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Abstract

Motivation: Next-generation sequencing technology is increasingly being used

for clinical diagnostic tests. Unlike research cell lines, clinical samples are often

genomically heterogeneous due to low sample purity or the presence of genetic sub-

populations. Therefore, a variant calling algorithm for calling low-frequency poly-

morphisms in heterogeneous samples is needed.

Results: We present a novel variant calling algorithm that uses a hierarchical

Bayesian model to estimate allele frequency and call variants in heterogeneous sam-

ples. We show that our algorithm improves upon current classifiers and has higher

sensitivity and specificity over a wide range of median read depth and minor al-

lele frequency. We apply our model and identify twelve mutations in the PAXP1

gene in a matched clinical breast ductal carcinoma tumor sample; two of which are

loss-of-heterozygosity events.
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Chapter 1

Introduction

1.1 Next generation sequencing

The fundamental goal of genetics is to associate genotypes with observed pheno-

types. In order to observe the genotype, DNA must be sequenced. DNA sequencing

technology has numerous application fields such as diagnostic, molecular biology,

evolutionary biology, ecology, epidemiology and virology research.

The conventional capillary-based sequencing technology, or Sanger sequencing

technology is the mainstream technology for from late 1970s till late 1990s. Next-

generation sequencing(NGS) method made its debut in the mid to late 1990s [60].

The real sequencing revolution came along with the sequencing-by-synthesis tech-

nology from 454 Life Sciences5 and the multiplex polony sequencing protocol devel-

oped in George Church’s lab [44, 63, 64]. The major revolution in next-generation

sequencing lies in the ability to process millions of sequence reads in parallel rather

than 96 at a time in first-generation sequencing[43]. The cost of sequencing in paral-

lel is that each individual read is short. The high-throughput attribute dramatically

enriches the data we are able to obtain at low cost with minimum time. Quail et al.

[54] shows that protocol and platform engineering improvements have enabled the
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generation of 1 × 109 bases of sequence data in 27 hours for approximately $1000.

Given highly functional statistical tools, next-generation technology will grant us

the ability to deeply interpret polymorphisms and ultimately better understand the

live beings.

Three major types of NGS platforms have been commercially available today,

including Roche/454, Illumina/Solexa and SoLiD. There are also several 3rd gener-

ation, or next-next-generation sequencing systems in the market, such as HeliScope,

Ion Torrent, PacBio and Starlight. These platforms differ in many aspects such

as library preparation, amplification and sequencing method, accuracy, instrument

purchase and running cost, and thereby primary applications. Up to now, no single

platform is able to completely replace any other platforms, as they are often com-

plementary in shortcomings. Currently, Illumina is most broadly utilized today due

to the lowest unit running cost [27, 63].

Next-generation sequencing (NGS) technology has enabled the systematic inter-

rogation of the genome for a fraction of the cost of traditional assays [36]. NGS

is increasingly being used as a general platform for research assays for methylation

state [38], DNA mutations [10], copy number variation [1], promoter occupancy [52]

and others [57]. NGS diagnostics are being translated to clinical applications in-

cluding noninvasive fetal diagnostics [35], infectious disease diagnostics [7], cancer

diagnostics [49], and human microbial analysis [11].

Increasingly, NGS is being used to interrogate mutations in heterogeneous clinical

samples. For example, NGS-based non-invasive fetal DNA testing uses maternal

blood sample to sequence the minority fraction of cell-free fetal DNA [17]. Infectious

diseases such as HIV and influenza may contain many genetically heterogeneous

sub-populations [20, 24]. DNA sequencing of individual regions of a solid tumor has

revealed genetic heterogeneous within an individual sample [49].
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1.2 Mutation detection

Currently, the primary statistical tools for calling variants from NGS data are opti-

mized for homogeneous samples. Samtools/bcftools and GATK uses naive Bayesian

decision rule to call variants [14, 39]. GATK involves more sophisticate pre- and

post-processing steps wherein the genotype prior is fixed and constant across all loci

and the likelihood of an allele at a locus is a function of the phred score [46].

Recently, researchers have developed algorithms to call low-frequency or rare

variants in heterogeneous samples. Yau et al. [73] developed a Bayesian framework

which can model the normal DNA contamination and intra-tumor heterogeneity by

parameterizing the normal genotype cell proportion at each SNP. VarScan2 combines

algorithmic heuristics to call genotypes in the tumor and normal sample pileup

data and then applies a Fisher’s exact test on the read count data to detect a

significant difference in the genotype calls [37]. Strelka uses a hierarchical Bayesian

approach to model the joint distribution of the allele frequency in the tumor and

normal samples at each locus [62]. With the joint distribution available, one is

able to identify locations with dissimilar allele frequencies. muTect uses a Bayesian

posterior probability in its decision rule to evaluate the likelihood of a mutation [9].

RVD uses a hierarchical Bayesian model to capture the error structure of the data

and call variants [13, 20]. However, that algorithm requires a very high read depth

to estimate the sequencing error rate and call variants.

Several studies have compared the relative performance of these algorithms.

Spencer et al. [66] demonstrated that VarScan-somatic performed the best com-

paring with SAMtools, GATK and SPLINTER in detecting minor allele frequencies

(MAFs) of 1% to 8%, with >500 coverage required for optimal performance. How-

ever, Spencer et al. [66] also highlighted the fact that VarScan2 yielded more false
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positives at high read depth. Stead et al. [68] showed that VarScan-somatic outper-

formed Strelka and had performance on-par with muTect in detecting a 5% MAF

for read depths between 100 and 1000.

1.3 Graphical Model

A graphical model is a graph representation of conditional dependence between ran-

dom variables with different probability distributions. In a graphical model frame-

work, a shaded node represents an observed random variable, an unshaded node

represents an unobserved or latent random variable and a directed edge represents a

functional dependency between the two connected nodes. A rounded box or “plate”

represents replication of the nodes within the plate. Graphical model connects

graph theory and probability theory in a visual, intuitive and natural way, which

greatly facilitates statistical inference, such as computing marginal and conditional

probabilities of interest [33].

Graphical model can be divided into two groups in general, directed graphical

models and undirected graphical models. In an undirected model, also known as

Markov random field or Markov network, there is no direction arrow in the edges

between two nodes. Undirected graphical models are more applicable to areas such

as image processing [41, 74], computer vision [40], where internal relationships are

better described by non-causal relationships. On the other hand, directed graphical

models are intensively used as representation for Bayesian hierarchical models due

to its ability to represent hierarchical latent structures intuitively [33].

A good example of graphical model application in Bayesian statistics is Latent

Dirichlet Allocation(LDA) model proposed by Blei et al. [6]. The model is shown

in Figure 1.1. LDA is a generative hierarchical model, in which documents are
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modeled as a mixture of a set of topic distributions, and a topic distribution is

consist of unevenly weighted words from the corpus vocabulary. More specifically,

for each document w in a corpus D, a word is represented by a multinomial variable

wn, conditioned on the word probabilities parameter βzn and in topic zn. zn is also

a multinomial variable depending on parameter θ, a Dirichlet vector determined

by parameter vector α. Therefore, LDA is able to explicitly explain the similarity

in the data by introducing two layers of latent variables. Upon on the original

LDA structure, people have been trying to improve the model by assigning different

priors or modifying some structure. Also, people have been adapting the model

to various application from natural scene categorization in computer vision [18] to

heterogeneous tumor subtype classification [61] in bioinformatics.

Figure 1.1: Graphical model representation of LDA for document topic modeling. The outer plate represents M
documents, while the inner plate represents a Nm-word document [6].

1.3.1 Exact Inference

In general, the problem of inference in graphical model is about obtaining conditional

probability of hidden variables given observed variables. According to Bayes rule,

P (H|O) =
P (H,O)

P (O)
, (1.1)
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where H represents hidden variables, and O stands for observable variables, also

known as ”evidence”. P (H,O) is the joint probability of latent variables and evi-

dence, while P (O) is the marginal probability of the evidence. Depending on the

computational complexity of marginal probability P (O), there are exact inference

approach for low computational complexity and approximate inference approach for

high computational complexity, including sampling inference and variational infer-

nece [70].

People have developed different algorithms to compute the exact conditional

probability P (H|O) in order to do exact inference [32, 65]. When applicable, exact

inference can be satisfactory as it provides the exact posterior distribution for infer-

ence. However, exact inference is limited to cases when time and space complexity

of the calculation is manageable.

Exact inference is unpractical when there are many joint latent variables in the

hierarchical model or for high dimensional data. When exact conditional proba-

bility is intractable, people can sacrifice some accuracy/optimality for the sake of

computability. Approximate inference methods including sampling algorithms and

variational algorithms are major substitutes under such circumstance.

1.3.2 Sampling Inference

Sampling algorithms provide a methodology for probabilistic inference when exact

inference is not applicable. Sampling algorithms have many merits such as guaran-

teed global optimality and relative easy implementation, which have gained sampling

algorithms much popularity. However, as a stochastic method, sampling algorithms

requires many samples to converge to the stationary distribution, which might be

time-consuming comparing with other deterministic inference methods.

Markov chain Monte Carlo (MCMC) methods have become a popular class of
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sampling algorithms with the development of computer computing power in recen-

t years [21, 23, 56, 59]. In MCMC methods, large number of successive random

samples are generated from a Markov chain, which can be approximated as target

distribution. Rejection sampling [15], Metropolis-hasting sampling [28, 47, 48] are

two classical MCMC sampling algorithms. In the Metropolis-Hasting sampling al-

gorithm, random samples are drew from an arbitrary proposal distribution, and are

discarded or retained based on a acceptance rule. Gibbs sampling is a special case of

Metropolis-hasting sampling algorithm in which the proposal distributions are the

conditional distribution of one variable given all other variables, and the conditional

distributions are easy to sample from [8, 22, 25]. There are many hybrid algorithms,

where Gibbs sampling is incorporated into other MCMC sampling algorithms such

as Metropolis-Hasting sampling or Slice sampling [26].

1.3.3 Variational Inference

Variational methods are popular alternatives to sampling algorithms when exact in-

ference is intractable [5, 31]. The basic idea of variational method is to approximate

the exact posterior distribution using optimization approach. Variational methods

can be generalized as the process of minimizing the Kullback-Leibler (KL) divergence

between exact posterior distributions and the approximate distributions, which are

generally obtained by decoupling distributions from a graphical model [69, 70]. We

actually can’t minimize the KL divergence directly; however, it is equivalent to max-

imizing the evidence lower bound (ELBO) of the data log-likelihood. Neal and Hin-

ton [50] has proposed to maximize the ELBO via Expectation-Maximization(EM)

algorithm, which turns out to be very popular.

An important class of methods in the variational inference is Mean Field meth-

ods, which originated from statistic physics field. The core idea of mean field ap-
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proaches approximate posterior distribution with a class of simplified or tractable

distributions which can facilitate the KL divergence minimization. Naive Mean Field

method, the simplest Mean field method, assumes the conditional independence of

all distribution of interest. This means the conditional probability is optimized as

a product of simple distributions. Higher-order mean field methods requires more

complex structures [34, 71].

Both variational methods and sampling methods have their advantages and

drawbacks. Variational methods provide a locally-optimal,analytical approximation

to exact posterior distribution, whereas Monte Carlo sampling algorithms provide a

globally-optimal, numerical approximation using large number of samples [34]. As

a deterministic method, variational methods often provides comparable accuracy

to sampling algorithms with significantly less time. However, deriving and imple-

menting the set of equations for variational algorithm might require a large amount

of careful work compared with effort spent on sampling algorithm for comparable

results.

1.4 Thesis Organization

Chapter 1 provides background information for the project. It summarizes informa-

tion on next-generation sequencing technology, review of existing mutation detection

methods using next-generation sequencing data, basic knowledge of graphical model

and three inference approaches: exact inference, sampling inference and variational

inference.

Chapter 2 presents the overall methodology of RVD2 algorithms. It first presents

the graphical model of RVD2 with detailed structure interpretation. Then it devel-

ops the a Metropolis-within-Gibbs sampling approach to estimate the model and
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obtain empirical posterior distribution of interest. Further, it provides a variational

approximation approach to estimate model and perform inference. The final part of

the Methodology chapter is hypothesis testing algorithms. RVD2 combines two hy-

pothesis testing algorithms to call variants: a posterior distribution test to evaluate

whether the case and control samples are significant different from the reference or

from each other. A χ2 test is to performed to test uniformity of non-reference base

distribution and to remove false positives from posterior distribution test.

Chapter 3 provides two datasets to test the performance of RVD2. A synthetic

DNA sequence data is used to call variants, and the performance can be evaluated

by statistics such as sensitivity, specificity and false discovery rate, as the variant

positions are know a-prior. A clinical sequence data, HCC1187 sample from subject

with primary breast cancer is used to test the performance of RVD2 in real clinical

applications.

Chapter 4 shows the variants calling result of RVD2 using sampling inference.

Both synthetic data and clinical HCC1187 data are analyzed using RVD2. We

compare the performance of RVD2(MCMC sampling) to several other variant calling

algorithms for a range of read depths and minor allele fractions. We show that

RVD2 is able to call variants on a heterogeneous clinical sample and identify two

novel loss-of-heterozygosity events. The performance of variational RVD2 is not

currently available as the variational RVD2 is still under implementation at present

stage.

Chapter 5 provides some alternative settings for MCMC inference procedure.

This includes choosing proposal distribution for Metropolis-Hasting sampling pro-

cess, determining Gibbs sampling and Metropolis-Hasting sampling size and finding

optimal threshold τ ∗ for posterior density test.

Chapter 6 summarizes the contribution of the work, addresses some concerns

10



about the preject and provides suggestion of the future work.
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Chapter 2

Methodology

2.1 Model Structure

RVD2 uses a two-stage approach for detecting rare variants. First, it estimates the

parameters of a hierarchical Bayesian model under two sequencing data sets: one

from the sample of interest (case) and one from a known reference sample (control).

Then, it tests for a significant difference between key model parameters in the case

and control samples and returns called variant positions.

r

θ

M

N J

M0

μ

μ0

Figure 2.1: RVD2 Graphical Model.
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For a given sample, the observed data consists of two matrices r ∈ IRJ×N and

n ∈ IRJ×N , where rji is the number of reads with a non-reference base at location j in

experimental replicate i and nji is the total number of reads at location j in replicate

i. J is the region of interest length and N is the number of technical replicates in

the sample. Technical replicates are used to establish experimental variability in

next-generation sequencing procedure [53, 58], though multiple replicates are not

necessary for RVD2.

The model generative process given hyperparameters µ0,M0 and M is as follows:

noitemsep For each location j:

(a) Draw an error rate µj ∼ Beta(µ0,M0)

(b) For each replicate i:

i. Draw θji ∼ Beta(µj,Mj)

ii. Draw rji|nji ∼ Binomial(θji, nji)

The generative process involves several hyperparameters: µ0, a global error rate;

M0, a global precision; µj, a local error rate. Mj, a local precision. The global error

rate, µ0, estimates the expected error rate across all locations. The global precision,

M0, estimates the variation in the error rate across locations. The local error rate,

µj, estimates the exepected error rate across replicates at location j. The local

precision, Mj, estimates the variation in the error rate across replicates at location

j.

RVD2 has three levels of sampling. First, a global error rate and global precision

are chosen once for the entire data set. Then, at each location, a local precision is

chosen and a local error rate is sampled from a Beta distribution. Finally, the error

rate for replicate i at location j is drawn from a Beta distribution and the number

of non-reference reads is drawn from a binomial.
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RVD2 hierarchically partitions sources of variation in the data. The distribu-

tion rji|nji ∼ Binomial(θji, nji) models the variation due to sampling the pool of

DNA molecules on the sequencer. The distribution θji ∼ Beta(µj,Mj) models the

variation due to experimental reproducibility. The variation in error rate due to se-

quence context is modeled by µj ∼ Beta(µ0,M0). Importantly, increasing the read

depth nji only reduces the sampling error, but does nothing to reduce experimental

variation or variation due to sequence context.

Figure 2.1 shows a graphical representation of the RVD2 statistical model.

The joint distribution over the latent and observed variables for data at location

j in replicate i given the parameters can be factorized as

p (rji, θji, µj|nji;µ0,M0,Mj) = p (rji|θji, nji) p (θji|µj;Mj) p (µj;µ0,M0) , (2.1)

where

p (µj;µ0,M0) =
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))
·

µM0µ0−1
j (1− µj)M0(1−µ0)−1,

p (θji|µj;Mj) =
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))
·

θ
Mjµj−1
ji (1− θji)Mj(1−µj)−1,

p (rji|θji, nji) =
Γ(nji + 1)

Γ(rji + 1)Γ(nji − rji + 1)
·

θ
rji
ji (1− θji)nji−rji .

(2.2)
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Integrating over the latent variables θji and µj yields the marginal distribution

of the data,

p (rji|nji;µ0,M0,Mj) =

∫
µj

∫
θji

p (rji|θji, nji)

p (θji|µj;Mj) p (µj;µ0,M0) dθjidµj. (2.3)

Finally, the log-likelihood of the data set is

log p (r|n;µ0,M0,M) =
J∑
j=1

N∑
i=1

log

∫
µj

∫
θji

p (rji|θji, nji)

p (θji|µj;Mj) p (µj;µ0,M0) dθjidµj. (2.4)

RVD2 improves on RVD in three ways. First, RVD2 has a Beta(µ0,M0) prior

on local error rate µj, which captures the global across-position error rate. The pri-

or distribution allows µj to borrow information from adjacent positions and allows

RVD2 to handle low read depths. second, this method smoothly handles multiple

replicates in case samples. Third, RVD2 has a more accurate Bayesian hypoth-

esis testing method compared to a frequentist normal z-test in RVD. We show a

performance comparison between RVD and RVD2 in Section 4.1.3.

2.2 Sampling Inference

The primary object of inference in this model is the joint posterior distribution

function over the latent variables,

p(µ, θ|r, n;φ) =
p(µ, θ, r|n;φ)

p(r|n;φ)
, (2.5)
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where the parameters are φ , {µ0,M0,M}.

The Beta distribution over µj is conjugate to the Binomial distribution over

θji, so we can write the posterior distribution as a Beta distribution. However,

there is not a closed form for the product of a Beta distribution with another Beta

distribution, so exact inference is intractable.

Instead, we have developed a Metropolis-within-Gibbs approximate inference

algorithm shown in Algorithm 1. First, the hyperparameters are initialized us-

ing method-of-moments (MoM). Given those hyperparameter estimates, we sample

from the marginal posterior distribution for µj given its Markov blanket using a

Metropolis-Hasting rejection sampling rule. Finally, we sample from the marginal

posterior distribution for θji given its Markov blanket. Samples from θji can be

drawn from the posterior distribution directly because the prior and likelihood form

a conjugate pair. This sampling procedure is repeated until the chain converges to

a stationary distribution then we draw samples from the posterior distribution over

latent variables.

Algorithm 1 Metropolis-within-Gibbs Algorithm

1: Initialize θ, µ, M , µ0, M0

2: repeat
3: for each location j do
4: Draw T samples from p (µj|θij, µ0,M0) using M–H
5: Set µj to the sample median for the T samples
6: for each replicate i do
7: Sample from p (θij|rij, nij, µj,M)
8: end for
9: end for

10: until sample size sufficient
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2.2.1 Initialization

The initial values for the model parameters and latent variables is obtained by

a method-of-moments (MoM) procedure. MoM works by setting the population

moment equal to the sample moment. A system of equations is formed such that

the number of moment equations is equal to the number of unknown parameters and

the equations are solved simultaneously to give the parameter estimates. We simply

start with the data matrices r and n and work up the hierarchy of the graphical

model solving for the parameters of each conditional distribution in turn.

We present the initial parameter estimates here and provide the derivations in

Supplementary Information. The MoM estimate for replicate-level parameters are

θ̂ji =
rji
nji

. The estimates for the position-level parameters are µ̂j = 1
N

∑N
i=1 θ̂ji

and M̂j =
µ̂j(1−µ̂j)
1
N

∑N
i=1 θ̂

2
ji

− 1. The estimates for the genome-level parameters are µ̂0 =

1
J

∑J
j=1 µ̂j and M̂0 = µ̂0(1−µ̂0)

1
J

∑J
j=1 µ̂

2
j

− 1.

2.2.2 Sampling from p (θij|rij, nij, µj,M)

Samples from the posterior distribution p(θji|rji, nji, µj,Mj) are drawn analytically

because of the Bayesian conjugacy between the prior p(θji|µj,Mj) ∼ Beta(µj,Mj)

and the likelihood p(rji|nji, θji) ∼ Binomial(θji, nji). The posterior distribution is

p(θji|rji, nji, µj,Mj) ∼ Beta (rji +Mjµj, nji − rji +Mj(1− µj)) . (2.6)
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2.2.3 Sampling from p (µj|θji,Mj, µ0,M0)

The posterior distribution over µj given its Markov blanket is

p(µj|θji,Mj, µ0,M0) ∝ p(µj|µ0,M0)p(θji|µj,Mj). (2.7)

Since the prior, p(µj|µ0,M0), is not conjugate to the likelihood, p(θji|µj,Mj), we

cannot write an analytical form for the posterior distribution. Instead, we sample

from the posterior distribution using the Metropolis-Hastings algorithm.

A candidate sample is generated from the symmetric proposal distributionQ(µ∗j |µ
(p)
j ) ∼

N (µ
(p)
j , σ2

j ), where µ
(p)
j is the pth from the posterior distribution. The acceptance

probability is then

a =
p(µ∗j |µ0,M0)p(θ

(p+1)
ji |µ∗j ,Mj)

p(µ
(p)
j |µ0,M0)p(θ

(p+1)
ji |µ(p)

j ,Mj)
(2.8)

We fixed the proposal distribution variance for all the Metropolis-Hastings steps

within a Gibbs iteration to σj = 0.1 · µ̂j · (1 − µ̂j) if µ̂j ∈ (10−3, 1 − 10−3) and

σj = 10−4 otherwise, where µ̂j is the MoM estimator of µj. Though it is not

theoretically necessary, we have found that the algorithm performance improves

when we take the median of five or more M-H samples as a single Gibbs step for

each position (More information shown in Section 5.3).

We resample from the proposal if the sample is outside of the support of the

posterior distribution. We typically discard 20% of the sample for burn-in and thin

the chain by a factor of 2 to reduce autocorrelation among samples (Detailed auto-

correlation analysis shown in Appendix E). Since, each position j is exchangeable

given the global hyperparameters µ0 and M0 this sampling step can be distributed

across up to J processors.
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2.3 Variational Inference

As shown in Equation 2.5, inference in RVD2 model is the joint posterior distribution

over the latent variables,

p(µ, θ|r, n;φ) =
p(µ, θ, r|n;φ)

p(r|n;φ)
.

Besides Metropolis-within-Gibbs sampling inference, we have developed two varia-

tional inference algorithms to approximate the posterior distribution p(µ, θ|r, n;φ) [72].

Here we summarize the algorithm briefly; Appendix J provides a detailed derivation

for variational inference procedure.

2.3.1 Evidence Lower Bound (ELBO)

Using Jensen’s inequality, the log-likelihood of the data is lower-bounded:

log p (r|φ) = log

∫
µ

∫
θ

p (r, µ, θ) dθdµ

= log

∫
µ

∫
θ

p (r, µ, θ)
q (µ, θ)

q (µ, θ)
dθdµ

=

∫
µ

∫
θ

q (µ, θ) log
p (r, µ, θ)

q (µ, θ)
dθdµ+

∫
µ

∫
θ

q (µ, θ) log
q (µ, θ)

p (µ, θ|r)
dθdµ

= L(q, φ) +KL (q(µ, θ)||p(µ, θ|r))

≥ L(q, φ)

(2.9)

where φ = (µ0,M0,M), q(µ, θ) is the variational distribution.

As can be seen from Equation 2.9, the second term of log-likelihood is KL diver-

gence between the variational distribution q(µ, θ) and the true posterior distribution

p(µ, θ|r). The divergence KL (q(µ, θ)||p(µ, θ|r)) is always non-negative, and equals
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zero if and only if the variational distribution q(µ, θ) is exactly the true posterior

distribution p(µ, θ|r). Therefore, The item L(q, φ) is the lower bound of the log-

likelihood of the data. The goal of variational inference is to minimizing the KL

divergence between these two distribution, but can not be done directly. Equiva-

lently, we maximize the global evidence lower bound L(q, φ) in order to minimize

the KL divergence.

2.3.2 Factorization

We fully factorize the exact posterior distribution using the naive mean-field method,

q(µ, θ) = q(µ)q(θ) =
J∏
j=1

q(µj)
N∏
i=1

q(θji). (2.10)

In Equation 2.10, distribution q(µj) approximate the posterior distribution of local

error rate µj in position j across replicates, while distribution θji approximate the

posterior distribution of θji, the error rate distribution in position j replicate i [4].

2.3.3 Variational Expectation-Maximization

With the conditional independence granted by proposed factorization, we are able

to write out ELBO L(q, φ) in a relative simple form,

L(q, φ) = Eq [log p (r, µ, θ|n;φ)]− Eq [log q (µ, θ)]

= Eq [log p (r|θ, n)] + Eq [log p (θ|µ;M)] + Eq [log p (µ;µ0,M0)]

− Eq [log q (µ)]− Eq [log q (θ)] .

(2.11)

Writing out each component shows that in order to compute ELBO, we need to

obtain the following expectations with respect to variational distribution: Eq [log θji],

Eq [log (1− θji)] , Eq [log µj] , Eq [log(1− µj)], Eq [µj] andEq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
.
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As shown in Appendix J.3.1, we propose to use Beta distribution q(θji) ∼

Beta (δji), which proves to be the optimal variational distribution, to approximate

posterior distribution of θji. The optimal variational distribution of µj is in a com-

plex form; instead, we propose two possible distributions as variational distribution

so that the expectations are computable. The first distribution is Beta distribu-

tion q(µj) ∼ Beta (γj), which will greatly facilitate the variational inference process.

The other choice is Laplace approximation to find an optimal normal distribution

p(µj) ∼ N (µ̂j,−f ′′(µ̂j)−1) [72].

Next, we use a variational EM procedure [34] to maximize ELBO and find the

variational parameters that give the best approximate posterior distributions. This

process produces approximate maximum-likelihood estimates of the hyperparam-

eters φ = {µ0,M0,M} as well. Variational EM algorithm maximizes the ELBO

using coordinate ascent inference – iteratively optimizing each variational distribu-

tion while fixing the others.

Variational EM algorithm works by alternating between ELBO maximization

over variational distribution q(θ, µ)(E-step) and ELBO maximization over hyper-

parameters φ = {µ0,M0,M} (M-step). The inference procedure is shown in Al-

gorithm 2 and Algorithm 3, with the major difference in variational distribution

q(µj).
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Algorithm 2 RVD2 Variational Inference:
. q(θji; δji) = Beta(δji), q(µj; γj) = Beta(γj)

1: Initialize q(θ, µ) and φ̂
2: repeat
3: repeat
4: for j = 1 to J do
5: for i = 1 to N do
6: Optimize L(q, φ̂) over q(θji; δji) = Beta(δji)
7: end for
8: end for
9: for j = 1 to J do

10: Optimize L(q, φ̂) over q(µj; γj) = Beta(γj)
11: end for
12: until change in L(q, φ̂) is small
13: Set φ̂← arg max

φ
L(q, φ)

14: until change in L(q, φ̂) is small

Algorithm 3 RVD2 Variational Laplace Inference
. q(θji; δji) = Beta(δji), p(µj) ∼ N (µ̂j,−f ′′(µ̂j)−1)

1: Initialize q(θ, µ) and φ̂
2: repeat
3: repeat
4: for j = 1 to J do
5: for i = 1 to N do
6: Optimize L(q, φ̂) over q(θji; δji) = Beta(δji)
7: end for
8: end for
9: for j = 1 to J do

10: Construct function f(µj) with items in ELBO depending on µj;
11: Set µ̂j ← arg max

µj
f(µj);

12: Approximate q(µj) ≈ N (µ̂j,−f ′′(µ̂j, φ̂)
−1

)
13: end for
14: until change in L(q, φ̂) is small
15: Set φ̂← arg max

φ
L(q, φ)

16: until change in L(q, φ̂) is small
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2.4 Hypothesis Testing

2.4.1 Posterior Distribution Test

Posterior Difference Test

Metropolis-within-Gibbs provides samples from the posterior distribution of µj given

the case or control data. For notational simplicity, we define the random variables

associated with these two distributions µcase
j and µcontrol

j and the associated samples

as µ̃case
j and µ̃control

j .

A variant is called if µcase
j > µcontrol

j with high confidence,

Pr(µcase
j − µcontrol

j > τ) ≈ 1

NMH

NMH∑
k=1

1µ̃casejk −µ̃
control
jk >τ > 1− α, (2.12)

where τ is a detection threshold and 1− α is a confidence level. We draw a sample

from the posterior distribution µ̃∆
j , µ̃case

j − µ̃control
j by simple random sampling with

replacement from µ̃case
j and µ̃control

j .

The threshold, τ , may be set to zero or optimized for a given median depth and

desired MAF detection limit. The optimal τ maximizes the Matthews Correlation

Coefficient (MCC),

τ ∗ = arg max
τ
{MCC(τ)} . (2.13)

While we are able to compute the optimal τ threshold for a test data set, in

general we would not have access to τ ∗. With sufficient training data, one would

be able to develop a lookup table or calibration curve to set τ based on read depth

and MAF level of interest. Absent this information we set τ = 0.
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Posterior Somatic Test.

Posterior Somatic Test is a two-sided posterior difference test using paired control-

case sample. To identify somatic mutations, we consider scenarios when the case(tumor)

error rate is lower than the control(germline) error rate (e.g. loss-of-heterozygosity)

as well as scenarios when the case(tumor) error rate is higher than the control(germline)

error rate (e.g. homozygous somatic mutation). The two hypothesis tests are then

Pr(µcase
j − µcontrol

j > τ) > 1− α and Pr(µcase
j − µcontrol

j < τ) > 1− α. Threshold τ is

set at zero.

Posterior Germline Test.

Posterior Germline Test is a one-sided posterior distribution test using a single

control sample. We call a germline mutation if µcontrolj ≥ τ with high confidence,

Pr(µcontrol
j ≥ τ) ≈ 1

NMH

NMH∑
k=1

1µ̃controljk ≥τ > 1− α, (2.14)

2.4.2 χ2 test for non-uniform base distribution

An abundance of non-reference bases at a position called by the posterior density test

may be due to a true mutation or due to a random sequencing error; we would like

to differentiate these two scenarios. We assume non-reference read counts caused

by a non-biological mechanism results in a uniform distribution over three non-

reference bases. In contrast, the distribution of counts among three non-reference

bases caused by biological mutation would not be uniform.

We use a χ2 goodness-of-fit test on a multinomial distribution over the non-

reference bases to distinguish these two possible scenarios. The null hypothesis is

H0 : p = (p1, p2, p3) where p1 = p2 = p3 = 1/3. Cressie and Read [12] identified

a power-divergence family of statistics, indexed by λ, that includes as special cases
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Pearson’s χ2(λ = 1) statistic, the log likelihood ratio statistic (λ = 0), the Freeman-

Tukey statistic (λ = −1/2), and the Neyman modified statistic X2(λ = −2). The

test statistic is

2nIλ =
2

λ(λ+ 1)

3∑
k=1

r
(k)
ji

( r
(k)
ji

E
(k)
ji

)λ

− 1

 ;λ ∈ R, (2.15)

where r
(k)
ji is the observed frequency for non-reference base k at position j in repli-

cate i and E
(k)
ji is the corresponding expected frequency under the null hypothesis.

Cressie and Read [12] recommended λ = 2/3 when no knowledge of the alternative

distribution is available; we choose that value.

We control for multiple hypothesis testing in two ways. We use Fisher’s combined

probability test [19] to combine the p-values for N replicates into a single p-value

at position j,

X2
j = −2

N∑
i=1

ln(pji). (2.16)

Equation (2.16) gives a test statistic that follows a χ2 distribution with 2N

degrees of freedom when the null hypothesis is true. If the sample average depth is

higher than 500, we use the Benjamini-Hochberg method to control the family-wise

error rate (FWER) over positions that have been called by the posterior distribution

test [3, 16]. The average depth threshold is set because Benjamini-Hochberg method

is a highly conservative method and will remove many true calls when the read depth

is not high enough.
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Chapter 3

Data

We used two independent data sets to evaluate the performance of RVD2 and com-

pare it with other variant calling algorithms. Synthetic DNA sequence data provides

true positive and true negative positions as well as define minor allele fractions. HC-

C1187 data is used to test the performance on a sequenced cancer genome with less

than 100% tumor purity.

3.0.3 Synthetic DNA Sequence Data

Experimental process.

Two 400bp DNA sequences(Appendix A) that are identical except at 14 loci with

variant bases were synthesized and clonally isolated and labeled case and con-

trol(https://www.dna20.com). Sample of the case and control DNA were mixed

at defined fractions to yield defined MAFs of 0.1%, 0.3%, 1%, 10%, and 100%. The

experimental DNA synthesis and sequencing process is shown in Figure A.1. More

details of the experimental protocol are available from the original publication [20].
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Figure 3.1: Synthetic DNA sequence DNA sequence synthesis and sequencing flowchart. Sample and reference DNA
are independently prepared and tagged with indexed adapters. The reference and sample libraries are pooled and
sequenced on the same lane. The reads are aligned and preprocessed to filter out strand-specific errors [20].

Computational process.

We aligned the reads to the reference sequence using BWA v0.7.4 with the -C50

option to filter for high mapping quality reads. To simulate lower coverage data

while retaining the error structure of real NGS data, BAM files for the synthetic

DNA data were downsampled 10×, 100×, 1, 000×, and 10, 000× using Picard v1.96.

The final data set contains read pairs for three replicates of each case and pairs of

reads three replicates for the control sample giving N = 6 replicates for the control

and each MAF level.
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3.0.4 HCC1187 Sequence Data

Experimental process.

The HCC1187 dataset is a well-recognized baseline dataset from Illumina for evalu-

ating sequence analysis algorithms [29, 30, 51]. The HCC1187 cell line was derived

from epithelial cells from primary breast tissue from a 41 y/o adult with TNM stage

IIA primary ductal carcinoma. The estimated tumor purity was reported to be 0.8.

Matched normal cells were derived from lymphoblastoid cells from peripheral blood.

Computational process.

Sequencing libraries were prepared according to the protocol described in the original

technical report [2]. The raw FASTQ read files were aligned to hg19 using the Isaac

aligner to generate BAM files [55]. The aligned data had an average read depth of

40x for the normal sample and 90x for the tumor sample with about 96% coverage

with 10 or more reads. We used samtools mpileup to generate pileup files using

hg19 as reference sequence [49].
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Chapter 4

Result — MCMC Inference

4.1 Synthetic dataset

We tested RVD2 using synthetic DNA and data from a primary ductal carcinoma

sample. The Metropolis-within-Gibbs inference algorithm parameters were set to

yield 4, 000 Gibbs samples with a 20% burn-in and 2× tinning rate for a final total

of 1, 600 samples. We drew 1, 000 samples from µ̃∆ = µ̃case
j − µ̃control

j to estimate the

posterior probability of a variant.

We performed posterior difference test on synthetic data to identify mutations

given it is a haploid DNA sequence. We set the threshold τ = 0 and the size of

the test α = 0.05. We used RVD2 to identify somatic and germline mutations in

the diploid HCC1187 sample. In the posterior somatic test, we set the threshold

τ = 0 and the size of the test α = 0.05. In the posterior germline test, We set the

threshold τ = 0.05 considering the low average coverage (40x). The size of the test

is set at α = 0.15, higher than the size of somatic test. We are less confident on the

germline test because we only use control sample in the germline test compared to

normal-tumor paired sample in somatic test. We performed χ2 non-uniformity test

along all the posterior density test.
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4.1.1 Estimated MAF for variants.

Figure 4.1 shows the posterior mean and 95% credible intervals for µj for called

variant positions with n̄ = 5584 and MAF = 1.0%. All of the called positions show

a clear difference between the case and control error rates. The posterior mean

estimates are all shrunken towards the global error rate parameter µ0 = 0.0023 due

to the hierarchical structure of the model.
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Figure 4.1: Estimated minor allele fraction for called variants in 1.0% dilution.

4.1.2 Performance with read depth

We generated receiver-operating characteristic curves (ROCs) for a range of median

read depth and a range of minor allele frequencies (MAFs). For these ROC curves,

we used the posterior density test without the χ2 test to evaluate the performance

of posterior density test individually. Figure 4.2 shows ROC curves generated by

varying the threshold τ with a fixed α = 0.05. Figure 4.2A shows ROC curves for
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Figure 4.2: ROC curve varying read depth showing detection performance. Each subfigure shows ROC curves across
four different read depths for one MAF level. Within one subfigurethe performance improves monotonically with
read depth. Across different subfigures, the performance improves with MAF level.

a true 0.1% MAF for a range of median coverage depths. At the lowest depth the

sensitivity and specificity is no better than random. However, we would not expect

to be able to call a 1 in 1000 variant base with a coverage of only 43. The performance

improves monotonically with read depth. Figures 4.2B-C show a similar relationship

between coverage depth and accuracy for higher MAFs.

4.1.3 Performance comparison with other algorithms

We compare the empirical performance of RVD2 to other variant calling algorithms

using the synthetic DNA data sets using the false discovery rate as well as sensi-

tivity/specificity. Among these algorithms, Samtools and GATK are optimized for

homogeneous samples, while RVD, VarScan2 Somatic, Strelka and muTect are de-

signed to call variants in heterogeneous samples, which serve as better comparison
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to RVD2. In a research applications, the false discovery rate is a more relevant

performance metrics because the aim is generally to identify interesting variants.

The sensitivity/specificity metric is more relevant in clinical applications where one

is more interested in correctly calling all of the positive variants and none of the

negatives. GATK, Varscan2, Strelka and muTect are only able to make use of one

case and cone control sample, so we provide results of RVD2 with the same data

(N = 1) for a fair comparison.

Sensitivity/Specificity Comparison

Figure 4.3 shows that samtools, GATK and VarScan2-mpileup all have similar per-

formance. They call the 100% MAF experiment well even at low depth, but are

unable to identify true variants in mixed samples. GATK, samtools and VarScan2-

mpileup are optimized to call genotypes on pure samples. Therefore, those algo-

rithms are expected to perform well on the 100% dilution (pure mutant) sample

and poorly on heterogeneous samples. VarScan2-somatic is able to call more mixed

samples. However, as the read depth increases the specificity degrades. Strelka is

able to call 10% MAF variants with good performance, but is limited at 1% MAF

and below. muTect has good performance across a wide range of MAF levels. But

even at the highest depth only has around 0.5 sensitivity for low MAF levels. The

statistics for RVD is an average statistics as RVD uses six control replicates to es-

timate the model but returns statistics separately for three sets of pair-end case

replicates. RVD performed the best among all algorithms when the read depth is

as high as 40000x. RVD called all the mutated positions across all MAF levels with

no false positives when MAF level is 0.3% or lower. RVD calls some false positives

when the MAF level is 1.0% or higher, which causes specificity slightly lower than

1.00. RVD program fails and can not call any mutations when the depth is unable

32



1

MAF Median
Depth SAMtools GATK VarScan2

mpileup
VarScan2
somatic Strelka MuTect RVD RVD2

(T=0)
RVD2
(T*)

RVD2
(T=0)

RVD2
(T*)

0.1% 39 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
408 0.00/1.00 0.00/1.00 0.00/1.00 0.07/0.92 0.00/1.00 0.29/0.91 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
4129 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.52 0.00/1.00 0.64/0.86 0.00/1.00 0.00/1.00 0.00/1.00 0.14/1.00 0.29/1.00
41449 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.79 0.00/1.00 0.14/0.93 1.00/1.00 0.43/1.00 0.57/1.00 0.86/0.97 0.79/1.00

0.3% 36 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.43/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
410 0.00/1.00 0.00/1.00 0.00/1.00 0.21/0.95 0.00/1.00 0.50/0.94 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
4156 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.53 0.00/1.00 0.36/0.91 0.00/1.00 0.14/1.00 0.29/1.00 1.00/0.99 1.00/0.99
41472 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.75 0.00/1.00 0.43/0.90 1.00/1.00 0.93/0.97 0.93/0.99 1.00/0.85 0.93/0.97

1.0% 53 0.00/1.00 0.00/1.00 0.00/1.00 0.00/0.99 0.00/1.00 0.29/0.98 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
535 0.00/1.00 0.00/1.00 0.00/1.00 0.43/0.89 0.00/1.00 0.71/0.91 0.00/1.00 0.00/1.00 0.00/1.00 0.21/1.00 0.21/1.00
5584 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.47 0.00/1.00 0.64/0.95 0.00/1.00 0.93/0.99 1.00/0.99 1.00/0.98 1.00/1.00
55489 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.69 0.00/1.00 0.86/0.90 1.00/0.99 1.00/0.95 1.00/0.99 1.00/0.87 1.00/0.99

10.0% 22 0.21/1.00 0.00/1.00 0.00/1.00 0.36/1.00 0.29/1.00 0.86/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
260 0.00/1.00 0.00/1.00 0.00/1.00 0.86/1.00 1.00/1.00 1.00/0.99 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
2718 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.78 1.00/1.00 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
26959 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.53 1.00/0.99 1.00/0.98 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

100.0% 27 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
298 1.00/0.99 1.00/1.00 1.00/1.00 1.00/0.99 1.00/0.99 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
3089 0.86/1.00 1.00/1.00 1.00/1.00 1.00/0.65 1.00/0.99 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
30590 0.71/1.00 1.00/1.00 1.00/1.00 1.00/0.39 1.00/1.00 1.00/0.99 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

N=1 N=6

character_2013_03_04.xls

Figure 4.3: Sensitivity/Specificity comparison of RVD2 with other variant calling algorithms using synthetic sequence
data.

to measure the baseline error rate.

The sensitivity for RVD2 with τ = 0 is low for low read depths and MAF levels

and N = 1 case and control sample. The sensitivity increases considerably with

read depth at a slight expense to specificity. With τ ∗ the performance is much

better with high sensitivity and specificity across a wide range of read depths and

MAFs. However, in practice one may not know the optimal τ ∗ a-priori. With N = 6

replicates, the sensitivity increases considerably for low MAF variants with a slight

degradation in specificity due to false positives. When the median read depth is at

least 10× the MAF, RVD2 has higher specificity than all of the other algorithms

tested and has a lower sensitivity in only three cases.

False Discovery Rate Comparison

Figure 4.4 shows the false discovery rate for RVD2 compared to samtools, GATK,

varscan, Strelka and muTect. Blank cells indicate no positive calls were made.

Samtools performs well on 100% MAF sample and performance improves for

read depths 3,089 and 30,590. GATK performs well on both the 10% and 100%
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MAF Median
Depth SAMtools GATK VarScan2

mpileup
VarScan2
somatic Strelka MuTect RVD RVD2

(T=0)
RVD2
(T*)

RVD2
(T=0)

RVD2
(T*)

0.1% 39 1.00
408 0.97 0.89
4129 0.96 0.86 0.00 0.00
41449 0.90 0.93 0.04 0.14 0.11 0.50 0.08

0.3% 36 0.14
410 0.86 0.76
4156 0.96 0.87 0.00 0.00 0.26 0.26
41472 0.92 0.87 0.08 0.43 0.28 0.80 0.43

1.0% 53 1.00 0.67
535 0.87 0.78 0.00 0.00
5584 0.96 0.70 0.19 0.18 0.30 0.07
55489 0.93 1.00 0.76 0.19 0.59 0.22 0.78 0.12

10.0% 22 0.00 0.00 0.00 0.25
260 0.08 0.00 0.18 0.00 0.00 0.00 0.00
2718 0.91 0.07 0.36 0.00 0.00 0.00 0.00
26959 0.95 0.18 0.33 0.31 0.00 0.00 0.00 0.00

100.0% 27 0.12 0.07 0.07 0.00 0.07 0.36 0.00 0.00 0.00 0.00
298 0.12 0.07 0.00 0.12 0.18 0.39 0.00 0.00 0.00 0.00
3089 0.00 0.07 0.00 0.91 0.18 0.33 0.00 0.00 0.00 0.00
30590 0.00 0.07 0.00 0.94 0.00 0.26 0.3 0.00 0.00 0.00 0.00

N=1 N=6

Figure 4.4: False discovery rate comparison of RVD2 with other variant calling algorithms using synthetic sequence
data. Blank cells indicate no locations were called variant.

variants, but makes a false positive call at the 100% MAF level for all read depth

levels. VarScan2-pileup performs perfectly for all but the lowest depth for the 100%

MAF.

VarScan2-somatic is able to make calls for all but the lowest MAF and coverage

level. However, the FDR is high due to many false positives. Interestingly, at a MAF

of 100% the FDR is zero for lowest read depth and over 0.9 for the highest read

depth. Strelka has a better FDR than the samtools, GATK or Varscan2-somatic

algorithms for almost all read depths at the 10% and 100% MAF. However, it does

not call any variants at or below 1% MAF. muTect has the best FDR performance

of the other algorithms we tested over a wide range of MAF and depths. But the

FDR level is relatively high at around 0.7 for 0.1% – 1% MAF and 0.3 for 10% –

100% MAF. RVD has best FDR performance in the high read depth for 0.1% – 1%

MAF levels. The FDR increases to around 0.3 for 10% – 100% MAF in the high

read depth.

RVD2 has a lower FDR than other algorithms when the read depth is greater

than 10× the MAF withN = 1 and τ set to the default value of zero or to the optimal
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value. The FDR is higher when N = 6 because the variance of the control error rate

distribution P (µcontrol
j |rcontrol) is smaller. The smaller variance yields improvements

in sensitivity at the expense of more false positives. Since the FDR only considers

positive calls, the performance by that measure degrades.

Matthews Correlation Coefficient Comparison

Figure 4.5 compares RVD2 with samtools, GATK, varscan, strelka and muTect using

Matthews Correlation Coefficient (MCC) [45].1

MAF Median
Depth SAMtools GATK VarScan2

mpileup
VarScan2
somatic Strelka MuTect RVD RVD2

(T=0)
RVD2
(T*)

RVD2
(T=0)

RVD2
(T*)

0.1% 39 -0.02
408 -0.00 0.12
4129 0.03 0.25 0.37 0.53
41449 0.19 0.05 0.98 0.60 0.70 0.64 0.84

0.3% 36 0.60
410 0.14 0.31
4156 0.04 0.17 0.37 0.53 0.85 0.85
41472 0.16 0.19 0.95 0.71 0.81 0.41 0.71

1.0% 53 -0.02 0.29
535 0.18 0.36 0.46 0.46
5584 0.01 0.41 0.86 0.90 0.83 0.96
55489 0.13 -0.01 0.43 0.9 0.62 0.88 0.43 0.93

10.0% 22 0.46 0.59 0.53 0.79
260 0.89 1.00 0.90 1.00 1.00 1.00 1.00
2718 0.16 0.96 0.79 1.00 1.00 1.00 1.00
26959 0.06 0.90 0.81 0.82 1.00 1.00 1.00 1.00

100.0% 27 0.93 0.96 0.96 1.00 0.96 0.79 1.00 1.00 1.00 1.00
298 0.93 0.96 1.00 0.93 0.90 0.77 1.00 1.00 1.00 1.00
3089 0.92 0.96 1.00 0.25 0.90 0.81 1.00 1.00 1.00 1.00
30590 0.84 0.96 1.00 0.15 1.00 0.85 0.83 1.00 1.00 1.00 1.00

N=1 N=6

character_2013_03_04.xls

Figure 4.5: Matthews correlation coefficient (MCC) comparison with other variant calling algorithms.

Samtools and VarScan2-mpileup achieved MCC value generally higher than 0.90

on 100% MAF sample across all read depthes, with 1.0 represents for a perfect pre-

diction. However, both of them detected no variant when MAF is 10.0% or lower,

with only one exception for samtools when MAF is 10.0% and read depth 22. GATK,

Varscan2-somatic, Strelka and GATK outperformed Samtools and VarScan2-mpile

on the 10.0% MAF sample, while approximately tied in other cases. Strelka achieved

best MCC on 10% MAF sample comparing to Varscan2-somatic and GATK, more

specifically around 1.00 when read depth is 260 or higher. There is a very obvious

but unconventional decreasing trend in VarScan2-somatic MCC value across differ-
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ent read depth and MAF level, a phenomenon also observed by 68. It is because

VarScan2-somatic tends to call more false positives as read depth gets higher. Mu-

tect seems to performs the best among all the algorithms expect RVD2 when MAF is

1.0% or lower. It achieves MCC values varying from -0.02 to 0.43, though too low to

be practically meaningful. However, muTect achieved relatively lower MCC values

when the MAF level is 10% and 100%, as a counteractive of being oversensitive.

RVD2 achieved MCC value 1.00 when the MAF is 100.0% at all read depth and

10% when read depth is not lower than 260. This indicates that RVD2(τ = 0, N = 1)

is more accurate than the other algorithms when the median read depth is at least

10× the MAF.

4.2 HCC1187 primary ductal carcinoma sample

4.2.1 Performance of RVD2.

RVD2 identified twelve variants in the 44kbp PAXIP1 gene from chr7:154738059 to

chr7:154782774. There were eight germline variants and eight somatic mutations in

the twelve variants. RVD2 identified twelve variants in the 44kbp PAXIP1 gene from

chr7:154738059 to chr7:154782774. There were eight germline variants and eight so-

matic mutations. Figure 4.6 shows the estimated minor allele frequencies for the

normal and tumor samples at the called locations. Positions chr7:154743899C>T,

chr7:154749704G>A, chr7:154753635T>C, chr7:154754371T>C, chr7:154758813G>A,

chr7:154766700C>A, chr7:154780960C>T, and chr7:154781769G >T were called

germline mutations. Positions chr7:154749704G>G, chr7:154753635T>C, chr7:154754371T>C,

chr7:154758813G>A, chr7:154760439A>C, chr7:154766732T>G, chr7:154766832A>C,

chr7:154777118A>C were identified as significantly different in tumor and normal

sample MAF and called somatic mutation. Positions chr7:154754371 and chr7:154758813
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Figure 4.6: Estimated minor allele fraction for Germline and Somatic mutations called by RVD2 in the 44kbp
PAXIP1 gene from chr7:154738059 to chr7:154782774. Blue diamonds (�) indicates germline mutations, where
µcontrol is significantly different from the reference sequence. Red stars (*) indicates somatic mutations, where µcase

is significantly different from µcontrol. The vertical lines represent 95% credible interval around posterior mean
MAF. Five positions are common populations SNPs according to dbSNPv138, and the identities are shown below
the positions.

appears to be loss-of-heterozygosity events. Some of these mutations are also found

to be common population SNPs according to dbSNPv138. The corresponding iden-

tities are shown in the Figure 4.6. The read depth distribution for positions called

by RVD2 are provided in Appendix I.

4.2.2 Performance comparison with other algorithms.

We ran muTect and VarScan2-somatic to call mutations in the PAXIP1 gene in

HCC1187 sample. We also compared to the result shown in original research report

where Strelka was used to identify mutations in the same sample [2]. Figure 4.7a

shows mutation detection result from Strelka, RVD2, muTect, and VarScan2-somatic,

the state-of-art algorithms able to call mutation from heterogeneous samples. For

notation simplicity, we use position index to present actual positions in Figure 4.7,

while the correspondence is provided in Appendix I.
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5 10 15 20 25 30 35 40 45 50 55 60 65
Position Index

VarScan2
Somatic 

muTect 

RVD2
Somatic 

RVD2
Germline 

Strelka 
Idx:4 8 1113 2022 3537 50 5658

0 10 20 30 40 50 60
Total

60

11

8

8

1

(a)

Index REF Normal Case

A:C:G:T A:C:G:T

4 C 0:0:0:45 0:0:0:71

8 G 8:0:36:0 2:0:42:0

11 T 0:38:0:0 0:63:0:1

13 T 0:19:0:31 0:61:0:0

20 G 14:0:28:0 54:0:0:0

22 A 37:0:0:0 0:38:0:0

35 C 4:21:0:0 10:42:0:0

36 T 0:0:0:35 0:0:5:44

37 A 34:0:0:0 42:4:0:0

50 C 0:49:0:0 0:64:2:0

51 A 46:0:0:0 31:4:0:0

56 C 0:0:0:42 0:0:0:56

58 G 0:0:21:4 0:0:31:2

(b)
Figure 4.7: (a)Positions called by VarScan2-somatic, muTect, RVD2 and Strelka in the 44kbp PAXIP1 gene from
chr7:154738059 to chr7:154782774. VarScan2-somatic reported 60 positions, muTect 11 positions, RVD2 12 positions
and Strelka only 1 position. This figure uses position index to show the correspondence of positions called by different
algorithms for notation simplicity. Complete actual positions and depth distribution are provided in Supplementary
Table 1 for validation. (b) Depth distribution for positions called by RVD2 and muTect.

The mutations called by RVD2 and muTect are the most consistent among all the

techniques. RVD2 detected twelve germline and somatic mutations, while muTect

reported eleven, ten in common. In the disagreements, RVD2 did not call position

50 while muTect did not call position 37 and 58. Referring to the depth distribution

shown in Figure 4.7b, it can be seen that position 37 and 58 are more likely mutated

while position 50 is less likely mutated.

Strelka was the least sensitive algorithms among all the algorithms. According

to the technical report, Strelka identified position 22 (chr7:154760439) as variant,

but did not call any other variants. In particular Strelka missed the two LOH events

called by RVD2. On the contrary, VarScan2-somatic called most positions among all

algorithms, sixty positions as shown in Figure 4.7a. VarScan2-somatic detected all

the positions called by RVD2 except position 35, which turns out to be a very likely

mutation given the depth distribution in Figure 4.7b. On the other side, VarScan2-

somatic reported fifty positions which were not called by any other three algorithms.

The read depth in Supplementary Table 1 suggestions that these positions are very

likely to be false positives. The fact that VarScan2-somatic can be over-sensitive has

appeared in synthetic dataset analysis. As shown in Figure 4.4, the False Discovery
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Rate for VarScan2-somatic at read depth 53 MAF level 1.0% is as high as 1.00.

Spencer et al. [66] also mentioned that VarScan2 has tendency to call many false

positives at high read depth.
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Chapter 5

Alternative Approaches in MCMC

inference

5.1 Proposal distribution in Metropolis-Hasting

sampling

5.1.1 Detailed balance

The principle of detailed balance is that each elementary process should be equili-

brated by its reverse process in the stationary state of a system. Detailed balance

has been applied to many field including various MCMC methods, where equilibrium

distributions are target posterior distributions [47].

In order to satisfy detailed balance in Metropolis-Hasting sampling process, a

normal distribution Q(µ∗j |µ
(p)
j ) ∼ N (µ

(p)
j , σ2

j ) is used as proposal distribution to

generate candidate samples for Metropolis-Hasting sampling, where µ
(p)
j is the pth

sample from the posterior distribution. We fixed the proposal distribution variance

for all the Metropolis-Hastings steps within a Gibbs iteration to σj = 0.1·µ̂j ·(1−µ̂j)

if µ̂j ∈ (10−3, 1− 10−3) and σj = 10−4 otherwise, where µ̂j is the MoM estimator of
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Figure 5.1: Standard deviation with respect to mean in proposal distribution Q(µ∗j |µ
(p)
j ) ∼ N (µ

(p)
j , σ2

j ) for

Metropolis-Hasting sampling. The left plot is the overall plot with µ
(p)
j across (0,1), while the right plot is a

magnification of µ
(p)
j at the one of the two break points.

5.1.2 Obtain σj from µ̂j

Prior to the proposal distribution described above, several other options were ex-

plored. First, in stead of µ̂j, the MoM estimate of µj to provide σ, we tried it out

whether it is feasible to use the µ
(p)
j , the pth sample from the posterior distribu-

tion. This means the proposal distribution is not fixed in standard deviation and

the sampling process will violate detailed balance requirement. This is distribution

was still under consideration because of two reasons: we believe it makes better

proposal distribution to adjust how wide the proposal distribution is according to

the mean; and Manousiouthakis and Deem [42] stated that strict detailed balance is

unnecessary in Monte Carlo simulation. However, as it turned out the performance

of RVD2 is slightly better when the detailed balance is met, we vetoed the proposal

distribution adjusting standard deviation according to the mean.

Second, we explored to how to find the standard deviation σj for proposal distri-
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bution from the MoM estimate µ̂j. We found out that the symmetric relationship

σj = 0.1·µ̂j ·(1−µ̂j) if µ̂j ∈ (10−3, 1−10−3) and σj = 10−4 gives desirable acceptance

rate between 0.2-0.8.

5.2 Gibbs Sampling size

(a) (b)

Figure 5.2: Histogram of µcontrol
j and µcasej to evaluate the sufficiency of Gibbs sampling size. The Metropolis-

Hasting sampling size is 50 in this experiment.(a)Gibbs sampling size at 400; (b)Gibbs sampling size at 4000.

The sampling inference uses Metropolis-within-Gibbs sampling approach to esti-

mate the RVD2 hierarchical empirical Bayes model. However, it might require many

Gibbs samples to achieve convergence and guarantee global optimal parameter set-

tings. Presently there is no very good and simple ways to evaluate the convergence

Gibbs sampling size. Therefore, we provide histograms of Gibbs samples of µcontrolj

and µcasej to intuitively evaluate the convergence of Gibbs sampling, as shown in

Figure 5.2.

Figure 5.2a shows the histograms of µcontrolj and µcasej at Gibbs sample size 400,

and Figure 5.2b shows the histograms at sample size at 4000 for position 73 and

position 245, respectively. Compare the histograms in Figure 5.2a and Figure 5.2b,

it can be seen that histogram at Gibbs sampling size is much smoother, which
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indicating the posterior distribution is much more sufficiently sampled.

Increasing the Gibbs sampling size can improve accuracy but at a cost of speed

and memory. We opt this balance by setting Gibbs sampling size at 4000, where the

time and space complexity is acceptable, and the accuracy is satisfactory as well.

5.3 Metropolis-Hasting sampling size

(a) (b)

Figure 5.3: Histogram of µcontrol
j and µcasej to evaluate the sufficiency of Metropolis-Hasting sampling size. The

Gibbs sampling size is 400 in this experiment.(a)Metropolis-Hasting sampling size at 1; (b)Metropolis-Hasting
sampling size at 10.

Within one Gibbs sampling iteration, the median of Metropolis-Hasting samples

is returned as a single Gibbs step for posterior distribution. From Figure 5.3 it can

be seen that appropriate large Metropolis-Hasting sampling size facilitates the con-

vergence of the sampling process. Considering that only one Gibbs step is obtained

from one Gibbs iteration, very large Metropolis-Hasting size may lead to high cost

of speed in order to acquire enough Gibbs samples. Therefore, Metropolis-Hasting

size between 5 to 10 is recommended in RVD2 sampling procedure.
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5.4 Optimal Threshold τ ∗ in posterior density test

As shown in Section 4.1.3, optimal threshold τ ∗ can yield better Sensitivity, Speci-

ficity and FDR than arbitrary threshold τ = 0 in the synthetic dataset. The optimal

threshold τ ∗ can be obtained by maximizing MCC in a test data set; however, we

would not have access to τ ∗ in general.

We have tried to fit a calibration curve to set τ based on read depth and MAF

level of interest in the synthetic dataset. Figure 5.4 shows the three dimensional

splined curve of τ ∗ with respect to dilution rate and coverage in linear or logarithmic

scale.

The calibration curves in Figure 5.4 visualizes some trends in the relationship of

τ ∗ with dilution rate and coverage. In general, optimal threshold is less variable over

dilution rate than coverage; the optimal threshold constantly increases over dilution

rate. However, limited by the few number of data points, the splined curves is not

a effective calibration curve to find optimal threshold τ ∗. Therefore, before we have

access to more data, we currently use τ = 0 as threshold in practice.

(a) (b)
Figure 5.4: Three dimensional Splined calibration plot for optimal threshold τ∗ across different dilution rate (0.1%,
0.3%, 1.0%, 10.0%). (a)Linear spline calibration; (b)Log scale spline calibration.
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Chapter 6

Discussion and Future work

6.1 Discussion

We describe here a novel statistical tool, RVD2, for model estimation and hypothe-

sis testing for identifying single-nucleotide variants in heterogeneous samples using

next-generation sequencing data. RVD2 using sampling inference has been imple-

mented in python, and it has a higher sensitivity and specificity than many other

approaches for a range of read depths and minor allele frequencies. The variational

implementation of RVD2 is still under development.

Our inference algorithm uses Gibbs sampling to estimate the RVD2 hierarchical

empirical Bayes model. This sampling procedure provides a guarantee to identify

the global optimal parameter settings asymptotically. However, it may require many

samples to achieve that guarantee causing the algorithm to be slower than other

deterministic approaches. We opted for this balance of speed and accuracy because

computational time is often not limiting and the cost of a false positive or false

negative greatly outweighs the cost of more computation. Another factor that can

affect the speed of RVD2 is the number of Metropolis-Hasting sample within one

Gibbs sampling run. However, RVD2 is able to use multiple cores in parallel (
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no more than the number of Metropolis-Hasting samples), which can significantly

improve time efficiency. Using a computational mode with 64 2.34GHz processor and

256Gb of RAM, RVD2 takes around 10 minutes to analyze the 400bp long synthetic

data for one dilution rate and one downsampling rate. The memory requirement is

no higher than the size of the gene sequence times the number of Gibbs samples.

We are currently developing a variational method to estimate RVD2, aiming at

decreasing time complexity.

We have focused on the statistical model and hypothesis test in this study and

our results do not include any pre-filtration of erroneous reads or post-filtration

of mutation calls beyond a simple quality score threshold. Incorporation of such

data-cleaning steps will likely improve the accuracy of the algorithm.

Our approach does not address identification of indels, structural variants or copy

number variants. Those mutations typically require specific data analysis models

and tests that are different than those for single-nucleotide variants. Furthermore,

analysis of RNA-seq data or other data generated on the NGS platform may require

different models that are more appropriately tuned to the particular noise feature

of that data.

The availability of clinical sequence data is increasing as the technical capabil-

ity to sequence clinical samples at low cost improves. Consequently, we require

statistically accurate algorithms that are able to call germline and somatic point

mutations in heterogeneous samples with low purity. Such accurate algorithms are

a step towards greater access to genomics for clinical diagnostics.
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6.2 Future Work

One future aspect to work on is to improve the model structure of RVD2. A possible

direction is to assign appropriate priors on local precision parameter Mj, which is

obtained using MoM method at present stage. A prior on Mj can regulate the

experimental precision, which might be able to improve the performance. Moreover,

a prior on Mj will solve the problem that Mj is not numerically computable when

there is only one sample replicate. Some prior choices that is under exploring right

now is Jeffrey’s prior, Log-normal prior and Gamma prior.

Another direction of this project is to implement the MCMC sampling approach

in using probabilistic programming language Stan [67]. As one of the major advan-

tages, Stan is able to significantly improve the speed of RVD2 program.

A third field to work on RVD2 is to implement the variational RVD2 algorith-

m. The algorithm has been partially implemented in Python till now. Also, the

variational algorithms involves several numerical integration to compute the expec-

tations. It will greatly improve the speed of variational RVD2 if it can be improved

to analytical process.

With a working algorithm now, a very important direction to work on is to apply

RVD2 to many other clinical datasets. This will make scientific discoveries on the

dataset, along which the RVD2 could be further improved.
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Appendix A

Synthetic gene sequence

 10

Supplementary Figure S1.  Synthetic gene sequence.  The synthetic gene reference is shown 

and the companion sequence with 14 known mutant positions is shown marked on the 

sequence. A polylinker sequence facilitates cloning into a DNA vector. 

 

 
 Figure A.1: Synthetic gene sequence. The synthetic gene reference is shown and the companion sequence with 14

known mutant positions is shown marked on the sequence. A polylinker sequence facilitates cloning into a DNA
vector. [20]
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Appendix B

Simulation Example

Figure B.1 shows an simulation example to illustrate the proposal graphical model

and generative process.

r

θ

M

N J

M0

μ

μ0

(a)

730 707 1369

569 638 523

0.102 615 592 546

0.1 0.093 546 615 523 87 55 138

0.093 638 615 661 59 68 42

0.103 59 47 57

1000 0.108 53 67 62

0.11 0.11 0.10 74 67 72

0.11 0.09 0.09

1123 0.10 0.10 0.09

1246 0.10 0.09 0.11

1246 0.11 0.11 0.11

1123

1369

  

  

  

  

  

  

 

Beta(  ,   )

Binomial(   ,   )

Beta(  ,   )

(1) 

(2)

(3)

(b)
Figure B.1: (A) RVD2 Graphical Model.(B) An simulation example to illustrate the proposal graphical model and
generative process. A generative process is to generate randomly observable data following your generative model,
which is the reverse process of doing inference from the actual data. Here we want to generate a simulation sample
with 3 replicates, and each replicate is a 5bp long sequence. Therefore, we have J = 5, N = 3. The numbers in
orange are known, including µ0 ∈ IR1×1, M0 ∈ IR1×1, M ∈ IR5×1, n ∈ IR5×3. (1) We sample local error rate
µ ∈ IR5×1 by drawing random numbers µj ∼ Beta(µ0,M0); (2) and then use µ and M to sample θ ∈ IR5×3 by
drawing random samples θji ∼ Beta(µj ,Mj); (3) finally we use θ ∈ IR5×3 and n ∈ IR5×3 to sample r ∈ IR5×3 by
drawing random numbers rji ∼ Binomial(θji, nji). In actual practice, non-reference read counts r and coverage n
are the data we use to do inference.
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Appendix C

Parameter Initialization

Derivation

Since rji ∼ Binomial(nji, θji), the first population moment is E[rji] = θjinji and the

first sample moment is simply m1 = rji. Therefore the MoM estimator is

θ̂ji =
rji
nji

We take the MoM estimate, θ̂ji, as data for the next conditional distribution in

the hierarchical model. The distribution is θji ∼ Beta(µjMj, (1− µj)Mj). The first

and second population moments are

E[θji] = µj, Var[θji] =
µj(1− µj)
Mj + 1

.

The first and second sample moments are m1 = 1
N

∑N
i=1 θji and m2 = 1

N

∑N
i=1 θ

2
ji.

Setting the population moments equal to the sample moments and solving for µj
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and Mj gives

µ̂j = 1
N

∑N
i=1 θ̂ji, M̂j =

µ̂j(1− µ̂j)
1
N

∑N
i=1 θ̂

2
ji

− 1.

Following the same procedure for the parameters of µj ∼ Beta(µ0,M0) gives the

following MoM estimates

µ̂0 = 1
J

∑J
j=1 µ̂j, M̂0 =

µ̂0(1− µ̂0)
1
J

∑J
j=1 µ̂

2
j

− 1.
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Appendix D

RVD2 Estimated Parameters

The RVD2 algorithm provides estimates of model parameters and latent variables

given the data. We show several of these parameters in Figure D.1.

The left column of Figure D.1 shows the read depth for each of the six bam files

(three replicates each with two read pairs) for each data set. Because the DNA was

not sheared and ligated prior to sequencing, the read depth drops to zero at the

boundaries. For the 100% mutant data set, the read depth drops at the mutant

locations. This is due to the parameters imposed at the alignment stage. The reads

are 36bp long and we required no more than 2 mismatches. Therefore, reads that

overlapped two mutations (spaced 20bp apart by design) and included one additional

mutation would not align.

The right column of Figure D.1 shows the parameter estimates M̂j and M̂0 for

each data set. Mj measures the variance between replicates at location j. There

is little variability across positions indicating that the replication variance does not

change greatly across position. Furthermore, we see that Mj does not change with

read depth (except where the depth goes to zero) indicating that Mj because Mj is

capturing a different process than the read depth.

The error rate across positions is captured by the M0 parameter shown as a
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Figure D.1: Key parameters for RVD2 model for synthetic DNA data sets.
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horizontal dotted line in the plots in the right column. We see that the variation

between replicates is smaller than the variation between location. Mj and M0 are

precision parameters, they are inversely proportional to the variance. Where Mj is

greater than M0 the precision between replicates is higher than the precision across

positions.
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Appendix E

MCMC trace and autocorrelation

analysis

One of the problematic attribute of a Markov chain in sampling approach is au-

tocorrelation. Short-run autocorrelated samples are unrepresentative of the true

underlying posterior distribution. In order to reduce autocorrelation among the

samples, we thin the Markov chain by a factor of 2 to achieve a more precise esti-

mate of the posterior.

In order to evaluate autocorrelation in the thinned chain, we visualize the MCMC

trace, autocorrelation and Lag1 plot for Gibbs samples of θ and µ in Figure E.1.

The MCMC trace indicates that θ and µ is well sampled; the autocorrelation and

Lag1 plot shows that there is no significant autocorrelation in the Gibbs samples

chain.
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Figure E.1: MCMC traces and autocorrelation evaluation plot (sample: dilution rate at 0.3%, replicate 2, position
225).
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Appendix F

ROC curve with χ2 test

Figure F.1: ROC curve for posterior density test and χ2 test in synthetic dataset.

Comparing to the ROC curve in Figure 4.2, where only Bayesian posterior test was

evaluated, Figure F.1 shows that the χ2 test is a very stringent test and removes most

of the false positives. The χ2 test generally guaranteed high specificity, especially

at low MAF level, even though maybe at a high cost of sensitivity.

57



Appendix G

Somatic mutations posterior

histogram

Figure G.1 and Figure G.2 shows the histograms of µ̂j for somatic mutations called

by RVD2 in the 44kbp PAXIP1 gene in HCC1187 dataset
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Figure G.1: Histogram of µ̂j for positions where µcase is significantly lower than µcontrol, namely Pr(∆µ̂j < τ) >
1− α, where τ = 0, α = 0.05.
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Figure G.2: Histogram of µ̂j for positions where µcase is significantly higher than µcontrol, namely Pr(∆µ̂j > τ) >
1− α, where τ = 0, α = 0.05.
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Appendix H

Parameter settings for other

variant calling algorithms

Samtools We used samtools (v0.1.19) function mpileup to call variants and bcftool-

s to save the result in standard VCF files. In mpileup, we set the -d option sufficiently

high at 106 to avoid truncating read deapth. Option -u was enabled to make sure

the output bcf files were uncompressed.

GATK We used GATK (v2.1-8) UnifiedGenotyper function to detect mutations

on our synthetic data following the recommended workflow. Due to some format

incompatibility, we applied Picard to format read group and GATK for realignment.

In UnifiedGenotyper, -ploid (Number of samples in each pool × Sample Ploidy)

was set at 1 because our synthetic data is haploid; -dcov was set at 106 to avoid

downsampling coverage within GATK.

VarScan2-mpileup VarScan2 (v2.3.4) mpileup2snp is a SNP calling program

which takes multi-samples from samtools mpileup pipeline.We assigned parame-

ter -C value 50 as the synthetic data was aligned using BWA and set -d at 106. In
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mpileup2snp, –min-var-freq, the only non-default parameter, was set low enough at

10−5 because the variant frequency can be as low as 10−3.

VarScan2-somatic We tested VarScan2 somatic on our synthetic dataset. The

parameter –normal-purity set was at 1.00, –tumor-purity at the dilution rate. The

parameter –min-var-freq was set at 10−5. We combined all the positions VarScan2-

somatic called regardless the somatic status (Germline/LOH/Somatic/Unknown) to

compare with performance of RVD2.

Strelka and muTect Since configuration and Analysis for Strelka and muTec-

t is standardized and no parameter needs to be specified, we installed these two

programs and ran them on our data set separately.

Samtools mpileup and GATK can accept multiple ”tumor” replicates for variant

calling, so we fed six bam files from each case replicate group to mpileup. VarScan2-

mpileup takes multiple “tumor-normal” pair replicates so we passed six pair repli-

cates to each algorithm. Varscan2-somatic, strelka and muTect do not accept repli-

cate data for the “normal” or “tumor” bam files so we used a single bam file from

each replicate group with a read depth that most closely matched the overall median

depth of the replicates.

61



Appendix I

Positions Look-up chart in

HCC1187 sample
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Index Actual
Position

REF Control Case VarScan2
Somatic

RVD2 muTect Strelka

Format A:C:G:T A:C:G:T
1 chr7:154739981 T 0:0:0:50 0:0:2:58 Somatic
2 chr7:154740723 T 0:0:0:60 0:0:2:69 Somatic
3 chr7:154740848 A 37:0:0:0 56:2:0:0 Somatic
4 chr7:154743899 C 0:0:0:45 0:0:0:71 Germline Germline Call
5 chr7:154745094 G 0:0:47:0 2:0:68:0 Somatic
6 chr7:154747295 T 0:0:0:41 0:0:2:81 Somatic
7 chr7:154749452 T 0:0:3:29 0:0:2:37 Germline
8 chr7:154749704 G 8:0:36:0 2:0:42:0 Germline Germline/Somatic Call
9 chr7:154751731 A 53:0:0:0 73:2:0:0 Somatic

10 chr7:154751818 T 0:0:0:57 0:1:4:75 Somatic
11 chr7:154753635 T 0:38:0:0 0:63:0:1 Germline Germline Call
12 chr7:154754218 G 0:0:49:0 0:0:65:2 Somatic
13 chr7:154754371 T 0:19:0:31 0:61:0:0 LOH LOH Call
14 chr7:154754860 T 0:0:0:49 0:0:2:61 Somatic
15 chr7:154755810 T 0:0:0:49 0:2:0:58 Somatic
16 chr7:154755836 A 57:0:0:0 64:3:0:0 Somatic
17 chr7:154757232 A 40:0:0:0 54:2:0:0 Somatic
18 chr7:154757503 T 0:0:0:50 0:0:2:69 Somatic
19 chr7:154757988 A 57:0:0:0 69:3:0:0 Somatic
20 chr7:154758813 G 14:0:28:0 54:0:0:0 LOH LOH Call
21 chr7:154759833 T 0:0:0:48 0:0:2:62 Somatic
22 chr7:154760439 A 37:0:0:0 0:38:0:0 Somatic Somatic Call Somatic
23 chr7:154760538 G 0:0:62:0 0:0:42:2 Somatic
24 chr7:154760592 T 0:0:0:47 0:0:2:38 Somatic
25 chr7:154760658 T 0:0:0:52 0:0:2:47 Somatic
26 chr7:154760790 A 55:0:0:0 66:2:0:0 Somatic
27 chr7:154762296 T 0:0:0:51 0:0:2:74 Somatic
28 chr7:154762409 T 0:0:0:32 0:0:2:51 Somatic
29 chr7:154762415 A 27:2:0:0 47:3:0:0 Germline
30 chr7:154762957 T 0:0:0:37 2:0:0:54 Somatic
31 chr7:154763136 A 61:0:0:0 62:0:2:0 Somatic
32 chr7:154763337 T 0:0:0:43 0:0:2:80 Somatic
33 chr7:154766365 A 53:0:0:0 57:2:0:0 Somatic
34 chr7:154766388 A 47:0:0:0 66:2:0:0 Somatic
35 chr7:154766700 C 4:21:0:0 10:42:0:0 Germline Call
36 chr7:154766732 T 0:0:0:35 0:0:5:44 Somatic Somatic Call
37 chr7:154766832 A 34:0:0:0 42:4:0:0 Somatic Somatic

Supplemetary Table 1. This table shows the sum of positions called by VarScan Somatic, RVD2, muTect and
Strelka in 44kbp PAXIP1 gene from chr7:154738059 to chr7:154782774. The first column is the position index
corresponding to Fig 6 in the paper. The second column is the actual position in PAXIP1 gene with respect to
index. The Third column is the reference base. The forth and fifth columns are the depth matrix for Normal and
Case sample repectively. The last four columns are the mutation detection status from the four algorithms. Blank
cell indicates this position is not called by the algorithm in the header.



Index Actual
Position

REF Control Case VarScan2
Somatic

RVD2 muTect Strelka

38 chr7:154766834 T 0:0:0:34 0:2:0:43 Somatic
39 chr7:154766857 A 29:0:0:0 36:2:0:0 Somatic
40 chr7:154767108 T 0:0:0:55 0:0:1:64 Somatic
41 chr7:154767456 T 0:0:0:40 0:0:2:74 Somatic
42 chr7:154767801 A 47:0:0:0 67:2:0:0 Somatic
43 chr7:154768640 T 0:0:0:66 0:0:2:97 Somatic
44 chr7:154769094 G 0:0:46:0 0:0:63:2 Somatic
45 chr7:154771488 T 0:0:0:50 0:0:2:60 Somatic
46 chr7:154772261 A 47:0:0:0 71:2:0:0 Somatic
47 chr7:154775220 A 47:0:0:0 84:2:1:0 Somatic
48 chr7:154775236 T 0:0:0:47 0:0:2:88 Somatic
49 chr7:154775872 A 55:0:0:0 71:2:0:1 Somatic
50 chr7:154777014 C 0:49:0:0 0:64:2:0 Somatic Call
51 chr7:154777118 A 46:0:0:0 31:4:0:0 Somatic Somatic Call
52 chr7:154777687 G 0:0:45:0 0:0:50:2 Somatic
53 chr7:154777955 T 0:0:0:52 0:0:2:47 Somatic
54 chr7:154778892 A 55:0:0:0 44:2:0:0 Somatic
55 chr7:154779690 A 45:0:0:0 52:2:0:0 Somatic
56 chr7:154780960 C 0:0:0:42 0:0:0:56 Germline Germline Call
57 chr7:154781700 A 55:3:0:0 82:2:0:0 Germline
58 chr7:154781769 G 0:0:21:4 0:0:31:2 LOH Germline
59 chr7:154781944 T 0:0:0:55 0:0:2:47 Somatic
60 chr7:154782120 A 47:0:0:0 42:2:0:0 Somatic
61 chr7:154782770 A 58:0:0:0 91:2:0:0 Somatic



Appendix J

Variational Inference Derivation

J.1 Factorization

We firstly fully factorize the exact posterior distribution using the naive mean-field

method,

q(µ, θ) = q(µ)q(θ) =
J∏
j=1

q(µj)
N∏
i=1

q(θji). (J.1)

J.2 Writing out the ELBO

As shown in Section 2.3.2, the ELBO L(q, φ) is

L(q, φ) = Eq [log p (r|θ, n)] + Eq [log p (θ|µ;M)] + Eq [log p (µ;µ0,M0)]

− Eq [log q (µ)]− Eq [log q (θ)]

65



Writing out each component, we have

Eq [log p (r|θ, n)] =
J∑
j=1

N∑
i=1

Eq [log p (rji|θji, nji)]

=
J∑
j=1

N∑
i=1

Eq

[
log

(
Γ(nji + 1)

Γ(rji + 1)Γ(nji − rji + 1)
θ
rji
ji (1− θji)nji−rji

)]

=
J∑
j=1

N∑
i=1

log

(
Γ(nji + 1)

Γ(rji + 1)Γ(nji − rji + 1)

)

+
J∑
j=1

N∑
i=1

{rjiEq [log θji] + (nji − rji)Eq [log(1− θji)]}

Eq [log p (θ|µ;M)] =
J∑
j=1

N∑
i=1

Eq [log p (θji|µj;Mj)]

=
J∑
j=1

N∑
i=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))
θ
Mjµj−1
ji (1− θji)Mj(1−µj)−1

)]

=
J∑
j=1

N∑
i=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+
J∑
j=1

N∑
i=1

{Eq [(Mjµj − 1) log θji] + Eq [(Mj(1− µj)− 1) log (1− θji)]}

= N ∗
J∑
j=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+
J∑
j=1

N∑
i=1

{(MjEq [µj]− 1)Eq [log θji]}

+
J∑
j=1

N∑
i=1

{(Mj(1− Eq[µj])− 1)Eq [log (1− θji)]}
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Eq [log p (µ;µ0,M0)] =
J∑
j=1

Eq [log p (µj;µ0,M0)]

=
J∑
j=1

Eq

[
log

(
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))
µM0µ0−1
j (1− µj)M0(1−µ0)−1

)]
= J ∗ log

Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))

+
J∑
j=1

{(M0µ0 − 1)Eq [log µj] + (M0(1− µ0)− 1)Eq [log(1− µj)]}

Therefore, in order to compute ELBO, we need to obtain the following ex-

pectations with respect to variational distribution: Eq [log θji], Eq [log (1− θji)] ,

Eq [log µj] , Eq [log(1− µj)], Eq [µj] and Eq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
.

J.3 Variational Expectation (E-step)

J.3.1 Variational distributions

Variational distributions for θji Section 2.2.2 gives the posterior conditional

distribution of θ given other variables,

p(θji|rji, nji, µj,Mj) ∼ Beta (rji +Mjµj, nji − rji +Mj(1− µj)) . (J.2)

As posterior conditional distribution of θji is a Beta distribution, the optimal

variational distribution is Beta distribution. Therefore, we propose to use Beta

distribution with parameter vector δji as variational distribution.

q(θji) ∼ Beta (δji) . (J.3)
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Variational distributions for µj Section 2.2.3 provides the posterior distribu-

tion of µj given its Markov blanket

p(µj|θji,Mj, µ0,M0) ∝ p(µj|µ0,M0)p(θji|µj,Mj). (J.4)

Posterior conditional distribution of µj is a product of two Beta distributions,

which is not in the form of any known distribution. Therefore, we propose two

different variational distribution to approximate true posterior distribution of µj.

The first proposal variational distribution is Beta distribution with parameter

vector γji,

q(µj) ∼ Beta (γj) , (J.5)

as it would greatly simplify the variational deviation process.

The second proposal variational distribution is Laplace approximation distribu-

tion [72].

µj ∼ N (µ̂j,−f ′′(µ̂j)−1
) (J.6)

Where µ̂j is the stationary point which maximize the ELBO, and f(µj) isolates

all the terms involves µj. As µj is within [0, 1], µj follows a truncated normal

distribution.
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Isolating items in the ELBO that depends on µj gives

f(µj) = −N log Γ(µjMj)−N log Γ(Mj(1− µj))

+
N∑
i=1

Mjµj {Eq [log θji]− Eq [log (1− θji)]}

+ {(M0µ0 − 1) log µj + (M0(1− µ0)− 1) log(1− µj)}

(J.7)

Take the first derivative with respect to µj,

f ′(µj) = −NMjψ(µjMj) +NMjψ(Mj(1− µj))

+
N∑
i=1

Mj {Eq [log θji]− Eq [log (1− θji)]}

+

{
M0µ0 − 1

µj
− M0(1− µ0)− 1

1− µj

} (J.8)

The second derivative with respect to µj is,

f ′′(µj) = −NM2
j ψ
′(µjMj)−NM2

j ψ
′(Mj(1− µj))

+

{
1−M0µ0

µ2
j

− M0(1− µ0)− 1

(1− µj)2

} (J.9)

where ψ(µ) is the Digamma function, and ψ′(µ) = ∂ψ(µ)
∂µ

is the Trigamma func-

tion.
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J.3.2 E-step using Beta-Beta variational distribution

As stated in Section J.3.1, the first set of proposal variational distribution families

are

θji ∼ Beta(δji)

µj ∼ Beta(γj)

Given the variational distributions we have

Eq [log θji] = ψ(δji1)− ψ(δji1 + δji2)

Eq [log (1− θji)] = ψ(δji2)− ψ(δji1 + δji2)

Eq [µj] =
γj1

γj1 + γj2

Eq [log µj] = ψ(γj1)− ψ(γj1 + γj2)

Eq [log(1− µj)] = ψ(γj2)− ψ(γj1 + γj2)

(J.10)

There is no analytical representation for Eq [log Γ(µjMj)] andEq [log Γ(Mj(1− µj))].

Therefore, we propose to use trapezoidal numerical integration to approximate these

two expectations.

Moreover, according to the entropy of beta distribution random variable,

Eq [log q (µ)] =
J∑
j=1

Eq [log q(µj)]

= −
J∑
j=1

{log(B(γj1, γj2))− (γj1 − 1)ψ(γj1)− (γj2 − 1)ψ(γj2)}

+ {(γj1 + γj2 − 2)ψ(γj1 + γj2)}

(J.11)
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Eq [log q (θ)] =
J∑
j=1

N∑
i=1

Eq [log q(θji)]

= −
J∑
j=1

N∑
i=1

{log(B(δji1, δji2)) + (δji1 + δji2 − 2)ψ(δji1 + δji2)}

+
J∑
j=1

N∑
i=1

{(δji1 − 1)ψ(δji1) + (δji2 − 1)ψ(δji2)}

(J.12)

where function B(x1, x2) is Beta function.

J.3.3 E-step using Beta-Laplace variational distribution

From attributes of distribution θji ∼ Beta(δji) we have

Eq [log θji] = ψ(δji1)− ψ(δji1 + δji2)

Eq [log (1− θji)] = ψ(δji2)− ψ(δji1 + δji2)

From attributes of truncated normal distribution µj ∼ N (µ̂j,−f ′′(µ̂j)−1), µj ∈

[0, 1], assuming γj2 =
0−µ̂j√
−f ′′(µ̂j)−1

=
−µ̂j√
−f ′′(µ̂j)−1

, γj1 =
1−µ̂j√
−f ′′(µ̂j)−1

, Z = Φ(γj1) −

Φ(γj2),

We have

Eq [µj] = µ̂j +
φ(γj2)− φ(γj1)

Z

√
−f ′′(µ̂j)−1

(J.13)

Here, φ(x) =
1√
2π

exp(−1

2
x2) is the probability density function of the standard

normal distribution and Φ(·) is its cumulative distribution function.

We are not able to analytically compute Eq [log Γ(µjMj)], Eq [log Γ(Mj(1− µj))],
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Eq [log µj] and Eq [log(1− µj)]. Considering µj is bounded in [0, 1], we propose to

use trapezoidal numerical integration to approximate these expectations.

Moreover, according to the entropy of beta distribution random variable,

Eq [log q (µ)] =
J∑
j=1

Eq [log q(µj)]

=
J∑
j=1

{
log(

√
−2πef ′′(µ̂j)−1Z) +

γj2φ(γj2)− γj1φ(γj1)

2Z

} (J.14)

Eq [log q (θ)] =
J∑
j=1

N∑
i=1

Eq [log q(θji)]

= −
J∑
j=1

N∑
i=1

{log(B(δji1, δji2))− (δji1 − 1)ψ(δji1)

− (δji2 − 1)ψ(δji2) + (δji1 + δji2 − 2)ψ(δji1 + δji2)}

(J.15)

J.4 Optimizing Model Parameters φ = {µ0,M0,M}

(M-step)

J.4.1 Optimizing µ0

The ELBO with respect to µ0 is

L[µ0] = −J ∗ log Γ(µ0M0)− J ∗ log Γ(M0(1− µ0))

+M0µ0

J∑
j=1

{Eq [log µj]− Eq [log(1− µj)]} .
(J.16)
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Take the derivative with respect to µ0 and set it equal to zero,

L′[µ0] = −J ∗M0ψ(µ0M0) + J ∗M0ψ(M0(1− µ0))

+M0

J∑
j=1

{Eq [log µj]− Eq [log(1− µj)]}

= 0.

(J.17)

The update for µ0 can be numerically computed.

J.4.2 Optimizing M0

The ELBO with respect to M0 is

L[M0] = J ∗ log
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))
+M0

J∑
j=1

{µ0Eq [log µj] + (1− µ0)Eq [log(1− µj)]}

(J.18)

Take the derivative with respect to M0 and set it equal to zero,

L′[M0] = log
Γ(M0)

Γ(µ0M0)Γ(M0(1− µ0))
+M0

J∑
j=1

{µ0Eq [log µj] + (1− µ0)Eq [log(1− µj)]}

= ψ(M0)− µ0ψ(µ0M0)− (1− µ0)ψ(M0(1− µ0))

+
J∑
j=1

{µ0Eq [log µj] + (1− µ0)Eq [log(1− µj)]}

= 0

(J.19)

the update for M0 can be numerically computed.
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J.4.3 Optimizing M

L[M ] = N

J∑
j=1

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]

+
J∑
j=1

N∑
i=1

Mj {Eq [µj]Eq [log θji] + (1− Eq [µj])Eq [log (1− θji)]}

(J.20)

f(µ) = log

(
Γ(M)

Γ(µM)Γ(M(1− µ))

)

then

f ′(µ) = −Mψ(µM) +Mψ(M(1− µ))

f ′′(µ) = −M2ψ′(µM)−M2ψ′(M(1− µ)) < 0

(J.21)

where ψ(µ) is the Digamma function, and ψ′(µ) = ∂ψ(µ)
∂µ

is the Trigamma func-

tion. As trigamma function ψ′(µ) is positive, f ′′(µ) is negative. Thus, f(µ) is

a concave function. We can approximate f(µ) using first-order Taylor expansion

around point µ◦, which is

f(µ) ≤ f(µ◦) + f ′(µ◦) · (µ− µ◦)

= log

(
Γ(M)

Γ(µ◦M)Γ(M(1− µ◦))

)
+ (−Mψ(µ◦M) +Mψ(M(1− µ◦))) · (µ− µ◦).

A upper bound approximation for Eq

[
log
(

Γ(Mj)

Γ(µjMj)Γ(Mj(1−µj))

)]
around point µ◦j
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can be represented as

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]
≤ log

(
Γ(Mj)

Γ(µ◦jMj)Γ(Mj(1− µ◦j))

)
+
(
−Mjψ(µ◦jMj) +Mjψ(Mj(1− µ◦j))

)
· (Eq(µj)− µ◦j).

The equality holds if and only if µ◦j = Eq(µj). Therefore, at this particular point,

Eq

[
log

(
Γ(Mj)

Γ(µjMj)Γ(Mj(1− µj))

)]
= log

(
Γ(Mj)

Γ(Eq(µj)Mj)Γ(Mj(1− Eq(µj)))

)
.

Then

L[M ] = N
J∑
j=1

log

(
Γ(Mj)

Γ(Eq(µj)Mj)Γ(Mj(1− Eq(µj)))

)

+
J∑
j=1

N∑
i=1

Mj {Eq [µj]Eq [log θji] + (1− Eq [µj])Eq [log (1− θji)]}

(J.22)

The partial derivative is

∂L[M ]

∂ Mj

= ψ(Mj)− Eq(µj)ψ(Eq(µj)Mj)− (1− Eq(µj))ψ((1− Eq(µj))Mj)

+
J∑
j=1

N∑
i=1

{Eq [µj]Eq [log θji] + (1− Eq [µj])Eq [log (1− θji)]}
(J.23)

The update for Mj can be numerically computed.
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Appendix K

RVD2 python source code

(MCMC sampling approach)
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RVD2 Source Code in Python

#!/usr/bin/env python

"""rvd27.py: Compute MAP estimates for RVD2.7 model."""

from __future__ import print_function
from __future__ import division

import numpy as np

import scipy.stats as ss
from scipy.special import gammaln

import logging
import multiprocessing as mp
from itertools import repeat
import h5py
import tempfile

import sys
import os
import subprocess
from datetime import date

import re
import pdb
import time
def main():

import argparse

# Populate our options, -h/--help is already there.
description = """

RVD is a hierarchical bayesian model for identifying
rare variants from short-read sequence data. """

# create the top-level parser
argp = argparse.ArgumentParser(prog=’rvd’, description=description)
argp.add_argument(’--version’, action=’version’, version=’%(prog)s 2.7’)
argp.add_argument(’-v’, ’--verbose’, dest=’verbose’, action=’count’,

help="increase verbosity (specify multiple times for more)")

# argp.add_argument(’cmd’, action=’store’, nargs=’*’,
# choices=[’gen’, ’gibbs’])
subparsers = argp.add_subparsers(help=’sub-command help’)

# create subparser for gibbs fitting
argpGibbs = subparsers.add_parser(’gibbs’,

help=’fit the RVD model using Gibbs sampling’)

77



argpGibbs.add_argument(’dcfile’, nargs=’+’,
help=’depth chart file name’)

argpGibbs.add_argument(’-o’, dest=’outputFile’,
default=’output.hdf5’,
help=’output HDF5 file name’)

argpGibbs.add_argument(’-p’, ’--pool’, type=int, default=None,
help=’number of workers in multithread pool’)

argpGibbs.set_defaults(func=gibbs)

# create subparser to compare two model files
argpTest = subparsers.add_parser(’test_main’,

help=’RVD2 algorithm to find mutations in tumor-normal
-paired sample. A posteriror difference test and a
somatic test will be done in this program.’)

argpTest.add_argument(’alpha’, type=float, default=0.95,
help=’poseterior difference test probability threshold’)

argpTest.add_argument(’controlHDF5Name’, default=None,
help=’control model file (HDF5)’)

argpTest.add_argument(’caseHDF5Name’, default=None,
help=’case model file (HDF5)’)

argpTest.add_argument(’somatic_tau’, default=(0.05,0.95),
help=’Two thresholds for somatic test. \
Mu lower than the lower threshold will be classified as

reference (non-mutation), \
Mu between the two thresholds will be classified as

heterozygote, \
Mu higher than the higher threshold will be classified as

homozygote’)

argpTest.add_argument(’diffroi’, default=(0,np.inf),
help=’region of interest in posterior differece distribution (

tuple as interval)’)

argpTest.add_argument(’-N’, type=int, default=1000,
help=’Monte-Carlo sample size (default=1000)’)

argpTest.add_argument(’-o’, ’--output’, dest=’outputFile’, nargs=’?’,
default=None)

argpTest.set_defaults(func=test_main)

# create subparser to sample the model
argpGen = subparsers.add_parser(’gen’,

help=’sample data from the RVD model’)
argpGen.add_argument(’input’, nargs=’+’)
argpGen.add_argument(’-o’, ’--output’, dest=’outputFile’, nargs=’?’,

default=’output.hdf5’)

# Parse the arguments (defaults to parsing sys.argv)
args = argp.parse_args()
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# TODO check what came in on the command line and call optp.error("Useful
message") to exit if all is not well

log_level = logging.WARNING # default
if args.verbose == 1:

log_level = logging.INFO
elif args.verbose >= 2:

log_level = logging.DEBUG

# Set up basic configuration, out to stderr with a reasonable format
logging.basicConfig(level=log_level,

format=’%(levelname)s:%(module)s:%(message)s’)

# Do actual work here
args.func(args)

def gibbs(args):
""" Top-level function to use gibbs sampling on a set of depth chart files
"""
(r, n, loc, refb) = load_depth(args.dcfile)
(phi, theta_s, mu_s) = mh_sample(r, n)
save_model(args.outputfile, phi, mu=mu_s, theta=theta_s, r=r, n=n, loc=loc

,
refb=refb)

def test_main(args):
test(args.alpha, args.controlHDF5Name, args.caseHDF5Name,

args.somatic_tau, args.diffroi,
args.N, args.outputFile)

def test(somatic_alpha=0.95, germline_alpha=0.85, controlHDF5Name=None,
caseHDF5Name=None,
somatic_tau=0, germline_tau=0.05, N=1000, outputFile=None):

if outputfile == None:
germline_test(controlHDF5Name, caseHDF5Name, germline_alpha,

germline_tau)
somatic_test(controlHDF5Name, caseHDF5Name, somatic_alpha, somatic_tau

, N)
else:

germline_test(controlHDF5Name, caseHDF5Name, germline_alpha,
germline_tau, outputFile)

somatic_test(controlHDF5Name, caseHDF5Name, somatic_alpha, somatic_tau
, N, outputFile)

def germline_test(controlHDF5Name, caseHDF5Name, alpha = 0.15, tau = 0.05,
outputFile=’germlinecalltable.vcf’):
# only test if control sample is mutated
germline_roi = [tau, np.inf]
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loc, refb, altb, controlMu, controlMu0, controlR, controlN, \
caseMu, caseMu0, caseR, caseN = load_dualmodel(controlHDF5Name,

caseHDF5Name)

logging.debug(’Running germline test on posterior distribution of sample %
s and %s)’\

%(controlHDF5Name, caseHDF5Name))

## chi2 test for case and control sample independently
J =len(controlR)

postP = bayes_test(controlMu, [germline_roi], type = ’close’)
bayescall = postP > 1-alpha

# chi2 test on sample
controlchi2call , chi2P = chi2combinetest(controlR, controlN, bayescall)

call = np.logical_and(bayescall, controlchi2call)

altb = [’.’ for b in altb]

write_dualvcf(outputFile,loc, call, refb, altb, np.mean(controlMu, axis=1)
, \

np.median(controlR,0), controlN, \
np.mean(caseMu, axis=1), np.median(caseR,0), caseN, tau,

alpha)

h5Filename = ’germlinecall.hdf5’

h5file = h5py.File(h5Filename, ’w’)

h5file.create_dataset(’call’, data=call)
h5file.create_dataset(’refb’, data=refb)
h5file.create_dataset(’loc’, data=loc,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’controlMu’, data=controlMu,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’caseMu’, data=caseMu,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’controlN’, data=controlN,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’caseN’, data=caseN,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.close()
return loc, call, controlMu, caseMu, controlN, caseN

def somatic_test(controlHDF5Name, caseHDF5Name, alpha=0.05, tau= 0, N=1000,
outputFile=’somaticcalltable.vcf’):
# Two sided difference test. Somatic status will be more specific

classified. Threshold hold and alpha should be assign
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logging.debug(’Running two sided posterior somatic test on sample %s and %
s)’%(controlHDF5Name, caseHDF5Name))

loc, refb, altb, controlMu, controlMu0, controlR, controlN, \
caseMu, caseMu0, caseR, caseN = load_dualmodel(controlHDF5Name,

caseHDF5Name)

somatic_roi = [tau, np.inf]

# test if caseMu is significantly higher than controlMu
[call1, _ , _, _, _] = one_side_diff_test(alpha, loc, refb, altb,

controlMu, controlMu0, controlR, controlN, \
caseMu, caseMu0, caseR, caseN, N, somatic_roi)

# test if controlMu is significantly higher than caseMu
[call2, _ , _, _, _] = one_side_diff_test(alpha, loc, refb, altb, caseMu,

caseMu0, caseR, caseN, \
controlMu, controlMu0, controlR, controlN, N, somatic_roi)

call = [call1,call2]
call = np.sum(call,0) > 0

# write_dualvcf(outputFile,loc, call, refb, altb, np.mean(controlMu, axis
=1), np.median(controlR,0), controlN, \

# np.mean(caseMu, axis=1), np.median(caseR,0), caseN, tau,
alpha)

write_vcf(outputFile, loc, call, refb, altb, np.mean(caseMu, axis=1), np.
mean(controlMu, axis=1))

h5Filename = ’somaticcall.hdf5’

h5file = h5py.File(h5Filename, ’w’)

h5file.create_dataset(’call’, data=call)
h5file.create_dataset(’refb’, data=refb)
h5file.create_dataset(’loc’, data=loc,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’controlMu’, data=controlMu,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’caseMu’, data=caseMu,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’controlN’, data=controlN,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.create_dataset(’caseN’, data=caseN,

chunks=True, fletcher32=True, compression=’gzip’)
h5file.close()

return loc, call, controlMu, caseMu, controlN, caseN

def disparity_test(controlHDF5Name, caseHDF5Name, alpha=0.05, tau= 0, N=1000,
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outputFile=’somaticcalltable.vcf’):
# Oneside posterior difference test in case when somatic test is not

appropriate. Also compatible to synthetic data
# The function will test if the caseMu is significantly higher than

controlMu.
# If we want to test if controlMu is significantly higher than caseMu, we

need to switch the place for controlHDF5Name and caseHDF5Name
# since chi2 test will only apply to the second HDF5 file.

logging.debug(’Running posterior disparity test on whether local mutation
rate in sample %s is significantly higher than sample %s)’%(
caseHDF5Name, controlHDF5Name))

loc, refb, altb, controlMu, controlMu0, controlR, controlN, \
caseMu, caseMu0, caseR, caseN = load_dualmodel(controlHDF5Name,

caseHDF5Name)

disroi = [tau, np.inf]

call, chi2call , chi2P, bayescall, postP = one_side_diff_test(alpha, loc,
refb, altb, controlMu, controlMu0, controlR, controlN, \

caseMu, caseMu0, caseR, caseN, N, disroi)

write_dualvcf(outputFile,loc, call, refb, altb, np.mean(controlMu, axis=1)
, np.median(controlR,0), controlN, \

np.mean(caseMu, axis=1), np.median(caseR,0), caseN, tau,
alpha)

# write_vcf(outputFile, loc, call, refb, altb, np.mean(caseMu, axis=1), np
.mean(controlMu, axis=1))

return loc, call, controlMu, caseMu, controlN, caseN, chi2call , chi2P,
bayescall, postP

def one_side_diff_test(alpha, loc, refb, altb, Mu1, Mu01, R1, N1, Mu2, Mu02,
R2, N2, N, diffroi):

(Z, MuS2, MuS1) = sample_post_diff(Mu2-Mu02, Mu1-Mu01, N)
# (Z, MuS2, MuS1) = sample_post_diff(Mu2, Mu1, N)

if len(np.shape(diffroi))==1:
diffroi = [diffroi]

postP = bayes_test(Z, diffroi,’open’)

bayescall = postP > 1-alpha

# chi2 test on sample
chi2call , chi2P = chi2combinetest(R2,N2,bayescall)

call = np.logical_and(bayescall, chi2call)

return call, chi2call , chi2P, bayescall, postP
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def chi2combinetest(R, N, bayescall = 1, pvalue = 0.05):

nRep = R.shape[0]
J = R.shape[1]
chi2Prep = np.zeros((J,nRep))
chi2P = np.zeros((J,1))
for j in xrange(J):

chi2Prep[j,:] = np.array([chi2test(R[i,j,:] ) for i in xrange(nRep
)] )

if np.any(np.isnan(chi2Prep[j,:])):
chi2P[j] = np.nan

else:
chi2P[j] = 1-ss.chi2.cdf(-2*np.sum(np.log(chi2Prep[j,:] + np.

finfo(float).eps)), 2*nRep) # combine p-values using Fisher
’s Method

nbayescall = sum(bayescall)
if nbayescall < 1:

nbayescall = 1

if np.median(N) > 500: #Benjamini-Hochberg method FWER control
chi2call = chi2P < pvalue/nbayescall

else:
chi2call = chi2P < pvalue

chi2call = chi2call.flatten()
chi2P = chi2P.flatten()

return chi2call, chi2P

def load_dualmodel(controlHDF5Name, caseHDF5Name):
’’’

Load and synchonize the Case and Control Model files
’’’
# Load the Case and Control Model files
(controlPhi, controlTheta, controlMu, controlLoc, controlR, controlN) =

load_model(controlHDF5Name)
(casePhi, caseTheta, caseMu, caseLoc, caseR, caseN) = load_model(

caseHDF5Name)

# Extract the common locations in case and control
caseLocIdx = [i for i in xrange(len(caseLoc)) if caseLoc[i] in controlLoc]
controlLocIdx = [i for i in xrange(len(controlLoc)) if controlLoc[i] in

caseLoc]

caseMu = caseMu[caseLocIdx,:]
controlMu = controlMu[controlLocIdx,:]
caseR = caseR[:,caseLocIdx,:]
controlR = controlR[:,controlLocIdx,:]

loc = caseLoc[caseLocIdx]
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J = len(caseLoc)

with h5py.File(controlHDF5Name, ’r’) as f:
refb = f[’/refb’][...]
f.close()

refb = refb[controlLocIdx]

altb = []
acgt = {’A’:0, ’C’:1, ’G’:2, ’T’:3}
for i in xrange(J):

r = np.squeeze(caseR[:,i,:]) # replicates x bases

# Make a list of the alternate bases for each replicate
acgt_r = [’A’,’C’,’G’,’T’]
del acgt_r[ acgt[refb[i]] ]

if not np.iterable(np.argmax(r, axis=-1)):
altb_r = acgt_r[np.argmax(r, axis=-1)]

else:
altb_r = [acgt_r[x] for x in np.argmax(r, axis=-1)]

altb.append(altb_r[0])

return loc, refb, altb, controlMu, controlPhi[’mu0’], controlR, controlN,\
caseMu, casePhi[’mu0’], caseR, caseN

def write_dualvcf(outputFile, loc, call, refb, altb, controlMu, controlR,
controlN,\

caseMu, caseR, caseN, tau, alpha=0.95):
’’’

Write high confidence variant calls from somatic test when there are
both control and case sample to VCF 4.2 file.

’’’
J = len(loc)

today=date.today()

chrom = [x.split(’:’)[0][3:] for x in loc]
pos = [int(x.split(’:’)[1]) for x in loc]

vcfF = open(outputFile,’w’)

print("##fileformat=VCFv4.1", file=vcfF)
print("##fileDate=%0.4d%0.2d%0.2d" % (today.year, today.month, today.day),

file=vcfF)

print("##source=rvd2", file=vcfF)

print(’##Posterior test in cancer-normal-paired sample.’, file=vcfF)

print("##Posterior difference threshold = %0.2f" %tau, file=vcfF)
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print("##Probability threshold alpha = %0.2f" %alpha, file=vcfF)

print("##Chi square test is included", file=vcfF)

uniquechrom = set(chrom)
uniquechrom = list(uniquechrom)

for i in xrange(len(uniquechrom)):
seq = [idx for idx, name in enumerate(chrom) if name==uniquechrom[i]]
seqlen = len(seq)
print("##contig=<ID=%(chr)s,length=%(seqlen)d>" %{’chr’: uniquechrom[i

],’seqlen’: seqlen}, file=vcfF)

print("##INFO=<ID=COAF,Number=1,Type=Float,Description=\"Control Allele
Frequency\">", file=vcfF)

print("##INFO=<ID=CAAF,Number=1,Type=Float,Description=\"Case Allele
Frequency\">", file=vcfF)

print("##FORMAT=<ID=AU,Number=1,Type=Integer,Description=\"Number of ’A’
alleles used in fitting the model\">", file=vcfF)

print("##FORMAT=<ID=CU,Number=1,Type=Integer,Description=\"Number of ’C’
alleles used in fitting the model\">", file=vcfF)

print("##FORMAT=<ID=GU,Number=1,Type=Integer,Description=\"Number of ’G’
alleles used in fitting the model\">", file=vcfF)

print("##FORMAT=<ID=TU,Number=1,Type=Integer,Description=\"Number of ’T’
alleles used in fitting the model\">", file=vcfF)

print("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tNormal\tCase
", file=vcfF)

for i in xrange(J):
if call[i]:

# restore R
actg = [’A’,’C’,’G’,’T’]

idx = actg.index(refb[i])
caseR4 = np.zeros(4)
controlR4 = np.zeros(4)
caseR4[idx] = np.median(caseN[:,i])-np.sum(caseR[i,:])
controlR4[idx] = np.median(controlN[:,i])-np.sum(controlR[i,:])
for d in xrange(idx):

caseR4[d] = caseR[i,d]
controlR4[d] = controlR[i,d]

for d in xrange(3-idx):
caseR4[d+idx+1] = caseR[i,d+idx]
controlR4[d+idx+1] = controlR[i,d+idx]

print ("chr%s\t%d\t.\t%s\t%s\t.\tPASS\tCOAF=%0.3f;CAAF=%0.3f\tAU:
CU:GU:TU\t%d:%d:%d:%d\t%d:%d:%d:%d" \

% (chrom[i], pos[i], refb[i], altb[i],controlMu[i]*100.0,
caseMu[i]*100.0,\
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controlR4[0], controlR4[1], controlR4[2], controlR4[3],\
caseR4[0], caseR4[1], caseR4[2], caseR4[3]), file=vcfF)

vcfF.close()

def write_vcf(outputFile, loc, call, refb, altb, caseMu, controlMu):
""" Write high confidence variant calls to VCF 4.2 file. //for

compatible to previous programms before test functions adapted for
somatic test.

"""

#TODO: get dbSNP id for chrom:pos
J = len(loc)

today=date.today()

chrom = [x.split(’:’)[0][3:] for x in loc]
pos = [int(x.split(’:’)[1]) for x in loc]
vcfF = open(outputFile,’w’)

print("##fileformat=VCFv4.1", file=vcfF)
print("##fileDate=%0.4d%0.2d%0.2d" % (today.year, today.month, today.day),

file=vcfF)

print("##INFO=<ID=COAF,Number=1,Type=Float,Description=\"Control Allele
Frequency\">", file=vcfF)

print("##INFO=<ID=CAAF,Number=1,Type=Float,Description=\"Case Allele
Frequency\">", file=vcfF)

print("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO", file=vcfF)
for i in xrange(J):

if call[i]:
print("%s\t%d\t.\t%c\t%s\t.\tPASS\tCOAF=%0.3f;CAAF=%0.3f" % (chrom

[i], pos[i], refb[i], altb[i], controlMu[i]*100.0, caseMu[i
]*100.0), file=vcfF)

vcfF.close()

def sample_run():
n = 1000
J = 10
phi = {’mu0’: 0.20, ’M0’: 2e3, ’a’: 1e6, ’b’: 1}
r, theta, mu, M = generate_sample(phi, n=n, J=J, seedint=10)
r[:, int(J / 2)] = n * np.array([0.50, 0.55, 0.45])

phi, theta_s, mu_s = mh_sample(r, n,
nsample=100,
thin=0,
burnin=0)
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def load_model(h5Filename):
""" Returns the RVD2.7 model samples and parameters.
Takes an hdf5 filename and returns phi and other parameters
"""

out = []

with h5py.File(h5Filename, ’r’) as h5file:
# Load phi - it always exists
phi = {’mu0’: h5file[’phi/mu0’][()],

’M0’: h5file[’phi/M0’][()],
’M’: h5file[’phi/M’][...]}

out.append(phi)

# Load theta if it exists
if u"theta" in h5file.keys():

theta = h5file[’theta’][...]
out.append(theta)

# Load mu if it exists
if u"mu" in h5file.keys():

mu = h5file[’mu’][...]
out.append(mu)

# Load loc if it exists
if u"loc" in h5file.keys():

loc = h5file[’loc’][...]
out.append(loc)

# Load r if it exists
if u"r" in h5file.keys():

r = h5file[’r’][...]
out.append(r)

if u"n" in h5file.keys():
n = h5file[’n’][...]
out.append(n)

return tuple(out)

def save_model(h5Filename, phi, mu=None, theta=None, r=None, n=None, loc=None,
refb=None):
""" Save the RVD2.7 model samples and parameters """

# TODO add attributes to hdf5 file
h5file = h5py.File(h5Filename, ’w’)

# Save the model parameters (phi)
h5file.create_group(’phi’)
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h5file[’phi’].create_dataset(’mu0’, data=phi[’mu0’])
h5file[’phi’].create_dataset(’M0’, data=phi[’M0’])
h5file[’phi’].create_dataset(’M’, data=phi[’M’],

chunks=True,
fletcher32=True,
compression=’gzip’)

# Save the latent variables if available.
if mu is not None:

h5file.create_dataset(’mu’, data=mu,
chunks=True, fletcher32=True, compression=’gzip’

)
if theta is not None:

h5file.create_dataset(’theta’, data=theta,
chunks=True, fletcher32=True, compression=’gzip’

)

# Save the data used for fitting the model if available
if r is not None:

h5file.create_dataset(’r’, data=r,
chunks=True, fletcher32=True, compression=’gzip’

)
if n is not None:

h5file.create_dataset(’n’, data=n,
chunks=True, fletcher32=True, compression=’gzip’

)

# Save the reference data
if loc is not None:

h5file.create_dataset(’loc’, data=loc,
chunks=True, fletcher32=True, compression=’gzip’

)
if refb is not None:

h5file.create_dataset(’refb’, data=refb)

h5file.close()

def generate_sample(phi, n=100, N=3, J=100, seedint=None):
"""Returns a sample with n reads, N replicates, and
J locations. The parameters of the model are in the structure phi.
"""

if seedint is not None:
np.random.seed(seedint)

# Draw J location-specific error rates from a Beta
alpha0 = phi[’M0’]*phi[’mu0’]
beta0 = phi[’M0’]*(1-phi[’mu0’])
mu = ss.beta.rvs(alpha0, beta0, size=J)

# Draw sample error rate and error count
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theta=np.zeros((N,J))
r = np.zeros((N,J))
for j in xrange(0, J):

alpha = mu[j]*phi[’M’][j]
beta = (1-mu[j])*phi[’M’][j]
theta[:,j] = ss.beta.rvs(alpha, beta, size=N)
r[:,j] = ss.binom.rvs(n, theta[:,j])

return r, theta, mu

def complete_ll(phi, r, n, theta, mu):
""" Return the complete data log-likelihood.
"""
alpha0 = phi[’M0’]*phi[’mu0’] + np.finfo(np.float).eps
beta0 = phi[’M0’]*(1-phi[’mu0’]) + np.finfo(np.float).eps

alpha = phi[’M’]*mu + np.finfo(np.float).eps
beta = phi[’M’]*(1 - mu) + np.finfo(np.float).eps

# Bound theta away from 0 or 1
theta[theta < np.finfo(np.float).eps] = np.finfo(np.float).eps
theta[theta > 1-np.finfo(np.float).eps] = 1 - np.finfo(np.float).eps

logPmu = beta_log_pdf(mu, alpha0, beta0)
logPtheta = beta_log_pdf(theta, alpha, beta)
logPr = ss.binom.logpmf(r, n, theta)

return np.sum(logPmu + logPtheta + logPr)

def estimate_mom(r, n):
""" Return model parameter estimates using method-of-moments.
"""

theta = r/(n + np.finfo(np.float).eps) # make sure this is non-truncating
division

if np.ndim(r) == 1: mu = theta
elif np.ndim(r) > 1: mu = np.mean(theta, 0)

mu0 = np.mean(mu)
M0 = (mu0*(1-mu0))/(np.var(mu) + np.finfo(np.float).eps)

# estimate M. If there is only one replicate, set M as 10 times of M0.
# If there is multiple replicates, set M according to the moments of beta

distribution
if np.shape(theta)[0] is 1:

M = 10*M0*np.ones_like(mu)
else:

M = (mu*(1-mu))/(np.var(theta, 0) + np.finfo(np.float).eps )

phi = {’mu0’:mu0, ’M0’:M0, ’M’:M}
return phi, mu, theta

def sampleLocMuMH(args):
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# Sample from the proposal distribution at a particular location
mu, Qsd, theta, M, alpha0, beta0 = args

# TODO put an escape in here to avoid an infinite loop
while True:

mu_p = ss.norm.rvs(mu, Qsd)
if (0 < mu_p < 1): break

# Log-likelihood for the proposal mu
alpha_p = mu_p*M + np.finfo(np.float).eps
beta_p = (1-mu_p)*M + np.finfo(np.float).eps
logPmu_p = beta_log_pdf(mu_p, alpha0, beta0) \

+ np.sum(beta_log_pdf(theta, alpha_p, beta_p))

# Log-likelihood for the current mu
alpha = mu*M + np.finfo(np.float).eps
beta = (1-mu)*M + np.finfo(np.float).eps
logPmu = beta_log_pdf(mu, alpha0, beta0) \

+ np.sum(beta_log_pdf(theta, alpha, beta))

# Accept new mu if it increases posterior pdf or by probability
loga = logPmu_p - logPmu
if (loga > 0 or np.log(np.random.random()) < loga):

mu = mu_p
return mu

def sampleMuMH(theta, mu0, M0, M, mu=ss.beta.rvs(1, 1), Qsd=0.1, burnin=0,
mh_nsample=1, thin=0, pool=None):
""" Return a sample of mu with parameters mu0 and M0.
"""
if np.ndim(theta) == 1: (N, J) = (1, np.shape(theta)[0])
elif np.ndim(theta) > 1: (N, J) = np.shape(theta)

alpha0 = mu0*M0 + np.finfo(np.float).eps
beta0 = (1-mu0)*M0 + np.finfo(np.float).eps

mu_s = np.zeros( (mh_nsample, J) )
for ns in xrange(0, mh_nsample):

if pool is not None:
args = zip(mu, Qsd, theta.T, M, repeat(alpha0, J), repeat(beta0, J

))
mu = pool.map(sampleLocMuMH, args)

else:
for j in xrange(0, J):

args = (mu[j], Qsd[j], theta[:,j], M[j], alpha0, beta0)
mu[j] = sampleLocMuMH(args)

# Save the new sample
mu_s[ns, :] = np.copy(mu)

if burnin > 0.0:
mu_s = np.delete(mu_s, np.s_[0:np.int(burnin*mh_nsample):], 0)

if thin > 0:
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mu_s = np.delete(mu_s, np.s_[::thin], 0)

return mu_s

def mh_sample(r, n, gibbs_nsample=10000,mh_nsample=10, burnin=0.2, thin=2,
pool=None):
""" Return MAP parameter and latent variable estimates obtained by

Metropolis-Hastings sampling.
By default, sample 10000 M-H with a 20% burn-in and thinning factor of 2.
Stop when the change in complete data log-likelihood is less than 0.01%.
"""
if np.ndim(r) == 1: N, J = (1, np.shape(r)[0])
elif np.ndim(r) == 2: N, J = np.shape(r)
elif np.ndim(r) == 3:

r = np.sum(r, 2) # sum over non-reference bases
N, J = np.shape(r)

# Initialize a hdf5 file for logging model progress
h5Filename = tempfile.NamedTemporaryFile(suffix=’.hdf5’).name
logging.debug("Storing temp data in %s" % h5Filename)
h5file = h5py.File(h5Filename, ’w’)
h5file.create_group(’phi’)
h5file[’phi’].create_dataset(’mu0’, (1,), dtype=’f’)
h5file[’phi’].create_dataset(’M0’, (1,), dtype=’f’)
h5file[’phi’].create_dataset(’M’, (J,), dtype=’f’)
h5file.create_dataset(’theta_s’, (N, J, gibbs_nsample), dtype=’f’)
h5file.create_dataset(’mu_s’, (J, gibbs_nsample), dtype=’f’)
# Initialize estimates using MoM
phi, mu, theta = estimate_mom(r, n)
logging.debug("MoM: mu0 = %0.3e; M0 = %0.3e." % (phi[’mu0’], phi[’M0’]) )

# Correct MoM estimates to be non-trivial
mu[mu < np.finfo(np.float).eps*1e4] = phi[’mu0’]
theta[theta < np.finfo(np.float).eps*1e4] = phi[’mu0’]
phi[’M’][phi[’M’] < np.finfo(np.float).eps *1e4] = 1

# Set Qsd for proposal distribution according to mom of mu

def boundfn(mu):
bound = 0.001
if bound < mu < 1-bound:

return mu*(1-mu)/10
else:

return bound/10

## def boundfn(mu):
## bound = 0.001
## if bound < mu < 1-bound:
## return mu/10
## else:
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## return bound/10

Qsd = map(boundfn, mu)

# Sample theta, mu by gibbs sampling
theta_s = np.zeros( (N, J, gibbs_nsample) )
mu_s = np.zeros( (J, gibbs_nsample) )
for i in xrange(gibbs_nsample):

if i % 100 == 0 and i > 0: logging.debug("Gibbs Iteration %d" % i)

# Draw samples from p(theta | r, mu, M) by Gibbs
alpha = r + mu*phi[’M’] + np.finfo(np.float).eps
beta = (n - r) + (1-mu)*phi[’M’] + np.finfo(np.float).eps
theta = ss.beta.rvs(alpha, beta)

# Draw samples from p(mu | theta, mu0, M0) by Metropolis-Hastings
mu_mh = sampleMuMH(theta, phi[’mu0’], phi[’M0’], phi[’M’], mu=mu, Qsd=

Qsd, mh_nsample=mh_nsample, pool=pool)
mu = np.median(mu_mh, axis=0)
# Store the sample
theta_s[:,:,i] = np.copy(theta)
mu_s[:,i] = np.copy(mu)
# Update parameter estimates
# phi[’mu0’] = np.mean(mu)
# phi[’M0’] = (phi[’mu0’]*(1-phi[’mu0’]))/(np.var(mu) + np.finfo(np.

float).eps)
# TODO update for M

# Store the current model
h5file[’phi’][’mu0’][0] = phi[’mu0’]
h5file[’phi’][’M0’][0] = phi[’M0’]
h5file[’phi’][’M’][...] = phi[’M’]
h5file[’theta_s’][:,:,i] = theta
h5file[’mu_s’][:,i] = mu
h5file.flush()

# Apply the burn-in and thinning
if burnin > 0.0:

mu_s = np.delete(mu_s, np.s_[0:np.int(burnin*gibbs_nsample):], 1)
theta_s = np.delete(theta_s, np.s_[0:np.int(burnin*gibbs_nsample):],

2)
if thin > 1:

mu_s = np.delete(mu_s, np.s_[::thin], 1)
theta_s = np.delete(theta_s, np.s_[::thin], 2)

h5file.close()
return (phi, theta_s, mu_s)

def beta_log_pdf(x, a, b):
return gammaln(a+b) - gammaln(a) - gammaln(b) \

+ (a-1)*np.log(x+np.finfo(np.float).eps) \
+ (b-1)*np.log(1-x+np.finfo(np.float).eps)
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def ll(phi, r):
""" Return the log-likelihood of the data, r, under the model, phi.
"""
pass

def make_pileup(bamFileName, fastaFileName, region):
""" Creates a pileup file using samtools mpileup in /pileup directory.
"""

# Check that BAM file exists
assert os.path.isfile(bamFileName), "BAM file does not exist: %s" %

bamFileName

# Check that FASTA reference file exists
assert os.path.isfile(fastaFileName), "FASTA file does not exist: %s" %

fastaFileName

# Create pileup directory if it doesn’t exist
if not os.path.isdir("pileup"):

os.makedirs("pileup")

# Format the samtools call
callString = ["samtools", "mpileup", "-d", "1000000", "-r", "%s" % region,

"-f", "%s" % fastaFileName, "%s" % bamFileName]

# Remove the extension from the bam filename and replace with .pileup
pileupFileName = bamFileName.split("/")[-1]
pileupFileName = os.path.join("pileup",

"%s.pileup" % pileupFileName.split(".", 1)
[0])

# Run samtools pileup only if the file doesn’t already exist.
#try:
# with open(pileupFileName, ’r’):
# logging.debug("Pileup file exists: %s" % pileupFileName)
#except IOError:
logging.debug("[call] %s", " ".join(callString))
with open(pileupFileName, ’w’) as fout:

subprocess.call(callString, stdout=fout)
return pileupFileName

def make_depth(pileupFileName):
""" Generates a depth chart file for each pileup file and stores it in the

/depth_chart directory. The folder will be created if it doesn’t exist
.

"""

if not os.path.isdir("depth_chart"):
os.makedirs("depth_chart")

# TODO replace this with a python version.
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callString = ["../../bin/pileup2dc", "%s" % pileupFileName]

dcFileName = pileupFileName.split("/")[-1]
dcFileName = os.path.join("depth_chart",

"%s.dc" % dcFileName.split(".", 1)[0])
#try:
# with open(dcFileName, ’r’):

# logging.debug("Depth chart file exists: %s" % dcFileName)
#except IOError:
logging.debug("Converting %s to depth chart." % pileupFileName)
with open(dcFileName, ’w’) as fout:

subprocess.call(callString, stdout=fout)
return dcFileName

def load_depth(dcFileNameList):
""" Return (r, n, location, reference base) for a list of depth charts.

The
variable r is the error read depth and n is the total read depth.

"""
r=[]; n=[]
acgt = {’A’:0, ’C’:1, ’G’:2, ’T’:3}

loc = []
refb = {}
cd = []
for dcFileName in dcFileNameList:

with open(dcFileName, ’r’) as dcFile:
header = dcFile.readline().strip()
dc = dcFile.readlines()
dc = [x.strip().split("\t") for x in dc]
loc1 = [x[1]+’:’+str(x[2]).strip(’\000’) for x in dc if x[4] in

acgt.keys()]

loc.append( loc1 )

refb1 = dict(zip(loc1, [x[4] for x in dc if x[4] in acgt.keys()]))
refb.update(refb1)
cd.append( dict(zip(loc1, [map(int, x[5:9]) for x in dc if x[4] in

acgt.keys()])) )

loc = list(reduce(set.intersection, map(set, loc)))

def stringSplitByNumbers(x):
r = re.compile(’(\d+)’)
l = r.split(x)
return [int(y) if y.isdigit() else y for y in l]

loc = sorted(loc,key = stringSplitByNumbers)
logging.debug(loc)
refb = [refb[k] for k in loc]

J = len(loc)
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N = len(dcFileNameList)
for i in xrange(0, N):

logging.debug("Processing %s" % dcFileNameList[i])
c = np.array( [cd[i][k] for k in loc] )
n1 = np.sum(c, 1)
#r1 = np.zeros(J)
refIdx=np.zeros(J)

for j in xrange(0,J):
#r1[j] = n1[j] - c[j, acgt[refb[j]]]
refIdx[j] = 4*j+acgt[refb[j]]

c = np.delete(c, refIdx, None)
c = np.reshape(c, (J, 3) )
#r.append(r1)
n.append(n1)
r.append(c)

r = np.array(r)
n = np.array(n)

return (r, n, loc, refb)

def chi2test(X, lamda=2.0/3, pvector=np.array([1.0/3]*3)):
""" Do chi2 test to decide how well the error reads fits uniform

multinomial distribution. P-value returned.
lamda=1 Pearson’s chi-square
lamda=0 the log likelihood ratio statistic/ G^2
lamda=-1/2 Freeman-Tukey’s F^2
lamda=-1 Neyman modified chi-square
lamda=-2 modified G^2

"""
X=np.array(X)

nsum=np.sum(X)
if nsum == 0: return np.nan # return NaN if there are no counts
E=nsum*pvector

if lamda==0 or lamda==-1:
C=2.0*np.sum(X*np.log(X*1.0/E))

else:
C=2.0/(lamda*(lamda+1))*np.sum(X*((X*1.0/E)**lamda-1))

df=len(pvector)-1
#p=scipy.special.gammainc(C,df)
# p=1-gammainc(df/2,C/2)
p = 1 - ss.chi2.cdf(C, df)
return(p)

def sample_post_diff(muCaseG, muControlG, N):
""" Return N samples from the posterior distribution for

u_j|r_case - u_j|r_control. """

95



nCase = muCaseG.shape[1]
nControl = muControlG.shape[1]

caseSample = np.random.choice(nCase, size=N, replace=True)
controlSample = np.random.choice(nControl, size=N, replace=True)

muCaseS = muCaseG[:, caseSample]
muControlS = muControlG[:, controlSample]

Z = muCaseS - muControlS

return (Z, muCaseS, muControlS)

def bayes_test(Z, roi, type = ’close’):
""" Return posterior probabilities in regions defined in list of tuples (

roi)
from samples in columns of Z. """

(J,N)=np.shape(Z)

nTest = len(roi) # get the number of regions to compute probabilities

p = np.zeros((J,nTest))
for i in xrange(nTest):

for j in xrange(J):
if type == ’close’:

# somatic test
p[j,i] = np.float( np.sum( np.logical_and( (Z[j,:] >= roi[

i][0]), (Z[j,:] <= roi[i][1]) ) ) ) / N
elif type == ’open’:

# diff test
p[j,i] = np.float( np.sum( np.logical_and( (Z[j,:] > roi[i

][0]), (Z[j,:] < roi[i][1]) ) ) ) / N

p = np.sum(p,1) # add up all the regions in each position.

return p # combine probabilities from all regions.

if __name__ == ’__main__’:
main()
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