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1. Introduction

Nowadays everyone either knows about artificial intelligence (Al) or at least has heard of it. You
do not even have to be a programmer or a scientist to understand the basic idea of it. People often refer to
Al as to a very complex tool that is used to solve complicated problems. Developers, on the other hand,
often try to hide the process of using Al from users, by sharing only the results, which in general makes
sense. We think that there is some beauty in a way that AI works to provide the appropriate results, even
though it is quite hard to see from the first sight, because the process is often hidden. It is not only the
result that can be interesting and appealing for the user, but also the process of getting the appropriate
result.

Genetic algorithms (GA) is a topic from the world of Al that we chose to work with. The basic
idea of it was taken from one of the theories of evolution that happens in real world, that is why people
can use the term evolutionary algorithms to describe GA. In this paper we will use the term GA.

We think that even though GA is often considered to be a helper tool* that sits somewhere in the
background of the development!'?, there are a lot of interesting details in the process of GA itself.
Moreover, it can be very interesting to watch the GA in action for the user.

We decided to built four small games that tried to utilize GA as a core gameplay mechanic in
order to understand if it indeed could be interesting to players. By making GA a core gameplay mechanic,
we wanted the user to play with the process of getting the results from GA.

Because of the fact that GA resembles real world evolution we selected robots as a theme for our
games and prototypes. We thought that having a theme that correlates to the gameplay mechanics would

help us make the gameplay more interesting and appealing to players.



Our goal is to provide the experience of playing with GA to player. By using GA as the main tool
to achieve it we decided to create a space for interaction with properties of GA. Sometimes it can be
tricky and even confusing, so we simplified the gameplay as much as possible while still trying to keep
the desired experience of playing with GA to player.

GA, similar to real world evolution, is all about making changes to the existing content. One of
our goals was to make player be always able to identify changes whenever they are made. We decided to
try four different designs in each of our four games that would bring the process of GA to player in
different ways.

We chose to build our demos and prototypes in Unity game engine. In order to use GA in all of
our games we decided to implement our own GA framework that could be easily modified to work with
each of our demos. The framework we built is extendable and is Unity friendly, but it is not dependent on
Unity so it can be used with any game engine.

We used the framework we developed and Unity game engine to build four games: Fighting bots
(Iteration 1), Fighting bots (Iteration 2), 3D racing bots and 2.5D racing bots. Each of the game we built
was playtested to see if it was interesting for the player to play with GA and influenced the development

of the next game.



2. Genetic algorithms

2.1. Background

A genetic algorithm is a search heuristic that mimics the process of natural selection. It generates
solutions to optimization problems using techniques inspired by natural evolution, such as selection,
mutation and crossover!',

Genetic algorithms work with a population of individuals that evolve to increase their fitness
function. Fitness function is a special measure that says how good the individual performs in its current
environment. Each individual has a set of properties, which can be mutated or altered. These properties
are called genes. A set of genes is called genome!'.

Evolution is an iterative process, where each population is called generation. Evolution usually
starts with a randomly generated population of individuals. In each generation, every individual is

evaluated using a fitness function. After that, fitter individuals are selected. This process is called

selection. Figure 1.

Figure 1. Selection (The least fit genomes are greyed out)
To breed a new generation, a genetic algorithm typically uses two genetic operators: crossover

and mutation. To create a child, two fit parents are selected. The child inherits some genes from the first



parent and other genes from the second parent. This process is called crossover. (Figure 2) In computer

language genes are represented as bits. And the inheriting genome becomes swapping bits.!"*!
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Figure 2. Crossover
The next step of genetic algorithm is mutation. In this process, some of the genes are randomly
changed. Usually more suitable individuals mutate less and less suitable individuals mutate more. (Figure

3).
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Figure 3. Mutation



2.2. Genetic algorithms framework

2.2.1 Explanation

To build four games that would use genetic algorithms as a gameplay mechanics, we needed to
implement genetic algorithms. We chose Unity to be our game engine and after looking at Unity asset
store'” we did not find any existing GA tool that would allow us to incorporate GA in our games. We
implemented our own genetic algorithms framework. On the figure 4 are shown the basic steps that our

framework does in order to make GA work.
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Figure 4. Steps we use in the GA framework
Our framework evolves the population of individuals that are represented with their genomes.
Individual is a representation of anything that is going to be evolved using the framework. Individuals can
be specified by the user of the framework by creating a class that implements an interface IIndividual

about which we will talk later. On Figure 5 it is shown the example of creating different individuals.



Arrows on the figures point out four types of individuals that we made. We will describe those individuals

in the design section.
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Figure 5. Different individuals

Each of the individual has its own genome and in most cases genomes of different individuals are
not identical. Genome is a set of genes. Having different genome representations may require to have
genes that are different from each other. That is why we made each gene being represented by a special
value. Different values of the gene can be specified by implementing a specific interface IGeneValue.
Figure 6 illustrates the example of creating different gene values. On the figure it is shown how we
created different values for the genes that we used in the genome of the individuals. One of the examples
of us creating new values for our prototypes was the following. The first iteration of our robots evolved
only the size of the wheel, which can be represented as just a one floating point gene. The second
generation of our robots also included the position and rotation of the arms, as well as their size. Size of
the arm is a floating point gene, but the representation of the position and rotation in space should be a
vector which by itself consists of three separate floating point values. A new type of gene had to be

created. In one of our prototypes we added color to the representation of our robot. To implement that we



added a new type of gene which also consists of three floating point values, but has some limitations on

the mutation, because we didn’t want the color to mutate the same way that any vector, but change mutate

the hue value only.
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Figure 6. Different gene values

2.2.2 Technical details

Even though, our framework is supported by Unity we are not using Unity classes inside of the

implementation. Therefore the framework can be easily integrated into any game engine, not necessarily

Unity.

When writing custom genome representations we needed to have different types of Genes.
Because of that, we decided to make the Gene functionality independent from the genetic “value” it
represents. [GeneValue [Appendix A.1] is an important interface in our framework since it describes the

basic behaviour of the genetic “value”. By changing the implementation of “value” we can mimic having

different types of genes in the individual’s genome. IGeneValue has to be implemented by future custom



classes. IGeneValue ensures that all of the future values that would be used as a genetic “value” would
have to know how to Mutate and Randomize themselves. IGeneValue is used as a generic type parameter
in a Gene class [Appendix A.3]. Gene is able to mutate itself by mutating the value. [Appendix A.3.1].

Genome is a serializable struct [Appendix A.4] which uses IGeneValue as a generic parameter
and has a collection of genes. Since genome or part of it during the evolution process is copied from one
individual to another, genome is able to create its copy [Appendix A.4.1]. Genome can mutate itself
[Appendix A.4.2] and make a crossover with another genes [Appendix A.4.2].

Genomes are used by individual to “individualize” themselves. Each individual implements the
IIndividual interface. That interface ensures that individuals would be able to Mutate and Crossover the
genome, as well as provides an option to set new genome to the individual. [Appendix A.2]. Individuals
can mutate and crossover by manipulating the genome.

GeneticAlgorithm is a generic class which makes the evolution process happen. [Appendix A.5].
It operates with the array of individuals, called - population. On each step genetic algorithm is making
three basic operations: Selection, Crossover, Mutation. Selection is done by sorting individuals based on
their fitness function[Appendix A.5.1]. After that crossover is performed. It removes the worst half of the
individuals based on their fitness score and populates new individuals.[ Appendix A.5.2]. When all of the
individuals are populated genetic algorithm randomly mutates the individuals. This process is done by
calling Mutate function of each of the individual.[Appendix A.5.3]

During implementation of the crossover function we ran into an issue of not being able to copy
genomes properly, because only references to the genomes were copied. We figured out the problem was
because we needed to perform a deep copy (a technique of copying object when copy of objects are
created for each reference rather than copying a reference) of the genome before applying it to another

individual, or else only a reference to that genome will be copied. That is why most of the classes that we



implemented are serializable. Technique of creating a deep copy in C# requires classes to be serializable
in C#.

One of the examples of our custom genetic “values” is FloatGeneValue. This class represent
floating point gene that has its range from 0.0 to 1.0.]Appendix A.6]. Floating point genetic “value”
mutates itself and still stays in its minimum and maximum range.[ Appendix A.6.1]. Vector3GeneValue is
another example of the genetic “value”. [Appendix A.7] It consists of three floating point values and has
its own custom Mutation function. [Appendix A.7.1]. While implementing our demos we also created
ColorGeneValue and Vector2GeneValue. In order to make our classes serializable and ensure the
possibility of creating deep copy we implemented our own Vector3 representation, we called it SVector3,

which is a serializable version of Unity’s standard Vector3.
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3. Design iterations

It is very important to choose the right theme for a game with genetic algorithms to be able to
make players experience the evolution. Human experience is combination of multiple factors so if we
want to succeed in making a game that uses Al as a gameplay element we need to make use of that
knowledge. Many people, especially players, mention robots when refer to artificial intelligence. Robots
are completely associated with Al for general public. Robots theme is also good because genetic
algorithms can be applied in many ways, which gives us a lot of flexibility and doesn’t limit us to a single
game mechanic.

By taking a terrain with a population of robot cars and letting them to evolve for a while, cars will
change dramatically and they will finally be good cars! Robots can be different, therefore we can think of
another scenario of robot evolution. For instance, there can be fighting robots and they can evolve their

body parts to become stronger.

3.1. Reference games

A big inspiration for our project is the TV show Robot Wars®® (Figure 7). The show involves
teams of usually amateur robot developers, who make their own robots to compete against each other.
Those robots have all kinds of different forms, shapes and weapons and from season to season they are
upgraded and improved. This process reminds as of evolution — the best robots continued to compete and

new ones are created.
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Figure 7. Robot Wars

Genetic Cars'" demo uses a simple genetic algorithm to evolve random two-wheeled shapes into
cars over generations. It uses Box 2D physics engine for physical simulation. Even though in Genetic
Cars player cannot control what is happening, it is still brings a lot of fun (Figure 8). This shows that Al
is very interesting to investigate and to play around with it. The user may not know anything about the
theory of genetic algorithms but still can easily change some parameters and see the results.

In Genetic Cars they use a simple genome representation: shape (8 genes, 1 per vertex), wheel
size (2 genes, 1 per wheel), wheel position (2 genes, one per wheel), wheel density (2 genes, 1 per wheel)
and chassis density (1 gene). Fitness function is a maximum distance that cars can travel. Between each

two races, selection, crossover and mutation are applied.
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Figure 8. Genetic Cars.
Egg worm generator'” (Figure 9 a) is a game that evolves creatures that learn how to move. Egg

worms should go only to the right side of the screen and fast as possible. Genetic algorithm is a key

gameplay element as well.
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Figure 9. a) Egg Worm Generator b) Cambrian Explosion

Cambrian Explosion® (Figure 9 b) is also a worm simulator. Genetic algorithms are used to
evolve worm movement. Each worm consists of given amount of segments. Player can control their
physical representation as well as control the process of evolution by changing the genetic algorithms

parameters.
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Figure 10. a) Combat Bots b) The Golem Project c) Sophia — Walking Star

Combat Bots'""! (Figure 10 a) is a game where player tries to hit bots with a bat, which are
evolving using neural networks and genetic algorithms. The goal for bots is to deal as much damage as
possible to the player while avoiding being hit. This is a good example of evolving interesting group
behaviors using genetic algorithms. For instance, bots will sacrifice themselves for the group to deal more
damage to player. Genome representation is weights and nodes of the neural network. Neural network has
inputs based on player position according to bot (left, right, etc.) and outputs what action to make (move
left, right, forward).

The Golem Project™ is Hod Lopson’s and Jordan Pollock's work (Figure 10 b) at Brandeis
University aimed to evolve a moving electro-mechanical system from scratch. They generate a population
of candidate robots composed of some repertoire of building blocks, where fitness function is their ability
to move. After simulating the evolution they build real prototypes.

Hierarchically Regular Locomoting Robots (Genobots)'® (Figure 10 ¢) created by Dynamical &
Evolutionary Machine Organization evolve both the morphology and the controllers for different robots.
They use genetic algorithms to create different creatures and later build some prototypes in real life. It is

not a game but is beautiful to watch.
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Agar I0™ (Figure 11) is a very popular browser multiplayer game. Main game mechanic is to

grow bigger in relatively fast game sessions. In this game even if you are very big you can lose all your

power very quickly.
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Figure 11. Agar 10

Clash of Clans' is a freemium mobile MMO strategy game. In this game player develops his
village, upgrades buildings and trains different kinds of troops to compete with other villages. In our
prototypes we also used a mechanic where player evolves his character during multiple game sessions and

competes with enemies whenever he thinks he is ready.

3.2. Fighting bots iteration 1

After trying out different kinds of robots with different genomes and multiple fighting scenarios
we chose the one that inspired us the most. Robot body contains of a main cube that drives on top of a
sphere and has three parallelepiped hands. Genome of the robot consists of one float variable that
determines the size of a wheel and three sets of nine float variables that determine size (3 floats), position

(three floats) and rotation (three floats) of hands. Size of a wheel determines speed and torque power of

15



robot. Hands can be used for both defence and offence, depending on size and placement (Figure 12).
When hands of other robots hit main cube - robot dies: all his hands randomly fall apart and the body with

a wheel freezes in the air on top of the fighting place with a nice “heaven” sound effect.
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Figure 12. Fighting bots from iteration 1
Ten robots of this type are fighting in a deathmatch scenario. In game mode camera is set to top
down view, but for research purposes we can easily control it in editor mode. The strategy of robots is
simple: each robot randomly chooses single opponent and tries to crash him. In this setup some robots
might evolve as fast attacking robots, and other could be slower and use defencive hand placement. After
each round three best robots are saved and displayed in head-up display for the next round. For this
prototype evolution is not implemented, so every time random robots are fighting (Figure 13). Video

preview of this prototype is available here: https://goo.gl/fCBw24.
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Figure 13. Deathmatch scenario from iteration 1
In this iteration player is just a spectator, he cannot interact with robots. After playtesting we saw
that users enjoy seeing all the different kinds of random robots fighting in a simple setup. So we decided
to continue working on this kind of robots with some slight changes in physics model and other

parameters and make it into a playable game prototype, to just a visual demo.

3.3. Fighting bots iteration 2

After playtesting and analyzing first prototype we saw a lot of flaws and based on feedbacks
decided to physics model of robot (Figure 14). We adjusted sizes and durabilities of all the parts and
instead of one main cube new robot got four smaller cubes and to die robot had to lose all four of them. In
this case robots became more durable and this made one on one combats a little longer and more
interesting to watch. What is more, this opened new evolution strategies for hand placements. Video

review of the iteration is available here: https://www.youtube.com/watch?v=01Vm06Y SkdQ.
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https://www.youtube.com/watch?v=O1Vm06YSkdQ

Figure 14. Fighting bot from iteration 2

3.3.1. Main menu

The goal of the game is to evolve your robot against different enemies and finally beat all of them
in the deathmatch mode. In main menu player can see blacklist of enemy robots (with possibility to
preview them) and current challenge (set of three robots to fight against in death match). Together with
actual robot physics model - schematic Figure of DNA is used to represent his structure. In this example
we use colors (red, green and blue) to represent coordinates, rotations and sizes (X, y and z). Both physics
modes and DNA model are rotating for user to be able to see it from different sides.

User’s robot, his evolutions and progress is saved between game sessions in XML files.
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Figure 15. Main menu

3.3.2. Fighting mode

The goal of the game is to go to the top of the blacklist (Figure 16). To do this player has to defeat

all the enemies in a fighting mode.
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Figure 16. Main menu after a few rounds of deathmatch
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The fighting mode is a death match with four randomly placed robots on the plain map. Camera is
set to third person mode to be able to easily track your robot (Figure 17). Game continues until either
player’s robot dies or all the enemies die. This mode is very similar to the mode in first iteration, but has

some adjustments to make it more interesting to play.



Figure 17. Fighting mode
Fighting mode had the same physics issues as evolution mode, so we applied the same mechanic

changes and result was quite satisfying.

3.3.3. Evolution mode

At the beginning of the game player has his default random robot, so to change him, player has to
evolve him. Also when in one of challenges player finds a bot that is always winning, player can evolve
his own robot to become better against that specific enemy. That is why there is a possibility to choose
evolution enemy in main menu. Initial setup is the following (Figure 18): five same enemy robots are on
the right side of the screen and five slightly mutated versions of player’s current robot are on the left side
of the screen. One fittest (current) robot is always visible in head-up display. Each robot fights
corresponding robot one on one until either one of them or both die. In case one robot stays alive - he

returns to his home position. After all the robots die or return to home position Genetic algorithm

21



(selection, crossover and mutation) is applied to player’s robots and new population of five robots
appears. This allows player to train his robot against tough enemy to be able to beat him and move up the

blacklist.

)

Generation: 2

Figure 18. Initial setup of evolution mode.

After testing different setups on this scene we encountered physics problems with these robots.
When two robots are close to each other and try to go towards each other - physics engine cannot handle
it properly. This is why with the same setup of robots results can be different. And this means that fitness
of robot depends not only on his structure, but also on the randomness of physics engine.

To overcome these issues we changed the wheel of the robot to a moving board (Figure 19). Hard
connection of body and board turned out a good solution to lots of physics issues. After this we developed
another strategy for robots: after gaining speed robots slide into each other (in this case force isn’t applied
to robots during the collision). In case both robots survive the collision they go away from each other and
then gain speed to collide again. This strategy improvement made one on one combats a lot more

interesting to watch and during the playtesting all users liked that.
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Figure 19. Changed physics model for second iteration robots

With these features we dramatically reduced randomness of combat, but still it was not enough.
We know that in evolution process randomness is always present, so why did we want to get rid of it?
Because randomness makes the fitness function not stable. And the less stable fitness function is - the
more fit individuals will be discarded by selection and the longer time it will take actually evolve in a
good way. And due to the fact that the game is supposed to be played by user (not evolving overnight),
we don’t have that time.

For example if somehow a very strong type of robot evolves, other individuals will want to breed
with him, but due to the randomness he can lose a fight against an easy enemy and his genome will be

discarded by genetic algorithm.

3.4. 3D cars

After playing around with physics model changes and robot behaviour changes we decided that it
will not be feasible to completely resolve these issues, so we decided to change the topic and return to our
initial inspiration of cars driving in 2D space. Both racing and fighting are competitive mechanics, but in

racing games car to car interactions are not main element, so evolution works in a different way. This
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means that even if collisions of two physical objects are not calculated in the same way every time - this
doesn’t noticeably affect the evolution process.

To test different prototypes we used the same template based genetic algorithm framework that
we developed earlier. And with the new models and new environment we were able to simulate exactly
the same outcomes from the same starting conditions.

We rapidly iterated through different types of racing robot representations and first successful
prototype is called “Cubification” (Figure 20). These cars are defined by placement of 8 vertices of
polyhedron. The polyhedron is filled with small cubes from the inside and wheels are attached to four of
the vertices. The size of polyhedron defines the number of cubes, size, center of mass and weight of the
robot. What is more - those models were driving on a 3D surface and showed very good and nice-looking

results.

Figure 20. “Cubification” model

Second successful prototype of racing robots is called “Connected balls” (Figure 21). These

robots are defined by positions of the wheels and type of their connection (wheels are connected to the
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center of mass, wheels are connected to each other one by one and all the wheels are connected to the

main wheel).

Figure 21. “Connected balls” model
These robots showed very nice results in obstacle overcoming, since they could turn upside down
and still drive on other wheels. So to make it harder we increased the number of wheels to 15 and made 5
of them inactive. This iteration of racing robots showed the biggest potential, so we created a round map

with hills and aim in the middle and fully applied genetic algorithms to this setup (Figure 22).
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Figure 22. Setup for second iteration of “Connected balls”
During the evolution these robots sometimes learned how to hide disabled wheels inside, so only

active wheels were outside. What is more, some robots turned out to get more rounded shape to be able to
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equally drive on all sides and other became more flat to have more active wheels touching the ground at
the same time.

During the playtesting we saw that the biggest problem in this setup is that it’s too hard to
recognize your car. Since all the wheels are very similar and cars drive on different sides - the only way to

memorise them is to look very closely for some time, but constant evolution made this very hard.

3.5. 2.5D cars

After implementing 3D cars we decided to make our next iteration. We made an assumption that
simplifying the 3D space to 2D would make the evolution process become more controllable from
algorithmic point of view and easier to see for the player. In order to make the game more interesting to
watch we created 2.5D space. By that we mean that some parts are done in 3D and some parts in 2D.
Video demo of this iteration is available here: https://www.youtube.com/watch?v=FYppYEVib6M.

We generated a 3D terrain by using fractals algorithm “squares and diamonds”.

Figure 23. Squares and Diamonds terrain generation
Generating it programmatically allowed us to modify the difficulty of the terrain by tweaking just

a few parameters of the algorithm. The goal of this iteration was to evolve our cars in 2D. So we decided
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to use a slice of the terrain as the road for the 2D car. When steering the car would steer in 3D space,

therefore changing the appearance of 2D road for user. Finally, it looked like the following Figure.

Figure 24. 2D Car on a “slice” from 3D world
In order, to make the game feel more than just a 2D we added a possibility to look at the same 2D
scene from a 3D perspective. Video preview of this mode is available here: https://goo.gl/a00sCt.The

next figure shows our final result..

Figure 25. 3D view on a 2D car

During evolution the car would evolve in 2D space. The genome includes positions of the car
body vertices and wheel sizes. In evolve mode player can adjust the time scale, so this allows him to both
look at particular cars how they look like, how they overcome obstacle in slow speed and enjoy quick

evolutionary results on high speed. The video demo is available here: https://goo.gl/ssBF94.
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The whole idea in this demo was two make the car change in the real-time during the race. Car
takes the evolution information from the evolve mode and morphs its shape from one evolution to
another during the race. The race appeared to be very dynamic since both the car and the terrain were
changing at the same time.

When playing user is able to try three different camera modes, experiencing the game in both 2D
and “3D” modes. This gives him impression that it is actually a 3D world with a 3D car, but actually all
the physics is calculated in 2D. So by adding some graphics like a dune buggy instead of plain lines,
desert instead of lines in terrain and actual road instead of just one highlighted line - user will feel the 3D
world with just some 2.5D limitations. And player’s skill will be in correct timed turns to avoid rough

parts of the 3D terrain better than his opponents.
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4. Conclusion

4.1. Playtesting

Playtesting was important part of our development process. We didn’t do any official playtesting
protocols, but we used to show all the results to our friends and IMGD students. During the development
process we had 5 people who playtested each iteration of our prototypes and 14 people who played and
gave feedback on four main prototypes. Occasionally we also gave our intermediate results to random
students in WPI and sometimes their feedback was even more crucial than feedback of regular playtesters.

At the very beginning of our work we made a small prototype with two cars that were pushing
each other out of the block. Those cars had simple body structures and their wheel sizes mutated
randomly. After playing around with it all our friends really enjoyed it. What is more important, we saw a
great potential in this topic and decided to choose it as our thesis project.

When we finished making first iteration of our fighting bots we tried to show it to as many people
as possible. After initial playtests users advised us to add sound effects to the demo and this made it a lot
better. At the end of last year we brought this prototype to IMGD game showcase and got a lot of positive
reviews and very important feedback.

After that we decided that we want to make a full game to be able to playtest it completely, not
just some parts. So we added menu with blacklist, evolution and fighting mode. After some playtesting
sessions users told us that they don’t like the fact that they are fighting against random unknown
opponents every time, so we decided to add challenges to our game. In general users liked it, so we
decided to keep it. We knew that it would be very nice to be able to preview opponents in menu, but only

after users told us the same we decided to actually implement this feature.
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While making our iterations we changed the appearance of robots and the game to make the
evolution become easy to notice. But the biggest problem that we realised after playtesting sessions was
the fact that actually users didn’t care about genetic representation of robots, or about genetic algorithms.
So that is why we decided to add a model of DNA that is rotating together with robot and paint it in
colors, that represent robot’s genome. After this feature was added players started to notice differences in
DNA of different robots and they told us that it made them actually think about genetics while playing the
game.

When we switched to racing robots and designed “Connected balls” model we gave it to
playtesters and they told us that all those robots look too similar. As developers we were able to see all the
details of each of them, but for actual users they turned out the same. That is the main reason why we
decided to continue exploring other robotic racing models.

When we gave first prototypes of 2.5D cars to users - they liked them a lot. The biggest amount
of good feedback we received after we implemented possibility to switch between 2D and 3D space with
the same car.

Overall playtesters gave us a lot of useful advices on how to adjust our prototypes to be more

interesting and fun to play.

4.2. Post Mortem

While designing a game with a core game mechanic like genetic algorithms it is important to
keep in mind that it may be hard to create the role for the player in game, even though the mechanic looks
very interesting and appealing to player. On the other hand, the game can be very fun even with less

interaction.
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By finding out what is exactly fun about the mechanics we were using, we managed to emphasize
on specific parts in our small demos. For instance, showing the evolution progress in 2D allowed us to

give the player much clearer picture of what is changing in between the evolutions.

What went right?

We developed a flexible genetic algorithm framework. It really helped us a lot in iterating
through different genetic representations of the same robots and through whole different types of
individuals. Before choosing robotic theme we implemented this framework even to a tower defence style
prototype.

We developed four prototypes, one of which was a full game prototype with winning condition.

We playtested all our results with both regular playtesters and with random players and this gave
us a lot of feedback and inspiration.

We researched a new field of gameplay mechanics based of the beauty of genetic algorithms.

What went wrong?

We had a lot of unexpected physics problems while detecting collisions between fighting bots.
With the same initial setups combat results turned out very random. Even though we changed and
tweaked our physics model and their behaviours, we weren’t able to remove the randomness.

This made our fitness function not stables, which means that we had to run a lot more generations

of evolution to get good outcomes, but in case of tablet game we didn’t have all that time.
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Appendix A: Genetic algorithms framework

A.1. IGeneValue

public interface IGeneValue
{
void Mutate (float mutationRange = 1.0f);
void Randomize () ;
System.Object Value();
void SetValue (System.Object value);

A.2. IIndividual

public interface IIndividual<T> where T : IGeneValue
{

void Mutate (float mutationRange = 1.0f);

float Fitness();

Genome<T> GetGenome () ;

void SetGenome (Genome<T> genome) ;

void Randomize () ;

void IncreaseGeneration();

A.3. Gene

[Serializable]
public struct Gene<T> where T : IGeneValue

{

private T value;

public T Value
{

get

{

return this.value;
set

this.value = value;
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A.3.1. Gene mutation

/// <summary>
/// Mutates the gene
/// </summary>

/// <param name="mutationRate"> Mutation range

public void Mutate (float mutationRange =

{

value.Mutate (mutationRange) ;

A.4. Genome

[Serializable]
public struct Genome<T> where T : IGeneValue
{

private Gene<T>[] genes;

public Gene<T>[] Genes
{

get

{

return genes;

genes = value;

A.4.1. Genome. Creating deep copy

[0.0f,

public Genome<T> CreateDeepCopy (Genome<T> inputcls)

{

MemoryStream m = new MemoryStream() ;

BinaryFormatter b = new BinaryFormatter();

b.Serialize (m, inputcls);
m.Position = 0;

return (Genome<T>)b.Deserialize (m);

1.0f]

</param>
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A.4.2. Genome. Mutation

public void Mutate (float mutationRange = 1.0f)

{

for (int i = 0; i < this.genes.Length; i++)
{

genes[1] .Mutate (mutationRange) ;

A.4.3. Genome. Crossover

public static Genome<T> Crossover (Genome<T> genomel,

{

if (genomel.genes.Length != genome2.genes.Length)

{

Genome<T> genome?2)

Debug.LogError ("Cannot crossover genomes with different amounts of

genes genomel: " + genomel.genes.Length + " genome2: " + genome2.genes.Length);

}

int crossoverPoint = UnityEngine.Random.Range (0, genomel.genes.Length);

Genome<T> result = new Genome<T> () ;
result.genes = new Gene<T>[genomel.genes.Length];

Genome<T> genomelCopy = genomel.CreateDeepCopy (genomel) ;
Genome<T> genome2Copy = genome?2.CreateDeepCopy (genome?2) ;

for (int i = 0; 1 < crossoverPoint; i++)
{

result.genes[i] = new Gene<T>(genomelCopy.genes|[i].Value);

for (int i = crossoverPoint; 1 < genomel.genes.Length; i++)
{
result.genes[i] = new Gene<T>(genome2Copy.genes|[i].Value);

return result;
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A.S. GeneticAlgorithm

public class GeneticAlgorithm<IndividualT, T>
IIndividual<T> where T : IGeneValue

{

private IndividualT[] population;

public IndividualT[] Population
{

get

{

return population;

population = value;

A.S5.1. GeneticAlgorithm. Selection

private wvoid Sort ()

{

for (int i = 0; 1 < population.Length - 1; i++)

{
for (int j = 1 + 1; Jj < population.Length;
{

if (population[i].Fitness () < population[j]

{
IndividualT temp = population[i];
population[i] = population([j];
population[j] = temp;

}

/// <summary>

/// Sorts in the way that the fittest element is first

/// </summary>
private void Selection|()

{
Sort () ;

IndividualT

.Fitness())
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A.5.2. GeneticAlgorithm. Crossover

38. /// Remakes second half of individuals based on first (fitter) half

39. /// </summary>

40. private void Crossover ()

41. {

42 . for (int i = 0; i < population.Length / 2; i++)

43. {

44. Genome<T> genel;

45, Genome<T> gene2;

46. population[population.Length / 2 + 1i].SetGenome (
Genome<T>.Crossover (

47 . population[i].GetGenome (), population[i + 1].GetGenome()));

48. }

49. }

A.5.3. GeneticAlgorithm. Mutation

50. private void Mutation ()

51. {

52. // Range (1.0f, 10.0f)

53. float mutationDecreaser = 1.0f;

54.

55. for (int i = 1; i < population.Length; i++)
56. {

57. population[i] .Mutate (0.3f);

58. }

59. }

A.5.4. GeneticAlgorithm. Step

60. public void Step()

61. {

62. for (int i = 0; i1 < population.Length; i++)
63. {

64. population[i].IncreaseGeneration() ;

65. }

66. Selection () ;

67. Crossover () ;

68. Mutation () ;

69. }
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A.6. FloatGeneValue

public struct FloatGeneValue : IGeneValue

{

private float value;

public float MinValue;
public float MaxValue;

A.6.1. FloatGeneValue. Mutation

public void Mutate (float mutationRange = 1.0f)

{
float delta = mutationRange / 2.0f;

value += UnityEngine.Random.Range (-delta, delta);

ClampValueToMinMax () ;

A.7. SVector3

[Serializable]

public struct SVector3

{
public float x;
public float y;
public float z;

public SVector3(float x, float y, float z)
{

X = X;
y = _Yi7
z = zZ;

public Vector3 ToVector3()
{

return new Vector3(x, vy, z);

public static SVector3 zero = new SVector3(0.0f, 0.0f, 0.0f);
public static SVector3 one = new SVector3(1.0f, 1.0f, 1.0f);
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A.8. Vector3GeneValue

[Serializable]
[DataContract (Name
"http://www.geneticwar
[KnownType (typeof (IGen
/// <summary>
/// RAll gene values in
/// </summary>
public struct Vector3G
{
[DataMember (Name =
private SVector3 v

[NonSerializedAttr
public SVector3 Mi
[NonSerializedAttr
public SVector3 Ma

= "Vector3GeneValue",
s.com") ]
)

eValue)

]
project are [0; 1]
eneValue : IGeneValue

"value") ]

alue;

ibute]
nValue;
ibute]
xValue;

A.8.1 Vector3GeneValue - Mutation

public void Mutate

{
float delta =

float valueX =
float valueY =
float valueZ =

(float mutationRange = 1.0f)
mutationRange / 2.0f;
value.x + UnityEngine.Random.Range

value.y + UnityEngine.Random.Range
value.z + UnityEngine.Random.Range

value = new SVector3 (valueX, valueY, valueZ);

ClampValueToMi

nMax () ;

Namespace

(-delta,
(-delta,
(-delta,

delta);
delta);
delta) ;
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