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Abstract 
 

After Bouchet introduced the concept of delta matroid, it became 
a novel extension of matroid theory. Throughout the past decades, 
a strong connection between graph theory and delta matroid 
theory was developed. With the guidance of the article by Moffatt, 
we explored the concepts of delta matroids from a graph theorist’s 
persepective.  
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Chapter 1

Introduction

In this project report, we give a summary of a journal article written by Iain Mof-

fatt. The main focus of this report is to grasp the essence of some delta matroid

theory and see how it is related to graph theory. We will first give a review of

elementary graph theory, a definition of delta matroid. From there, we will demon-

strate how we can construct delta matroids through various types of operations.

Finally, we will explore some topological graph theory, and investigate its connec-

tion with delta matroid theory. Most of the concepts discussed in this report have

similarities shared by these two seemingly di↵erent fields of mathematics.

In the original paper, Mo↵att left out a bunch of exercises to the readers, aiming

to help them understand the concepts of delta matroid theory without a prior

knowledge. Throughout this report, we will give proof and explanation to the

important results in delta matroid theory.
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Chapter 2

Background

In this chapter, we lay out the necessary background in graph theory and matroid

theory for our later discussions.

2.1 Graph Theory

Definition. A graph G is an ordered pair of disjoint sets (V,E) such that F is

a subset of the set V 2 of unordered pairs of V . The set V is the set of vertices,

usually denoted by V (G), and E is the set of edges, denoted by E(G). An edge

{u, v} is said to join the vertices u and v and is denoted by uv. The order of a

graph G, denoted by |G|, is equal to |V (G)|.

Definition. We say that G0 = (V 0, E 0) is a subgraph of G = (V,E) if V ⇢ V 0, E ⇢
E 0.

Example. The empty graph of order n is a graph G, where |G| = n,E = ;.

Definition. The set of vertices adjacent to a vertex x 2 G, is called the neighbor-

hood of x, denoted by �(x). The degree of x is d(x) = |�(x)|. If every vertex of

graph G has degree k, we say G is k � regular.

Definition. The adjacency matrix A = A(G) = (aij) of a graph G is a 0 � 1

matrix where aij = 1 if and only if vivj is an edge.

Example. The cubical graph Q3 is a 3-regular graph, and C4 is one of its sub-

graphs.
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Figure 2.1: The graph Q3, and one of its subgraphs C4.

Example. The adjacency matrix for Q3 (of the specific labeling in Figure 2.1) is:

A =

2

6666666666666664

0 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0

3

7777777777777775

Notice that the adjacency of a graph is not unique. Depending on the numbering

of vertices, one may end up with di↵erent matrices, however, for each adjacency

matrix A of G, A is always symmetric.

A well-known problem related to graph theory is the Seven Bridges of Königs-

berg. The solution to this notable problem introduces one of the most important

aspects of a graph G: whether G is connected and Eulerian. The connectivity of a

graph G is closely related to real world application problems, for instance, network

flow problems. We first give some basic definitions about connectivity of a graph

G.

Definition. A walk W of a graph G is an alternating sequence of vertices and

edges. A path P of a graph G is of the form

V (P ) = {v0, v1, v2, · · · , vl}, E(P ) = {v0v1, v1v2, · · · , vl�1vl}.

We call P a v0�vl path, and of course, it is also a vl�v0 path. P has end vertives

v0, vl, and it is of length l. From this notation, we conclude that a path is a walk

with distinct vertices. A walk is a trail if all the edges are distinct, moreover, a
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trail is called a circuit if its end vertices coincide, i.e., a closed trail. If a walk

W = v0v1 · · · vl is such that it has length at least 3, and the vertices vi, 0 < i < l

are all distinct from each other and v0, then we say W is a cycle.

Example. In the labeled graph Q3, here are some examples of walk, path, trail,

circuit.

A walk W = 1, 15, 5, 57, 7, 75, 5.

A path P = 1, 15, 5, 57, 7.

A trail T = 1, 12, 2, 26, 6.

A circuit C = 1, 15, 5, 57, 7, 73, 3, 31, 1.

Definition. A graph G is connected if for every pair of distinct vertices {u, v}, a
u� v path exists.

Example. Q3 is a connected graph but the following graph is not.

Figure 2.2: A disconnected graph. No path from any vertices to the one in

the middle.

Now we establish the concept of Eulerian Graph, which will be reintroduced later

when building connections with delta matroids.

Definition. A circuit in a graph G containing all the edges is said to be an Euler

circuit, a trail containing all edges is an Euler trail. G is Eulerian if it has an

Euler circuit.

Example. Q3 does not have an Euler circuit, hence it is not Eulerian, but the

complete graph K5 is Eulerian. As a side note, a complete graph is a simple

undirected (no direction on edges) graph where each pair of distinct vertices is

connected by a unique edge.

This concept of Eulerian graph was introduced by Leonhard Euler in 1736, when he

was invited to solve the the puzzle of Seven Bridges of Königsberg. The following

theorem characterizes the basic property about Eulerian graphs.
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Figure 2.3: The complete graph K5 is Eulerian.

Theorem (Euler’s Theorem)[2. ] A non-trivial connected graph has an Euler

circuit if and only if each vertex has even degree.

This theorem is relatively intuitive to understand, in order for an Euler circuit to

exist, whenever an edge ‘comes’ to a vertex, it must ‘leave’ the vertex at some

point in the circuit, hence they pair up. Up to this point, we have covered most

of the fundamental concepts about graph theory that we will use in this report,

next we give a definition for delta matroids.

2.2 Delta Matroids

The definition of delta matroids is closely related to set theory, we assume a basic

knowledge about sets and start with symmetric di↵erence of two sets, which is less

familiar to some readers.

Definition. Let X, Y be two sets, the symmetric di↵erence, also known as the

disjunctive union, of X and Y , denoted by X�Y , is

X�Y := (X [ Y ) \ (X \ Y ).

Example. Let X = {a, b, c}, Y = {b, c, d}, then X�Y = {a, d}.

Definition. A set system is a pair D = (E,F) where E is a set, and F is a

collection of subsets of E. A set system is proper if F is not empty, trivial if E is

empty.

Definition. A set system D = (E,F) is said to satisfy the Symmetric Exchange

Axiom if

(8X, Y 2 F)(8u 2 X�Y )(9v 2 X�Y )(X�{u, v} 2 F).
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If D = (E,F) satisfies the Symmetric Exchange Axiom, then we say D is a delta

matroid, and E is the ground set, F is the feasible set. In this definition, we allow

u = v.

One might wonder what exactly is a matroid, and its relation with delta matroid.

In fact, matroid theory was introduced much earlier than delta matroid, but since

in this report, we are aiming to use graph theory knowledge to study some prop-

erties about delta matroids, our focus is on delta matroids. However, there is a

relation between matroids and delta matroids, as the names suggest.

Definition. A delta matroid is said to be a matroid if all of its feasible sets are

of the same size.

When talking about matroids, we usually use the term bases in stead of feasible

sets, therefore, we denote the set system D = (E,B) as a matroid, rather than F
for the collection of feasible sets. The definition given above is equivalent to the

following:

Definition. The set system D = (E,B) is a matroid if

(i). B is non-empty.

(ii). For distinct A,B 2 B, if a 2 A�B, then 9b 2 B �A with (A� a) [ b 2 B.

Proposition. The two definitions of matroids are equivalent.

Proof. Suppose B1, B2 are distinct members of B, without loss of generality, as-

sume |B1| > |B2| and that |B1 � B2| is minimalized. Then from the second

definition, we can choose a 2 B1�B2 and b 2 B2�B1 such that (B1� a)[ b 2 B,
then |(B1�a)[b| = |B1| > |B2|, but |((B1�a)[b)�B2| < |B1�B2|, contradicting
to |B1 � B2| being the minimum, hence |B1| = |B2|.

Example. We will give one example of delta matroids, a more interesting example

will be given in Chapter 4 where we combine graph theory and delta matroid

together. Take a look at the adjacency matrix A of Q3: we label the columns of

this matrix 1-8. The ground set E is E = {1, 2, 3, 4, 5, 6, 7, 8}. The feasible set

F of E, is defined to be: for each column label, if it labels a basis of the column

space of A, then it is in the feasible set. This is also a matroid, since all bases

of the column space of a matrix must be of same size. The Symmetric Exchange
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Axiom holds because it is analogous to Steinitz Exchange Lemma in linear algebra,

which states that for a linearly independent subset of n elements, one may choose

to replace some elements in the subset in a way that the resulting subset of n

elements still span the entire vector space.



Chapter 3

Manipulations on Delta Matroids

In this chapter, we look into the cardinalities of the sets lying in the feasible sets

of delta matroids. From there, we can start constructing delta matroids through

some basic operations. These operations: twisting, deleting, and contracting, are

fundamental concepts in delta matroid theory.

3.1 Characterizing the Feasible Sets

Definition. A delta matroid is said to be even if its feasible sets are either all of

odd size, or all of even size. Otherwise, it is said to be odd. A delta matroid is

said to be normal if the empty set is feasible.

Corollary. A matroid is an even delta matroid, since the feasible sets are equicar-

dinal, i.e., the bases.

Definition. The width of a delta matroid D = (E,F), we denote it by w(D), is

defined to be:

w(D) := max
F2F

|F |�min
F2F

|F |.

We also denote Fmin to be the collection of all feasible sets in F of minimum size,

similarly, Fmax to be the collection of all feasible sets in F of maximum size, and

Fmin+k to be the collection of all feasible sets that are exactly k larger than the

sets in Fmin.

From the definition of delta matroids, we have the following interesting result

regarding the gap between the collection of feasible sets of di↵erent sizes.

8
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Theorem. If a delta matroid has a feasible set X of size k and a larger feasible

set, then it has a feasible set Y of size k + 1 or k + 2.

This theorem can be verified using |X�Y |, X, Y 2 F . From this theorem, one can

see that for an even delta matroid, if X is a feasible and there is a larger feasible

set, then the maximum gap between feasible sets with di↵erent cardinalities is 2.

In fact, it is at most 2 for any delta matroids (could be 1 if the delta matroid is

odd).

Corollary. Let D = (E,F) be a delta matroid, then Dmin := (E,Fmin) and

Dmax := (E,Fmax) are matroids, called the lower and upper matroids, respectively.

Proof. We show that Dmin is a matroid, then proof for Dmax is analogous.

Let F1, F2 2 Fmin, and let u 2 F1�F2, then u 2 F1�F2, since F1, F2 are all feasible

sets, then Symmetric Exchange Axiom must hold, meaning that 9v 2 F1�F2 with

F1�{u, v} 2 F . Since |F1| = |F2|, it must be the case that v 2 F2 � F1, which is

the definition of bases of matroid.

3.2 Operations on Delta Matroids

We can construct many more delta matroids from a given one through operations.

In this subsection, we give the three fundamental operations in delta matroid

theory and show that delta matroids are closed under such operations. These

operations serve as bridges between delta matroid theory and graph theory, where

readers can find similar definitions in graph theory. In the later chapter, we will

reintroduce these operations and demonstrate how they are applied to the field of

graph theory.

3.2.1 Twisting

Definition. Let D = (E,F) be a delta matroid, A ⇢ E. Let

F 0 := {X�A : X 2 F}.
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Then the twist of D by A, denoted D ⇤ A, is defined as

D ⇤ A := (D,F 0).

The dual of D, denoted by D⇤, is defined as D⇤ := D ⇤ E.

Proposition. Delta matroids are closed under twisting: if D = (E,F) is a delta

matroid, then D ⇤ A is also a delta matroid for each A ⇢ E.

Proof. Let F1, F2 2 F , by the definition of twist, we need to verify the Symmetric

Exchange Axiom, but (F1�A)�(F2�A) = F1�F2, which is an obvious property

for the symmetric di↵erence. Therefore, if F1, F2 are feasible, then F1�A,F2�A

are also feasible.

The twist of a delta matroid is sometimes called a pivoting of a delta matroid, and

from its name, some of the properties about a certain delta matroid is preserved

under this operation, here are two interesting results.

Proposition. Let D = (E,F) be an even delta matroid, then D ⇤ A is also an

even delta matroid for each A ⇢ E, i.e., twisting preserves the evenness of a delta

matroid.

Proof. Let F1, F2 2 F , if D is even, then F1, F2 must have all even or odd car-

dinalities, but in either case, |F1�F2| is even. Let A ⇢ E, then again we have

(F1�A)�(F2�A) = F1�F2, which is of even cardinality.

Proposition. Let D = (E,F) be an even delta matroid, A,B ⇢ E, then (D ⇤
A) ⇤B = D ⇤ (A�B).

Proof. This result can be proved using associativity of symmetric di↵erence. Let

F 2 F , then (F�A)�B = F�(A�B).

3.2.2 Deletion

Before we move on to the second operation, we first need some preliminary con-

cepts.

Definition. Let D = (E,F) be a delta matroid, then an element e 2 E is a loop

if it is not in any feasible set, and a coloop if it is in every feasible set.
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From this definition, the following proposition is an immediate result.

Proposition. If e is a loop in D, then it is a coloop in D⇤.

Proof. Let D = (E,F) be a delta matroid, e 2 E loop, then 8X 2 F , e /2 X, then

it must be e 2 X�E.

Similarly, we have if e is a coloop in D, then it is a loop in D⇤.

Definition. Let D = (E,F) be a delta matroid, and e 2 E, then the definition

of D delete by e, denoted D\e, depends on whether e is a coloop or not.

(i). When e is a coloop,

D\e := (E\e,F 0),F 0 = {X\e : X 2 F , e 2 X}.

(ii). When e is not a coloop,

D\e := (E\e,F 0),F 0 = {X : X 2 F , e /2 X}.

Proposition. Delta matroids are closed under deletion: if D = (E,F) is a delta

matroid, then D\e is also a delta matroid.

Proof. Notice that if e is a coloop, by definition, it is in every feasible sets. Let

F1, F2 2 F , then e /2 F1�F2, so removing e from the ground set has no impact on

the Symmetric Exchange Axiom. Otherwise, if e is not a coloop, then for all pairs

of feasible sets that do not contain e, Symmetric Exchange Axiom holds for them

because they are feasible for the original delta matroid D = (E,F).

3.2.3 Contraction

Definition. Let D = (E,F) be a delta matroid, and e 2 E, then the definition

of D contract by e, denoted D/e, depends on whether e is a loop or not.

(i). When e is a loop,

D/e := (E\e,F).
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(ii). When e is not a loop,

D/e := (E\e,F 0),F 0 = {X\e : X 2 F , e 2 X}.

Proposition. Delta matroids are closed under contraction: if D = (E,F) is a

delta matroid, then D/e, is also a delta matroid.

Proof. Notice that if e is a loop, D and D/e has the same feasible sets since the

feasible sets of D has nothing to do with e. Otherwise, if e is not a loop, we

restrict to the feasible sets of D that contain e, similar to that of deletion, if all

such sets contain e, e cannot be in their symmetric di↵erences, thus the Symmetric

Exchange Axiom holds naturally.

The next identity explains the relationship between twisting, deletion, and con-

traction.

Proposition. Let D = (E,F) be a delta matroid, e 2 E, then

D/e = (D ⇤ e)\e.

Proof. This is just an alternate way of writing the special cases for D/e,D\e.
That is, if e 2 E is a loop or a coloop, then we can set D/e = D\e.

With a similar argument, we have D\e = (D ⇤ e)/e. This is a fundamental result

in delta matroid theory, and we will revisit this identity in the next chapter when

we introduce the Ribbon Graph Delta Matroids. We now give a simple example

of all the concepts introduced in this chapter. Some more complicated examples

will be discussed in the next chapter.

Example. Let D = (E,F) be a delta matroid, with E = {a, b, c, d, e, f}, and

F = {{b, d, e}, {b, d, f}, {c, d, e}, {c, d, f}, {d, e, f}, {a, b, c, d, e},

{a, b, c, d, f}, {a, b, d, e, f}, {b, c, d, e, f}}.

This is an even delta matroid, since all of its feasible sets are of odd cardinalities,

but it is not normal since the ; /2 F .

The width of this delta matroid is, w(D) = 5� 3 = 2.
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Let A ⇢ E,A = {a, b}. Then D ⇤A has the same ground set, but with feasible set

F1:

F1 = {{a, d, e}, {a, d, f}, {a, b, c, d, e}, {a, b, c, d, f}, {a, b, d, e, f},

{c, d, e}, {c, d, f}, {d, e, f}, {a, c, d, e, f}}.

Notice that the delta matroid (E,F1) is again an even delta matroid.

D\{b} has ground set {a, e, d, e, f}, and since b is not a coloop, D\{b} has feasible

set F2:

F2 = {{c, d, e}, {c, d, f}, {d, e, f}, {c, d, e}}.

D/{b} has ground set {a, e, d, e, f}, and since b is not a loop, D/{b} has feasible

set F3:

F3 = {{d, e}, {d, f}, {a, c, d, e}, {a, c, d, f}, {a, d, e, f}, {c, d, e, f}}.

In fact, we can also compose operations together, then we can get a minor of a

delta matroid, the result obtained from the original delta matroid through the

operations of deletion, contraction, and twisting.



Chapter 4

Topological Graph Theory and

Delta Matroids

4.1 Planarity

4.1.1 Planar Graphs

There are certain graphs that can be drawn in a plane without edges crossing,

this type of graph is called a planar graph. Planar graphs are important in graph

theory because they set up the foundation for some famous problems in this field

of study, for example, the vertex coloring problem and the Hamiltonian cycle

probelm. Euler’s Formula helps us characterize the planar graphs.

Definition. A face of a graph is the connected component if omit the vertices and

edges of a plane graph. For each graph, there is one unbounded face, and for the

remaining bounded faces, each one is bounded by the set of edges in its closure.

Theorem (Euler’s Formula). If a connected planar graph G has n vertices, m

edges, and f faces, then n�m+ f=2.

Example. The graph Q3 is drawn in a way with no edges crossing, so it is planar.

To verify the Euler’s formula, we have n = 8, m = 12, and f = 6.

14
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Figure 4.1: Q3.

4.1.2 Embedding Graphs on Surfaces

The complete graph K5 is not planar. Recall that a minor of a graph is the

subgraph obtained from G by a sequence of edge contraction, edge deletion, and

vertex deletion. It turns out that any graph that contains K5 as a minor cannot be

drawn in a plane without edges crossing, due to Kuratowski and Wagner. However,

we can glue a ‘handle’ to the plane surface so that the some of the edges can pass

through the handle in order to avoid crossing with other edges.

Definition. Let genus of a graph G is the an integer n that must be added to

the plane so that the embedded graph does not cross. For example, the genus of

a planar graph is 0.

A plane with one handle is the same as a torus (or, a ‘donut) from a topologist’s

point of view, and thus we can embed nonplanar graphs in surface so that they

do not have edges crossing each other.

Figure 4.2: A Torus.
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4.2 Cycle Matroids

In this section, we briefly discuss the concept of cycle matroids, they are well-

known examples of matroids in a way that they make graph theory and matroid

theory compatible with each other. From here, we can move on to the relationship

between delta matroids and graphs embedded in surfaces. Before we go further

into this concept, a brief review of connected components of a graph G, spanning

trees/forests is laid out below. First, we introduce one of the most important con-

cepts in graph theory, tree, as it appears very often in network related algorithms.

We will follow the definition of a tree used by Bollobás’[2].

Definition. Let G be a graph, the following are equivalent:

(i). G a tree.

(ii). G is a minimal connected graph, that is, G connected and if uv 2 E(G),

then G� uv is disconnected.

(iii). G is maximal acyclic graph, that is, G is acyclic and if u and v are non-

adjacent vertices of G, then G+ uv contains a cycle.

Definition. A spanning tree of a connected graph G is a tree that contains every

vertex of G.

Recall that a maximal connected subgraph is a connected component of a graph.

We define a forest to be a graph, all of whose connected components are trees.

The definition of a spanning forest is similar to that of a spanning tree. Spanning

tree problems are extremely useful in the design of a network, that is, we want

to build a network that reaches to every hub node in the target, but at the same

time, to minimize the cost of constructing connections between each two nodes.

This is called the Minimum (Weight) Spanning Tree Problem (MST) in the area

of combinatorics and graph theory. Here are examples to help digest the concepts

mentioned above.

Example. A spanning tree of Q3 is highlighted in red. There are many spanning

trees of a given graph. If a graph G is complete with order n, then it has nn�2

spanning trees. Furthermore, if we assign weights to each edge in a graph, and

we want to find a solution to the MST problem, there could be multiple optimal

solutions using greedy algorithms.
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Figure 4.3: One spanning tree of Q3.

We can prove by induction that a spanning tree of a connected graph G of order

n has order n� 1, and a spanning forest of a graph G of order n with k connected

components has order n� k. Now we can give the definition of a cycle matroid.

Definition. Let G = (V,E) be a graph (need not to be connected). Let

B := {F ⇢ E(G) : F is the edge set of a spanning forest of G}

Then C(G) := (E,B) is the cycle matroid of G.

We observe that if two spanning forests (i.e., two members of B) di↵er in more than

one edge, then the Symmetric Exchange Axiom is easily satisfied. If two spanning

forests di↵er in one edge, this is the case where allow u = v in the definition of

the axiom. Therefore, for a graph G, C(G) is a delta matroid, but all spanning

forests are of the same order, thus each member in the bases has the same size,

which make C(G) a matroid.

Example. Let G be the graph shown below, with labeled edges, we can define a

cycle matroid of G. The cycle matroid C(G) has ground set E = {1, 2, 3, 4, 5, 6},

Figure 4.4: G with labelled edges
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and feasible set

F = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 3, 4}}.

4.3 Ribbon Graphs

In this section, we introduce ribbon graphs, which are graphs in surfaces. We

explore how this type of graphs tie up with the concept of delta matroids. First,

we give the definition of a ribbon graph.

Definition. A ribbon graph G = (V,E) is a surface with boundary represented

as the union of two sets of discs, a set V of vertives and a set E of edges such that

(i). The vertices and edges intersect in disjoint line segments.

(ii). Each such line segment lies on the boundary of precisely one vertex and

precisely one edge.

(iii). Every edge contains exactly two such line segments.

This definition is relatively abstract, since this is in the field of topological graph

theory, it might be easier to visualize the edges of a ribbon graph as rectangles

with two opposite sides ‘glued’ to the vertices, just like the formation of Möbius

band. Below is an example of how we form a ribbon graph from a graph drawing

on a torus.

Example. Here is an example of drawing a ribbon graph from an embedded graph

on a torus.

4.3.1 Operations on Edges of Ribbon Graphs

We have introduced some operations on delta matroids, now is time to see how

they can be applied to ribbon graphs as well. We shall first discuss deletion of an

edge in ribbon graphs, as it is the easiest to illustrate.

Definition. Let G = (V,E) be a ribbon graph, v 2 V, e 2 E, then G delete e,

denoted by G\e is the ribbon graph obtained from G by removing the edge e,

G\v is the ribbon graph obtained from G by removing the vertex v and all of its

incident edges.
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Figure 4.5: A Ribbon Graph.

This is a more or less straightforward definition for deletion, it can be applied

to graphs in general. Before we move on to contraction, it is necessary that we

talk about the arrow presentation of ribbon graphs first, as it gives a simplified

way to draw ribbon graph. We summarize the procedure of drawing an arrow

presentation in the following steps:

(i). Replace each vertex with a ‘circle’.

(ii). For each ‘rectangle’ attached to the vertex, we define a ‘flow direction’ on

the side that is glued to the vertex.

(iii). Follow this direction through the entire rectangle, mark the directions on

the circle.

(iv). Repeat for all ‘rectangles’.

Example. Here is an example of how to draw the arrow presentation of a ribbon

graph.

With the help of arrow presentation of ribbon graphs, we can define contraction

of a ribbon graph.
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Figure 4.6: Arrow Representation of Ribbon Graph.

Definition. Let G = (V,E) be a ribbon graph, e 2 E, then G contract e, denoted

by G/e is the ribbon graph obtained by the following procedure:

(i). Use arrow presentation to describe G.

(ii). Delete the e labelled arrows and the curves they originally lie on, add arc

connecting the tips and tails of the arrows.

Example. Using the same example as the one in arrow presentation, we demon-

strate how to contract edge 3 in the ribbon graph.

4.3.2 Partial Duals and Connection to Group Theory

Recall that in the section where we talked about faces of a graph G, in this section,

we construct the dual graph of G as well as a partial dual. Mo↵att provided a

connection between operations on ribbon graphs and group theory. Later on we

will use this result again to further explore its connection with Eulerian delta

matroid.

The dual of a ribbon graph, G⇤, follows the same construction as that of a planar

graph, we will skip the details and only give an example here. What’s more

interesting is the construction of partial dual with respect to e, Ge. Again, we
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Figure 4.7: G/3.

need the arrow representation of ribbon graphs and apply the ‘splicing’ procedure

used by Mo↵att. The illustration is shown below.

Figure 4.8: The partial dual G
2
.

Example.

It turns out that we can repeatedly construct the partial dual one edge at a time,

in this way we can define a the partial dual of G with respect to a set of edges

A ⇢ E. The following identity is useful:

Let A,B ⇢ E, then (GA)B = G
A�B.
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To see why this is true, first we know that the dual of a dual gives the original

graph, hence, when applying partial duals to G with respect to a sequence of set

of edges, we only consider those that are in the symmetric di↵erence, since edges

in the intersection of A,B will have no impact on the ribbon graph when perform

partial dual twice. Furthermore, If we compare all the examples given so far, a

familiar identity appears again:

Proposition. Let G = (V,E) be a ribbon graph, e 2 E, then

G/e = G
e\e.

One of the most appealing extension of ribbon graph theory is its relation to group

theory, Mo↵att left the following claim to the reader and we shall give a proof for

this.

Proposition. Consider set S of pairs (G, e), where (G is a ribbon graph and e is

an edge. Given the following two operations

� : (G, e) ! (Ge, e), ⌧ : (G, e) ! (G⌧(e), e)

where G
⌧(e) is obtained from G by adding a ‘half-twist’ to the edge e, i.e., reverse

the direction of exactly one e�labelled arrow in an arrow presentation of G. Two

ribbon graphs are twisted duals if one can be obtained from the other by a sequence

of operations �, ⌧ . Then these two operations induce an action of the symmetric

group h�, ⌧ |�2, ⌧ 2, (⌧�)3i.

Proof. First, we need to verify that �2, ⌧ 2, (⌧�)3 indeed give the identity of the

group. The following figures demonstrate these operations.

To see its connection with the symmetric group S3, notice that the alternating

group A3 is a normal subgroup of S3, so A3 is cyclic, which means it is also

abelian. Therefore, the factor group S3/A3 is a cyclic group of order 2, thus also

abelian. Using this fact, one can see that all the factor groups of S3 are abelian, if

we can show that ⌧� 6= �⌧ , then we can conclude that �, ⌧ do not have any other

operation in the group since they are not abelian and do not belong to any of the

factor groups of S3. There are many examples, the one illustrated in the figure

above is one of them.
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Figure 4.9: Group Operations ⌧, �

4.4 Ribbon-Graphic Delta Matroids

In the previous section of cycle matroids, we see that members of the feasible

sets consist of spanning trees. For ribbon-graphic delta matroids, similar things

happen: the feasible set contains spanning quasi-trees, so first, we give a definition

of a quasi-tree. The reason why we don’t use spanning trees for ribbon graph is

that they fail to characterize the topological behavior of the ribbon graph, to be

more specific, a ‘twist’ of a ‘rectangular band’ in the ribbon graph will have the

same spanning tree as a ‘rectangular band’ without a ‘twist’.

Definition. A quasi-tree is a ribbon graph with only one boundary component,

if a ribbon subgraph H is a quasi-tree and has the same vertex set as G, then we

say H is a spanning quasi-tree.

The definition of a ribbon-graphic delta matroid is analogous to that of cycle

matroid.

Definition. Let G = (V,E) be a ribbon graph, and let

F := {F ⇢ E : F is the edge set of a spanning quasi-tree ofG}.

This is the delta matroid of G, denoted by D(G) = (E,F).
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Example. Here is a ribbon graph with labeled edges, notice that a spanning quasi-

tree must contain the same vertex set as G, to save space, we give all the spanning

quasi-trees in terms of the edge labeling, therefore each member of the feasible set

is the label of edges used to construct a spanning quasi-tree. The set of spanning

Figure 4.10: G.

quasi-trees, i.e., the feasible set is

F = {{2}, {3}, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {2, 5}, {3, 5}, {1, 2, 3}, {1, 2, 4},

{1, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 4}, {1, 2, 4, 5}, {1, 2, 35},

{1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 34, 5}}.

We briefly mentioned that using spanning trees of G fails to capture the unique

character of ribbon graphs. We denote the spanning trees ofG as C(G), notice that

among all members of the feasible set of D(G) = (E,F), those with minimum sizes

are actually the bases for C(G), this is because D(Gmin) is the most ‘economical’

way of selecting edges in a spanning quasi-tree, as long as the edges that connect

all vertices make the subgraph of G one boundary component. Hence, if we have

a connected ribbon graph with n vertices, then to find a spanning quasi-tree with



25

minimum number of edges, it is equivalent to find a spanning tree, which is of

order n� 1.

4.5 Eulerian Delta Matroid

Bouchet introduced this delta matroid[4], and our interest is in the set of 4�
regular graphs and their Eulerian circuits. The graphs need not to be simple, that

is, we can have multiple edges connecting a pair of vertices, as long as the entire

graph is 4�regular. We first consider the bitransition of a half-edge (to avoid the

case of a loop, where an edge has two endvertices that coincide). Three types of

a bitransition can happenat a given vertex, shown below. A transition system is

Figure 4.11: Bitransitions of a vertex v in a 4-regular graph [5].

a collection of bitransitions, one at each vertex. The transition system forms an

Eulerian circuit of graph G, as it gives directions of how one edge passes through

a given vertex. For each of the 3 bitransitions at a vertex, we specify one to be

forbidden, the other two to be allowed, and one of the allowed bitransitions to be

preferred. Bouchet denoted TF to be the system with all forbidden bitransitions,

TP to be the system with all preferred bitransitions. Then

D(G, TF , TP ) := (V,F) is a delta matroid.

F is the collection of subsets U of V such that there exists an allowed transition sys-

tem of G with preferred bitransitions at vertices in U . The proof for D(G, TF , TP )

has an one-to-one correspondence with ribbon-graphic delta matroid is somewhat

intriguing, we will give a summary of the sketch of it. We first construct the me-

dial graph by placing a vertex at each edge of G and drawing edges that follow

the boundaries of a faces. Then we aim to solve the 2-coloring problem of the

medial graph, which corresponds to whether the faces of original graph G cross

each other or not. Mo↵att has laid out six possibilities of coloring of the medial
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graph, which correspond to an embedded cycle family of graphs. As a conclusion,

the Eulerian delta matroid is an extension of the ribbon-graphic delta matroid,

and ribbon-graphic delta matroids serve as a translation of the words in delta

matroid theory into ribbon graph theory. We end this chapter with an example of

an Eulerian delta matroid.

Example. The graph shown here is a 4-regular graph with labelled vertices and

edges, as well as the three bitransitions at vertex 1. We define the forbidden

Figure 4.12: G.

bitransition at vertex 1 to be ab, de, at vertex 2 to be af, cd, and at vertex 3 to be

be, cf . We prefer the bitransition at vertex 1 to be ad, be, at vertex 2 to be ac, df ,

and at vertex 3 to be bc, ef . Then we have the following Eulerian circuits:

• adcbef , which uses preferred bitransitions at 1 and 3.

• acedfb, which uses preferred bitransitions at 2.

• becadf , which uses preferred bitransitions at 1 and 2. Hence the delta ma-

troid has the feasible set {{1, 3}, {2}, {1, 2}}.
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