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Abstract

Gliding assays have been the standard tools of the past two decades to analyze the properties
of molecular motors. Recently, we have shown that they can be used as model systems to
study bending of bio-filaments. There are several approaches in the literature to measure
filament deformations. One of the most commonly used approaches is Fourier analysis.
In this project, we investigate this technique in great detail using computer simulations,
and compare it with another novel technique, namely curvature distributions. We also
compare our theoretical predictions and simulation results with experimental measurements
of filament bending from actin gliding assays.
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Chapter 1

Introduction

Microtubules and actin filaments are rigid tubular structures in cells that act like molecular
highways to transport cellular signals and cargo. They also play an important role in cell
division. Figure 1.1 shows a cartoon of an animal cell that contains microtubules and actin
filaments. While microtubules are hair-like in terms of their aspect ratio, they have large
resistance to bending, same as Plexiglass [1]. Actin filaments on the other hand are a lot
softer, and they are responsible for the crawling motion of cells, and are also the fibers
that contract in muscles [2]. During cell division, these bio-filaments inside the cell will
change their form and shape. For example, in animal cells, microtubules bend and align to
form the mitotic spindle, which brings chromosomes together during cell division [2]. Thus,
it is important to study the mechanical behavior these filaments in order to understand
their function as dynamic mechanical components in living cells. Current advancements in
imaging techniques allow researchers to visualize these filaments, however, it is still difficult
to experimentally identify the variety of molecular motors that exert forces on these filaments.
Our long-term goal is to use the filament data obtained from fluorescence imaging to learn
more about the forces acting at the molecular level and help identify the motors that exert
forces.

Figure 1.1: A cartoon showing microtubule and actin filaments found inside a eukaryotic animal
cell. Image by Ruiz [3].
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1.1 Cytoskeletal filaments

Cytoskeletal filaments can be grouped into three major types: microtubules, actin filaments
and intermediate filaments. Since these filaments were discovered, the constituent proteins
of those filaments have been chemically purified, and the proteins have been polymerized
in the test tube to give filaments that are identical to those in vivo [2]. The atomic struc-
tures of these filaments have also been studied and used to build molecular models of the
entire filaments [4]. The mechanical properties and organization of these filaments have a
considerable effect on the mechanical properties of cells. This is especially true for animal
cells, which have no cell walls and the mechanical rigidity of the cell is reinforced by the mi-
crotubule cytoskeleton [5]. Moreover, cytoskeletal filaments are also crucial for the internal
organization of cells. For example, actin filaments and microtubules are used as tracks for
the molecular motor proteins to move vesicles and organelles in the cells with high efficiency
[2].

1.1.1 Microtubules

Microtubules have a crucial organizational role in all eukaryotic cells. They are long and
stiff hollow tubes. They can rapidly disassemble and reassemble, a process called dynamic
instability [6]. They are composed of many tubulin subunits with a characteristic scale
length of 8 nm. Purified tubulin subunits in a test tube will spontaneously assemble to form
microtubules under appropriate conditions [6]. Microtubules are hollow cylindrical structures
with the inner diameter of about 18 nm and the outer diameter of about 25 nm [2]. The
cross sections of microtubules are one layer ring composed of 13 tubulin subunits. The dimers
self-assemble longitudinally along the length of the microtubules to form a protofilament.
Each protofilament has a structural polarity, with α-tubulin exposed at one end and β-
tubulin exposed at the other. In Figure 1.2, the protofilaments connect laterally to each
other to form a sheet that closes to form the cylindrical tube, microtubule. Most cellular
microtubules have 13 protofilaments with 3 starts, meaning that it can be thought of as
helices with 3 strings of monomers connected to each other. Since the polarity is the same
for all protofilaments, the microtubule as a whole also has polarity [2].

Microtubules are key in many cellular processes. They serve as a conduit for the motion
of molecular motors such as kinesin and dynein for directed intracellular movements. Once
these molecular motors bind to a microtubule, they use the energy obtained from repeated
cycles of ATP hydrolysis to move along the microtubules in one direction. At the same
time, these motor proteins also attach to the other cellular components in order to transport
these cargos along the filaments. Microtubules also control the organization of cell division.
During mitosis, the microtubules inside the cell cytoplasm disassemble and then reassemble
into a structure called the mitotic spindle, which segregates chromosomes equally into the
two daughter cells just before a cell divides [2]. Microtubules can also form permanent
structures, such as the core of the hair-like structures called cilia and flagella [6]. These
extend from the surface of several eukaryotic cells, which is used either for propulsion or to
sweep fluid over the cell surface. In a cell, microtubules are sometimes found in bundles. For
example, in the mitotic spindle, each chromosome is attached to a bundle of approximately
30 microtubules that are all oriented in the same direction and cross-linked together in order
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to separate and duplicate chromosome during cell division [7].

Figure 1.2: The hollow tube-like structure of a microtubule. Rectangular box shows a protofila-
ment, self-assembled by repeated tubulin dimers. Image by Zlira [8].

1.1.2 Actin Filaments

Actin Filaments are found in all eukaryotic cells and are essential for many of their move-
ments. Like microtubules, actin filaments are helical assemblies of globular subunits, actin
monomers. The actin monomers form a one-start, left-handed helix to create the filament
structure. Even though the full period of the actin filaments is 72 nm, the repeats can be
seen as 36 nm under the electron microscope, because the image of the filament is projected
onto the plane. One full period has 26 subunits, which makes 13 complete turns. Therefore,
the diameter of each subunit is 2.77 nm [9]. Since the monomers assemble into the helix
form, the length between the longitudinal adjacent subunits is 5.54 nm, or twice the size of
the subunit. Even though an actin monomer has nearly the same size as a tubulin subunit,
the actin filaments are a lot softer than a microtubule, since each of them consists of only
2 protofilaments stranding with each other rather than 13 as shown in Figure 1.3. Actin
filaments appear in electron micrographs as threads about 6 nm in diameter [4]. Because the
actin monomers are asymmetrical, the actin filaments have a distinct polarity and their ends
are structurally different. This polarity leads to faster polymerization at one end than the
other. The fast-growing end is called the plus end, whereas the slow-growing end is called
the minus end [2].

Inside cells, actin filaments are often found in bundles. They serve a variety of roles in
cells, with some of its most familiar activities related to motility. Without actin filaments,
an animal cell could not crawl along a surface, or divide in two [6]. Even though many
actin filaments are unstable, they can form stable structures in cells, such as the contractile
apparatus of muscle [10]. Actin filaments are associated with a large number of actin-binding
proteins, the myosin family [2]. Depending on their association with different proteins,
actin filaments can also form stiff and quite permanent structures, such as the microvilli
on the brush-border cells lining the intestine or small contractile bundles in the cytoplasm.
These microvilli contract and act like the “muscles” of a cell. Actin filaments can also
form temporary structures, such as the protrusions formed at the leading edge of a crawling
fibroblast or the contractile ring that pinches the mother cell into two daughter cells during
animal cell division [6].
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Figure 1.3: Two protofilaments form a strand of actin filament. These protofilaments are made
of many actin monomers bind to each other forming a string like structure. Image by
Boumphreyfr [11].

1.1.3 Intermediate Filaments

Intermediate filaments are found in the cytoplasm of most animal cells. They normally
form a network inside the cytoplasm, surrounding the nucleus and extending out to the
cell periphery. The structures of intermediate filaments are very different from those of
microtubules and actin filaments. The subunits of the intermediate filaments are elongated
proteins rather than globular. Those proteins assemble into intermediate filaments based on
lateral bundling and twisting into coiled-coil structures [2]. Figure 1.4 shows the assembly
of elongated proteins forming a dimer and tetramer. One role of the intermediate filaments
in the cells is to provide mechanical resistance to stretching of the cells in tissues. These
coiled-coil dimers join to form antiparallel tetramers that are wound together in a rope-like
structure that lends them their mechanical strength [7].

Figure 1.4: A sketch showing protein subunits assembling into intermediate filaments. Image by
Haggstrom [12].

1.2 Quantifying Deformations of Bio-filaments

Microtubules and actin filaments resist various forces to maintain cell shape and help motor
proteins generate force for cell movements and changes in cell shape. While doing so, these
filaments continuously bend and buckle, and therefore a filament’s resistance to bending
is an important quantity to measure. One way to characterize the bending deformations
of these filaments is to measure the persistence length, the length scale over which thermal
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fluctuations can cause the filaments to spontaneously bend [13]. While there have been many
measurements of the persistence length of these bio-filaments in vitro [14], to the best of our
knowledge, such measurements have not yet been conducted successfully in vivo. In addition,
in living cells, these filaments can potentially have defects and associated proteins that can
bind and change local resistance to bending, making the determination of persistence length
more difficult [7]. It is therefore very important to develop new techniques to measure the
persistence length of such filaments, particularly in vivo.

As we will discuss in great detail in Chapter 2, the persistence length of a filament
is also related to its flexural rigidity. One of the first estimation of microtubule flexural
rigidity in vitro made use of statistical measurement of microtubule curvature in electron
microscopic images [15]. Since then, microtubule flexural rigidity has been further estimated
from dynamic video images using various techniques. Although these methods are based
on the same mechanical principle, they are different depending on the following: whether
the analysis involves classical mechanics, statistical mechanics or hydrodynamics; the type
of working force on the microtubule; the balance and direction of working forces and the
microtubule internal stiffness; and the number of force fulcrums [16]. A brief description
of different approaches, along with their strengths and weaknesses will be discussed in the
following.

1.2.1 Spectral Analysis Approach

The strategy for measuring the flexural rigidity of bio-filaments with this technique is to
resolve the thermal bending of a single filament. The shape of the filament is characterized
as a sum of cosine waves of increasing frequency [1] (see Figure 1.5). This technique is
called Fourier decomposition. Here, the amplitude of each Fourier mode depends on the
filament’s shape. As the filament changes shape over time due to thermal fluctuations, the
amplitude of each mode fluctuates as well. The variance of the amplitude of the modes can
then be used to estimate the flexural rigidity of the filament. The details of this approach
will be discussed later in Section 2.2. Fourier analysis can provide an accurate estimation
for both stiff filaments such as microtubules, and softer filaments, i.e. actin. Nevertheless,
this technique requires fluctuating microtubules to have similar lengths with both ends free
to wiggle.

1.2.2 Buckling Force Measurements Using Optical Traps

This method is based on the classical mechanics problem of buckling of beams under an
external force. A filament is balanced at force fulcrums using an optical trap, and the
minimum force required for a filament to buckle is measured. In this technique, each end of
the filament is bound to an anti-tubulin-coated bead (in the case of a microtubule) to improve
specific and stable immobilization between the beads and the microtubule. Then, both of
the beads are trapped in a focused laser beam and are moved closer to each other by applying
adjustable identical forces as shown in Figure 1.6. The applied forces and the bending angle
along the filament can be used to obtain the flexural rigidity of the filament [16]. This method
involves relatively simple mechanical analysis since there are only two working forces that
do not change over time. This buckling force measurement may be considered to be the
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Figure 1.5: An illustration of Fourier decomposition. With no boundary conditions imposed on
the filament, the shape of filament can be represented by a sum of cosine modes with
different amplitudes.

most direct technique to measure filament rigidity because it employs the fewest number
of assumed parameters. However, it is difficult to control the boundary conditions of the
measurement. The fluctuation in the trapping force and thermal fluctuations can also cause
a significant error.

F F

Figure 1.6: A sketch of the optical trap setup. Both ends of a bio-filament are trapped using laser
beams. The beams are then brought closer together to generate the force that makes
them buckle.

1.2.3 Calibrated Hydrodynamic Flow

In this technique, filaments are nucleated while anchored to a glass coverslip on one end. A
constant flow of buffer is then imposed on the filament to observe its resistance to bending.
The flexural rigidity of the filament can then be calculated using the amount of deflection
of the filament [17]. Again, this technique can be performed only in vitro, since it requires
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very specific circumstances, such as the filaments being under some constant flow of fluid
with a known flow rate, which is very difficult to obtain within the complex and crowded
environment of the cell.

Fluid

Flow

Figure 1.7: A sketch of the calibrated flow technique. A constant flow of fluid is imposed on a
filament with one end bound to an immobile object.

1.2.4 Curvature Distributions

While there are a good number of techniques to measure the flexural rigidity of microtubules
and actin filaments in vitro [14], some of which we have briefly reviewed here, existing ap-
proaches are not readily applicable in vivo due to the complexity of forces and the boundary
conditions involved, and the crowded environment in a cell. Therefore, there is need for a
new technique that can break through those limitations in order open the possibility of mea-
suring the bending properties of the bio-filaments in a living cell. A promising approach that
has been useful in a number of studies to quantify the bending of bio-filaments in vivo is the
use of curvature distributions [18, 19, 20]. However, this approach needs to be investigated
further in order to determine its range of applicability as a viable tool to measure bending
in living.

1.3 Summary

Cytoskeleton is the cellular skeleton within a cell. It plays numerous important roles in
cells and determines the mechanical properties of cells. Cytoskeletal filaments, such as
microtubules or actin filaments take part in a variety of cellular processes ranging from
cellular division to motility. Since these filaments deform continuously in a living cell, it is
important to understand how they bend as a result of the forces they are subject to. In
the literature, there are a number of techniques available to measure the flexural rigidity
of bio-filaments, spectral analysis, optical traps to name a few. However, these techniques
are difficult to use in living cells. There is a need, therefore, for better and more accurate
approaches for in vivo characterization of bending. In Chapter 2, starting with the formal
definitions of bending energy, we will discuss in detail two of these approaches, namely
spectral analysis and curvature distributions. In Chapter 3, we will present our results
from Monte Carlo simulations and analysis of the experimental data for both the Fourier
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and curvature analysis. We will end this report with conclusions and future directions in
Chapter 4.
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Chapter 2

Quantification of Bio-filament
Bending

In this chapter, we will introduce the theory necessary to characterize bending deformations.
We will define concepts like persistence length to flexural rigidity mathematically, and in-
troduce two techniques used for measuring persistence lengths, namely Fourier analysis and
curvature distribution.

2.1 Mechanics of Bending

2.1.1 Bending Energy

Since bio-filaments are long repeating monomers, whether they are made up of actin subunits
or tubulin, they can be modeled as a continuous string with resistance to bending (see Figure
2.1). In our model, we will assume that the filament is inextensible, hence explicit stretching
energy. Figure 2.1 shows a thin semi-flexible rod of fixed length L on a plane and its shape
can completely be represented by the tangent angle θ(s) at every point s along the rod of
length L(0 < s ≤ L). The curvature at each point along the rod is given by dθ/ds. If the
radius of curvature is much greater than the filament diameter, we can write

dU

ds
=

1

2
EI

(
dθ

ds
− dθ0

ds

)2

(2.1)

where dU/ds is the bending energy per unit length and θ0(s) is the shape of the relaxed rod
due to intrinsic bending in the absence of applied or thermal forces [2]. Here the product EI
is called the flexural rigidity, composed of the Young’s modulus (E) and the second moment
of cross-sectional area (I). Note that here we assume the rod is made of an isotropic elastic
substance. The second moment of cross-sectional area is given by

I =

∫
A

y2dA . (2.2)

Integrating over Eq. (2.1), one can get the total energy of bending for an infinitely thin rod
in the plane, i.e.
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U =
1

2
EI

∫ L

0

ds

(
dθ

ds
− dθ0

ds

)2

. (2.3)

0

~r(s)

✓(s)

L

x

y

Figure 2.1: A filament can be modeled as a continuous string with resistance to bending.

2.1.2 Persistence Length

To find the relationship between the persistence length (Lp) and the flexural rigidity (EI)
of an elastic beam, we take a short beam of length s � Lp and compute g(s), the tangent-
tangent correlation function. For such a beam of arc length of s (as shown in Figure 2.2),
the bending energy in Eq. (2.3) can be written as

Ubend =
EI

2s
θ2 (2.4)

with θ = s/R. To compute the persistence length, we start from the tangent-tangent corre-
lation function along a filament given by

g(s) = 〈t(s) · t(0)〉 (2.5)

where t(s) = ∂~r(s)/∂(s). Taking the tangent of one end of the beam to point along the
ẑ-direction, the tangent-tangent correlation function becomes

g(s) = 〈cos θ(s)〉 . (2.6)

If we assume that the deflection angles are very small, i.e. θ � 1, the cosine function can
be expanded into Taylor series. Ignoring higher order terms, one arrives at the following
simplified expression

g(s) = 〈1− θ2(s)

2
〉 . (2.7)
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✓

S

R

Figure 2.2: A short beam of arc length s.

The ensemble average in Eq. (2.7) is computed by summing over all possible orientations
of the tangent vector at s, which in three dimensions traces out the surface unit sphere.
Therefore, using Eq. (2.4) one can write

〈θ2(s)〉 =
1

Z

∫ 2π

0

dφ

∫ π

0

dθ sin θ θ2e
− EI

2kBTs
θ2

. (2.8)

where

Z =

∫ 2π

0

dφ

∫ π

0

dθ sin θ e
− EI

2kBTs
θ2

(2.9)

is the normalization factor (partition function). Notice that the integrand in Eq. (2.8) differs
from the partition function by the factor of θ2 which can be pulled down from the expression
in Eq. (2.9) by differentiating it with respect to E. Thus, we can write

〈θ2(s)〉 =
1

Z

(
−2πkBTs

I

∂Z
∂E

)
= −2πkBTs

I

∂ lnZ
∂E

. (2.10)

For small angles, we can assume that sin θ ≈ θ and do the integration in Eq. (2.9) by making
a change of to variable u = (EI/2kBTs)θ

2, obtaining

Z =
2πkBTs

EI

∫ ∞
0

du e−u =
2πkBTs

EI
. (2.11)

Equation (2.10) can be used to obtain an expression for the mean-squared average of the
angle θ(s), i.e.

〈θ2(s)〉 =
2kBTs

EI
. (2.12)
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After substituting this result into the simplified Taylor expansion of the tangent-tangent
correlation function, we arrive at the result

g(s) = 1− kBT

EI
s . (2.13)

The tangent-correlation function in Eq. (2.13) looks similar to the Taylor expansion for an
exponential function. Also, our tangent vector is of unit length, g(0) = 1. On the other
hand, we expect that the two tangent vectors will be independent for s much larger than
the persistence length and g(s) → 0. Therefore, one can arrive at the conclusion that the
tangent-tangent correlation function is an exponential function of the form

g(s) = e−
kBT

EI
s . (2.14)

Since the factor in front of s in the exponential form characterizes how quickly the shape
changes along the filament, this factor is taken as the definition for the persistence length.
Equation (2.14) can now be rewritten as

g(s) = e−s/Lp , (2.15)

where

Lp =
EI

kBT
, (2.16)

is the persistence length [7].

2.2 Fourier Analysis Technique

2.2.1 Decomposition of Filament Shape into Cosine Modes

Using Fourier analysis, we can express the filament shape, characterized by θ(s), as a super-
position of Fourier modes, i.e.,

θ(s) =
∞∑
n=0

θn(s) =

√
2

L

∞∑
n=0

an cos(
nπs

L
) . (2.17)

Since there are no boundary conditions imposed on θ(s), we can use a cosine only expansion
for computational convenience. A sine or mixed sine and cosine expansion would fit this
task perfectly as well. Equation 2.17 is then differentiated and plugged into Eq. (2.3). As
a result, the zero-mode magnitude will vanish, so that we can start summing from the first
mode to infinity. This yields

U =
1

2
EI

∞∑
n=1

2

L

(nπ
L

)2

(an − a0
n)2

∫ L

0

ds sin2(
nπs

L
) . (2.18)

After evaluating the integrant, the energy of bending in Eq. (2.3) can now be written as a
quadratic summation of these coefficients
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U =
1

2
EI

∞∑
n=1

(nπ
L

)2 (
an − a0

n

)2
. (2.19)

Note that the zero-order mode (a0) corresponds to the average orientation of the filaments
and does not contribute to the bending energy. In equilibrium, the equipartition theorem [21]
states that each quadratic term in Eq. (2.19) contributes an average kBT/2. This implies
that

var(an) = 〈(an − a0
n)2〉 =

kT

EI

(
L

nπ

)2

. (2.20)

The angle brackets denote an average over many configurations. The lack of cross-terms in
the expression for energy implies that the quantities (an − a0

n) are uncorrelated for different
values of n. Thus, the variation, or fluctuation, in amplitude of each mode (n ≥ 1) provides
an independent estimated of the flexural rigidity.

The thermal bending of flexible polymers is commonly discussed in terms of the persis-
tence length Lp = EI/kBT , which is the arc length above which the angle θ(s) becomes
uncorrelated in three-dimensional motion. Using Eq. (2.20), once can relate the persistence
length to the variance as

Lp =
L2

n2π2var(an)
. (2.21)

2.2.2 Numerical Estimation of Filament Shape

To estimate the persistence length, Lp, using Eq. (2.21), we wrote an algorithm that performs
Fourier analysis on a given set of filament contours—either experimentally or computation-
ally generated. Consider a filament consisting of N + 1 points in two dimensions. From the
set of N segments that connect these points, we can calculate the spacing between the bonds
using

∆si =
[
(xi+1 − xi)2 + (yi+1 − yi)2

] 1
2 (2.22)

and the tangent angles

θi = tan−1

(
yi+1 − yi
xi+1 − xi

)
. (2.23)

However, using the arctangent function of Matlab alone would give us discontinuities in the
angles for the filaments with small persistence length, which led to errors in our Fourier
analysis. This is because the range of the arctangent function is in the interval [−π/2, π/2].
Thus, if the actual angle is in the 1st quadrant, then it is equal to θi. If the angle is the 2nd

or 3rd quadrants, then we add π to θi. Finally, for the 4th quadrant, the angle is 2π + θi. In
addition to these modifications, there might be cases in which one bond angle falls into the
1st quadrant and the following bond angle falls into the 4th quadrant. The reverse of this
situation can also happen, in which we go from 4th to the 1st quadrant. To make sure this
does not cause additional discontinuities in the angle θi, we keep a counter of such events,
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and every time there is a jump from quadrant 4 to 1, we increment this counter by 2π. For
the opposite case, we subtract 2π from this counter. The resulting value of the counter is
then added to every angle θ in the next steps. The constructed vector of angles are then
used in the Fourier analysis. The coefficients an can be calculated using

an =

√
2

L

∫ L

s=0

ds θ(s) cos
(nπs
L

)
, (2.24)

which is obtained by taking an integral over Eq. (2.17) and using orthogonality relations for
cosines and sines. In discrete form, Eq. (2.24) can be written as

an ∼=
√

2

L

N∑
i=1

∆si θi cos
(nπ
L
smidi

)
, n = 1, ..., N − 1 (2.25)

where

L =
N∑
i=1

∆si (2.26)

and

smidi = ∆s1 + ∆s2 + . . .+ ∆sk−1 +
1

2
∆sk . (2.27)

In principle, the variance of each of these an values can be used to obtain an independent
estimate of flexural rigidity, EI, via Eq. (2.21). Nevertheless, in experiments, measurement
noise prevents accurate resolution of the higher order modes. In the next section, we will
discuss how noise and pixelation errors can affect the accuracy of this approach, and how to
remedy that.

2.2.3 Role of Pixelation

In experiments, data would suffer from the pixelation errors due to the limited resolution of
the microscope: each measured point along the filament would deviate from the actual posi-
tion on the filament by a random distance εk, as illustrated in Figure 2.3. This experimental
error adds directly to the true variance of the amplitude of each mode, causing errors in
the persistence length estimation. Therefore, the effect of this error needs to be taken into
account in order to obtain an accurate persistence length from experimental data.

Since the curvature of the filament due to thermal fluctuation is considerably small, the
pixelation error, εk, contribute to each an value. Let us assume that the measured coordinates
of the filament line are straight and that the actual coordinates deviate from that line by εk,
as shown in Figure 2.3. Assuming that all the bonds have equal length of ∆s0, when the εk
are nonzero, the kth bond has the length and angle

∆sk = [∆s2
0 + (εk+1 − εk)2]

1
2 ∼= ∆s0 , (2.28)

θk = tan−1

(
εk+1 − εk

∆s0

)
∼=

εk+1 − εk
∆s0

. (2.29)
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The assumption that all bonds are equal in length gives the midpoint of the ktth segment
to be

smidk =
(k − 1

2
)L

N
. (2.30)

Thus, by plugging Eq. (2.28), (2.29) and (2.30) into Eq. (2.25), the error from deviation
leads to the following modified amplitude for Fourier mode

anoisen =

√
2

L

N∑
k=1

(εk+1 − εk) cos

[
nπ

N
(k − 1

2
)

]
. (2.31)

�sk

�s0

✓k
✏k

✏k+1

Figure 2.3: A sketch showing the definitions used to discuss pixelation errors.

We then rearrange the right hand side of Eq. (2.31) into terms of each distinct εk, using
the fact that εk’s are independent random variables. Also using the fact that

N−1∑
k=1

sin2

(
nπk

N

)
=

N

2
, (2.32)

we obtain the expression for the noise variance for each mode amplitude to be

〈a2
n〉noise =

4

L
〈ε2k〉

[
1 + (N − 1) sin2

( nπ
2N

)]
. (2.33)

Therefore, we expect the measured var(an) from the experimental data to be given by [1]

var(an)measured =

(
L

nπ

)2
1

Lp
+

4

L
〈ε2k〉

[
1 + (N − 1) sin2

( nπ
2N

)]
. (2.34)

In a log-log plot of variance against mode number, the error term will contribute to the tail
of the curve. We can then use this expression of var(an), that includes noise and pixelation
effects into account, to estimate the persistence length from experimental images. The
experimentally measured variance can be fitted to Eq. (2.34) using the two parameters Lp
and εk.
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2.2.4 Algorithm for the Fourier Analysis Technique

The implementation of the Fourier analysis can be described briefly by the following pseudo
algorithm.

for v = 1:number of filaments

load filament’s coordinates

calculate length of each bond on the chain

calculate length of the current filament

count how many bonds are on the filament

calculate angles each bond makes with respect to the x-axis

store calculated bond length, filament length, number of bonds and angles in matrices

assign numbers of Fourier modes

for i = 1:number of bonds

calculate "mid-bond-length coordinates"

for n = 1:number of Fourier modes

calculate the amplitude of each Fourier mode

end

end

for i = 1:number of bonds

calculate Fourier angles for the current filament

end

end

calculate average filament length, average number of bonds and average bond length

plot measured angles and angles from Fourier analysis vs mid-bond-length coordinates

calculate variance of each mode amplitude

assign guessed value for persistence length and pixelation error

find the best fit values for the persistence length and error value using nlinfit function

calculate theoretical variance

plot calculated variance and theoretical variance as a function of mode number

It is important to note that good initial guesses for the persistence length and error
coefficient are important for the fits to converge to accurate estimates. For this, we use
known values of filament persistence lengths from the literature and take εk to be of the
order of the size of a single pixel.

2.2.5 Limitations of Fourier Analysis Technique

Fourier analysis has been a very useful tool in the past decade and it has been used in a
number of studies, such as investigating velocity-dependent rigidity of microtubules [22], and
study of bending dynamics of actin filaments and microtubules at thermal equilibrium [23].
However, the use of Fourier analysis for in vivo data presents challenges. For in vivo data,
the number of microtubule or actin contours is limited, and obtaining accurate coordinate
data from images presents a challenge. This technique also requires fluctuating microtubules
to have similar length with both ends free to wiggle.
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2.3 Curvature Analysis Technique

It has been recently shown that curvature distributions can provide useful information in
characterizing microtubule deformation in cells [18, 19]. In this project, we explore this tool
further and show how it can be equivalent to other existing methods.

2.3.1 Curvature Distribution for Semi-Flexible Chains

In the absence of intrinsic curvatures, the total energy of a filament, given by Eq. (2.3), can
be written as,

U =
1

2
EI

∫ L

0

(
dθ

ds

)2

ds . (2.35)

Both in simulations as well as in the interpretation of the experimental results, however, one
typically uses a discretized model instead. To relate curvature distribution to the persistence
length of bio-filaments, we then assume that our bio-filament is made of multiple rigid rods,
equal in length. Using ri as the position of the ith point on the chain having coordinates be
written as xi and yi, the unit tangent vector from the beginning to the end of each rod can
be written as

ti =
1

l
[(xi+1 − xi) x̂+ (yi+1 − yi) ŷ] (2.36)

where

l =

√
(xi+1 − xi)2 + (yi+1 − yi)2 . (2.37)

Since ti represents the direction along each rod, assuming that the angles between the rods
are small, the equation for bending energy can be written in discrete form in terms of ti and
ri, i.e.,

U =
1

2
EI

N−2∑
i=1

(ti+1 − ti)2

(ri+1 − ri)2
∆s . (2.38)

The local curvature along the backbone of the chain can then be simply calculated as

κi =
θ

(∆si + ∆si+1)/2
. (2.39)

Assuming that the bending energy is the dominant energy, and using the fact that bond
angles should be obey the Boltzmann distribution, one can show that curvatures are going
to be distributed according to

P (κi) =

√
Lp∆s

2π
e

−Lpκ2
i∆s

2 . (2.40)

Similar to curvatures, the distribution of bond angles obeys a Gaussian distribution,
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P (θi) =

√
Γ

π
e−Γθ2

i , (2.41)

where Γ = Lp/(2∆s)

2.4 Effects of Coarse-graining on Curvature Distribu-

tions

Similar to Fourier analysis, noise plays an important role in the analysis of curvature from
experimental images. It has been shown that errors introduced by pixelation can affect
alter that measured curvature distributions, and therefore, filament contours have to be
sub-sampled to minimize contribution to curvature distributions from noise [18]. This sub-
sampling can be achieved either by skipping nodes, taking every mth point, or regular deci-
mation, taking every (2n)th point. This procedure is illustrated in Figure 2.4. In other word,
one can write the relationship between m and n as

m = 2n . (2.42)

The chain after decimation has fewer nodes, and the resulting distribution of angles after n
decimations can be calculated as [24]

P (θ(n)) =

√
νΓ

π
e−νΓ(θ(n))2

, (2.43)

where ν is given by

ν =
1

(2n+1 − 1)(1− 2−n)/3 + 1
. (2.44)

Writing the results in terms of curvatures one gets

P (κ(n)) =

√
µLp∆s(n)

2π
e−µLp∆s(n)(κ(n))2/2 , (2.45)

where the exponent µ is given by

µ =
2n

(2n+1 − 1)(1− 2−n)/3 + 1
. (2.46)

Note that in the limit of n→∞, µ = 3/2 which implies Lp → (3/2)Lp in the limit of infinite
number of decimations. This demonstrates that the effects on decimation can be drastic
especially if one is interested in measuring the persistence length of the underlying chain.

2.4.1 Algorithm for Curvature Analysis Approach

In order to measure the curvature distributions, a Matlab algorithm was developed. The
pseudo-algorithm for this code is given below.
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Figure 2.4: A discrete model of a microtubule. The variable θ0
i denotes the angle between con-

secutive bonds. ∆s
(0)
i−1 is the spacing between neighboring coordinates ~ri−1 and ~ri.

Dashed bonds (green) show the resulting chain as a result of decimating the coordi-
nates once.

for v = 1:number of filaments

load filament’s coordinates

calculate the spacing between adjacent x-coordinates

calculate the spacing between adjacent y-coordinates

calculate the length of each bond on the chain

calculate the length of the current filament

count how many bonds are on the filament

calculate the angles each bond makes respect to the x-axis

store calculated filament length in a matrix

define how many nodes to skip over

find last node for the skipping

for i = l:number of nodes

calculate displacements in the x- and y-directions between the nodes

calculate the bond length after skipping nodes

store the bond length after skipping nodes

end

for i = 2:number of nodes-1

calculate the position of each node of the sub-sampled filament

end

for i = 1:number of nodes

calculate the length of the current bond

calculate the length of the next bond

calculate the angle each bond makes with the previous bond

calculate curvature at each nodes

end

end

plot histogram of curvatures

fit the histogram to a Gaussian distribution, and estimate the variance.
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2.5 Summary

In this Chapter, we briefly explained the mechanics of bending. Then, the theory for Fourier
analysis approach was also discussed in great detail. We showed how the variances of Fourier
mode amplitudes are related to the persistence length. The errors caused by pixelation were
discussed as well. The chapter ended with the discussion o the theory for curvature analysis
approach. We also introduced the idea of decimation, which we will make use of in the
following chapter.
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Chapter 3

Results

After developing the algorithms for Fourier and curvature analysis approaches, the algorithms
were used to analyze filaments generated using Monte Carlo simulations, in order to validate
and compare. Then, both approaches were applied to the experimental data of actin gliding
assays to measure the persistence length of the actin filaments. This chapter will discuss the
results from those investigations.

3.1 Monte Carlo Simulations

In order to replicate a typical situation in an experiment, we generated chains by consec-
utively adding bonds with a bond angle distribution given by Eq. (2.41). For simplicity,
we set the bond length to be 20 nm, which is equal for every bond. Figure 3.1 shows the
shapes of some sample filaments generated from the simulations. The pseudo-algorithm for
generating the chain generation is given below.

assign number of filaments, bond length and persistence length

for v = 1:number of filaments

assign number of bonds

set the first angle to zero

calculate standard deviation for Gaussian distribution

for i = 2:number of bonds

if (i < number of bonds)

calculate angle respect to the previous angle using the Gaussian distribution

end

calculate positions of the node using the calculated angle

end

write filament’s coordinates to a file

end
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Figure 3.1: Sample filaments generated by the Monte Carlo simulation with different persistence
lengths. Each filament has 500 nodes with the length of 10 µm. The top-left filament
has a persistence length of 20 µm, which is the value for an actin filament. The
top-right filament represents a very soft filament with a persistence length of 0.1µm.
The bottom filament represent a microtubule-like filament with a persistence length
of 1 mm.

3.1.1 Validation of Fourier Analysis Approach

In Chapter 2, the theory behind the Fourier analysis technique along with our algorithm
for persistence measurement via this technique was discussed in detail. Nevertheless, before
applying this technique to experimental data, the verification of our algorithm is required.
Fourier analysis code was then applied to the filaments generated by the Monte Carlo sim-
ulation to confirm whether the obtained persistence length matches the given persistence
length. Figure 3.2 shows that the angles produced by the measured mode amplitudes nicely
match the original angles measured by the arctangent function along the filaments. This is
evidence that our Fourier analysis technique perfectly replicated the generated filaments.

Then, the variances of the Fourier mode amplitudes are investigated against the mode
numbers as shown in Figure 3.3. The log-log plot shows the linear relationship between the
variance and mode numbers, which is consistent with the theory without taking account of
the errors from pixelation. The theoretical variances calculated by substituting the known
persistence length into Eq. (2.34) with no error term were also plotted on the same graph.
Because the measured persistence length matches the input persistence length for filaments
with persistence length greater than 0.3 µm, our Fourier analysis technique is successful in
measuring the persistence length of the generated filaments. We also observed that variation
in length of filaments has no effect on the variance plot (data not shown).
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Figure 3.2: The regenerated angles from the measured mode amplitudes fits well with the mea-
sured angle for the filaments with persistence length of 17 µm, which is a rough
approximation for the persistence length of actin filaments in literature [1].
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Figure 3.3: The log-log plot of the theoretical Fourier mode variances and measured variances
against the Fourier mode numbers for a set of filaments with persistence length of 17
µm.

3.1.2 Validation of Curvature Analysis Approach

For a chain consisting of 500 nodes with persistence length of 17 µm, the resulting curvature
distribution without decimation is shown in Figure 3.4 and as expected it is Gaussian with
the correct persistence length, meaning that measured µ calculated from the Gaussian fit
is consistent to the theoretical value calculated from Eq. (2.46). For no decimation, we
measured µ to be 0.998, which is very close to the theoretical value of 1.000. If we now take
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every other 32nd node, i.e. decimate by 5, the measured curvature distribution is still a nice
Gaussian as shown in Figure 3.5. The measured µ value is now 1.532, which is still consistent
with the theoretical value of 1.499. This procedure can be continued for any decimation as
long as the chains are long enough to measure the persistence length from decimation.

Figure 3.4: Curvature distribution measured without decimation for a 500-node chain with per-
sistence length of 17 µm. Measured µ is obtained to be 0.998, which is very close to
the theoretical value of 1.000.

Figure 3.5: Curvature distribution measured after decimation by 5, or taking every 32nd node,
for a 500-node chain with a persistence length of 17 µm. Measured µ is obtained to
be 1.532, which is very close to the theoretical value of 1.499.
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To further investigate our curvature approach for persistence length measurements, the
technique was applied to the generated filaments with various persistence lengths, from
very stiff to very soft filaments. The other parameters, such as bond length and number
of bonds, were set to be the same for every set of filaments. Our results show that the
curvature approach performed very well for filaments with persistence length greater than
10 µm. Once the persistence length of the filaments was below 10 µm, measured µ started
to deviate from theory. This behavior is shown in Figure 3.6. This deviation can be easily
explained, since our theory assumes that the filament is very stiff. For this investigation, the
curvature was also measured for every mth nodes, where m can be related to the decimation
n by m = 2n, as discussed earlier in Chapter 2. Figure 3.6 also shows that measured µ is still
consistence with theory, even though the curvature was taken for every mth point instead of
2n points.
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Figure 3.6: The measurement of µ for sets of filaments with various persistence lengths. Once the
persistence length is less than 10 µm, measured µ deviates from theory (solid line).

3.1.3 Pixelation Effect

In experimental data, the monomer is typically smaller than the pixel size of the images.
Thus, the information harvested from the image is not the actual position of the monomer
but the position of the pixel that the monomer is in. Since the size of an actin monomer is
approximately 3 nm, which is much smaller than our pixel size of 158 nm, the coordinates
we obtained from our data do not represent the exact positions of the actin filaments, but
it is the center of those pixels that our tracing code scans across (see section 3.2.1). To
investigate this effect, filaments were created using the same approach as earlier, but with
many more nodes. We then pixelated this data and used the coordinates of the pixels as our
filament coordinates. The curvature analysis technique was again performed on this data
to see the effect of pixelation on the “ideal” filaments. The plot in Figure 3.7 shows that
measured µ starts very small and gets larger as the chain is sub-sampled. Nevertheless, the
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increase in value tends to slow down after m = 20 and reach steady state. This shows that
for the given pixel size, curvature measurements are dominated by noise for m ≤ 20.
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Figure 3.7: Measured µ value for the pixelated filaments with a persistence length of 13 µm. The
curve corresponds to the result from experiment only in the low skipping number
regime.

3.2 Estimation of Persistence Length from Experiments

3.2.1 Actin Gliding Assays

We conclude earlier that our curvature analysis technique performs nicely for filaments with
a persistence length greater than 10 µm. Therefore, the most suitable bio-filaments for
testing the curvature analysis technique are actin filaments, which are reported to have a
persistence length of ∼ 17 µm [1].

The ideal experimental setup would be looking at actin filaments fluctuating in a solution,
using fast enough camera, and tracing the filaments in three dimensions. But that is very
challenging since most microscopes have really slow acquisition times and the filaments tend
to move in and out of focus. As a result, one typically gets blurry images. Thus, to avoid
these problems, we instead turned to actin-gliding assays.

The experimental system we used was an in vitro actin gliding assays, performed by
Prof. Vidali’s group at WPI. In this system, actin filaments are attached to a glass surface
by means of molecular motors. Since the motors used in the experiments were non-functional,
the filaments stayed still like glued to the glass surface, allowing for easier imaging without
the need for TIRF microscopy. Figure 3.8 shows a cartoon depiction of an actin gliding
assays.

After obtaining the images of the filaments, we used in-house developed Matlab algorithm
to identify the contours of the actin filaments. Since our Matlab algorithm can identify the
contour for only one filament at a time, each filament was cropped using the ImageJ program

26



Figure 3.8: Cartoon shows the actin gliding assay experiment, where dead myosin motors are
spread on the glass surface and act as a glue to attach the actin filaments to the
surface.

and then saved as a new image. Then, the cropped filaments were traced for their contours
using the Matlab algorithm by performing vertical scan along filament contour, and fitting
the intensity profile to a Gaussian distribution. Then, the mean of that distribution was
taken to be the filament position. Figure 3.9 illustrates a cropped filament with its traced
contour displayed as a red line. The contour data for 435 filaments were obtained in total.

24#μm#

6#μm#

Figure 3.9: An experimental image form the actin gliding assay. Courtesy of Vidali Lab. The
cropped image is shown in the smaller rectangular area with the filament traced
contour displayed as a red line.
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3.2.2 Measurement of Persistence Length using Fourier Analysis

After having a set of x-y coordinates of actin filaments from experiments, the Fourier analysis
technique was performed on the data in order to find the persistence length. The algorithm
for this technique is discussed earlier in Chapter 2. As shown in Figure 3.10, the measured
variance plot displayed the error tail, caused by pixelation or the second term of Eq. (2.34).
At first, we used nlinfit function in Matlab to obtain the best fit, but the values from the fit
function poorly described the first few modes. Those first few modes were the most significant
to analyze the curvature, since they hugely characterize the filament shape, moreover the
latter modes were mostly governed by noise from the experiment. After several iterations,
we determined the best fit persistence length to be 12.8 µm, which is consistent with the
literature. Also, the nlinfit function gave the best fit for the pixelation error, εk, to be 0.47
µm. This persistence length value will be used as the basis value to determine the spacing
for our curvature analysis approach.
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Figure 3.10: Log-log plot of the best-matched theoretical variance for the filaments with persis-
tence length of 12.8 µm and the pixelation error constant of 0.47 µm and measured
variance of an against the mode numbers for the set of experimentally actin fila-
ments.

3.2.3 Application of Curvature Analysis

Equation (2.45) states that the curvature distribution with decimation depends on the bond
spacing. It was discussed earlier in Chapter 2 that the pixel size of filament images obtained
from experiments is much greater than the monomer. Performing decimation with known
bond spacing greater than the pixel size is necessary for the curvature analysis approach
in order to determine the persistence length of the filaments. For that, one needs to know
the bond spacing first, and this can be obtained by performing our technique on a set of
experimental data with known persistence length.
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Since we obtained the persistence length using the Fourier analysis technique, it can
be used to determine the spacing for our curvature analysis approach. After applying our
curvature analysis approach to the experimental data, the curvature distributions for n = 0
deviated from the Gaussian distribution, as shown in Figure 3.11. This behavior is due to the
presence of pixel noise. Nevertheless, for greater decimation, such as taking every 8th point,
a nice Gaussian distribution can be obtained, as shown in Figure 3.12. So, the curvature
distribution can be successfully used for thermally-driven polymers.

Figure 3.11: Curvature distribution for the experimental data with no decimation. Solid line
shows a fit to a Gaussian distribution.

Figure 3.12: Curvature distribution for the experimental data, measured by taking every 8th node
on the filaments. Solid line shows a fit to a Gaussian distribution.
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We then used the measured persistence length as our guessed value and observed the
behavior of µ as a function of m. However, shown in Figure 3.13, the measured µ keeps on
increasing without any sign of becoming steady. This behavior does not correspond to the
result obtained from the generated filaments, where µ converges to 1.5.
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Figure 3.13: Measured µ against m for the experimental data using the estimated persistence
length of 12.8 µm.

3.3 Summary

To validate and investigate the limitations of both Fourier and curvature analysis approaches,
Monte Carlo simulations were used to generate the “ideal” filaments. Both techniques showed
poor argument with theory on low persistence length filaments. The measured persistence
length will start to deviate from the input persistence length when the input persistence
length is below 0.3 µm for the Fourier analysis approach, and 10 µm for the curvature
analysis approach. The pixelation effect was also investigated for the curvature analysis
approach.

Both approaches were then applied to the experimental data of actin gliding assays. The
persistence length of the filaments from the experiment was measured using the Fourier
analysis approach, and found to be 12.8 µm, which is consistent with literature. However,
the curvature analysis approach behaved unexpectedly with the experimental data. Even
though the curvature distribution of those filaments was Gaussian, measured µ showed no
sign of reaching steady state when decimation increases.
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Chapter 4

Conclusions and Future Directions

In this project, we investigated in great detail a novel approach to analyze filament bending,
namely curvature analysis, and compared it to a well-known method, Fourier analysis. In
order to verify theoretical predictions on the scaling properties of curvature distributions, we
performed Monte Carlo simulations in which polymer chains with known persistence lengths
were created. We then used both the Fourier and curvature analysis approaches to measure
the persistence length of these simulated filaments, and investigated the effects of experi-
mental noise. As predicted from our calculations, the measured curvature distributions were
Gaussian, and our theoretical calculations, which assumed stiff filaments, were valid for fil-
aments larger than 10 µm. In comparison, both the Fourier and curvature methods were
able to give accurate estimates of the persistence length. Thus, we can conclude that our
curvature analysis approach can successfully analyze the ideal filaments, even in the presence
of experimental noise.

We then used both approaches to measure persistence length from experimental data,
in which the intrinsic spacing is not known. For experimental data, we used actin filament
contours obtained from actin gliding assays performed by the Vidali Lab. In these assays
myosin motors were only used to pin the filaments onto the glass surface, and ATP was
depleted to suppress motor activity. We applied Fourier analysis technique to obtain the
persistence length of these filaments. We then analyzed the same data again with our curva-
ture analysis approach and used the obtained persistence length to find the intrinsic spacing.
While we obtained Gaussian distribution of curvatures as predicted by theory, the measured
scaling coefficient did not agree with theoretical predictions. We believe this is due to mode
selection, i.e. actin filaments settling onto a given set of configurations on the glass surface,
because of the presence of myosin motors. Since these would typically correspond to higher
mode amplitudes, they would not affect the results of Fourier analysis, which gives impor-
tance to lower modes.

One of our future goals is developing a cross-grained model of actin gliding assays that
incorporate bending dynamics and the myosin motors. With such a simulation, we will be
able to investigate the role of myosin motor density on the measured persistence length, and
make a fair comparison with theoretical predictions. We also aim to use TIRF microscopy
to observe the fluctuating filaments directly, without the need for pinning via “dead” myosin
motors. This experiment is closer to the ideal experimental setup than the actin gliding
assays. These simulations and experiments will overall help further develop curvature dis-
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tribution technique as a useful tool for characterizing deformations in living cells.
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