
A Behavioral Model System for 

Implicit Mobile Authentication 
 

A Major Qualifying Project 

Submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the  

Degree in Bachelor Science 

In 

Computer Science 

By 

 

______________________________ 

Arun Donti 

 

 

______________________________ 

Arthur Dooner 

 

 

______________________________ 

Walter Ho 

 

 

______________________________ 

Stephen Lafortune 

 

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of 

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial 

or peer review. For more information about the project program at WPI, please see 

http://www.wpi.edu/academics/ugradstudies/project-learning.html  

Date: April, 2017 

Project Advisor: 

 

______________________________ 

Prof. Emmanuel Agu, Advisor 

http://www.wpi.edu/academics/ugradstudies/project-learning.html


1 
 

Abstract  
Smartphones are increasingly pervasive in users’ everyday lives. Security concerns of data 

compromises are growing, and explicit authentication methods such as passwords are proving to 

be inconvenient and inadequate. To address this, behavioral authentication approaches have 

been proposed wherein a user is authenticated continuously and implicitly, by utilizing 

consistent patterns in their behavior. This research project develops a Behavioral Model System 

(BMS) that records users’ behavioral metrics on an Android device and sends them to a server to 

develop a behavioral model for the user. Once a strong model is generated using deep learning, 

a user’s most recent behavior is queried against the model to authenticate them, 2 out of 4 test 

subjects had unique behaviors that identified them.  
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1. Introduction  

1.1. Authentication Methods 

 Authentication is the process by which a system verifies the identity of a user to allow 

access to it [1]. Authorization refers to the permissions and rules that determine the access that 

a user has [1]. On a college campus or at a workplace, an identification badge may authenticate a 

person, but it does not necessarily authorize him or her to access every building.  These two 

concepts pertain to allowing access and the level of access granted to aspects of a secured system; 

however, both are central to the design of a security system. In a simple, single user system, these 

concepts have a one-to-one relationship. If a user’s credentials are accepted by the system they 

are said to be “authenticated” and “authorized”, otherwise they are both “unauthenticated” and 

“unauthorized”. For the sake of this research, we assumed that authentication and authorization 

have this one-to-one relationship such that an authenticated user is also authorized to access 

the system. The process of authentication can be placed into two of four general subcategories 

based on both temporal attributes and authentication schemes. In time-based categories, 

authentication can either be Continuous or Episodic, while in scheme, authentication can either 

be Explicit or Implicit. 

Definitions:  
1. Continuous authentication: The process in which a system will constantly 

attempt to verify the identity of a user using a specific scheme [2].  
2. Episodic authentication: The process in which a system will attempt to verify the 

identity of a user when the user’s authorization status expires or is needed to 
perform a specific action [3]. 

3. Explicit authentication: The process in which a system will request users to 
specifically present credentials, to verify the identity of a user [4]. 



7 
 

4. Implicit authentication: The process in which a system will verify a user through 
their behavior or actions [5]. 

 
 Episodic authentication proves to be less computationally demanding in comparison to   

continuous authentication. However, Continuous authentication is inherently more secure as it 

authenticates in the same way as Episodic authentication, but runs more frequently. Explicit 

authentication is simpler to implement than Implicit authentication, as implicit requires 

significant research and overhead to program a device to understand how to distinguish between 

and authenticate the correct user. In theory, Implicit authentication is more secure than Explicit 

authentication as it offers more opportunities for authentication and is more difficult to spoof 

or replicate a person’s behaviors and actions, rather than some sort of passcode [6]. 

Many systems used today follow the Episodic and Explicit authentication paradigm, 

usually implementing passwords, pins, and fingerprints. For instance, a website with personal 

information will generally ask for a username and password at the beginning, a smartphone 

might ask for a fingerprint, a campus might use a badging system to let personnel into a building 

and into specific rooms, and an important document might require a signature. Despite the 

intrigue and research opportunities of Implicit authentication, those approaches usually are 

regarded as too difficult to be a means of authentication in professionally-designed systems [7]. 

 

1.2. Importance of the Modern Smartphone  

 Over the past decade, smartphones have become ingrained into daily life, used for 

purposes ranging across gaming, social media, shopping, banking, email, and more. Estimates 

show that over two billion people were using smartphones worldwide by the end of 2016 [8]. 
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Smartphones have sensors for measuring the user’s environment and implicitly accumulate large 

volumes of personal data from frequent use - messages, pictures, documents, call logs, location 

traces, and usage logs. These data are unique to the user and can be viewed as their usage 

signature. Over the past few years, smartphone services have started to utilize this available data 

to improve functionality for the end user, for example, by remembering where you’ve parked 

your car.  

Data from smartphones is growing easier to access simultaneously with their users 

interacting with them more. According to a study conducted by Time magazine in 2015, people 

in the United States checked their phones 46 times a day. That number rose to 74 times a day 

among users from ages 18 – 24 [9].  The 2015 Internet Trends report estimates that the average 

adult spent 5.6 hours a day on the internet with 2.8 of those hours being on a mobile device [10]. 

As the user interacts more with and relies more on their smartphone the data it accumulates is 

increasingly personal and sensitive. The phone collects email data, internet search data, access 

to social media accounts, bank accounts, and so much more.   

1.3. Current Security Measures on Smartphones  

 Smartphones contain sensitive personal and non-personal data. Developers and 

researchers understand the personal nature of this locally-stored data, and have approached user 

authentication in a variety of ways. Table 1 lists some of the methods currently used to 

authenticate smartphones. 

Method  Description 

Pin  4 digit number the user enters to unlock the 
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phone [11]. 

Password A combination of letters, numbers, and 
symbols the user types in to unlock the phone 
[11]. 

Pattern  The user swipes a specific pattern to unlock 
their phone [11]. 

Pictures The user touches/swipes a picture in the 
correct place(s) to unlock the phone [12]. 

Fingerprint The user places one of their remembered 
fingers on the fingerprint scanner to unlock 
their phone [13, p. 0]. 

Iris The phone will scan the user’s eye to unlock 
the phone [14]. 

Trusted Devices The phone will check the proximity of a 
trusted device (ex. smartwatch) through the 
Bluetooth connection to unlock the phone 
[15]. 

Voice Recognition The phone recognizes the user’s voice to 
unlock the phone [15].  

NFC Tags The user taps a paired object with an NFC tag 
on the phone to unlock it [15]. 

Location Based The phone will automatically unlock if in a 
trusted location [15]. 

Table 1. Methods used to Authenticate Smartphones 

Many of the authentication methods in Table 1 are episodic, requesting for credentials 

after certain timeframes, and explicit, requiring the user’s direct inputs (typing in a password, 

holding their finger up to a fingerprint scanner). Several are used in conjunction with one 

another; for example, many phones with fingerprint scanners use a password or a pin as a backup 
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method if normal authentication fails, or in certain conditions specified by the user. Still in other 

situations, some authentication methods are not refined enough to be used as a key for 

encryption, and will require a backup authentication method to decrypt a file system, as with 

pattern and fingerprint unlocks on Android. Others can even authenticate in certain situations 

but use a backup otherwise, like how a location based authentication will unlock the phone 

automatically if the user is in a known location, but might switch to a different authentication 

method in an unknown location. Sadly, many of these compound methods are not particularly 

popular among users, even if these options are readily available and easily accessible [16]. 

1.3.1 The Concept of Trust 

 A more modern approach to authorization has been proposed in recent years, with the 

suggestion of a “trust score” to a user, where if a user can’t be completely authenticated, they 

are only authorized to do a limited range of things on the device [17]. For example, if a phone has 

a paired Bluetooth smartwatch that has a weak connection to the phone at the moment, it could 

trust that the user was near enough to the phone, but not completely certain that the user was 

the one using the device due to the distance of the watch implied by a weaker signal. In that case, 

the phone could require no further authentication for simple, general tasks like using a web 

browser, but would require additional authentication for using a banking app. Trust scores are 

an excellent application for our use, as it allowed us to compare the likelihood of a user 

performing along their usual behaviors against their current ones, available well enough to 

authenticate users on a spectrum as opposed to the two options of authenticated or 

unauthenticated. 
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1.4. Limitations of Current Security Methods 

Most password systems are not secure enough to protect the data that a smartphone 

holds, since they tend to trade off major security for convenience. Table 2 describes some of the 

major vulnerabilities of the above methods. 

 

Method  Description 

Pin  Generally short and can be easily stolen by an attacker observing the 
phone being unlocked. One study suggests that 15% of 4 digit pin 
lockscreens can unlocked in just ten tries [18]. Longer pins may be an 
option but they are generally easily forgettable. 

Password Password database leaks are far too common among large 
corporations holding them, and many people use the same password 
in multiple places, potentially compromising their accounts across 
several services with a compromise at the least secure of all the 
companies holding them. 

Pattern  Pattern lock screens are vulnerable to smudge attacks, where the oil 
residues of fingers make it possible for people or computers to trace 
the pattern and gain access [11].  

Pictures Also vulnerable to smudge attacks with swiping and drawing. It is also 
relatively easy to find the parts of a picture that one may touch. 

Fingerprint Fingerprint passwords are unchangeable and they are irreplaceable. 
It is also possible to fake fingerprint data by gathering information  
through photographs of the target’s hands [19]. Government 
fingerprint databases have also been breached [20]. 

Iris Iris passwords are unchangeable and irreplaceable. They have similar 
vulnerabilities to fingerprints.  

Trusted Devices An attacker could take the target’s phone and unlock it if they were 
near the target and their trusted device. 
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Voice Recognition Accuracy may lower if the user’s voice changes due to certain 
conditions such as being sick [21]. Passphrases can also be easily 
overheard. 

NFC Tags NFC tags can be stolen in the same way a smartphone can. 

Location-Based An attacker just needs to unlock the target’s phone in a specified 
location to gain access  

Table 2. Vulnerabilities of Current Smartphone Authentication Methods 

Many users tend to utilize security methods that are more convenient and easier to use. 

For many people, convenience is often more important than security, and once a hacker has 

gained access, none of these methods stop an attacker from stealing data from the smartphone 

after it has been unlocked. It becomes trivial for such an attacker to steal important information 

from a target’s unlocked smartphone. In general, users tend to remain logged in to multiple 

accounts on their phones. Attackers can easily access the target user’s social media accounts, 

email accounts, and other services.  

1.5 Behavioral Authentication 

 A notable new direction to assuage this problem is to take the limitations of explicit 

authentication and approach authentication through a new direction- user behavior. Behavioral 

authentication may solve many of the shortcomings of current smartphone authentication 

techniques. Conceptually, a behavioral authentication system can learn who a user is by 

understanding how they act and interact with their phone and requires no additional input from 

the user to authenticate him or her. In current techniques, an attacker would just need to acquire 

certain information to get into the system. Unlike current authentication techniques, it would be 

very difficult for an attacker to emulate a victim user exactly even if they were able to acquire 
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information on the victim [2]. Because behavior is implicit, it can be checked continuously 

without being an annoyance to the user as opposed to just when unlocking the phone [22].   

1.6 The Goal of This Project 

We aim to enhance smartphone security  by creating the beginnings of a low power, 

customizable, continuous behavioral model system (BMS)- a security system that authenticates 

users based on a variety of behavior patterns and unique phone interactions. Conversely, this 

system will also be able to de-authenticate a user, when it detects inconsistent or suspicious 

behavior. We envision that BMS: 

 Tracks the user’s behavior through a combination of metrics  selected for their ability 

to capture unique user behaviors around smartphone usage 

  Transmits the tracked data to a centralized server for storing data and training a 

model of the user using deep learning 

 Compares new behavioral user data against a trained model of the user and returns 

whether the user is authenticated or unauthenticated based on how well new behavior 

matches the known behavior 

The proposed system uses behavioral data gathered from the phone’s sensors to solve 

some of the problems associated with current password systems, namely the attacker stealing an 

unlocked phone from the actual user. Because the system continuously authenticates based on 

behavior, critical applications or the phone can be locked out if some of the tracked features 

change dramatically yielding a low trust score. 
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One major benefit of the proposed system is that it is convenient and easy to use. It can 

be used in combination with other authentication methods and it does not require  any additional 

steps from the user except to use their smartphone and behave like they normally do. However, 

a system that continuously runs in the background inherently has a higher energy cost than an 

episodic system. Regardless of the convenience of authentication and enhanced security, most 

people have an interest in maximizing the battery life in their smartphones and it would be a key 

concern for us to minimize battery drain [7].  

This system is also modular. The system can track as many behaviors as necessary to 

reliably authenticate the user. To keep the project’s scope manageable, BMS will initially be 

trained to only track a small number of specific behaviors.  However, as more behaviors that can 

be used for authentication are discovered, and evaluated, the proposed system can be modified 

to integrate them. Comparatively, BMS is more flexible than other password-based 

authentication systems.  
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2. Background 

2.1 Data Smartphones Collect 

 Smartphones have sensors collect usage data in several different forms. Usage logs amass 

information quickly, as phones collect data from applications, services, sensors, and more [23]. 

These logs can contain simple data such as SMS and call history, but also more complex 

information such as location, Bluetooth, and Wi-Fi statistics. Although logs only generally 

contain the data that phones can passively collect, it is possible to actively obtain more data by 

utilizing the many different sensors smartphones contain and running services to collect such 

data.  

2.1.1 Hard Sensors 

Hard sensors are "physically-sensing devices" that sense environmental (e.g. light, 

temperature) or physical behaviors (e.g. motion, touch) of the user [24]. These collect data from 

smartphone hardware such as the accelerometer, GPS, and gyroscope. The following (Table 3) is 

a list of common smartphone hard sensors and what data they can collect [25].  

  

Hard Sensor What it Measures 

Accelerometer The acceleration force that is applied to a 
device in the x, y, and z axes. 

Gyroscope The phone’s rate of rotation about the x, y, 
and z axes. 
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Light  The ambient light surrounding the device. 

Magnetometer The Earth’s (and other) magnetic fields in the 
x, y, and z axes. 

Orientation The degrees of rotation that a device has made 
about all three axes. 

Barometer Measures the ambient air pressure around the 
device. 

Proximity Measures the proximity of an object relative to 
the distance of the screen. 

Pedometer Measures the number of steps taken by the 
user. 

Touch Measures length and width of strokes by the 
user on the touch screen.  

Temperature Measures room temperature 

Humidity Measures relative ambient humidity 

Table 3. Common Smartphone Hard Sensors[25] 

2.1.2 Soft Sensors 

Soft sensors are sensors that "record information of a phone's running status" [24]. These 

collect information from a phone's software. Some examples of soft sensors include screen 

on/off, app usage, messages, and phone calls. The following (Table 4) is a list of smartphone soft 

sensors analyzed by Rachuri et al [26]. 

Soft Sensor Features 
Battery charging? (boolean) 
Battery level {1,2,...100} 
Battery state {low, medium, high} 
Network type {Wi-Fi, cellular, none} 
Network name (string) 
Last app used category {app categories} 
# Proximity events 
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Table 4. Soft Sensor Features used by Rachuri et al [26]. 

2.1.3 Inferring User Activity 

Once sensor data is accumulated, smartphones can take the information saved in these 

logs and use them across applications that request sensor data. Using the data from these sensors 

and logs, it is possible for the phone to make inferences about the activities of a person. There 

are many examples in the literature of smartphone applications that detect when the user is 

awake and when they are sleeping, the walking gait of a user, and the mood of the user by using 

a combination of these sensors, which are described further below. 

Smartphone Inference of Alcohol Consumption Levels from Gait tracks and classifies 

smartphone accelerometer data to infer the user's level of intoxication [27]. Toss ‘N’ Turn: 

Smartphone as Sleep and Sleep Quality Detector analyzes accelerometer, microphone, ambient 

light, screen proximity, running process, battery state, and display screen state data to create 

models that predict when the user is sleeping and sleep quality [28].  

2.2 Doze: Android's Power Saving Mechanism 

 In order to reduce the energy consumption of the Android operating system has various 

energy-saving mechanisms and ways of interacting with data in real time.  Specifically, it’s 

common for when and how smartphone data can be used to be limited.  These limitations have 

been developed over time through improvements to Android’s power-saving functionality, to 

allow the phone to last throughout the day and for extend periods of non-use. Such 

# Screen events 
# SMS events 
# Phone calls 
Recent SMS/Calls? (boolean) 

 

 



18 
 

implementations are comprehensively referred to as ‘Doze’, since Android Marshmallow (6.0), 

and Doze On-the-Go, implemented since Android Nougat (7.0) [29].  Since Doze limits the 

frequency with which data can be retrieved on the client and sent to the BMS server in order to 

verify the user’s behavior as consistent and authentic, it is vital to understand how the Doze 

mechanism functions.  

 

2.2.1 Doze in Android 6.0 (Marshmallow) 

 Doze, a feature of modern versions of Android, forces wakelocks to be in sync with one 

another and less frequent. With Doze, the device needs to be in a relatively stationary position, 

like sitting in a nightstand or pocket at any given time to be enabled. When Doze is on, low-

priority apps, such as email notifications, are relegated to infrequent and low-power activity: 

they are forced to wait for their notifications, background updates, and more until the phone is 

active again or on a time scheduled by Doze [30]. Only high-priority applications, like apps that 

make and receive calls, send and receive text messages, and other apps flagged as high-priority 

through the Google Cloud Messaging service, can prompt a wakelock. As seen in Figure 1 below, 

apps are not allowed to access data except for the normal ‘maintenance windows’ available.  
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Figure 1. Wakelocks in Android with Doze (off, then turned on) [31]. 

2.2.2 Doze’s Expansion in Android 7.0 (Nougat) 

 In Android 7.0 (Nougat), a version of Android several of our development phones used for 

this project run, introduced even more considerations from Doze for development of our 

application. Doze was expanded with Google’s “Project Svelte”, where Doze limits broadcasts for 

mobile networks and Wi-Fi; apps will frequently ask for data updates with a 

CONNECTIVITY_ACTION change, and instead of them broadcasting for this when a connection 

is changed, app permissions are changed to the point to remove this, and also keep devices 

unable to receive information regarding a new picture or new video.  

2.2.3 Implications of the Doze Mechanism and Recent Changes 

 With these major Doze-related changes to how Android allows for scheduling and 

accessing data, our implementation is constrained to be less aggressive in triggering data 

collection events, as we have to wait for Android’s job scheduler to select an acceptable time for 

the BMS client to obtain data, rather than be collecting data on demand, like we had initially 

hoped for. We will instead have to consider how frequently   our smartphone client can poll 

sensor data, with the OS allowing our app to wake up and ask for high priority data. Additionally, 

it significantly limits how often we can communicate with a server, as wakelocks to send data are 

limited to the ‘maintenance windows’ that the operating system allows our application. With 

these considerations in place, the design of our project is different from that of many similar, 

past implementations of behavioral authentication, as we need to work around the restrictions 

Doze and other optimizations pose while maintaining a strong security model. We are limited by 
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the frequency at which the user’s smartphone can send or receive data from our authentication 

server.  

2.3. Deep Learning/Neural Networks 

In implementing an intelligence that can log activities and convert these gathered 

metrics to a conceptually understood behavior, we found Artificial Neural Networks (ANN) to be 

our most viable option. ANNs are information processing systems that can be used to detect 

patterns in data and sort data.  ANNs are loosely modeled after the interconnected neurons in a 

mammalian brain structure [32]. Generally organized into 3 types of layers, ANNs include an 

input layer, one or more hidden layers, and an output layer. Each of these layers are made up of 

interconnected nodes which contain an activation function to fire. Generally, information or 

patterns are given to the input layer, the input layer then communicates to the hidden layer(s) 

to process the information, and the last hidden layer communicates to the output layer which 

then displays a result. An example neural network is shown in Figure 2 below. 

 
Figure 2. An example neural network [33] 
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ANN’s can vary wildly, with some neural networks better at some things that others. 

Below, Table 5 lists some types of neural networks and their uses, as described by The Asimov 

Institute [34]. 

Neural Network Type Uses 
Feed forward  Supervised learning, straight-forward 

correlations between input nodes. 
Convolutional Image classification, filtering image detail. 
Recurrent Processing events in a timeline, data given in 

a sequence. 
Support vector machines Classifying n-dimensional data. 
Kohonen networks Competitive learning to classify 

unsupervised data. 
Table 5. Some Common Neural Network Types [34] 

We used a feed forward neural network because of its ease of implementation and its 

ability to find correlations between the input and output. In training these distinct networks, 

there are two main approaches: supervised and unsupervised learning.  Supervised learning 

trains an ANN by giving it inputs as well as the correct output. If the system’s output is different 

from the desired output, the system will adjust its structure in order to better categorize results 

in the future a process to adjust itself so that it will be better at categorizing in the future. 

Unsupervised learning is when a network is given many unlabeled inputs and makes categories 

and classifications by looking at patterns in the data, no corrections are made since there is no 

desired output. After training, an ANN can process data and classify it based on the weights and 

biases of nodes learned during the training session. We plan to use a supervised approach since 

our training data will be labeled with the correct outputs. For instance, data collected from 

subject A can be labeled as "true" for subject A and "false" for all other subjects. 

Incremental learning is a technique used in supervised machine learning wherein the 

neural network is trained with each data point exactly once. It can be used in situations where 
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the data is generated or becomes gradually available over time, or when the size of the training 

data is too large to maintain all of it in a single repository. In our case of continuous 

authentication, data is being collected non-stop throughout the day. Since our authentication 

system must continuously incorporate this new data, we plan to use incremental learning. 

Further, with each data point used in training exactly once, not after the model has been used to 

predict and later train, data can be deleted immediately after training to simplify memory 

management. 
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3. Related Work 

Smartphones contain many sensors that can be used to track behaviors of the user. Many 

researchers have purposed these sensors in determining which combinations of behaviors 

positively identify a user, and evaluating the effectiveness of these sensors for that task. We have 

used these studies, discussed below, to build an understanding of prior work in the field. We drew 

inspiration from the behaviors that were tracked, prior findings regarding what behaviors were 

most accurate and robust: from the human studies conducted, the artificial intelligence models 

used, and their goals for future work upon conclusion of their research. The area of behavioral 

authentication is actively being researched and highly collaborative- many groups utilize one 

another’s studies to improve their own research, and make a more significant contribution to the 

field. Due to our limited time, we utilized the findings and results from other studies to make 

decisions such as sensor selection, so that we can focus on other, less-researched aspects. 

3.1 Comparative Research on Positive Identification 
 

Positive Identification, or research based on accurately determining that the user using 

the device is one that is authorized to work with it, is by far more difficult compared to negative 

authentication, which only has to have a stronger confidence that the identification is correct or 

not close enough to what is expected. In Lee et al. [24] they attempt to positively identify and 

distinguish users based on three sensors. They chose their three - magnetometer, accelerometer, 

and orientation, based on the diverse coverage of user and environmental information, along 

with the lack of user permissions required to track these sensors [24]. They acquired accuracies 

for unique combinations of the three sensors, and measured tradeoff between training time and 



24 
 

sampling rate. Further, they provided a comparison between their study and similar studies 

involving smartphone sensors; we examined this research compiled by Lee et al. in order to get 

a better understanding of metrics that worked for other groups [24]. Table 6 is a table of this 

research. We built off of these studies and, from the sensors listed, we incorporated two of these 

sensors, orientation and GPS. two of these sensors, orientation and GPS. 

 Devices Sensors Method Accurac
y 

Detectin
g Time 

Script 

Lee et al. Nexus 5, 
Android 

Orientation, 
Magnetometer, 
Accelerometer 

SVM 90.23% Train: 
6.07s 

Test: 20s 

No 

Kayacik et 
al., 2014 

Android Light, 
Orientation, 

Magnetometer, 
Accelerometer 

Temporal 
& Spatial 

model 

N/A Train: 
N/A 
Test: 

≥122s 

No 

Zhu et al. 
2013 

Nexus S Orientation, 
Magnetometer, 
Accelerometer 

N-gram 
language 

model 

71.3% N/A Yes 

Buthpitiya 
et. al., 2011 

N/A GPS N-gram 
model on 
location 

86.6% Train: 
N/A 
Test: 

≥122s 

No 

Trojahn et 
al., 2013 

HTC Desire screen Keystroke 
& 

handwriti
ng 

FP:11% 
FN:16% 

N/A Yes 

Li et al., 
2013 

Motorola 
Droid 

screen Sliding 
pattern 

95.7% Train: 
N/A 

Test: 
.648s 

Yes 

Nickel et al. 
2012 

Motorola 
Milestone 

accelerometer K-NN FP:3.97
% 

FN: 

Train: 
1.5min 

Test:30s 

Yes 
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22.22% 

Table 6. A Comparison of Sensors, Methods, and Accuracy for Identification/Authentication[24] 

 Another study, by Yampolskiy et al[35]. researched other behavioral metrics studies and 

showcased how single metrics were able to achieve a high detection rate while having a low false 

acceptance rate and false rejection rate. Below, Table 7 shows the various behavioral metrics 

which Yampolskiy compared. Although we do not be using the exact metrics they mentioned, 

their research has led us to believe that metrics such as App usage events will work well. 

 

Behavioral 
metric 

Publication Detection 
Rate 

FAR 
(Acceptance 
Rate) 

FRR 
(False 
Rejection 
Rate) 

EER 
(Equal Error 
Rate) 

Biometric 
Sketch 

Bromme and 
Al-Zubi 
(2003) 

   7.2% 

Blinking Westeyn and 
Starner 
(2004) 

82.02%    

Calling 
behavior 

Fawcett and 
Provost 
(1997) 

92.5%    

Car driving 
style 

Erdogan et al. 
(2005a) 

88.25%   4.0% 

Command 
line lexicon 

Marin et. al. 
(2001) 

74.4%  33.5%  

Credit card 
use 

Brause et al. 
(1999) 

99.995%  20%  

E-mail 
behavior 

Vel et al. 
(2001) 

90.5%    

Gait/stride Kale et al. 90%    
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(2004) 

Game 
strategy 

Yampolsky 
and 
Govindajaru 
(2007) 

   7.0% 

Handgrip Veldhuis et 
al. (2004) 

   1.8% 

Haptic Orozeo et al. 
(2006) 

 25%  22.3% 

Keystroke  Bergadano et 
al. (2002) 

 0.01%  4%  

Lip 
movement 

Mok et al. 
(2004) 

   2.17% 

Mouse 
dynamics 

Pusara and 
Brodley 
(2004) 

 0.43% 1.75%  

Programming 
Style 

Frantzeskou 
et al. (2004) 

73%    

Signature 
Handwriting 
(1) 

Jain et al. 
(2002) 

 1.6% 2.8%  

Signature 
Handwriting 
(2) 

Zhu et al. 
(2000) 

95.7%    

Tapping Henderson et 
al. (2001) 

   2.3% 

Text 
Authorship 

Halteren 
(2004) 

 0.2% 0.0%  

Voice/speech
/singing 

Colombi et al. 
(1996) 

   0.28% 

Voice/speech
/singing 

Tsai and 
Wang (2006) 

   29.6% 

Table 7. Recognition, verification, and error rates of behavioral metrics 
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3.2 Generalized Algorithm for Categorizing Behavioral Authentication  
Yampolskiy et al.[35] organizes behavioral biometrics into several categories. According to those 

authors, there are 5 types of Behavioral Biometrics. They are described in detail below: 

●  “Authorship based biometrics”:  Metrics, for example, that examine a piece of text or a 

drawing. For authentication, these algorithms look at the style peculiarities such as 

vocabulary, punctuation, and brush strokes.  

●  “Human Computer Interaction biometrics”: Metrics that consider human interaction 

with input devices; they are indicative of the specific skills, styles, and knowledge 

displayed while interacting with a computer.  

●  “Low level computer software action”: Metrics that read from system logs and activities 

indirectly generated by the second category.  

●  “Motor-skills for verification”: Metrics that look at muscle movements while performing 

tasks.  

●  “Pure Behavioral biometrics”: Metrics that revolve around strategies, skills, and 

knowledge shown during the performance of mentally demanding tasks, with no body 

measurements involved 

 

The authors developed a generalized algorithm for these different behaviors, which follows as: 

1. Pick a user behavior.  

2. Break-up the behavior into component actions.  

3. Determine the frequencies of component actions for each user.  

4. Combine results into a feature vector profile.  

5. Apply similarity measure function to compare the stored template with current behavior. 
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6. Experimentally determine a threshold value within which the user is authenticated. 

7. Verify or reject the user based on the similarity score comparison to the threshold value.  

 

The authors suggest that comparison and analysis of each feature follow guidelines of 

universality, uniqueness among individuals, the ability to adjust user behavior of time, and the 

ease of collectability. Furthermore, they made note that only some behavioral biometrics are 

dependable enough to be usable for any level of identification. In one case, the scores for a 

standardized test, such as IQ test, SAT, GRE, or GMAT, are not enough to identify an individual, 

because of a lack in uniqueness of the scores, but they could have been combined with other 

biometrics to improve accuracy. By transitioning these individual studies into a generalized 

approach, new behaviors proved much easier to be analyzed, tested for viability, and 

incorporated in our system. In all, these concepts helped us better research behaviors before we 

tested them, along with helping us disregard behaviors that are not particularly helpful with 

authentication.  

 

3.3 Deep Neural Nets for Modeling Mobile Soft Keystroke Authentication 
 

Deng and Zhong present a deep learning approach for mobile keystroke dynamics 

biometrics, as well as exploring the additional sensory data (touch screen, accelerometer, and 

gyroscope) available on smartphones for augmented keystroke biometrics. After describing 

previous works in the area, the authors suggested using Deep Neural Network (DNN) modeling 

on mobile soft keystroke authentication. The authors used the timing (duration of touch), taping 

(size of touch area), and inertial sensor (accelerometer) features, combined with the Stanford 

TapDynamics mobile keystroke dataset to train their DNN. The dataset included key tap, latency, 
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and accelerometer data from 55 subjects typing a pin number into a phone, yielding a total of 

1704 data samples recorded and 35 generated features. The authors performed layer-wise 

unsupervised training with the data to pre-train a Restricted Boltzmann Machine, a network with 

a visible and a hidden layer. Afterwards, they tuned the neural network with stochastic gradient 

training; the system had a False Acceptance Rate (FAR) of 4.4% and a False Rejection Rate (FRR) 

of 5.3% when no features were removed, an 11.7% FAR and a 12.6% FRR with just accelerometer 

statistics, a 17.8% FAR and 14.7% FRR with just key tap sizes, and a 28.4% FAR and 17.4% FRR 

with just key tap duration. These FARs and FRRs showcase Neural Networks effectively used to 

analyze behavioral data that then authenticates users. Although there exists a lack of research 

in Neural Networks implemented as a method of analyzing data, this study demonstrates Neural 

Networks’ potential in classifying data, further justifying our decision for using them to model 

user behavioral data. 

 

3.4 Touchalytics 
 

Frank et al.[2] obtained high accuracy authentication by classifying 30 touch data 

features, listed in Figure 4. Participants went through an “enrollment phase” (modeling phase), 

during which horizontal and vertical swipes were tracked. For the purpose of obtaining natural 

test results, participants were asked to read three documents and answer comprehension 

questions on a custom app that logged touches [2]. The unique touches of eight different users 

that were logged during this study can be seen in Figure 3. The authors propose a classification 

framework using k-nearest neighbors algorithm and Support Vector Machines to learn user 

behavior. During the continuous authentication phase, the participant must re-authenticate 
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after a certain number of consecutive negative classification results. In our implementation, we 

used a similar enrollment phase to train our model, followed by a continuous authentication 

phase to test it. An “informative” value was calculated for each of the 30 touch features in the 

Touchalytics research to rank each in terms of its ability to identify the user, as seen in Figure 4. 

The ranking gives us an approach for appropriately weighting these touch features during our 

initial implementations where we use a static metric ranking. After the model is trained, we 

expect the dynamic weights, obtained through training our Neural Network, to generally reflect 

this data. 

 

Figure 3. Smartphone strokes recorded for eight different users, showing unique user touch behavior 
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Figure 4. Features’ effectiveness to identify an individual. 

3.5 Soft Authentication with Low-Cost Signatures 

 Buthpitiya et al.[36] analyzes data from multiple (low accuracy) sensors to create an 

accurate authentication system. Their approach uses low-power cost strategies, such as reading 

logs that are already updated during routine usage. Utilizing these very practical measurements, 

the behavioral metrics analyzed included message response patterns, calling patterns, outdoor 

mobility patterns, and indoor mobility patterns. Compared to other research on behavioral 

security in smartphones, this paper focuses heavily on the phone uses, such as calls and text 

messages, addressing the original uses of the smartphone. These aspects prove important 
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considering their uniqueness to smartphone use rather than tablets or other computers that 

cannot make or receive calls. This article investigates a variety of feature and extraction 

modeling approaches; of particular interest are the n-gram model and Hamming distance models 

for GSM and Wi-Fi signal strength, respectively. We will likely implement similar strategies for 

analyzing user location. The Hamming distance is important in that it can quantify a distance 

between a set of non-numerical labels, which can be used to compare lists of Wi-Fi networks, 

Bluetooth devices, used apps, or locations. Overall, the n-gram model can be used to find 

sequential patterns across data points, as opposed to patterns within a data point [37]. 

 

3.6 Continuous Authentication on Mobile Devices Using Power 

Consumption, Touch Gestures and Physical Movement of Users 

Murmuria et al. presented an approach of authenticating users through a combination of 

touch gestures, power consumption, and physical movement, while also taking into account 

application context when modeling user behavior [38].  They collected data from 73 regular and 

irregular smartphone users in a room using Google Chrome and Facebook on a Nexus 5 Android 

phone. The phone logged power consumption; the touch area, pressure, and coordinates of finger 

touches; the number of fingers touching the screen; and short-term physical movements, such 

as hand vibrations. The authors noted that noise was a significant factor in the data, even though 

their subjects were in a highly controlled environment. However, they were able to authenticate 

users with a 93% accuracy after collecting data by additionally modeling the present noise. The 

authors believe that their approach is more viable as a real-world solution than other competing 

approaches in literature. Specifically, it can be scaled to a more realistic scenario, since noise is 
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already accounted for and a mobile device could be used over multiple days by volunteers 

performing daily routine tasks. We need to ensure that we test our metrics in both controlled and 

uncontrolled environments-- the point of behavioral authentication is to use personal 

uniqueness to identify and authenticate people, and using neural networks, we can create models 

that fit individuals.  

3.7 Authentication Feature and Model Selection using Penalty Algorithms 

Another small study conducted by Murmuria and Angelos [39] suggests that the best 

authentication features for finger swipes include: 

●  Arc-length of gesture  

●  Direction between endpoints 

●  Average finger diameter during gesture  

●  Average pressure during gesture  

●  Average finger speed during gesture   

They also suggest that the best authentication features for taps include duration of gesture, 

direction between end-points, average finger diameter during gesture. The authors collected 

WhatsApp data from 110 users’ datasets, with each user having at least 350 swipes and 350 taps 

each. 40 of the users had over 2 hours of usage logged on the application. They used the sum of 

Euclidean distances to an observation’s k-nearest neighbors to get a measure of uniqueness. We 

can use these findings into our system when we try to incorporate touch gestures into our 

application. 
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3.8 Miscellaneous 

 Ballard et al. [40] discusses the impracticality of testing behavioral security tests in “lab” 

conditions as many other researchers have done. The paper shows that security methods are 

much weaker than they appear when they are tested against “trained” forgers. The participants 

gave handwriting samples and then submitted forgeries of other participants’ samples. The best 

9 out of 55, the “natural” forgers, were allowed two hours of training to practice forging 

handwriting samples. The equal error rates were found to be exaggerated by 375% if the “trained” 

forgers’ analysis was used instead of the naive analysis. The forgers’ improvement was graphed 

over time, showing that training had a significant effect on successful forging, even for the 

“natural” forgers selected. Additionally, artificial intelligence was used to learn from 

handwriting samples and attempt to bypass the security. In order to improve the robustness of 

our authentication method, we will also have participants attempt to break our security. We will 

have some participants attempt to emulate other participants and see if they are able to break 

our security measures.  An individual’s model will be trained with both his/her training data and 

against the training data of others. In addition, the model will be tested by having participants 

attempt to imitate the behavior of other participants.  

3.9 Summary 

We devised a list of requirements for a behavioral model system by analyzing the papers 

that we have reviewed. These include: 

1. Accuracy 

2. Power efficiency 

3. Ease of implementation 
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Many of these studies utilized different combinations of metrics. Several of these used the inbuilt 

GPS, touch screen, and phone orientation with varying degrees of success. A basic requirement 

of our study is choosing metrics that have been proven to be somewhat effective for 

authentication by other papers, such as GPS, and pairing them with others that are not as proven, 

such as app usage. App usage falls under the category of a low accuracy power efficient sensor, 

which provide a better overall picture of phone usage in addition to the more accurate sensors. 

Touch is one biometric that is a unique enough identifier on its own, and would be included if 

not for the difficult implementation. Overall, a good behavioral authentication system depends 

on carefully selecting a combination of behavioral metrics that work together to build a suitable 

representation of one’s behavior. 
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4. Methodology 

         To be able to authenticate a user based on their behavior alone is a challenging task, and 

more so distinguishing individuals who exhibit similar behaviors based on the metrics we used. 

To understand the data that phones accumulate, we used four metrics we found to be effective 

at authenticating users, as suggested in previous and related works.  

4.1 Pilot Study 

We chose to test our system by having 4 senior WPI computer science students install our 

BMS data collection application and consent to having their phone statistics continuously 

monitored. They were asked to use their smartphones normally and sign into their Google 

Accounts to have their phones automatically upload their data. They were then asked to share 

their data folder with our BMS Google Account. Upon having test users collect data sorted by 

time of day, date, and device, we eventually had the data accumulated across multiple devices 

and added to a database on a personal development server of ours. We fed the data we collected 

into a neural network and had the system learn what is acceptable behavior independently and 

created models of test subject’s behaviors. We then tested the test subject’s data against each 

other’s models to check the strength of the models. 

4.2 Assumptions 

We made the following assumptions during the testing period: 

1. The user's behavior will not be affected by the use of our application.  

2. Each user's smartphone will be used only by the user and no one else.  
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3. Conversely, each user will use only one smartphone.  

4. Subjects are relatively distinguishable.  

5. The user's everyday and weekly routines do not change significantly during the app's use. 

4.3 Metrics Selected for Inclusion in BMS 

         We implemented our implicit authentication by selecting four behavioral metrics we 

found to be most promising from our literature review in identifying a user uniquely. In our 

research, we reasoned that it was most important to be able to try unique and distinct sets of 

behaviors especially in the beginning of our development, so we could cover a large subset of the 

meaningful data collected by the phone as used for authentication. The four metrics we chose 

were app usage data, precise GPS location, Wi-Fi signal strength, and tilt/angle from the 

accelerometer. These metrics are discussed in detail below. 

4.3.1 Smartphone App Usage Events 

         App usage events are events that log how a user interacts with their phone throughout 

the timeline of their daily activities, by logging when apps are moved to the foreground (actively 

open and used) and background (minimized) on their device. App usage proves a promising 

metric with the nature this data in relation to the behavior of the user [41]. Like how screen 

captures on a desktop computer allow an observer to see actions being undertaken by users, 

understanding what apps are being used at any given point in time enabled us to develop a 

behavioral model towards their app usage. By monitoring the times of day that particular apps 

are used, we understood when a user typically finds this app useful, and if there are daily, weekly, 

monthly, or other patterns to this app’s usage. Inserting the concepts of app usage frequency, or 
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how many times the app is opened over a day or other timespan, and app usage duration, or how 

long the app remains in the foreground per each usage event, we began to develop a timeline of 

user interactions with their phone. This intuitive and natural formation of a model of how the 

phone is used on different timescales was made easier by the approachable nature of the APIs 

that gather this data already for us, but do nothing with it. Fridman et al included app name and 

frequency in their active authentication system and found that across three different time 

windows of 1 minute, 10 minutes, and 30 minutes, app usage was the least predictable 

contributor overall compared to text, web, and location [42]. However, for the smaller windows 

the contribution of app usage was higher, which can be explained by the first app opened in a 

window being a consistent behavior [42]. By amassing this data into timelines across varying 

scales of how the person usually behaves in regards to their phone, we gave the phone a basis for 

what behavior is to be expected out of it on a normal day. Furthermore, more precise metrics can 

be observed through app usage, including battery drain from an app over a frame of time 

(someone using the Facebook app scrolling through their news feed would typically use a lot less 

power than someone who frequently watches videos on the app, for example), along with app 

transitions to form a path which users tend to follow between apps. 

4.3.2 Precise Location 

        The location metric includes the longitude and latitude values from the GPS. To better 

provide a state to the model, we found it imperative for states we measured to have an associated 

location, or a precise latitude and longitude measured by GPS. With location already used in 

Google’s ‘Trusted Locations’ for authenticating Android devices when they are within the range 

of a location specified, we realized that it was an invaluable metric to couple with others to give 
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us a larger picture of the state of the user [43]. Recognizing that we could tether location to app 

usage metrics, we understood not only when a user interacts with a device and with what app, 

but also where the user is at the same time. Upon these more complete associations, we used 

pattern-based location history as a metric to map users’ behavior against, to see if they returned 

to locations they visited previously, giving us more points of comparison for behavior of the user. 

Location, and precise location at that, allowed us to gain a completely new level of precision for 

combinatorial behavior, or the combinations of all the differing behaviors that we measured; it 

added millions of potential points for users to be located at that are unique to them, or unique 

in combination with other metrics the phone observed. Additionally, with location behavior 

being incredibly personal, we were explicitly clear with how we handled the data we gathered, 

how it was stored, and how long it was used for app authentication purposes. 

4.3.3 Wi-Fi Access Points Observed 

 Wi-Fi provides smartphones with internet access at home and on the go wirelessly. The 

list of Wi-Fi Access Points (APs) a user observes per every collection cycle offer a deeper layer of 

context for the user’s location and travel path, which precise location cannot provide. In a 

common scenario where many people are all living in the same location they will all show similar 

behaviors. Using signal strengths to approximate distances from access points, the Wi-Fi APs 

around a user provide a finer level of detail that can provide the position of a user within a 

building. Wi-Fi Information is already gathered by the phone periodically. As a result, our 

system’s usage of this metric is opportunistic and the power cost of this metric is thus minimal. 
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4.3.4 Tilt Data 

         Finally, to complement the other three metrics, we associated accelerometer and 

magnetometer data to instantaneously calculate the three-dimensional tilt of the phone. Since 

tilt can associate how the user interacts with their phones, we could see the orientation of the 

phone while using different applications, at different locations or in different states, such as 

surfing web pages, browsing photos, typing, and much more. People habitually interact with their 

phones in ways that are comfortable to them, and tilt gave us an idea of how the user holds their 

phone across different apps. 

 

4.4 Gathering the Data 

 We found our application for data gathering to be best logically structured as a stream, or 

a timeline of data gathered across the day. The flow of data is shown in Figure. 5 below. Each 

sensor is scheduled to record data at regular intervals. When data is pulled from a sensor, our 

Behavioral Model System application saves the recent sensor activity and a timestamp to a file 

on the device. Then file is uploaded regularly to a server for deep learning processing. Finally, 

the server will send a message back to the phone showing the authentication status.  
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Figure 5. Feeding into the ANN for an authentication output 

4.5 Privacy Concerns 

 Because we are collecting and analyzing user data, we needed to address privacy concerns 

with user identity and tracking their behaviors. We chose to address this problem in two ways. 

We used anonymization techniques in both the way we stored files on our server and in the way 

that we structured the user data. The files for each individual user used the same formatting and 

contained no identifying marks that pertain to name and phone number of the user. We also 

allowed users to disable metrics that they did not want to be used for authentication purposes. 

4.6 Authentication 

The user was authenticated or unauthenticated based on a trust score. A trust score 

represents the likelihood of the user matching their trusted model from a range of zero 

(untrusted) to one (trusted). As a trust score gets closer to one, the significance of a single trust 
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score being higher than another trust score decreases. If the trust score was below a certain 

threshold, the user would be de-authenticated. The threshold for de-authentication was 

determined experimentally. In considering trust, the cutoffs cannot be so strict that the user is 

often and inconveniently de-authenticated or so lenient that significant damage may be done 

before an imposter is unauthenticated. Through the accumulation of more data however, the 

user’s trust score became more accurate over time, while remaining dynamic and consistent for 

only one particular user’s threshold range.  

 We used a feedforward neural network with several input nodes for each sensor and input 

nodes for the timestamp at which the data point was recorded. For data such as app usage 

metrics, which has a potentially infinite list of used apps, we processed each one of the apps 

independently. There was one output node, producing the trust score. The number of hidden 

layers were determined experimentally. In order for the authentication to be continuous and 

convenient, as we intended, it had to: 1) adjust to new changes in the person’s routine 2) 

authenticate accurately 3) weight features effectively and 4) be practical for a diverse group of 

users.  

The neural network constantly evolved as its training data changed. This was done with 

incremental learning, training the neural network with just one input at a time. After each 

training session of size one, the neural network updated its weights and biases in a direction that 

best accommodated the one data point. Furthermore, the learning rate parameter was adjusted 

to modify how sensitive the neural network is to change. 
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 5. BMS System Implementation 
 

 There were several important considerations we followed for our implementation of the 

Behavioral Model System, or BMS. Accuracy was one of those considerations because a user 

needs to be authenticated and unauthenticated correctly for the system to work. Aside from 

accuracy, another significant consideration for this project was extensibility- we made it possible 

to add and remove a near indefinite number of metrics at any given time, and have our program 

adapt.  

Figure 6 shows the overall design of our system. Sensors on the phone are tracked through 

our Behavioral Model System App. The sensor data is saved as a JSON file using a JSON saving 

Daemon and then uploaded to Google Drive cloud storage. The cloud storage moves the data to 

a cloud infrastructure which processes the data using a neural network and produces an 

authentication result. The result is sent back to Google Drive and then to our app's 

authentication service. 
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Figure 6. BMS design. 

5.1 Implementing Our Authentication Modality 

The implementation of our metrics used several Android APIs specific to the type and 

amount of data needed for each metric. As we wanted to focus on our application being optimized 

for more modern devices, striking a balance of widespread availability, usage, and recency, we 

developed on Android 6.0, Marshmallow, API Level 23. All of our metrics used APIs with practical 

approaches on this version of the platform, as seen in Table 8.  

Metric Android API Description 

App Usage Events App Usage 
Statistics API 

Retrieves statistics about the apps used on the device  
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Location Awareness API Efficiently tracks multiple sensors as a way of getting the 
user’s context 

Tilt SensorManager 
Position 
Sensors 

Access the sensors on a device such as the accelerometer 

Wi-Fi Wi-FiManager Shows the Wi-Fi configuration of the device as well as the 
nearby wireless access points 

Table 8. The sensors we are tracking and the API's used to do it. 

5.2 Implementing Data Collection as a Background Process 
These APIs shown in table 8 were used for collecting data in the background and storing 

it for use in our neural network. To achieve our low power goal, we collected data using Android’s 

AlarmManager, a class in Android used for scheduling an application to be run, and used a remote 

server to train and create our Neural Networks. 

5.2.1 Background Services 

 Our application is made up of several background services, each containing the API calls 

for fetching the location, app usage events, tilt, and touch of the device. We used Android’s 

AlarmManager, to continuously collect data from the user on a short-interval basis. For the 

purpose of data collection in the background, using the AlarmManager fit our use case the best 

because of its ability to run in intervals even without the app open. It is also much less resource 

intensive compared to the alternative of a continuously running background service. 

Android’s AlarmManager class is used in our program through a repeating alarm for each 

metric that will run the data collection when the alarm goes off after a certain interval of time. 

In our implementation alarms were set to fire every five minutes. Unfortunately, Android 6.0 

only allows “inexact” alarms, which means that Android will attempt to run multiple alarms at 
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the same time, potentially causing an alarm to run up to an entire cycle (the time it takes for the 

alarm to go off) late. This has not impacted our data collection; however it needs to be mentioned 

because data collection periods are roughly five minutes apart instead of exactly five minutes. 

5.2.2 Data Storage 

 

Metric Data Being Collected Sample Values 

App Usage 
Events 

Name of app 
Timestamp 

Com.android.chrome 
22-04-2017 06:21:15 

Tilt X axis 
Y axis 
Z axis 
Timestamp 

5 
-5 
0 
22-04-2017 06:21:15 

Location Latitude 
Longitude 
Timestamp 

-8.93530 
-50.44254 
22-04-2017 06:21:15 

Wi-Fi SSID (Name of Network) 
Mac address (ID of Network) 
Signal strength 
Timestamp 

WPI Wireless 
B9-1A-39-59-A5-9A 
-39 
22-04-2017 06:21:15 

Table 9. Summary of data gathered from our selected behavioral metrics. 

We stored the results, time-stamped, locally on the device, as a form of a timeline of 

events. The data was stored in a JSON format as it was easily created locally and parsed by the 

server.  

5.2.3 Collecting Data 

The JSON files were uploaded from the phone to the user's Google Drive account. The 

data folder was shared to a BMS Google Drive account. To prevent synchronization problems and 

communications problems that may occur between our mobile clients and the server, we used 
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Google Drive as an intermediary to store client data and server authentication / unauthentication 

messages. This eliminated many problems that would occur and not undermine the underlying 

implicit behavioral authentication concept of our project. Google provides both android and 

python APIs for the Drive Service so this made this sort of communication relatively easy to 

design. 

The Google Drive API runs as a background service on the phone. There were two mobile 

portions to the Google Drive API and two server portions to Google Drive API, both sets have an 

information sending portion and an information retrieving portion. 

In the mobile application, the sending portion recorded the mobile phone’s IMEI number 

and used it to create a folder on Google Drive. The phone then periodically uploaded collected 

information to this folder in the form of JSON files. This information was parsed by the server 

and fed into corresponding neural networks. We believe that the phone’s IMEI number can be 

used to distinguish different users as we assume that there will only be one user per mobile 

phone. The mobile application also initially creates an authentication file in which the server 

periodically updates based on whether a user is authenticated or not. The authentication service 

on the phone periodically checks the file for the authentication status of the device and notifies 

the user whether they have been authenticated or unauthenticated. In our implementation, we 

found that we had to query Google Drive twice in order to properly read updates from the 

authentication file. We do not believe this is an issue that needs to be addressed at this stage of 

implementation. 
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5.2.4 TensorFlow Server 

Our server ran Python 2.7 code using the TensorFlow 1.0 APIs. We used a fully connected, 

feed forward neural network with 2 hidden layers, with 8 nodes each for the sake of simplicity. 

We used the sigmoid activation function, which outputs values which range between 0 and 1. If 

the network produced values close to 1 it meant that the input values in the testing set match 

closely to the model.  

There are a few drawbacks with this implementation. TensorFlow 1.0 APIs abstract away 

many functionalities that needed to be manually tuned in previous versions. One of these 

abstractions caused our network to save “event files” automatically in the model folder after each 

training session of the model. A new event file is saved after every training session. Furthermore, 

the information in one events file is created by appending a small amount of data to the previous 

events file and saving it again. When running a numerous amount of training sessions, the files 

started to grow to incredibly large sizes making our server run out of disk space. The space 

problem was patched by deleting the events files every 10 training sessions.  

5.2.5 Data Representation 

The input of the neural network consists of one node for each number feature, such as 

tiltX,tiltY,tiltZ, latitude, longitude, and others. Conversely, the strings were represented as 

several nodes rather than a single node in order to make it easier for the neural network to 

understand the input, such as individual app names and Wi-Fi BSSIDs. Since we did not want two 

strings with similar structure and different semantic meaning to be represented as two very close 

numbers, the conversion from one string to n nodes was completed by converting the string to a 

large number and then taking the last n bits of the number. Shown below in Table 10 are a list of 
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all metrics implemented and the features we extracted from them. The general features of hour 

and minute of the time are extracted from every metric. 

Metric Extracted Features 
Tilt Specific TiltX (float) 

TiltY (float) 
TiltZ (float) 

Location Specific Longitude (float) 
Latitude (float) 

Wi-Fi Specific Wi-Fi name (string) 
Wi-Fi bssid (string) 
Wi-Fi signal strength (float) 

App Usage Events Specific App name (string) 
Foreground/background status (int) 

All Hour (int)  
Minute (int) 

Table 10. Metrics implemented by BMS and Features extracted from them 

 

On initialization, the network is registered with a hashmap of feature-value pairs, which 

contains values for all the features that will be extracted. These values are all initialized to zero. 

The network takes one JSON file. In the file, each sensor object is processed and alters certain 

values in the hashmap. For example, if the first object is a tilt object, the tiltX, tiltY, tiltZ, hour, 

and minute values in the feature list are altered and the other values stay the same (as zeroes). 

This process assumes that when a sensor object is read in, the other sensor objects have not 

changed. Then, each value in the hashmap is fed into the neural network. These steps are 

repeated: read sensor object, update feature list, feed to network, all until the JSON file is fully 

input.  

For the neural network’s desired output, we used a 1 to indicate true data and a 0 to 

indicate false data. For example, subject A’s model was trained positively with subject A’s data 

using a desired output of 1, and it was trained negatively with subject B, C, and D’s data using a 
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desired output of 0. As a result, it learned to output a trust score (float value) which is close to 1 

if the given data is more similar to subject A’s data and close to 0 if the given data is more similar 

to subject B, C, or D’s data.  

After the training session is finished, the model is saved automatically in TensorFlow 

1.0's regressor.fit function. It is saved in a folder during training. After the training is done, the 

folder is compressed and unused until needed.  

 Through the implementation, the JSON files are read from the user’s Google Drive, 

corrupted ones are removed, the model is loaded and finally trained and used for prediction based 

on the continuous JSON data. This process will eventually be refined, potentially in future work, 

but we intend for the process to be completely automated through a more finalized release of 

BMS. 
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6 Results 

We decided that we would need to test both our systems effectiveness in authentication 

and the systems’ impact on phone battery life. We used the JSON files uploaded by the test 

phones and separated into a training and testing set in order to evaluate the neural networks, 

and we used an app called GSam Battery Monitor[44] to collect metrics about the battery life of 

test phones running the BMS application and not running the BMS application in both sitting 

and moving scenarios. 

6.1 Discussion of Behavior of Users Surveyed 

 To understand some of the results, we first needed to explain some of the nuances in our 

collection of data. We used 4 test subjects for data collection, subject A, subject B, subject C, and 

subject D. All subjects were undergraduate senior computer science students attending 

Worcester Polytechnic Institute.  

o Subjects A, B and C live in the same apartment and go out for dinner together 

almost daily. Subjects A, B and C live in the same apartment and go out for dinner 

together almost daily.  

o Subjects B and C have adjacent rooms and their workspaces are within a few feet 

of one another.  

o Subject D often visits the apartment of subject A, B and C and often is in the rooms 

of subjects A and C.  

o Subjects A and B share a 1-hour class together in which they also meet for group 

projects 

o Subjects C and D share a 2-hour class together 
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o Although this should not be a problem, subjects C and D share the same phone 

model which may play a factor that we are not aware of.  

6.2 Battery Tests 

The GSam Battery Monitor app was used to monitor battery drain on an Android phone 

with and without the BMS app running. This collected the percentage of the battery used by each 

app and the rate of change of the battery. A Nexus 6 smartphone, running Android 7.1.1 Nougat, 

was left in the same location for 4 hours. The only apps installed on the Nexus 6 other than the 

stock apps were the GSam Battery Monitor and the BMS app. App usage events, Wi-Fi, location, 

and tilt data were pulled at intervals of 60 seconds, 60 seconds, 60 seconds, and 30 seconds, 

respectively. The difference in battery drain are shown below in Table 11. With BMS running, the 

smartphone only used an additional 2% of battery life in 4 hours. 

Further testing is required to determine if the results are accurate to real-world scenarios. 

Since the phone remained stationary and unused during the testing period, the phone would 

have recorded less data in terms of app usage. As a result, the stored JSON files would have been 

smaller and required less battery to write and upload. In addition, some smartphone sensors may 

go into a “sleep” mode when the phone is not active. If this were the case, BMS would drain 

battery faster than expected from the battery test. 

 

 With BMS Without BMS 

Battery Drain 10% 8% 

Table 11. Battery drain with and without the BMS app. 

6.3 Authentication Results 

Data for four subjects was collected over a period of approximately 11 days. For each 

subject, his neural network model was tested on day x after being positively trained to output 1 
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on his data and negatively trained to output 0 on all other subjects’ data on all days before day x. 

For example, a model for subject A’s 5th day could be trained on subject A’s data positively and 

subject B, C, and D’s data negatively for all data up to that day, days 1 through 4. Predictions are 

then made for the 5th day. For each subject, subject A’s model will take that subject’s data and 

output a predicted trust score. This score should be close to 1 for subject A’s data and close to 0 

for subject B, C, and D’s data. Subsequently, the 5th day, if trusted, is added to the model as 

additional training. At this point, the neural network model has incorporated training from days 

1 through 5. The process is repeated to make predictions for the 6th day, and so forth. This reflects 

real-world conditions, where the network continually receives new data to train on and must give 

a predicted authentication score for the current day.  

Features from all metrics: Wi-Fi, location, tilt, and app usage events, were used in 

training. For the specific features extracted from each metric, please see Table 10. Below (Figures 

7 – 10) are graphs of subject A, B, C, and D’s models, respectively. The predictions for each 

subject on each day are graphed. Each line represents a single subject’s predicted trust score and 

shows how it changed after each day. 
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Figure 7. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C, 
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score 

is plotted for each subject on each day. 

 
Figure 8. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C, 
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score 

for all subject’s data on each day was plotted. 
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Figure 9. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A, B, 
or D’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust score 

for all subject’s data on each day was plotted. 

 
Figure 10. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A, 

B, or C’s data. Training data consisted of all metrics: tilt, Wi-Fi, location, and app usage data. The predicted trust 
score for all subject’s data on each day was plotted. 
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Table 12. Day 11 Confusion Matrix shows a better breakdown of the authentication values on the 

last day (day 11) of testing. 

 

   Model   

Te
st

in
g  A B C D 

A 0.696176851 0.72920086 0.790976558 0.718816646 

B 0.689681277 0.749293778 0.749973414 0.72049831 

C 0.724192657 0.756450769 0.92878729 0.722945101 

D 0.729186394 0.756887059 0.927878674 0.721123157 
Table 12. Day 11 Confusion Matrix of training on all metrics. 
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After training on days 1 through 10, the network gave mixed results when tested on day 

11. Of the four models, model C (Table 12, 3rd column) performed the best, giving its subject 

(subject C) the highest trust score, 0.9287. It is important to note that this score exceeded the 

second highest score, 0.9278, by a difference of only 0.0009. With such a small margin, model C 

was not able to differentiate data from subjects C and D.  

Models A, B and D were unable to assign their subject the highest trust score. Model A 

(Table 12, 1st column) gave subject A the third highest trust score of 0.6961, noticeably lower 

than 0.7241 and 0.7291, the scores given to subjects C and D, respectively. Model B (Table 12, 2st 

column) gave subject B the third highest trust score of 0.7492, slightly lower than 0.7564 and 

0.7568, the scores given to subjects C and D respectively. Finally, model D (Table 12, 4th column) 

gave subject D the second highest trust score, only slight lower than 0.7229, the score given to 

subject C. It was disappointing to find that using all metrics and 10 days of training data, models 

A, B, and D did not each correctly score their own subject as the most likely to be authenticated.  

6.3.1 Accuracy 

In subject A's model (Figure 7), the network produced very similar trust scores for all 

subjects at nearly every day, but there was more deviation in the trust scores near the end of the 

testing period. While we expected the network to differentiate more as more training data was 

made available, subject A's model was still unable to give subject A's testing data the highest 

trust score near the end of the training period. The results for subject B (Figure 8) and subject D's 

(Figure 10) models are similar, with the network unable to give its user the highest trust score 

and give other subjects a lower trust score. 

Subject C's neural network model (Figure 9) was the most successful in differentiating 

between the subjects and predicting the highest trust score for subject C. The scores across 
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different subjects generally deviated more as more training was available, showing that the 

network was able to differentiate the behavior between the four subjects. However, the model 

gave subject D almost exactly the same trust score on several days. Depending on the 

authentication score threshold we set, the model could have authenticated subject D using 

subject C's smartphone. 

6.3.2 Patterns 

For all models (Figures 7 - 10), the trust scores on subjects C and D are very similar. 

Furthermore, the score of model C on D is very close to the score of model C on C, and the score 

of model D on C is very close to the score of model D on D. We can infer that subjects C and D are 

very similar, as measured with the network's trust score. This was expected, since subjects C and 

D share a two hour class twice a week, and subject C occasionally works in subject D's room. The 

location and Wi-Fi networks would have been similar for both subjects during these times. 

In addition, the trust scores on subjects A and B are similar for all models. This was 

expected because they share a one-hour class and meet for project work for several hours at a 

time. Also, they use similar apps, including Messenger and Telegram. Therefore, in many ways it 

is consistent that their evaluations across each other’s models are similar. 

6.3.3 Comparison with Users’ App Usage Statistics 

 
The below table shows the most commonly used applications used by each subject.  

There are a few commonalities between each subject and their most used applications, but 

there are also many differences. We can qualitatively see that there are differences between 

each user, but they are not reflected in the models shown in the next sections. 
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Subject 5 Most Frequently Used Applications 
Subject A 1. Manga Mobile 

2. Google Chrome 
3. Facebook 
4. Telegram 
5. YouTube 

Subject B 1. Reddit 
2. Google Chrome 
3. Facebook 
4. Telegram 
5. Music 

Subject C 1. Textra 
2. Google Chrome 
3. Tinder 
4. Reddit 
5. Telegram 

Subject D 1. Duel Links 
2. Google Chrome 
3. Quora 
4. Photos 
5. Facebook 

Table 13. List of most commonly used applications by Subject 

6.4 Individual Metrics 

Data for the four subjects was compiled in the same way in consecutive designs of the 

model. Tracking individual metrics at a time, we systematically tested each metric on each user. 

For the specific features extracted from each metric, please see Table 10. Further, a subject’s 

model was negatively trained on behavior against the other subjects’ three models, training those 

behaviors to not be considered valid since it is not from that user. The charts below show the 

results of testing all subjects' models, using the individual metrics of app usage (Figures 11-14), 

location (Figures 15-18) and Wi-Fi (Figures 19-22), and using training data from all subjects. 
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Figure 11. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C, 

or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each 
day was plotted. 

 
Figure 12. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C, 

or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each 
day was plotted. 
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Figure 13. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A, 

B, or D’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each 
day was plotted. 

 

 
Figure 14. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A, 

B, or C’s data. Training data consisted of only app usage data. The predicted trust score for all subject’s data on each 
day was plotted. 
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Figure 15. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C, 
or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day 

was plotted. 

 
Figure 16. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C, 
or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day 

was plotted. 
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Figure 17. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A, 
B, or D’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each 

day was plotted. 

 
Figure 18. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A, 

B, C’s data. Training data consisted of only location data. The predicted trust score for all subject’s data on each day 
was plotted. 
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Figure 19. Subject A’s neural network, trained to output 1 when given subject A’s data and 0 when given subject B, C, 

or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day 
was plotted. 

 
Figure 20. Subject B’s neural network, trained to output 1 when given subject B’s data and 0 when given subject A, C, 

or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day 
was plotted. 
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Figure 21. Subject C’s neural network, trained to output 1 when given subject C’s data and 0 when given subject A, 

B, or D’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day 
was plotted. 

 
Figure 22. Subject D’s neural network, trained to output 1 when given subject D’s data and 0 when given subject A, 

B, or C’s data. Training data consisted of only Wi-Fi data. The predicted trust score for all subject’s data on each day 
was plotted. 
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strongly. Subjects C and D’s results are consistently very much like one another, and they 

evaluate similarly on each other’s models as well, with similarities almost within a margin of 

error in similar behavior. Ideally, these would be more disparate, but their behavior are indeed 

incredibly comparable. 

6.4.2 Comparison of Individual Metrics against All Metrics 

Subjects A and B had similar models in all four of the model types: all metrics, only 

location, only Wi-Fi, and only app usage.  In this case, this would imply that location, Wi-Fi, and 

app usage were all in agreement, and all metrics are equally inaccurate in identifying these two 

test subjects.  

Subject C’s model trained using all metrics performed better and differentiated users 

better than models trained with only one metric. In this case, the use of all metrics together was 

more effective than any individual metric. Since a trust score can also be obtained by summing 

scores from multiple independent sources, it was encouraging to find that the neural network 

was able to find correlations between different metrics.  

For subject D, the model trained using only app usage performed better and differentiated 

users better than models trained with only Wi-Fi, only location, and all metrics. As a result, app 

usage is a strong predictive factor of correct authentication for subject A. It is unusual that the 

network performed better with less data available. It is possible that the other less predictive 

metrics, Wi-Fi and location, caused the model with all metrics to "average out" to a worse 

accuracy.  
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6.5 Discussion of Results 

 Our results overall, compared to what we were hoping for and expecting, have been 

underwhelming. There are many reasons we rationalize these results, and see them as helpful to 

future implementations based off this design and implementation. 

6.5.1 Difficulties with Artificial Intelligence 

 Our resources in implementing our AI were heavily limited, as our efforts were split 

among app development, automation, research, and AI design. It is very possible that with our 

efforts so divided, we ended up overlooking an issue with inputting data to the network, or 

network design in general that would otherwise keep us from getting fitting results for all of our 

behaviors of the day. 

6.5.2 Similarities with Behavior 

 As discussed earlier in the chapter, many of the test subjects have incredibly similar 

behaviors and routines. All of them are in the same grade, work in the same places, the same 

classes and group projects, and attend the same college. Even some activities outside of school, 

such as meals, trips, and other minor behaviors were shared among us all, so to suggest that the 

network trusted all our behavior too much and tried to both positively and negatively fit to  

6.5.3 Improving our Network 

A day-of-week feature should be added to the neural network, to improve the notion of 

weekly routines. For example, a college student may have classes scheduled every Monday at 

noon or a person might have leave work early every Friday. If only the hour and minute values 

are used in the neural network, it would be trained to sometimes associate the classroom's 
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location with 12:00 pm on the days the student had class, contradicting the association on days 

without class. 

Additionally, a recurrent neural network (RNN) should be tested. In a RNN, the output is 

affected by previous inputs as well as the current input, dealing with sequential data more 

effectively. For instance, a daily routine could be leaving home, getting breakfast, and then going 

to work. The sequence of events is more meaningful than the exact times during which these 

events occurred.  

It is possible that the data given to the neural network is too specific. Instead of the x,y, 

and z orientations of the phone, labels such as "upright" or "lying flat" might be more effective. 

In place of an app's name, we could use an app category, such as "game", "music", or 

"photography". Similarly, a location could be represented as categories such as "restaurant”, 

“store", or "gas station". If a person went to a different restaurant every night, the network would 

differentiate between the longitude and latitude values but ignore the motivation behind visiting 

the location.  

6.5.4 Final Words 

Although our results are underwhelming we believe that a system like this could work. 

We cannot make a strong assertion to the viability of our system. We would need a more diverse 

set of test subjects and a more developed artificial intelligence to make any stronger claims.  
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7 Future Works 

To fully understand the project we have implemented, we offer our vision for the future 

of the project, and rationalize why such efforts are viable and the appropriate directions for this 

project to take.  

7.1 Modular Implementation Allowing User to Select Various Combinations 

of Metrics 

More than anything, the user must be able to trust the platform that they use to 

authenticate themselves to their electronic devices. Without designing each aspect of BMS to be 

toggleable, therefore disallowing the user complete control of what is being used to authenticate 

them, the user is likely to not feel comfortable giving the entirety of the model complete 

permissions; in short, the user needs to be able to choose the metrics they are comfortable in 

sharing with BMS. The only way this succeeds is in a modular design of the implementation of 

BMS. Naturally, going forward, we find the model to be usable in increasingly complex settings, 

with potentially more intrusive metrics, on both phone usage and battery life, so to add these 

metric modules, we would want the user to be able to shut them off as they deem necessary to 

get the model that they want. 

7.2 Negative Sample Models  

As this is a security application, implicitly authenticating the user, it is essential that we 

are accurate with authenticating our user on their phone and no other. In future 

implementations, we would gather the user data that already exists, and with the user's consent 

we would anonymize that data and add it to a repository of non-matches, based on a hashed user 

ID. That gathered data would later be introduced to other users' models, to see if any of the other 
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users' models would output an "authenticated" or significantly trusted score from the data that 

is not meant to authenticate those models. If this happens, the user will be notified that their 

model is not yet strong enough, and they have to keep building it in order for it to improve 

further. If this persists across several weeks, the app and server would later inform the user that 

their interactions with the phone are particularly hard to distinguish from others, and that it is 

recommended they add more metrics if available or use a secondary authentication method like 

a trusted device or explicit authentication method. This way, we can ensure the user is informed 

as to whether or not their model is particularly secure or unique, and that they should feel 

decently trusting of the technology.  

7.3 Multi-User Support on Shared Devices 

In rationalizing the idea of the neural network being able to distinguish between users 

and provide advice about using more metrics to uniquely identify the user, a more profound idea 

emerged. If our model is able to distinguish between several other users' data at once, it would 

be similarly feasible to set up two or more instances of BMS on a phone, one for each respective 

user. Every user would have a training phase, and at every point along the model creation phase, 

preferably through a fingerprint, data would be saved to the respective user. Once all instances 

of BMS are in place, a user could be recognized merely by interactions with the phone that it 

finds to be matching a particular user, locking out certain interactions, accounts and data 

tethered to other users on the phone.  

7.4 Distinguishing Group of Friends with Many Shared Behavioral Patterns.  

 This level of user granularity does not have to be tethered to just one device. In the 

exemplary case of two friends regularly going out to eat together, they could very easily link their 
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profiles in a future iteration of BMS to relate location data and potentially each other’s behavioral 

models for a time, so both of their phones will recognize when the friend is using it, or the shared 

behavior between both can be matched as an identifying metric for the model; the fact that you 

and your friend’s phones are in the same location for a time can be taken as positive input for 

the authentication metric. When friends are in a location where a user are expected to be 

according to a model, such metrics can also immediately de-authenticate the user’s phone.  

7.5 Multi-Device Connection and Internet of Things 

 Just as a phone and behavioral model can’t be expected to just handle one set of behaviors 

at any point, a behavioral model should expect the user to not contain all of their digital 

interactions to one device. Tie-ins to read from connected users accounts that could provide 

more data would be invaluable merely from the number of and time of interactions with that 

account. This technology has many use cases, outlined in examples below.  

7.5.1 Integrating Metrics Gathered from Home Assistants  

 Home Assistant Devices such as Google Home and Amazon Alexa that have been taking 

the consumer market by storm and growing significantly in popularity over the past few years. 

These devices allow users to augment their daily lives by allowing them to ask questions, play 

music, schedule events, etc. These devices, associated with certain user accounts, offer a wide 

variety of data and real-world interactions a user has with the device. These interactions are 

saved, and note the time of day, length of interaction, and the parsed query. With all of this very 

contextual, very precise vocal data gathered with these assistants, the data can be uploaded to 

the behavioral model as a metric, and verified based on the “Trusted Voice” Google uses for 

authentication on the mobile device.  
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7.5.2 Supporting Smartwatch Interactions 

A "Trusted Voice" works for many situations, but in many ways a much more personal 

interaction with the user is necessary. These personal monitoring devices can build off our 

behavioral model system through the addition of smartwatches, which can monitor a user's gate, 

heart rate, GPS, nearby Bluetooth and Wi-Fi devices (with specific attention to the phone's 

Bluetooth connection for proximity monitoring). Coupled with the data the phone can receive, a 

more complete model of the user’s behavior becomes available. 

7.5.3 Supporting Desktop Interactions 

 Integrations with other devices should not just end at the wrist or in the Google 

ecosystem. The integrations can extend to desktop interactions, and behavioral app statistics 

can be used to complement the data already gathered from phones to build a more complete 

model of user behavior.  

7.5.4 Supporting Other Mobile Devices 

 Not every user contains their mobile interactions to one device. Using an account-based 

timeline to tether multiple device interactions to the same person will give a more complete user 

picture, and authenticate different devices at different times based on user behavior.  

7.5.5 User Timeline 

 Ideally, these smaller concepts would be unified under a singular BMS account per 

individual, and would have a fairly complete timeline of all the interactions with the user. ￼ 

7.6 Evaluating Different Neural Networks 

 We used a feedforward network for our implementation because it was simple to 

implement and worked for finding patterns in data. However, feedforward networks do not have 
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a strong temporal component to them. We believe that testing networks with dynamic temporal 

behavior such as Recurrent Neural Networks, which deal better with one-dimensional adjacency, 

would better help with finding behaviors that occur in a certain order at approximate times of 

the day, such as going to get coffee and then going to work. 

8 Conclusions 

Explicit authentication methods are proving to be insufficient for the personal data 

stored on smartphones. We propose the Behavioral Model System (BMS), a continuous 

authentication system that uses deep learning to authenticate in a way that is accurate and 

constantly adjusting to the user’s routines. The BMS mobile application tracks the Wi-Fi, 

location, app usage, and tilt of the phone and uploads the information to Google Drive. The 

information is then pulled from Google Drive and fed into the TensorFlow Server to build models 

of each user’s behavior. Both the mobile application and TensorFlow Server are modular enough 

to add and remove metrics in the future. The BMS mobile application does not have a significant 

impact on phone battery life. The results on our TensorFlow server are a little underwhelming. 

This could be due to several factors such as the similarities between our test subjects and our 

inexperience with TensorFlow. Future work includes giving the user control of collected metrics, 

notifying the user if their model is inaccurate, multi-user authentication, and group behavior.   
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