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Abstract

Today, ranking is the de facto way that information is presented to users

in automated systems, which are increasingly used for high stakes decision

making. Such ranking algorithms are typically opaque, and users don’t have

control over the ranking process. When complex datasets are distilled into

simple rankings, patterns in the data are exploited which may not reflect the

user’s true preferences, and can even include subtle encodings of historical

inequalities. Therefore it is paramount that the user’s preferences and fairness

objectives are reflected in the rankings generated. This research addresses

concerns around fairness and usability of ranking algorithms. The dissertation

is organized in two parts.

Part one investigates the usability of interactive systems for automatic rank-

ing. The aim is to better understand how to capture user knowledge through

interaction design, and empower users to generate personalized rankings. A

detailed requirements analysis for interactive ranking systems is conducted.

Then alternative preference elicitation techniques are evaluated in a crowd-

sourced user study. The study reveals surprising ways in which collection in-

terfaces may prompt users to organize more data, thereby requiring minimal

effort to create sufficient training data for the underlying machine learning al-

gorithm. Following from these insights, RanKit is presented. This system for

personalized ranking automatically generates rankings based on user-specified

preferences among a subset of items. Explanatory features give feedback on

the impact of user preferences on the ranking model and confidence of pre-

dictions. A case study demonstrates the utility of this interactive tool.

In part two, metrics for evaluating the fairness of rankings are studied in

depth, and a new problem of fair ranking by consensus is introduced. Three

group fairness metrics are presented: Rank Equality, Rank Calibration, and

Rank Parity which cover a broad spectrum of fairness considerations from pro-

portional representation to error rate similarity across groups. These metrics



are designed using a pairwise evaluation strategy to adapt algorithmic fairness

concepts previously only applicable for classification. The metrics are em-

ployed in the FARE framework, a novel diagnostic tool for auditing rankings

which exposes tradeoffs between different notions of fairness. Next, different

ways of measuring a single definition of fairness are evaluated in a compara-

tive study of state-of-the-art statistical parity metrics for ranking. This study

identifies a core set of parity metrics which all behave similarly with respect

to group advantage, reflecting well an intuitive definition of unfairness. How-

ever, this analysis also reveals that under relaxed assumptions about group

advantage, different ways of measuring group advantage yield different fair-

ness results. Finally, I introduce a new problem of fair ranking by consensus

among multiple decision makers. A family of algorithms are presented which

solve this open problem of guaranteeing fairness for protected groups of can-

didates, while still producing a good aggregation of the base rankings. Exact

solutions are presented as well as a method which guarantees fairness with

minimal approximation error. Together, this research expands the utility of

ranking algorithms to support fair decision making.
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1

Introduction

Ranking is commonly used to prioritize among candidates for desirable outcomes like

jobs, loans, or educational opportunities. For such high-impact applications, fairness

concerns are often paramount, whether enforced by legal standards (e.g., the 80% rule

in discrimination law [61]) or by internal policies of an organization aiming to ensure

diversity. Unfortunately, people performing ranking analysis may suffer from implicit

bias in their decision making [74], which has had a demonstrated negative impact for

critical tasks such as hiring [16, 20, 145].

Complicating matters further, increasingly the judgments of human analysts are aug-

mented by decision support tools or even fully automated screening procedures which

rank candidates [15, 37, 70, 150]. Such systems may encode unfair bias, perhaps present

in the training data [135], reflected by the design of scoring functions [10], or due to

differences in the way of members of different groups represent themselves [6]. Applied

for search, recommendation, and indexing, this process is opaque and it is difficult to

assess its impact on our decision making. This new interplay of human bias and machine

learning may further impede equitable decision making in unforeseen ways.

As an example of the potential for automating discrimination in such systems, con-

sider that Amazon recently revealed a failed attempt to design a hiring algorithm to

screen and rank candidates. The project was dropped when they found that the model

inadvertently encoded a gender bias against women [49]. For a regulated domain like

employment, but also education, housing, and many others, such practices are illegal in

the United States [12]. In this case the unfair bias was caught, yet the development of

ranking algorithms for hiring is widespread [3], while no systematic approaches to audit

these methods are available to date.

To address this important societal problem, recent research focuses on the design of
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metrics for measuring unfair bias in individual rankings and strategies for mitigating

its effect [10, 18, 34, 70, 106, 141, 155, 161]. For instance, LinkedIn recently incorpo-

rated a fairness framework into their Talent Search feature that helps recruiters find job

candidates [70]. The continued study of fairness metrics for rankings is crucial for the

development of fair socio-technical systems. Meta-analysis is also required, to provide

guidance on the choice of appropriate evaluation metric for different contexts, and to

expose tradeoffs between different notions of what is fair.

Nuanced analysis and interpretation is required when considering the implications of

automated decision making in our society. For instance, fairness criteria are often cast

as competing with things like safety, performance, or other “meritocratic” measures [44].

However, it may be the case that the values we are optimizing for are the very things

that perpetuate and impose structural inequality [122]. Oversimplification of complex

problems can hide potentially dangerous assumptions, and may encode inherent bias in

the underlying data used to train a ranking model. As another example, consider college

rankings published online and used by students and faculty. Highly ranked colleges often

have poor outcomes for low-income students, such as lower graduation rates or excessive

debt after graduation [146]. The rankings could be considered unfair for only providing

utility to high-income students. Left unchecked, such harm compounds through the

creation of negative feedback loops. Colleges consistently given a low rank will attract

less talent, decreasing their potential to improve [71, 124]. These institutions could

become entrenched in the position determined by the ranking model - often proprietary

and not disclosed.

The vast potential for harm in such cases highlights the need for open and transparent

procedures to audit and correct for unfair bias in rankings. This requires the design of

error metrics appropriate for detecting unfair group outcomes in rankings. Furthermore,

it is imperative that we design highly useable systems that empower people to access

technologies to answer their own questions and understand the impact of their own

priorities on decision outcomes. To help avoid unfair practices and provide and utility

to decision makers, this dissertation addresses concerns around fairness and usability of

ranking algorithms.

1.1 Dissertation Organization

The dissertation is organized in two parts. Part I investigates the usability of ranking as

a tool for complex, real-world decision making through the development and evaluation
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of interactive visual analytics systems for ranking. Chapter 2 reviews the state-of-the-art

for multiple relevant aspects of interactive ranking, and provides a detailed requirements

analysis for mixed-initiative ranking systems. Chapter 3 presents a crowdsourced user

study evaluating preference collection methods for interactive ranking. Informed by these

investigations, Chapter 4 then gives an overview of RanKit, a general system for interac-

tive ranking analytics. Chapter 5 reviews related work on interactive systems for ranking.

Part II then presents a detailed study of group fairness in rankings. Chapter 6 first

provides background on the topic of algorithmic fairness and state-of-the-art fairness

metrics for ranking and formalizes the fair ranking problem. Chapter 7 then introduces

our proposed pairwise metrics for evaluating various fairness criteria for rankings, and

the FARE framework for auditing the fairness of rankings. FARE exposes tradeoffs

between metrics which evaluate different notions of fairness. In Chapter 8 we then further

investigate metrics which evaluate a single fairness definition – Statistical Parity – in a

comparative study. In Chapter 9 we define a new problem of fair rank aggregation.

A family of algorithms for exact and approximate solutions is presented. Chapter 10

discusses related work for fair ranking.

Chapter 11 concludes by sketching possible avenues for future work in visual analytics

for fair ranking which build on the areas of study in this dissertation.
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Interactive Ranking Analytics
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Introduction: Mixed-initiative

Ranking Systems

For decision making when the number of factors impacting choice is large, people often

consult rankings. A ranking can distill high dimensional information into a simple ordered

list, helping people to quickly grasp the relative merit of objects or choices. People

rely on rankings published by companies, consumer groups, and government agencies

for guidance across many domains - from consumer choices of products and services

[71], to pivotal life decisions such as college choice [87, 164], to evaluating the economic

competitiveness of different regions [51, 139]. Such rankings are typically consumed “off

the shelf”, lacking any personalization to reflect the priorities of individual users, and

using ranking procedures which are opaque to the user.

At the same time, powerful learning-to-rank algorithms [111] are used extensively

in web-based search and recommendation to provide personalized rankings to users (in

terms of top search results). Indeed, our everyday experiences are increasingly shaped

by powerful algorithms which produce such rankings over large data sets. Recently,

interactive systems have been proposed [72, 105, 147] which aim to assist users in creating

personalized rankings for their own decision making. Rather than consuming rankings

in the form of prescriptive evaluations, these systems allow users to control the ranking

process by specifying their personal preferences. This information is then used by the

system to produce a global ranking ranking over the entire dataset.

Interactive ranking systems rely on user-machine collaboration to facilitate sense-

making that would otherwise not be possible. Machine automation provides computa-

tional power to accomplish tasks laborious or impossible for a user, while humans provide

domain expertise, understanding of the task at hand, and personalized preferences. Inter-
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actions include manual adjustments of attribute weights, as well as specifying preferences

over items being ranked. Mixed-initiative systems [86] employ machine learning to learn

a global ranking from these interactions. A typical use case for an interactive ranking

system is a personalized college ranker. A student can use such a system to specify their

preferences over colleges they have visited so far, based on their own goals and interests.

The system then automatically generates a global ranking over a larger set of universities

that the student is not able to visit in person. This process may provide further insight

by revealing the data attributes used by the system to create the ranking – thus allowing

the student to better understand their own priorities. We revisit this example in our case

study evaluation in Section 4.3.

2.1 Challenges in System Design

The interplay of user interactions and automation must be carefully considered in the

design of mixed-initiative systems to allow the user to guide the automation effectively

and derive a truly valuable result. A key challenge in for interactive ranking lies in the

elicitation of preference information from users. While preference elicitation techniques

have been considered in the context of interactive recommender systems [2, 82, 99, 100],

their use in interactive ranking systems has not been formally evaluated. The impact of

different preference collection mechanisms on user behavior and level of satisfaction with

the ranking system is thus not well understood. Further, the specification of enough

information so that the learning engine can reliably infer a useful ranking represents

an arduous task for humans. Yet the availability of a large enough training dataset

over which to learn a ranking is pivotal in determining a meaningful ranking [151]. As

discussed by Crouser et al. in [46], for the design of appropriate systems we should

evaluate and quantify both the computational complexity of the processes used as well

as the complexity of the human effort itself. A final concern is that uncertainty inherent

in visual analytics systems has the potential erode users’ trust in the model, as examined

by Sacha et al. [134]. Communicating to the user to ensure their understanding and

confidence in the ranking process. Initial proposed systems do not provide guidance to

the user on the quality of the learned ranking for decision making.

To address these challenges, in part one of this dissertation we aim to better under-

stand the design and usability of mixed-initiative systems for ranking which are designed

to allow a single user to fully control the ranking process by explicitly specifying their

personal preferences. An initial requirements analysis for rank visualization was provided
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by Gratzl et al. in [72] to motivate the design of the Lineup system, a manual tool for

rank building. Next we build on this analysis with an in-depth requirements analysis for

interactive ranking systems which incorporate machine learning to automate the ranking

process. Additional considerations reflect principles for mixed-initiative system design

laid out by Horowitz [86], and guidelines for handling uncertainty in visual analytics

systems.

2.2 Requirements Analysis for Interactive Ranking

2.2.1 R1: Provide Significant Value-Added Benefit

Through Automation.

Following directly from the requirements laid out in [86], the ranking engine for mixed

initiative systems must be able to learn models that contribute meaningful insights to the

ranking process. This machine learning problem is different from conventional supervised

learning-to-rank settings in that there is no absolute “ground truth” ranking with which

to train a model. When we ask the user to input their knowledge about the dataset,

we cannot expect them to label objects with an exact position in the final ranking, as

might be provided in a traditional training dataset. If users were capable of performing

this task, they would not need to use an analytics system to aid their ranking process.

Instead, we expect that users will impart partial knowledge from which a ranking is

learned and then applied over the same dataset in a semi-supervised manner [144]. This

interaction helps the user gain a global understanding of an entire dataset. In the process

they may also come to understand their own intuition and preferences better, similar to

how systems for personal informatics encourage self-reflection [109].

To evaluate the value added through automation, we must consider metrics appro-

priate for 1) evaluating the performance of the ranking model, and 2) determining the

ability of the system to provide a ranking which satisfies the user. To address the former,

we can adopt approaches from active and semi-supervised learning for model evaluation

over a partially labeled dataset. An important consideration is estimating the “sample

complexity” of the ranking problem, i.e. the number of labeled training items needed to

outperform a random ordering in expectation [64, 132, 151]. Evaluating the latter hinges

on subjective evaluation by the user. Rankings are often used to capture an ill-defined

or complex quality, which is difficult to measure directly. For instance, in the context

of college rankings no one can say objectively that Harvard is a better choice than Yale,
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since the best choice will vary across individual students. HCI evaluation strategies are

required to evaluate how well the learned rankings reflect the user’s input.

2.2.2 R2: Capture Meaningful, Unbiased User Knowledge

The driving assumption behind the automated ranking process is that the user has par-

tial knowledge about objects in the dataset, from which a satisfactory global model can

be inferred. R1 therefore depends strongly on the ability of the user to specify their

preferences among the items in the dataset effectively. Ranking systems should capture

the users’ partial understanding of the problem in as intuitive a manner as possible. Fur-

ther, interaction mechanisms should be carefully designed taking the human analyst’s

cognitive ability into consideration. For instance, it has been shown that humans may

be more cognitively adept at making relative judgments [30, 38] rather than assigning

explicit value judgments. Interaction modalities should also capture accurate informa-

tion, unbiased toward any particular preference. For instance, display order can impose

a position bias on the choices made by users [75, 91, 159], as has been observed in web

search results.

2.2.3 R3: Avoid Excessive User Specification Effort

As discussed by Crouser et al. in [46], for the design of appropriate mixed-initiative

systems we should quantify both the computational complexity of the processes used, as

well as the complexity of the human effort itself. For interactive ranking, the user effort

involved in providing input to the system directly impacts the potential quality of the

ranking model. Machine learning ranking models require many labeled examples, but

too much tedious effort may prohibit user engagement [99]. Well-designed interfaces are

necessary to extract as much information as possible from minimal user input.

Existing interactive ranking systems [104, 105, 147] leverage pairwise learning-to-rank

algorithms, which reduce the problem of ranking a set of objects to the simpler binary

classification task over ordered pairs of objects [111]. According to sample complexity

results for active ranking, the number of labeled pairs required to establish a meaningful

ordering over a given set of items is quadratic in the number of items being ranked [151].

For even moderately sized datasets, the utility of such an approach could quickly be

outweighed by the burden on the user having to specify so many pair wise comparisons.

Therefore, user effort is a major concern in the design of visual analytics systems which

rely on pairwise learning-to-rank algorithms.
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2.2.4 R4: Foster Trust by Exposing Uncertainty

Finally, for human-machine collaboration to be effective in real-world systems, the user

must trust the predictions generated by the system. Tracking uncertainty as it propagates

through a visual analytics system has been identified as crucial for this task by Sacha et

al. [134]. This uncertainty should be communicated to the user to ensure their confidence

in the ranking process. For automatic ranking, uncertainty may be present at multiple

endpoints in the system, including:

1. Uncertainty in user preferences. The intuition or domain knowledge users have re-

garding the importance of data attributes may conflict with their opinions about the

relative merit of individual items. For example, in the context of college rankings,

a person may believe that college A is better than college B due to its reputation,

even though they value and must strive for affordability and college B is much more

expensive than college A. In this case, a trade-off between favoring one type of user

preference over the other arises in the global ranking model. It has also been ob-

served that when collecting preferences for recommendation, user ratings of items

are likely to be inconsistent or inaccurate [7]. Therefore in designing interactive

systems we cannot always count on the user to be a perfect oracle.

2. Disagreement between user input and the model. A user may think that their

preference information poses hard constraints on the model, and that whatever

order they set for the training items will always be reflected in the global ordering.

This is not the case – in fact the learning task is to match the partial input as close

as possible, with minimal changes. In general, it is not guaranteed that a weighted

attribute formula can be learned that matches the user’s preferences completely.

This may be confusing or frustrating (as observed by Wall et al. in the Podium

system [147]), and negatively impact user engagement and trust.

3. Uncertainty in the model. As discussed in R1 and R3, the quality of the generated

ranking model depends heavily on the amount of training data provided. Given

only a few pairs, the global ranking may not perform much better than a random

permutation. If the user is not made aware that the system does not have suffi-

cient information to render a clear ordering, they may not believe that the ranking

process is working effectively. Even with sufficient training examples, it is possible

that multiple rankings are equally likely as a result. In this case, the set of possible

outcomes should be available to the user.
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3

Evaluating Preference Collection

Methods for Interactive Ranking

As a first step toward meeting the requirements for mixed-initiative ranking systems,

this chapter presents an in-depth evaluation of different preference collection modes for

interactive ranking. We compare the impact of alternative interfaces which allow users

to explicitly specify their preferences over items in the dataset using relative judgments

(requirement R2). We evaluate both the performance of the machine learning algorithm

(R1) as well as user effort and behavior (R3). The study was published in the research

paper [102]:

Caitlin Kuhlman, Diana Doherty, Malika Nurbekova, Goutham Deva, Zarni Phyo,
Paul-Henry Schoenhagen, MaryAnn VanValkenburg, Elke Rundensteiner, and Lane
Harrison. Evaluating Preference Collection Methods for Interactive Ranking Ana-
lytics. In the CHI Conference on Human Factors in Computing Systems Proceed-
ings ACM, 2019

Three alternative methods for collecting preferences over items in the dataset are

evaluated: Sub-list Ranking, Categorical Binning, and Pairwise preference collection

methods. These interaction modes cover the spectrum of core methods that have been

employed in interactive ranking and recommendation systems to date (Detailed in the

Related Work in Chapter 5). Our study was conducted on the Mechanical Turk platform

using a between subjects design in which each participant was randomly assigned to one

of three preference collection modes. We implement each interaction mode as part of

a mixed-initiative ranking system (described in 3.1.2) to compare people’s interactions

using each of these three conditions.
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The contributions of the study include:

1. We design three alternative interfaces that embody the three distinct modes of

preference specification embedded into an interactive ranking tool to provide the

study subjects with an end-to-end experience.

2. We conduct a large scale (n = 144 subject) crowdsourced user study to evaluate the

complexity of the human effort in interaction, sample complexity of the information

extracted from interactions, and the impact on user satisfaction with the resulting

ranking.

3. Our study finds that the categorical approach provides the best value-added benefit

to users, requiring minimal effort, and encouraging them to provide statistically

significant more training data, which positively impacts the underlying machine

learning algorithm’s ability to create a preferred ranking result.

4. Our findings on different effects of the alternate preference modes raise interesting

questions requiring future investigation into the composition of interaction modes

and alternative means for driving up user engagement in ranking systems.

3.1 Method of the Study

Research question investigated in the study are (1) do users behave differently depending

on the interaction mode, (2) does the mode of interaction impact user satisfaction, and

(3) what kind of trade off does each mode offer to balance user effort with the training

requirements of the underlying ranking engine. Drawing on analytic approaches from

several recent studies examining user behavior [22, 55, 66, 81, 148], and analysis of the

computational complexity of system processes [46], we frame our research questions as

follows:

• Interaction behavior: does the collection mode impact measures of behavior

such as total time spent entering preferences, or the number of data items added?

• Self-reported user experience: does the collection mode affect the perceived

ease of use of the ranking tool? Does it impact their anticipated adoption of the

tool for ranking tasks?

• System performance: does the collection mode affect the size of the training

data generated from user preferences?
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3.1.1 Selection and Design of Alternate Preference Collection

Methods

(a) Sub-list
Ranking mode.

(b) Categorical
Binning mode.

(c) Pairwise
mode.

Figure 3.1: Alternative preference elicitation interfaces.

The three methods for collecting user preferences over items in the dataset chosen for

the study are: Sub-list Ranking, Categorical Binning, and Pairwise preference collection

methods. The use of pairwise comparisons has been popular for preference elicitation

[30, 38, 113]. List comparison is used in the recently proposed visual analytics system,

Podium [147], however we design our list to directly capture user preferences over a

subset of items, and we do not infer item relationships implicitly. Finally, to allow users

to group similar items as in previous ranking and recommendation systems [82, 105], we

implement an interface where users group items into categories: high, medium, or low.

The resulting collection interfaces are shown in Figure 3.1.

A pairwise learning-to-rank algorithm powers the ranking engine [91]. For this, pairs

of items are extracted from user interactions and used to train the ranking model. Details

of the machine learning process are given in Section 3.1.2. Each interaction mode is next

described in detail.

Sub-list Ranking Preference Collection. The Sub-list preference collection mode

(shown in Figure 3.1a) closely matches a typical ranking activity. Preferences are specified
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by sorting a subset of objects into a completely ordered list. Items at the top of the list

are preferred to those placed below. At a minimum, two objects must be placed in the

list so as to form one pair. The user then can add any number of additional items up to

specifying a complete ordering over all items.

Categorical Binning Preference Collection. The second preference collection method

uses a categorical approach (3.1b). Here users express their preference by binning a sub-

set of items into three categories: high, medium, low. Items within each category are

not compared. However, items in the high category are preferred to all items in both the

medium and low categories, and items in the medium category are preferred to all items

in the low category. Users must specify at a minimum two items in separate categories

in order to derive a ranking. The user may choose to organize objects in any two out of

the three categories, or use all categories, with any number of objects in each.

Pairwise Preference Collection. The last ranking method we consider is the Pair-

wise preference collection mode (3.1c). Here, users directly express their preferences as

binary relations between pairs of items. Users place items in ordered pairs, with the

object on the left compared to the object on the right. Unlike the other comparison

modes, in the pairwise interface the same object can be entered multiple times if it is

preferred to multiple other items.

3.1.2 College Ranker Interactive Ranking Scenario

These alternative preference collection modes are incorporated into an interactive College

Ranking system. The US News and World Report Best Colleges dataset1 is used. The

dataset contains both numeric and categorical attributes of colleges in the United States.

The system is composed of two views, a “Build page” where users enter their preferences,

and an “Explore page” where they view the global ranking generated based on their input.

They can iterate between these views to continually refine their ranking. These views are

shown in Figure 3.2 and described in detail as incorporated into a general mixed-initiative

system for ranking in the next Chapter, Section 4.2.

Ranking Engine. Under the hood, a mixed-initiative system for ranking leverages a

learning-to-rank machine learning algorithm to generate a global ranking of the dataset

1https://www.usnews.com/best-colleges/rankings/national-universities
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from the partial input collected from the user. We employ the RankSVM algorithm [91]

which uses a Support Vector Machine (SVM) to distinguish between correctly ordered

and incorrect pairs of data objects. The key idea is an assumption of a linear function

U(x) = ~wTx where ~w is a d-dimensional weight vector mapping each object in the dataset

xi to a value corresponding to its rank. Then the following holds true:

~wTxi > ~wTxj =⇒ ~wT (xi − xj) > 0

Therefore, instead of learning the ranking from the individual points xi in the training

dataset, the function can be learned over the combined feature vector (xi − xj) of each

ordered pair of objects. Each training pair is assigned a binary class label c ∈ {−1, 1},
where a label of 1 indicates a correctly ordered pair, and −1 indicates an inverted pair.

The weight vector ~w is a hyperplane decision boundary which distinguishes between these

two classes while maximizing the space between them. Once the boundary has been

learned from the training data, a global ranking over all unseen data can be extracted.

For each object xi, ~wxi gives a score ŷi which determines its rank position.

In a typical supervised learning problem formulation, the true ranking over all n

training data points is known. For interactive ranking, the problem is semi-supervised

[144], in that labels are given only for a subset of m < n data points. A key consideration

for the performance of the ranking model in this setting is sample complexity analysis on

the number of training pairs required to effectively learn a model. Wauthier et al. [151]

consider the sample complexity of the RankSVM algorithm. They observe that if pairs

are selected at random and labeled, then the RankSVM algorithm performs optimally

and requires O(n) pairs to produce a better than random expected result.

This complexity analysis is crucial to understanding whether interactive ranking can

be effective given a small number of examples from a user. Clearly, for dataset of n = 100

items, having to manually specify preferences over 100 pairs puts a non-trivial burden on

the user. To reduce this, elicitation techniques should generate as much information as

possible for the least amount of user effort. The mode of preference collection employed

impacts the number of pairs that can be extracted from the user input. We examine this

effect in depth in Section 3.2.2.

3.1.3 Pilots and Experiment Planning

Participants were recruited through Amazon’s Mechanical Turk (AMT) to participate in a

college ranking task. Two pilot studies were conducted to refine experimental instructions
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and pacing, and to estimate the required sample size for the final study. We conducted

effect size and statistical power analyses. Specifically, we estimated the variance in our

quantitative measures based on results pilot studies. These estimates were combined

with the observed means to approximate how many participants were needed to ensure

our experiments would reliably detect meaningful differences between the conditions.

Following Hara et al [79], our workers were paid $1.25 based on the average completion

time of 5-8 minutes in our pilot studies. Payments were structured as $1.00 base rate with

a bonus of $0.25 offered for creating a satisfactory ranking, to incentivize engagement

with the tool. Unbeknownst to the workers, they all were paid the bonus. Average hourly

wage for the full study was $10.42, exceeding US federal minimum wage of $7.25. Each

participant was randomly assigned to one of the three interaction modes and rewards

were consistent throughout the three methods. All participants viewed an IRB-approved

consent form.

3.1.4 Procedure and Tasks

Our procedure consisted of four phases: Training, Rank Building, Rank Exploration, and

Post-test Survey. Each phase is next described detail, and views of each phase are shown

in Figure 3.2.

Training: We provided participants with an instruction page that briefly described

their task and the interaction mechanisms in the ranking tool. For example, in the

sub-list collection mode, the instructions stated:

On the next page, you will use an interactive tool to create a personalized

college ranking. First, you will use the Build Tool to enter your preferences

about colleges in the dataset. Choose as many colleges as you wish and place

each one into a ranked list. After you make your selections, the system will

provide you with a ranking of the entire dataset of colleges based on your

initial choices.

Each specific interaction mode was described in detail, with animated gifs illustrating

the preference collection process. For the Sub-list mode users were instructed:

Drag colleges from the dataset on the left to the list on the right. Place

the most preferred colleges at the top of the list, and the rest in descending

order of your preference.
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1 3 42

Figure 3.2: Experiment phases: (1) training, (2) rank building, (3) rank exploration, (4)
post-test survey. Participants can iterate between build and explore unlimited times.

Rank Building: After viewing the instructions, users proceeded to the College Ranker

interactive ranking tool. The Build page contained the randomly assigned preference

collection interface. Participants were able to interact with the colleges in the dataset,

entering as many preferences as they desired, without any time limit. When participants

were satisfied with their preferences they could click a “Rank” button to advance to the

Rank Exploration phase.

Rank Exploration: The Explore page displayed the generated ranking over the entire

dataset in a tabular format. On this page users could explore the ranking by scrolling

or paging through results, examining the order of items and the scores assigned by the

ranking engine. From here users could click “Edit Preferences” button to navigate back

to the previous build page and amend or refine their preferences. Users were able to

iterate between the Build and Explore pages as many times as they wished. To complete

the ranking task, users could click “Finish Ranking”. A modal window prompted them

“Would you like to revise your ranking by returning to the Build page?” to ensure users

were aware of the option to return to build. Users could then click “Yes - Return to edit

preferences” or “No - This is my final ranking”, which advanced them to the final phase

of the study.

Post-test Survey: Participants were provide with a short set of statements and asked

to indicate their agreement to provide qualitative feedback.

3.1.5 Measures

To evaluate the three interaction modes, we collect a number of qualitative measures by

logging user actions during the Rank Building and Rank Exploration phases of the study.

We also record the time spent in each phase of the study. Interactions logged include:
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• Additions: the number of items participants entered into the preference collection

interface by dragging them from the data pool.

• Removals: the number of items participants removed from the preference collec-

tion interface and returned to the data pool.

• Selections: the set of items entered into the preference collection interface.

• Ranks: the number of times the user clicked the “Rank!” button to advance from

the Build page to the Explore page.

• Refines: the number of times the user clicked the “Edit Preferences” button to

return to the Build page from the Explore page.

To evaluate the system performance we consider the size of the training dataset

provided to the ranking engine using each interface. As detailed in 3.1.2 the training

data consists of pairs of data objects, generated from the preferences specified by the

user. We measure the training data size in two ways:

• Pair growth rate: the number of pairs p generated from m items entered by the

user. 1

• Actual pairs: an empirical count of the number of training data pairs generated

in practice.

In addition, self-reported quantitative measures were collected using the post-test

survey. Finally, using free-response questions, we also collect participant comments on

their ranking strategy and experience using the college ranker.

3.2 Results

144 participants were recruited through Amazon’s Mechanical Turk for the study. Out

of the total, 49 participants were randomly assigned to the Sub-list preference collection

mode, 45 participants to the Categorical Binning mode, and 50 participants to the Pair

preference mode. For each measure we compute quantitative results comparing each

study condition. In response to concerns about the limitations of null hypothesis sig-

nificance testing [47, 149], we model our analyses on HCI research that seeks to move

1We note this is a distinct measure from the total number of interactions performed by the user since
they may add, remove, and swap many items during the build phase before ranking.
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beyond these limitations (e.g. Dragicevic [57]). Following Cumming [47], we compute

95% confidence intervals using the bootstrap method, and use Cohen’s d to measure

effect sizes (the difference in means of the conditions divided by the pooled standard

deviation). Error bars in figures are the 95% confidence intervals (CIs).

●Category
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Pairwise
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(a) Number of Items Added

●Category
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Pairwise

5 10 15 20

(b) Number of Items Removed.

Figure 3.3: Comparing the number of user interactions across preference collection modes.

3.2.1 Elicitation Techniques and Observed User Behavior

Effect on Number of Interactions We found that the average participant who was

assigned to the Categorical Binning mode interacted with significantly more items (M =

69.9 items added 95% CI [46.4, 106.6]) from the dataset than those participants assigned

to the Sub-list or Pair modes (M = 18.6 items added 95% CI [12.1, 41.1], and M =

12.7 items added 95% CI [10.5, 15.6] respectively). Results are shown in Figure 3.3.

We interpret the confidence intervals following Cumming’s methodology [47]. Given

the upper and lower limits of the confidence intervals, the average participant in the

Categorical Binning group added at least 5 additional items during the build phase as in

the other two conditions, and up to 95 items more. The effect size as measured by Cohen’s

d between Categorical Binning and Pair preference modes is large: d = 0.79 [0.57, 1.06]

and between Categorical Binning and Sub-list modes d = 0.66 [0.27, 0.96]. There is a

small effect observed between Sub-list and Pair preference modes d = 0.22 [−0.24, 0.5].

We also count number of items removed from the preference collection interface during

the build phase. While there are fewer remove interactions on average, we observe a a

similar effect across modes. The average user assigned to Categorical Binning mode

removed more items (M = 13.4 items removed 95% CI [7.9, 23.8]) than in Sub-list mode
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(M = 5.3 items removed 95% CI [3.5, 8.9] or Pair modes (M = 3.6 items removed 95% CI

[1.9, 6.7]).The effect between Categorical Binning and Pair preference modes has effect

size d = 0.51 [0.23, 0.73], between Categorical Binning and Sub-list d = 0.42 [0.11, 0.71],

and between Sub-list and Pair modes d = 0.28 [−0.37, 0.78].

●Category

List
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(a) Time spent building in minutes.

●Category

List

Pairwise
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(b) Time spent exploring in minutes.

Figure 3.4: Comparing the time spent interacting with the preference collection interface
during the build phase.

Effect on Time Spent Interacting Despite the significant difference in the number

of items added, we do not see a corresponding difference in the amount of time spent

entering preferences in the rank building phase (Fig. 3.4a). Sub-list time building (M =

3.2 minutes 95% CI [2.3, 4.7]), Categorical Binning time building (M = 3.9 minutes 95%

CI [3.0, 5.2]), and Pair time building (M = 3.6 minutes 95% CI [2.8, 4.6]) do not exhibit

any significant effect from the preference collection mode used. Rank exploration time is

not significantly impacted by preference elicitation technique either (Fig 3.4b). Results

show similar Sub-list time exploring (M = 1.0 minutes 95% CI [0.7, 1.4]), Categorical

Binning time exploring(M = 0.7 minutes 95% CI [0.5, 0.9]), and Pairwise time exploring

(M = 0.9 minutes 95% CI [0.7, 1.1]).

Effect on User Satisfaction. We include some examples of the qualitative statements

presented to users in the Post-study survey (Fig. 3.5), which did not show significant

differences between preference collection modes. Even though users didn’t report a dif-

ference in the use of these three modes, the difference in the number of interactions tells

a different story.
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(a) The final ranking generated by the system reflected my personal prefer-
ences about colleges.
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(b) I would use this system to make decisions about colleges.

Category

List
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Strongly Disagree Disagree Neutral Agree Strongly Agree

(c) When I was entering colleges into the build tool, I could easily express my
preferences.

Figure 3.5: Qualitative assessment. Users were asked to indicate their level of agreement
with each statement.

3.2.2 Elicitation Techniques and ML Implications

Effect on Pair Growth Rate. As discussed in detail in 3.1.2, to learn a global ranking

over the dataset the ranking engine is trained over object pairs. To evaluate the effect of

alternative preference collection methods on system performance, we consider the number

of pairs that can be extracted using each elicitation technique. We derive the pair growth

rate for each mode (shown in Fig. 3.6a) which captures the number of pairs n that is

generated given m data items entered into the preference collection interface. Here we

consider the number of items collected when the user clicks “Rank!” to generate the

global ranking. Since objects are arranged differently in each preference collection mode,

there is a different pair growth rate associated with each.

Sub-list Ranking Pair Growth Rate: The list view specifies an explicit order over

the set of items. The pair growth rate of the list is thus
(
m
2

)
= m(m − 1)/2, reflecting

all possible ways of choosing ordered pairs from the list. This is a quadratic growth rate,

meaning if m items have been added into the list, then the number of pairs implicitly

specified is on the order of O(m2).

Categorical Binning Pair Growth Rate: The categorical comparison mode is
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(b) Actual number of pairs generated shown over growth rate curves,
shown in log scale.

Figure 3.6: Pair growth rates comparingm the number of items in the preference collection
interface to against p the number of pairs extracted.

more difficult to quantify, since a different number of objects can be added to each of the

3 bins. In the worst case, m−1 items will be placed in one bin, and only one item placed

in a second bin. In this case, only m − 1 pairs would be formed (O(m) linear growth
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rate). However, assuming an equal distribution of m/3 objects in each bin, many more

pairs are formed between the bins. In this best case, the growth rate is m2

3
possible pairs.

So, while this method is also quadratic in the best case, it has a slower minimum growth

rate than the list comparison. The max and min rates are both shown in 3.6a, with the

shaded region covering the possible range of pairs resulting from an uneven distribution

of items across bins.

Pair Preference Pair Growth Rate: This mode is most directly aligned with

the pairwise formulation of the underlying ranking algorithm. Here the user is asked to

specify each pair explicitly, meaning this is the most labor-intensive of the three modes.

Since two items are required to form every pair, the growth rate is m/2, also linear

and even slower than the min rate of the categorical mode. Fig. 3.6b shows the actual

number of pairs generated by users laid over the pair growth rates, shown in log scale

for readability. We can see that while the number of pairs generated by the Sub-list and

Pairwise modes are fixed dependent on m, for the Categorical mode some values fall in

the shaded region. On the whole it can be observed from this chart that users tend to

distribute data evenly among the bins in practice, yielding pair numbers of close to the

maximum rate for the Categorical mode.

Effect on Training Data Size We found that the average participant who was

assigned to the Categorical Binning mode generated significantly more training data

pairs (M = 2185 pairs 95% CI [1170,3805.5]) than participants assigned to the Pair-

wise mode (M=4.5 pairs 95% CI [3.9,5.2]), as indicated by Cohen’s d with effect size

d=0.63 [0.45,0.86]. Sub-list mode also resulted in fewer pairs on average (M = M=401.4

pairs 95% CI [55.1,1875.2]). These results are shown in 3.7. The effect size as measured

by Cohen’s d between Categorical Binning and Sub-list modes d=0.44 [0.01,0.69], and

between Sub-list and Pair preference modes 0.2 [0.16,0.26].

●Category

List

Pairwise

0 1000 2000 3000 4000

Figure 3.7: Number of pairs generated from user preferences.
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3.3 Discussion

The results of our study suggest that mode of preference collection can significantly

influence the number of interactions performed by users (Fig. 3.3), as well as the amount

of training data provided to the ranking engine (Fig. 3.7), without impacting the amount

of time spent by users (Figure 3.4), or ease of use of the ranking tool (Fig. 3.5). One

general implication of these results is that the Categorical Binning mode provides the best

tradeoff between user effort and training dataset size. We next turn our attention to other

possible explanations for these findings, and implications for the design of interactive

ranking systems.

3.3.1 Categorical Binning: High User Engagement and Expres-

siveness?

In the Categorical Binning mode, users interact with a large amount of data quickly,

organizing information using broad strokes, and providing the most training data to the

ranking engine on average. An added benefit of this interaction mode is that categories

can capture more ambiguity on the part of the user, in comparison to the Sub-list and

Pair modes. For example, items placed in the top category may be perceived by the

user to be preferred to the other items in the dataset, however, people are not forced

to impose a strict order among them. Future work might investigate more closely the

possible variations in user behavior and intent within binning modes, as it is possible

that a person would want to organize both between (the current focus) as well as within

categories.

Interaction modes using Pair preferences or Sub-list ranking resulted in smaller input

from users. Sub-list collection mode has the fastest pair growth rate, however in practice

many fewer training pairs were generated using this mode. Lists have high potential,

but rarely do people use them to their full capacity. Future research could draw on work

in human-computer interaction targeting search elicitation strategies, such as work from

Agapie et al. which explored UI components that led people to longer search queries

[1]. Merging “nudging” threads of research with rank preference elicitation may yield

additional evidence-driven design guidelines that better optimize the relationship between

the user and the underlying ranking algorithms being explored in similar systems today

[72, 104, 105, 147].

The Pair preference format received the lowest rating from study participants. This

aligns with the fact that the slow pair growth rate means that much more user effort is
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required to enter enough data to learn a useful ranking.

3.3.2 Towards Compositions of User Elicitation Techniques

Although the results of this experiment indicate that users add significantly more data

with the Categorical Binning technique, it should not be taken to mean that categorical

techniques are strictly superior to other elicitation possibilities. We posit that compo-

sitional approaches to user preference elicitation may be a path towards mitigating the

drawbacks of each approach while maximizing the amount and quality of information

the user provides to the system. For example, given that the Sub-List mode has the

fastest growth rate, and the fact that some participants (outliers) were observed to use

the list technique to its full potential, future interfaces could possibly combine the ben-

efits of both preference collection modes. Exploring these possibilities will likely require

additional experiments, and possibly the creation and evaluation of novel elicitation in-

teraction techniques. Recent work from Wall et al. on the Podium system can be taken

as a point in this design space [147], given their system allows users to directly manipu-

late a ranking results list. A recently proposed approach of “blended recommendation”

[112] which explores the use of manual interactions such as data attribute filtering and

weight adjustment combined with automated recommendation could also inform design

for interactive ranking.
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4

RanKit System for Personalized

Decision Support

Insights gained from our user study on preference collection methods and experience

designing the interactive College Ranker tool inform the design of RanKit, a general

purpose mixed-initiative system for interactive ranking. RanKit allows users to leverage

their intuition or partial understanding of a complex dataset to extract a global ranking

model. Careful visual interface design avoids biasing the user to any pre-specified order of

items, ensuring the resulting ranking is driven purely from user preferences. The system

not only learns relationships among the data points automatically, but it does so in a

way that is transparent to the user. Visual feedback communicates the impact of user

interactions in real time, allowing the user to drive the ranking process by changing their

input or specifying additional preferences. We demonstrated the RanKit system at the

2018 CIKM Conference [104].

Caitlin Kuhlman, MaryAnn VanValkenburg, Diana Doherty, Malika Nurbekova,
Goutham Deva, Zarni Phyo, Elke Rundensteiner, Lane Harrison. 2018. Preference-
driven Interactive Ranking System for Personalized Decision Support. In The 27th
ACM International Conference on Information and Knowledge Management, ACM
2018

4.1 RanKit System Overview

The RanKit system overview is depicted in Figure 4.1. Datasets to be analyzed are

imported and preprocessed to clean missing values, encode categorical attributes, and

normalize the data, before being housed in the RanKit Data Store. Plug-and-play design
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Figure 4.1: RanKit system overview.

allows for any pairwise learning-to-rank algorithm to power the backend Ranking Engine.

User preferences are collected in the Visual Analytics layer (top of figure). From these

entries, pairwise relationships between items are extracted and sent to the machine learn-

ing algorithm at the Execution layer (middle of figure). RanKit computes the ranking

model in real time. The weights of data attributes are updated incrementally with each

change in the build view. In addition, diagnostic metrics are continually computed and

sent back to the analytics layer. For our demonstration, we allow the user to choose

among the three preference collection modes evaluated in our user study [103]: Sub-list

Ranking, Categorical Binning, and Pair preference modes. At any time, the user can

switch to the Explore view, triggering ranking predictions to be made and the global

ranking over all items to be sent to the front end for display. The user is free to alternate

between visual modes to refine their ranking.

4.2 RanKit Key Innovations

Build, Explore, Explain Paradigm. The design of the RanKit system addresses a

number of the considerations detailed in the requirements analysis given in Chapter ??

using a “Build, Explore, Explain” approach. RanKit features dual interfaces that sepa-

rate out the two core interaction modes, namely, the “Build” view for specifying prefer-

ences over items and the “Explore” view for evaluating data attributes. This separation

avoids predisposing the user toward any particular preference choices (as recommended
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in requirement R2). These views are shown in Figure 4.2.

Build View. The Build view (Fig. 4.2a) has two main components - the data is

displayed on the left side of the screen and the preference collection interface on the

right. To avoid biasing the user toward any pre-ranked numeric or lexicographic ordering

[131], we display the colleges from our target dataset in a “data pool” where they are

represented only by name, arranged in a grid format. As a user may want to further

learn about each college and its properties, we provide the attribute values for each item

in a tooltip accessible on hover. On page load, the dataset is randomly shuffled and

displayed in the data pool. Multiple navigation modes are offered: users can search for

a college by name, sort the data alphabetically, or use the“Shuffle” button to randomly

permute the data. All three build modes employ the same basic interaction – to enter

their preferences, the user drags colleges from the data pool into the preference collection

interface (3.1) on the right. Users can move as many objects as they want, swapping their

order and moving them between the pool and the different fields within the comparison

tool.

Explore: Global Ranking Interface. Once the user hits the “Rank!” button, they

are redirected to the “Explore” view. A thinking step displays a spinner and message

“we are computing your global ranking ... ” to communicate to the user the conceptual

division between the data they have manipulated to train the underlying model, and

the learned global ranking displayed in the explore view. The Explore view (Fig. 4.2b)

visualizes the learned college ranking in a table. To easily identify and evaluate their

input from the previous view, colleges that the user manipulated are highlighted with

bold text. Here users can evaluate the relationship between the ranking and underlying

data attributes, along with the learned expression of the ranking as a weighted data

attribute model. Iterating between these two interfaces, users can continually refine

their ranking and drive the knowledge generation process through collaboration with the

learning method to achieve a desired result.

Explain. To further elucidate the rank learning process, we incorporate “Explain”

features throughout the RanKit system, aiming to build user trust by explicitly commu-

nicating the amount of uncertainty around the ranking currently learned by the system

(requirement R4). This is realized by showing incremental changes to the ranking model

resulting from user interactions. In addition, we visually encode the confidence of result-
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(a) The RanKit Build view consists of the data pool on the left and preference collection interface on
the right. Preferences over the Movies dataset are shown in Sub-list mode.

(b) RanKit Explore view shows a ranking learned over the Colleges dataset.

Figure 4.2: Views in the RanKit system.
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Figure 4.3: RanKit Explain features: (top) Normalized weighting for each attribute in
model. (bottom) progress bar shows overall confidence score.

ing predictions and the quality of the overall model. We design our uncertainty criteria

by closely studying active learning techniques for ranking [131], and informed by our

complexity analysis.

Measuring uncertainty to foster user trust and understanding To measure the

user’s progress and evaluate the quality of the ranking model we design confidence metrics

which are continually updated and visualized for the user. In turn, the resulting global

ranking will match their expectation, and produce a model they trust. To evaluate the

overall expected quality of the ranking model, we measure the number of concordant and

discordant pairs predicted for the training dataset, adjusted by an estimate of a sufficient

minimum number of training pairs. This confidence score is displayed as a progress bar

in the Build view, instantly communicating to the user that as they add more data, the

quality of the model improves. This encourages interaction in this crucial build stage to

ensure that the resulting model will be able to distinguish between items in the dataset

in a meaningful way.

In addition to measuring overall model quality, we design a metric to evaluate the

predictive ability of the model for each individual item in the dataset. In RankSVM, the

most ambiguous pairs of items are those closest to the decision boundary. Therefore, to

derive a score for each item, we aggregate the distances to the boundary over all pairs

it appears in. If the pairs containing a particular item tend to be far from the decision

bound, then it will have a high confidence value. If many pairs containing the item are

close to the decision boundary, this means its rank is difficult to distinguish from many

other items. Therefore the confidence of the prediction will be low. Individual item

confidence scoring allows the user to identify items which may be useful to enter in the

build view to provide more information to the ranking engine.
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4.3 Case Study Evaluation

In our demonstration of RanKit we included several real datasets from diverse domains

for analysis, including colleges 12, movies 3, games 45, sports 6, and the US economy 7.

The following case study on college ranking illustrates the capabilities of RanKit.

Choosing a dataset and comparison method. Alice is a high school junior deciding

where to apply for college. She has toured several schools around her home state. Some

made a good impression while others were definitely not for her. She also has a couple

of “dream” schools that she would love to attend. Given this partial understanding of a

few colleges, Alice would like to know how her other potential choices stack up. She uses

RanKit to analyze the colleges dataset containing both numeric and categorical attributes

of US colleges including the size, cost of tuition, geographic region, and acceptance rate.

Alice selects the colleges dataset to load and display the cleaned data in the Build view.

Entering preferences in the Build tool. Figure 3.1a shows the Build view lay-

out. Colleges to be ranked are displayed on the left-hand side of the screen in a grid,

with items arranged randomly. This avoids implying preference according to numeric or

lexicographic order. Data attributes for each college can be accessed as a tooltip.

On the right side of the Build view, Alice has a choice of three preference collection

formats. Alice decides that Categorical Comparison mode is the easiest way to enter

her preferences among the colleges she is familiar with. She uses the search box to find

her “dream colleges” in the data pool and drags them to the high category. She puts

the schools she dislikes in the low category. She can move as many items as desired,

swapping their order and moving them between the pool and the different fields within

the comparison tool.

Once Alice enters items into two different categories, reactive visualizations begin

showing the incremental progress of the ranking engine. The model weights appear as a

bar graph in the header of the page, changing in real time to show the impact of item

preferences on the learned importance of the attributes. In addition, an overall confidence

1https://collegescorecard.ed.gov/
2https://www.usnews.com/best-colleges/rankings/national-universities
3https://www.kaggle.com/rounakbanik/the-movies-dataset
4https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings
5https://www.kaggle.com/mrpantherson/board-game-data
6https://www.sports-reference.com/cfb/
7http://matters.mhtc.org/
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score for the model is shown in a progress bar below the comparison tool. At this point,

the progress bar shows a low confidence score meaning that no reliable rankings can be

generated using her current input preferences.

Transitioning from the Build view to the Explore view. Impatient to see results,

Alice hits the “Rank” button and is redirected to the “Explore” view. The global ranking

over all colleges is displayed in a table, along with data attribute values. Several visual

encodings communicate information learned from the interactions in the previous view.

Color is used to visually associate the column headers with the attribute weights in the

bar graph at the top of the page. Items entered in the Build view are highlighted with

bold text. The overall score assigned to each item is indicated with gray horizontal bars

(the numeric score is available on hover). These scores are determined by a weighted

combination of the data attributes according to the learned model. In addition, a confi-

dence value is determined for each item. This is visualized using the background coloring

of the first columns of the table, with darker colors indicating higher confidence (the

exact confidence score can be accessed as a tooltip). At a glance, Alice finds that none of

the colleges listed at the top of the ranking have high confidence values. This indicates

that she has not yet entered sufficient information. Alice thus decides to return to the

Build view to improve her model.

Using feedback to improve ranking. This time, Alice adds the colleges that she

visited and liked into the medium category. She notices that the confidence value in

the progress bar goes up. Alice uses the “Shuffle” button to permute the items in the

data pool to browse the rest of the colleges. Reflecting on what her goals are for college,

Alice decides to add colleges with strong Science programs to the High category, and

some without to the Low category. Continuing this way, Alice drags colleges into the

comparison interface until the progress bar reaches 99%. Switching back to the Explore

view, Alice sees the ranking shown in Figure 4.2b.

Understanding the ranking model. This time, Alice is pleased to see several of her

favorite colleges are at the top of the ranking, as well as some she hadn’t considered. The

confidence values for these individual items are higher now. Alice hovers over the bar

graph in the top right corner to see which attributes contribute the most to her model.

She sees that enrollment is a significant contributor to the ranking, and observes that

the colleges she prefers have a tendency to be large research universities.
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Making a decision from the data. Looking at her ranking, two colleges that are

unfamiliar to Alice stand out. California Institute of Technology and University of South-

ern California are ranked among the top ten colleges with high confidence values. Alice

decides to spend additional time researching these schools to better inform her college

application choice.
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Related Work

In recent years, several multi-attribute ranking systems have been developed to help

users visualize and interact with rankings [29, 72, 104, 105, 126, 140, 147]. Manual

systems focus has on aiding users in adjusting data attribute weights of a multi-criteria

ranking and visualizing the resulting impact across attribute subsets [126], alternative

rankings of the same items [72], and rankings over time [140]. In mixed-initiative systems

[86] including Podium [147] and our RanKit system [105], a machine learning algorithm

learns a global ranking of dataset based on the user’s preferences over a subset of items.

these systems aim to better capture the user’s intuitive understanding of the relative

value of the objects to be ranked.

5.1 ML Algorithms for Interactive Learning-to-Rank

Mixed initiative ranking systems employ learning-to-rank algorithms, originally devel-

oped and most commonly applied for Information Retrieval [111] and Recommender

Systems [2]. Existing systems [104, 105, 147] adopt a “pairwise” formulation of the

learning-to-rank problem [111]. First introduced by Herbrich in [83] for ordinal regres-

sion, and later applied to document retrieval by Joachims [91], the pairwise formulation

allows a ranking to be learned using a binary classifier applied to pairs of data instances.

Building on this result, any classification model can be employed for learning-to-rank,

and many have been proposed [27, 67, 91, 125]. As detailed in Section 3.1.2, RankSVM

[91] features a number of properties that naturally fit the interactive ranking task.

Ranking in mixed initiative systems [104, 147] is semi-supervised, where a subset

of data is manipulated by the user, and labels extracted from these interactions are

leveraged to transform the entire dataset into a consistent ranking. Ideally, methods
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employed for this task will be effective at rank generation while requiring only a minimal

effort on the part of the user. Much recent work has been done to characterize the sample

complexity of pairwise formulations of ranking problems [64, 132, 151]. In particular,

Wauthier et al. [151] show that O(n) training pairs are required to learn a model that will

perform better than random in expectation. However, for our purpose, labels provided

by users are not selected randomly as assumed in this analysis. Additionally, in these

cases, a true underlying model is not necessarily assumed which can be learned from the

data attributes. For training over data attributes, active learning methods [42] find the

most informative pairs to label, again improving the sample complexity of the problem

[114, 131, 158]. Thus active learning techniques have potential to improve the amount of

effort required by the user to learn high quality rankings.

5.2 Preference Elicitation Techniques

for Interactive Ranking

Interactive ranking systems use different mechanisms to collect user preferences. In an

initial prototype [104], we demonstrated interactive ranking in the context of measur-

ing economic competitiveness. There users directly specified pairs where one object is

preferred to another. In Podium [147], a semantic interaction approach [62] is applied.

Preferences are inferred from users’ interactions re-ordering items in a list, rather than

being directly specified by the user. For insight into the problem of collecting user pref-

erences, we can also look to the wealth of research around HCI for recommender systems

[28, 82, 99, 100], which rely on ranking according to user preferences as a subtask. How-

ever, it is important to note some key differences between recommendation and ranking

systems. Recommender systems aim to automatically find interesting items in a dataset,

while interactive ranking systems help users find patterns in the data through explo-

ration. For recommendation, user preferences are often collected implicitly, based on

interactions such as search queries or click-through logs. Preferences of multiple users

are typically aggregated, using collaborative filtering [2] to make predictions. In an in-

teractive ranking setting, a subset of data is manipulated by a single user in order to

deliberately train a ranking model. The model is then applied to create a global ordering

over the same dataset in a semi-supervised [144] manner.

For recommendation systems, it has been observed that user satisfaction is positively

impacted by a sense of control over the recommendation process [28, 100]. As discussed
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in a survey by He et al. [82], explicit interaction and visualization have been incorporated

into a number of recommender systems to improve qualitative aspects of the recommenda-

tion process. User preferences may be used to match similar users or address “cold start”

problems. The most prevalent way recommender systems collect information about items

is to have users rate them (such as giving a rating out of 5 stars for instance). However,

it has been shown that such absolute evaluations are difficult for users to perform, and

studies demonstrate that user ratings can be inconsistent or inaccurate [7] Humans are

more cognitively adept at making relative judgments [30, 38]. Some interactive recom-

mender systems accomplish this by allowing users to group together items they consider

similar [82, 112]. Organizing recommendation results in categories has also been shown

to help users identify qualities such as diversity [88]. One recommender system [113]

evaluated the impact of collecting pairwise preferences over a subset of items, finding

that it improved user satisfaction.

5.3 Visualizing Ranked Data

A common approach to visually represent rankings is in a table or list view, which

can be intuitive to navigate given most users’ familiarity with tools such as spreadsheets.

Sophisticated designs have added interactivity and additional functionality to such ranked

data views. As an example, the Lineup system [72] accomplishes a number of things

in one integrated table view. Items are arranged in ranked order with the underlying

data attributes indicated using color. Attribute impact on the score for each item is

indicated by the size of horizontal bars. Stacking these bars gives a visual indication

of the distribution of the scores through the list. Views also compare multiple rankings

against one another. One thing that is hard to convey using this table approach however

is a holistic understanding of the ranking. Users have to scroll through the table to see

all the results. The Lineup and Podium systems overcome this using a ”snapshot” views

that summarizes information concisely in a small histogram.

Stacked bar charts are popular for comparing attribute weightings [29, 72, 126, 147].

In the Valuecharts system [29], three visualizations are suggested for the comparison and

manipulation of attribute weights. A stacked bar chart shows the values of weighted

attributes for each item being ranked. Proportional bar charts represent each attribute

in a separate chart which is scaled according to the weight of the attribute, to help

the user compare the values of attributes across objects. Last, an exploded divided bar

chart gives users the ability to manipulate the weights of attributes to understand the
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sensitivity of the model to the attributes.

Interaction with these visualizations facilitates exploration of different possible weight

combinations. However, assigning attribute weights is a taxing process. The user may

have to guess at initial weightings, and the effort required to explore the entire space of

possible combinations can be prohibitive. One solution is to visually represent a space

of possible rankings. Many approaches have been proposed for this task. In the study of

permutations, graph representations (i.e. Cayley diagrams) and permutation polytopes

[156] have been used to represent the groups of permutations visually. However, such

tools are limited to rankings over small sets of items. For high-dimensional rankings,

Kidwell et al. [95] use the Kendall tau distance to implement multidimensional scaling

(MDS) over incomplete rankings to visualize them in two dimensional space. One system,

WeightLifter [126], automatically characterizes relevant regions of the ranking space to

provided guidance on the choice of weights to the user. For instance, stable regions of

rank sensitivity are visualized to help the user understand how small changes in the data

affect the rank outcome. Many aspects of interactive visualization of multiple rankings

remain to be explored. We discuss possible research directions in Chapter 12.
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Ranking for Fair Decision Making
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6

Introduction: Fair Ranking

6.1 Motivation

As sophisticated machine learning increasingly impacts our lives on and offline, there

is growing concern that discriminatory practices will be baked into automated decision

models [12, 124]. Research on algorithmic fairness aims to ensure fair practices with

respect to sensitive data attributes, e.g., race, gender, or age, which by law are not

permitted to determine decision outcomes. The bulk of recent work in this area [39, 44,

59, 65, 80, 98, 130, 160] has targeted classification tasks, where predictive models are

used to determine a binary outcome. A number of fairness criteria have been proposed

for this task, and the benefits and trade-offs between criteria have been explored [44,

130]. It has been shown that in general, not all criteria can be simultaneously satisfied

[39, 98]. The correct fairness criteria to apply is therefore highly dependent on the

problem domain. Recently attention has shifted to include fair ranking which is critically

important for information retrieval (IR) tasks underlying socio-technical systems. The

need for meta-analysis of fair ranking evaluation metrics has been observed by leading

fairness researchers [123], however to-date this has been an understudied area.

Increasingly, rankings not only mediate people’s access to information online, but also

screen and filter candidates for tasks such as hiring and university admissions [37, 70, 78,

150]. The fairness of ranked search results may be impacted by many factors, including

historic bias or misrepresentation of groups in training data [141], bias encoded in tools

used to parse the data such as for image [26] and text analysis [21], as well as implicit

bias inherent in users’ interaction behavior [33]. Ranking algorithms used in IR systems

may exacerbate such unfairness in a rich-get-richer fashion [123].

IR systems often serve multiple stakeholders and optimize for multiple concurrent
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goals (e.g. relevance, novelty, etc.), and fairness definitions are highly dependent on

context. Therefore in this dynamic setting multiple fairness metrics are required as

appropriate for various scenarios. An in-depth understanding of proposed metrics is

required to guide practitioners in choosing the right metric for their application, and to

facilitate oversight and agreed upon standards for measuring unfairness in rankings.

6.2 State-of-the-Art Fairness Metrics for Ranking.

Initial proposed fairness definitions for ranking mainly target group fairness [34, 70, 106,

141, 155, 161, 162], which aims to ensure equal treatment or outcomes for groups of

people according to protected data attributes such as race, gender or age. The majority

of these works adopt statistical parity measures. Statistical parity is one of the simplest

fairness definitions, which dictates that each group receive fair proportions of favorable

outcomes. Statistical parity is particularly useful when there is a diversity requirement in

place to achieve distributional justice for groups that have historically been discriminated

against (e.g., motivating the 80% rule in discrimination law [65]).

However, it has been observed that enforcing statistical parity may exact a high toll

in terms of predictive accuracy, and possibly infringe on fairness for individuals [58].

For such reasons, adaptations of other fairness definitions from classification have also

been proposed for rankings. Individual fairness originally for classification proposed by

Dwork et al. stipulates that similar individuals should be treated in the same way. This

standard is applied for rankings by Biega et al. [18]. Equalized Odds criteria, proposed

for classification by Hardt et al. [80], seek to ensure that the probability of an object

being assigned a particular label by the classifier is independent of its group membership,

conditional on the true class label. To verify this, Equalized Odds stipulates that the

false positive and true positive error rates must be similar across all groups. Fairness

based on equal error-rates for groups is proposed in our work (presented in the next

chapter [106]). Other analogues have been proposed for IR by Singh and Joachims [141]

by considering exposure of items in proportion to relevance. Finally, causal definitions

of fairness [119, 152] aim to understand the relationships between data attributes and

predicted outcomes, as an alternative to measuring fairness using evaluation metrics.

Limitations of Metric Design. Fairness definitions for classification tasks hinge on

the fact that some people being evaluated will receive a favorable outcome and some will

not, corresponding to a positive class and a negative class. For ranking tasks determining
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a preferred outcome is more subtle. In this case rank position determines the outcome

for the items being ranked, with distinct advantages conferred to those items at the top.

However in rankings position is relative – it depends on many factors such as the quality

of the rest of the items in the list and the importance of specific positions in the ranking

(i.e. position bias [92]). Proposed fairness metrics for ranking attempt to account for

this by measuring group advantage in a ranking following established strategies in IR:

employing top-k analysis [34, 155, 161], pairwise inversions [106, 121], and cumulative

discounted metrics [70, 141]. Notions of user attention [18] and exposure of items being

ranked [141, 162] have also been used to frame the problem.

Comprehensive comparative analysis of these approaches is lacking. It remains an

open question whether the advantage being measured by one metric is actually the same

phenomena being measured by another using a different formulation. Further, to date

guidance is unavailable for deciding when say, a pairwise metric might be preferred to

an exposure-based metric or a top-k metric, or when they are they all equivalent. In

fact, it is not clear what evaluation strategy should be used to even compare metrics that

quantify group advantage in different ways. If this basic premise is not well understood,

then designing even the simplest fair ranking metrics is fraught with uncertainty.

Therefore in part two of this dissertation we investigate fair ranking evaluation metrics

in depth. In Chapter 7 we propose a pairwise formulation of fair ranking evaluation

metrics which allows error-based notions of fairness to be adapted from classification

to ranking. We use these metrics to demonstrate tradeoffs between different notions of

fairness. Then in Chapter 8 we dig deeper into a single definition of fairness – statistical

parity – and compare ways that group advantage can be compared in rankings. Finally

we consider fair ranking in a new problem setting of rank aggregation in Chapter 9. First

we formally define the fair ranking problem.

6.3 Fair Ranking Problem Formulation

Ranking can have different meanings in different contexts, and ranking models can be

trained over various types of ground truth information. Rank predictions can be learned

from training data with binary labels (e.g., in bipartite ranking [45]) or discrete la-

bels with ordered classes (i.e., ordinal regression [83] with labels such as “best”, “neu-

tral”, “worst”). Traditional regression ranks according to continuous scoring functions.

Learning-to-rank approaches also include pairwise and listwise models [111].

Therefore, to be widely applicable, we target general rankings with a model-agnostic
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approach. We assume only that an ordering is given for a set of candidates xi ∈ X.

This determines a ranking of X which is a permutation ρ = [x1 ≺ x2 ≺ ... ≺ xn] over

all candidates. Here ≺ is a complete ordering relation on X such that xi ≺ρ xj implies

that xi appears at a more preferred position than xj in the ranking ρ. The position of a

single candidate xi in the ranking ρ is denoted ρ(xi). We adopt the convention that low

number positions are favored over higher ones, i.e. ρ(xi) = 1 is the best rank position.

Unique to the context of fairness analysis, each candidate being ranked also has

associated protected attributes (e.g., race, gender, or age). These attributes partition the

dataset into two or more disjoint or overlapping groups {G1, . . . , Gm | ∪mi=1 Gi = X}.
Traditionally, one group corresponds to minority or otherwise disadvantaged groups of

people according to legally protected data attributes such as race, gender, or age. Fairness

of a predicted ranking ρ̂ is assessed according to some Fairness Criteria which relies on

a group error function L.

Definition 6.1. Given a group error metric LGi
(ρ, ρ̂), a Fairness Criteria (FC) is

an evaluation rule which designates a ranking ρ̂ as fair in relation to a true ranking ρ if:

LGi
(ρ, ρ̂) ∼= LGj

(ρ, ρ̂) , ∀Gi, Gj i 6= j

Fairness is evaluated by checking whether the error for each group is similar, or within

some threshold, indicated by the symbol ∼=. The larger the difference in the errors for

each group, the more unfair the ranking is considered to be. Our assessment therefore

hinges on the choice of a rank-appropriate group error function L.

6.4 Defining Groups

Although most work on algorithmic fairness considers the case of two binary groups, in the

real world, candidates may have intersectional identities belonging to more than one pro-

tected group [26]. In the context of information retrieval, candidates might additionally

be text or image information representing people [141], which could even have multiple

people associated with candidate item [54]. Often, in practical cases the sensitive data

may not be available for analysis, and evaluation strategies may depend on estimates of

the likelihood that a candidate belongs to a certain group [136]. Or the problem setting

may be more expansive, including for instance attributes such as the political leaning of

news sources [133]. Questions around group identity are extremely important, unfortua-

nately they are beyond the scope of this dissertation. We discuss potential extensions of
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our methodologies to multiple overlapping groups where appropriate. For simplicity, we

henceforth consider two distinct groups in our fairness analysis.
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7

Fair Ranking using Pairwise Error

Metrics

This chapter presents fairness metrics for evaluating several notions of fairness for rank-

ing. An auditing mechanism then is designed to produce nuanced diagnostics using our

proposed fairness metrics. The efficacy of this approach is demonstrated using both a

controlled case study and real-world scenarios, exposing trade-offs among fairness crite-

ria and providing guidance in the selection of fair-ranking algorithms. This work was

published in the paper [106].

Caitlin Kuhlman, MaryAnn VanValkenburg, Elke Rundensteiner. FARE: Diagnos-
tics for Fair Ranking using Pairwise Error Metrics. The Web Conference 2019

7.1 Proposed Fairness Metrics

To design a general approach for evaluating group error in rankings, we consider founda-

tional approaches for comparing rankings [52]. One classic method is to sum the absolute

difference in rank position between the true and predicted rankings for each object in the

dataset (i.e., to use the Spearman footrule distance [53]). Another popular methodology

uses the pairwise error, or Kendall Tau distance [94], by counting the number of inverted

or discordant pairs of objects in the predicted ranking compared to the true ranking.

These two classic approaches to measuring rank similarity have been shown to be equiva-

lent, meaning the Kendall Tau is always within a constant factor of the Spearman footrule

distance [53, 107]. Given this insight, the two metrics have been used interchangeably

for tasks such as rank aggregation [60, 107].
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All Pairs in ρ̂

Concordant Discordant

c1 ≺ c2 c4 ≺ c2

c1 ≺ c3 c4 ≺ c3

c1 ≺ c4

c2 ≺ c3

Figure 7.1: On the left is a true ranking of colleges ρ and predicted ranking ρ̂ over two
groups of colleges. The resulting discordant and concordant pairs are shown on the right.

For fairness assessment, the same reasoning applies in that either metric could be

adapted to this task. However, since we are concerned with the comparative ranking

outcomes for different groups, the pairwise approach provides a natural formulation.

Figure 7.1 shows the sets of concordant and discordant pairs between two rankings of

colleges. We observe that any such ranking containing objects from two different groups,

Gi and Gj, can be divided into three subsets of pairs: those containing only objects from

group Gi, those containing only objects from Gj, and the set of “mixed” pairs containing

one object from each group. These pairs can be concordant, meaning they are ordered

in the same way in each ranking, or discordant, meaning their order is inverted in the

predicted ranking. For our error metrics we will use pairwise comparisons to evaluate

fairness by considering pairs where one groups is favored over another. We denote the

total number of unordered pairs in a ranking over items in X as Φ(X) = |X|(|X| − 1)/2.

Other sets of pairs are indicated with additional notation given in Table 7.1. I(·) is the

indicator function which equals 1 if · is true and 0 otherwise.

7.1.1 Rank Equality

The Equalized Odds criteria for classification measures fairness by the rate at which

groups are falsely assigned to the preferred or non-preferred classes. When evaluating a

ranking, there are no binary assignments by which to gauge preference. However, position

in a ranking does indicate a preferred or undesirable outcome - the top of the ranking
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Symbol Value Description

Φ(X) |X|(|X| − 1)/2 Number of pairs in a ranking.

Φi,j(X) |Gi||Gj |
Number of mixed pairs containing one
item from each group Gi, Gj .

Φi≺j(X)
∑

xi∈Gi,xj∈Gj

I(ρ̂(xj) ≺ ρ̂(xi))
Number of mixed pairs favoring objects
from group Gi over objects from Gj in
the predicted ranking ρ̂.

ΦD
i≺j(X)

∑
xi∈Gi,xj∈Gj

I(ρ(xj) ≺ ρ(xi) and ρ̂(xi) ≺ ρ̂(xj))
Number of concordant pairs favoring Gi
over Gj in ρ̂.

ΦC
i≺j(X)

∑
xi∈Gi,xj∈Gj

I(ρ(xi) ≺ ρ(xj) and ρ̂(xi) ≺ ρ̂(xj))
Number of discordant pairs favoring Gi
over Gj in ρ̂

Table 7.1: Notion denoting the number of pairs in different subsets of rankings.

being analogous to the positive class. When an object is overestimated by the model it

is incorrectly assigned a more preferred position than in the true ranking. This is similar

in effect to a false positive error made by a classifier. Accordingly, underestimating

the position of an object in the ranking incorrectly penalizes it, as in a false negative.

Following this principle, we compute the Rank Equality error for group Gi in terms of the

number of discordant pairs which erroneously favor Gi over items from another group

Gj in the predicted ranking. Our proposed metric in Definition 7.1 captures the rate

at which objects from group Gi are incorrectly overestimated compared to objects from

Gj. The Rank Equality error is normalized by the total number of mixed pairs ensuring

that the error falls in a range of [0, 1]. Normalization creates an interpretable measure

of preference and accounts for any imbalance in the size of the groups.

Definition 7.1. Rank Equality Error. Given a ground truth ranking ρ and a predicted

ranking ˆrho of items xi ∈ X belonging to two mutually exclusive groups G1 and G2, where

φDi≺j(X) denotes the number of discordant pairs which favor the target group G1 over G2

in ρ̂, i 6= j, Rank Equality for Gi is computed as:

ReqG1(ρ, ρ̂) =
ΦD
i≺j(X)

Φi,j(X)

Rank Equality dictates that no group should be unfairly privileged or penalized com-

pared to another group. As an example, consider the rankings shown in Figure 7.1. To

compute the Rank Equality errors for groups G1 and G2, we count the number of discor-

dant pairs where an item from one group is favored over the other. Four pairs contain

an object from each group: (c1, c2), (c1, c4), (c2, c3), (c3, c4). One of these pairs (c3, c4) is

45
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discordant and favors G2, since ρ̂(c4) ≺ ρ̂(c3) and ρ(c3) ≺ ρ(c4). Thus ReqG2(ρ, ρ̂) = 1
4
.

No discordant pairs favor G1, so ReqG1 = 0.

7.1.2 Rank Calibration

Calibration is used to evaluate probabilistic classifiers in terms of the confidence of the

model, using the mean squared error between predicted likelihood of assignment in the

positive class and an estimated “true” probability [31]. Applied as an FC, calibration

checks how well the classifier predicts objects in each group. To evaluate the calibration

of a ranking ρ̂ for a group Gi, we propose to measure error in predicted rank position

by counting the number of discordant pairs which contain at least one member of Gi, as

given in Definition 7.2. This captures the overall error made for items in the group. The

value is normalized by the total number of pairs containing objects from Gi.

Definition 7.2. Rank Calibration Error. Given a ground truth ranking ρ and a

predicted ranking ˆrho of items xi ∈ X belonging to two mutually exclusive groups Gi and

Gj, where ΦD
i (X) denotes the number of discordant pairs containing at least one object

from the target group Gi, Rank Calibration for Gi is computed as:

Rcal Gi
(ρ, ρ̂) =

ΦD
i (X)

Φ(X)− Φ(Gj)

In our example, the pairs containing objects from group G2 in Figure 7.1 are (c1, c2),

(c1, c4), (c2, c3), (c2, c4), (c3, c4). Pairs (c2, c4) and (c3, c4) are both discordant, therefore

following Definition 7.2, the rank calibration error is RcalG2(ρ, ρ̂) = 2
5
. Five pairs contain

items from G1: (c1, c2), (c1, c3), (c1, c4), (c2, c3), (c4, c3), but only (c4, c3) is discordant, so

RcalG1 = 1
5

7.1.3 Rank Parity

Finally, we apply pair inversion to design a metric which falls into the statistical parity

class of fairness criteria, like those explored in previous work on fair ranking [34, 155, 161].

Here, the goal is to ensure fair representation of members of each group among objects

given a favorable rank position. We propose to capture this idea by counting the pairs

in which one group is favored over the other in the learned ranking, regardless of their

positions in the true ranking. We again normalize by the total number of mixed pairs in

the learned ranking.
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Definition 7.3. Rank Parity Error Given a predicted ranking ρ̂ of items xi ∈ X

belonging to two mutually exclusive groups Gi and Gj, Where Φi≺j(X) is the number of

mixed pairs of objects which favor the target group Gi over Gj in ρ̂, i 6= j, Rank Parity

for Gi is computed as:

RparGi
(ρ, ρ̂) =

Φi≺j(X)

Φi,j(X)

In Figure 7.1, two pairs in ρ̂ (c1, c4) and (c1, c2) favor group G1 over G2 and two pairs

(c2, c3) and (c4, c3) favor G2 over G1 out of the four possible mixed pairs. Therefore,

RparG1(ρ, ρ̂) = RparG2(ρ, ρ̂) = 1
2
. This matches our intuition of parity, since the groups

are still somewhat evenly distributed through the ranking ρ̂ in spite of the incorrect

placement of c4.

7.2 Relationships between Fair Error Metrics

We now analyze our metrics to understand their interrelationships and scope of appli-

cability. Given a ranking ρ̂ over g groups, there are g2 ways of choosing two objects

from the ranking, allowing for group repetition. These pairs may be either concordant

or discordant, resulting in 2g2 types of pairs. Table 7.2 shows the categories of pairs that

can be formed for g = 2 groups. The colors in the table correspond to the colors in the

Venn diagram in Figure 7.2, which illustrates the relationship between the types of pairs

used to compute our proposed error metrics for a single group, G1.

Since our fairness analysis is concerned with the relative error made for each group,

within-group concordant pairs are not considered when computing error metrics. All

other types of pairs are included in the definition of at least one error metric. Discordant

mixed pairs are used to compute all three error metrics. These pairs of objects intuitively

capture the major disparity between groups : cases where one group is erroneously favored

over the other. We define this as Rank Equality. Rank Calibration instead measures

the total error for each group. This metric counts all pairs containing objects from a

Discordant Concordant

G1 � G1
D G1 � G1

C

G2 � G2
D G2 � G2

C

G1 � G2
D G1 � G2

C

G2 � G1
D G2 � G1

C

Table 7.2: Categorization of pairs in ρ̂ over two groups G1, G2.
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Figure 7.2: Relationship between the types of pairs used to compute the error for group
G1 (corresponding to Table 7.2).

single group, capturing within-group as well as across-group errors. Finally, Rank Parity

considers the total advantage of one group over the other.

FC are compatible in extreme cases. In a perfect prediction there is no error between

ρ̂ and ρ. In this case Req = Rcal = 0 for all groups, since no pairs are discordant. The

corresponding FC deem ρ̂ is fair since the group errors are identical. The Rpar in this

case will simply measure the relative advantage of each group in the true ranking. It

may be considered fair or unfair depending on the distribution of the objects in each

group. However, this is independent of the other metrics, and therefore, it is possible for

a perfect prediction to satisfy all three criteria. In the worst case, ρ̂ ranks the objects in

the reverse order from ρ. In this case Rcal = 1 since all pairs are discordant. Each group

is predicted with the same amount of error, therefore by the Rank Calibration FC, ρ̂ is

considered fair. In this case no pairs are concordant, therefore Req = Rpar. Whether

the ranking is considered fair according to the corresponding FC again depends on the

distribution of groups throughout the ranking.

7.3 FARE: Fair Auditing based on Rank Error

Using a single fairness score to describe a ranking provides a coarse assessment of fairness.

To understand the entire ranking of items from the preferred positions at top of the

ranking to the lowest ranked objects, we next design a non-parametric strategy to assess

rankings using our proposed pairwise fairness metrics. Our FARE framework (for Fair

Auditing based on Rank Error) generates sequences of within-range errors for each group.

The differences in these sequences tell a richer story than would a single value for each

group, revealing disparity throughout the entire ranking.
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7.3.1 Methodology

To start, FARE sorts the data according to the predicted ordering ρ̂ and bins it into k

subsets 〈B1, B2, . . . Bk〉. Error metrics are then applied to the objects in each bin. In the

case of two groups A1 and A2 we evaluate errors l1i = LA1(βi, β̂i) and l2i = LA2(βi, β̂i)

for the data in each bin Bi. This produces two error sequences: S1 = 〈l11, l12, . . . l1k〉 and

S2 = 〈l21, l22, . . . l2k〉. An equi-width binning strategy compares the top-k ranked items

across both groups in the first bin, the next k in the next bin, and so on. An equi-depth

strategy is also possible, where each bin measures how well the ranking predicts |Ai|
k

% of

items from each group.

If the number of bins k is so large that there are only a few objects in each, then

the sequence of error measurements may exhibit a high degree of variance. This could

exaggerate differences between groups in the case where one is a minority. On the other

hand, if bins contain many objects, the result is a coarse estimate. To capture the error at

a sufficient number of positions throughout the ranking while achieving a reasonable bin

size, we adopt a sliding window approach. This introduces a smoothing transformation

over the data to account for high variance across bins. Each consecutive bin of size

w overlaps the previous, offset by a fixed step size s < w. The first bin B1 contains

objects {x1, x2, .., xw}, ordered according to their predicted positions ρ̂(xi), the second

bin B2 = {xs+1, xs+2, . . . xs+w}, and so on. Each error sequence Si contains b |Ai|
s
c bins.

7.3.2 Diagnostics for Analyzing Fairness

The next step in the auditing procedure is to compare the error sequences S1 and S2

produced by our FARE framework to see if they are similar, and therefore meet the

fairness criterion, or if they differ in ways which indicate an unfair ranking. To facilitate

this, FARE offers audit plots. Similar to reliability diagrams for assessing the calibration

of classifiers [31], these visual depictions reveal differences in the shapes, patterns and

values of the error sequences. Since our metrics are normalized, the y-axis of each plot has

a fixed range of [0, 1], providing an easily interpretable snapshot of the error sequences

generated during the audit process.

Audit plots are augmented by compact statistics, or fairness scores, indicating whether

the ranking model satisfies the FC. Conceptually, any diagnostic metrics comparing

the sequences can be plugged into the framework. We employ a distance diagnostic

dist(S1, S2) = 1
k

∑k
i=1 |l1i − l2i| to summarize the similarity of the error sequences as a

single value. These scores can then be thresholded to flag unfair cases where the average
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magnitude of error for one group is much larger than the other.

7.3.3 Complexity

A simple pair counting algorithm can be used to compute each of our proposed error

metrics in O(nlog(n)) time using an adaptation of the mergesort algorithm. Performing

an audit using the FARE methodology can therefore also be done in logarithmic time,

requiring O(n/s(wlog(w)) time for step size s and window size w to compute the error

sequences for each group. In cases where performance is an issue, we can improve the

pair counting procedure to run in O(n
√
log(n)) time [36].

7.4 Evaluation

We illustrate the power of our FARE framework to uncover different types of systematic

disparity between groups. In our first study, we apply FARE to distinct cases of unfair-

ness. Each FC is considered in turn to identify different manifestations of unfairness.

In a second study, we use FARE to audit post-processing techniques from the literature

designed to correct existing rankings.

7.4.1 Auditing Diverse Unfair Scenarios

Dataset. We generate a random dataset X ordered by a utility score between 0 and 1

for each object to produce our “true” ranking ρ. A randomly assigned binary protected

attribute divides the data into two groups G1 and G2 of roughly even size. We generate a

“baseline” ranking ρ̂ by adding a small amount of Gaussian noise to simulate irreducible

error in a predictive model. We then design a family of rankings by adding additional

degrees of error p ≤ 1 for one or both groups. Unfair underestimation is simulated by

scaling the utility score for each x ∈ G1 by a random factor between p and 1. For

overestimation, G2 is scaled by a random factor between 1 and 1 + p. In the third type

of ranking, G1 is underestimated and G2 is overestimated.

Figure 7.3 shows the audit plots for these different scenarios for data of size |X| =

10000 and parameters w = 350, s = 10. Trend diagnostics are given in Table 7.4 on

the right and distances in Table 7.5. For the baseline case in plot (a), the trends are

close to zero, indicating error is consistent throughout the ranking, and the distances

between sequences are small. Plots (b) (c) depict the result of underestimating group
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Figure 7.3: Audit plots for case study on varying degrees of error illustrate how errors
(plotted on the y-axis and normalized between 0 and 1), manifest throughout the ranking.
The x-axis represents the sliding window moving from highly ranked items on the left to
the lowest on the right. p indicates the amount of error introduced. Errors for group G1

are shown as a solid black line, group G2 as dashed red line. Top row: Rank Parity, middle
row: Rank Calibration, bottom row: Rank Equality.

Rpar 0.01 -0.10 -0.21 -0.12 -0.19 0.04 -0.01
-0.01 0.10 0.21 0.12 0.19 -0.04 0.01

Rcal -0.06 0.18 0.34 -0.20 -0.23 -0.05 -0.06
-0.06 0.29 0.50 -0.25 -0.40 0.19 0.34

Req -0.06 0.31 0.50 0.01 0.01 0.08 0.11
-0.01 -0.02 -0.02 -0.28 -0.37 -0.00 -0.00

a b c d e f g

Figure 7.4: Trend diagnostics for case study scenarios shown in Figure 7.3.

Rpar 0.06 0.19 0.25 0.11 0.21 0.30 0.45
Rcal 0.00 0.08 0.10 0.08 0.10 0.06 0.09
Req 0.14 0.38 0.42 0.29 0.40 0.52 0.60

a b c d e f g

Figure 7.5: Distance diagnostics for case study scenarios shown in Figure 7.3.

G1 by factors of p = 0.5 and 0.75, respectively. Plots (d) (e) show overestimation of G2

while (f) (g) show when G1 is underestimated and G2 overestimated.

Rank Parity. Along the top row in Figure 7.3, we see Rpar sequences for each group.

As error is introduced for rankings (b) - (g), distance between the sequences grows.

From the audit plots we observe that when one group is underestimated, the sequences
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deviate. When one group is overestimated, the sequences start far from each other and

then converge. This illustrates a way in which error manifests differently throughout the

ranking. This confirms that it is important to consider the entire ranking, not just the

prefix. In the final case, where both groups are mis-estimated, we observe overall trends

which are flat. While this could be misinterpreted as a case with no disparity, the larger

distance scores in Table 7.5 clearly indicate the higher degree of unfairness.

Rank Calibration. Audit plots and trend diagnostics for the Rcal error sequences,

shown in the middle row above, reveal that when a single group is underestimated, the

Rank Calibration error sequences for both groups trend up, and when a single group is

underestimated, the trends slope downward. When both groups are mis-estimated the

trends are flat. Table 7.5 shows that, in all cases, the Rcal error sequences for each group

retain a similar distance. In this last case, diagnostic scores are not sufficient to convey

unfairness without audit plots. We observe that the magnitude of error is informative,

since the baseline is around 0.1 while the mean errors for p = 0.5 and p = 0.75 are close

to 0.5.

Rank Equality. The bottom row of Figure 7.3 shows the error sequences for the Req

error metric. As more error is introduced, the sequences for each group diverge. The

baseline “fair” rankings have scores of 0.14, while the distances increase up to 0.60 when

both groups are mis-estimated with p = 0.75. We also observe that when error is intro-

duced for only one group, the slope of the corresponding error sequence again trends up

for underestimation and down for overestimation, which is captured by the trend scores

in Table 7.4.

Overall, Rank Calibration is the least sensitive metric to the types of unfairness

presented. Applying a fairness threshold of 0.11 to the distance scores in Table 7.5 will

flag all cases where the groups are treated unfairly using the Rank Parity FC and Rank

Equality FC. However, none of the cases are identified by the Rank Calibration FC,

which requires a lower threshold of 0.06.

7.4.2 Auditing Rank Correction Methods

Next we apply FARE to rankings generated using recently proposed rank correction

techniques. We reproduce a subset of experiments presented by Zehlike et al. [161] using

implementation and data provided by the authors.
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Fair Correction Methods. “FA*IR” rankings are generated using the algorithm pro-

posed in [161] to create a fair top-k prefix ranking. The rankings target a user-specified

minimum proportion of the minority group, subject to a statistical significance test. The

proportion is indicated in the method name, e.g. FA*IR2 for 20%. Here we use the same

proportions as the authors, chosen to be close to the actual group ratio over the entire

dataset. The “Feldman” method was proposed by Feldman et al. [65] as a pre-processing

step for fair classification in which data are ranked. In this method the utility scores for

objects in the minority group are adjusted to match the distribution of the majority. We

compare these rankings against a baseline of the true ranking simply compared to itself.

Datasets. The Statlog German Credit Dataset [84] is utilized, with a “true” ranking

of people created according to credit-worthiness. Three “fair” rankings are then created

using age < 25, age < 35 and gender = female as protected group attributes. Prefix

rankings with k = 100 are generated. (Audit parameters for this dataset are w = 30, s =

10). The COMPAS recidivism dataset published by ProPublica in their investigation

of racial bias in the criminal justice system is also utilized [8]. The dataset is ranked

according to the COMPAS scores indicating the likelihood of re-offending for the “true”

ranking with k = 1000. “Fair” rankings are generated according to groups race = African

American and gender = male. (Audit parameters w = 100, s = 10).

Metrics. We produce audit plots using our proposed metrics Req,Rcal and Rpar, and

summarize the results using FARE distance diagnostics. In their experiments, Zehlike

et al. [161] use a number of metrics to gauge the tradeoff between parity and prediction

accuracy. We include two metrics for comparison: NDCG : normalized discounted cu-

mulative gain [90] (commonly used in search), and rank drop: the maximum number of

positions lost by an object. Table 7.3 summarizes the FARE diagnostics for our exper-

iments. The rankings deemed most fair in this audit are highlighted in bold. Asterisks

mark the conclusions which align with the analysis in [161]. For three out of five rankings

FA*IR outperforms Feldman, satisfying multiple fairness concerns.

7.3 summarizes the FARE diagnostics for our experiments. The rankings deemed

most fair in this audit are highlighted in bold. Asterisks mark the conclusions which

align with the analysis in [161]. For three out of five rankings FA*IR outperforms Feld-

man, satisfying multiple fairness concerns. Discussion. The impact of both the FA*IR

and Feldman rank correction techniques on statistical parity concerns is apparent, as

measured by our Ranking Parity FC. For instance, for the German Credit dataset using
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COMPAS, race = Afr. Amer.

Baseline Feldman FA*IR5

German Credit, Age< 25

Baseline Feldman FA*IR2

Figure 7.6: Audit plots for rank correction methods. Errors are plotted on the y-axis and
normalized between 0 and 1. The x-axis represents the sliding window moving from highly
ranked items on the left to the lowest on the right. Errors for the group defined by the
sensitive attribute are depicted the dashed red line. Top row: Rank Parity, middle row:
Rank Calibration, bottom row: Rank Equality.

FARE

Dataset Group Method Rpar Rcal Req NDCG Drop

German
Credit
k=100

age< 25
Baseline 0.18 0.00 0.00 1.00 0
Feldman 0.03 0.22 0.31 1.00 8
FA*IR2 0.03* 0.18 0.26 1.00 7

German
Credit
k=100

age< 35
Baseline 0.21 0.00 0.00 1.00 0
Feldman 0.04 0.05 0.22 0.99 36
FA*IR6 0.11 0.05 0.43 0.99 30

German
Credit
k=100

gen=f
Baseline 0.30 0.00 0.00 1.00 0
Feldman 0.03 0.11 0.28 1.00 8
FA*IR7 0.1 0.15 0.33 1.00 0

COMPAS
k=1000

race
Baseline 0.09 0.00 0.00 1.00 0
Feldman 0.08 0.01 0.08 0.98 393
FA*IR5 0.02* 0.01 0.04 0.99 319

COMPAS
k=1000

gen=m
Baseline 0.13 0.00 0.00 1.00 0
Feldman 0.09 0.03 0.09 1.00 294
FA*IR8 0.02* 0.01 0.03 1.00 161

Table 7.3: Fairness evaluation for rank correction methods. FARE distance diagnostics
are shown in the center, and compared to standard error metrics.

age < 25, Rpar distance is 0.18 in the baseline “true” ranking. Both methods are able to

reduce this to 0.03. The degree to which error is introduced as a result of the correction
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algorithm is reflected in the Req and Rpar scores. By comparison, the NDCG metric

is not sensitive to the rank correction methods, and therefore not expressive enough

to capture unfairness. The rank drop values tend to align with the FARE diagnostics.

However, this value is not very interpretable. We cannot observe which group had the

farthest drop, or whether the position of many items dropped.

For such nuanced analysis we turn to our FARE audit plots, shown in Figure 7.6. For

the German Credit dataset, we can visually discern that both FA*IR and Feldman intro-

duce similar error patterns. The Req and Rcal errors increase throughout the ranking

for both groups. For the COMPAS dataset, we observe that the patterns and magnitude

of error throughout the rankings are similar for both groups. By our FC, this implies

the correction methods are introducing error in a fair manner. Feldman shows a jump

midway through the Rcal sequence while the FA*IR error decreases through the ranking.

FARE compliments the use of these ranking methods by providing this in-depth view of

the treatment of each group.
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8

Comparative Study of Statistical

Parity Metrics for Ranking

To address the need for a nuanced understanding of evaluation metrics for fair ranking,

in this Chapter we study one class of metrics in-depth – statistical parity metrics.

These metrics provide a basic foundation for understanding unfair group advantage in

rankings, providing the basis for much fair ranking metric design. We perform a survey of

proposed statistical parity metrics categorized by strategies for measuring group advan-

tage. Then we propose a conceptual framework for metric comparison and demonstrate

metric behavior under various assumptions about the relative advantage of the groups.

This work being prepared as the following submission to a major conference:

Caitlin Kuhlman, Walter Gerych, Elke A. Rundensteiner, Measuring Group Ad-
vantage: A Comparative Study of Fair Ranking Metrics.

8.1 Survey of Statistical Parity Metrics

Statistical parity is a simple approach to group fairness which requires that different

groups receive fair proportions of favorable outcomes. This could mean that each group

receives an equal share, a minimum according to some external target, or a proportion

based on the size of the groups in the overall population or dataset. Often one group

is considered to be at a disadvantage which requires some affirmative intervention to

ensure fairness. We refer to such a ”protected group” throughout our survey, denoted

Gp. Definition 8.1 gives a typical definition of statistical parity [39], which was first

proposed as a fairness criterion for classification tasks [58].
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Definition 8.1. Statistical Parity for Classification: Given a dataset X of can-

didates belonging to mutually exclusive groups Gi ∈ G and a binary classifier f(x) = ŷ

which assigns each item x ∈ X to a class in {0, 1}, where ŷ = 1 denotes the preferred

outcome for item x, the predictor satisfies statistical parity if the following condition is

met for all groups Gi, Gj ∈ X, i 6= j.

P (ŷ = 1 | x ∈ Gi) = P (ŷ = 1 | x ∈ Gj)

Statistical Parity in Rankings. The metrics we consider in this work aim to estab-

lish a similar statistical parity requirement for rankings. However, in this setting there is

no binary class assignment with which to evaluate the outcomes for the groups. Clearly,

being ranked toward the top is a better outcome than being ranked near the bottom,

but this determination is inherently relative. Therefore proposed metrics for statistical

parity in rankings draw on traditional rank evaluation methods for measuring the relative

advantage of each group being ranked. Next we review and categorize proposed metrics

according to the different approaches for measuring group advantage.

8.1.1 Top-k Measures

A popular method for identifying a favorable outcome in a ranking is by inclusion in a

top-k prefix of the ranking. This approach is intuitive and interpretable, since for many

tasks the top k rank positions directly correspond to a good outcome for the candidates

being ranked, e.g. the top 5 job applicants are invited to interview for a position, or

the top 10 documents appear on the first page of search results. Therefore a number

of recent works on fair ranking require fair representation of groups in the top-k rank

positions [10, 34, 70, 155, 161]. Definition 8.2 gives a probabilistic formulation of top-k

statistical parity for rankings.

Definition 8.2. Top-k Parity: Given a ranking ρ = [x1 ≺ x2 ≺ ... ≺ xn] of candidates

belonging to mutually exclusive groups Gi ∈ X, and 0 ≤ k ≤ n, the ranking satisfies

top-k parity if the following condition is met for all groups Gi, Gj ∈ X, i 6= j.

P (ρ(x) ≤ k | x ∈ Gi) = P (ρ(x) ≤ k | x ∈ Gj)

A variety of top-k based formulations of statistical parity have been proposed, however

not all define a numeric measure of fairness. We evaluate summary statistics which

measure whether a ranking adheres to the statistical parity goal [70, 155]. Since top-k
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metrics are highly dependent on the choice of k, a cumulative strategy for multiple k is

typically used, modeled on the popular nDCG metric [90]. Metric scores are weighted

by some discounting function v(k) and aggregated. The goal is to give more emphasis

to fair or unfair outcomes at the top of the ranking. The aggregated scores may also

be normalized to lie between [0, 1] by computing the ideal (maximum) value Z. In our

analysis for simplicity we use a logarithmic discounting function over fixed intervals of

top-k prefixes proposed by Yang and Stoyanovich [155] for all top-k metrics1, such that

the final fairness score for a given metric M is computed as:

1

Z

n∑
k=10,20,10...

1

log2(k)
M (8.1)

Proposed top-k metrics M include:

• Normalized discounted difference (rND) [155] is evaluated only for the protected

group Gp. Fairness is measured as the difference between the representation of Gp in

the top-k and in the entire ranking.

rND(ρ) = P (x ∈ Gp | ρ(x) ≤ k)− P (x ∈ Gp) (8.2)

• Normalized discounted ratio (rRD) [155] compares ratios of outcomes for the

protected group Gp and a non-protected group Gi for the top-k and the entire ranking.

rRD(ρ) =
P (x ∈ Gp | ρ(x) ≤ k)

P (x ∈ Gi | ρ(x) ≤ k)
− P (x ∈ Gp)

P (x ∈ Gi)
(8.3)

• Skew@k [70] computes the logarithmic ratio of outcomes in the top-k versus the

entire list. This metric is also evaluated for a single group Gi, however alternative

versions minskew and maxskew are proposed for whichever group has the maximum

or minimum skew value.

skewGi
@k
(
ρ) = log(

P (x ∈ Gi | x ≤ k)

P (x ∈ Gi)

)
(8.4)

• Kullback-Leibler divergence (rKL) was first proposed for evaluating statistical

parity by Yang and Stoyanovich for the case of two groups [155] and then extended

1We note that in the original paper by Geyik et al. [70], skew metrics are computed only on a single
fixed top-k, and NDKL is aggregated over all k.
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to the more general case of multiple groups by Geyik et al.. [70]. In the general case,

rKL metric is computed as:

rKL(ρ) = KL(P ||Q) (8.5)

where P = P (ρ(x) ≤ k | x ∈ Gi) ∀Gi, the proportion of each group in the top-k

items, and Q = P (x ∈ Gi) ∀Gi, the proportion of each group in the entire ranking.

8.1.2 Exposure

Singh and Joachims [141] proposed a statistical parity metric in the context of an IR-

focused framework. In this setting, they consider the favorable outcome to be “exposure”,

a measure of the attention given to a candidate at a particular rank position. In this

general formulation the attention score could be given by a discounting function v(k) or

some other measure of the importance of each position, for instance learned from implicit

user feedback. Definition 8.6 gives a measure of advantage for group Gi based on the

average importance of the rank positions assigned to each candidate x ∈ Gi.

expGi
(ρ) =

1

|Gi|
∑
x∈Gi

v(ρ(x)) (8.6)

The overall fairness of a ranking with two groups Gi and Gj is determined as the absolute

difference in the exposure scores.

exp(ρ) =
∣∣expGi

(ρ)− expGj
(ρ)
∣∣ (8.7)

Rankings where each group receives equal exposure are deemed fair. In our evaluation

we consider two versions of exposure metrics. expDCG uses a logarithmic discount to

model attention such that v(k) = 1
log(k+1)

for each position k. We also consider expRR

which uses a reciprocal rank function where v(k) = 1
k
.

8.1.3 Pairwise Measures

Finally, we consider metrics which use the pairwise advantage of each group to evaluate

parity [17, 106, 121]. These metrics are modelled on the classic Kendall Tau distance

between rankings [94] which counts pair inversions between two lists. Definition 9.4 gives

a pairwise formulation of statistical parity.
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Definition 8.3. Pairwise Statistical Parity: Given a ranking ρ = [x1 ≺ x2 ≺ ... ≺
xn] of candidates belonging to mutually exclusive groups Gi ∈ X, ρ satisfies pairwise

statistical parity if the following condition is met for all groups Gi, Gj ∈ X, i 6= j

P (xi ≺ρ xj | xi ∈ Gi, xj /∈ Gi) = P (xi ≺ρ xj | xi ∈ Gj, xj /∈ Gj)

Pairwise metrics compute the advantage for a single group based on the number of

pairwise comparisons it wins against items from other groups in the ranking. We consider

the Rpar metric introduced in Section 7.1.3 in our analysis. Equation 8.8 restates this

pairwise statistical parity requirement. The metric is normalized by the number of pairs

in the ranking containing candidates from different groups. Here I(·) is the indicator

function which evaluates to 1 if · is true and 0 otherwise.

RparGi
(ρ) =

1

|Gi||Gj|
∑
xi∈Gi

∑
xj∈Gj

I(ρ(xi) ≺ ρ(xj)) (8.8)

The overall fairness of a ranking with two groups Gi and Gj is determined as the

absolute difference in the Rpar scores.

Rpar(ρ) =
∣∣RparGi

(ρ)−RparGj
(ρ)
∣∣ (8.9)

8.1.4 Correlation Analysis

As an initial investigation into the relationships among these metrics we perform a cor-

relation analysis. We generated 1000 random rankings with n = 100 candidates from

two groups of varying size and compute the statistical parity metrics for each ranking.

For the exposure (expDCG, expRR) and pairwise (Rpar) metrics we report both the

absolute difference of the advantage for each group, as well as the metric computed only

for the protected group Gp. For this analysis the top-k metrics are not normalized.

Figure 8.1 shows the Pearson correlation between each pair of metrics. Correlation

values with significance less than p = 0.05 are set to 0. In the upper left hand corner

of the heatmaps, The rND, rKL, rRD, expDCG, expRR, and rPar are positively

correlated with each other, across rankings with different sized groups. This core group

of metrics appear to share similar behavior, perhaps capturing the same overall fairness,

and are not sensitive to group size. Pairs of metrics with particularly strong positive

correlation are rKLR and rND, and expDCG and expRR.

Interestingly, when the groups are unbalanced the rest of the metrics are somewhat
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Figure 8.1: Pearson correlation between statistical parity metrics for ranking is shown
for 1000 randomly generated rankings of 100 candidates belonging to two distinct groups.
Correlation values with significance p > 0.05 are omitted.

correlated with the first group, but not when the groups are the same size. In this

case only the rRD metric from the core metrics correlates with the with skew, rParGp ,

expDCGGp , and expRRGp . On the other hand, maxskew and minskew now much more

strongly correlate with the other core metrics.

This suggests that the skew metrics along with those computed only for the protected

group tell half the story, and do not perform consistently, particularly when no group has

a majority. They may be capturing a different type of fairness than the statistical parity

definitions targeted. We therefore mainly focus on the core group of metrics identified

in this analysis for the rest of the paper, and revisit the other metrics in our empirical

evaluation in Section 7.4.

8.2 Framework for Fair Ranking Metric Comparison

Our correlation analysis suggests that a core set of state-of-the-art fair ranking metrics

share similar behavior: rND, rKL, rRD, expDCG, expRR, and Rpar. Each metric

compares the relative advantage of the groups using different strategies. However, we

still don’t know how this group advantage relates to unfairness in the rankings - hence

many approaches seem equally compelling. We now propose a common framework for

comparing the behavior of the metrics with respect to unfair group advantage. First,

rather than focus on any discrete single ranking, we henceforth describe the behavior of

the metrics in expectation over distributions of rankings.
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8.2.1 Probabilistic Assignment Matrix

We propose the use of a matrix R ∈ RNxN to represent distributions over rankings, where

N is the number of candidates to be ranked. Each row of R represents a position in the

ranking, and each column represents a candidate. Each entry Ri,j gives the probability

that candidate xj is assigned rank position i, as expressed in Equation 8.10. As each

element of R represents the probability that a given element is in a given position, the

rows and columns must each add up to 1 and thus we call R doubly stochastic. In the

case of a single discrete ranking, R is a binary matrix where Ri,j = 1 iff σ(xj) = i, and

Ri,j = 0 otherwise.

Ri,j = P (σ(xj) = i) (8.10)

8.2.2 Modeling Group Advantage

Fairness metrics are predicated on the belief that one ranking can give a more preferred

outcome to one group than another. Therefore we propose to model this unfair advantage

as a random variable α which can take on some range of values. For convenience we can

choose α ∈ [0, 1] where a score of 0 means that a group is at a complete disadvantage,

and 1 indicates a total advantage over other groups. As is common in group fairness

analysis, we assume that the unfairness impacts all members within one group similarly,

but that different groups have different levels of advantage. For simplicity in our analysis

we consider a single value for α representing the advantage of the protected group Gp,

with the understanding that this equivalently implies an advantage or disadvantage for

other non-protected groups.

To model this in our framework we now impose some additional structure on R to

represent the probability of candidates being assigned to each position as a function of

advantage α. Let us assume that each entry in R is a function such that:

Ri,j = fi,j(α), f : [0, 1]→ [0, 1] (8.11)

This framing reflects the fact that group advantage does not impact an entire ranking

uniformly – it varies if evaluated at each position in the ranking. For instance, at position

i = 1, if Gp has a large advantage and many possible candidates to choose from, it is

highly likely that a protected candidate will be assigned to the top spot. However, for a

lower rank position most protected candidates will have been assigned to positions above,

and a non-protected item will now be more likely to be assigned. Therefore although
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the overall advantage does not change, fi,j(α) at different rank positions i gives different

likelihoods of assignment for xj.

8.2.3 Expressing Statistical Parity Metrics in Terms of

Group Advantage

Next we represent the core set of statistical parity metrics in our framework as functions

of the advantage α.

Top-k metrics. Each of the top-k metrics measures some distance or divergence be-

tween the proportion of the protected group in the top-k, and the proportion of the

protected group over the entire ranking. We compute these values in terms of the doubly

stochastic matrix R as follows:

P = P (x ∈ Gp | ρ(x) ≤ k) =
1

k

k∑
i=1

∑
j∈Gp

fi,j(α) (8.12)

Q = P (x ∈ Gp) =
1

N

N∑
i=1

∑
j∈Gp

fi,j(α) (8.13)

Following from Equations 8.12 and 8.13 we can express the top-k in terms of the

advantage α of the protected group.

rND = |P −Q| (8.14)

rRD(ρ) =
∣∣∣ P

1− P
− Q

1−Q

∣∣∣ (8.15)

skewGi
@k(ρ) = log(

P

Q
) (8.16)

rKL = P ∗ ln
(P
Q

)
− (1− P ) ∗ ln

(1− P
1−Q

)
(8.17)

Exposure metrics. The exposure metrics are calculated using ρ(x), i.e. the ranking

of individual candidates, along with a discounting function v(k). When considering

distributions over rankings, the candidates no longer have only one rank - instead R gives

a probability of assignment in a position. Therefore we replace ρ(x) with its expected

value E(ρ(x)). Thus, we can define the exposure metrics in terms of distributions of

63



8.3 METRIC COMPARISON

rankings as follows:

expGj
(ρ) =

1

|Gj|
∑
xj∈Gj

E(ρ(xj))

=
1

|Gj|
∑
xj∈Gj

v(i)
N∑
i=1

i · fi,j(α)

(8.18)

Pairwise metrics. To represent the pairwise Rpar metric, we observe that the likeli-

hood that xi ≺ xj in expectation is given by the difference in the expected rank position

for each candidate xi, xj where:

E(ρ(xj)) =
N∑
i=1

i fi,j(α) (8.19)

To compute the expected Rpar value we then take the difference of the sign of the

expected values of the position of each pair of a protected candidate and a non-protected

candidate, where:

Rpar =
1

N

∣∣∣∣∣ ∑
xi∈Gp

∑
xj /∈Gp

sign(E(ρ(xi))− E(ρ(xj)))

∣∣∣∣∣ (8.20)

8.3 Metric Comparison

Advantage Functions. With our comparison framework in place, we now begin our

analysis by defining a family of advantage functions f according to a set of simple and

reasonable assumptions for group advantage in rankings:

fi,j(α) ≥ fi+1,j(α) ∀xj ∈ Gp if α ≥ |Gp|
N

(8.21)

fi,j(α) ≤ fi+1,j(α) ∀xj ∈ Gp if α ≤ |Gp|
N

(8.22)

1

k

k=min(|Gi|)∑
i=1,j∈A

fi,j(α) = α (8.23)

These assumptions describe an intuitive notion of group advantage controlling the distri-

bution of groups throughout a ranking. Figure 8.2 illustrates this scenario for rankings
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with 20% of the candidates in the protected group. Assumption 8.21 states that if α is

greater than the overall probability of observing the protected group, then candidates in

Gp will have a higher probability of being assigned favorable positions toward the top

of the ranking, with uniformly decreasing probability for the lower positions (i.e. Gp

has an advantage over other groups). We can see this case when α > 0.2 in Figure 8.2.

Assumption 8.22 conversely states that if the advantage is less than this value, then Gp

is uniformly more likely to be observed as you move down the ranking (i.e. there is a

protected group disadvantage).

Together these assumptions imply that if α equals the probability of observing the

protected group over the whole ranking, then all candidates in the ranking are equally

likely to be assigned to any position. Figure 8.2 illustrates this case when α = 0.2. This

scenario aligns with the definition of statistical parity wherein the advantage given to

the protected group is proportional to the size of the group in the overall population.

Therefore, over many rankings we would expect our fairness metrics to deem such an R

as fair on average.

Finally, constraint 8.23 describes the impact of the size of the groups on f . It says

that as long as there are candidates from both groups available, on average f will equal

α. That is, if Gp has an advantage of α = 0.8, then on average 80% of the candidates

in top-k prefixes of the ranking will be protected candidates. However, at some rank

position k (determined by the size of the smallest group) there is a tipping point where

all the candidates in Gp may have been ranked, and therefore they have a lesser chance

of appearing.

20
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Figure 8.2: Sets of 10 rankings with 20% protected candidates with different degrees of
advantage.
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Characterizing Metric Behavior. From just these intuitive assumptions, we can

fully characterize the behavior of the fairness metrics with respect to group advantage in

the following theorems.

Theorem 8.1. Given a ranking ρ with a protected group of candidates Gp and associated

advantage α, if the assumptions in Equations 8.21 - 8.23 hold, then the rND, rRD, rKL,

expDCG, expRR, and Rpar metrics share the same minima.

Proof: By definition, each of rKL, rRD, rND, expDCG, expRR and Rpar equal 0

when P = Q. From our advantage assumptions 8.21, 8.22, and 8.23, if α = Q = Pr(x ∈
Gp) then P = Pr(x ∈ Gp | ρ(x) ≤ k) = 1

k

∑k
i=1

∑
j∈Gp

fi,j(Q) = Q and thus each of the

aforementioned metrics equals 0 when α = Q.

Furthermore, if α > Q then 1
k

∑k
i=1

∑
j∈Gp

fi,j(α) ≥ Q ∀ k (from 8.21 and 8.23)

and is strictly greater than Q for some k (from 8.23). Conversely, if α < Q then
1
k

∑k
i=1

∑
j∈Gp

fi,j(α) ≤ Q ∀ k (from 8.21 and 8.23) and is strictly less than Q for some k

(from 8.23). As each of the metrics is greater than 0 when P 6= Q, then when considering

a sum over all k the minimum will occur only at α = Q.

Theorem 8.2. Given a ranking ρ with a protected group of candidates Gp and associated

advantage α, if the assumptions in Equations 8.21 - 8.23 hold, then the signs of the

derivative with respect to α of the rND, rRD, rKL, and the exposure metrics are the

same.

Proof: We now show that the slopes of each of the aforementioned metrics are

the same everywhere other than the critical points (i.e. at the minimum value and at

the limits of the domain of α, where the derivative is undefined) when the metrics are

expressed as functions of α. We accomplish this by showing that for each metric M :

sign(
d

dα
M) =sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α > Q

sign(
d

dα
M) =− 1 · sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α < Q
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rKL:

d

dα
rKL =(ln(

P

Q
) + 1) · d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)

+(−ln(
1− P
1−Q

)− 1) · d
dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)

=(ln(
P

Q
)− ln(

1− P
1−Q

)) · d
dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)

If α > Q then P > Q then ln(P
Q

) − ln(1−P
1−Q) > 0. Conversely, if α < 0 then ln(P

Q
) −

ln(1−P
1−Q) < 0. Thus,

sign(
d

dα
rKL) =sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α > Q

sign(
d

dα
rKL) =− 1 · sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α < Q

rND:

d

dα
rND =

P −Q
|P −Q|

· d
dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)

As P−Q
|P−Q| > 1 when α > Q and v P−Q

|P−Q| < 1 when α < Q,

sign(
d

dα
rND) =sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α > Q

sign(
d

dα
rND) =− 1 · sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α < Q

rRD:
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d

dα
rRD =

(
x

(1−x)2 + 1
1−x

)(
x

1−x −
Q

1−Q

)
∣∣∣ x
1−x −

Q
1−Q

∣∣∣ · d
dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)

When α > Q then
(

x
1−x −

Q
1−Q

)
> 0, which implies(

x
(1−x)2 + 1

1−x

)(
x

1−x −
Q

1−Q

)
∣∣∣ x
1−x −

Q
1−Q

∣∣∣ > 0. Conversely, if α < Q then

(
x

(1−x)2 + 1
1−x

)(
x

1−x −
Q

1−Q

)
∣∣∣ x
1−x −

Q
1−Q

∣∣∣ <

0. Thus,

sign(
d

dα
rRD) =sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α > Q

sign(
d

dα
rRD) =− 1 · sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α < Q

Exposure:

d

dα
expGp(ρ) =

d

dα
| 1

|Gp|

k∑
i=1

∑
j∈Gp

vi · i · fi,j(α)

− (1− 1

|Gp|

k∑
i=1

∑
j∈Gp

vi · i · fi,j(α))|

=
d

dα
| 2

Gp

k∑
i=1

∑
j∈Gp

vi · i · fi,j(α)− 1|

=

2
Gp

∑k
i=1

∑
j∈Gp

vi · i · fi,j(α)− 1

| 2
Gp

∑k
i=1

∑
j∈Gp

vi · i · fi,j(α)− 1|

· d
dα

2

Gp

k∑
i=1

∑
j∈Gp

vi · i · fi,j(α)

If α < q, then the term that the above derivative is multiplied by is less than 0, and if

α > Q then the term is positive. Additionally, for vi as defined for both expDCG and
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expRR the following holds:

sign(
d

dα

2

Gp

k∑
i=1

∑
j∈Gp

vi · i · fi,j(α)) = sign(
d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α))

Thus,

sign(
d

dα
expGp) =sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α > Q

sign(
d

dα
expGp) =− 1 · sign(

d

dα

1

k

k∑
i=1

∑
j∈Gp

fi,j(α)) if α < Q

We have thus shown that if the assumptions in Equations 8.21 - 8.23 hold, then signs

of the derivative with respect to α of the rND, rKL, expDCG, expRR, and metrics are

the same.

Theorem 8.3. Given a ranking ρ with a protected group of candidates Gp, Rpar(ρ) has

its maximum value when α = 0 or α = 1, meaning one group has a total advantage.

Proof:

If either group has total advantage, then sign(E(ρ(xi))−E(ρ(xj))) = sign(E(ρ(xm))−
E(ρ(xn))) for all xi, xm ∈ Gp and all xj, xn 6∈ Gp. Thus, Rpar = 1

N

∣∣∣∑xi∈Gp

∑
xj /∈Gp

sign(E(ρ(xi))−

E(ρ(xj)))
∣∣∣ = 1. This is the maximum Rpar value, because

sign(E(ρ(xi))− E(ρ(xj))) 6= sign(E(ρ(xm))− E(ρ(xn))) =⇒
1
N

∣∣∣∑xi∈Gp

∑
xj /∈Gp

sign(E(ρ(xi))− E(ρ(xj)))
∣∣∣ < 1.

8.3.1 Key Metric Comparison Observations

It follows from Theorem 8.1 that optimizing for any of these core metrics optimizes

for all. Theorem 8.2 additionally shows that if we improve fairness according to one of

the metrics, we improve the others as well. We do not include the Rpar metric

in this analysis since Rpar is computed using the discrete set of possible pairs in the

ranking, and therefore the function has a non-continuous range. However we observe

in our empirical evaluation in Section 8.5 that the pairwise metric does indeed exhibit

similar behavior to the rest of the metrics. Together this comparative analysis shows

that when group advantage can be expected to conform to the assumptions laid out,
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8.4 ALTERNATIVE ADVANTAGE FUNCTIONS

any choice of evaluation metric is appropriate when the goal is to optimize for as fair a

ranking as possible.

Additionally, we observe that the metrics do not behave the same in terms of their

maximum values. We prove in Theorem 8.3 that the pairwiseRpar metric has a maximum

value in the case where either group has a total advantage over the other. This

matches with one intuitive notion of unfairness wherein a total group advantage is as

extreme a violation of statistical parity possible. On the other hand, as we observe

empirically in Section 8.5, the maximum values of other metrics depend on the size of

the groups. If one group has a strong majority and total advantage, they are assigned a

more fair score than if a minority group has a total advantage. One reason for this could

be that if the items are ranked at random, a group with many more candidates is more

likely to have gotten an advantage by chance. However this also might be a primary case

when fairness evaluation is needed - when one group suffers from disparate representation

in the dataset. In fact, most of the metrics we consider will not flag rankings as unfair

which strongly disadvantage a minority group. These competing notions of what

constitutes unfairness deserve careful consideration when selecting a fairness metric in

an applied setting.

8.4 Alternative Advantage Functions

In our analysis so far, we consider functions of advantage f which are applied smoothly

throughout the ranking. However, in the real-world, it may be that other factors impact

the probability of candidates being assigned to positions. If we relax our assumptions

about f decreasing uniformly through the ranking, we can imagine scenarios where bias

may fluctuate throughout the ranking.

Rooney Rule. As an example, we consider the Rooney rule for hiring which has

been a topic of interest by the fairness community [33, 97]. This strategy dictates that

at least one candidate from the protected group is included in the top-k positions in the

ranking. This is meant as a fairness-correcting intervention to ensure representation of

the protected group. However one can also imagine an unfair manipulation using a similar

strategy to ensure that a candidate from the advantaged group is always guaranteed the

top spot in the ranking. Figure 8.3 illustrates versions of these scenarios. Sets of 10

randomly generated rankings are shown for a dataset with 20% protected candidates.

In Figure 8.3a, for different values of k, the rankings are required to assign 10% of the

top-k rank positions to the protected group. Below k, the rank positions are assigned
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(a) Top-k positions are assigned 10% to candidates from the protected group, while the rest of the
ranking is randomly assigned.
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(b) Top-k positions are reserved for candidates from the non-protected group. In the rest of the ranking
the protected group is advantaged by α = 0.5.

Figure 8.3: Sets of 10 random rankings with 20% protected candidates generated using
alternative advantage functions.

randomly. Figure 8.3b illustrates another scenario where the top-k positions are all

reserved for candidates from the non-protected group, and then in the rest of the ranking

the protected group is advantaged by α = 0.5.

For these rankings, it is clear that unfairness manifests in different ways than in our

previous analysis. In Figure 8.3a, if k is small then the rankings overall will align with our

notion of statistical parity, however if k is very large then the protected group is actually

disadvantaged. Figure 8.3b clearly depicts rankings that are unbalanced, however one

could imagine that the unfairness at the top and bottom of the ranking may cancel each

other out. Comparing these examples to our original rankings in Figure 8.2 we can see

that the advantage of each group is more subtly distributed throughout the rankings in

this case.
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8.5 Evaluation
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Figure 8.4: Fairness metrics applied to rankings with different α values using a smooth
function of advantage.

To gain a tangible understanding of the performance of fairness metrics for ranking,

we now present an empirical evaluation of evaluation measures.

Data Generation. We produce random rankings using different functions of group

advantage. For each experiment results are averaged over 10 runs. We consider rankings

where the protected group is the minority (20% protected), where the groups are balanced

(50% in each group), and where the protected group is the majority (80% protected).

Our standard group advantage in Section 8.3 is generated following the algorithm given

by Yang and Stoyanovich [155]. We then adapt this strategy to produce the alternative

advantage functions presented in Section 8.4.

Metrics. We evaluate all metrics included in our initial correlation analysis in Section

8.1.4: top-k metrics rND, rRD, rKL, skew, minskew and maxskew, pairwise Rpar

and exposure based expDCG and expRR. Again we also consider pairwise and exposure

values only for the protected group as RparGp , expDCGGp , and expRRGp . Metric values

are evaluated for varying levels of advantage α ∈ [0.0, 1.0]. To facilitate comparison, we
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Figure 8.5: Fairness metrics applied to rankings where the top-k positions are reserved
for candidates from the non-protected group, for different values of k. In the rest of the
ranking the protected group is advantaged by α = 0.5.

normalize each metric to lie in a range of zero to one (scaling based on the minimum and

maximum possible values given the size of the groups). We note that for some metrics

the maximum values are unbounded, and we therefore omit some extreme values.

Standard Assumption of Advantage. Figure 8.4 compares the behavior of all

the metrics across different α values of advantage, for rankings with different size groups.

There are clearly observable similar patterns for our core metrics rND, rKL, Rpar,

expDCG and expRR. The rRD metric on the other hand exhibits different behavior.

The minima are the same as the other metrics, but when the protected group is totally

favored, the rRD metric explodes, skewing the results. We have scaled the figure based

on the max value for α = 0.9 for readability. The rest of the metrics considered in our

correlation analysis again can be observed to follow different patterns with respect to

group advantage. The skew, RparGp , expDCGGp , and expRRGp metrics indeed capture

only half the story. The maxskew and minskew metrics better align with our core

group, however when either of the groups has a total advantage these values explode.

We omitted these values for readability.

Extreme Advantage. One key difference among the core metrics can be observed

in Figure 8.4. Aligning with our analysis in Theorem 8.3, we see that only the pairwise

Rpar metric always assigns a maximum unfair score in both extreme cases where one

group is completely advantaged over the other. The expDCG, rND, and rKL metrics

give a more fair score when the majority group is totally favored over the minority group.

73



8.5 EVALUATION

Alternative Advantage Functions. Finally we highlight an example to show that

under relaxed assumptions, the metrics are no longer guaranteed to follow the same

patterns. We consider the alternative advantage scenario described in Section 8.4 and

shown in Figure 8.3b. Here the k top spots in each ranking are given to candidates from

the non-protected group. After this top-k padding, the protected group is then given an

advantage of α = 0.5. In figure 8.5 k is varied along the x axis of the charts, showing

that when k is small (meaning the protected group is concentrated toward the top of the

ranking) the metrics totally disagree on whether this is fair or unfair, in particular when

the protected group is the minority. The Rpar metric indicates very unfair around 0.8

and expRR gives a score close to 0. The majority of the metric values stay relatively

flat for the 20% protected case as well, while Rpar goes through the range of all possible

values. At a certain point, the pairwise advantage between the groups balances out and

appears fair.

Indeed, this manifestation of group advantage is unusual. It may even be hard even for

a human analyst to decide whether the ranking is fair or unfair. This is a good example

of the nuanced determination required for assessing fairness. Without an understanding

of how these fairness metrics behave, ranking systems may give unexpected behavior.
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9

Fair Rank Aggregation

To date, efforts for fair ranking have been limited in that they only consider fairness of

a single ranking in isolation. The critical yet so far overlooked problem of ranking by

consensus arises when numerous decision makers produce rankings over candidate items,

and then those rankings are aggregated to create a final consensus ranking [24, 93].

While many (non-fairness aware) procedures for aggregating a set of rankings have been

put forth by the database community [5, 23, 63, 89], the problem of fair rank aggregation

remains open. It is largely unexplored whether aggregation might introduce or exacerbate

bias disadvantaging particular groups. In this Chapter we thus set out to investigate these

open problems. This work is in submission to a major conference in 2020 as the paper:

Caitlin Kuhlman and Elke A. Rundensteiner,
Rank Aggregation Algorithms for Fair Consensus.

9.1 Introduction

9.1.1 Hiring Example.

Consider the university hiring scenario in Figure 9.1. After reviewing a pool of faculty

applicants (assisted by an automated screening tool [150]), each committee member ranks

the candidates based on their individual impressions. Now the committee must come to

some overall consensus ranking to recommend to their department. As seen in Figure

9.1, this poses several challenges. First, the procedure to combine the rankings is not

obvious. For instance, candidate A is most frequently ranked in the top spot, but also

seems to be divisive, since two committee members ranked A last. Candidate B on
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Figure 9.1: Hiring committee rankings to be aggregated. Four committee members each
rank the set of candidates {A,B,C,D} from two groups based on gender.

the other hand is consistently ranked near the top, but never in the number one spot.

Another consideration is the committee’s desire to have a diverse faculty body. They

would like a gender balance among the candidates in the final ranking to compensate for

any unintended bias in the input rankings where female candidates seem to be ranked

lower than males. Clearly, a principled strategy is required to fairly account for this

imbalance while still appropriately representing all committee members’ preferences.

9.1.2 State-of-the-Art

Contemporary (group) fairness research [65] is concerned with predictive outcomes for

minority or otherwise disadvantaged groups defined by sensitive legally protected data

attributes such as race, gender, or age. As discussed in Chapter 8, the bulk of recent

research for ranking targets a statistical parity notion of fairness [10, 34, 70, 106, 155, 161],

aiming to ensure that each group of candidates being ranked receives a proportionate

number of preferred rank positions. These methods consider fairness only in the context

of one single ranking. To the best of our knowledge, group fairness has not yet been

explored when aggregating multiple rankings.

Traditional rank aggregation produces an aggregate ranking (a consensus) by

finding the ranking closest to the base set of input rankings [93]. This task, having broad

applications, has seen much interest in the database [24], machine learning [110], and

information retrieval [60] fields. Many algorithms have been proposed for finding optimal

or approximate consensus [13, 41, 43, 60, 93, 120, 138, 157]. Considering each ranking as

representing the preferences of a voter for a given candidate set, Social Choice Theory

ensures each voter has an equal say [9]. While properties of aggregation algorithms

with regard to the voters are well understood [24], fair and equitable treatment of the
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candidates being ranked in the context of rank aggregation remains unaddressed.

9.1.3 Challenges

To address this open problem of group fairness for rank aggregation, the following chal-

lenges must be tackled.

Aggregation problem complexity. Classical rank aggregation – even without

considering fairness – is a hard problem. Depending on the criteria used to determine

the consensus ranking, finding the exact solution may be NP-hard [13, 60]. For a given

set of base rankings over n candidates, there are n! possible consensus rankings to chose

from, making an exhaustive search over all options intractable. The complexity of the

aggregation problem is not only impacted by the number of candidates being ranked, but

also by the number of voters (base rankings), and the extent to which the base rankings

agree (or disagree) on the placement of individual candidates [5]. This becomes further

complicated for fair aggregation, since bias in the individual base rankings could also

impact the complexity of the task.

Notions of fair aggregation. Rankings may be produced according to hetero-

geneous schemes, including human decision makers’ preferences or proprietary ranking

algorithms. Therefore, fair aggregation must be performed without access to the underly-

ing data and ranking models – rendering causal notions of fairness [135, 153] impossible,

as we cannot investigate the relationship between data attributes and outcomes. Asso-

ciational bias mitigation methods exist for single rankings [10, 34, 70, 155, 161], which

typically trade accuracy of the rank order for fairness. However it is unclear how the sim-

ilarities and differences among a set of rankings relate to these ways of imposing fairness.

Therefore how best to incorporate such measures into the rank aggregation problem is

an open question.

Competing optimization objectives for fair aggregation. If unfair bias against

some group is present in base rankings, it is not known how aggregating them into a single

ranking will impact this bias. Perhaps aggregation may exaggerate a slight advantage for

one group creating a more pronounced bias in the final consensus. This could demand a

high toll in aggregation accuracy to ensure fairness. Conversely, a diversity of perspectives

among the voters (base rankings) might inherently mitigate unfairness present in only

a few of the rankings, in which case correction is not necessary. A deep study of these

subtle inter-dependencies is needed. Beyond that, a sophisticated strategy is required

capable of balancing the competing goals of fairness for the groups of candidates being
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ranked while concurrently retaining a good representation of the base rankings.

9.1.4 Proposed Approach

To address these challenges, we formalize fair rank aggregation as a constrained opti-

mization problem balancing the competing objectives above. The solution is defined as

the closest consensus ranking to the base set of rankings that satisfies a targeted fairness

criterion. We then propose a which uses pairwise discordance to both compute closeness

among consensus and base rankings and measure the advantage given to each group of

candidates. This allows group fairness criteria to be seamlessly integrated into Kemeny

optimal rank aggregation [93]. We demonstrate the power of our pairwise framework to

support a pairwise rank parity fairness definition [106], proving an equivalence between

our approach and popular top-k statistical parity [155] metrics for fair ranking.

Next we leverage the pairwise framing of the problem to tackle the complexity chal-

lenge of fair rank aggregation. As first solution, we propose an integer linear program

with parity constraint to produce a Kemeny-optimal fair consensus. This approach can

aggregate many rankings generated by a large number of voters. However, the large

number of binary variables is prohibitive when there are many candidates. Therefore

we extend this by deriving a lower bound on the cost of pairwise fairness criteria. This

supports the design of a rank parity-preserving search heuristic integrated into a branch-

and-bound fair rank algorithm, which we call Fair-BB. We demonstrate that Fair-BB

speeds up computation when ranking many candidates when the fairness requirements

are lenient. Finally, we provide a fast approximation post-processing algorithm Fair-Post

which guarantees fairness while introducing minimal pairwise error, and scales to millions

of candidates.

We thoroughly evaluate these alternate solution strategies in a rich test bed of rank

aggregation scenarios. The previously unknown relationship between fairness and con-

sensus among multiple rankings is explored, using the Mallows model [116] to generate

distributions of rankings and expose the tradeoffs between our competing objectives.

Finally, we demonstrate the ability of our framework to produce fair consensus on real-

world using a case study of sports rankings. Our methods consistently produce fair

aggregations, extending contemporary fairness to ranking by consensus.

Contributions of our work include:

1. We formulate the open problem of fair rank aggregation as finding consensus among

a set of input rankings while ensuring the fair treatment of candidates being ranked.
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2. We propose a novel for parity-preserving Kemeny aggregation.

3. We design a series of algorithms which guarantee to find optimal fair consensus, lever-

aging integer linear optimization and custom branch-and-bound strategies.

4. We also design a fast approximation algorithm which finds a fair solution with minimal

aggregation error.

5. We study the interplay between rank consensus and group fairness, evaluating the

relative performance of our solutions for a wide spectrum of aggregation scenarios.

6. We investigate unfair group bias for rankings generated by human decision makers

using a real-world case study of expert rankings of sports players.

9.2 Problem Formulation

Traditional Rank Aggregation. The set of all possible rankings of X is Sn the

symmetric group of permutations. In the traditional rank aggregation problem [93] we

are given a subset of base rankings R ⊆ Sn created by some voters. To be broadly

applicable, we do not make assumptions about how the base rankings were determined,

but rather consider R as a fixed input. We are tasked with finding a single consensus

ranking ρ∗ that best represents R as given in Definition 9.1. The consensus ranking ρ∗

is the median ranking in Sn with the minimum average distance to the rankings in R

according to some distance function d. A median ranking always exists, however it may

not be unique.

Definition 9.1. Given a set of base rankings R ⊆ Sn and distance function d the

traditional rank aggregation problem is to find a closest ranking ρ∗ ∈ Sn to R such

that:

ρ∗ = arg min
ρ∈Sn

1

|R|
∑
σ∈R

d(ρ, σ)

Fair Rank Aggregation Problem Formulation. Unfair bias can be defined in

different ways. Since we do not necessarily have access to the underlying data attributes

or ranking procedures used by the voters, in this work we aim to meet some group

fairness criterion F determined only by the rank order of the candidates and their group

membership. We initially focus

We now formalize our fair aggregation problem in Definition 9.2 as the goal of finding

the closest consensus ranking to R that satisfies a fairness criterion F . Henceforth we will
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focus on achieving statistical parity among groups in the final consensus ranking ρ∗, for

two groups of candidates. Our general framework can be adapted to additional fairness

definitions.

Definition 9.2. Given a set of base rankings R ⊆ Sn and a fairness criterion F , the fair

rank aggregation problem is to find a closest ranking ρ∗ ∈ Sn to the base rankings

that satisfies F .

9.3 Proposed Framework for Fair

Rank Aggregation

9.3.1 Solution Spectrum for Fair Aggregation

We now examine the spectrum of alternate approaches for producing an aggregate rank-

ing that concurrently guarantees fairness for the candidates being ranked while assuring

maximal representation of the interests of the voters expressed by their respective rank-

ings. For this, as illustrated in Figure 9.8, let us suppose we have a fairness correction

method f(ρ) = ρ′ that can rearrange the items in a single ranking to satisfy a fairness

criterion F (such as top-k parity) in a way that minimizes the distance to the original

ranking d(ρ, ρ′). This spectrum then ranges from the one extreme (top of Figure 9.8) of

applying fairness mitigation as pre-processing before constructing an aggregate ranking

to the other extreme (middle of Figure 9.8) of applying fairness mitigation only after

traditional rank aggregation as a post-processing step. As we show, neither of these ex-

treme solutions are adequate, necessitating instead the development of a novel integrated

dual-optimization strategy which optimizes for these two competing goals concurrently

(bottom of Figure 9.8). These observations are also validated empirically in our experi-

mental evaluation in Section 9.5.

The pre-processing strategy illustrated at the top of Figure 9.8 first applies this

correction method one by one to each of the given rankings in the base set R, to make

a new set of fair rankings R′. Thereafter, R′ is aggregated using a traditional rank

aggregation method. This approach guarantees neither optimal distance to the original

base set R, nor fairness of the resulting ranking. One, f may minimize the distance

between the fair rankings in R′ and their original counterparts in R, however this does

not necessarily imply that the median ranking for R′ is close to the original R. Two, even

if each ranking in R′ meets the fairness criterion, the order of individual items may differ
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Figure 9.2: Alternative fair rank aggregation strategies.

greatly across those adjusted rankings in R′. Therefore we do not have any knowledge

on whether the consensus ranking constructed by aggregating R′ would also meet the

fairness criterion.

On the other hand, the post-processing strategy shown in the middle of Figure

9.8 first aggregates R without considering fairness, producing a consensus ranking ρ∗.

Then ρ∗ is corrected for fairness to produce a ranking f(ρ∗) = ρ′. This time we can

be sure ρ′ is fair. However, we have no guarantee about the quality of the resulting

aggregation. That is, even if the corrected consensus ranking ρ′ could be guaranteed to

be close to the original ρ∗, it may not be the closest fair solution to the base rankings

in R. Therefore neither of these extreme approaches can guarantee both fairness and

aggregation accuracy.
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9.3.2 Integrated Pairwise Solution

We propose a conceptual framework for an integrated fair aggregation solution that

elegantly balances aggregation accuracy with fairness, achieving both goals concurrently

as shown in the bottom of Figure 9.8. Our key insight here is that we must align the

measure of distance between rankings with the measure of candidate group advantage

using a pairwise rank representation. As we will demonstrate below, this then allows for

fairness criteria to be integrated seamlessly into a fair aggregation framework.

Any ranking can be represented as a series of pairwise comparisons between the

candidates. Given a base set of rankings R, they will agree on the order of some pairs,

and disagree on others. The number of pairs which appear in an inverted order in

one ranking compared to the other corresponds to the distance measure known as the

Kendall Tau [94], defined in Equation 9.1 for two rankings ρ, σ ∈ Sn.

K(ρ, σ) =
∑

xi,xj∈X

I
(
ρ(xi) ≺ ρ(xj) and σ(xj) ≺ σ(xi)

)
(9.1)

Here I is the indicator function, with I(x) = 1 when x is true, and I(x) = 0 otherwise.

The consensus ranking with the minimum average Kendall tau distance to the rankings

in R, given in Equation 9.2, is known as the Kemeny optimal rank aggregation [93].

ρ∗ = arg min
ρ∈Sn

1

|R|
∑
σ∈R

K(ρ, σ) (9.2)

Although there are different strategies for measuring the distance between rankings,

Kemeny aggregation is seen as the gold standard for rank aggregation, which concurrently

satisfies multiple axioms from Social Choice Theory [24]. For this reason, it has seen

extensive database and machine learning applications [5, 23, 63, 89]. Kemeny aggregation

provides our starting place from which to consider group fairness in the ranking utilizing

pairs of candidates.

Consider the case where our database X contains candidates from two different

groups, G1 and G2. The pairs in the Cartesian product X2 can be divided into three

subsets: those pairs containing only candidates from group G1, those containing only

candidates from G2, and the set of “mixed” pairs containing one item from each group.

In Chapter 7, we proposed that the proportion of the heterogeneous pairs which favor

one group over the other corresponds to a fairness measure of the relative advantage that

group enjoys in the ranking [106]. We now observe that RparG1 computes the probability
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that an item from group G1 is ranked above an item from group G2, such that:

RparG1(ρ) = P (xi ≺ρ xj | xi ∈ G1, xj ∈ G2) (9.3)

Following from this, we propose to adopt the pairwise formulation of statistical parity

in Definition 9.4, Given a ranking ρ = [x1 ≺ x2 ≺ ... ≺ xn] of candidates belonging to

mutually exclusive groups G1, G2, ρ satisfies pairwise statistical parity for two groups is

met if the following condition is met:

RparG1(ρ) = RparG2(ρ) (9.4)

9.3.3 Equivalence between Top-k and Pairwise

Statistical Parity

Defining parity this way gives a compatible fairness criterion for Kemeny aggregation, in

that both optimization goals now depend on the pairwise ordering of candidates in the

consensus ranking. We know from the comparative analysis of statistical parity metrics

in Chapter 8 that pairwise metrics behave similarly to top-k in the presence of different

manifestations of group advantage in a single ranking. We now further show how the

pairwise Definition 9.4 relates to the notions of statistical parity expressed in Definitions

8.1 and 8.2. The pairwise formulation indeed corresponds to a variant of top-k parity

semantics, namely, a summary formulation that takes all possible prefixes of the list into

account. For this, we observe that the probability on the left hand side of the Top-k

Parity in Definition 8.2 corresponds to the cumulative distribution function for the rank

ρ(x) of any x ∈ G1. Let us denote this as Fρ(x)|G1(k) such that:

Fρ(x)|G1(k) = P (ρ(x) ≤ k | x ∈ Gi) (9.5)

To compute the value of Fρ(x)|G1 for a given k, we can simply count the proportion of

candidates from group G1 in the top-k prefix of the ranking as per below.

Fρ(x)|G1(k) =
∑
x∈G1

I(ρ(x) ≤ k)

|G1|
(9.6)

Since the rank of x is strictly positive, we can use

Fρ(x)|G1(k) to compute the conditional expectation of the rank of x given membership in
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G1, where

E(P (ρ(x) = k | x ∈ G1) =
∞∑
k=0

(
1−

∑
x∈G1

I(ρ(x) ≤ k)

|G1|

)
(9.7)

Each possible value of k corresponds to a rank position in ρ assigned to some candidate

x. Let K1 and K2 be the set of all rank positions assigned to candidates in G1 and in

G2, respectively. We can then re-write Equation 9.7 as:

E(P (ρ(x) = k | x ∈ G1) =
n∑
k=0

1−
( ∑
x∈G1

∑
k2∈K2

I(ρ(x) ≤ k)

|G1|

+
∑
x∈G1

∑
k1∈K1

I(ρ(x) ≤ h)

|G1|

) (9.8)

The first outer term in Equation 9.8 is simply n+1, since for any k > n the probability

that ρ(x) ≤ k is always 1. The inner summations describe pairwise relationships between

the candidates in ρ. The first term is only over those candidates x ∈ G1 ranked higher

than candidates in G2 (each position k2 ∈ K2 corresponding to a candidate in G2). These

are the same pairs used to compute RparG1 . The second term is only over candidates

in G1. For each consecutive position k1, this term counts the candidates ranked at that

position or higher. This thus corresponds simply to the sum of consecutive integers from

1 to |G1|, given by the constant |G1|(|G1|+1)
2

. Therefore we have:

E(P (ρ(x) = k | x ∈ G1) = n+ 1−
(
|G2| RparG1 +

|G1|+ 1

2

)
(9.9)

From Equation 9.9, we can observe two things. One, the top-k probability taken over

all k is a linear function of the Rpar measure, where:

n∑
k=0

P (ρ(x) ≤ k | x ∈ G1) = |G2| RparG1 +
|G1|+ 1

2
(9.10)

Two, Rpar can be used to measure the difference in the expected rank position of different

groups. This is not surprising, as we further observe that the Rpar score for a disadvan-

taged group is equivalent to the Mann–Whitney U -statistic [118], where Rpar = U
|G2||G1| .

The Mann-Whitney U has a well-known relationship to the area under the ROC curve

for a probabilistic classifier [77]. Namely, given true positive instances TP and true

negative instances TN , the area under the ROC curve (AUC) measures the probability

that a true positive is ranked above a true negative according to the predicted likelihood
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of membership in the positive class [77] This is determined by the change in the true

positive rate with respect to the false positive rate, such that

AUC =

∫ ∞
t=−∞

P (ŷ ≥ t|x ∈ TP ) dP (ŷ ≥ t|x ∈ TN) =
U

|TP ||TN |

where t is the classification threshold. Similarly, we put forth here that the Rpar score

relates to the rates of positive outcomes achieved by each group according to different

values of k where:

RparG1 =

∫ n

k=1

P (ρ(x) ≤ k | x ∈ G1) dP (ρ(x) ≤ k | x ∈ G2) (9.11)

Rank Parity for Fair Hiring Example. We return to our example from Section

9.1.1 to study how imposing pairwise statistical parity on the consensus ranking ρ∗ will

impact rank aggregation. Figure 9.3 illustrates the result of Kemeny aggregation with

and without rank parity. Rank 9.3a is the baseline unconstrained Kemeny ranking. As

we see, it reflects the tendency of female candidates to be ranked lower than males,

and it places the controversial candidate A at the top. Five mixed pairs favor males

over females {(a ≺ c), (a ≺ e), (b ≺ c), (b ≺ e), (c ≺ d)} and only one pair favors

females over males {(c ≺ d)}. In contrast, ranking 9.3b overcomes this group disparity.

In fact, it is the closest ranking to the base set which also satisfies parity. In this

ranking, females enjoy equal pairwise advantage to males, where three pairs favor males

{(b ≺ c), (b ≺ e), (d ≺ e)} and three favor females {(c ≺ d), (c ≺ a), (e ≺ a)}.

9.4 Proposed Methods for Kemeny-optimal Fair Ag-

gregation

Given our integrative pairwise framework, we now design optimal strategies to solve the

proposed constrained optimization problem for fairness-preserving rank aggregation. To

facilitate the design of our methods, we employ a compact representation of the rankings

in R in the form of the precedence matrix C (Def. 9.3). Matrix C summarizes the

pairwise relationships between candidates in X.

Definition 9.3. Given a set of rankings to be aggregated R over a dataset X = {x1, . . . , xn},
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(a) (b)

Figure 9.3: Aggregated hiring committee rankings with and without fairness criteria,
namely, Kemeny optimal ranking (a) without considering fairness, and (b) with rank parity.

then the precedence matrix C is defined as:

Cij =
1

|R|
∑
σ∈R

I(xi ≺σ xj)

Each entry in C indicates the proportion of rankings in R which favor xi over xj,

compared to the number of times xj is preferred to xi. Summing a column j of C

captures the overall pairwise advantage given to the item xj in R.

Fairness Threshold. Recognizing that different parity requirements may arise in

various ranking scenarios, we now relax our rank parity definition by introducing a fair-

ness threshold parameter δpar as the maximum allowable difference in the pairwise ad-

vantage in ρ∗ for each group. This supports us in tuning the fairness criterion according

to application domain requirements, trading-off between the accuracy of the consensus

ranking and the strictness of parity between groups. The threshold is expressed as a

proportion of mixed pairs in ρ∗, such that:

|RparG1(ρ
∗)−RparG2(ρ

∗)| ≤ δpar (9.12)

9.4.1 Fair-ILP

We now draw on key strategies for tackling the complexity challenge of the aggregation

problem, beginning with an Integer Linear Programming (ILP) approach. Exact Kemeny

aggregation has been shown to be NP-hard [13, 60], but can be expressed as a variation

of the minimum weighted feedback arc set problem [43, 138], and solved using an integer

linear program approach [43]. We propose a Fair-ILP by modeling pairwise statistical

parity as a constraint in Linear Program 1.
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Linear Program 1: Fair-ILP.

minimize
∑
i,j

CijAij (9.13)

s.t. Aij ∈ 1, 0 (9.14)

Aij + Aji = 1 strict ordering constraint (9.15)

Aij + Ajk + Aki ≥ 1 transitivity constraint (9.16)

|
∑
xi∈G1
xj∈G2

(Aij − Aji) | ≤ δp parity constraint (9.17)

Matrix A specifies the order of all pairs in the desired consensus ranking ρ∗. The

first constraint (Equation 9.14) enforces that A is a boolean matrix representing the final

ranking ρ∗, wherein each pair appears exactly once. The second constraint (Equation

9.15) says that for all pairs, either xi ≺ xj or xj ≺ xi, preventing loops in a strict

ordering over all candidates. The third constraint (Equation 9.16) enforces transitivity.

Conitzer et al. [43] show that together these three constraints are sufficient to produce

the Kemeny-optimal aggregation which minimizes the Kendall Tau distance to R.

Equation 9.17 enforces pairwise statistical parity. This constraint sums the differences

between entries in A corresponding to mixed pairs in ρ∗, where Ai,j represents the pair

(xi ≺ xj) favoring group G1 over G2, and Aj,i represents its inverse (xj ≺ xi) favoring

group G2. Summing over these differences computes exactly the difference between the

Rpar scores as in Equation 9.12.

9.4.1.1 Complexity Analysis for Fair-ILP

While Kemeny aggregation is NP-hard, it is fixed-parameter tractable, depending only on

the number of items being ranked n. This intuitively can be understood by considering

the size of the n-by-n precedence matrix C. The number of rankings |R| contributes

only to a one-time setup cost of O(|R| ∗ n2) to construct C. The ILP solution for

unconstrained Kemeny aggregation requires n2 binary variables in the matrix A,
(
n
2

)
constraints to enforce strict ordering (Equation 9.15), and

(
n
3

)
constraints for transitivity

(Equation 9.16). Our fairness requirement in Equation 9.17 adds additional constraints

for each mixed pair (|G1||G2| constraints). This, as our experimental study in Section

9.5 confirms, increases the time to solve the program.

For rankings over many items, the large number of binary variables in the ILP solution

87



9.4 PROPOSED METHODS FOR KEMENY-OPTIMAL FAIR
AGGREGATION

poses practical computational challenges. In benchmarking studies [23, 43], ILP algo-

rithms for unconstrained Kemeny aggregation could not handle more than n = 60 items.

Similarly, in Section 9.5 with state-of-the-art highly optimized mathematical GUROBI

solver [76] and 500G of dedicated memory, we handle problems on the order of n = 100.

Further, with commercial solvers for IP being proprietary and not freely available outside

of academia, we explore additional solutions next.

9.4.2 Fair-BB

We now design a Branch-and-Bound based (B+B) approach aiming to handle a larger

number of candidates n. Intuitively, any fairness constraints imposed on the rank ag-

gregation task shrink the space of possible outcomes. To capitalize on this problem

characteristic, one simple approach would be to incorporate an explicit check into the

branching rule for a B+B solution for traditional Kemeny aggregation. This would prune

search paths which violate the targeted fairness criterion F . However, we observe that

this may require the method to backtrack over many paths in the tree, resulting in an

expensive search. Alternatively, to empower more efficient search, we now derive a lower

bound on the distance from the base rankings in R to any fair consensus ranking. This

can be thought of as the cost of each potential solution in terms of pair inversions between

rankings. We use this lower bound to design admissible fairness-preserving heuristics.

which can guide the B+B tree search, and are guaranteed to underestimate the true cost of

the final ranking. This ensures that whenever a leaf node is reached, an optimal solution

has been found [127].

9.4.2.1 Bounding the Cost of Fairness

The total cost of a potential consensus ranking ρ corresponds to the sum of the costs

for all ordered pairs of candidates (xi ≺ xj) in the ranking as given by the Kendall Tau

distance (Equation 9.1). This cost for each pair is computed by counting the proportion

of rankings in R that disagree with its ordering using the precedence matrix C, such

that:

cost(xi ≺ xj) = Cj,i. (9.18)

Each pair can only be ordered one of two ways, either (xi ≺ xj) or (xj ≺ xi). This

order will agree with a certain number of rankings in R. Thus, for all xi, xj ∈ X, we

have:

Ci,j = 1− Cj,i. (9.19)
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Summing the minimum costs associated with each pair in the ranking (Ci,j or Cj,i)

provides a lower bound lb(ρk) on the true cost of the Kemeny optimal consensus ranking

[120], as given in Equation 9.20. We note here that this order may contain cycles, and

therefore may not correspond to the actual cost of a feasible solution.

lb(ρk) =
∑

xi,xj∈X

min(Cj,i, Ci,j) (9.20)

Building on this, we now propose Lemma 9.1 following directly from Definition 9.2 of

the fair rank aggregation problem.

Lemma 9.1. Let a Kemeny optimal consensus ranking over X be any ranking ρk with

minimum cost distance to R, and a fair consensus ranking over X be any ranking ρ∗

with minimum cost out of all rankings that satisfy a given fairness criterion F . Then

cost(ρ∗) ≥ cost(ρk).

Proof. If a ranking ρk exists that satisfies F , then ρk = ρ∗. Otherwise, ρ∗ must have

higher cost by definition. �

In a higher cost solution, some number k ≥ 0 pairs must not conform to the minimum

cost ordering in the final ranking ρ∗. Assuming we knew this number k, we could then

compute a lower bound lb′(ρ∗) based on Equation 9.20 by flipping the number of the k

pairs that add the minimum amount of cost overhead to lb(ρk). Lemma 9.2 identifies the

overhead cost of flipping a pair.

Lemma 9.2. Given a pair (xi ≺ xj) with a minimum cost of Cj,i contributing to the sum

in lb(ρ∗), if the pair is flipped, the updated bound lb′(ρ∗) will incur an overhead cost

of 1− (2 ∗ Cj,i).

Proof. By Equation 9.19, flipping a pair is equivalent to subtracting the minimum

cost Cj,i for the pair and adding its inverse (1−Cj,i). Therefore, when we flip a pair from

the order (xi ≺ xj) to order (xj ≺ xi), we get:

lb′(ρk) = lb(ρk)− Cj,i + (1− Cj,i)

= lb(ρk) + 1− 2 ∗ Cj,i �

Corollary 9.1. lb′(ρ∗) can be determined from the ordering of pairs used to compute

lb(ρk) by flipping the k pairs that carry the minimum overhead costs, and that will satisfy

the criterion F .
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Proof. Corollary 9.1 follows directly from Lemmas 9.1 and 9.2, given that Ci,j ≥ Ck,l =⇒
1− 2 ∗ Ci,j ≤ 1− 2 ∗ Ck,l �

9.4.2.2 Guiding Search for Fair Consensus Ranking

Building on the observations above, we now incrementally construct a search tree such

that each node v represents a candidate x being placed in a particular rank position in ρ∗.

Each node is expanded by adding children nodes for all items not yet included in the path

to v. The full search tree has depth n, with every path through the tree representing one

possible ranking, and n! leaf nodes. To bound the search and avoid traversing the entire

tree, as each node is expanded, we compute a two-part cost function f(v) = g(v) + h(v).

We can think of g(v) as the cost of the pairs-so-far set by the order of the candidates

in the prefix path from the root to the current node v. Heuristic h(v) models an estimate

of the cost for the pairs-to-go which are yet to be determined. Given a node v, the

pairs-so-far set by the path to v can be divided into three subsets: pairs of candidates

belonging to the same group, pairs favoring group G1 over G2 (denoted v.p1), and pairs

favoring group G2 over G1 (denoted v.p2). These pairs all contribute to the cost of the

pairs-so-far g(v).

Rank Parity Heuristic. To determine h(v) for rank parity, we initially assign all

pairs-to-go their minimum cost ordering as required to compute lb(ρk) (Equation 9.20).

Once all the pairs are ordered, they can similarly be divided into subsets. We denote

pairs-to-go favoring G1 over G2 as v.p2g1, and pairs favoring G2 over G1 as v.p2g2. We

can now express the rank parity criterion in Equation 9.12 for a node v as the following

requirement:

abs( |v.p1 ∪ v.p2g1| − |v.p2 ∪ v.p2g2| ) ≤ δpar (9.21)

where | · | denotes the number of pairs in each set. If this condition is not met, we must

update our initial ordering of pairs-to-go to be sure it only allows for rankings which

satisfy rank parity. This is accomplished by flipping the order of some of the pairs-to-

go, transferring them from the set favoring one group to the set favoring the other and

balancing the pairwise advantage of the groups. We determine the required number of

pairs to flip to satisfy rank parity k, according to Lemma 9.3.

Lemma 9.3. Given a node v, let Pmax = max(|v.p1∪v.p2g1|,|v.p2∪v.p2g2|) and Pmin =

min(|v.p1∪ v.p2g1|,|v.p2∪ v.p2g2|). The number of pairs to flip to satisfy Equation

9.21 is:

k =
⌈Pmax − Pmin − δpar

2

⌉
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Algorithm 1: getParityOverhead

input : node v
output: overhead cost for v

if |v.p1 + v.p2g1| > |v.p0 + v.p2g0| then

k =
⌈
|v.p1+v.p2g1|−δ

2

⌉
;

pairsList←− v.p2g1;

else if |v.p1 + v.p2g1| < |v.p0 + v.p2g0| then

k =
⌈ |v.p0+v.p2g0|−δ

2

⌉
;

pairsList←− v.p2g0;

else
k = 0

if k == 0 then
return 0

else if k ≤ length(pairsList) then
sort(pairsList) ; // sort in ascending order

// of overhead cost

overhead ←− 0;
for i to k do

overhead += 1− 2 ∗ cost(pairsList[i ]);

else
overhead ←−∞ ; // constraint cannot be met

return overhead

Proof. When we flip a pair, we subtract 1 from Pmax and add it to Pmin. Therefore we

simply can derive the number of pairs to flip as:

(Pmax − k)− (Pmin + k) = δpar

Pmax − Pmin − 2k = δpar⌈Pmax − Pmin − δpar
2

⌉
= k �

Given the required number of pairs to flip k, we can then check whether there are a

sufficient number of pairs-to-go that could be flipped. If not, this path cannot yield a

feasible solution and can thus be pruned. If there are more than enough pairs-to-go, then

following Corollary 9.1, flipping only those k pairs that add the minimum overhead will

give us our adjusted lower bound on the cost of pairs-to-go lb′(ρ∗). Algorithm 1 gives the

procedure for computing the total minimum overhead cost for k flipped pairs-to-go.
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9.4.2.3 Complexity Analysis for B&B Solution

Complexity of Search Tree Exploration. In the worst case, every path in the tree

will have to be explored yielding an O(n!) search cost. Even for modest values of n,

such a search will likely be intractable. However, in [120], Meila et al. observe that

performance is greatly impacted by the amount of agreement among the base rankings

in R. If there is little agreement, all rankings in Sn will be far from the set R and many

paths in the tree will have to be compared. In contrast, if there is strong agreement in

R, then only a small number of rankings in Sn will be likely candidates for ρ∗. Given a

good search heuristic, only the small number of likely rankings will need to be explored.

The cost of the B+B algorithm also depends on the search strategy used. We im-

plement A* search, using a priority queue which has constant time cost for adding and

removing nodes if a Fibonacci heap isused. Overall performance of the search depends

heavily on the heuristic used. In Section 9.5 we empirically evaluate our rank parity

heuristic given varying degrees of agreement among the rankings.

Complexity to Compute Parity Heuristic. As is typical in B+B design, there is

a complexity tradeoff between computing a tighter lower bound heuristic and its impact

on the resulting search [40]. Each time a node v is expanded, we must compute the cost of

the pairs-so-far g(v) and cost of the pairs-to-go h(v) for every child node. Following the

strategy in [120], we use the siblings of each node to compute g(v), and to determine the

sets of pairs-to-go. This requires constant time complexity and O(n) space complexity

to store the child nodes. To compute the parity heuristic h(v), Algorithm 1 sorts the

pairs-to-go in Pmax. Sorting all n(n− 1)/2 candidate pairs has complexity O(n2(log(n)).

Therefore, traversing a single path from the root to a leaf, we visit n nodes and expand

O(n) child nodes. This results in O(n4log(n)) time complexity.

9.4.3 Fair-Post

To handle the case when the B+B method exceeds allowable resources, one could revert

to an approximate tree search using standard techniques such as best first search or beam

search. Unfortunately, this simple approach guarantees neither optimal distance to the

base rankings nor fairness. As an alternative, we now return to the post-processing

strategy discussed in Section ?? to design a approximation strategy which not only

guarantees pairwise statistical parity, but also assures that a minimum number of pair

inversions are introduced. Given this, existing fast approximation methods for Kemeny

aggregation can be plugged in to first aggregate R and generate an initial consensus
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ranking, and then correct for fairness while bounding the additional approximation error

added.

Our Fair-Post is given in Algorithm 9.4a. The input is an unfair ranking ρ = [x1 ≺
· · · ≺ xn] which does not satisfy pairwise statistical parity. Let us say without loss of

generality that more pairs favoring group G1 is greater than the number of pairs G2.

A fair version of this ranking should only allow a certain number of pairs to favor G1

– denoted maxPairs. To correct the ranking, the algorithm proceeds by forming two

queues of candidates l1, l2 for each group, respectively, keeping the candidates in their

original rank order. Then, iterating through rank position i = 1 to n, at each step the

candidate ranked highest in ρ in either queue is placed at the current position i in ρ′,

provided that the fairness constraint will not be violated. To check this condition, we

keep a tally of the pairs-so-far favoring each group denoted p1 and p2, respectively. If the

selection of a candidate from G1 would cause the number of pairs favoring G1 to exceed

maxPairs then parity would be violated (line 11). In this case the highest ranked item

from queue l2 is chosen instead.

Number of pairs-so-far. Each time a candidate x is placed at position i, it forms

pairs of items favoring x over all subsequent candidates. If the candidate is in group G1,

the number of mixed pairs created is the number of remaining candidates in l2 yet to be

ranked. The count of pairs-so-far p1 is updated accordingly (line 13). When a candidate

from G2 is chosen, p2 is updated in a similar fashion based on the number of items in l1

(line 21).

Number of pairs-to-go. At each step i, the mixed pairs left to be formed are be-

tween the candidates in the queues l1 and l2. Therefore the number of mixed pairs-to-go

is |li1||li2|.

Total number of mixed pairs. Following from the observations above, at any step

i, the total number of mixed pairs m is made up of the pairs-so-far and pairs-to-go.

Therefore:

m = pi1 + pi2 + qi + |li1||li2| (9.22)

Number of flipped pairs. In the process of correction, some number q pairs will

be flipped. Pairs are only ever flipped from favoring G1 ≺ G2 in the original ranking

ρ to now favor G2 ≺ G1 in the output ranking ρ′. Choosing a lower ranked item from

G2 to satisfy parity creates mixed pairs favoring x ∈ l2 over all the candidates in l1.

Many of those pairs have the same order as in the original ranking, however some will
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: correctParity

input : ρ = [x1 ≺ x2 ≺ · · · ≺ xn], maxPairs
output: ρ′ corrected ranking, q = K(ρ, ρ′)

l1, l2 ←− empty queues;
for i← 1 to n do

if xi ∈ G1 then
insert xi into l1;

else
insert xi into l2;

ρ′ ←− [ ] ;
p1, p2, q ←− 0;
for i← 1 to n do

if ρ(l1.peek()) > ρ(l2.peek()) then

if p1 + l2.length() ≤ maxPairs then

ρ′[i] = l1.dequeue();
p1 = p1 + l2.length();

else
flip =ρ(l2.peek())−i);
ρ′[i] = l2.dequeue();
p2 = p2 + l1.length()− flip;
q = q + flip;

else
ρ′[i] = l2.dequeue();
p2 = p2 + l1.length();

return ρ′, q

be flipped. The number of flipped pairs is ρ(x)− i. We can see this in the figure above

when candidate x8 is placed at position i = 6 resulting in two flipped pairs (x8 ≺ x5) and

(x8 ≺ x7). We track the number of flipped pairs-so-far q separately from the number of

pairs favoring G2 retaining the same order as ρ (lines 15-18).

9.4.3.1 Proof of Fairness and Optimal Aggregation Error

To prove that the correctParity Algorithm produces an optimal fair result, we first prove

that if the output ranking ρ′ satisfies the pairwise statistical parity criterion, then a

minimal number of pair inversions will have been made, resulting in an optimal Kendall

Tau distance between ρ and ρ′. Then we prove by induction that the algorithm guarantees
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a fair result. Relevant notation is defined in Table 9.1.

Symbol Definition

ρ Input unfair ranking.

ρ′ Corrected output ranking.

ρ(x) Rank of candidate x in ρ.

li1, l
i
2 Queues of candidates from each group G1, G2 in order of rank in ρ at step i.

h The minimum number of pairs to flip.

qi The number of flipped pairs so far at step i.

pρ1, p
ρ
2 Number of pairs favoring group G1, G2 in original ranking ρ.

pi1, p
i
2 Number of pairs-so-far favoring group G1, G2 at step i.

Table 9.1: Table of symbols.

Let pρ1 and pρ2 denote the number of pairs favoring groups G1 and G2 respectively in

the original ranking ρ, such that pρ1 + pρ2 = m. There exists some minimum number

of pairs h > 0 that must be flipped in order for ρ′ to satisfy rank parity, such that:

pρ1 − h = maxPairs = m− (pρ2 + h) (9.23)

At each step i of the algorithm we have:

pi1 ≤ pρ1, and pi2 ≤ pρ2 ∀ 0 < i ≤ n (9.24)

At the last step n of the algorithm, pn2 = pρ2, and qn is the total number of pair inversions

between ρ and ρ′, corresponding to the Kendall Tau distance between the original ranking

and the corrected version. If pn1 = maxPairs and pn2 + qn = m − maxPairs then the

output ranking ρ′ satisfies parity. If qn = h then we have flipped only the minimum

number of pairs, and the Kendall Tau distance K(ρ, ρ′) is optimal.

Proof that a fair result is optimal. We now show that for all steps of the algorithm:

qi ≤ h⇐⇒ pi2 + qi ≤ m−maxPairs (9.25)
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First we show that for all i, qi ≤ h =⇒ pi2 + qi ≤ m−maxPairs:

qi ≤ h

pi2 + qi ≤ pi2 + h

pi2 + qi ≤ pρ2 + h by Equation 9.24

pi2 + qi ≤ m−maxPairs by Equation 9.23

Next we show that pi2 + qi ≤ m−maxPairs =⇒ qi ≤ h using proof by contraposition.

Suppose that qi > h. We have:

m > pi1 + pi2 + h+ |li1||li2| by Equation 9.22

m− h > pi1 + pi2 + |li1||li2|

pρ2 > pi1 + pi2 + |li1||li2| by Equation 9.23

pρ2 > m− qi by Equation 9.22

qi > m− pρ2 = pρ1 by definition of pρ1

qi > maxPairs by Equation 9.23

pi2 + qi > maxPairs ≥ m−maxPairs by definition of maxPairs

Having proved the contrapositive qi > h =⇒ pi2 + qi > m−maxPairs, we can infer

that Equation 9.25 is true for all positions in the ranking ρ′. �

Proof of fairness. We now prove by induction that the correctParity algorithm pro-

duces a ranking ρ′ which satisfies statistical parity by showing that for all rank positions

i, Equations 9.26 and 9.27 hold. We consider only cases where n ≥ 3 in which there are

more than one pair of candidates.

pi1 ≤ maxPairs (9.26) pi2 + qi ≤ m−maxPairs (9.27)

Base case. Prior to adding any candidates to ρ′, all values p01, p
0
2, q

0 are equal to 0.

At step 1, there are 3 ways we can choose the first candidate in the ranking:

1. The highest ranked candidate in ρ is x ∈ l2.
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We have p11 = p01 = 0 and q1 = q0 = 0. To prove Equation 9.27 we observe:

p12 + q1 ≤ pρ2 + 0 by Equation 9.24

pρ2 + 0 ≤ m−maxPairs by Equation 9.23

2. The highest ranked candidate in ρ is x ∈ l1, and choosing it does not violate parity.

Since the parity condition holds, p11 ≤ maxPairs. We form no flipped pairs so

q1 = 0 and p12 + q1 = p02 + q0 = 0 < m−maxPairs.

3. The highest ranked candidate in ρ is x ∈ l1 but choosing it would violate the parity

constraint, so we choose a lower ranked candidate y ∈ l2.

This only happens if p01 + |l2| > maxPairs. We know that maxPairs ≥ m
2

by

definition, and since all items are still in the queues, m = |l11||l12|. Therefore:

|l12| >
m

2
=⇒ |l12| >

|l11||l12|
2

=⇒ |l11| = 1

This means that there is only one candidate in G1, originally ranked in the top

spot. We choose a candidate from G2 instead, forming 1 flipped pair, so q1 = 1

and p12 = p02 = 0. We know n = |l11|+ |l!2| ≥ 3 =⇒ m ≥ 2. Therefore p12 + q1 = 1 ≤
m−maxPairs.

Induction step. Suppose that at step i, pi1 ≤ maxPairs, and pi2 + qi ≤ m−maxPairs.
At step i+ 1, there are again 3 ways of choosing a candidate:

1. The next highest ranked candidate is x ∈ l2.

We have pi+1
1 = pi1 ≤ maxPairs by induction hypothesis. Since x is the highest

ranked candidate we don’t form any flipped pairs, so qi+1 = qi. Therefore:

pi+1
2 + qi+1 = pi+1

2 + qi

pi+1
2 + qi+1 ≤ pρ2 + qi by Equation 9.24

pi+1
2 + qi+1 ≤ pρ2 + h by Equation 9.25

pi+1
2 + qi+1 ≤ m−maxPairs by Equation 9.23

2. The next highest ranked candidate is x ∈ l1, and choosing it does not violate parity.
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Since the parity condition is not violated, pi+1
1 ≤ maxPairs. No pairs favoring G2

are formed, so pi+1
2 + qi+1 = pi2 + qi ≤ m−maxPairs by induction hypothesis.

3. The next highest ranked candidate is x ∈ l1, but choosing it would violate the parity

constraint, so we choose a lower ranked candidate y ∈ l2.

We know that pi+1
1 = pi1 ≤ maxPairs by induction hypothesis.

To show that pi+1
2 +qi+1 ≤ m−maxPairs we give a proof by contradiction. Suppose

pi+1
2 + qi+1 > m − maxPairs. Since parity would have been violated if we chose

x ∈ |li2|, we also have pi1 + |li2| > maxPairs. From this we can derive:

pi+1
2 + qi+1 + pi1 + |li2| > m

pi2 + |li1| − (ρ(y)− 1) + qi + (ρ(y)− 1) + pi1 + |li2| > m

|li1|+ |li2| > m− (pi1 + pi2 + qi)

(9.28)

At step i, (pi1 + pi2 + qi) is simply the total number of mixed pairs-so-far in the

ranking. Since the pairs-so-far and pairs-to-go make up the total number of mixed

pairs m (Equation 9.22), we have m− (pi1 + pi2 + qi) = |li1|li2|. Therefore Equation

9.28 can be reduced to |li1| + |li2| = |li1||li2|. However, the size of the queues are

strictly positive integers, therefore their sum cannot be greater than their product.

That is a+ b > ab =⇒ a > ab− b =⇒ ab− b+ b > ab =⇒ ab > ab which cannot

be true.

Conclusion. By the principle of induction, Equations 9.26 and 9.27 are true for all

positions i in the ranking ρ′. �

9.4.3.2 Complexity Analysis for Fair-Post

Algorithm 9.4a has O(n) time complexity, requiring two passes over the input ranking

first to populate the queues and then to assign the candidates to their corrected rank

positions. It has O(n) space complexity to hold the candidates in the queues. Given

we first need to aggregate the rankings which may contain a large number of items, we

propose to plug in an existing approximate aggregation method as an initial step. This

way we address the complexity concern of the alternate exact aggregation solutions such

as the NP-hard Kemeny aggregation, and the (non-fair) ILP [43] and B+B [120] solutions

- with the later having similar limitations on the number of candidates to be ranked as

our proposed integrated methods.
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9.5 Evaluation

9.5.1 Experimental Methodology

Overall Strategy. We conduct a systematic study analyzing the interplay between

critical factors including # candidates being ranked, # rankings in R, consensus among

rankings in R, and group fairness threshold on the fair rank aggregation algorithms.

Then we conduct a case study using real-world sports ranking data generated by human

decision makers evaluating other people.

Metrics. To measure the accuracy of the aggregation, we use the average Kendall

Tau distance to the rankings in R (Equation 2), denoted Kmean(ρ∗). To evaluate the

fairness (pairwise statistical parity) achieved by the consensus ranking ρ∗, we measure

the absolute difference in the RparGi
scores (Definition 9.4) for each group, denoted as

Rpar(ρ∗) in Equation 9.29. Since the RparGi
scores for each group are normalized by

the total number of mixed pairs, the Rpar score is equal to 1 when the ranking is totally

biased favoring one group, and 0 when each group is favored in half of the pairs for perfect

parity.

Rpar(ρ∗) = abs(RparG1(ρ
∗)−ReqG2(ρ

∗)) (9.29)

Methods. As a baseline, we compare against two existing strategies for (nonfair)

exact Kemeny aggregation: integer linear program (ILP) by Conitzer et al. [43], and a

B+B algorithm by Mandhani and Meila [117] which uses the lower bound in Equation

9.20. When evaluating approximate aggregation, we compare against the classic Borda

[50] scoring method. In a comparative study of algorithms for Kemeny aggregation [5],

Borda was suggested as the best approximation approach when optimizing for speed,

and to give low approximation error. Borda simply sorts the candidates by the the

overall pairwise advantage in R, which can be done efficiently by summing the columns

of the precedence matrix. We denote our proposed fairness-preserving exact methods as

Fair-ILP for the integer-linear-program with rank parity constraint (Section 9.4.1) and

Fair-BB for our B&B method with rank parity-preserving heuristic (Section 9.4.2). We

apply our Fair-Post algorithm introduced in Section 9.4.3 as post-processing step to the

unconstrained exact and approximate methods.

Experimental Setup. All experiments were performed on a Linux server running

Ubuntu 14 with 500G of RAM. Integer programming solutions were implemented using

the commercial highly optimized and parallelized mathematical solver GUROBI [76].

Borda and Fair-Post methods we implemented in Python. B+B algorithms were imple-
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Figure 9.5: Impact of parameters θ controlling consensus, and p controlling fairness on
sets of Mallows generated base rankings with n = 50 items and |R|=20.

mented in Java, adapted from implementation by authors of [117]. For Java methods, we

fix the heap size of JVM at 50G. Direct comparisons of run-times should consider these

differences.

9.5.2 Controlled Study of Fair Kemeny

Aggregation using Mallows Model

Dataset Generation. We adopt the Mallows Model probability distribution over rank-

ings [116] which provides a natural means to evaluate Kemeny rank aggregation methods

extensively in previous studies [5, 23]. The Kemeny optimal consensus ranking has been

shown to be a maximum likelihood estimator for this model [157]. For all rankings
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π ∈ Sn, the Mallows model is the probability distribution:

Pπ0,θ
exp(−θK(π, π0))

Z

Z =
n−1∏
i=1

1− exp((−n− i+ 1) θi)

1− exp(−θi)

(9.30)

The distribution is parameterized by θ which controls the degree of consensus among

the rankings in R. If θ = 0, Equation 9.30 yields a uniform distribution, i.e., there is no

consensus among the rankings. As θ increases, the distribution becomes steeper around

a single mode ranking σ0.

To understand the fairness of ρ∗ compared the fairness of the base set of rankings

in R, we introduce a second parameter p. We control parity in the base rankings by

assigning the candidates in the central ranking σ0 to two groups G1 and G2, starting

from the highest ranked item and progressing sequentially to the lowest ranked. For

each candidate, the group is chosen with probability p. For p = 0.5, the groups are

assigned in a uniform random manner. Given enough items, this central ranking will

be fair, i.e., Rpar(σ0) will be close to 0. As p increases, group G1 is more likely to

be chosen, leading to more candidates from G1 appearing in favorable positions in the

ranking. When p = 1, all candidates in G1 are ranked above those in G0, resulting in a

completely biased ranking with Rpar(σ0) = 1.

9.5.2.1 Descriptive Study of Consensus and Fairness in Mallows Data

Figure 9.5 shows twelve different sets of base rankings generated using the Mallows model

with n = 50 candidates and |R| = 20 rankings. We create different aggregation scenarios

by varying the parameters θ and p. Items from groupG1 are colored white, and items from

G0 are black. The top row shows the central rankings σ0 used to generate four versions

of R in the corresponding columns, with highly ranked items on the right. Moving top

to bottom, θ is first close to 0, producing little consensus among the rankings. As θ is

increased moving down, the rankings in R tend to agree more and more with the order

of items in σ0.

In each column of Figure 9.5 the candidates are assigned to groups with different

degrees of bias. On the left, items are assigned with probability p = 0.5, and both

groups are randomly distributed throughout all sets of rankings, even when there is a

high degree of consensus. In the middle, σ0 is generated with p = 0.7, and on the right
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Figure 9.6: Impact of agreement in R on distance to ρ∗ (left) and on the rank parity of
ρ∗ (right) on sets of Mallows generated base rankings with n = 50 items and |R|=20 for
unconstrained and fairness-preserving ILP methods.

p = 0.9. Group G1 is increasingly favored over group G0. We observe that when θ is

small, all the datasets are noisy, no matter the value of p. As θ increases and the rankings

begin to agree, a distinct advantage is introduced for group G1 in R corresponding to

the unfairness controlled by p (Figure 9.5, bottom right).

This demonstrates that consensus among rankings in R has a large impact on the

overall fairness. When there is little consensus (top row of Figure 9.5), any bias in an

individual ranking is “cancelled out” by the diversity in base rankings. In this case, we

expect to see little penalty in aggregation accuracy when enforcing fairness in ρ∗. Any

ranking chosen will have a large distance to R given rankings are so dissimilar from each

other. Conversely, when θ is large (bottom row Figure 9.5), the distance to the consensus

ranking will be small, and accuracy tradeoff for fairness will be higher.
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9.5.2.2 Experimental Study using Mallows Data

Next we demonstrate that our fair aggregation methods learn accurate consensus rank-

ings, while enforcing fairness - even when base rankings are unfairly biased.

Accuracy versus Fairness Tradeoff. First, we verify observations in our descriptive

study using unconstrained ILP and parity-preserving Fair-ILP in the same setting. To

reveal the impact of strict fairness criteria on aggregation accuracy, we set a tight fairness

threshold δpar allowing an advantage of at most 0.02% of the mixed pairs for either group.

On left, Figure 9.6 shows the impact of enforcing parity in ρ∗ on the average Kendall Tau

distance to R for base rankings with different degrees of agreement and different amount

of bias. When θ is close to zero, R is very noisy, and therefore the overall dist(ρ∗) is high,

for both unconstrained aggregation or fair consensus ranking. As θ increases, there is

more agreement among rankings in R, and the distance to ρk found by ILP gets smaller.

Fair-ILP carries a higher distance penalty for requiring parity in ρ∗, which becomes more

pronounced with stronger unfair bias in R (p = 0.9).

Relationship between Rank Parity and Consensus. Figure 9.6 (right) shows

Rpar(ρ∗) scores (Equation 9.29) on y-axis. The pairwise statistical parity of the ρk ILP

solution reflects the unfair advantage in base rankings introduced by parameter p. Fair-

ILP succeeds in enforcing the parity threshold, yielding a flat score across all values of θ

and p.
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Figure 9.7: Comparison runtimes for unconstrained and fairness-preserving B+B and ILP
methods on sets of |R| = 1000 Mallows generated base rankings with theta = 0.3, p = 0.7
and fairness threshold of 25% mixed pairs.
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9.5.2.3 Performance Evaluation

Next we compare the performance of our proposed exact methods Fair-ILP and Fair-BB

for fair rank aggregation. For this, we generate datasets using the Mallows model varying

the number of candidates from n = 40 to 100. We did not observe significant impact on

run-times due to the number of rankings being aggregated. Therefore, we fix |R| = 1000.

Impact of number of candidates on performance. From our cost analysis in

Section 9.4.1.1, we know that the number of candidates being ranked is the most im-

portant determinant of time complexity of the Fair-ILP methods. Indeed, the Fair-ILP

method proves to be robust across parameter settings for θ and different fairness thresh-

olds, achieving consistent run-times across all settings. The parity constraint introduced

in Section 9.4.1 adds some overhead impacted by the amount of bias in the base rankings.

However, as Figure 9.7 shows, the ILP run-times increase exponentially in the number of

candidates n. This confirms similar analysis in previous studies (see 2015 VLDB survey

[23] for n > 60 candidates).

The B+B approaches tell a different story. In Figure 9.7, we fixed θ = 0.3 and

generated biased data with p = 0.7. A loose fairness threshold allowed for an advantage

of 25% of the mixed pairs. In this case, Fair-BB gives much better performance than

Fair-ILP, scaling linearly in the number of candidates. However, the B+B approach is

much more sensitive to the amount of bias in R and agreement among the rankings.

This is expected, since the worst case complexity of the method is O(n!) as discussed in

Section 9.4.2.3.

Impact of Unfair Bias on Fair-BB. For their unconstrained B+B method for Ke-

meny aggregation, [120] claims that the worst case is avoided when the base rankings

strongly agree. We observe that for fair aggregation, too much agreement can hinder

performance. When strict fairness is required and biased base rankings agree strongly,

Fair-BB performance suffers greatly. In our experiments, a number of parameter settings

required more memory than available with heap size of 50GB. It may be that when θ

is large, the base rankings are tightly clustered far from all potentially fair solutions.

Therefore none can be pruned even using the parity heuristic.

9.5.2.4 Approximation Methods

As discussed in Section 9.3, alternative approaches to our integrated solutions include

pre-processing and post-processing strategies using an existing aggregation method along

with a fairness correction method to adjust individual rankings to meet the desired fair-
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Figure 9.8: Comparison of pre-processing, post-processing, and in-processing fair rank
aggregation methods.

ness criteria. We evaluate these alternatives in Figure 9.8 compared to our proposed

Fair-ILP method, which guarentees both fairness and optimal aggregation. The meth-

ods are implemented using our proposed Fair-Post Algorithm in conjunction with the

unconstrained ILP by Conitzer et al. [43] for aggregation.

Input sets of rankings with |R| = 20 and n = 50 candidates are generated using the

Mallows model with θ fixed as 0.3, and different levels of bias p = 0.5, p = 0.7 and p = 0.9

(indicated by color). We compare the approximation error in terms of average Kendall

Tau distance between the consensus ranking and R (on the y-axis) and the pairwise

statistical parity of the result (on the x-axis).

The pre-processing strategy, indicated by the square markers, corrects each ranking for

fairness and then aggregates the results. As Figure 9.8 shows, the resulting aggregations

are neither fair, with Rpar scores ranging from 0.02 to 0.06, nor optimal in terms of

distance to the base rankings. For post-processing, indicated by x markers, we first run

unconstrained aggregation then correct the consensus ranking. In this case the results

are fair, with Rpar scores close to 0, however they still introduce some aggregation error

in terms of distance. Only the in-processing strategy achieves both goals simultaneously.

Scalability of Post-processing Strategy. For databases of many candidates, if

we accept an approximate solution our Fair-Post method can easily scale to the handle

rankings over thousands to millions of candidates. Table 9.2 gives the runtimes when

aggregating rankings of n = 100 to n = 1, 000, 000 candidates. We fix |R| = 1000, p = 0.7,

and fairness threshold of 1% of the mixed pairs as these settings were not observed to

impact runtime in our experimental analysis. We see that the Fair-Post used with the
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Time in Seconds

#Candidates Borda-Agg. Fair-Post

100 0.11 0.30

1,000 0.89 2.41

10,000 8.83 23.48

100,000 104.85 235.07

1,000,000 *** 2798 .57

Table 9.2: Impact of number of candidates on run time for post-processing approximate
aggregation of |R| = 1000.

efficient Borda approximation method scales linearly to easily handle large datasets. For

candidates with n > 100, 000 candidates we report only Fair-Post times for the central

rankings σ0 due to the overhead of generating Mallows data at that scale.

9.5.3 FantasyPros Ranking Case Study

We evaluate our fair aggregation methods using weekly sports rankings from the popular

website FantasyPros.1

These publicly available rankings of NFL players are created by expert sports analysts

to help inform fantasy football picks. This data provides an ideal test-bed reflecting a

real-world phenomena where human voters rank and judge other people as candidates.

Due to the sensitive nature of protected data attributes and biased decision making, we

model unfairness by adding a synthetic protected data attribute to the candidates being

ranked (as has been common in other fair ranking literature [70, 155, 161]).

We pulled rankings of wide receivers for the second week of the 2019 NFL season.

This position had the largest pool of players to be ranked. We considered only complete

rankings over the 50 players ranked by most experts, resulting in a set of 23 expert

rankings of 50 players to be aggregated. We first ran an unconstrained ILP Kemeny

aggregation to find a baseline consensus ranking ρk. Considering this as our central

ranking, we then simulate group bias by assigning the candidates to groups with different

degrees of fairness. We then aggregate the now biased set of rankings using our Fair-ILP

method. We fix a tight fairness threshold of 3 pairs (1% of the mixed pairs). Results

are averaged over 10 runs. The average runtime for Fair-ILP was 9 seconds to create fair

aggregations.

1https://www.fantasypros.com/nfl/rankings
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Table 9.3 evaluates the accuracy versus fairness tradeoff for base sets or rankings with

varying degrees of bias. The top row gives the average Rpar score for unconstrained

aggregation, and bottom rows the average added number of pair inversions resulting

from fair aggregation. This demonstrates that our methods can easily correct for bias in

real-world scenarios. Enforcing rank parity requires an increase of 0.18% average Kendall

Tau distance to the rankings in R for the most stringent fairness threshold.

Rpar(σ0) 0.0 0.2 0.4 0.6 0.8

+K mean 0.49 21.93 53.53 66.93 67.32

Table 9.3: Accuracy verses fairness tradeoff for sports ranking data with |R| = 24 rankings
and n = 50 candidates.
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Related Work

10.1 Evaluating Fairness in Ranking

Top-k Statistical Parity. The majority of early work on fair ranking has focused

on statistical parity [34, 70, 155, 161]. This evaluation strategy for fairness was first

proposed and considered for classification by Dwork et al. [58]. While popular, it has

been observed that enforcing statistical parity may exact a high toll in terms of predictive

accuracy, and possibly infringe on fairness for individuals [58, 80]. For ranking, a number

of evaluation metrics for statistical parity have been proposed, which we evaluate in

detail in Chapter 8. We cover top-k strategies proposed by Yang and Stoyanovich [155]:

rRD and rND which respectively consider differences and ratios of the proportion of

the protected group in top-k compared to the ranking overall, and rKL which uses the

KL-divergence to compare distributions of the different groups throughout the ranking.

We also include in our study skew@k metrics proposed by Geyik et al. [70]. This work

considers fair ranking in the context of LinkedIn’s recruiter platform which helps to

identify potential candidates for jobs. The skew metrics use the logarithmic ratio of

the proportion of the groups in the top-k compared to the overall ranking, as well as

a version of the rKL metric. Both works [70, 155] propose post-processing methods to

achieve parity in a single ranking according to their respective metrics.

Other methods formulate fair ranking under statistical parity as an optimization prob-

lem, without defining an evaluation metric per se. Celis et al. [34] formulate fair ranking

as a constrained bipartite matching problem, and assume that a user provides fairness

rules of the form Lkl ≤ Gi ≤ Ukl which set a lower and upper bound on the number of

items from each group Gi allowed to appear in the top-k. They solve this using both

exact dynamic programming and approximate algorithms, and prove hardness bounds.
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In subsequent work [33] the authors consider unfair ranking under a model of implicit

bias, and show that upper and lower bound constraints are sufficient to correct for this

phenomena. Zehlike et al. [161] design a significance test to determine whether represen-

tation of items in every prefix of the ranking is fair. The repeated significance tests over

dependent subsets of the ranking requires an adjustment to counteract the problem of

multiple comparisons. They accomplish this by memoizing a list of probabilities that a

fair ranking will be rejected using a significance level αc. This pre-computed list is used

to correct for multiple hypotheses using Šidák’s correction. Their method gives a binary

fair/not fair assessment, although they suggest this strategy can then be applied as a

ranked group fairness measure by using the maximum α ∈ [0, 1] that a ranking satisfies.

These statistical parity approaches continue to be applied for various settings. For

instance, Yang et al. [154] tackle a variation on group fairness in ranking, targeting

within-group fairness when there is more than one sensitive data attribute. In [10],

Asudeh et al. design pre-processing and database indexing strategies to facilitate fair

ranking for real-time applications based on linear scoring.

Pairwise Evaluation Metrics. In [106], we introduce an alternative formulation of

statistical parity using pairwise comparisons. We present our Rpar metric in Chapter 7

and prove an equivalence between pairwise and top-k statistical parity in Section 9.3.2.

In [106] we also use pairwise comparisons to formulate alternative notions of fairness

definitions, inspired by the Equalized Odds [80] and predictive parity [39, 98] metrics

for classification which compare error-rates across groups to determine fairness. The

pairwise formulation has been also been considered by Narasimhan et al. [121]. An

interesting observation in their work is that pairwise metrics can support continuous

group identities. For other proposed formulations, sensitive attributes must be binary

(e.g. male / female) or categorical (e.g. different ethnic identities). However since

pairwise formulation compare candidates one to one, they can detect unfair scenarios

based on a range of values – for instance older candidates favored over younger candidates.

Fairness of Exposure in IR. Other recent work [18, 141, 142, 162] considers fair

ranking in Information Retrieval (IR) specifically. Favoring accuracy at the top of a

ranking is particularly important in IR where out of possibly thousands of documents

returned for a query, only a few top results are likely to be clicked. Rankings are also

produced in response to huge numbers of queries, therefore fairness amortized over many

results is also a popular formulation. We discuss the exposure based metrics proposed by
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Singh and Joachims [141] in detail in Chapter 8 which are based on the expected amount

of attention a document will receive in a given rank position. They also propose to

use exposure to measure a disparate treatment notion of fairness. Their method targets

distributions over rankings using doubly stochastic metrics similar to the assignment

matrices we use in our metric comparison framework. They show how rankings can

be sampled from such a distribution using the Birkhoff-von Neumann decomposition.

Exposure measures are incorporated into a learning-to-rank framework by the authors

in later work [142]. Zehlike et al. [162] also target a version of the exposure metrics

in a fair learning-to-rank method, however they only consider the expected exposure of

the top-1 prefix. Concurrent research by Biega et al. [18] also considers fair exposure in

search rankings, however in this work the authors focus on individual rather than group

fairness. This notion of fairness states that similar individuals should be treated similarly

[58]. They propose a metric that therefore suggests exposure should be proportional to

relevance, when considered in an amortized fashion over many rankings. These ideas are

revisited in an analysis of fairness metrics in [54].

Causal Fairness. The variety of ways that fairness in rankings can be measured pro-

vides a strong motivation for the in-depth treatment of evaluation metrics in this dis-

sertation. While we are able to demonstrate the efficacy of pairwise approaches for

understanding tradeoffs between fairness definitions (Chapter 7), as well as between dif-

ferent ways of evaluating statistical parity (Chapter 8) there are still new approaches

being considered as well. Recently much attention has focused on causal fairness, in-

cluding counterfactual [108] and interventional [96] fairness definitions for classification.

As one example, Salimi et al. [135] recently put forth a database repair model in which

fairness depends on a causal path from the protected attribute to the outcome through

any inadmissible attributes. This analysis aims to understand subtleties inherent in data

attributes and causal mechanisms behind unfair bias, and is therefore distinct from our

work. For ranking, causal approaches are still in early development, and an exciting

direction for future work.

10.2 Comparative Studies of Fairness Metrics

Fairness in rankings has received less attention than other predictive tasks such as clas-

sification, despite its critical importance in socio-technical systems. Early work on algo-

rithmic fairness in criminal justice [8] and other aspects of society [12] led to a dearth
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of group fairness metrics for classification alongside statistical parity, in particular based

on predictive error rates [80]. Theoretical comparative analysis of these fairness metrics

yielded important impossibility results showing not all fairness goals can be concurrently

satisfied [39, 98]. Subsequent analysis considers tradeoffs between accuracy and fairness

[44]. We model our comparative analysis in Chapter 8 after the empirical study of clas-

sification fairness metrics by Friedler et al. [68]. This work designates three main types

of fairness definitions for fair classification and evaluates their interrelationships with a

correlation analysis as well as benchmarking on a collection of datasets and different

pre-processing techniques.

In contrast to our general comparative analysis of statistical parity metrics, compar-

ative analysis of fair ranking has been focused on IR. Interest in this area is evidenced

by the addition in 2019 of a Fair Ranking track at the TREC competition. 1. Pitoura et

al. [129] present an overview of types of bias in IR systems categorized as user bias and

content bias. User bias occurs when users are shown disparate content - e.g. women are

shown lower paid job postings. Content bias is when protected types of content are not

given proportional representation. Our comparative study considers the latter type of

bias. Combined user-content bias is also suggested to capture echo chamber phenomena

where certain groups are only shown certain content. They broadly characterize fairness

evaluation in terms of distances between rankings, and point to the need for developing

mathematically rigorous fairness metrics as a key challenge.

Other recent work evaluates the applicability different fairness metrics in search and

their relationships to evaluation metrics for IR [54, 69]. These works are complemen-

tary to ours, demonstrating the relationship of exposure-based strategies for measuring

group advantage and other evaluation metrics for ranking using expected fairness over

distributions of rankings. In [69] Gao and Shah empirically compare fairness metrics

with diversity and novelty metrics. They consider exposure-based statistical parity along

with a number of diversity metrics. In [54] Diaz et al. propose stochastic distributions

of rankings be used as an evaluation framework for evaluating exposure-based fairness

metrics. Rather than focus on the statistical parity exposure metrics proposed by Signh

and Joachims [141], this work follows an individual parity paradigm similar to that in [18]

and considers expected exposure in relation to the relevance of documents and compare

these outcomes to traditional IR evaluation metrics.

A major challenge when evaluating fairness metrics is finding real datasets for eval-

uation, due to the sensitive nature of the data attributes. This often leads to use of

1https://fair-trec.github.io/
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proprietary datasets which cannot be externally validated [70, 136? ] or use of synthetic

or partially synthetic data. In [54] collections of static rankings such as TREC rank-

ings are permuted to produce a distribution. We adopt the bias generation procedure

proposed by Yang and Stoyanovich [155] and used in [161] as our standard model group

advantage.

10.3 Rank Aggregation

To our knowledge, contemporary fairness criteria had not been applied in the context

of rank aggregation prior to our work presented in Chapter 9. In that work we target

Kemeny rank aggregation [93] based on the Kendall Tau distance [94], one of the most

popular and important aggregation formulations [24]. Kemeny aggregation has enjoyed

much interest by the machine learning community. Korba et al. [101] develop a statistical

learning theory for rank aggregation and provide a recent overview overview of the topic.

Applications of Kemeny aggregation range from spam reduction in search results [4, 60],

to group recommendation online [11, 14], to biomedical applications [110].

Computing the Kemeny optimal rank aggregation is NP-hard [13, 60]. A full review

of methods is beyond the scope of this work. Brancotte et al. [23] and Ali and Meila [5]

present comparisons of methods for solving Kemeny aggregation along with variations

including aggregating partial rankings and allowing ties. However we note the exact

integer programming solution of Conitzer et al. [43] and branch-and-bound method by

Meila et al. [120] as inspiring our proposed fairness preserving aggregation methods

presented in Chapter 9. In their study, Ali and Meila [5] characterize the difficulty of

Kemeny aggregation based on agreement among the base rankings in R, which informs

our evaluation design in Section 9.5.

Rank aggregation stems from the study of ranked voting in Social Choice Theory

[9, 93, 157]. This discipline provides a rich context for asking questions related to con-

temporary algorithmic fairness. For instance, Chakraborty et al. [35] investigate the

application of Social Choice axioms to mitigate the impact of bad actors such as bots on

Twitter which may bias recommendations, and to provide fair representation for groups

of users with underrepresented preferences. Recent work [25, 32] has explored contem-

porary fairness for another classic problem in social choice: multi-winner voting. This

problem differs from rank aggregation in that only a subset of candidates are selected.

Methods proposed are being explored for use in real world voting systems [32]. These

examples demonstrate the timely nature of these investigations.

112



Part III

Conclusion and Future Work

113



11

Conclusion

In the first part of this dissertation we study the design of automated tools for ranking.

Chapter 2 outlines a detailed requirements analysis on key considerations for interactive

ranking systems. These considerations provide a roadmap for improving the interactions

of users with rankings, so they can better leverage their domain knowledge and intuition

to make data driven decisions.

In Chapter 3 guidance is provided on choosing preference collection methods that

give the best tradeoff between user effort and training dataset size to allow for useful

rankings to be learned from user preferences. Our user study evaluates three preference

collection mechanisms and demonstrate the surprising result that user behavior varies

greatly across different collection modes. The categorical binning approach is observed to

prompt users to organize large amounts of information using broad strokes, providing the

most training data to the learning model. The results of these experiments have practical

implications for the design of interactive ranking systems, in how best to engage users

and derive sufficient information from which to generate meaningful rankings.

In Chapter 4 we present the RanKit system and corresponding “Build, Explore, Ex-

plain” paradigm for interactive ranking. Explain features incorporated throughout the

system quantify and visualize uncertainty in rank determination to begin addressing re-

quirement 4 and foster trust and understanding in the user, allowing them to effectively

collaborate with the system on decision making. Helping users understand rankings is

a key goal for future work in this area, which requires meaningful ways of measuring

different qualities of rankings.

In the second part of the dissertation we switch gears to this important topic of

evaluation of metrics, with a focus on the nascent subject of algorithmic fairness in

ranking. In Chapter 7 we present the first methodology for auditing rankings using
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pairwise error metrics which capture popular notions of group fairness. We define a

set of three new criteria for rankings, which implement fairness definitions previously

applied only for fair classification: Rank Equality, Rank Calibration, and Rank Parity.

Our proposed fairness criteria together with our FARE auditing method comprise a

powerful diagnostic tool for nuanced analysis of the treatment of groups being ranked.

Then in Chapter 8 we focus on comparing different ways of measuring a single definition

of ranking. We present a conceptual framework for comparing statistical parity metrics

which measure group advantage in rankings in different ways. We provide guidance on

situations where any metric will perform equally well, and certain cases where some

metrics may be more appropriate for identifying different types of unfairness.

Finally, Chapter 9 explores fair ranking in a new context of ranking by multiple de-

cision makers. We offer the first formulation of the fair rank aggregation problem as an

extension of Kemeny aggregation integrated with contemporary group fairness criteria.

We show how our pairwise metrics can be applied to facilitate integrated solutions to the

fair rank aggregation problem. A rich family of exact and approximate algorithms are

presented which solve this new optimization problem by enforcing statistical parity fair-

ness semantics. Examples of real-world scenarios we consider are hiring by committee and

aggregating rankings created by sports analysts. For strict fairness requirements, our ex-

act fairness-aware ILP methods are robust to different amounts of bias agreement among

the base rankings for rankings with n < 100 candidates. However this approach suffers

from a high time complexity. When fairness requirements are lenient, our fairness-aware

B+B solution speeds runtime considerably while achieving optimal aggregation results.

We find that enforcing statistical parity fairness semantics using this approach is very

sensitive to disagreement in the base rankings and strict fairness requirements. Lastly,

our approximate fair post-processing algorithm guarantees fairness while introducing the

minimal amount of approximation error.

Together the work presented in these two parts expands the ways in which ranking

can support meaningful decision making. Automating such processes is becoming ever-

more common, therefore tools and techniques to help people understand the basis for and

implications of these outcomes are essential. We next discuss many interesting avenues

for further discovery in this area.
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Discussion and Future Directions

Visual explanations can play a key role in facilitating fair applications of machine learning

in our society, however they must be integrated into usable tools that people can deploy

using their own data. Fairness assessment algorithms can do little to mitigate the risks

of automated decision making if they are not understandable to the decision makers or

those impacted by the decisions. Interactive data visualization provides a way for experts

and end users alike to see and understand the influence of sensitive data attributes on

decision outcomes.

Much recent work investigates this exciting new area. Questions include the effec-

tiveness of providing explanations for automated decisions [19, 56], transparency of deci-

sion making to users [163], and whether collaboration with automated predictions helps

analysts make more objective decisions [73]. Early research is beginning to evaluate

the relationship between automated fairness criteria and human perceptions of fairness

[128, 137, 143]. Crowdsourced studies by Srivastava et al. [143] and Saxena et al. [137]

evaluate which fairness metrics match people’s intuitions of fairness for classification

tasks. Such direct evaluation has not yet been performed for fairness in ranking prob-

lems, although Peng et al. [128] have evaluated how fairly human analysts rank members

of different groups when given different proportions of candidates. Other research inves-

tigates the fairness of ranked search results for hiring websites [37, 70, 78].

Building on the ideas developed in this dissertation for interactive ranking, evaluating

fairness in rankings, and fair consensus ranking, we now outline three interesting topics

for further study:
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12.1 Visualizing Fairness in Rankings

In the study of algorithmic fairness, we are interested in identifying and mitigating any

unfair bias inherent in the data and algorithmic systems that are used for decision mak-

ing in people’s lives [12]. Fairness can take on many different meanings in this context as

we have discussed throughout part two of this dissertation. Many distinctions are con-

sidered such as between individual fairness and group fairness, ways of measuring group

advantage, fairness in a single instance or amortized over a distribution of outcomes,

and fair decisions made by a single model or by consensus among a group. Other ex-

tremely important questions around fairness among multiple overlapping group identities

unfortunately are outside the scope of this work like much scholarship on fairness.

Designing visual interactions to communicate these ideas is a challenging direction

for future work. Communicating these complicated ideas is critical for the adoption

of fairness-preserving technologies, driven by diverse coalitions of technical and non-

technical stakeholders. A compelling approach has been to use combinations of text

and different visual designs to communicate ideas using visual storytelling. For instance,

Google’s PAIR lab published an interactive visualization 1 illustrating the issue of group

fairness for lending, inspired by the notion of error-based fairness called Equalized Odds

given by Hardt et al. [80]. Following from this example of visual storytelling, similar

approaches to visualizing unfairness in rankings. However, visually representing rank-

ings still poses a number of challenges. As we know from studying IR systems, only so

many search results can be represented on a page, and users typically only interact with

a small set of items at the top on the list, rarely exploring past the first set of results.

This may be fine if searching for a single item, however this presentation does not lend

itself to understanding an entire ranking. Another consideration is that for meaningful

decision making, each item typically has associated information or data attributes, and

organizing this information into a federated view can be difficult. We discuss visualiza-

tion of rankings in interactive systems in Section 5. Further, many key ideas must be

communicated regarding fairness in rankings including:

• Ranked order of items.

• Data attributes associated with each item being ranked.

• Holistic and fine-grained representations of the ranking.

• Group membership of each item.

• Balance of groups in total population.

1https://research.google.com/bigpicture/attacking-discrimination-in-ml
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Figure 12.1: A mockup of a fair ranking dashboard.

• Preferred outcome for items (e.g. membership in the top-k prefix of the ranking).

• Alternative scenarios (e.g.“what-if” analysis that shows impact of adjustments to the

ranking).

• Definitions of fairness.

• Evaluation metrics for rank quality and fairness.

Figure 12.1 mocks up a version of this kind of visual storytelling for a simple fair

ranking scenario for a ranking of 12 items over two groups. Group status is indicated with

color, and intensity of the color indicates rank position. The width of the stacked bars

in the histogram represent an underlying scoring function. Scores are not required for all

rankings, however many fairness evaluation approaches consider trade offs between utility

and fairness. Therefore visualizing scores can allow the user to see when rank accuracy is

violated. A pie chart gives the proportion of items in each group, and evaluation metrics

are accessed using drop-down lists.

This type of display could be integrated with a number of interactions to facilitate

understanding. For instance, users could adjust the slider to consider only a top prefix

of the ranking. The histogram provides something of a “snapshot” view, which could

provide additional information about the items on hover, or users could click through to

access a full table view. Finally, bias mitigation methods could be incorporated to allow

the user to see how the ranking would change if it were adjusted to be more fair, perhaps

using animation to rearrange the bars in the histogram.

In this mockup the actual unfairness in the ranking is only communicated by the

fairness score (and the impression given by the distribution of the colors throughout the

list). An alternative approach would be to visualize the bias itself directly. In the FARE

framework (Section 7.2) we explored this idea by creating plots of the error for each
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Figure 12.2: Mockup of a sliding window interaction visualizing group fairness in a single
ranking.

group. We applied our fair rank measurements using a sliding window approach to show

the degree of advantage for each group at different rank positions. Figure 12.2 shows a

version of this sliding window strategy incorporated into a rank snapshot view. On the

left is a vertical representation of a ranking, and on the right the fairness score for each

group is plotted. The x-axis of the fairness chart corresponds to the window position, and

the y-axis corresponds to a measure of group advantage. Users can interact by sliding the

grey box on either element to view the corresponding rank range on the other element.

12.2 Visual Interactive Support for

Fair Consensus Ranking

In Chapter 9 we present the fair rank aggregation problem along with algorithms for

aggregating multiple rankings into a single consensus ranking which preserves or ensures

group-fair outcomes. This technology could assist decision makers for tasks such as the

hiring scenario above, by automatically combining the rankings of a hiring committee into

a single ranking which balances the preferences of each decision maker with group fairness

considerations for the candidates being ranked. Interactive interfaces incorporated into

mixed initiative systems for consensus could play a crucial role in allowing people to use

this technology for real world decision making. The careful design of interactions should

empower decision makers to understand and trust the algorithmic process, answering
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questions throughout the consensus building process such as:

• Are my preferences being represented well in the consensus?

• How fair is the set of base rankings?

• To what extent do the decision makers agree on the consensus ranking?

• Where in the rankings are trade-offs for fairness being made?

Visualizing the Committee Rankings. To support a consensus-building process a

key consideration is visualising the set of proposed rankings to be aggregated, as well as

the set of possible consensus outcomes. In contrast to the strategies I discussed above

this involves capturing the interrelationships among possibly a large number of rankings

to be considered.

Figure 12.3: Mock up of an interactive visualization for comparing rankings.

Figure 12.3 shows a simple representation of a set of rankings. Such a design could in-

corporate drag and drop interactions which allow users to swap items in their own ranking

and see how the consensus ranking changes, understanding the impact of their personal

preferences on the outcome. Multiple metrics could be supported as was shown in the

dashboard in Figure 12.1 to give information to the user about fairness, accuracy of the

aggregation, and to otherwise characterize the set of input rankings. Hopefully such feed-

back can help users understand the fairness of their decisions, encourage self-reflection

and discussion among users, and assist the decision makers in iteratively adjusting their

base rankings and the imposed fairness constraints, until they find a satisfactory outcome

for their decision making task.
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Visualizing Relationships between Many Rankings. A drawback to the visualiza-

tion in Figure 12.3 is that it doesn’t express any relationships among the rankings in the

set, aside from color patterns that may catch a user’s eye. Rankings are combinatorial

objects and the scale of the space of possible rankings over a set of items quickly explodes

as the number of candidate items being ranked increases. Visually representing such a

space is a challenging task that long captured many imaginations. For instance, consider

the use of Cayley diagrams to represent group structure in set theory, or the study of the

permutation polytope [156]. These strategies attempt conceptualize groups of permuta-

tions as geometric objects, but they do not lend themselves to visualizing rankings over

more than four items. Clearly, for today’s information needs, new approaches must be

developed.

One approach is to treat rankings a high dimensional vectors and perform dimension-

ality reduction to represent the rankings in a 2D space. Kidwell et al. [95] for instance

use the Kendall Tau distance as basis for multidimensional scaling to embed rankings

in a 2d space. Clustering is then performed over the rankings rankings and visualized

using heatmaps. Other dimensionality reduction strategies popular for visualization such

as t-SNE [115] might also be adapted for this purpose. However, a drawback could be

that the resulting visualizations may not align with usual notions of what a ranking is, or

typical tools (e.g. spreadsheets) used to analyse them. Familiarity has been shown to pro-

mote trust in users [48], and therefore this approach may not be ideal for understanding

relationships between rankings.

As an alternative approach could leverage the fact that for a single user of a consen-

sus building tool, they are not necessarily considering the entire space of possible rank

outcomes. Rather, their analysis is anchored in their own set of preferences used to cre-

ate their ranking. They are most likely trying to understand how the other rankings in

the system are related to their own ranking, and how any changes might impact those

relationships. Therefore we can simply visualize the distances to the other rankings, in-

stead of having to consider every relationship between every ranking. As shown in figure

12.4a this can be done in a straightforward horizontal layout with the user’s ranking on

the left and the other rankings arranged by increasing dissimilarity to the right. The

distances between rankings can be determined using any number of rank comparison

metrics including the Kendall Tau distance [94]. This can be incorporated easily with

other dashboard elements and interactions. Different versions switch the anchor ranking

that the visualization is centered on, and evaluate other metrics in addition to distance

between rankings. Figure 12.4b uses the same strategy to compare the fairness of the
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(a) The user’s ranking is shown on the left, with the other committee rankings organized by increasing
dissimilarity to the right.

(b) Committee rankings are arranged from least fair to most fair.

Figure 12.4: Mockup of interactive visual comparisons for a rank consensus ranking task.

committee rankings.

12.3 Understanding Human Perceptions of Fairness

Increasingly, the judgments of human analysts are augmented by decision support tools

or even fully automated screening procedures which automatically rank candidates. A

number of recent studies have focused on auditing the fairness of real-world ranked search

results for tasks such as hiring [37, 70, 78]. When we design new tools along this vein,

such as those I have brainstormed here, principled inquiry must be employed in the devel-

opment and design process. In [85] Holstein et al. survey machine learning practitioners

to investigate challenges and roadblocks in designing fair technologies and identifying

practical approaches to building fair technologies. Binns et al. study the effectiveness of
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providing explanations for automated decisions in the context of compliance with new

regulations in the GDPR [19]. The need for transparency of the decision making proce-

dures and algorithms is commonly touted, but the required degree to which automated

systems must be transparent is still being debated, as considered by Zerilli et al. [163].

Most pertinent to the designs presented here is whether automated systems can effec-

tively help people make more fair decisions. Recent studies have tried to understand this

from different angles. For instance, Green et al. studied automated risk assessments for

recidivism prediction and attempted to understand whether it makes human decisions

more objective [73]. Their work suggests that there is much more study that must be done

to ensure this. Other research is just beginning to evaluate the relationship between pro-

posed measures of algorithmic fairness and human perceptions of fairness [128, 137, 143].

Crowdsourced studies by Srivastava et al. [143] and Saxena et al. [137] evaluate which

fairness metrics match people’s intuitions of fairness for classification tasks. Such direct

evaluation has not yet been performed for fairness in ranking problems. One step is this

direction is a study by Peng et al. [128] which evaluated how fairly human analysts rank

members of different groups when presented with different proportions of candidates.

Basic building blocks are required to initiate rigorous a visualization design and evalu-

ation loop to evaluate people’s understanding of fairness in rankings. Approaches should

facilitate understanding of features that align with decision-makers’ personal values and

understanding of fairness, as well as fixed legal and ethical constraints. For example, a

survey asking people to compare two rankings and choose the one that is more fair is

a simple approach to beginning investigation, which could reveal complex insights into

people’s perceptions of fairness. These impressions could be compared against fairness

metrics considered in this dissertation to evaluate whether they align with people’s im-

pressions. Another study could be modeled after [73] by asking people to choose fair

rankings assisted by automatically generated evaluation metrics. Study details should

be developed through an iterative process using prototype systems and small-scale pilot

experiments. These questions are as of now not well understood, and such preliminary

investigation is needed to further elucidate them.
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