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Abstract 

Second generation biofuels are fuels that are produced from lignocellulosic biomass, or 

non-edible plant matter. The ability to utilize such fuels could potentially reduce  society’s 

dependence on fossil fuels. Two current techniques that convert lignocellulosic biomass to 

second-generation biofuels and chemicals include fast pyrolysis and the use of ionic liquids. 

However, these technologies are uneconomical; therefore, the objective of this study was to 

develop and optimize a new conversion technique. This method, the pyrolysis of biomass 

through molten salt media, is a hybrid between fast pyrolysis and ionic liquids. Several 

experimental parameters were studied over the course of this research including: final reaction 

temperatures, chloride eutectic compositions, cellulose to eutectic molar ratios, and heating rates 

of the reaction. All generated samples were analyzed using a gas chromatograph and mass 

spectrometer. The composition of the ideal molten salt eutectic, as well as the highest liquid 

yielding reaction parameters, was determined throughout the course of the project. 

  



3 
 

Acknowledgements 

I would sincerely like to thank the WPI faculty and staff that consistently provided me with 

thorough help and assistance throughout the entirety of this project. The work that was 

completed would not have been possible without their help, guidance, and enthusiasm. A special 

thanks to: 

 Professors Ravindra Datta and James Dittami, for their consistent feedback, ideas, 

resources and constructive criticism. The success of this project is due, in large part, to 

their thorough and sincere help and guidance.  

 Andrew Butler for his unceasing willingness to help me analyze 30 different samples 

with  Gateway’s GC/MS. Andy volunteered an amazing amount time and devotion which 

allowed for the success of this project. 

 Corin Galati for the enthusiasm and preparedness to help me conduct a number of the 

experimental trials throughout the course of this project. His interest in this field of study, 

as a freshman, was remarkable. 

 Jack Ferraro for his ability to always be able to solve the often frequent issues with any of 

my laboratory equipment. Jack always had the ability to make a large issue, in my eyes, 

seem small. 

 Felicia Vidito for her willingness and ability to always be able to order any chemicals or 

pieces of equipment as fast as possible. Many important deadlines were kept thanks to 

Felicia’s  help. 

 Professor William Clark for graciously allowing me access to his neighboring laboratory 

in order to use his high accuracy scale. 



4 
 

 Professor  Fisktik  and  Patrick  O’Malley  for  welcoming  me  into  their  laboratory  with  open  

arms and their acceptance of the loud noises I would often make. 

 Drew Martino for helping me to identify several useful eutectics that were highly 

integrated into this project. Drew was able to make several significant suggestions of 

chloride eutectics that yielded very good results. 

 Goddard Facilities Staff for their ability to always help me maintain a clean and safe 

laboratory environment. 

 

  



5 
 

Table of Contents 

Abstract ........................................................................................................................................... 2 

Acknowledgements ......................................................................................................................... 3 

Table of Figures .............................................................................................................................. 9 

List of Tables ................................................................................................................................ 14 

1. Introduction ........................................................................................................................... 16 

1.1 Fossil Fuels ..................................................................................................................... 16 

1.2 Renewable Energy Sources ............................................................................................ 18 

1.2.1 Wind, Solar and Hydro-power ................................................................................ 18 

1.2.2 Bio-Energy .............................................................................................................. 19 

1.3 Objective ............................................................................................................................. 19 

1.4 General Procedure ............................................................................................................... 20 

1.5 Overview ............................................................................................................................. 20 

2. Literature Review ...................................................................................................................... 22 

2.1 Advantages of Biomass .................................................................................................. 22 

2.2 Composition of Biomass ................................................................................................ 23 

2.1 Cellulose ......................................................................................................................... 23 

2.3 Second-Generation Biofuels ............................................................................................... 26 

2.3.1 Second-Generation Bioethanol .................................................................................... 26 

2.3.2 Second-Generation Biodiesel ....................................................................................... 27 



6 
 

2.3.3 Feedstock for Second-Generation Biofuels ................................................................. 28 

2.3.4 Production of Second-Generation Biofuels ................................................................. 30 

2.3 Ionic Liquids .................................................................................................................. 40 

2.5 Molten Salts ........................................................................................................................ 43 

2.5.1 Previous Research at WPI ............................................................................................ 44 

2.5.2 Eutectics ....................................................................................................................... 44 

3. Methodology ............................................................................................................................. 47 

3.1 Objectives ........................................................................................................................... 47 

3.2 Chloride Eutectic Selection................................................................................................. 47 

3.3 Flow Reactor Setup ............................................................................................................. 50 

3.3.1 Reactor Flow Layout.................................................................................................... 50 

3.3.2 Design Specifications of the Reactor Tube .................................................................. 51 

3.3.3 Furnace ......................................................................................................................... 52 

3.4 Flow Reaction Procedure .................................................................................................... 53 

3.5 Liquid Product Retrieval ..................................................................................................... 54 

3.3 Types of Experiments Conducted ....................................................................................... 55 

3.3.1 Cellulose Baseline Tests .............................................................................................. 55 

3.3.2 Final Temperature Tests .............................................................................................. 56 

3.3.3 Varying Chloride Eutectic Tests .................................................................................. 56 

3.3.4 Varying Molar Ratio Tests ........................................................................................... 57 



7 
 

3.3.5 Heating Rate Tests ....................................................................................................... 58 

3.4 Sample Calculations............................................................................................................ 58 

3.4 GC/MS Procedure and Product Analysis ............................................................................ 59 

3.5 Safety Procedures ................................................................................................................ 62 

4. Results and Discussion ............................................................................................................. 64 

4.1 Pyrolysis versus Molten Salt Pyrolysis ............................................................................... 64 

4.2 Final Temperature Tests ..................................................................................................... 65 

4.3 Varying Chloride Eutectic Tests ......................................................................................... 67 

4.4 Varying Molar Ratio Tests .................................................................................................. 69 

4.5 Heating Rate Tests .............................................................................................................. 71 

4.6 GC/MS Results ................................................................................................................... 72 

4.6.1GC/MS Results - Varying Molar Ratio Tests ............................................................... 73 

4.6.2 GC/MS Results – Varying Chloride Eutectic Samples ................................................ 78 

4.6.3 GC/MS Results – Heating Rate Tests .......................................................................... 84 

4.7 Mole Balance ...................................................................................................................... 88 

4.8 Equipment Analysis ............................................................................................................ 90 

5. Conclusion ................................................................................................................................ 92 

6. Recommendations ..................................................................................................................... 94 

6.1 The Effect of the Addition of Catalysts .............................................................................. 94 

6.2 Gas and Char Analysis ........................................................................................................ 94 



8 
 

6.3 Variation of Feedstock Materials ........................................................................................ 95 

6.3 Pilot Scale Testing .............................................................................................................. 96 

7. Works Cited .............................................................................................................................. 97 

Appendices .................................................................................................................................... 99 

Appendix A: GC/MS Results – Zoomed in Spectra ................................................................. 99 

Appendix B: GC/MS Results – Percent Reports .................................................................... 128 

Appendix C: GC/MS Results – Product Distribution Graphs ................................................ 157 

Appendix D: Raw Data ........................................................................................................... 164 

 

 

  



9 
 

Table of Figures 

Figure 1: Illustration of the sharp increase of fossil fuels in the twentieth century (Naik, et al. 

2010) ............................................................................................................................................. 17 

Figure 2: The chemical structure of cellulose (Rinadli and Schuth 2009) ................................... 24 

Figure 3: Hydrogen bond networks in cellulose (Rinadli and Schuth 2009) ................................ 25 

Figure 4: Comparison of first and second generation biofuel and petroleum fuel (Naik, et al. 

2010) ............................................................................................................................................. 28 

Figure 5: Different types of biomass that can be used with second-generation biofuel technology 

(Naik, et al. 2010) ......................................................................................................................... 29 

Figure 6: Thermo-chemical conversion processes (Naik, et al. 2010) ......................................... 31 

Figure 7: Fast pyrolysis processes for biomass (Bridgewater and Peacocke 2000) ..................... 36 

Figure 8: Biomass pyrolysis process (Dauenhauer, et al. 2011) ................................................... 37 

Figure 9: Reaction pathways of α-cyclodextrin (cellulose) pyrolysis (Dauenhauer, et al. 2011) . 39 

Figure 10: Common cations used in modern ionic liquids (Brandt, et al. 2013) .......................... 41 

Figure 11: Selection of anions used in modern ionic liquids (Brandt, et al. 2013) ...................... 42 

Figure 12: Ternary eutectic phase diagram (Nitta, et al. 2009) .................................................... 46 

Figure 13: Chloride eutectic bench top tests ................................................................................. 49 

Figure 14: Flow reactor setup ....................................................................................................... 50 

Figure 15: Reactor setup ............................................................................................................... 51 

Figure 16: Reactor tube ................................................................................................................. 52 

Figure 17: Helium gas inlet line.................................................................................................... 52 

Figure 18: Graduate pipette .......................................................................................................... 55 

Figure 19: Agilent Technology 7890 Gas Chromatograph ........................................................... 60 



10 
 

Figure 20: Pyrolysis versus molten salt pyrolysis......................................................................... 64 

Figure 21: Final reaction temperature tests ................................................................................... 66 

Figure 22: Varying mole ratio test results ..................................................................................... 70 

Figure 23: Heating rate test results ............................................................................................... 71 

Figure 24: Product distribution of experiment number 1 .............................................................. 74 

Figure 26: Product distribution of experiment number 2 .............................................................. 75 

Figure 27: Product distribution of experiment number 9 .............................................................. 76 

Figure 28: Product distribution of experiment number 13 ............................................................ 77 

Figure 29: Product distribution for experiment number 14 .......................................................... 78 

Figure 30: Product distribution for experiment number 15 .......................................................... 79 

Figure 31: Product distribution of experiment number 16 ............................................................ 80 

Figure 32: Product distribution of experiment number 17 ............................................................ 81 

Figure 33: Product distribution of experiment number 18 ............................................................ 82 

Figure 34: Product distribution of experiment number 19 ............................................................ 83 

Figure 35: Product distribution of experiment number 43 ............................................................ 84 

Figure 36: Product distribution of experiment number 40 ............................................................ 85 

Figure 37: Product distribution of experiment number 41 ............................................................ 86 

Figure 38: Product distribution of experiment number 35 ............................................................ 87 

Figure 39: Product distribution of experiment number 42 ............................................................ 88 

Figure 40: Zoomed in Spectrum Run 1......................................................................................... 99 

Figure 41: Zoomed in Spectrum Run 2....................................................................................... 100 

Figure 42: Zoomed in Spectrum Run 3....................................................................................... 101 

Figure 43: Zoomed in Spectrum Run 9....................................................................................... 102 

Figure 44: Zoomed in Spectrum Run 13..................................................................................... 103 



11 
 

Figure 45: Zoomed in Spectrum Run 14..................................................................................... 104 

Figure 46: Zoomed in Spectrum Run 15..................................................................................... 105 

Figure 47: Zoomed in Spectrum Run 16..................................................................................... 106 

Figure 48: Zoomed in Spectrum Run 17..................................................................................... 107 

Figure 49: Zoomed in Spectrum Run 18..................................................................................... 108 

Figure 50: Zoomed in Spectrum Run 18..................................................................................... 109 

Figure 51: Zoomed in Spectrum Run 20..................................................................................... 110 

Figure 52: Zoomed in Spectrum Run 21..................................................................................... 111 

Figure 53: Zoomed in Spectrum Run 22..................................................................................... 112 

Figure 54: Zoomed in Spectrum Run 24..................................................................................... 113 

Figure 55: Zoomed in Spectrum Run 25..................................................................................... 114 

Figure 56: Zoomed in Spectrum Run 26..................................................................................... 115 

Figure 57: Zoomed in Spectrum Run 27..................................................................................... 116 

Figure 58: Zoomed in Spectrum Run 28..................................................................................... 117 

Figure 59: Zoomed in Spectrum Run 30..................................................................................... 118 

Figure 60: Zoomed in Spectrum Run 31..................................................................................... 119 

Figure 61: Zoomed in Spectrum Run 35..................................................................................... 120 

Figure 62: Zoomed in Spectrum Run 36..................................................................................... 121 

Figure 63: Zoomed in Spectrum Run 37..................................................................................... 122 

Figure 64: Zoomed in Spectrum Run 38..................................................................................... 123 

Figure 65: Zoomed in Spectrum Run 40..................................................................................... 124 

Figure 66: Zoomed in Spectrum Run 41..................................................................................... 125 

Figure 67: Zoomed in Spectrum Run 42..................................................................................... 126 

Figure 68: Zoomed in Spectrum Run 43..................................................................................... 127 



12 
 

Figure 69: Percentage Report Run 1 ........................................................................................... 128 

Figure 70: Percentage Report Run 2 ........................................................................................... 129 

Figure 71:  Percentage Report Run 3 .......................................................................................... 130 

Figure 72:  Percentage Report Run 9 .......................................................................................... 131 

Figure 73:  Percentage Report Run 9 .......................................................................................... 132 

Figure 74:  Percentage Report Run 14 ........................................................................................ 133 

Figure 75:  Percentage Report Run 15 ........................................................................................ 134 

Figure 76:  Percentage Report Run 16 ........................................................................................ 135 

Figure 77:  Percentage Report Run 17 ........................................................................................ 136 

Figure 78:  Percentage Report Run 18 ........................................................................................ 137 

Figure 79:  Percentage Report Run 19 ........................................................................................ 138 

Figure 80:  Percentage Report Run 20 ........................................................................................ 139 

Figure 81:  Percentage Report Run 21 ........................................................................................ 140 

Figure 82:  Percentage Report Run 22 ........................................................................................ 141 

Figure 83:  Percentage Report Run 24 ........................................................................................ 142 

Figure 84: Percentage Report Run  25 ........................................................................................ 143 

Figure 85:  Percentage Report Run 26 ........................................................................................ 144 

Figure 86:  Percentage Report Run 27 ........................................................................................ 145 

Figure 87:  Percentage Report Run 28 ........................................................................................ 146 

Figure 88:  Percentage Report Run 30 ........................................................................................ 147 

Figure 89:  Percentage Report Run 31 ........................................................................................ 148 

Figure 90:  Percentage Report Run 35 ........................................................................................ 149 

Figure 91: :  Percentage Report Run 36 ...................................................................................... 150 

Figure 92:  Percentage Report Run 37 ........................................................................................ 151 

file://filer.wpi.edu/HOME/MY_Documents/Major%20Qualifying%20Project/MQP.docx%23_Toc354578802


13 
 

Figure 93:  Percentage Report Run 38 ........................................................................................ 152 

Figure 94:  Percentage Report Run 40 ........................................................................................ 153 

Figure 95:  Percentage Report Run 41 ........................................................................................ 154 

Figure 96:  Percentage Report Run 42 ........................................................................................ 155 

Figure 97:  Percentage Report Run 43 ........................................................................................ 156 

Figure 98: Product distribution for experiment 20 ..................................................................... 157 

Figure 99: Product distribution for experiment 21 ..................................................................... 157 

Figure 100: Product distribution for experiment 23 ................................................................... 158 

Figure 101: Product distribution for experiment 25 ................................................................... 158 

Figure 102: Product distribution for experiment 26 ................................................................... 159 

Figure 103: Product distribution for experiment 27 ................................................................... 159 

Figure 104: Product distribution for experiment 28 ................................................................... 160 

Figure 105: Product distribution for experiment 30 ................................................................... 160 

Figure 106: Product distribution for experiment 31 ................................................................... 161 

Figure 107: Product distribution for experiment 36 ................................................................... 161 

Figure 108: Product distribution for experiment 37 ................................................................... 162 

Figure 109: Product distribution for experiment 38 ................................................................... 162 

Figure 110: Product distribution for experiment 41 ................................................................... 163 

Figure 111: Product distribution for experiment 42 ................................................................... 163 

  



14 
 

List of Tables 

Table 1: Chloride salts used and their melting points ................................................................... 45 

Table 2: Chloride eutectics used in bench top tests ...................................................................... 49 

Table 3: Samples analyzed using GC/MS .................................................................................... 61 

Table 4: Varying chloride eutectic results .................................................................................... 67 

Table 5: Experiments analyzed using the GC/MS ........................................................................ 72 

Table 6: Liquid, char, and gas prodcuts for experiment number 1 ............................................... 74 

Table 7: Liquid, char, and gas products for experiment number 2 ............................................... 75 

Table 8: Liquid, char, and gas products for experiment number 9 ............................................... 76 

Table 9: Liquid, char, and gas products for experiment number 13 ............................................. 77 

Table 10: Liquid, char, and gas products of experiment number 14 ............................................ 79 

Table 11: Liquid, char, and gas products for experiment number 15 ........................................... 80 

Table 12: Liquid, char, and gas products for experiment number 16 ........................................... 80 

Table 13: Liquid, char, and gas products of experiment number 17 ............................................ 81 

Table 14: Liquid, char, and gas products of experiment number 18 ............................................ 82 

Table 15: Liquid, char, and gas products for experiment number 19 ........................................... 83 

Table 16: Liquid, char, and gas products for experiment number 43 ........................................... 84 

Table 17: Liquid, char, and gas products for experiment number 40 ........................................... 85 

Table 18: Liquid, char, and gas products for experiment number 41 ........................................... 86 

Table 19: Liquid, char, and gas products of experiment number 35 ............................................ 87 

Table 20: Mole percent closure for experiment number 13 .......................................................... 90 

Table 21: Raw data of cellulose baseline tests ............................................................................ 164 

Table 22: Mole ratio tests raw data ............................................................................................. 165 



15 
 

Table 23: Raw data of varying chloride eutectic tests ................................................................ 166 

Table 24: Raw data of heating rate tests ..................................................................................... 167 

 

  



16 
 

1. Introduction 

Since the dawn of man, energy has been required in order to conduct everyday tasks. During 

the prehistoric era, energy was produced through metabolic measures; eating food and 

performing physical labor. From there, fire, wind, and water began to be used to be utilized in 

order to produce industrialized energy. Wind and water mills were the main producer of energy 

that helped civilizations industrialize themselves. Not until the late eighteenth century, when the 

steam engine was invented, was there a high demand for combustible fuels. Once the use of the 

steam engine was implemented throughout industrialized countries, the demand for such fuels 

skyrocketed; thus, humans began the first form of fossil fuel utilization. Coal fed steam engines, 

allowed an increasing number of nations to become industrialized. In 1859, oil was discovered in 

Pennsylvania which began the start of the modern petroleum era. Since this time, humans have 

come to rely more heavily on fossil fuels than any other energy source. 

1.1 Fossil Fuels 

Currently, 80% of the energy produced globally is derived from fossil fuels, whether it is 

coal, natural gas, or oil (Naik, et al. 2010). The growth rate of fossil fuel energy production 

between the years 1800 and 2010 can be seen below in Figure 1. The remarkable growth rate 

seen in the twentieth century shows how strongly global energy production now relies on fossil 

fuels. However, due to the fact that fossil fuels are a limited commodity, this growth rate that has 

taken place since the early twentieth century is expected to cease between the years 2040 and 

2050 (Naik, et al. 2010). This is where the peak fossil fuel energy production is thought to take 

place. It is important to note, however, that energy consumption and demand will not peak 

during this time. The global population is on the rise, which will be the case for centuries to 
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come. Due to this, energy consumption will continue to grow. The demand of energy production 

on fossil fuels, therefore, must shift to sustainable energy sources.  

 

Figure 1: Illustration of the sharp increase of fossil fuels in the twentieth century (Naik, et al. 2010) 
 

The negativities of fossil fuels do not end with the fact that they are a finite energy source. 

There are also other negative consequences for the use of fossil fuels. For example, fossil fuel 

power plants emit a large number of air pollutants such as sulfur dioxide, nitrogen oxides, and 

toxic chemical (Selin 2013). Also, vehicles that are powered by fossil fuels emit carbon 

monoxide and other particulates (Selin 2013). In addition to these air pollutants, the combustion 

of fossil fuels also releases carbon dioxide into the atmosphere, which is known to be a major 

cause of global warming. Therefore, due to the facts that fossil fuels are both finite and harmful 

to the human population and the environmental, it is imperative that the dependency on them is 

lessened. 
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1.2 Renewable Energy Sources 

With the likely ending of the oil boom in the near future, the role of renewable energy 

resources will continue to annually increase. The major renewable energy contributors are 

currently solar, wind, and hydropower sources. In the United States, there has been an enormous 

influx of federal tax credits for renewable energy producers. With such tax incentives, and with 

the need to alleviate the burden on fossil fuels, it is likely that such renewables will play a crucial 

role in the future.  

1.2.1 Wind, Solar and Hydro-power 

The necessity of increasing the use of renewable energy sources has been realized. Wind 

power has become one of the fastest growing contributors in the increase of renewable energy. In 

fact, between the years 2008 and 2009, wind capacity increased from 24,651 megawatts to 

34,296 megawatts, respectively (Peterson 2012). In addition to wind power, solar power has also 

been on the rise. In the year 2009, the U.S. solar industry grew by over 67% from the previous 

year (Peterson 2012). Most solar power is generated through photovoltaic systems installed on 

private lands (Peterson 2012). Wind and solar power have been major contributors in the 

renewable energy sector; however, hydropower has been the main contributor to electricity 

production of all renewable resources (Guerro-Lemus and Martinez-Duart 2013). In 2009, 83% 

of electricity generation from renewable resources came from hydropower (Guerro-Lemus and 

Martinez-Duart 2013). Hydropower is likely to play a major role in helping undeveloped 

countries become civilized nations (Guerro-Lemus and Martinez-Duart 2013). 

The positive consequences of the implementation of wind, solar, and hydropower are 

evident. There are no harmful pollutants that are emitted from these sources. Also, there are no 
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carbon dioxide emissions either. These resources will be crucial in shifting the burden of global 

energy production away from fossil fuels.  

1.2.2 Bio-Energy 

There is now renowned interest in using plant matter and organic waste to create a new 

type of fuel that can be integrated into society. One major advantage to the use of biofuels is the 

belief that they will mitigate global warming (Naik, et al. 2010). This belief is present due to a 

simple fact; the amount of CO2 released during the burning of plant biomass is equal to the 

amount of CO2 present in the plant matter. Or, to put it in different terms, the burning of organic 

plant matter does not increase the net CO2 present in the atmosphere (Naik, et al. 2010).  

Currently, there are two different types of biofuels being researched and used. They are 

first-generation biofuels and second-generation biofuels. First-generation biofuels are obtained 

from agricultural crops which are grown using similar techniques to food crops. First-generation 

biofuels are obtained through the  use  of  the  plants’  sugars  (Naik, et al. 2010). Second-generation 

biofuels are obtained from lignocellulosic materials such as grass, roots, woods, etc. (Naik, et al. 

2010). There are many advantages in using second-generation biofuels instead of first-

generation, which will be discussed later in this paper. The focus of this paper will be concerning 

second-generation biofuels, due to the fact that first-generation biofuels are deemed as 

unsustainable. The goal of this project was to determine a new, effective, and efficient way to 

implement the use of second-generation  biofuels  into  society  in  order  to  alleviate  society’s  

dependency of fossil fuels. 

1.3 Objective 

The main focus of this project was to integrate existing technology that is still in its 

infancy, into a new way to produce second-generation biofuels and bio-chemicals. An immense 
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amount of research is being conducted towards understanding the reaction mechanisms that turn 

biomass into fuels and feedstock chemicals. This research has been gathered, in an effort to 

understand these reactions, in order to determine a more efficient way in which to produce 

bioliquids from biomass. The major goal of the research conducted, and explained throughout 

this paper, was to determine the most efficient and highest yielding tactic that turns cellulose into 

bio-liquid. The technology under review includes the mixing of molten salts with cellulose, or 

other biomass, in attempt to yield a highly selective and high yielding bio-liquid. The objective 

was to find the proper technique, reaction conditions, and salt composition. 

1.4 General Procedure 

In order to fulfill the objectives of this project, a large number of steps were taken. The 

first step was to determine the molar ratio (cellulose to molten salt) that yields the highest 

amount of bio-oil. This was done by varying the molar ratio until the highest yield was found. 

Next, the contents of the molten salt mixture were varied in order to determine the ideal 

combination. Liquid yield, cost, and selectivity are the parameters that were used to determine 

which salt mixture was the most suitable. The heating rate of the reaction was also analyzed in 

order to determine the most efficient way to heat the reaction. This was done by varying the rate 

at which the molten salt/cellulose mixture was heated and by analyzing the results. All of these 

procedures will be explained in detail throughout the rest of this paper. 

1.5 Overview 

There are several succeeding chapters in the rest of this report. Chapter 1, Introduction, 

will be followed by Chapter 2, Literature Review, which analyzes the current technology that is 

being implemented towards the production of second-generation biofuels. Following Chapter 2, 

Literature Review, the Methodology, Chapter 3, will highlight the exact procedures that were 
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implemented. After that, the Results, Chapter 4, of the experimentations will be discussed in 

length, which will be followed by the Discussion, Chapter 5. Finally, the paper will conclude 

with the Recommendation, Chapter 6, which will highlight the next steps that should be taken.  
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2. Literature Review 

2.1 Advantages of Biomass 

Due to environmental concerns over the high use of fossil fuels, the demand for cleaner 

and more sustainable fuels has grown over the past years. Biomass is comprised of carbon, 

hydrogen, oxygen and nitrogen, which is similar to the composition of fossil fuels, which have 

carbon and hydrogen (Guerrero-Lemus and Martinez-Duart 2013). Because of this, many of the 

products that are made from fossil fuels can also be derived from biomass. Since biomass is 

referred to as any organic matter that comes from the agricultural or forestry sector on a 

recurring basis, it is deemed to be a sustainable fuel and chemical source (Guerrero-Lemus and 

Martinez-Duart 2013). As mentioned above, in the Cellulose section of this text, biomass is 

considered to be an inexhaustible resource. In this context, fossil fuels are the exact opposite of 

biomass; they are a resource that will be depleted at some point in time. Fossil fuel sources are 

not being recreated over time, at least over a reasonable time span, and it is known that this 

energy source will someday be gone. 

In addition to the sustainability of biomass, another major advantage of the use of 

biomass is the fact that it yields no net CO2 emissions (Guerrero-Lemus and Martinez-Duart 

2013). Unlike fossil fuels which emit a large amount of pollutants and carbon emissions into the 

atmosphere, biomass does not. The amount of carbon dioxide that is released through the burning 

of biomass is equal to the amount of carbon dioxide that the plant matter absorbs throughout its 

life. For example, carbon dioxide is collected in a plant and used in photosynthesis; when the 

plant matter is burned, this same carbon dioxide is released. Because of this, the net CO2 

contribution to the atmosphere is zero. Fossil fuels, on the other hand, release an immense 

amount of CO2, or greenhouse gases, into the atmosphere when they are burned. This CO2 has 
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been absent from the atmosphere for millions of years. Therefore, when it is reintroduced, there 

are many adverse effects that take place to the environment (Guerrero-Lemus and Martinez-

Duart 2013). It is evident that the use of biomass, rather than nonrenewable fossil fuels, is much 

more advantageous since it is both sustainable and environmentally friendly. 

2.2 Composition of Biomass 

The major components that constitute biomass include cellulose, hemicellulose, and 

lignin (Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks 2004). Sugars can 

be produced directly from some forms of biomass, such as saccharose in sugarcane, or semi-

directly from hydrolysis of starch, such as in corn. The bio-fuel that is obtained either directly or 

semi-directly from agricultural crops is referred to as first-generation bio-fuel and is not viewed 

as sustainable. Alternatively, the glucose molecules found in cellulose present in wood, straw, 

grass, municipal solid waste, and crop residues can be used for obtaining biofuel. Using the 

glucose present in lignocellulosic materials to produce fuel is referred second-generation biofuel 

technology and is considered sustainable. This is true because there is an abundant supply of 

these materials that is reproduced annually and is not needed as food (Tollefson 2010).  

Lignocellulosic materials are complex mixtures of natural polymers, mainly cellulose 

(35-50%), hemicelluloses (25-30%), and lignin (15-30%) (Yaman 2004). The technology used to 

transform lignocellulosic materials into biofuels is still in its infancy. Therefore, the first step in 

understanding the mechanism of turning these materials into fuels is to first start with cellulose, 

since it is the most abundant component.  

2.1 Cellulose 

Cellulose is considered to be the sugar present in cell walls (Ahmed 2012). It is 

advantageous to extract this sugar in order to convert it into fuels and chemical feedstock; 
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however, it is difficult to do so. Alpha cellulose has the general chemical formula of (C6H10O5)n, 

and its molecular weight can range from 300,00-500,000 grams per mole (Yaman 2004). 

Cellulose makes up about 50% of the cell wall material of most biomass (Yaman 2004). Figure 

2, below, is a picture of the chemical structure of cellulose. Cellulose is the most abundant 

organic polymer on earth; in fact, 1.5x10^12 tons of cellulose is produced annually throughout 

the world (Ahmed 2012). Since there is such abundance of this raw material, it is considered to 

be inexhaustible.  

 

 

Figure 2: The chemical structure of cellulose (Rinadli and Schuth 2009) 
 

As Figure 2 shows, the molecular structure of cellulose consists of repeating β-D-

glucopyranose molecules which are covalently bonded together through interactions between the 

equatorial OH group of C4 and the C1 carbon atom (Ahmed 2012). The number of β-D-

glucopyranose molecules in a given chain of cellulose, varies depending on the origin of the 

cellulose (Ahmed 2012). For example, cellulose from wood pulp consists of about 300 – 1700 

molecules, while cellulose from cotton consists of about 800-10,000 (Ahmed 2012). These 

chains of β-D-glucopyranose molecules also partake in extensive hydrogen bonding. The OH 

groups possess high donor reactivity and subsequently form hydrogen bonds with the oxygen 

molecules resulting in a multitude of crystalline fiber structures. The cellulose chains are densely 

packed due to the strong hydrogen bonding restrictions (Rinadli and Schuth 2009). This dense 

packing restricts the accessibility of the hydroxyl groups in the interior features of cellulose’s  

crystalline structure (Rinadli and Schuth 2009). Because of this, reactions that involve fibrous 
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cellulose are only allowed to take place on the surface of the biopolymer (Rinadli and Schuth 

2009). The hydrogen bond network makes the dissolution of cellulose very difficult. This can be 

seen below in Figure 2. 

 

Figure 3: Hydrogen bond networks in cellulose (Rinadli and Schuth 2009) 
 

Due to the high presence of intermolecular bonds, including hydrogen bonds and van der 

Walls forces, the pretreatment of the lignocellulosic materials is necessary. Pretreatment allows 

for the breaking of these bonds and for the dissolution of the lignocellulosic material (Rinadli 

and Schuth 2009). There are several pretreatment tactics that have been implemented thus far. 

These  include  “partial  chemical  degradations,  mechanism  comminution,  activation  by  swelling,  

and several other processes, which disrupt partially the  structure  of  cellulose”  (Rinadli and 

Schuth 2009). These techniques are employed in order to improve the reactivity of cellulose and 

for the extraction of the glucose molecules, within cellulose, to take place (Rinadli and Schuth 

2009).  

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=8jPqv-iaUoqjnM&tbnid=qSSTy14FDBFp-M:&ved=0CAgQjRwwAA&url=http://en.wikipedia.org/wiki/Hydrogen_bond&ei=vWVnUZrSIZLH4APe74DACw&psig=AFQjCNExSCxWEFtvmyE6X7MW1dgyYSxcPA&ust=1365817149586453
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2.3 Second-Generation Biofuels 

Second-generation biofuel is produced from lignocellulosic biomass, which is not used 

for food, and therefore does not compete for agricultural land use (Naik, et al. 2010). 

Lignocellulosic biomass includes materials such as grass, wood, roots, etc. (Naik, et al. 2010). 

Since the feedstock for second-generation biofuel does not include crops, it is much more 

advantageous to implement this type of fuel source, rather than first-generation biofuels. There 

will be less environmental and economic implications from the use of this type of fuel. The 

biomass used in this type of fuel is more sustainable, abundant, cheap, and does not compete 

with food crops (Naik, et al. 2010). Unfortunately, as highlighted above, the appropriate 

technology is still being research and created for the production of such fuels.  

2.3.1 Second-Generation Bioethanol 

The components of cellulosic biomass include mainly cellulose and hemicellulose 

molecules held together by lignin (Naik, et al. 2010). The lignin holds together the cellulose and 

hemicellulose, making it difficult to extract the sugar molecules (Naik, et al. 2010). Much like 

first-generation biofuels, there are two different categories to second-generation biofuels; 

second-generation bioethanol and second-generation biodiesel (Naik, et al. 2010).The current 

technology used to convert cellulosic biomass into second-generation bioethanol requires five 

separate steps (Naik, et al. 2010). The first step is to obtain the biomass, either from nonfood 

crops or organic waste (Naik, et al. 2010). Then the biomass is pretreated in order to separate the 

organic matter into its basic compounds, cellulose, hemicellulose and lignin (Naik, et al. 2010). 

The third step requires the hydrolysis of the cellulose and hemicellulose, in order to extract the 

sugar molecules (Naik, et al. 2010). Once the sugar molecules have been extracted, fermentation 

is used to produce alcohol from the sugar (Naik, et al. 2010). The final step in this process is to 
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separate the ethanol that is produced during the fermentation process from the other byproducts 

(Naik, et al. 2010).  

2.3.2 Second-Generation Biodiesel 

Second-generation biodiesel, or advanced biodiesel, is also a liquid biofuel that is 

generated from lignocellulosic biomass, however, through a different process (Naik, et al. 2010). 

The most common process is referred to by the acronym BtL (Biomass-to-Liquids). BtL 

biodiesel can be produced from any type of organic biomass (Naik, et al. 2010). This process can 

be broken down into four basic steps. First, the biomass is gasified and vapors are produced. 

Next, the gas is purified in order to remove carbon particles, tars, and pollutant gases. After, a 

syngas is obtained. Once the syngas has been produced, a catalytic procedure, called the Fischer-

Tropsch process, is implemented in order to turn the syngas into liquid biofuel (Naik, et al. 

2010). The hydrogen and carbon monoxide syngas is combined with catalysts under high 

temperatures and pressures which subsequently yields various types of liquids and gaseous 

hydrocarbons (Naik, et al. 2010). The biodiesel that is obtained during this process and be 

blended with diesel from fossil fuels and used in diesel engines (Naik, et al. 2010). 

Second-generation biofuels are considered more advantageous than first-generation 

biofuels due mainly to the fact that this fuel can be produced from any organic plant material, not 

just food crops (Peterson 2012). In Figure 4, below, is a comparison of petroleum, first-

generation, and second-generation fuels. Since agricultural land is not required for second-

generation fuel, there are much less environmental and economic implications. There are no 

food-versus-fuel concerns, and the price of crops would not be affected. However, the production 

of this type of fuel is not cost effective due to technological obstacles that still need to be 

overcome (Peterson 2012). Currently, second-generation biofuels are non-commercial.  
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Figure 4: Comparison of first and second generation biofuel and petroleum fuel (Naik, et al. 2010) 

2.3.3 Feedstock for Second-Generation Biofuels 

The advantage of developing the proper technology to use second-generation biofuels, 

stems from the fact that a large number of different types of biomass is able to be used. With 

second-generation biofuels, as highlighted above, crops that are required for human and animal 

consumption are not required. The different types of biomass that can be used for this type of 

fuel seem endless. Biomass from trees, forest residues, grasses, and plants are important 

renewable resources that can be used for both the fuel and chemical industries (Naik, et al. 

2010). In all types of biomass, plants convert carbon dioxide and water attained from the 

atmosphere and, through photosynthesis, into primary and secondary metabolic biochemical 
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(Naik, et al. 2010).  Primary metabolic bio-chemicals include sugar, cellulose, hemicellulose, 

starch and lignin. Secondary metabolic bio-chemicals include gums, resins, rubber, steroids, 

plant acid and etc. (Naik, et al. 2010). The primary bio-chemicals are the major components in 

biomass. Figure 5, below, shows the vast amount of different types of biomass that can be used 

in second-generation biofuel technology.  

 

Figure 5: Different types of biomass that can be used with second-generation biofuel technology (Naik, et al. 2010) 

There are two major hurdles with the implementation of second-generation biofuels into 

high use in society. The first problem that must be overcome is developing the proper technology 

that produces and utilizes bio-based products (Naik, et al. 2010). The second hurdle is finding a 

suitable way to gradually  reduce  society’s  dependence  on  fossil  fuels and place a higher burden 

on biofuels for the production of chemicals and fuels (Naik, et al. 2010). On the technological 
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side of the matter, there have already been large strives in developing the suitable technology for 

this task. For example, as Naik et. al. explains:  

“For  future  biorefineries  separation  processes  like  extractive  distillation  with  ionic  

liquids and hyperbranched polymers, adsorption with molecular sieve and biobased 

adsorbents, nanofiltration, extractive-fermentation, membrance pervaporation in 

bioreactors, and vaccum membrame distillation (VMD) hold significant potential and 

great promise for further investigations, development  and  application”  (Naik, et al. 

2010). 

It is still unknown how or when society will begin to gradually reduce the dependence on fossil 

fuels. It is evident, however, that there must first be suitable technology to implement renewable 

resources. 

2.3.4 Production of Second-Generation Biofuels 

Second-generation biofuels allow for the possibility for fuels to be produced that are 

carbon neutral; for example, the amount of carbon dioxide concentrations in the atmosphere do 

not rise because of second-generation biofuels (Naik, et al. 2010). Because of this fact, and 

because the feedstock for second-generation biofuels is completely renewable, it is beneficial to 

utilize this resource. However, it is still not cost effective to produce second-generation biofuels 

due to lack of technological advancements (Naik, et al. 2010). Plant biomass consists mainly of 

cell walls, or about 75% polysaccharides (Naik, et al. 2010). There is a large amount of sugar 

present in these polysaccharides; however, it is difficult to extract the energy stored in these 

sugars. It could be said that second-generation biofuels were the first fuel of man, the burning of 

wood for heat. However, as fossil fuels were discovered, this source of power was turned away 

from. Now, the human population is reaching a time in which lignocellulosic materials must be 

utilized again. 
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Two different ways in which lignocellulosic biomass can be converted to liquid biofuels 

include thermochemical processing and biochemical processing (Naik, et al. 2010). 

Thermochemical processing is essentially heating biomass to higher temperatures using different 

types of techniques and reaction parameters (Naik, et al. 2010). Biochemical processing uses a 

variety of different chemicals in order to convert the biomass into a liquid bio-oil (Naik, et al. 

2010). Thermochemical processes tend to produce higher yields compared to biochemical 

processing, because it has the ability of converting all organic compounds (Naik, et al. 2010). 

Biochemically processing focuses mainly on converting the polysaccharides of the biomass into 

bio liquids (Naik, et al. 2010). Figure 6, below, is a representation of the different forms of 

conversion of second-generation biomass to fuel. These techniques will be discussed in the 

preceding sections. 

 

 

 
 

Figure 6: Thermo-chemical conversion processes (Naik, et al. 2010) 



32 
 

2.3.4.2 Hydrolysis of Cellulose 

Beginning in the twentieth century, research, aimed to find suitable ways to produce 

fermentable sugars from cellulose, began (Rinadli and Schuth 2009). However, due to the low 

cost and high availability of crude oil, this technology was never employed. The process for the 

hydrolysis of cellulose has remained a fairly costly and highly technical undertaking (Rinadli and 

Schuth 2009). Several different processes for the acid hydrolysis of biomass are highlighted 

below. 

In the 1920s, the Scholler process was the first technology for the acid hydrolysis of 

cellulose (Rinadli and Schuth 2009).  “In  this  process,  a  0.5  wt%  sulfuric  acid  solution  is  forced  

to pass through wood waste, consisting of sawdust compressed in brick-lined  percolators”  

(Rinadli and Schuth 2009). This solution of sulfuric acid and wood waste remained in the 

percolator for 45 minutes at 170oC under 20 bar. The product of this reaction was a dilute sugar 

solution that is then fermented. About 50% of the fermentable sugars were yielded with this 

process. 

In a different acid hydrolysis process, called the Bergius process, the hydrolysis is 

conducted with 40 wt% HCl at room temperature (Rinadli and Schuth 2009). The cellulose and 

hemicellulose components of the biomass are soluble in the solution; however, the lignin is not. 

The HCl solution allows for the cellulose to breakdown into oligosaccharides and glucose 

whereas the hemicellulose produces mannose, xylose, galactose, glucose, and fructose. This 

solution of HCl and the broken down components of cellulose and hemicellulose is heated at 

120oC for a half hour. In this process, a ton of dry wood is converted to about 320 liters of 95% 

ethanol. The downside of the Bergius process is that HCl is highly corrosive and would require a 

corrosion-resistant plant to be constructed. Also, it is extremely expensive to recover the HCl. 
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In a separate process, HCl was used in conjunction with either CaCl2 or LiCl. By utilizing 

the swelling effects of the salts, yields of up to 85% glucose were claimed (Rinadli and Schuth 

2009). The salts were able to swell the cellulosic fibers of the biomass were determined to be the 

main cause of the high hydrolysis rate (Rinadli and Schuth 2009).  

The main drawbacks of acid hydrolysis of lignocellulosic materials include acid recovery, 

corrosion, and chemical waste produced (Rinadli and Schuth 2009). The recycling of the acid 

catalyst is typically considered the biggest hurdle in the process (Rinadli and Schuth 2009). For 

example, in acid hydrolysis processes that utilize H2SO4, acid recovery is typically not possible. 

Since acid recovery is so different and ineffective, it causes the acid hydrolysis process to be 

economically unfeasible (Rinadli and Schuth 2009).The high costs associated with these 

drawbacks contribute to the fact that they are not currently being used to produce biofuels from 

lignocellulosic materials.  

2.3.4.1 Pyrolysis of Cellulose 

Pyrolysis is the process of heating biomass in the absence of oxygen, resulting in the 

thermal degradation of the biomass (Naik, et al. 2010). This process results in three main 

products which are classified as charcoal (solid), bio-oil (liquid), and gas products (Naik, et al. 

2010). The char portion of the products contains ash from the thermal decomposition of the 

organic components (Yaman 2004). The liquid products contain a wide variety of different 

organic components and water (Yaman 2004). Some of the common liquid products of pyrolysis 

include acids, alcohols, aldehydes, ketones, esters, heterocyclic derivatives and phenolic 

compounds (Yaman 2004). The gas that is produced during the pyrolysis process typically 

contained CO2, CO, CH4, H2, C2H6, and C2H4 (Yaman 2004).  
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Currently, there are three different types of pyrolysis that can be used to convert biomass 

into these products; they include conventional pyrolysis, fast pyrolysis, and flash pyrolysis 

(Naik, et al. 2010). Conventional pyrolysis is the process described above with a very slow 

heating rate (Yaman 2004). This slow heating rate is typically in the range of 0.1-1 degree kelvin 

per second (Naik, et al. 2010). There are three stages of conventional pyrolysis.  The first stage, 

pre-pyrolysis, is the thermal decomposition of the biomass between 550 and 950K. During pre-

pyrolysis, water elimination, bond breakage, appearance of free radicals, formation of carbonyl 

and hydroperoxide groups takes place. In the second stage of conventional pyrolysis, is when the 

main pyrolysis process occurs and when the majority of the pyrolysis products are formed (Naik, 

et al. 2010). In the final stage of this process, the char that is formed in the second stage, 

decomposes at a very slow rate, forming carbon rich solid residues (Naik, et al. 2010). This 

process has been used throughout history for the production of charcoal (Yaman 2004).  

Flash pyrolysis of biomass incorporates higher pyrolysis temperatures and heating rates 

than in conventional and fast pyrolysis (Naik, et al. 2010). It occurs between 1050-1300 Kelvin 

and with a heating rate in excess of 1000 degrees Kelvin per minute (Naik, et al. 2010). The bio-

oil that is produced during this process is typically recycled back into that char that is produced 

to create a sludge-like mixture called bio-slurry (Naik, et al. 2010). The bio-slurry is then 

transferred to a gasifier, which is very efficient in creating crude oil. In fact, the conversion rate 

of biomass to crude oil using this technique is close to 70% conversion. This crude oil produced 

from biomass can be used directly in engines and turbines; also, its use as a feedstock in 

refineries is being considered (Naik, et al. 2010). 

Fast pyrolysis is the heating of biomass with a very rapid heating rate, typically in the 

range of 10-200 degrees Kelvin per second (Naik, et al. 2010). The biomass is heated to a 

temperature of about 850-1250 Kelvin. The liquid that is produced during this process is quickly 
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condensed, so that no secondary conversion of the products can take place (Yaman 2004). 

During fast pyrolysis, biomass is decomposed to form vapors, aerosol, and char (Naik, et al. 

2010). The vapors and aerosol are latter condensed and form a dark brown liquid. Depending on 

which type of biomass feedstock being used, fast pyrolysis can yield 60-75% bio-oil, 15-25% 

solid char and 10-20% non-condensed gases (Naik, et al. 2010).  

A typical fast pyrolysis process flow is shown below in Figure 7. The major components 

of a fast pyrolysis process steps include: drying, grinding, reacting, separating, cooling, and 

collecting (Bridgewater and Peacocke 2000). Most biomass is required to be dried before being 

used in fast pyrolysis. Since biomass naturally contains water, it is beneficial to remove this 

moisture before the process begins. This is due to the fact that all of the initial water present in 

the biomass at the beginning of the reaction will subsequently be present in the bio-oil. 

Therefore, it is more economical and easier to remove most of the water content before the 

reaction, rather than after (Bridgewater and Peacocke 2000). In order for the highest heating rates 

to be employed, the biomass particles must be reduced to a small size. The small particle size not 

only helps with increasing the heating rate, but it also contributes to high liquid yields 

(Bridgewater and Peacocke 2000). The biomass particles must be reduced to less than 2 mm for 

fluidized beds, which can be costly (Bridgewater and Peacocke 2000).  A large number of 

different types of reactors have been investigated for their use in fast pyrolysis and an ideal 

reactor type has not been determined. However, commercial product of bio-oil from 

lignocellulosic material is currently being achieved with fluidized bed reactors (Bridgewater and 

Peacocke 2000).  Fluidized bed reactors are advantageous due to the fact that they are relatively 

easy to use and their size scale be scaled up from a pilot plant to a commercial plant relatively 

easily (Bridgewater and Peacocke 2000). However, one downside to fluidized bed reactors is the 

small particle size that is essential for proper liquid yields. Cyclones are typically used in order 
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to separate the vapor and char products of the reaction. Once this separation has taken place, the 

char can be recycled and burned in order to give off heat to help drive the reaction. The vapor 

products are subsequently sent to a condenser in which the liquid and gas products are retained. 

The gas product can be used in the drying process of the biomass. The liquid product, or the bio-

oil, is finally collected and can be refined for specific end products (Bridgewater and Peacocke 

2000). 

 

Figure 7: Fast pyrolysis processes for biomass (Bridgewater and Peacocke 2000) 
 

 One of the biggest obstacles in optimizing the pyrolysis process is the understanding of 

exactly how the products are formed. The general biomass pyrolysis process, relative to the 

biomass, can be seen below in Figure 8. It has been discovered that pyrolysis begins with a 

network of solid-phase reactions which fractionate and polymerize the biomass (Dauenhauer, et 

al. 2011). Immediately after the biomass has been fractionated and polymerized, a liquid phase 

exists for a brief time. During the short liquid phase, a multitude of depolymerization, 

rearrangement, and dehydration reactions take place until it repolymerizes to form char or 

http://www.sciencedirect.com/science/article/pii/S1364032199000076
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volatizes to form vapors (Dauenhauer, et al. 2011). When lower heating rates are used, the vapor 

components are less likely to be expelled from the biomass; therefore, higher char yields are 

generated. Utilizing higher heating rates allows for the vapors to be released from the biomass 

and subsequently condensed to liquids. The vapor products are of most concern since they can be 

condensed to bio-oil, as described above. However, the reaction mechanism and product 

distribution of the condensed vapors has not been thoroughly understood, until recently.   

 

Figure 8: Biomass pyrolysis process (Dauenhauer, et al. 2011) 
 

The understanding of the mechanisms involved in pyrolysis of biomass is hindered for 

several reasons which include:  

“the substantial functionality (oxygen-rich) of biomass starting materials, intermediates 

and products; the temperature sensitivity of many products; the short lifetime (less than 
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0.1 s) of condensed-phase intermediates; the relatively slow heat transfer which makes 

isothermal pyrolysis challenging; and the dependence of product yields on the residence 

time of volatiles within the liquid-phase  (which  is  often  controlled  by  mass  transfer” 

(Dauenhauer, et al. 2011). 

One suitable way of determining the reaction mechanisms of cellulose pyrolysis, is to use 

computer simulations. However, the wide array of chemical pathways and product distributions 

does not allow for computer simulations. In fact, it is predicted that is would take years, even 

with hundreds of computer processors, to compute molecular dynamic simulations of this 

reaction (Dauenhauer, et al. 2011). In order to overcome these problems, Dauenhauer et al, 

determined that α-cyclodextrin could be used in CPMD simulations to illustrate the major 

volatile product mechanisms of cellulose pyrolysis (Dauenhauer, et al. 2011). This first step in 

the computer modeling of this mechanism was to distinguish a molecule that yields similar 

product distributions of cellulose pyrolysis. Using thin–film pyrolysis techniques Huebner, et al, 

determined  that  “condensed-phase chemistry of cellulose is similar to that of α-cyclodextrin over 

a range  of  reaction  temperatures  resulting  in  nearly  identical  product  distributions”  (Huebner  10).  

Once α-cyclodextrin was determined to be a suitable surrogate for cellulose, CPMD simulations 

of this molecule could be conducted. 

 Through the use of α-cyclodextrin, the reaction pathways of cellulose pyrolysis were able 

to be modeled, some of which can be seen below in Figure 9. These CPMD simulations were 

used to prove that furans are formed directly from cellulose without any intermediate 

compounds, such as glucose or levoglucosan. Previously, it was believed that furan and 

glycoaldehyde formation was initiated by ionic mechanisms; however, these results show that 

these formations are the results of hemolytic cleavage of the glycosidic bonds (Dauenhauer, et al. 

2011). These findings help understand the major condensed-phase pyrolysis pathways; however, 
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further understanding of the various other pathways still remains. Understanding the reaction 

mechanisms of cellulose pyrolysis is an important step and the findings of (Dauenhauer, et al. 

2011), are substantial. Eventually, once more of these pathways have been discovered and 

understood, they can be used to help design and optimize second-generation biofuels and 

chemicals. 

 

Figure 9: Reaction pathways of α-cyclodextrin (cellulose) pyrolysis (Dauenhauer, et al. 2011) 
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2.3 Ionic Liquids 

One of the major obstacles that must be overcome before lignocellulosic material can be 

utilized for the production of biofuels and chemicals is the understanding of the deconstruction 

of lignocellulose. Currently, the paper industry leads the field in regards to lignocellulose 

treatment processes (Brandt, et al. 2013). However, the technology used in the paper industry is 

optimized to produce high cellulose yield and high fiber strength materials (Brandt, et al. 2013). 

This does not align with the needs of a biorefinery due to the fact that high quality fermented 

sugar solutions are desired (Brandt, et al. 2013). Because of this, the current treatment 

technologies cannot be employed for the production of biofuels and chemicals from 

lignocellulosic materials. In order to obtain fermentable sugars from lignocellulose, the structural 

and chemical obstacles that obstruct the release of carbohydrates must be overcome. Since 

cellulose is the main constituent of lignocellulose, the deconstruction of cellulose has been the 

major focus of research over the past years.  

Ionic liquids are salts that are liquid and stable at or below 100oC (Brandt, et al. 2013). 

Since their discovery in the 1990s, ionic liquids have been highly researched; however, in recent 

years, this research has been focused on their potential role in chemical synthesis, catalysis, and 

biocatalysis (Brandt, et al. 2013). Through this research, it has been discovered that ionic liquids 

may be a suitable solvent for the processing of biomass.  

Modern ionic liquids contain organic cations. Examples of cations that are used in ionic 

liquids are highlighted below in Figure 10. In the past, it was believed that the anion played the 

only role in the dissolution of cellulose (Brandt, et al. 2013). However, recent studies have 

determined that the organic cations play a more influential role than previously thought. There 

are three distinct characteristics of cations that play a significant role. The first characteristic is 

the length of the alkyl, or glycol, chains on the cation. It has been determined that the 
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lengthening of this chain progressively reduces cellulose solubility (Brandt, et al. 2013). Also, 

the presence of hydroxyl groups in the alkyl chains reduces the solubility of cellulose in ionic 

liquids (Brandt, et al. 2013). This due to the fact that when hydroxyl groups are present on the 

alkyl  chain,  the  hydrogen  bonding  activity  within  the  ionic  liquid’s  cation  and  anion  increase.  

This increase in molecular bonding reduces the bonding between the anion of the ionic liquid 

and the hydroxyl groups of the cellulose, therefore reducing the solubility. The final 

characteristic of cations that plays a significant role is the presence of a protic cation. The 

presence of a protic cation can entirely prevent the cellulose of being soluble in ionic liquids. 

Similar to the second characterization, this is due to the fact that the cation and anion are more 

strongly bonded together (Brandt, et al. 2013).  

 

Figure 10: Common cations used in modern ionic liquids (Brandt, et al. 2013) 
 

Although  the  characteristics  of  an  ionic  liquid’s  cation  are  important,  the  characteristics  

of the anion are more crucial [20]. Ionic liquids that possess anions that can form strong 

hydrogen bonds with the hydroxyl groups of cellulose are the most suitable for dissolving 

cellulose [20]. Examples of such anions are shown below in Figure 11 and include, chloride, 

carboxylates (acetate, formate, propionate, lactate), dialkyl phosphates, diakyl and 
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trialkylphosphonates and amino acids (Brandt, et al. 2013). It is believed that the anion of an 

ionic liquid interacts with the equatorial hydroxyl groups on the cellulose through hydrogen 

bonding (Brandt, et al. 2013). Also, it is believed that the size and geometry of the anion is 

important towards whether or not cellulose is soluble in an ionic liquid (Brandt, et al. 2013).  

 

Figure 11: Selection of anions used in modern ionic liquids (Brandt, et al. 2013) 
 

The growing interest in the use of ionic liquids for the production of biofuels and 

chemicals from lignocellulosic materials is the result of these liquids being able to effectively 

dissolve cellulose. Because of this, the glucose molecules within the cellulose can more easily be 

extracted from the lignocellulosic material. Once the glucose has been extracted, it can be 

hydrolyzed and then fermented into suitable fuels.  Ionic liquids have the high ability of 

dissolving the crystalize structure of cellulose in this material, which has proved to be the most 

difficult part in utilizing such resources. Once the cellulose network has been de-crystallized, the 

ionic liquid is then able to disrupt both the hemicellulose and lignin portions of the 

lignocellulosic material (Brandt, et al. 2013). Also, ionic liquids are much less volatile than HCl, 

which is used in acid hydrolysis of lignocellulose. Because of this, it could be more easily 

implemented into a biorefinery (Brandt, et al. 2013).  
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There are a number of disadvantageous that coincide with the use of ionic liquids. The 

major concern is due to the high costs of these materials. With the current technology in the ionic 

liquid field, they are still not economically feasible. The cost of ionic liquids is much too high in 

relation to the biomass that is processed by them. It has been predicted that for ionic liquids to be 

economically feasible, they must cost less than $2.50 per kilogram (Brandt, et al. 2013). Another 

downside to the use of ionic liquids is their recycling throughout a given process. Current 

technologies do not allow for proper recycling of these materials and, because of their high costs, 

this is detrimental. Finally, some ionic liquids that are the most suitable for the dissolution of 

cellulose are harmful to the environment (Brandt, et al. 2013). Because of this, ionic liquids that 

are more environmentally friendly must be utilized. 

2.5 Molten Salts 

Molten salts are salts that must be heated to over 100oC in order to reach a liquid state. 

Molten salts are different than ionic liquids due to the fact that ionic liquids are salts that are 

liquid at or below 100oC. When most people think of salts, they usually think of common salts 

such a sodium chloride; most common salts fall under the molten salt category (if not being 

heated over 100oC). The idea of using molten salts in order to produce bio-oil is a fusion of the 

current technologies that are currently employed. For example, acid hydrolysis of cellulose uses 

acids in order to extract the glucose from the cellulose. Also, pyrolysis uses fast heating rates and 

high temperatures in order to produce bio-oils. Finally, ionic liquids can be used to dissolve 

cellulose, thus making it easier to refine. The use of molten salts combines all three of these 

through the use of acids, high heating rates and temperatures, and solubilizing cellulose through 

ionic interactions.  
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2.5.1 Previous Research at WPI 

In the years 2009, 2010, and 2011, the use of molten salts for producing bio-oils was 

researched. In the 2009 study, an MQP group researched the gasification of biomass using 

molten salt media. Various compositions of molten salt eutectics of carbonates and hydroxides 

were analyzed in order to determine is mixture with a low melting point that could be used to 

react with biomass. In 2010, another MQP group studied the gas products obtained through the 

reactions with various types of biomass and molten salts. This group studied several types of 

reactions including gasification, pyrolysis, thermal depolymerization, and transesterification. 

Finally, in 2011, another MQP group tested various molten salt combinations, including 

hydroxide, carbonate, bicarbonate, and chloride eutectics for the use of reacting with biomass. In 

addition, this group also analyzed several acid base compounds and their effect on this reaction. 

The product distribution of the products produced was analyzed, and the highest liquid yielding 

combination was determined. This group determined that chloride eutectics, in conjunction with 

a catalyst called ZSM-5, yielded the highest weight percent bio-oil. The hydroxides and 

carbonates produced substantially lower liquid yields. Because of this, the focus of this paper and 

research was on chloride eutectic molten salts.  

2.5.2 Eutectics 

 A eutectic compound is a mixture of different substances that melts at a lower 

temperature than at which the different substances melt on their own. For this research, chloride 

eutectics were employed. The different substances that were used include zinc chloride, sodium 

chloride, potassium chloride and lithium chloride. A table of the different melting points for 

these salts can be seen below in Table 1. 
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Even though all of these chloride salts have very high melting points, when they are 

mixed together is certain quantities, the melting point of the mixture is significantly lower. It was 

important to utilize eutectics in these experiments due their low melting points. Since less heat is 

needed to bring the eutectic to the molten state, much less energy is required for the reaction.  

Table 1: Chloride salts used and their melting points 
  

 

 

 

 In order to find a suitable composition of a eutectic that will melt at a given temperature, 

phase diagrams can be used, such as in Figure 12. In this image, three salts are presented 

including zinc chloride, potassium chloride, and sodium chloride. This diagram can be used to 

find a desired temperature and adjust the mole percent composition of each material. The mole 

percent is read on the side of the diagram for each substance. The phase lines are followed to the 

intersecting points where the temperature is displayed based upon the given mole percentages.  

Salt Melting Point 
Zinc Chloride 318 C 

Sodium Chloride 801 C 
Potassium Chloride 770 C 

Lithium Chloride 605 C 



46 
 

 

Figure 12: Ternary eutectic phase diagram (Nitta, et al. 2009) 
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3. Methodology 

3.1 Objectives 

The objectives of this study included: 

 Determining a suitable chloride eutectic to be used as a molten salt in the pyrolysis 

reaction of cellulose in order to obtain liquid products. Salt under consideration included: 

o Zinc Chloride (ZnCl2) 

o Sodium Chloride (NaCl) 

o Potassium Chloride (KCl) 

o Lithium Chloride (LiCl) 

 Determining the highest liquid product yielding cellulose to molten salt molar ratio for 

this reaction 

 Determining the optimal reaction temperature for the pyrolysis reaction of cellulose  

 Determining the highest liquid product yielding combination of the chloride eutectic 

using the salt listed above. 

 Determining the heating rate that produces the highest yielding liquid product 

 Analyzing whether or not the addition of basic catalysts would result in higher liquid 

product yields or higher selectivity of products. Catalysts that were considered included: 

o Zeolite Socony Mobil – 5 (ZSM-5) 

o Nickel (II) Hydroxide (NiOH2) 

3.2 Chloride Eutectic Selection 

As stated previously, it had been determined by the MQP group in 2012 that the highest 

liquid product yielding molten salts were chlorides. Because of this, and other supporting 
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research found in the literature, it was determined that the use of a chloride eutectic would be 

most beneficial. Therefore, it became important to determine a chloride eutectic with a relatively 

low melting point. Drew Martino, a PhD candidate at WPI, was consulted for this. Drew has 

done extensive research into bromide eutectics, which have very similar properties to chloride 

eutectics. He suggested that a eutectic comprised of 40 mole percent ZnCl2, 20 mole percent 

KCl, and 40 mole percent LiCl be used. (These mole percentages are based on the molecular 

weight  of  the  metal  anion.)  Through  Drew’s  research,  he  has  determined  that  this  three 

compound eutectic has a melting point around 240oC, which is the lowest observed melting point 

of a ZnCl2, KCl, and LiCl mixture. He has also determined that the use of 40 mole percent of 

ZnCl2 results in dramatically lower melting points. It was suggested that testing a variety of 

varying mole percent eutectic mixtures, with these chemicals, should be conducted. In addition 

to ZnCl2, KCl, and LiCl, sodium chloride was also used in these tests. Since NaCl is very 

inexpensive, it was important to determine if it could be used instead of the costlier KCl or LiCl. 

 Therefore, the first step in this research was to conduct bench top trials in order to 

validate and observe the low melting points of varying chloride eutectics. These trials were used 

in order to gain further understanding of chloride eutectic mixtures. First, the chloride eutectics 

were prepared based upon appropriate mole percentages and the salts molecular weights. To 

prepare the eutectics, ZnCl2, KCl, LiCl were massed with a scale. The three separate salts were 

combined using a mortar and pestle. Once the salts had been thorough mixing, they were then 

transferred to a ceramic crucial. Next, the crucial and salts were placed on a heating pad. The 

temperature was slowly increased using the settings of the heating pad.   In Figure 13, below, a 

mixture of this eutectic can be seen being heated on the heating pad. The temperatures at which 

the eutectic began to show signs of melting and when it had completed melted were observed 

with a thermocouple. The chloride eutectics that were tested are presented in Table 2, below. 
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Figure 13: Chloride eutectic bench top tests 
 

Table 2: Chloride eutectics used in bench top tests 

Zinc Chloride 
Mole % 

Sodium Chloride 
Mole % 

Potassium Chloride 
Mole% 

Lithium Chloride 
Mole % 

40 0 20 40 
40 30 0 30 
40 40 0 20 
40 40 20 0 
50 30 0 20 
50 50 0 0 
60 20 20 0 
60 30 10 0 
60 40 0 0 
60 30 0 10 
60 20 0 20 
70 30 0 0 
80 20 0 0 

100 0 0 0 
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3.3 Flow Reactor Setup 

3.3.1 Reactor Flow Layout 

 
Figure 14: Flow reactor setup 

 

The above system, seen in Figure 14, was the reactor system that was used for all of the 

molten salt and cellulose pyrolysis reactions. Helium, which was used as the carrier gas for the 

reaction due to its unreactive properties, was provided to the system by a compressed helium 

tank. A gas flow meter, manufactured by MKS Instruments, was used to propel the helium 

through the system. From the helium controller, the gas was sent to a sparger, which was used to 

purge any impurities in the reactor inlet line. From the sparger, the helium was sent to the reactor 

tube placed inside the tube furnace. From the furnace, the helium carrier gas transported all 

volatile components and gases produced in the reaction to the three consecutive cold traps. The 
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cold traps were immersed in an ice bath so that the volatile components could condense and be 

collected. Figure 15, below is a picture of the flow reactor that was used. 

 

Figure 15: Reactor setup 

3.3.2 Design Specifications of the Reactor Tube 

 The cellulose and molten salt combination was charged in a reactor tube which can be 

seen below in Figure 16. The reactor tube was a ¾ inch stainless steel tube which measured 14 

inches in length. The top of the reactor tube was sealed by a Swagelok ¾ to ¼ inch reducing 

union. The bottom of the reactor tube was sealed by a Swagelok ¾ inch ferrule cap. These 

specifications are highlighted below in Figure 16.  
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Figure 16: Reactor tube 
 

The helium inlet line, which delivered helium to the bottom of the reactor tube, can be seen 

below in Figure 17. This inlet line protruded eight inches into the reactor tube from the reducing 

union in order to ensure that the gases and vaporized material would be carried out of the reactor 

tube.  

 

Figure 17: Helium gas inlet line 
 

3.3.3 Furnace 

The heat of the reaction was delivered by a Linberg/Blue Mini-Miite TF55030A Tube 

Furnace, which can be seen above in Figure 15. This furnace had the capability of reaching 

temperatures up to 1100oC, with quick heat-up and cool-down rates. The furnace had an 

electronic display on its facade which displayed the set point temperature and the actual 

temperature. The electronic feature allowed for specific heating programs to be entered. This 
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feature was utilized during the heating rate portion of this experiment. The furnace could be 

orientated either horizontally or vertically; it was utilized vertically for these experiments. The 

inside of the furnace contains insulation so that the fear of losing heat to the environment is 

reduced. 

3.4 Flow Reaction Procedure 

There were a multitude of steps in in order to complete any given flow reaction 

experiment; these steps are highlighted below. 

1. The desired eutectic mixture was first determined. The necessary salts and the cellulose 

were massed on a scale in Goddard Hall 221, to the nearest thousandth of a gram. 

2. The salts and cellulose were then combined in a mortar and pestle. The mixture was 

thoroughly mixed and grinded for several minutes in order to ensure even composition 

throughout. The amount of salt and cellulose used will be presented later in this chapter. 

3. Next, the mixture was added to the reactor tube and the tube was sealed through the use 

of a wrench. 

4. The flow system was then sealed completely. The helium gas canister was opened and 

the system was flushed with helium for 10 minutes. This ensured that no oxygen was 

present during the pyrolysis reaction. 

5. Once the system had been flushed, the furnace was turned on and set to the desired 

temperature, typically 400oC for most trails. The reaction was then allowed to proceed 

for, at minimum, one hour, or until liquid ceased to be produced. If temperatures lower 

than 400oC were used, liquid product collection usually exceeded the one hour time 

period. 
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6. Once liquid product collection was over and the reaction had ended, the liquid products 

were extracted from the condensing flasks. The liquid was then massed and placed into 1-

dram vials. 

7. Once the system had cooled for about a half hour, the reactor tube was removed from the 

furnace. The reactor tube was then weighed, in order to determine the mass of the char. 

The char was then examined and the reactor tube was thoroughly cleaned.  

8. Then the reactor lines and cooling flasks were all thorough cleaned to ensure that not 

liquid or char residue was left behind. Finally, the reactor flow was reassembled and 

readied for the next experiment 

3.5 Liquid Product Retrieval 

In the above pyrolysis reaction, volatile components were vaporized in the reactor tube 

and then condensed in Erlenmeyer flasks. Before and after each experimental trial, the flasks 

were massed in order to determine the liquid product yield of the reaction. Once the mass of the 

liquids had been determined, the liquid products were retrieved from the flasks, using a 1 mL 

graduate pipette was, which can be seen below in Figure 18. The liquids were transferred from 

the flasks to 1-dram vials. Before and after this transfer, the vials were massed in order to 

determine the mass of the attainable liquid. This was done because some of the liquid that was 

produced was very thick, which made liquid product retrieval very difficult. When the liquid was 

thick, it typically stuck to the flasks. Therefore, the difference between the mass of liquid 

retrieved and the mass of the attainable liquid is an indication of the viscosity of the liquid 

product. 
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Figure 18: Graduate pipette 
 

Once all of the samples had been collected, it was imperative to analyze them using a 

GC/Mass Spec. However, before this could be done, they samples had to be filtered to ensure 

that no char, or other non-liquid substances were present. This was done through the use of 2mL 

mass spectrometer filter vials. These vials were then able to be placed directly into the GC/Mass 

Spec for analysis. The GC/MS procedure will be discussed later in this chapter. 

3.3 Types of Experiments Conducted 

In order to fulfill the objectives that were presented at the beginning of this chapter in 3.1 

Objectives, it was necessary to conduct several different types of tests throughout this research. 

These tests included: cellulose baseline tests, final temperature tests, varying molar ratio tests, 

varying chloride eutectic tests, heating rate tests, and catalyst tests. All of these will be discussed 

below in the order in which they were conducted. 

3.3.1 Cellulose Baseline Tests 

In order to be able to compare the effects of using molten salts and catalysts on the 

pyrolysis reaction of cellulose, it was necessary to perform baseline cellulose tests. These tests 

were conducted using no molten salt or catalyst media. Five grams of cellulose was charged in 

the reactor tube and allowed to undergo pyrolysis. This test was conducted four times with end 

temperatures of 300oC, 350oC, 400oC, and 450oC. These examples were used only as a baseline 

and to compare the amount of liquid yielded with and without molten salts and catalysts. 
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3.3.2 Final Temperature Tests 

It was also desirable to determine which final temperature for the pyrolysis reaction 

yielded the highest amount of liquid products.  In order to do this, a 5:1 eutectic to cellulose 

molar ratio was used over a variety of six different temperatures. This molar ratio was chose for 

the final temperature tests due to the fact that this ratio allowed for near identical masses of both 

the eutectic and the cellulose. Since this test was one of the first, the ideal molar ratio between 

the eutectic and the cellulose was not yet known. The temperature range over which these tests 

were conducted was between 300oC and 550oC. Six trials were conducted at 50oC increments 

starting at 300oC and ending at 550oC.  Temperatures lower than 300oC were not considered due 

to the fact that the chloride eutectic was not expected to melt completely below this temperature. 

Temperatures greater than 550oC were not examined due to the fact that temperatures in excess 

of 550oC would not be economically feasible to use in commercial production.  

3.3.3 Varying Chloride Eutectic Tests 

In almost all processes, it is extremely important to reduce the operating costs. One of the 

major operating costs associated with this process is the cost of the molten salts. Certain salts are 

less expensive than others; therefore, it was important to see if the more expensive salts, such as 

KCl and LiCl, could be substituted with a less expensive salt, such as NaCl. In order to 

determine if this was possible, the molten salt pyrolysis of cellulose was conducted using 

different combinations of ZnCl2, KCl, LiCl, and NaCl. The list of the different combinations can 

be seen  above in Table 1 of Chapter 3.2 Chloride Eutectic Selection. The liquid yield, product 

distribution, and salt costs were used in determining which eutectics were the most desirable. 
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3.3.4 Varying Molar Ratio Tests 

 It was also crucial to determine how much molten salt should be used in relation to the 

amount of cellulose. For example, should the cellulose only have minimal interaction with the 

molten salt, or should it be completely immersed in this media? In order to determine the answer 

to this, varying molar ratio tests were conducted. A wide range of these tests were examined 

using the eutectic mixture of 40 mole percent ZnCl2, 40 mole percent LiCl, and 20 mole percent 

KCl. The molar ratios were based on the molecular weight of a monomer of cellulose (162.14 

grams per mole) and the eutectic (36.75 grams per mole). The molecular weight and molar 

compositions of the eutectic are both based upon the metal element of the salt. For example, the 

molecular weight of ZnCl2, for the mole ratio purposes, was assumed to be the molecular mass of 

zinc, 65.38g/mol.  The tests began with a 1:10 molar ratio of cellulose to eutectic and ended with 

a final ratio of 20:1. The molar ratios that were used throughout these tests included the 

following: 

 1:10 mole ratio of cellulose to eutectic 

 3:10 mole ratio of cellulose to eutectic 

 1:2 mole ratio of cellulose to eutectic 

 7:10 mole ratio of cellulose to eutectic 

 9:10 mole ratio of cellulose to eutectic 

 1:1 mole ratio of cellulose to eutectic 

 10:9 mole ratio of cellulose to eutectic 

 10:7 mole ratio of cellulose to eutectic 

 10:5 mole ratio of cellulose to eutectic 

 10:3 mole ratio of cellulose to eutectic 
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 10:1 mole ratio of cellulose to eutectic 

 20:1 mole ratio of cellulose to eutectic 

After the completion of these tests, the highest liquid yielding ratio was considered as the most 

favorable. 

3.3.5 Heating Rate Tests 

 In addition to determining the most desirable final temperature set-point, it was just 

important to determine the influence of the heating rate of the reaction. Once the ideal final 

temperature, molar ratio, and eutectic composition had been determined, these parameters were 

used to conduct the heating rate tests. Using the program feature of the electric furnace, several 

heating rate tests were completed. The furnace was programmed so that the reaction would be 

heated, started at 20oC, by 5, 10, 20, 30, 40 and 60oC per minute. 60oC per minute represents that 

fasting heat time that could be achieving using the given furnace; this heating rate is referred to 

as rapid heating. 3.6 Catalyst Tests 

 Based upon the research conducted by the previous MQP group in 2012, the use of a 

catalyst seemed to be relevant in regards to liquid product yield and product distribution. Last 

year, however, a different eutectic chloride was used. Therefore, it was important to determine if 

the use of a catalyst had the same effect on the eutectic employed in this study. Two different 

catalysts were used in order to determine this. The two catalysts that were employed included 

ZSM-5 and Ni(II)OH2.  Unfortunately, due to time constraints, more than two catalysts could not 

be analyzed.  

3.4 Sample Calculations 

 There were two certain calculations that were conducted after the completion of each 

experiment. These calculations included the total percent liquid yield and the total amount of 
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char produced from the biomass. In order to calculate the percent liquid yield, the beaker that 

collects the condensing volatile components were weighed before the trail began and the masses 

were recorded. Then, after the reaction had completed, the beaker would be dried of all moisture 

on the outside of the beaker, and then reweighed with all of the produced liquid inside. Therefore 

the difference between the two masses of the beaker represented the total amount of liquid 

produced. This total liquid mass was then divided by the total mass of cellulose charged in the 

reactor and multiplied by 100 in order to produce a percent yield. The equation that was used for 

this calculation can be seen below in Equation 1. 

𝑀𝑎𝑠𝑠  𝑜𝑓  𝑏𝑒𝑎𝑘𝑒𝑟  𝑏𝑒𝑓𝑜𝑟𝑒 −𝑀𝑎𝑠𝑠  𝑜𝑓  𝐵𝑒𝑎𝑘𝑒𝑟  𝑎𝑓𝑡𝑒𝑟
𝑀𝑎𝑠𝑠  𝑜𝑓  𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  𝑐ℎ𝑎𝑟𝑔𝑒𝑑 × 100% = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝑙𝑖𝑞𝑢𝑖𝑑  𝑦𝑖𝑒𝑙𝑑 

Equation 1: Calculation for percent liquid yield 
 

In order to determine percent cellulose based char yield produced in the reactions, Equation 2 

was used. 

[(𝑀𝑎𝑠𝑠  𝑜𝑓  𝑟𝑒𝑎𝑐𝑡𝑜𝑟  𝑎𝑓𝑡𝑒𝑟 − 𝑀𝑎𝑠𝑠  𝑜𝑓  𝑟𝑒𝑎𝑐𝑡𝑜𝑟  𝑒𝑚𝑝𝑡𝑦) − 𝑀𝑎𝑠𝑠  𝑜𝑓  𝑠𝑎𝑙𝑡  𝑢𝑠𝑒𝑑] × 100

= 𝑃𝑒𝑟𝑐𝑒𝑛𝑡  𝑐ℎ𝑎𝑟  𝑦𝑖𝑒𝑙𝑑   
Equation 2: Calculation of percent cellulose based char yield 

 

Non-routine calculations will described in the Appendix of this report. 

3.4 GC/MS Procedure and Product Analysis 

 In order to determine the composition of the samples that were produced, a Gas 

Chromatography and Mass Specification instrument a was used, located at Gateway Park and is 

picture below in Figure 19. The exact names of the instruments are: 

 Agilent 7890 GC with Agilent HP-5MS 30m x 0.25mm x 0.25um column and Agilent 

5183-4647 (870uL) split inlet liner 
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 Agilent 5975C VL MSD with Triple Axis Detector and Inert EI source 

 Agilent G453A auto-sampler tower with Agilent G4514A 150 sample try 

 

 

Figure 19: Agilent Technology 7890 Gas Chromatograph 
 

 About 450 µL of the samples were first filtered through Thompson 35540 filter vials in 

order to ensure no carbon residue was present in the samples. All of the vials were then placed in 

the auto-sampler trays. Once the analysis began, one µL of sample was injected into the GC with 

a 50:1 split. 54mL per minute of helium was used as the carrier gas. The column oven was first 

heated to 50oC and held at this temperature for 10 minutes. The temperature was then increased 

to 180oC at a ramp rate of 5oC per minute. Then, the temperature was increase to 300oC at a 
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ramp rate of 15oC per minute. Finally, the column oven temperature was held at 300oC. The inlet 

temperature of the mass spectrometer was 280oC. The MS source was held constant at 230oC, 

and the MS quad was held constant at 150oC. There was no solvent delay for this analysis. The 

scan mode for the MS was m/z 5-550 (2 samples, 2.69 scans per second). The total run time for 

one sample was about 49 minutes. This was repeated for all of the samples. The samples that 

were analyzed included: 

Table 3: Samples analyzed using GC/MS 
Experiment 
Number 

Zinc Chloride Sodium Chloride Potassium 
Chloride 

Lithium Chloride 

# Mole % Mole % Mole % Mole % 
1 40 0 20 40 
2 40 0 20 40 
3 40 0 20 40 
9 40 0 20 40 
13 40 0 20 40 
14 60 20 20 0 
15 60 30 10 0 
16 60 40 0 0 
17 70 30 0 0 
18 80 20 0 0 
19 50 50 0 0 
20 40 40 20 0 
21 100 0 0 0 
23 70 30 0 0 
24 70 30 0 0 
25 70 30 0 0 
26 70 30 0 0 
27 60 20 0 20 
28 60 30 0 10 
30 40 30 0 30 
31 40 40 0 20 
35 40 0 20 40 
36 70 30 0 0 
37 70 30 0 0 
38 70 30 0 0 
40 40 0 20 40 
41 40 0 20 40 
42 40 0 20 40 
 



62 
 

 Almost all of the liquid samples that were produced were analyzed using the GC/MS; 

however, not all of them were. There were several reasons why certain samples were omitted. 

First, if there were samples that were produced under the same operating conditions and molten 

salt composition, they were not analyzed. Also, some of the samples produced a very thick and 

dense bio-oil with minimal amounts of yield. Because of this, it was difficult to extract the liquid 

from the cold traps and there was an insignificant amount of bio-oil captured to analyze. Finally, 

there were two samples that were lost during the transfer of the liquid from the original vials to 

the filter vials.  

 The results of the GC/MS analysis were used to determine the percent area of each 

compound in each sample. This was done by integrating the area of each peak on the mass 

spectrum. The area was calculated using computer software and a percent area was generated. 

The percent area is not the same at the percent mass. In order to convert the percent area to 

percent mass, a calibration curve would have had to been generated during the analysis process. 

However, a calibration curve was never generated and the product distribution of the samples is 

represented by the percent area of the mass spectrum. It would be advantageous in the future to 

reanalyze the data and perform a calibration curve. 

3.5 Safety Procedures 

Throughout the experimental portion of this study, many dangerous and hazardous 

situations were presented. Due to such situations, it was imperative to maintain a proper safety 

protocol throughout the entirety of this study. One major hazard of this research was the 

immense use of high heating temperatures for the reaction. The furnace was often in excess of 

400oC; therefore, heat resistant gloves had to be used if handling any components that had been 

heated by the furnace. Also, many of the chemicals that were utilized in this study are corrosive 



63 
 

and/or harmful to the environment. When such chemicals were handled, latex gloves were worn 

at all times. In addition, the flow reactor was setup underneath a fume hood, so that no harmful 

fumes were emitted into the laboratory. Finally, all waste that was generated throughout this 

research was carefully sorted into municipal and hazardous waste. Sincere care was taken around 

all equipment used throughout Goddard Hall, specifically GH 222 and 221, and Gateway Park. 
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4. Results and Discussion 

4.1 Pyrolysis versus Molten Salt Pyrolysis 

The first stage of the experimentations was to conduct normal pyrolysis on cellulose 

alone, or a cellulose baseline test. This was done with the same procedures that were used 

throughout the entirety of this project; however, without any molten salts or catalysts. The results 

of these experiments can be seen below in Figure 20. 

 

 

Figure 20: Pyrolysis versus molten salt pyrolysis 
 

 In Figure 20, there are two sets of data that are being presented. The first set, indicated in 

red, is the percent liquid yield through the use of molten salt pyrolysis. For these experiments, a 

1 to 5 moles cellulose to moles eutectic ratio was used at the varying temperatures The second 

set, indicated in blue, is the percent liquid yield through the use of cellulose alone. The only 
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experimental parameter that is different between the two sets of data is the presence of a 1 to 5 

moles ratio in the data represented with the red data points. The highest percent liquid yield that 

was attained through the use of molten salt pyrolysis during the baseline test of cellulose was 

56.3%at 550oC. The highest percent liquid yield that was gathered through using cellulose alone 

was only 21.9% at 450oC. Comparatively, the percent of liquid that was generated at 450oC using 

molten salts was 46.9%. This clearly indicated that the amount of liquid that was produced was 

much higher using molten salts, rather than cellulose alone. 

4.2 Final Temperature Tests 

 The experiment was conducted over a range of temperatures in order to determine which 

final temperature was the most ideal for this reaction. The range of temperatures that was used 

was 300oC – 550oC, at 50oC increments. All of these experiments were conducted through the 

use of a 1 to 5 mole cellulose to moles eutectic molar ratio. The results of these experiments are 

shown below in Figure 21.  
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Figure 21: Final reaction temperature tests 
 

This is the same data set that was used to compare the benefits of using molten salts to 

cellulose alone. There was zero percent liquid yield at the temperature of 300oC. The yield then 

increased to 37.5% when a final temperature of 350oC was used. There was another increase in 

percent liquid yield at 400oC; there was 53.1% liquid yield at this temperature. At 450oC, a 

decrease in percent liquid yield was observed. It is believed that this decrease can be attributed to 

slight experimental error. However, at both 500oC and 550oC, the percent liquid yield increased 

back up to expected levels at 56.3% for both temperatures. Since the yields at 400oC, 550oC, and 

550oC were within 3.2% liquid yield, it was determined that the amount of liquid produced 

began to level off around 400oC. Also, since there is only a difference of 3.2% liquid yield 

between 400oC and 550oC, it was determined that 400oC is the ideal final reaction temperature 

for this reaction. An increase of 150oC, and the energy costs associated with this increase, does 
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not justify using the higher temperature due to the little difference in the amount of liquid 

produced. 

4.3 Varying Chloride Eutectic Tests 

Once the ideal reaction temperature was determined to be 400oC, the next step was to 

determine which eutectic chloride produces the highest percent liquid yield. In addition to 

determining which mixtures yield the most liquid, it was also beneficial to determine if more 

expensive salts, such as lithium chloride and potassium chloride, could be substituted with a less 

expensive salt, sodium chloride. For example the cost of potassium chloride with greater than or 

equal to purity of 99.0%, is $60.20 per kilogram. The cost of lithium chloride with greater than 

or equal to purity of 99.0% is $187.80 per kilogram. However, the cost of sodium chloride with 

greater than or equal to purity of 99.0% is only $36.90 per kilogram. Because of this, if a 

chloride mixture using less expensive salts could produce high liquid yields, it would be 

beneficial continue research in such mixtures. The results of the varying chloride eutectic tests 

can be seen below in Table 4. 

Table 4: Varying chloride eutectic results 
Experiment 

Number 
ZnCl2 NaCl KCl LiCl Liquid Yield 

# Mol % Mol % Mol % Mol % % 

13 0.4 0 0.2 0.4 67.7 

17 0.7 0.3 0 0 61.1 

16 0.6 0.4 0 0 61 

30 0.4 0.3 0 0.3 59.2 

21 1 0 0 0 57.4 
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15 0.6 0.3 0.1 0 55.6 

14 0.6 0.2 0.2 0 55.3 

18 0.8 0.2 0 0 53.8 

26 0.7 0.3 0 0 53.8 

19 0.5 0.5 0 0 53.6 

25 0.7 0.3 0 0 53.5 

29 0.5 0.3 0 0.2 51.9 

28 0.6 0.3 0 0.1 50.3 

27 0.6 0.2 0 0.2 47.3 

23 0.7 0.3 0 0 46.1 

24 0.7 0.3 0 0 45.9 

31 0.4 0.4 0 0.2 41.6 

22 0.7 0.3 0 0 41.1 

20 0.4 0.4 0.2 0 40.8 

  

All of these experiments were conducted using the same reactions conductions. For 

example, the final temperature for all of these experiments was 400oC and the mole ratios were 1 

to 20 mole cellulose to moles eutectic. Table 4, is organized with the higher liquid yielding 

eutectic composition at the top. This is followed by the compositions yielding less liquid in 

decreasing order. As it is indicated above, the chloride eutectic composition of 40 molar percent 

zinc chloride, 40 molar percent lithium chloride, and 20 molar percent potassium chloride, was 

able to attain the highest percent liquid yield at 67.7%. The composition of 70 molar percent zinc 

chloride and 30 molar percent sodium chloride was able to generate the second largest percent 
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liquid yield at 61.1%. Since the liquid percent yield was the highest using 40 molar percent zinc 

chloride, 40 molar percent lithium chloride, and 20 molar percent potassium chloride, this 

composition was determined to be the ideal chloride eutectic composition. Therefore, this 

composition was used throughout the remainder of the experiments.  

4.4 Varying Molar Ratio Tests 

Once the ideal eutectic composition was determined, it was important to figure out the 

best cellulose to eutectic molar ratio. For example, it seemed likely that the use of more eutectic, 

in relation to cellulose, would yield a higher percent liquid yield. In order to determine if there 

was an ideal ratio, a wide range of ratios were tested. These ratios included: 10 to 1, 10 to 3, 10 

to 5, 10 to 7, 10 to 9, 1 to 1, 9 to 10, 7 to 10, 5 to 10, 3 to 10, 1 to 10 and 1 to 20 moles cellulose 

to moles eutectic. The results of these experiments can be seen below in Figure 22: Varying mole 

ratio test results. 
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Figure 22: Varying mole ratio test results 
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this percent yield would continue to increase. However, the size of the reactor limited the amount 

of substances that could be placed inside the reactor. Because of this, a mole ratio higher than 1 

to 20 was not tested. It is believed that if a substantially high mole ratio, such as 1 to 100 could 

be tested, the percent liquid yield would likely near 100%. This is due to the fact that the 

cellulose would be completely submerged in molten salt, allowing for a higher percent liquid 

yield. Since a mole ratio of 1 to 20 moles cellulose to moles eutectic was the highest liquid 

yielding ratio observed, this ratio was used for the remainder of the experiments and determined 

to be the ideal ratio. 

4.5 Heating Rate Tests 

 The final experimental parameter that was tested was the heating rate of the reaction. In 

order to test what the ideal heating rate is for this reaction, programs were setup within the 

furnace using the programmable controls. The heating rates that were tested include 10, 20, 30, 

40 and 60oC per minute. The results of these experiments can be seen below in Figure 23. 

 

Figure 23: Heating rate test results 
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 In these experiments, 60oC per minute was the highest attainable heating rate and is 

therefore referred to as rapid heating. The furnace that was used during these experiments did not 

allow for a heating rate faster than this. Rapid heating was employed by placing the reactor 

within the furnace, setting the desired end temperature (400oC), and allowing the furnace to heat 

as fast as possible. The lowest percent liquid yield that was attained during these trails was 

24.1% liquid yield at 10oC per minute. The highest percent liquid yield was generated using 

rapid heating conditions.  

 The likely reason that a low heating rate correlates to a low liquid yield is because this is 

a pyrolysis reaction. As mentioned above in the literature section of this paper, there are several 

types of pyrolysis reactions. Conventional pyrolysis employs low heating rates and thus yields a 

higher char product. Fast pyrolysis uses a high heating rate and therefore yields a higher liquid 

yield. This indicates that in these experiments, it is expected that higher heating rates yield 

greater amounts of liquid products. It would be beneficial to test molten salt pyrolysis with 

heating rates closer to the ones used in fast pyrolysis, such as 1000 K per minute. However, due 

to the limitations of the available furnace, a heating rate much lower than this had to be used.  

4.6 GC/MS Results 

 Through analyzing the results with the GC/MS, it was possible to draw a clear picture of 

the product distribution in the liquid attained. The composition of the molten salts used for each 

experiment can be seen in below in Table 5. 

Table 5: Experiments analyzed using the GC/MS 
Experiment 
Number 

Zinc Chloride Sodium Chloride Potassium 
Chloride 

Lithium Chloride 

# Mole % Mole % Mole % Mole % 
1 40 0 20 40 
2 40 0 20 40 
3 40 0 20 40 
9 40 0 20 40 
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13 40 0 20 40 
14 60 20 20 0 
15 60 30 10 0 
16 60 40 0 0 
17 70 30 0 0 
18 80 20 0 0 
19 50 50 0 0 
20 40 40 20 0 
21 100 0 0 0 
23 70 30 0 0 
24 70 30 0 0 
25 70 30 0 0 
26 70 30 0 0 
27 60 20 0 20 
28 60 30 0 10 
30 40 30 0 30 
31 40 40 0 20 
35 40 0 20 40 
36 70 30 0 0 
37 70 30 0 0 
38 70 30 0 0 
40 40 0 20 40 
41 40 0 20 40 
42 40 0 20 40 
43 40 0 20 40 
 

4.6.1GC/MS Results - Varying Molar Ratio Tests 

 As mentioned earlier, not all of the samples were analyzed; however, the majority of 

them were. The results of the analysis for experiment one can be seen below in Figure 24. This 

experiment was conducted during the molar ratio tests. A mole ratio of 1 to 10 moles cellulose to 

moles eutectic was used; therefore, there was much less eutectic than cellulose. It can be seen 

that there is a wide variety of different products that were formed during this reaction. There 

were 13 different compounds that were identified and two compounds that were unidentifiable. 

The major product that was formed was water at 72 percent area. The second highest yielding 
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compound was furfural at 14 % area. The liquid, char, and gas weights for this experiment can be 

seen below in Table 6. 

 

Figure 24: Product distribution of experiment number 1 
 

Table 6: Liquid, char, and gas prodcuts for experiment number 1 
10 to 1 Molar Ratio (5g Cellulose) 

 Mass Yield 
Liquid 1.9g 38% 
Char 1.4g 28% 
Gas 1.7g 34% 

  

The product distribution of experiment 2, seen below in Figure 25, is very similar to the 

product distribution of experiment 1. The reason for this is that experiment number 2 had a mole 
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numbers 1 and 2 are very similar to the product distribution that was be expected for fast 

pyrolysis. There is a wide variety of different products and only furfural has a high yield.  

 

Figure 25: Product distribution of experiment number 2 
 

Table 7: Liquid, char, and gas products for experiment number 2 
10 to 3 Molar Ratio (5g Cellulose) 

 Mass Yield 
Liquid 2.0g 40% 
Char 1.5g 30% 
Gas 1.5g 30% 
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There were only 7 different compounds products during this reaction, compared to the 14 that 

were produced in the earlier reactions. This indicates that the increasing presence of molten salt 

decreases the product distribution and allows the reaction to be more selective. This is confirmed 

in the product distribution of experiment 13 (1:20 cellulose to eutectic mole ratio), seen in Figure 

27 which yielded only six different chemical compounds.  

 

Figure 26: Product distribution of experiment number 9 
 

Table 8: Liquid, char, and gas products for experiment number 9 
5 to 10 Molar Ratio (5g Cellulose) 

 Mass Yield 
Liquid 2.6g 52% 
Char 1.2g 24% 
Gas 1.2g 24% 
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Figure 27: Product distribution of experiment number 13 
 

Table 9: Liquid, char, and gas products for experiment number 13 
1 to 20 Molar Ratio (2g Cellulose) 

 Mass Yield 
Liquid 1.35g 67.5% 
Char .03g 1.5% 
Gas .62g 31.0% 

 

As seen in Table 7, Table 8, and Table 9 the percent mass produced relative to the mass 

of the cellulose used, increased with a higher mole ratio as well. These results have previously 

been discussed in Chapter 4.4 Varying Molar Ratio Tests. However, it is interesting to note that 

the mass of the char produced significantly decreased with an increase in the amount of eutectic 

used.  
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4.6.2 GC/MS Results – Varying Chloride Eutectic Samples 

 The product distributions for the remaining experiments with a 1 to 20 cellulose to 

eutectic mole ratios, yielded similar results. Typically, there were six major products that were 

formed in the remaining samples. These chemical compounds included water, formic acid, acetic 

acid, propanoic acid, furfural, and, ethanone 1-(2-furanyll).Experiments 13 through 31 were part 

of the varying eutectic chloride composition tests, in which different molar percentages of the 

salt were used. It was evident that the type of salts used clearly effected which types of products 

would form. For example, when sodium chloride was introduced to the molten salt mixture in 

experiment 14 (60mol% ZnCl2, 20mol% NaCl and 20mol% LiCl), there was an increase in the 

percent of water present; from 70% in experiment 13 to 77% in experiment 14. While the water 

amount increased with the use of sodium chloride, the amount of furfural decreased; from 18.5% 

in experiment number 13 to 12.6% in experiment number 14.  

 

Figure 28: Product distribution for experiment number 14 
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Table 10: Liquid, char, and gas products of experiment number 14 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.72g 55.4% 
Char 0.12g 9.2% 
Gas 0.42g 32.3% 

 

 This trend continued in experiment 15 when the molar percent of sodium increased from 

20 mol% in experiment 14 to 30 mol%. With this increase of sodium chloride, the percent water 

produced increased to 80.3% and the percent furfural produced decreased to 11%. This can be 

seen below in Figure 29. Also, only zinc chloride and sodium chloride salts were used in 

experiments 16-19. Although the percent mole was slightly different for these experiments, these 

ones that contained only zinc chloride and sodium chloride produced very similar product 

distributions. Typically 80% water, 6% furfural, and 8% acetic acid was produced in these 

experiments. This can be seen below. 

 

Figure 29: Product distribution for experiment number 15 
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Table 11: Liquid, char, and gas products for experiment number 15 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.72g 55.4% 
Char 0.28g 21.5% 
Gas 0.30g 23.1% 

 

 

Figure 30: Product distribution of experiment number 16 
 

Table 12: Liquid, char, and gas products for experiment number 16 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.79g 60.8% 
Char 0.33g 25.4% 
Gas 0.18g 13.8% 
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Figure 31: Product distribution of experiment number 17 
 

Table 13: Liquid, char, and gas products of experiment number 17 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.79g 60.8% 
Char 0.06g 4.6% 
Gas 0.45g 34.6% 
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Figure 32: Product distribution of experiment number 18 
 

Table 14: Liquid, char, and gas products of experiment number 18 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.70g 53.8% 
Char 0.18g 13.8% 
Gas 0.42g 32.3% 
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Figure 33: Product distribution of experiment number 19 
 

Table 15: Liquid, char, and gas products for experiment number 19 
1 to 20 Molar Ratio (1.3g Cellulose) 

 Mass Yield 
Liquid 0.70g 53.8% 
Char 0.41g 31.5% 
Gas 0.12g 9.2% 
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and 20mol% KCl) in Figure 34. Only 68% water was produced under these ideal reaction 

temperatures. Also, a high yield of 21.2% furfural was produced. This clearly indicates that when 
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much less, which is a favorable result. Specifically, a chloride eutectic of 40 mol% ZnCl2, 40 
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mol% LiCl, and 20 mol% KCl produced the highest amount of furfural and the least amount of 

water. 

 

Figure 34: Product distribution of experiment number 43 
 

Table 16: Liquid, char, and gas products for experiment number 43 
1 to 20 Molar Ratio (2.5g Cellulose) 

 Mass Yield 
Liquid 1.03g 41.2% 
Char 0.60g 24.0% 
Gas 0.87g 17.4% 

 

4.6.3 GC/MS Results – Heating Rate Tests 

 The product distributions of the samples that underwent the heating rate tests were also 

analyzed. These experiments included numbers 33-44; however, the product distributions of 
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eutectic. As seen below in Figure 35, when a heating rate of 10oC per minute was used, there was 
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a very high yield of water at almost 90%. Also, there was an extremely high percent of acetic 

acid present in this sample at 9.5%. When these results are compared to the product distribution 

of experiment 41 in Figure 36, with a heating rate of 30oC per minute, it is evident that the 

percentage of water decreased. The percent water decreased from 89.2% to 81%. What is even 

more significant is that the percentage of furfural produced increased from only 0.8% to 13.1%. 

It would have been interesting to seen the product distribution of experiment number 39, with a 

heating rate of 20oC per minute; however, it is one of the sample that was unfortunately lost in 

the transfer of vials. 

 

Figure 35: Product distribution of experiment number 40 
 

Table 17: Liquid, char, and gas products for experiment number 40 
1 to 20 Molar Ratio (2.5g Cellulose) 

 Mass Yield 
Liquid 0.79g 31.6% 
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Figure 36: Product distribution of experiment number 41 
 

Table 18: Liquid, char, and gas products for experiment number 41 
1 to 20 Molar Ratio (2.5g Cellulose) 

 Mass Yield 
Liquid 1.30g 52.0% 
Char 0.50g 20.0% 
Gas 0.70g 28.0% 

 

 When the heating rate was increased even more to 40oC per minute, the percent of water 

again decreased and the percentage of furfural increased. This can be seen below in Figure 37. In 

addition, through the use of rapid heating, there was also a lower percentage of water produced 

and a higher percentage of furfural produced, which is displayed in Figure 38. Although the 

percentage of water in experiment 42 is not as low as in experiment 35, it is still significantly 

lower than with slower heating rates. It is possible that these heating rates were in fact very 
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mixture inside of the reactor tube is not precisely known. The heating rate is based upon how fast 
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the reactor reached the final temperature, not on how fast the actual material was heated. It 

would be beneficial to place a temperature probe inside of the reactor in order to determine the 

precise heating rate that the reaction underwent; however, due to laboratory limitations, this was 

not possible. 

 

Figure 37: Product distribution of experiment number 35 
 

Table 19: Liquid, char, and gas products of experiment number 35 
1 to 20 Molar Ratio (2.5g Cellulose) 

 Mass Yield 
Liquid 1.17g 46.8% 
Char 0.50g 20.0% 
Gas 0.83g 33.2% 
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Figure 38: Product distribution of experiment number 42 
 

1 to 20 Molar Ratio (2.5g Cellulose) 
 Mass Yield 
Liquid 1.19g 47.6% 
Char 0.90g 36.0% 
Gas 0.41g 16.4% 

 

4.7 Mole Balance 

In order to determine the accuracy of the equipment and the product distributions, a mole 

balance was conducted around the experiment that produced the most desirable results, 

experiment number 13. Using the product distribution of this sample, an accurate mole balance 

was able to be conducted and can be seen below. 
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Compound Percent Total 
Water 69.98% 
Formic Acid 3.29% 
Acetic Acid 7.31% 
Propanoic Acid .40% 
Furfural 18.52% 
Ethanone, 1-(2-furanyl) .50% 

 

          
           

Initial moles of carbon in the reaction (moles carbon in cellulose): 

𝑀𝑎𝑠𝑠  𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒   × 𝐶𝑎𝑟𝑏𝑜𝑛  𝑀𝑜𝑙𝑒𝑠  𝑖𝑛  𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  𝑀𝑜𝑙  𝑊𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑀𝑜𝑙𝑒𝑠  𝐶𝑎𝑟𝑏𝑜𝑛 

2.000𝑔   ×   6  𝑚𝑜𝑙  𝑐𝑎𝑟𝑏𝑜𝑛
162.14  𝑔/𝑚𝑜𝑙 =   0.07401  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑚𝑜𝑙𝑒𝑠  𝑐𝑎𝑟𝑏𝑜𝑛 

Initial moles of hydrogen in the reaction (moles hydrogen in cellulose): 

𝑀𝑎𝑠𝑠  𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒   × 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛  𝑀𝑜𝑙𝑒𝑠  𝑖𝑛  𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  𝑀𝑜𝑙  𝑊𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑀𝑜𝑙𝑒𝑠  𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 

2.000𝑔   ×  10  𝑚𝑜𝑙  ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛
162.14  𝑔/𝑚𝑜𝑙 =   0.12335  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑚𝑜𝑙𝑒𝑠  𝑐𝑎𝑟𝑏𝑜𝑛 

Initial moles of oxygen in the reaction (moles oxygen in cellulose): 

𝑀𝑎𝑠𝑠  𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒   × 𝑂𝑥𝑦𝑔𝑒𝑛  𝑀𝑜𝑙𝑒𝑠  𝑖𝑛  𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  𝑀𝑜𝑙  𝑊𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙  𝑀𝑜𝑙𝑒𝑠  𝑂𝑥𝑦𝑔𝑒𝑛 

2.000𝑔   ×     5  𝑚𝑜𝑙  𝑜𝑥𝑦𝑔𝑒𝑛
162.14  𝑔/𝑚𝑜𝑙 =   0.12335  𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑚𝑜𝑙𝑒𝑠  𝑐𝑎𝑟𝑏𝑜𝑛 

The amount of carbon, hydrogen, and oxygen present in the liquid and char products was 

then calculated. For the liquid, the percent of each component was used to determine how much 

carbon, hydrogen, and oxygen was present. Then, once the amount of each element was known 

for the liquid product, the percentages of carbon, hydrogen, and oxygen in the char could be 

calculated. Since the exact composition of the char was unknown, these percentages were used in 

order to gain an accurate estimation. Char is mainly comprised of carbon, however, it would not 

be accurate to refer to the molecular weight of char as 12.01 g/mol (the molecular weight of 
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carbon). Therefore, by finding the percentage of carbon, hydrogen, and oxygen in the char, a 

multiplier was determined, in order to use a more accurate molecular weight. Through this more 

accurate molecular weight, the carbon, hydrogen, and oxygen moles in the char were than 

calculated. Finally, the percent close of each element was able to be determined. The gas was 

ignored in this mole balance. The results of the mole balance for experiment number 13 are 

below in Table 20. Although the closures are close to 100%, it is important to note that these 

calculates do not take into account the gaseous products. 

Table 20: Mole percent closure for experiment number 13 

 
Initial Moles 

Product 
Moles 

Percent 
Closure 

Carbon 0.07401 0.07172 96.9% 
Hydrogen 0.12335 0.12407 100.6% 

Oxygen 0.06168 0.06287 101.9% 
 

4.8 Equipment Analysis 

For the most part, all of the equipment used was able to suitable perform under the 

desired conditions. In the preliminary running of the flow reactor, several problems where run 

into. These problems included smoke escaping from the reactor tube, liquid leaking from the 

lines, and the furnace blowing a fuse. However, since most of these issues were encountered 

early, it was possible to mediate and fix the situations. Two new reactor tubes were constructed 

and new end caps for the tubes were ordered. Also, all of the lines of the flow reactor were 

disassembled and replaced. Once this was completed, there were no other significant problems 

that were not able to be dealt with.  

The only unreliable piece of equipment that had to be utilized was the scale located in 

GH 222. This scale had to be used to mass the reactor tube, due to the high weight of the tube. 

The accuracy of this scale was only to the 0.1g. There was more accurate scale that was used for 



91 
 

massing all of the salts, cellulose, beakers, and vials; however, the maximum weight of this scale 

did not permit the reactor tube. Because of this, the char results have a much higher experimental 

error than any of the other data. Since the accuracy of the char was in question, it was difficult to 

perform a precise and accurate material mass balance.   
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5. Conclusion 

 Through the analysis of the various experimental parameters that were studied, several 

conclusions can be made for the ideal reaction temperature of the molten salt pyrolysis of 

biomass into furanic liquids. First, the ideal final temperature of the reaction should be 400oC. 

Also, this temperature should be reached using rapid heating rates. It was determined that a 

heating rate of 60oC per minute was the ideal rate for these experiments; however, it is likely that 

an even higher heating rate would produce a higher liquid yield. Also, the ideal eutectic mixture 

that yielded both the highest percent liquid yield and the highest percent non-water products was 

a combination of 40 molar percent zinc chloride, 40 molar percent lithium chloride, and 20 molar 

percent potassium chloride. All of these molar percentages are based off the mass of the metal 

component.  In addition to this, it was determine that a cellulose to eutectic mole ratio of 1 to 20 

yielded that highest percentage of liquid products. Also, this mole ratio also allowed for a small 

yield in different products, which was typically around 6 or 7 compounds. This is compared to 

the 14 different compounds that were found using a 10 to 1 cellulose to eutectic mole ratio. 

Therefore, the ideal reaction conditions for the molten salt pyrolysis of biomass are as followed: 

 - Eutectic composition:   40 mol% ZnCl, 40 mol% LiCl, 20 mol% KCL 

 - Final Temperature:   400oC 

 - Heating Rate:   60oC per minute 

 -Cellulose to Eutectic mole ratio: 1 to 20 

If these conditions are utilized, one can expect to produce nearly 70% liquid yield that is 

comprised of about 70 % water and 20% furfural. Therefore, about 0.7g of furfural can be 

produced from 5.0g of cellulose.  
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 Another significant conclusion is that the presence of NaCl in the chloride eutectic 

significantly hinders the production of furfural. Instead of furfural being produced, when NaCl is 

present, the reaction tends to produce very high yields of water. Since water is an undesirable 

product, it can be concluded that it should not be a substitute for either LiCl or KCl.  
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6. Recommendations 

 Due to the fact that promising results were generated throughout the entirety of the 

report, it would be beneficial to continue to conduct further research. The molten salt pyrolysis 

of biomass has been proved to be a successful way to convert cellulose to bio-liquid. Several 

experimental parameters were analyzed in the context of this report in order to optimize the 

functionality of this technique; however, there are other further steps that can be taken. 

6.1 The Effect of the Addition of Catalysts 

 Due largely to time constraint issues and to the fact that this project was completed by 

one person, there was not enough time to investigate the effect of different catalysts of the liquid 

product yield and distribution. Therefore, it would be important to add catalysts to the reaction. It 

is likely that proton donating catalysts would allow the product distribution to be different than 

what was generated in this report. Two possible catalysts that should be analyzed are ZSM-5 and 

Ni(II)OH2. 

6.2 Gas and Char Analysis 

 In previous MQPs, the gas composition of the reaction were analyzed through gas 

chromatography. However, there were no satisfactory results that were generated. Because of 

this, it would be interesting to device a proper technique for the capturing and analyzing of he 

gas. It is unknown what the gas flow rate is throughout the reaction. It would be beneficial to 

find the volume of the gas as well as the composition so that an accurate molar balance could be 

performed.  

 In addition to the analysis of the gas produced, analyzing the components of the char 

would also be advantageous. Knowing the chemical components of the char would add in the 

completion of a successful mass balance around the reaction. Perhaps more importantly than the 



95 
 

composition, is devising a way in which to extract the spent salts from the char. If a proper 

technique could be developed to successfully extract the eutectic chlorides from the char, they 

could be potentially reused, which would result in significant cost savings. One possible idea to 

solve this problem, is finding a suitable solution that was dissolve the salts out of the char. The 

salt/solvent solution could then be heated and the salt could be collected. The cost reduction of 

second-generation bio-oil production techniques is paramount. Knowing the composition of the 

gas would perhaps help devise a way to recycle this gas into the process, which would save 

money. Also, the ability to recycle the chloride eutectic would have positive economic impacts. 

6.3 Variation of Feedstock Materials 

Although cellulose is the major component of lignocellulosic material, it only constitutes 

about half of all biomass. Therefore, the results of this project are promising; however, further 

analysis of hemicellulose and lignin must also be conducted. Different feedstock materials 

should begin to be tested, instead of pure cellulose. Materials such as recycled paper, sawdust, 

grass clippings, leaves, and etc., should be analyzed. In order to make this a commercially 

feasible way to produce second-generation bio-oil, waste materials, such as these, must be able 

to be utilized.  

The preparation of these materials is likely to be one of the most important aspects of the 

reaction. For example, during fast pyrolysis, all feed material is heated in order to remove the 

majority of its moisture content; it is likely that this would be necessary. Also, in fast pyrolysis, 

the feed material is grinded to very small particles. This allows for the reaction to take place 

more quickly with higher heating rates. Particle size would be particularly important in the 

molten salt pyrolysis of biomass due to the needed interaction between the biomass and the 

molten salt. Reducing the particle size would allow better contact between the two components. 
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Therefore, when analyzing different feedstock materials, it will be important to keep in mind 

proper pretreatment methods. 

6.3 Pilot Scale Testing 

 Once all possible experimental parameters have been optimized for this process, it will be 

essential to increase the size and complexity of the flow reactor. In order for this to be a feasible 

commercial process, a pilot scale process should be created. Such a process would likely be 

similar to the ones that are currently being used in fast pyrolysis. Lignocellulosic biomass should 

be fed to a grinder so that the particles are a suitable size. Then the biomass would be sent to a 

reactor where it would mix with the molten salt/catalyst mixture. The gases and volatile 

components would be released overhead. All char material would be separated by a cyclone and 

the gas and volatiles would then be sent to a condenser. The gas that does not condense would be 

sent back to the heater to held aid in drying the biomass. The char that is separated in the cyclone 

could be burned and the heat could be used for driving the reaction. The volatiles would be 

allowed to condense into liquid product. The most difficult part of this process would be 

determining a way to separate the char and the molten salt within the reactor. Different reactor 

types should be analyzed as well as methods for the char removal. 
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Appendices 

Appendix A: GC/MS Results – Zoomed in Spectra 

 

Figure 39: Zoomed in Spectrum Run 1 
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Figure 40: Zoomed in Spectrum Run 2 
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Figure 41: Zoomed in Spectrum Run 3 
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Figure 42: Zoomed in Spectrum Run 9 
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Figure 43: Zoomed in Spectrum Run 13 
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Figure 44: Zoomed in Spectrum Run 14 
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Figure 45: Zoomed in Spectrum Run 15 
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Figure 46: Zoomed in Spectrum Run 16 
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Figure 47: Zoomed in Spectrum Run 17 
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Figure 48: Zoomed in Spectrum Run 18 
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Figure 49: Zoomed in Spectrum Run 18 
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Figure 50: Zoomed in Spectrum Run 20 
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Figure 51: Zoomed in Spectrum Run 21 
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Figure 52: Zoomed in Spectrum Run 22 
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Figure 53: Zoomed in Spectrum Run 24 
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Figure 54: Zoomed in Spectrum Run 25 
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Figure 55: Zoomed in Spectrum Run 26 
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Figure 56: Zoomed in Spectrum Run 27 
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Figure 57: Zoomed in Spectrum Run 28 
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Figure 58: Zoomed in Spectrum Run 30 
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Figure 59: Zoomed in Spectrum Run 31 
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Figure 60: Zoomed in Spectrum Run 35 
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Figure 61: Zoomed in Spectrum Run 36 
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Figure 62: Zoomed in Spectrum Run 37 
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Figure 63: Zoomed in Spectrum Run 38 
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Figure 64: Zoomed in Spectrum Run 40 



125 
 

 

Figure 65: Zoomed in Spectrum Run 41 
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Figure 66: Zoomed in Spectrum Run 42 



127 
 

 

Figure 67: Zoomed in Spectrum Run 43 
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Appendix B: GC/MS Results – Percent Reports 

 

 

 

 

 

 

 

Figure 68: Percentage Report Run 1 
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Figure 69: Percentage Report Run 2 
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Figure 70:  Percentage Report Run 3 
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Figure 71:  Percentage Report Run 9 
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Figure 72:  Percentage Report Run 9 
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Figure 73:  Percentage Report Run 14 
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Figure 74:  Percentage Report Run 15 
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Figure 75:  Percentage Report Run 16 
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Figure 76:  Percentage Report Run 17 
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Figure 77:  Percentage Report Run 18 
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Figure 78:  Percentage Report Run 19 
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Figure 79:  Percentage Report Run 20 
 

 

 

 

 

 

 

 

 

 

 



140 
 

 

 

 

Figure 80:  Percentage Report Run 21 
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Figure 81:  Percentage Report Run 22 
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Figure 82:  Percentage Report Run 24 
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Figure 83: Percentage Report Run  25 
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Figure 84:  Percentage Report Run 26 
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Figure 85:  Percentage Report Run 27 
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Figure 86:  Percentage Report Run 28 
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Figure 87:  Percentage Report Run 30 
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Figure 88:  Percentage Report Run 31 
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Figure 89:  Percentage Report Run 35 
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Figure 90: :  Percentage Report Run 36 
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Figure 91:  Percentage Report Run 37 
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Figure 92:  Percentage Report Run 38 
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Figure 93:  Percentage Report Run 40 
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Figure 94:  Percentage Report Run 41 
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Figure 95:  Percentage Report Run 42 
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Figure 96:  Percentage Report Run 43 
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Appendix C: GC/MS Results – Product Distribution Graphs 

 

Figure 97: Product distribution for experiment 20 
 

 

Figure 98: Product distribution for experiment 21 
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Figure 99: Product distribution for experiment 23 
 

 

Figure 100: Product distribution for experiment 25 
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Figure 101: Product distribution for experiment 26 
 

 

Figure 102: Product distribution for experiment 27 
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Figure 103: Product distribution for experiment 28 
 

 

Figure 104: Product distribution for experiment 30 
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Figure 105: Product distribution for experiment 31 
 

 

Figure 106: Product distribution for experiment 36 
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Figure 107: Product distribution for experiment 37 
 

 

Figure 108: Product distribution for experiment 38 
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Figure 109: Product distribution for experiment 41 
 

 

Figure 110: Product distribution for experiment 42 
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Appendix D: Raw Data 

Table 21: Raw data of cellulose baseline tests 

Cellulose Baseline Tests 
Experiment 

Number 
Temperatur

e 
Mass of 

Cellulose Flask Weight Vile Weight 
Liquid 
Yield 

Attainable Liquid 
Yield 

# Celsius  (g) 
Before 

(g) 
After 

(g) 
Before 

(g) 
After 

(g) % % 
1* 300 3.2 98.7 98.7 6.2 6.2 0.0 0.0 
2* 350 3.2 98.7 99.0 6.2 6.4 9.4 6.3 
3* 400 3.2 98.7 99.4 6.3 6.8 21.9 15.6 
4* 450 3.2 98.7 99.6 6.2 6.9 28.1 21.9 
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Table 22: Mole ratio tests raw data 

Mole Ratio Tests 
Experi
ment Mole Ratio Temper

ature 
Mass 

Cellulose 
Mass 

Eutectic 
Total 
Mass 

Reactor Wt 
Before 

Reactor 
Wt After 

Beaker Wt 
Before 

Beaker Wt 
After 

Vial Wt 
Before 

Vial Wt 
After 

# Cellulose to 
Eutectic °C g g g g g g g g g 

1 10 to 1 450 5.000 0.113 5.113 415.4 411.8 124.682 126.546 6.194 7.822 
2 10 to 3 450 5.000 0.141 5.141 415.2 411.7 98.850 100.808 6.167 7.840 
3 10 to 5 450 5.000 0.189 5.189 415.3 411.8 124.820 127.100 6.176 8.208 
4 10 to 7 450 5.000 0.283 5.283 415.4 411.9 124.645 126.923 6.170 8.146 
5 10 to 9 450 5.000 0.566 5.566 415.7 412.4 124.720 127.030 6.210 8.280 
6 10 to 10 450 5.000 1.132 6.132 416.2 412.7 124.628 127.041 6.179 8.287 
7 9 to 10 450 5.000 2.264 7.264 417.3 414.0 124.600 127.200 6.180 8.450 
8 7 to 10 450 5.000 4.528 9.528 419.6 416.5 124.670 127.160 6.226 8.519 
9 5 to 10 450 5.000 6.791 11.791 421.9 418.1 124.663 127.266 6.190 8.575 

10 3 to 10 450 5.000 9.055 14.055 423.8 419.6 124.677 127.206 6.123 8.411 
11 1 to 10 450 5.000 11.319 16.319 426.0 421.3 124.678 127.292 6.202 8.268 
12 1 to 20 450 2.500 11.319 13.819 423.3 420.9 124.673 126.506 6.162 7.836 
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Table 23: Raw data of varying chloride eutectic tests 
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Table 24: Raw data of heating rate tests 

 

 


