Table 1. Methods used to Authenticate Smartphones

Many of the authentication methods in Table 1 are episodic, requesting for credentials

after certain timeframes, and explicit, requiring the user’s direct inputs (typing in a password,

holding their finger up to a fingerprint scanner). Several are used in conjunction with one

another; for example, many phones with fingerprint scanners use a password or a pin as a backup

10

method if normal authentication fails, or in certain conditions specified by the user. Still in other

situations, some authentication methods are not refined enough to be used as a key for

encryption, and will require a backup authentication method to decrypt a file system, as with

pattern and fingerprint unlocks on Android. Others can even authenticate in certain situations

but use a backup otherwise, like how a location based authentication will unlock the phone

automatically if the user is in a known location, but might switch to a different authentication

method in an unknown location. Sadly, many of these compound methods are not particularly

popular among users, even if these options are readily available and easily accessible [16].

1.3.1 The Concept of Trust

 A more modern approach to authorization has been proposed in recent years, with the

suggestion of a “trust score” to a user, where if a user can’t be completely authenticated, they

are only authorized to do a limited range of things on the device [17]. For example, if a phone has

a paired Bluetooth smartwatch that has a weak connection to the phone at the moment, it could

trust that the user was near enough to the phone, but not completely certain that the user was

the one using the device due to the distance of the watch implied by a weaker signal. In that case,

the phone could require no further authentication for simple, general tasks like using a web

browser, but would require additional authentication for using a banking app. Trust scores are

an excellent application for our use, as it allowed us to compare the likelihood of a user

performing along their usual behaviors against their current ones, available well enough to

authenticate users on a spectrum as opposed to the two options of authenticated or

unauthenticated.

11

1.4. Limitations of Current Security Methods

Most password systems are not secure enough to protect the data that a smartphone

holds, since they tend to trade off major security for convenience. Table 2 describes some of the

major vulnerabilities of the above methods.

Method Description

Pin Generally short and can be easily stolen by an attacker observing the
phone being unlocked. One study suggests that 15% of 4 digit pin
lockscreens can unlocked in just ten tries [18]. Longer pins may be an
option but they are generally easily forgettable.

Password Password database leaks are far too common among large
corporations holding them, and many people use the same password
in multiple places, potentially compromising their accounts across
several services with a compromise at the least secure of all the
companies holding them.

Pattern Pattern lock screens are vulnerable to smudge attacks, where the oil
residues of fingers make it possible for people or computers to trace
the pattern and gain access [11].

Pictures Also vulnerable to smudge attacks with swiping and drawing. It is also
relatively easy to find the parts of a picture that one may touch.

Fingerprint Fingerprint passwords are unchangeable and they are irreplaceable.
It is also possible to fake fingerprint data by gathering information
through photographs of the target’s hands [19]. Government
fingerprint databases have also been breached [20].

Iris Iris passwords are unchangeable and irreplaceable. They have similar
vulnerabilities to fingerprints.

Trusted Devices An attacker could take the target’s phone and unlock it if they were
near the target and their trusted device.

12

Voice Recognition Accuracy may lower if the user’s voice changes due to certain
conditions such as being sick [21]. Passphrases can also be easily
overheard.

NFC Tags NFC tags can be stolen in the same way a smartphone can.

Location-Based An attacker just needs to unlock the target’s phone in a specified
location to gain access

Table 2. Vulnerabilities of Current Smartphone Authentication Methods

Many users tend to utilize security methods that are more convenient and easier to use.

For many people, convenience is often more important than security, and once a hacker has

gained access, none of these methods stop an attacker from stealing data from the smartphone

after it has been unlocked. It becomes trivial for such an attacker to steal important information

from a target’s unlocked smartphone. In general, users tend to remain logged in to multiple

accounts on their phones. Attackers can easily access the target user’s social media accounts,

email accounts, and other services.

1.5 Behavioral Authentication

 A notable new direction to assuage this problem is to take the limitations of explicit

authentication and approach authentication through a new direction- user behavior. Behavioral

authentication may solve many of the shortcomings of current smartphone authentication

techniques. Conceptually, a behavioral authentication system can learn who a user is by

understanding how they act and interact with their phone and requires no additional input from

the user to authenticate him or her. In current techniques, an attacker would just need to acquire

certain information to get into the system. Unlike current authentication techniques, it would be

very difficult for an attacker to emulate a victim user exactly even if they were able to acquire

13

information on the victim [2]. Because behavior is implicit, it can be checked continuously

without being an annoyance to the user as opposed to just when unlocking the phone [22].

1.6 The Goal of This Project

We aim to enhance smartphone security by creating the beginnings of a low power,

customizable, continuous behavioral model system (BMS)- a security system that authenticates

users based on a variety of behavior patterns and unique phone interactions. Conversely, this

system will also be able to de-authenticate a user, when it detects inconsistent or suspicious

behavior. We envision that BMS:

 Tracks the user’s behavior through a combination of metrics selected for their ability

to capture unique user behaviors around smartphone usage

 Transmits the tracked data to a centralized server for storing data and training a

model of the user using deep learning

 Compares new behavioral user data against a trained model of the user and returns

whether the user is authenticated or unauthenticated based on how well new behavior

matches the known behavior

The proposed system uses behavioral data gathered from the phone’s sensors to solve

some of the problems associated with current password systems, namely the attacker stealing an

unlocked phone from the actual user. Because the system continuously authenticates based on

behavior, critical applications or the phone can be locked out if some of the tracked features

change dramatically yielding a low trust score.

14

One major benefit of the proposed system is that it is convenient and easy to use. It can

be used in combination with other authentication methods and it does not require any additional

steps from the user except to use their smartphone and behave like they normally do. However,

a system that continuously runs in the background inherently has a higher energy cost than an

episodic system. Regardless of the convenience of authentication and enhanced security, most

people have an interest in maximizing the battery life in their smartphones and it would be a key

concern for us to minimize battery drain [7].

This system is also modular. The system can track as many behaviors as necessary to

reliably authenticate the user. To keep the project’s scope manageable, BMS will initially be

trained to only track a small number of specific behaviors. However, as more behaviors that can

be used for authentication are discovered, and evaluated, the proposed system can be modified

to integrate them. Comparatively, BMS is more flexible than other password-based

authentication systems.

15

2. Background

2.1 Data Smartphones Collect

 Smartphones have sensors collect usage data in several different forms. Usage logs amass

information quickly, as phones collect data from applications, services, sensors, and more [23].

These logs can contain simple data such as SMS and call history, but also more complex

information such as location, Bluetooth, and Wi-Fi statistics. Although logs only generally

contain the data that phones can passively collect, it is possible to actively obtain more data by

utilizing the many different sensors smartphones contain and running services to collect such

data.

2.1.1 Hard Sensors

Hard sensors are "physically-sensing devices" that sense environmental (e.g. light,

temperature) or physical behaviors (e.g. motion, touch) of the user [24]. These collect data from

smartphone hardware such as the accelerometer, GPS, and gyroscope. The following (Table 3) is

a list of common smartphone hard sensors and what data they can collect [25].

Hard Sensor What it Measures

Accelerometer The acceleration force that is applied to a
device in the x, y, and z axes.

Gyroscope The phone’s rate of rotation about the x, y,
and z axes.

16

Light The ambient light surrounding the device.

Magnetometer The Earth’s (and other) magnetic fields in the
x, y, and z axes.

Orientation The degrees of rotation that a device has made
about all three axes.

Barometer Measures the ambient air pressure around the
device.

Proximity Measures the proximity of an object relative to
the distance of the screen.

Pedometer Measures the number of steps taken by the
user.

Touch Measures length and width of strokes by the
user on the touch screen.

Temperature Measures room temperature

Humidity Measures relative ambient humidity

Table 3. Common Smartphone Hard Sensors[25]

2.1.2 Soft Sensors

Soft sensors are sensors that "record information of a phone's running status" [24]. These

collect information from a phone's software. Some examples of soft sensors include screen

on/off, app usage, messages, and phone calls. The following (Table 4) is a list of smartphone soft

sensors analyzed by Rachuri et al [26].

Soft Sensor Features
Battery charging? (boolean)
Battery level {1,2,...100}
Battery state {low, medium, high}
Network type {Wi-Fi, cellular, none}
Network name (string)
Last app used category {app categories}
Proximity events

17

Table 4. Soft Sensor Features used by Rachuri et al [26].

2.1.3 Inferring User Activity

Once sensor data is accumulated, smartphones can take the information saved in these

logs and use them across applications that request sensor data. Using the data from these sensors

and logs, it is possible for the phone to make inferences about the activities of a person. There

are many examples in the literature of smartphone applications that detect when the user is

awake and when they are sleeping, the walking gait of a user, and the mood of the user by using

a combination of these sensors, which are described further below.

Smartphone Inference of Alcohol Consumption Levels from Gait tracks and classifies

smartphone accelerometer data to infer the user's level of intoxication [27]. Toss ‘N’ Turn:

Smartphone as Sleep and Sleep Quality Detector analyzes accelerometer, microphone, ambient

light, screen proximity, running process, battery state, and display screen state data to create

models that predict when the user is sleeping and sleep quality [28].

2.2 Doze: Android's Power Saving Mechanism

 In order to reduce the energy consumption of the Android operating system has various

energy-saving mechanisms and ways of interacting with data in real time. Specifically, it’s

common for when and how smartphone data can be used to be limited. These limitations have

been developed over time through improvements to Android’s power-saving functionality, to

allow the phone to last throughout the day and for extend periods of non-use. Such

Screen events
SMS events
Phone calls
Recent SMS/Calls? (boolean)

18

implementations are comprehensively referred to as ‘Doze’, since Android Marshmallow (6.0),

and Doze On-the-Go, implemented since Android Nougat (7.0) [29]. Since Doze limits the

frequency with which data can be retrieved on the client and sent to the BMS server in order to

verify the user’s behavior as consistent and authentic, it is vital to understand how the Doze

mechanism functions.

2.2.1 Doze in Android 6.0 (Marshmallow)

 Doze, a feature of modern versions of Android, forces wakelocks to be in sync with one

another and less frequent. With Doze, the device needs to be in a relatively stationary position,

like sitting in a nightstand or pocket at any given time to be enabled. When Doze is on, low-

priority apps, such as email notifications, are relegated to infrequent and low-power activity:

they are forced to wait for their notifications, background updates, and more until the phone is

active again or on a time scheduled by Doze [30]. Only high-priority applications, like apps that

make and receive calls, send and receive text messages, and other apps flagged as high-priority

through the Google Cloud Messaging service, can prompt a wakelock. As seen in Figure 1 below,

apps are not allowed to access data except for the normal ‘maintenance windows’ available.

19

Figure 1. Wakelocks in Android with Doze (off, then turned on) [31].

2.2.2 Doze’s Expansion in Android 7.0 (Nougat)

 In Android 7.0 (Nougat), a version of Android several of our development phones used for

this project run, introduced even more considerations from Doze for development of our

application. Doze was expanded with Google’s “Project Svelte”, where Doze limits broadcasts for

mobile networks and Wi-Fi; apps will frequently ask for data updates with a

CONNECTIVITY_ACTION change, and instead of them broadcasting for this when a connection

is changed, app permissions are changed to the point to remove this, and also keep devices

unable to receive information regarding a new picture or new video.

2.2.3 Implications of the Doze Mechanism and Recent Changes

 With these major Doze-related changes to how Android allows for scheduling and

accessing data, our implementation is constrained to be less aggressive in triggering data

collection events, as we have to wait for Android’s job scheduler to select an acceptable time for

the BMS client to obtain data, rather than be collecting data on demand, like we had initially

hoped for. We will instead have to consider how frequently our smartphone client can poll

sensor data, with the OS allowing our app to wake up and ask for high priority data. Additionally,

it significantly limits how often we can communicate with a server, as wakelocks to send data are

limited to the ‘maintenance windows’ that the operating system allows our application. With

these considerations in place, the design of our project is different from that of many similar,

past implementations of behavioral authentication, as we need to work around the restrictions

Doze and other optimizations pose while maintaining a strong security model. We are limited by

20

the frequency at which the user’s smartphone can send or receive data from our authentication

server.

2.3. Deep Learning/Neural Networks

In implementing an intelligence that can log activities and convert these gathered

metrics to a conceptually understood behavior, we found Artificial Neural Networks (ANN) to be

our most viable option. ANNs are information processing systems that can be used to detect

patterns in data and sort data. ANNs are loosely modeled after the interconnected neurons in a

mammalian brain structure [32]. Generally organized into 3 types of layers, ANNs include an

input layer, one or more hidden layers, and an output layer. Each of these layers are made up of

interconnected nodes which contain an activation function to fire. Generally, information or

patterns are given to the input layer, the input layer then communicates to the hidden layer(s)

to process the information, and the last hidden layer communicates to the output layer which

then displays a result. An example neural network is shown in Figure 2 below.

Figure 2. An example neural network [33]

21

ANN’s can vary wildly, with some neural networks better at some things that others.

Below, Table 5 lists some types of neural networks and their uses, as described by The Asimov

Institute [34].

Neural Network Type Uses
Feed forward Supervised learning, straight-forward

correlations between input nodes.
Convolutional Image classification, filtering image detail.
Recurrent Processing events in a timeline, data given in

a sequence.
Support vector machines Classifying n-dimensional data.
Kohonen networks Competitive learning to classify

unsupervised data.
Table 5. Some Common Neural Network Types [34]

We used a feed forward neural network because of its ease of implementation and its

ability to find correlations between the input and output. In training these distinct networks,

there are two main approaches: supervised and unsupervised learning. Supervised learning

trains an ANN by giving it inputs as well as the correct output. If the system’s output is different

from the desired output, the system will adjust its structure in order to better categorize results

in the future a process to adjust itself so that it will be better at categorizing in the future.

Unsupervised learning is when a network is given many unlabeled inputs and makes categories

and classifications by looking at patterns in the data, no corrections are made since there is no

desired output. After training, an ANN can process data and classify it based on the weights and

biases of nodes learned during the training session. We plan to use a supervised approach since

our training data will be labeled with the correct outputs. For instance, data collected from

subject A can be labeled as "true" for subject A and "false" for all other subjects.

Incremental learning is a technique used in supervised machine learning wherein the

neural network is trained with each data point exactly once. It can be used in situations where

22

the data is generated or becomes gradually available over time, or when the size of the training

data is too large to maintain all of it in a single repository. In our case of continuous

authentication, data is being collected non-stop throughout the day. Since our authentication

system must continuously incorporate this new data, we plan to use incremental learning.

Further, with each data point used in training exactly once, not after the model has been used to

predict and later train, data can be deleted immediately after training to simplify memory

management.

23

3. Related Work

Smartphones contain many sensors that can be used to track behaviors of the user. Many

researchers have purposed these sensors in determining which combinations of behaviors

positively identify a user, and evaluating the effectiveness of these sensors for that task. We have

used these studies, discussed below, to build an understanding of prior work in the field. We drew

inspiration from the behaviors that were tracked, prior findings regarding what behaviors were

most accurate and robust: from the human studies conducted, the artificial intelligence models

used, and their goals for future work upon conclusion of their research. The area of behavioral

authentication is actively being researched and highly collaborative- many groups utilize one

another’s studies to improve their own research, and make a more significant contribution to the

field. Due to our limited time, we utilized the findings and results from other studies to make

decisions such as sensor selection, so that we can focus on other, less-researched aspects.

3.1 Comparative Research on Positive Identification

Positive Identification, or research based on accurately determining that the user using

the device is one that is authorized to work with it, is by far more difficult compared to negative

authentication, which only has to have a stronger confidence that the identification is correct or

not close enough to what is expected. In Lee et al. [24] they attempt to positively identify and

distinguish users based on three sensors. They chose their three - magnetometer, accelerometer,

and orientation, based on the diverse coverage of user and environmental information, along

with the lack of user permissions required to track these sensors [24]. They acquired accuracies

for unique combinations of the three sensors, and measured tradeoff between training time and

24

sampling rate. Further, they provided a comparison between their study and similar studies

involving smartphone sensors; we examined this research compiled by Lee et al. in order to get

a better understanding of metrics that worked for other groups [24]. Table 6 is a table of this

research. We built off of these studies and, from the sensors listed, we incorporated two of these

sensors, orientation and GPS. two of these sensors, orientation and GPS.

 Devices Sensors Method Accurac
y

Detectin
g Time

Script

Lee et al. Nexus 5,
Android

Orientation,
Magnetometer,
Accelerometer

SVM 90.23% Train:
6.07s

Test: 20s

No

Kayacik et
al., 2014

Android Light,
Orientation,

Magnetometer,
Accelerometer

Temporal
& Spatial

model

N/A Train:
N/A
Test:

≥122s

No

Zhu et al.
2013

Nexus S Orientation,
Magnetometer,
Accelerometer

N-gram
language

model

71.3% N/A Yes

Buthpitiya
et. al., 2011

N/A GPS N-gram
model on
location

86.6% Train:
N/A
Test:

≥122s

No

Trojahn et
al., 2013

HTC Desire screen Keystroke
&

handwriti
ng

FP:11%
FN:16%

N/A Yes

Li et al.,
2013

Motorola
Droid

screen Sliding
pattern

95.7% Train:
N/A

Test:
.648s

Yes

Nickel et al.
2012

Motorola
Milestone

accelerometer K-NN FP:3.97
%

FN:

Train:
1.5min

Test:30s

Yes

25

22.22%

Table 6. A Comparison of Sensors, Methods, and Accuracy for Identification/Authentication[24]

 Another study, by Yampolskiy et al[35]. researched other behavioral metrics studies and

showcased how single metrics were able to achieve a high detection rate while having a low false

acceptance rate and false rejection rate. Below, Table 7 shows the various behavioral metrics

which Yampolskiy compared. Although we do not be using the exact metrics they mentioned,

their research has led us to believe that metrics such as App usage events will work well.

Behavioral
metric

Publication Detection
Rate

FAR
(Acceptance
Rate)

FRR
(False
Rejection
Rate)

EER
(Equal Error
Rate)

Biometric
Sketch

Bromme and
Al-Zubi
(2003)

 7.2%

Blinking Westeyn and
Starner
(2004)

82.02%

Calling
behavior

Fawcett and
Provost
(1997)

92.5%

Car driving
style

Erdogan et al.
(2005a)

88.25% 4.0%

Command
line lexicon

Marin et. al.
(2001)

74.4% 33.5%

Credit card
use

Brause et al.
(1999)

99.995% 20%

E-mail
behavior

Vel et al.
(2001)

90.5%

Gait/stride Kale et al. 90%

26

(2004)

Game
strategy

Yampolsky
and
Govindajaru
(2007)

 7.0%

Handgrip Veldhuis et
al. (2004)

 1.8%

Haptic Orozeo et al.
(2006)

 25% 22.3%

Keystroke Bergadano et
al. (2002)

 0.01% 4%

Lip
movement

Mok et al.
(2004)

 2.17%

Mouse
dynamics

Pusara and
Brodley
(2004)

 0.43% 1.75%

Programming
Style

Frantzeskou
et al. (2004)

73%

Signature
Handwriting
(1)

Jain et al.
(2002)

 1.6% 2.8%

Signature
Handwriting
(2)

Zhu et al.
(2000)

95.7%

Tapping Henderson et
al. (2001)

 2.3%

Text
Authorship

Halteren
(2004)

 0.2% 0.0%

Voice/speech
/singing

Colombi et al.
(1996)

 0.28%

Voice/speech
/singing

Tsai and
Wang (2006)

 29.6%

Table 7. Recognition, verification, and error rates of behavioral metrics

27

3.2 Generalized Algorithm for Categorizing Behavioral Authentication
Yampolskiy et al.[35] organizes behavioral biometrics into several categories. According to those

authors, there are 5 types of Behavioral Biometrics. They are described in detail below:

● “Authorship based biometrics”: Metrics, for example, that examine a piece of text or a

drawing. For authentication, these algorithms look at the style peculiarities such as

vocabulary, punctuation, and brush strokes.

● “Human Computer Interaction biometrics”: Metrics that consider human interaction

with input devices; they are indicative of the specific skills, styles, and knowledge

displayed while interacting with a computer.

● “Low level computer software action”: Metrics that read from system logs and activities

indirectly generated by the second category.

● “Motor-skills for verification”: Metrics that look at muscle movements while performing

tasks.

● “Pure Behavioral biometrics”: Metrics that revolve around strategies, skills, and

knowledge shown during the performance of mentally demanding tasks, with no body

measurements involved

The authors developed a generalized algorithm for these different behaviors, which follows as:

1. Pick a user behavior.

2. Break-up the behavior into component actions.

3. Determine the frequencies of component actions for each user.

4. Combine results into a feature vector profile.

5. Apply similarity measure function to compare the stored template with current behavior.

28

6. Experimentally determine a threshold value within which the user is authenticated.

7. Verify or reject the user based on the similarity score comparison to the threshold value.

The authors suggest that comparison and analysis of each feature follow guidelines of

universality, uniqueness among individuals, the ability to adjust user behavior of time, and the

ease of collectability. Furthermore, they made note that only some behavioral biometrics are

dependable enough to be usable for any level of identification. In one case, the scores for a

standardized test, such as IQ test, SAT, GRE, or GMAT, are not enough to identify an individual,

because of a lack in uniqueness of the scores, but they could have been combined with other

biometrics to improve accuracy. By transitioning these individual studies into a generalized

approach, new behaviors proved much easier to be analyzed, tested for viability, and

incorporated in our system. In all, these concepts helped us better research behaviors before we

tested them, along with helping us disregard behaviors that are not particularly helpful with

authentication.

3.3 Deep Neural Nets for Modeling Mobile Soft Keystroke Authentication

Deng and Zhong present a deep learning approach for mobile keystroke dynamics

biometrics, as well as exploring the additional sensory data (touch screen, accelerometer, and

gyroscope) available on smartphones for augmented keystroke biometrics. After describing

previous works in the area, the authors suggested using Deep Neural Network (DNN) modeling

on mobile soft keystroke authentication. The authors used the timing (duration of touch), taping

(size of touch area), and inertial sensor (accelerometer) features, combined with the Stanford

TapDynamics mobile keystroke dataset to train their DNN. The dataset included key tap, latency,

29

and accelerometer data from 55 subjects typing a pin number into a phone, yielding a total of

1704 data samples recorded and 35 generated features. The authors performed layer-wise

unsupervised training with the data to pre-train a Restricted Boltzmann Machine, a network with

a visible and a hidden layer. Afterwards, they tuned the neural network with stochastic gradient

training; the system had a False Acceptance Rate (FAR) of 4.4% and a False Rejection Rate (FRR)

of 5.3% when no features were removed, an 11.7% FAR and a 12.6% FRR with just accelerometer

statistics, a 17.8% FAR and 14.7% FRR with just key tap sizes, and a 28.4% FAR and 17.4% FRR

with just key tap duration. These FARs and FRRs showcase Neural Networks effectively used to

analyze behavioral data that then authenticates users. Although there exists a lack of research

in Neural Networks implemented as a method of analyzing data, this study demonstrates Neural

Networks’ potential in classifying data, further justifying our decision for using them to model

user behavioral data.

3.4 Touchalytics

Frank et al.[2] obtained high accuracy authentication by classifying 30 touch data

features, listed in Figure 4. Participants went through an “enrollment phase” (modeling phase),

during which horizontal and vertical swipes were tracked. For the purpose of obtaining natural

test results, participants were asked to read three documents and answer comprehension

questions on a custom app that logged touches [2]. The unique touches of eight different users

that were logged during this study can be seen in Figure 3. The authors propose a classification

framework using k-nearest neighbors algorithm and Support Vector Machines to learn user

behavior. During the continuous authentication phase, the participant must re-authenticate

30

after a certain number of consecutive negative classification results. In our implementation, we

used a similar enrollment phase to train our model, followed by a continuous authentication

phase to test it. An “informative” value was calculated for each of the 30 touch features in the

Touchalytics research to rank each in terms of its ability to identify the user, as seen in Figure 4.

The ranking gives us an approach for appropriately weighting these touch features during our

initial implementations where we use a static metric ranking. After the model is trained, we

expect the dynamic weights, obtained through training our Neural Network, to generally reflect

this data.

Figure 3. Smartphone strokes recorded for eight different users, showing unique user touch behavior

31

Figure 4. Features’ effectiveness to identify an individual.

3.5 Soft Authentication with Low-Cost Signatures

 Buthpitiya et al.[36] analyzes data from multiple (low accuracy) sensors to create an

accurate authentication system. Their approach uses low-power cost strategies, such as reading

logs that are already updated during routine usage. Utilizing these very practical measurements,

the behavioral metrics analyzed included message response patterns, calling patterns, outdoor

mobility patterns, and indoor mobility patterns. Compared to other research on behavioral

security in smartphones, this paper focuses heavily on the phone uses, such as calls and text

messages, addressing the original uses of the smartphone. These aspects prove important

32

considering their uniqueness to smartphone use rather than tablets or other computers that

cannot make or receive calls. This article investigates a variety of feature and extraction

modeling approaches; of particular interest are the n-gram model and Hamming distance models

for GSM and Wi-Fi signal strength, respectively. We will likely implement similar strategies for

analyzing user location. The Hamming distance is important in that it can quantify a distance

between a set of non-numerical labels, which can be used to compare lists of Wi-Fi networks,

Bluetooth devices, used apps, or locations. Overall, the n-gram model can be used to find

sequential patterns across data points, as opposed to patterns within a data point [37].

3.6 Continuous Authentication on Mobile Devices Using Power

Consumption, Touch Gestures and Physical Movement of Users

Murmuria et al. presented an approach of authenticating users through a combination of

touch gestures, power consumption, and physical movement, while also taking into account

application context when modeling user behavior [38]. They collected data from 73 regular and

irregular smartphone users in a room using Google Chrome and Facebook on a Nexus 5 Android

phone. The phone logged power consumption; the touch area, pressure, and coordinates of finger

touches; the number of fingers touching the screen; and short-term physical movements, such

as hand vibrations. The authors noted that noise was a significant factor in the data, even though

their subjects were in a highly controlled environment. However, they were able to authenticate

users with a 93% accuracy after collecting data by additionally modeling the present noise. The

authors believe that their approach is more viable as a real-world solution than other competing

approaches in literature. Specifically, it can be scaled to a more realistic scenario, since noise is

33

already accounted for and a mobile device could be used over multiple days by volunteers

performing daily routine tasks. We need to ensure that we test our metrics in both controlled and

uncontrolled environments-- the point of behavioral authentication is to use personal

uniqueness to identify and authenticate people, and using neural networks, we can create models

that fit individuals.

3.7 Authentication Feature and Model Selection using Penalty Algorithms

Another small study conducted by Murmuria and Angelos [39] suggests that the best

authentication features for finger swipes include:

● Arc-length of gesture

● Direction between endpoints

● Average finger diameter during gesture

● Average pressure during gesture

● Average finger speed during gesture

They also suggest that the best authentication features for taps include duration of gesture,

direction between end-points, average finger diameter during gesture. The authors collected

WhatsApp data from 110 users’ datasets, with each user having at least 350 swipes and 350 taps

each. 40 of the users had over 2 hours of usage logged on the application. They used the sum of

Euclidean distances to an observation’s k-nearest neighbors to get a measure of uniqueness. We

can use these findings into our system when we try to incorporate touch gestures into our

application.

34

3.8 Miscellaneous

 Ballard et al. [40] discusses the impracticality of testing behavioral security tests in “lab”

conditions as many other researchers have done. The paper shows that security methods are

much weaker than they appear when they are tested against “trained” forgers. The participants

gave handwriting samples and then submitted forgeries of other participants’ samples. The best

9 out of 55, the “natural” forgers, were allowed two hours of training to practice forging

handwriting samples. The equal error rates were found to be exaggerated by 375% if the “trained”

forgers’ analysis was used instead of the naive analysis. The forgers’ improvement was graphed

over time, showing that training had a significant effect on successful forging, even for the

“natural” forgers selected. Additionally, artificial intelligence was used to learn from

handwriting samples and attempt to bypass the security. In order to improve the robustness of

our authentication method, we will also have participants attempt to break our security. We will

have some participants attempt to emulate other participants and see if they are able to break

our security measures. An individual’s model will be trained with both his/her training data and

against the training data of others. In addition, the model will be tested by having participants

attempt to imitate the behavior of other participants.

3.9 Summary

We devised a list of requirements for a behavioral model system by analyzing the papers

that we have reviewed. These include:

1. Accuracy

2. Power efficiency

3. Ease of implementation

35

Many of these studies utilized different combinations of metrics. Several of these used the inbuilt

GPS, touch screen, and phone orientation with varying degrees of success. A basic requirement

of our study is choosing metrics that have been proven to be somewhat effective for

authentication by other papers, such as GPS, and pairing them with others that are not as proven,

such as app usage. App usage falls under the category of a low accuracy power efficient sensor,

which provide a better overall picture of phone usage in addition to the more accurate sensors.

Touch is one biometric that is a unique enough identifier on its own, and would be included if

not for the difficult implementation. Overall, a good behavioral authentication system depends

on carefully selecting a combination of behavioral metrics that work together to build a suitable

representation of one’s behavior.

36

4. Methodology

 To be able to authenticate a user based on their behavior alone is a challenging task, and

more so distinguishing individuals who exhibit similar behaviors based on the metrics we used.

To understand the data that phones accumulate, we used four metrics we found to be effective

at authenticating users, as suggested in previous and related works.

4.1 Pilot Study

We chose to test our system by having 4 senior WPI computer science students install our

BMS data collection application and consent to having their phone statistics continuously

monitored. They were asked to use their smartphones normally and sign into their Google

Accounts to have their phones automatically upload their data. They were then asked to share

their data folder with our BMS Google Account. Upon having test users collect data sorted by

time of day, date, and device, we eventually had the data accumulated across multiple devices

and added to a database on a personal development server of ours. We fed the data we collected

into a neural network and had the system learn what is acceptable behavior independently and

created models of test subject’s behaviors. We then tested the test subject’s data against each

other’s models to check the strength of the models.

4.2 Assumptions

We made the following assumptions during the testing period:

1. The user's behavior will not be affected by the use of our application.

2. Each user's smartphone will be used only by the user and no one else.

37

3. Conversely, each user will use only one smartphone.

4. Subjects are relatively distinguishable.

5. The user's everyday and weekly routines do not change significantly during the app's use.

4.3 Metrics Selected for Inclusion in BMS

 We implemented our implicit authentication by selecting four behavioral metrics we

found to be most promising from our literature review in identifying a user uniquely. In our

research, we reasoned that it was most important to be able to try unique and distinct sets of

behaviors especially in the beginning of our development, so we could cover a large subset of the

meaningful data collected by the phone as used for authentication. The four metrics we chose

were app usage data, precise GPS location, Wi-Fi signal strength, and tilt/angle from the

accelerometer. These metrics are discussed in detail below.

4.3.1 Smartphone App Usage Events

 App usage events are events that log how a user interacts with their phone throughout

the timeline of their daily activities, by logging when apps are moved to the foreground (actively

open and used) and background (minimized) on their device. App usage proves a promising

metric with the nature this data in relation to the behavior of the user [41]. Like how screen

captures on a desktop computer allow an observer to see actions being undertaken by users,

understanding what apps are being used at any given point in time enabled us to develop a

behavioral model towards their app usage. By monitoring the times of day that particular apps

are used, we understood when a user typically finds this app useful, and if there are daily, weekly,

monthly, or other patterns to this app’s usage. Inserting the concepts of app usage frequency, or

38

how many times the app is opened over a day or other timespan, and app usage duration, or how

long the app remains in the foreground per each usage event, we began to develop a timeline of

user interactions with their phone. This intuitive and natural formation of a model of how the

phone is used on different timescales was made easier by the approachable nature of the APIs

that gather this data already for us, but do nothing with it. Fridman et al included app name and

frequency in their active authentication system and found that across three different time

windows of 1 minute, 10 minutes, and 30 minutes, app usage was the least predictable

contributor overall compared to text, web, and location [42]. However, for the smaller windows

the contribution of app usage was higher, which can be explained by the first app opened in a

window being a consistent behavior [42]. By amassing this data into timelines across varying

scales of how the person usually behaves in regards to their phone, we gave the phone a basis for

what behavior is to be expected out of it on a normal day. Furthermore, more precise metrics can

be observed through app usage, including battery drain from an app over a frame of time

(someone using the Facebook app scrolling through their news feed would typically use a lot less

power than someone who frequently watches videos on the app, for example), along with app

transitions to form a path which users tend to follow between apps.

4.3.2 Precise Location

 The location metric includes the longitude and latitude values from the GPS. To better

provide a state to the model, we found it imperative for states we measured to have an associated

location, or a precise latitude and longitude measured by GPS. With location already used in

Google’s ‘Trusted Locations’ for authenticating Android devices when they are within the range

of a location specified, we realized that it was an invaluable metric to couple with others to give

39

us a larger picture of the state of the user [43]. Recognizing that we could tether location to app

usage metrics, we understood not only when a user interacts with a device and with what app,

but also where the user is at the same time. Upon these more complete associations, we used

pattern-based location history as a metric to map users’ behavior against, to see if they returned

to locations they visited previously, giving us more points of comparison for behavior of the user.

Location, and precise location at that, allowed us to gain a completely new level of precision for

combinatorial behavior, or the combinations of all the differing behaviors that we measured; it

added millions of potential points for users to be located at that are unique to them, or unique

in combination with other metrics the phone observed. Additionally, with location behavior

being incredibly personal, we were explicitly clear with how we handled the data we gathered,

how it was stored, and how long it was used for app authentication purposes.

4.3.3 Wi-Fi Access Points Observed

 Wi-Fi provides smartphones with internet access at home and on the go wirelessly. The

list of Wi-Fi Access Points (APs) a user observes per every collection cycle offer a deeper layer of

context for the user’s location and travel path, which precise location cannot provide. In a

common scenario where many people are all living in the same location they will all show similar

behaviors. Using signal strengths to approximate distances from access points, the Wi-Fi APs

around a user provide a finer level of detail that can provide the position of a user within a

building. Wi-Fi Information is already gathered by the phone periodically. As a result, our

system’s usage of this metric is opportunistic and the power cost of this metric is thus minimal.

40

4.3.4 Tilt Data

 Finally, to complement the other three metrics, we associated accelerometer and

magnetometer data to instantaneously calculate the three-dimensional tilt of the phone. Since

tilt can associate how the user interacts with their phones, we could see the orientation of the

phone while using different applications, at different locations or in different states, such as

surfing web pages, browsing photos, typing, and much more. People habitually interact with their

phones in ways that are comfortable to them, and tilt gave us an idea of how the user holds their

phone across different apps.

4.4 Gathering the Data

 We found our application for data gathering to be best logically structured as a stream, or

a timeline of data gathered across the day. The flow of data is shown in Figure. 5 below. Each

sensor is scheduled to record data at regular intervals. When data is pulled from a sensor, our

Behavioral Model System application saves the recent sensor activity and a timestamp to a file

on the device. Then file is uploaded regularly to a server for deep learning processing. Finally,

the server will send a message back to the phone showing the authentication status.

41

Figure 5. Feeding into the ANN for an authentication output

4.5 Privacy Concerns

 Because we are collecting and analyzing user data, we needed to address privacy concerns

with user identity and tracking their behaviors. We chose to address this problem in two ways.

We used anonymization techniques in both the way we stored files on our server and in the way

that we structured the user data. The files for each individual user used the same formatting and

contained no identifying marks that pertain to name and phone number of the user. We also

allowed users to disable metrics that they did not want to be used for authentication purposes.

4.6 Authentication

The user was authenticated or unauthenticated based on a trust score. A trust score

represents the likelihood of the user matching their trusted model from a range of zero

(untrusted) to one (trusted). As a trust score gets closer to one, the significance of a single trust

42

score being higher than another trust score decreases. If the trust score was below a certain

threshold, the user would be de-authenticated. The threshold for de-authentication was

determined experimentally. In considering trust, the cutoffs cannot be so strict that the user is

often and inconveniently de-authenticated or so lenient that significant damage may be done

before an imposter is unauthenticated. Through the accumulation of more data however, the

user’s trust score became more accurate over time, while remaining dynamic and consistent for

only one particular user’s threshold range.

 We used a feedforward neural network with several input nodes for each sensor and input

nodes for the timestamp at which the data point was recorded. For data such as app usage

metrics, which has a potentially infinite list of used apps, we processed each one of the apps

independently. There was one output node, producing the trust score. The number of hidden

layers were determined experimentally. In order for the authentication to be continuous and

convenient, as we intended, it had to: 1) adjust to new changes in the person’s routine 2)

authenticate accurately 3) weight features effectively and 4) be practical for a diverse group of

users.

The neural network constantly evolved as its training data changed. This was done with

incremental learning, training the neural network with just one input at a time. After each

training session of size one, the neural network updated its weights and biases in a direction that

best accommodated the one data point. Furthermore, the learning rate parameter was adjusted

to modify how sensitive the neural network is to change.

43

 5. BMS System Implementation

 There were several important considerations we followed for our implementation of the

Behavioral Model System, or BMS. Accuracy was one of those considerations because a user

needs to be authenticated and unauthenticated correctly for the system to work. Aside from

accuracy, another significant consideration for this project was extensibility- we made it possible

to add and remove a near indefinite number of metrics at any given time, and have our program

adapt.

Figure 6 shows the overall design of our system. Sensors on the phone are tracked through

our Behavioral Model System App. The sensor data is saved as a JSON file using a JSON saving

Daemon and then uploaded to Google Drive cloud storage. The cloud storage moves the data to

a cloud infrastructure which processes the data using a neural network and produces an

authentication result. The result is sent back to Google Drive and then to our app's

authentication service.

44

Figure 6. BMS design.

5.1 Implementing Our Authentication Modality

The implementation of our metrics used several Android APIs specific to the type and

amount of data needed for each metric. As we wanted to focus on our application being optimized

for more modern devices, striking a balance of widespread availability, usage, and recency, we

developed on Android 6.0, Marshmallow, API Level 23. All of our metrics used APIs with practical

approaches on this version of the platform, as seen in Table 8.

Metric Android API Description

App Usage Events App Usage
Statistics API

Retrieves statistics about the apps used on the device

45

Location Awareness API Efficiently tracks multiple sensors as a way of getting the
user’s context

Tilt SensorManager
Position
Sensors

Access the sensors on a device such as the accelerometer

Wi-Fi Wi-FiManager Shows the Wi-Fi configuration of the device as well as the
nearby wireless access points

Table 8. The sensors we are tracking and the API's used to do it.

5.2 Implementing Data Collection as a Background Process
These APIs shown in table 8 were used for collecting data in the background and storing

it for use in our neural network. To achieve our low power goal, we collected data using Android’s

AlarmManager, a class in Android used for scheduling an application to be run, and used a remote

server to train and create our Neural Networks.

5.2.1 Background Services

 Our application is made up of several background services, each containing the API calls

for fetching the location, app usage events, tilt, and touch of the device. We used Android’s

AlarmManager, to continuously collect data from the user on a short-interval basis. For the

purpose of data collection in the background, using the AlarmManager fit our use case the best

because of its ability to run in intervals even without the app open. It is also much less resource

intensive compared to the alternative of a continuously running background service.

Android’s AlarmManager class is used in our program through a repeating alarm for each

metric that will run the data collection when the alarm goes off after a certain interval of time.

In our implementation alarms were set to fire every five minutes. Unfortunately, Android 6.0

only allows “inexact” alarms, which means that Android will attempt to run multiple alarms at

46

the same time, potentially causing an alarm to run up to an entire cycle (the time it takes for the

alarm to go off) late. This has not impacted our data collection; however it needs to be mentioned

because data collection periods are roughly five minutes apart instead of exactly five minutes.

5.2.2 Data Storage

Metric Data Being Collected Sample Values

App Usage
Events

Name of app
Timestamp

Com.android.chrome
22-04-2017 06:21:15

Tilt X axis
Y axis
Z axis
Timestamp

5
-5
0
22-04-2017 06:21:15

Location Latitude
Longitude
Timestamp

-8.93530
-50.44254
22-04-2017 06:21:15

Wi-Fi SSID (Name of Network)
Mac address (ID of Network)
Signal strength
Timestamp

WPI Wireless
B9-1A-39-59-A5-9A
-39
22-04-2017 06:21:15

Table 9. Summary of data gathered from our selected behavioral metrics.

We stored the results, time-stamped, locally on the device, as a form of a timeline of

events. The data was stored in a JSON format as it was easily created locally and parsed by the

server.

5.2.3 Collecting Data

The JSON files were uploaded from the phone to the user's Google Drive account. The

data folder was shared to a BMS Google Drive account. To prevent synchronization problems and

communications problems that may occur between our mobile clients and the server, we used

47

Google Drive as an intermediary to store client data and server authentication / unauthentication

messages. This eliminated many problems that would occur and not undermine the underlying

implicit behavioral authentication concept of our project. Google provides both android and

python APIs for the Drive Service so this made this sort of communication relatively easy to

design.

The Google Drive API runs as a background service on the phone. There were two mobile

portions to the Google Drive API and two server portions to Google Drive API, both sets have an

information sending portion and an information retrieving portion.

In the mobile application, the sending portion recorded the mobile phone’s IMEI number

and used it to create a folder on Google Drive. The phone then periodically uploaded collected

information to this folder in the form of JSON files. This information was parsed by the server

and fed into corresponding neural networks. We believe that the phone’s IMEI number can be

used to distinguish different users as we assume that there will only be one user per mobile

phone. The mobile application also initially creates an authentication file in which the server

periodically updates based on whether a user is authenticated or not. The authentication service

on the phone periodically checks the file for the authentication status of the device and notifies

the user whether they have been authenticated or unauthenticated. In our implementation, we

found that we had to query Google Drive twice in order to properly read updates from the

authentication file. We do not believe this is an issue that needs to be addressed at this stage of

implementation.

48

5.2.4 TensorFlow Server

Our server ran Python 2.7 code using the TensorFlow 1.0 APIs. We used a fully connected,

feed forward neural network with 2 hidden layers, with 8 nodes each for the sake of simplicity.

We used the sigmoid activation function, which outputs values which range between 0 and 1. If

the network produced values close to 1 it meant that the input values in the testing set match

closely to the model.

There are a few drawbacks with this implementation. TensorFlow 1.0 APIs abstract away

many functionalities that needed to be manually tuned in previous versions. One of these

abstractions caused our network to save “event files” automatically in the model folder after each

training session of the model. A new event file is saved after every training session. Furthermore,

the information in one events file is created by appending a small amount of data to the previous

events file and saving it again. When running a numerous amount of training sessions, the files

started to grow to incredibly large sizes making our server run out of disk space. The space

problem was patched by deleting the events files every 10 training sessions.

5.2.5 Data Representation

The input of the neural network consists of one node for each number feature, such as

tiltX,tiltY,tiltZ, latitude, longitude, and others. Conversely, the strings were represented as

several nodes rather than a single node in order to make it easier for the neural network to

understand the input, such as individual app names and Wi-Fi BSSIDs. Since we did not want two

strings with similar structure and different semantic meaning to be represented as two very close

numbers, the conversion from one string to n nodes was completed by converting the string to a

large number and then taking the last n bits of the number. Shown below in Table 10 are a list of

49

all metrics implemented and the features we extracted from them. The general features of hour

and minute of the time are extracted from every metric.

Metric Extracted Features
Tilt Specific TiltX (float)

TiltY (float)
TiltZ (float)

Location Specific Longitude (float)
Latitude (float)

Wi-Fi Specific Wi-Fi name (string)
Wi-Fi bssid (string)
Wi-Fi signal strength (float)

App Usage Events Specific App name (string)
Foreground/background status (int)

All Hour (int)
Minute (int)

Table 10. Metrics implemented by BMS and Features extracted from them

On initialization, the network is registered with a hashmap of feature-value pairs, which

contains values for all the features that will be extracted. These values are all initialized to zero.

The network takes one JSON file. In the file, each sensor object is processed and alters certain

values in the hashmap. For example, if the first object is a tilt object, the tiltX, tiltY, tiltZ, hour,

and minute values in the feature list are altered and the other values stay the same (as zeroes).

This process assumes that when a sensor object is read in, the other sensor objects have not

changed. Then, each value in the hashmap is fed into the neural network. These steps are

repeated: read sensor object, update feature list, feed to network, all until the JSON file is fully

input.

For the neural network’s desired output, we used a 1 to indicate true data and a 0 to

indicate false data. For example, subject A’s model was trained positively with subject A’s data

using a desired output of 1, and it was trained negatively with subject B, C, and D’s data using a

50

desired output of 0. As a result, it learned to output a trust score (float value) which is close to 1

if the given data is more similar to subject A’s data and close to 0 if the given data is more similar

to subject B, C, or D’s data.

After the training session is finished, the model is saved automatically in TensorFlow

1.0's regressor.fit function. It is saved in a folder during training. After the training is done, the

folder is compressed and unused until needed.

 Through the implementation, the JSON files are read from the user’s Google Drive,

corrupted ones are removed, the model is loaded and finally trained and used for prediction based

on the continuous JSON data. This process will eventually be refined, potentially in future work,

but we intend for the process to be completely automated through a more finalized release of

BMS.

51

6 Results

We decided that we would need to test both our systems effectiveness in authentication

and the systems’ impact on phone battery life. We used the JSON files uploaded by the test

phones and separated into a training and testing set in order to evaluate the neural networks,

and we used an app called GSam Battery Monitor[44] to collect metrics about the battery life of

test phones running the BMS application and not running the BMS application in both sitting

and moving scenarios.

6.1 Discussion of Behavior of Users Surveyed

 To understand some of the results, we first needed to explain some of the nuances in our

collection of data. We used 4 test subjects for data collection, subject A, subject B, subject C, and

subject D. All subjects were undergraduate senior computer science students attending

Worcester Polytechnic Institute.

o Subjects A, B and C live in the same apartment and go out for dinner together

almost daily. Subjects A, B and C live in the same apartment and go out for dinner

together almost daily.

o Subjects B and C have adjacent rooms and their workspaces are within a few feet

of one another.

o Subject D often visits the apartment of subject A, B and C and often is in the rooms

of subjects A and C.

o Subjects A and B share a 1-hour class together in which they also meet for group

projects

o Subjects C and D share a 2-hour class together

52

o Although this should not be a problem, subjects C and D share the same phone

model which may play a factor that we are not aware of.

6.2 Battery Tests

The GSam Battery Monitor app was used to monitor battery drain on an Android phone

with and without the BMS app running. This collected the percentage of the battery used by each

app and the rate of change of the battery. A Nexus 6 smartphone, running Android 7.1.1 Nougat,

was left in the same location for 4 hours. The only apps installed on the Nexus 6 other than the

stock apps were the GSam Battery Monitor and the BMS app. App usage events, Wi-Fi, location,

and tilt data were pulled at intervals of 60 seconds, 60 seconds, 60 seconds, and 30 seconds,

respectively. The difference in battery drain are shown below in Table 11. With BMS running, the

smartphone only used an additional 2% of battery life in 4 hours.

Further testing is required to determine if the results are accurate to real-world scenarios.

Since the phone remained stationary and unused during the testing period, the phone would

have recorded less data in terms of app usage. As a result, the stored JSON files would have been

smaller and required less battery to write and upload. In addition, some smartphone sensors may

go into a “sleep” mode when the phone is not active. If this were the case, BMS would drain

battery faster than expected from the battery test.

 With BMS Without BMS

Battery Drain 10% 8%

Table 11. Battery drain with and without the BMS app.

6.3 Authentication Results

Data for four subjects was collected over a period of approximately 11 days. For each

subject, his neural network model was tested on day x after being positively trained to output 1

53

on his data and negatively trained to output 0 on all other subjects’ data on all days before day x.

For example, a model for subject A’s 5th day could be trained on subject A’s data positively and

subject B, C, and D’s data negatively for all data up to that day, days 1 through 4. Predictions are

then made for the 5th day. For each subject, subject A’s model will take that subject’s data and

output a predicted trust score. This score should be close to 1 for subject A’s data and close to 0

for subject B, C, and D’s data. Subsequently, the 5th day, if trusted, is added to the model as

additional training. At this point, the neural network model has incorporated training from days

1 through 5. The process is repeated to make predictions for the 6th day, and so forth. This reflects

real-world conditions, where the network continually receives new data to train on and must give

a predicted authentication score for the current day.

Features from all metrics: Wi-Fi, location, tilt, and app usage events, were used in

training. For the specific features extracted from each metric, please see Table 10. Below (Figures

7 – 10) are graphs of subject A, B, C, and D’s models, respectively. The predictions for each

subject on each day are graphed. Each line represents a single subject’s predicted trust score and

shows how it changed after each day.

54

Figure 7. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C,
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score

is plotted for each subject on each day.

Figure 8. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C,
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score

for all subject’s data on each day was plotted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
u

st
 S

co
re

Model A Trained With all Metrics and Tested on
all Subjects' Data Over all Days

A B C D

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
u

st
 S

co
re

Model B Trained With all Metrics and Tested on
all Subjects' Data Over all Days

A B C D

55

Figure 9. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A, B,
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score

for all subject’s data on each day was plotted.

Figure 10. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A,

B, or C’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust
score for all subject’s data on each day was plotted.

In each person’s graph, they all followed generally the same trend with user behavior,

within a few hundredths of fitting to one another’s user behavior. Only in case C did any single

user’s behavior fit their own behavior better than other people fit their own behavior. Despite

the users leading very different behaviors and lives, especially with app usage behavior. Below,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
u

st
 S

co
re

All Metrics on Subject C's Model

A B C D

0

0.2

0.4

0.6

0.8

1

Tr
u

st
 S

co
re

Axis Title

Model D Trained With all Metrics and Tested on
all Subjects' Data Over all Days

A B C D

56

Table 12. Day 11 Confusion Matrix shows a better breakdown of the authentication values on the

last day (day 11) of testing.

 Model

Te
st

in
g A B C D

A 0.696176851 0.72920086 0.790976558 0.718816646

B 0.689681277 0.749293778 0.749973414 0.72049831

C 0.724192657 0.756450769 0.92878729 0.722945101

D 0.729186394 0.756887059 0.927878674 0.721123157
Table 12. Day 11 Confusion Matrix of training on all metrics.

57

After training on days 1 through 10, the network gave mixed results when tested on day

11. Of the four models, model C (Table 12, 3rd column) performed the best, giving its subject

(subject C) the highest trust score, 0.9287. It is important to note that this score exceeded the

second highest score, 0.9278, by a difference of only 0.0009. With such a small margin, model C

was not able to differentiate data from subjects C and D.

Models A, B and D were unable to assign their subject the highest trust score. Model A

(Table 12, 1st column) gave subject A the third highest trust score of 0.6961, noticeably lower

than 0.7241 and 0.7291, the scores given to subjects C and D, respectively. Model B (Table 12, 2st

column) gave subject B the third highest trust score of 0.7492, slightly lower than 0.7564 and

0.7568, the scores given to subjects C and D respectively. Finally, model D (Table 12, 4th column)

gave subject D the second highest trust score, only slight lower than 0.7229, the score given to

subject C. It was disappointing to find that using all metrics and 10 days of training data, models

A, B, and D did not each correctly score their own subject as the most likely to be authenticated.

6.3.1 Accuracy

In subject A's model (Figure 7), the network produced very similar trust scores for all

subjects at nearly every day, but there was more deviation in the trust scores near the end of the

testing period. While we expected the network to differentiate more as more training data was

made available, subject A's model was still unable to give subject A's testing data the highest

trust score near the end of the training period. The results for subject B (Figure 8) and subject D's

(Figure 10) models are similar, with the network unable to give its user the highest trust score

and give other subjects a lower trust score.

Subject C's neural network model (Figure 9) was the most successful in differentiating

between the subjects and predicting the highest trust score for subject C. The scores across

58

different subjects generally deviated more as more training was available, showing that the

network was able to differentiate the behavior between the four subjects. However, the model

gave subject D almost exactly the same trust score on several days. Depending on the

authentication score threshold we set, the model could have authenticated subject D using

subject C's smartphone.

6.3.2 Patterns

For all models (Figures 7 - 10), the trust scores on subjects C and D are very similar.

Furthermore, the score of model C on D is very close to the score of model C on C, and the score

of model D on C is very close to the score of model D on D. We can infer that subjects C and D are

very similar, as measured with the network's trust score. This was expected, since subjects C and

D share a two hour class twice a week, and subject C occasionally works in subject D's room. The

location and Wi-Fi networks would have been similar for both subjects during these times.

In addition, the trust scores on subjects A and B are similar for all models. This was

expected because they share a one-hour class and meet for project work for several hours at a

time. Also, they use similar apps, including Messenger and Telegram. Therefore, in many ways it

is consistent that their evaluations across each other’s models are similar.

6.3.3 Comparison with Users’ App Usage Statistics

The below table shows the most commonly used applications used by each subject.

There are a few commonalities between each subject and their most used applications, but

there are also many differences. We can qualitatively see that there are differences between

each user, but they are not reflected in the models shown in the next sections.

59

Subject 5 Most Frequently Used Applications
Subject A 1. Manga Mobile

2. Google Chrome
3. Facebook
4. Telegram
5. YouTube

Subject B 1. Reddit
2. Google Chrome
3. Facebook
4. Telegram
5. Music

Subject C 1. Textra
2. Google Chrome
3. Tinder
4. Reddit
5. Telegram

Subject D 1. Duel Links
2. Google Chrome
3. Quora
4. Photos
5. Facebook

Table 13. List of most commonly used applications by Subject

6.4 Individual Metrics

Data for the four subjects was compiled in the same way in consecutive designs of the

model. Tracking individual metrics at a time, we systematically tested each metric on each user.

For the specific features extracted from each metric, please see Table 10. Further, a subject’s

model was negatively trained on behavior against the other subjects’ three models, training those

behaviors to not be considered valid since it is not from that user. The charts below show the

results of testing all subjects' models, using the individual metrics of app usage (Figures 11-14),

location (Figures 15-18) and Wi-Fi (Figures 19-22), and using training data from all subjects.

60

Figure 11. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C,

or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each
day was plotted.

Figure 12. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C,

or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each
day was plotted.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model A Trained on App Usage and Tested on all
Subjects' Data Over all Days

A B C D

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
u

st
 S

co
re

Model B Trained on App Usage and Tested on all
Subjects' Data Over all Days

A B C D

61

Figure 13. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A,

B, or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each
day was plotted.

Figure 14. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A,

B, or C’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each
day was plotted.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Tr
u

st
 S

co
re

Model C Trained on App Usage and Tested on all
Subjects' Data Over all Days

A B C D

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model D Trained on App Usage and Tested on all
Subjects' Data Over all Days

A B C D

62

Figure 15. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C,
or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day

was plotted.

Figure 16. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C,
or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day

was plotted.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
u

st
 S

co
re

Model A Trained on Location and Tested on all
Subjects' Data Over all Days

A B C D

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model B Trained on Location and Tested on all
Subjects' Data Over all Days

A B C D

63

Figure 17. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A,
B, or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each

day was plotted.

Figure 18. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A,

B, C’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day
was plotted.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model C Trained on Location and Tested on all
Subjects' Data Over all Days

A B C D

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
u

st
 S

co
re

Model D Trained on Location and Tested on all
Subjects' Data Over all Days

A B C D

64

Figure 19. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C,

or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day
was plotted.

Figure 20. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C,

or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day
was plotted.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model A Trained on Wi-Fi and Tested on all
Subjects' Data Over all Days

A B C D

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model B Trained on Wi-Fi and Tested on all
Subjects' Data Over all Days

A B C D

65

Figure 21. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A,

B, or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day
was plotted.

Figure 22. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A,

B, or C’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day
was plotted.

6.4.1 Accuracy

 As consistent with the previous results, Subject A and B remain entirely unpredictable,

even with negative data fed previously to his model to discourage authenticating other users.

Likely what happens for this user is that his behavior is erratic enough to not have identifying

features, and during normal days of theirs, their behavior does not fit their respective models

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model C Trained on Wi-Fi and Tested on all
Subjects' Data Over all Days

A B C D

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
u

st
 S

co
re

Model D Trained on Wi-Fi and Tested on all
Subjects' Data Over all Days

A B C D

66

strongly. Subjects C and D’s results are consistently very much like one another, and they

evaluate similarly on each other’s models as well, with similarities almost within a margin of

error in similar behavior. Ideally, these would be more disparate, but their behavior are indeed

incredibly comparable.

6.4.2 Comparison of Individual Metrics against All Metrics

Subjects A and B had similar models in all four of the model types: all metrics, only

location, only Wi-Fi, and only app usage. In this case, this would imply that location, Wi-Fi, and

app usage were all in agreement, and all metrics are equally inaccurate in identifying these two

test subjects.

Subject C’s model trained using all metrics performed better and differentiated users

better than models trained with only one metric. In this case, the use of all metrics together was

more effective than any individual metric. Since a trust score can also be obtained by summing

scores from multiple independent sources, it was encouraging to find that the neural network

was able to find correlations between different metrics.

For subject D, the model trained using only app usage performed better and differentiated

users better than models trained with only Wi-Fi, only location, and all metrics. As a result, app

usage is a strong predictive factor of correct authentication for subject A. It is unusual that the

network performed better with less data available. It is possible that the other less predictive

metrics, Wi-Fi and location, caused the model with all metrics to "average out" to a worse

accuracy.

67

6.5 Discussion of Results

 Our results overall, compared to what we were hoping for and expecting, have been

underwhelming. There are many reasons we rationalize these results, and see them as helpful to

future implementations based off this design and implementation.

6.5.1 Difficulties with Artificial Intelligence

 Our resources in implementing our AI were heavily limited, as our efforts were split

among app development, automation, research, and AI design. It is very possible that with our

efforts so divided, we ended up overlooking an issue with inputting data to the network, or

network design in general that would otherwise keep us from getting fitting results for all of our

behaviors of the day.

6.5.2 Similarities with Behavior

 As discussed earlier in the chapter, many of the test subjects have incredibly similar

behaviors and routines. All of them are in the same grade, work in the same places, the same

classes and group projects, and attend the same college. Even some activities outside of school,

such as meals, trips, and other minor behaviors were shared among us all, so to suggest that the

network trusted all our behavior too much and tried to both positively and negatively fit to

6.5.3 Improving our Network

A day-of-week feature should be added to the neural network, to improve the notion of

weekly routines. For example, a college student may have classes scheduled every Monday at

noon or a person might have leave work early every Friday. If only the hour and minute values

are used in the neural network, it would be trained to sometimes associate the classroom's

68

location with 12:00 pm on the days the student had class, contradicting the association on days

without class.

Additionally, a recurrent neural network (RNN) should be tested. In a RNN, the output is

affected by previous inputs as well as the current input, dealing with sequential data more

effectively. For instance, a daily routine could be leaving home, getting breakfast, and then going

to work. The sequence of events is more meaningful than the exact times during which these

events occurred.

It is possible that the data given to the neural network is too specific. Instead of the x,y,

and z orientations of the phone, labels such as "upright" or "lying flat" might be more effective.

In place of an app's name, we could use an app category, such as "game", "music", or

"photography". Similarly, a location could be represented as categories such as "restaurant”,

“store", or "gas station". If a person went to a different restaurant every night, the network would

differentiate between the longitude and latitude values but ignore the motivation behind visiting

the location.

6.5.4 Final Words

Although our results are underwhelming we believe that a system like this could work.

We cannot make a strong assertion to the viability of our system. We would need a more diverse

set of test subjects and a more developed artificial intelligence to make any stronger claims.

69

7 Future Works

To fully understand the project we have implemented, we offer our vision for the future

of the project, and rationalize why such efforts are viable and the appropriate directions for this

project to take.

7.1 Modular Implementation Allowing User to Select Various Combinations

of Metrics

More than anything, the user must be able to trust the platform that they use to

authenticate themselves to their electronic devices. Without designing each aspect of BMS to be

toggleable, therefore disallowing the user complete control of what is being used to authenticate

them, the user is likely to not feel comfortable giving the entirety of the model complete

permissions; in short, the user needs to be able to choose the metrics they are comfortable in

sharing with BMS. The only way this succeeds is in a modular design of the implementation of

BMS. Naturally, going forward, we find the model to be usable in increasingly complex settings,

with potentially more intrusive metrics, on both phone usage and battery life, so to add these

metric modules, we would want the user to be able to shut them off as they deem necessary to

get the model that they want.

7.2 Negative Sample Models

As this is a security application, implicitly authenticating the user, it is essential that we

are accurate with authenticating our user on their phone and no other. In future

implementations, we would gather the user data that already exists, and with the user's consent

we would anonymize that data and add it to a repository of non-matches, based on a hashed user

ID. That gathered data would later be introduced to other users' models, to see if any of the other

70

users' models would output an "authenticated" or significantly trusted score from the data that

is not meant to authenticate those models. If this happens, the user will be notified that their

model is not yet strong enough, and they have to keep building it in order for it to improve

further. If this persists across several weeks, the app and server would later inform the user that

their interactions with the phone are particularly hard to distinguish from others, and that it is

recommended they add more metrics if available or use a secondary authentication method like

a trusted device or explicit authentication method. This way, we can ensure the user is informed

as to whether or not their model is particularly secure or unique, and that they should feel

decently trusting of the technology.

7.3 Multi-User Support on Shared Devices

In rationalizing the idea of the neural network being able to distinguish between users

and provide advice about using more metrics to uniquely identify the user, a more profound idea

emerged. If our model is able to distinguish between several other users' data at once, it would

be similarly feasible to set up two or more instances of BMS on a phone, one for each respective

user. Every user would have a training phase, and at every point along the model creation phase,

preferably through a fingerprint, data would be saved to the respective user. Once all instances

of BMS are in place, a user could be recognized merely by interactions with the phone that it

finds to be matching a particular user, locking out certain interactions, accounts and data

tethered to other users on the phone.

7.4 Distinguishing Group of Friends with Many Shared Behavioral Patterns.

 This level of user granularity does not have to be tethered to just one device. In the

exemplary case of two friends regularly going out to eat together, they could very easily link their

71

profiles in a future iteration of BMS to relate location data and potentially each other’s behavioral

models for a time, so both of their phones will recognize when the friend is using it, or the shared

behavior between both can be matched as an identifying metric for the model; the fact that you

and your friend’s phones are in the same location for a time can be taken as positive input for

the authentication metric. When friends are in a location where a user are expected to be

according to a model, such metrics can also immediately de-authenticate the user’s phone.

7.5 Multi-Device Connection and Internet of Things

 Just as a phone and behavioral model can’t be expected to just handle one set of behaviors

at any point, a behavioral model should expect the user to not contain all of their digital

interactions to one device. Tie-ins to read from connected users accounts that could provide

more data would be invaluable merely from the number of and time of interactions with that

account. This technology has many use cases, outlined in examples below.

7.5.1 Integrating Metrics Gathered from Home Assistants

 Home Assistant Devices such as Google Home and Amazon Alexa that have been taking

the consumer market by storm and growing significantly in popularity over the past few years.

These devices allow users to augment their daily lives by allowing them to ask questions, play

music, schedule events, etc. These devices, associated with certain user accounts, offer a wide

variety of data and real-world interactions a user has with the device. These interactions are

saved, and note the time of day, length of interaction, and the parsed query. With all of this very

contextual, very precise vocal data gathered with these assistants, the data can be uploaded to

the behavioral model as a metric, and verified based on the “Trusted Voice” Google uses for

authentication on the mobile device.

72

7.5.2 Supporting Smartwatch Interactions

A "Trusted Voice" works for many situations, but in many ways a much more personal

interaction with the user is necessary. These personal monitoring devices can build off our

behavioral model system through the addition of smartwatches, which can monitor a user's gate,

heart rate, GPS, nearby Bluetooth and Wi-Fi devices (with specific attention to the phone's

Bluetooth connection for proximity monitoring). Coupled with the data the phone can receive, a

more complete model of the user’s behavior becomes available.

7.5.3 Supporting Desktop Interactions

 Integrations with other devices should not just end at the wrist or in the Google

ecosystem. The integrations can extend to desktop interactions, and behavioral app statistics

can be used to complement the data already gathered from phones to build a more complete

model of user behavior.

7.5.4 Supporting Other Mobile Devices

 Not every user contains their mobile interactions to one device. Using an account-based

timeline to tether multiple device interactions to the same person will give a more complete user

picture, and authenticate different devices at different times based on user behavior.

7.5.5 User Timeline

 Ideally, these smaller concepts would be unified under a singular BMS account per

individual, and would have a fairly complete timeline of all the interactions with the user. ￼

7.6 Evaluating Different Neural Networks

 We used a feedforward network for our implementation because it was simple to

implement and worked for finding patterns in data. However, feedforward networks do not have

73

a strong temporal component to them. We believe that testing networks with dynamic temporal

behavior such as Recurrent Neural Networks, which deal better with one-dimensional adjacency,

would better help with finding behaviors that occur in a certain order at approximate times of

the day, such as going to get coffee and then going to work.

8 Conclusions

Explicit authentication methods are proving to be insufficient for the personal data

stored on smartphones. We propose the Behavioral Model System (BMS), a continuous

authentication system that uses deep learning to authenticate in a way that is accurate and

constantly adjusting to the user’s routines. The BMS mobile application tracks the Wi-Fi,

location, app usage, and tilt of the phone and uploads the information to Google Drive. The

information is then pulled from Google Drive and fed into the TensorFlow Server to build models

of each user’s behavior. Both the mobile application and TensorFlow Server are modular enough

to add and remove metrics in the future. The BMS mobile application does not have a significant

impact on phone battery life. The results on our TensorFlow server are a little underwhelming.

This could be due to several factors such as the similarities between our test subjects and our

inexperience with TensorFlow. Future work includes giving the user control of collected metrics,

notifying the user if their model is inaccurate, multi-user authentication, and group behavior.

74

Bibliography

[1] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberos authentication and
authorization system,” in In Project Athena Technical Plan, 1987.

[2] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics: On the Applicability
of Touchscreen Input as a Behavioral Biometric for Continuous Authentication,” IEEE
Trans. Inf. Forensics Secur., vol. 8, no. 1, pp. 136–148, Jan. 2013.

[3] T. Masui, “EpisoPass: Password Management based on Episodic Memories,” in
Proceedings of the 21st Workshop on Interactive Systems and Software (WISS2013), pp.
109–114.

[4] H. Crawford, K. Renaud, and T. Storer, “A framework for continuous, transparent mobile
device authentication,” Comput. Secur., vol. 39, Part B, pp. 127–136, Nov. 2013.

[5] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit Authentication through Learning User
Behavior,” in Information Security, 2010, pp. 99–113.

[6] H. Khan, A. Atwater, and U. Hengartner, “Itus: an implicit authentication framework for
android,” in Proceedings of the 20th annual international conference on Mobile computing
and networking, Maui, Hawaii, USA, 2014, pp. 507–518.

[7] A. Rahmati, A. Qian, and L. Zhong, “Understanding Human-battery Interaction on Mobile
Phones,” in Proceedings of the 9th International Conference on Human Computer
Interaction with Mobile Devices and Services, New York, NY, USA, 2007, pp. 265–272.

[8] C. Liu, “Worldwide Internet and Mobile Users eMarketer’s Updated Estimates for 2015,”
Aug. 2015.

[9] D. Mekouar, “Americans Check Their Phones 8 Billion Times a Day « All About America.” .
[10] K. P. C. B. www.kpcb.com, “2015 Internet Trends.” [Online]. Available:

http://www.kpcb.com/blog/2015-internet-trends. [Accessed: 25-Apr-2017].
[11] A. Aviv, “Smudge Attacks on Smartphone Touch Screens.”
[12] X. Suo, Y. Zhu, and G. S. Owen, “Graphical passwords: a survey,” in 21st Annual

Computer Security Applications Conference (ACSAC’05), 2005, p. 10 pp.-472.
[13] “Android 6.0 APIs | Android Developers.” [Online]. Available:

https://developer.android.com/about/versions/marshmallow/android-6.0.html. [Accessed:
25-Apr-2017].

[14] “Iris Recognition | Galaxy S8 Features |,” Iris Recognition | Samsung Australia. [Online].
Available: http://www.samsung.com/au/iris/. [Accessed: 25-Apr-2017].

[15] “Set up your device for automatic unlock - Nexus Help.” [Online]. Available:
https://support.google.com/nexus/answer/6093922?hl=en. [Accessed: 25-Apr-2017].

[16] B. Cantafio, “Security vs. Convenience,” Apr. 2004.
[17] A. Carman, “Google could replace some passwords with a ‘trust score’ by the end of the

year,” The Verge, 23-May-2016. [Online]. Available:
http://www.theverge.com/2016/5/23/11749938/google-android-password-trust-score-api-io.
[Accessed: 26-Apr-2017].

[18] G. Cluely, “The top 10 passcodes you should never use on your iPhone,” Naked Security,
14-Jun-2011. .

[19] A. Hern, “Hacker fakes German minister’s fingerprints using photos of her hands,” The
Guardian, 30-Dec-2014.

[20] E. Nakashima, “Hacks of OPM databases compromised 22.1 million people, federal
authorities say,” Washington Post. [Online]. Available:
https://www.washingtonpost.com/news/federal-eye/wp/2015/07/09/hack-of-security-
clearance-system-affected-21-5-million-people-federal-authorities-say/. [Accessed: 18-
Dec-2016].

75

[21] W. Meng, D. S. Wong, S. Furnell, and J. Zhou, “Surveying the Development of Biometric
User Authentication on Mobile Phones,” IEEE Commun. Surv. Tutor., vol. 17, no. 3, pp.
1268–1293, thirdquarter 2015.

[22] K. O. Bailey, J. S. Okolica, and G. L. Peterson, “User identification and authentication
using multi-modal behavioral biometrics,” Comput. Secur., vol. 43, pp. 77–89, Jun. 2014.

[23] N. T, “Did you know how many different kinds of sensors go inside a smartphone?,” Phone
Arena, 06-Jul-2014. [Online]. Available: http://www.phonearena.com/news/Did-you-know-
how-many-different-kinds-of-sensors-go-inside-a-smartphone_id57885. [Accessed: 07-
Mar-2017].

[24] W.-H. Lee and R. Lee, “Multi-sensor authentication to improve smartphone security,”
presented at the International Conference on Information Systems Security and Privacy,
2015.

[25] “Sensors Overview | Android Developers.” [Online]. Available:
https://developer.android.com/guide/topics/sensors/sensors_overview.html. [Accessed: 07-
Mar-2017].

[26] K. K. Rachuri, T. Hossmann, C. Mascolo, and S. Holden, “Beyond location check-ins:
Exploring physical and soft sensing to augment social check-in apps,” in Pervasive
Computing and Communications (PerCom), 2015 IEEE International Conference on, 2015,
pp. 123–130.

[27] Z. Arnold, D. Larose, and E. Agu, “Smartphone Inference of Alcohol Consumption Levels
from Gait,” in 2015 International Conference on Healthcare Informatics, 2015, pp. 417–
426.

[28] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong, “Toss ‘n’ turn:
smartphone as sleep and sleep quality detector,” 2014, pp. 477–486.

[29] “Android 7.0 Behavior Changes,” Android Developers, 06-Mar-2017. [Online]. Available:
https://developer.android.com/about/versions/nougat/android-7.0-changes.html#doze.

[30] J. Hildenbrand, “Inside Marshmallow: What is Doze, how do I use it and what does it do?,”
Android Central, 14-Oct-2015. [Online]. Available: http://www.androidcentral.com/inside-
marshmallow-what-doze-how-do-i-use-it-and-what-does-it-do. [Accessed: 18-Dec-2016].

[31] “Optimizing for Doze and App Standby | Android Developers.” [Online]. Available:
https://developer.android.com/training/monitoring-device-state/doze-standby.html.
[Accessed: 25-Apr-2017].

[32] D. Siganos and C. Stergiou, “Neural Networks.” [Online]. Available:
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#%20From%20Hum
an%20Neurones%20to%20Artificial%20Neurones. [Accessed: 07-Mar-2017].

[33] “neural_net2.jpeg (791×388).” [Online]. Available:
http://cs231n.github.io/assets/nn1/neural_net2.jpeg. [Accessed: 07-Mar-2017].

[34] F. van Veen, “The Neural Network Zoo,” The Asimov Institute, 14-Sep-2016. .
[35] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics: a survey and

classification,” Int. J. Biom., vol. 1, no. 1, pp. 81–113, 2008.
[36] S. Buthpitiya, A. K. Dey, and M. Griss, “Soft authentication with low-cost signatures,” in

Pervasive Computing and Communications (PerCom), 2014 IEEE International
Conference on, 2014, pp. 172–180.

[37] D. Jurafsky and J. Martin, Speech and Language Processing. Stanford Lagunita, 2014.
[38] R. Murmuria, A. Stavrou, D. Barbará, and D. Fleck, “Continuous Authentication on Mobile

Devices Using Power Consumption, Touch Gestures and Physical Movement of Users,” in
International Workshop on Recent Advances in Intrusion Detection, 2015, pp. 405–424.

[39] R. Murmuria and A. Stavrou, “Authentication Feature and Model Selection using Penalty
Algorithms,” in Symposium on Usable Privacy and Security (SOUPS), 2016.

[40] L. Ballard, F. Monrose, and D. P. Lopresti, “Biometric Authentication Revisited:
Understanding the Impact of Wolves in Sheep’s Clothing.,” in USENIX Security, 2006.

76

[41] A. Alzubaidi and J. Kalita, “Authentication of Smartphone Users Using Behavioral
Biometrics,” IEEE Commun. Surv. Tutor., vol. 18, no. 3, pp. 1998–2026, thirdquarter 2016.

[42] L. Fridman, S. Weber, R. Greenstadt, and M. Kam, “Active Authentication on Mobile
Devices via Stylometry, Application Usage, Web Browsing, and GPS Location,” IEEE Syst.
J., vol. PP, no. 99, pp. 1–9, 2016.

[43] J. W. | M. 13, 2015, and 4:35 Am Pst, “How to set Android Lollipop Trusted places to
bypass your screen lock,” TechRepublic. [Online]. Available:
http://www.techrepublic.com/article/pro-tip-set-android-lollipop-trusted-places-to-bypass-
your-screen-lock/. [Accessed: 06-Mar-2017].

[44] Gs. Labs, GSam Battery Monitor. GSam Labs, 2016.

